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A B S T R A C T   

Water distribution systems (WDSs) are important urban water infrastructure supporting a wide range of human 
activities. Due to the significant amount of energy consumed by the WDS throughout its lifespan, the operation of 
WDSs may have a significant impact on the environment, affecting the sustainable development of cities into the 
future. Behind-the-metre (BTM) solar photovoltaic (PV) system integration has been considered an effective way 
to reduce the impact of WDSs on the environment. However, solar PV technology is developing rapidly. Com-
bined with long-term changes in water demand driven by population growth and urbanisation, the design of a 
WDS considering BTM solar has become a more challenging task. In this study, the co-design of WDS integrating 
BTM solar PV systems under changing future conditions in terms of water demand and solar PV technology 
development is investigated. It has been found that the BTM solar PV system and the potential development in 
solar PV technology effectively improve the robustness of WDS design under uncertain future water demand. The 
outcomes of this study can be extended to guide infrastructure design to provide sustainable infrastructure for 
future cities, and therefore cities can continue to support human activities in deeply uncertain future.   

1. Introduction 

Water distribution systems are essential components of urban water 
infrastructure, which plays a vital role in the sustainable development of 
cities. WDSs supply water with appropriate pressure from water sources 
to consumers to meet different needs in urban areas (National Research 
Council, 2007). This infrastructure is necessary for multiple human ac-
tivities, such as maintaining health and well-being, and supporting in-
dustrial production and agricultural activities (EPA, 2022). However, 
the construction and operation of WDSs are recognised as the major 
driving forces for environmental change to the natural environment 
(Doyle & Havlick, 2009). Therefore, it is crucial to account for WDSs’ 
potential impact on the natural environment and in turn on the sus-
tainable development of cities and their ability to support future human 
activities when designing WDSs. 

Pressurised distribution systems for water supply in urban areas 
usually consume significant amounts of energy, contributing to a large 
amount of greenhouse gas (GHG) emissions (Sharif et al., 2019). As 
reported by Coelho and Andrade-Campos (2014), around 7% of the total 
energy generation is consumed by distributing water every year glob-
ally. The energy consumption for distributing water can also contribute 

to non-negligible GHG emissions. For instance, emissions by water 
utilities account for approximately 1% of the total GHG emissions in the 
U.S. (Zib III et al., 2021). Due to the growing concern about the global 
energy crisis, and the intention to reduce GHG emissions and the related 
impact of climate change (Garcia et al., 2021), researchers have been 
working on reducing the energy usage and its related emissions for 
WDSs. 

As a result, the ’energy-for-water’ perspective has become a major 
research focus recently, when designing and operating the WDSs 
(Hamiche et al., 2016). These studies can be classified into three cate-
gories based on the energy supplied for WDSs: (1) studies aiming at 
reducing energy consumption and GHG emissions when designing the 
WDS (Luna et al., 2019; Wu et al., 2010); (2) studies considering energy 
saving from pump operations (Behandish & Wu, 2014; Marchi et al., 
2012), energy recovery through micro hydro-turbines, pump as a tur-
bine, etc. (Ávila et al., 2022; De Marchis et al., 2014; Sitzenfrei & Rauch, 
2015; Tricarico et al., 2018), and energy efficiency improvement mea-
sures (Ramos et al., 2011); and (3) studies seeking renewable energy as 
sources of energy supply for the system, such as solar photovoltaic 
(Carrillo-Cobo et al., 2014; Giudici et al., 2019; Olcan, 2015) and wind 
(Rehman & Sahin, 2012). Instead of making adjustments on components 

* Corresponding author. 
E-mail address: jiayuy4@student.unimelb.edu.au (J. Yao).  

Contents lists available at ScienceDirect 

Sustainable Cities and Society 

journal homepage: www.elsevier.com/locate/scs 

https://doi.org/10.1016/j.scs.2023.104844 
Received 21 April 2023; Received in revised form 23 June 2023; Accepted 1 August 2023   



Sustainable Cities and Society 98 (2023) 104844

2

within the WDS, renewable energy integration focuses on improving the 
system energy performance from an energy supply side of view. Ac-
cording to Garcia et al. (2021), renewable energy integration into WDSs 
could effectively reduce the systems’ dependence on traditional energy 
sources and thus correspondingly reduce the related GHG emissions. 
Moreover, with renewable integration, the impact of an uncertain en-
ergy market in the future will be minimised. This leads to the installation 
of behind-the-metre (BTM) solar systems as an alternative or additional 
energy supply source for WDSs (Zhao et al., 2023). Such onsite energy 
generation systems have been considered as an effective way to lower 
the environmental impact as well as manage the economic cost of WDSs 
(Bayram & Ustun, 2017; Garcia et al., 2021). In addition, with locally 
energy generated by BTM solar consumed onsite and excess electricity 
generated provided to the central grid, the resilience and security of the 
energy grid could be improved (Angizeh et al., 2021). 

When integrating BTM solar photovoltaic (PV) systems into WDSs, 
one major consideration is the relationship between the energy supplied 
by the BTM solar and the energy consumed by the WDS. Since solar 
resources are highly intermittent, this leads to a large variation in energy 
supplied by solar generation (Gowrisankaran et al., 2016). Meanwhile, 
the pumping energy required by the WDS exhibits variation as well, as 
the energy requirement of the system depends largely on the amount of 
water to be delivered, which could vary significantly even within a day 
(Letting et al., 2017). Therefore, it is important to view these two sys-
tems together as a combined system, to include the interactions of en-
ergy demand-supply balance inside the design process. There has been 
limited research on the co-design of WDS and BTM solar systems, with a 
focus mostly on the design of WDSs (Zhao et al., 2023). 

The co-design of a WDS integrating BTM solar energy system needs 
to consider not only future changes in water demand, but also the po-
tential impact of solar PV technology development. WDSs have rela-
tively long service lifespans (National Research Council, 2005), and the 
water demand may change significantly under the impact of long-term 
drivers of population growth and urbanisation (Okello et al., 2015; 
Wu et al., 2020; WWAP, 2019). Therefore, instead of designing and 
optimising WDSs under certain pre-determined future conditions 
(Simpson et al., 1994; Walters et al., 1999), recent studies have started 

to take into account the deeply uncertain water demand changes in the 
design of WDSs in the distant future. There has been considerable 
research investigating the impact of future changes in water demand on 
the planning, design and operation of WDSs (Basupi & Kapelan, 2015; 
Creaco et al., 2015; Cunha et al., 2019, 2020; Marques et al., 2015a, 
2015b, 2017, 2018; Tsegaye et al., 2020; Zhang et al., 2013). 

However, there has been very limited research considering long-term 
uncertainty associated with solar PV technologies. Solar PV modules 
have gone through significant changes over the past several decades. 
The solar cell efficiency has more than doubled in the past 20 years 
(National Renewable Energy Laboratory, 2022; Shubbak, 2019), and the 
solar panel unit cost has been driven down to less than 1/15 compared to 
1980′s conditions (Gul et al., 2016; Victoria et al., 2021). Due to the 
relatively short service lifespan of solar PV panels of 20–25 years, the 
cost and efficiency of replaced solar panels in the future are highly un-
certain. The long-term uncertainty related to solar PV technology may 
then lead to variations in the generation performance of the BTM solar 
system. Consequently, solar PV technology development uncertainty 
and its impact on the co-design of the WDS with the BTM solar system 
should also be taken into account for the co-design of WDSs integrating 
BTM solar. 

To inform the design of WDSs for future cities and design these 
systems to be robust as well as resilient to future changes, this study is 
proposed to explore the impact of long-term water demand changes and 
solar PV technology development on the co-design of BTM solar- 
integrated WDSs. Two benchmark case studies have been applied to 
investigate: (1) the impact of different sources of long-term uncertainty 
on the design of BTM integrated WDSs, and (2) the impact of different 
robustness metrics on the identified robust solutions. The rest of this 
paper is structured as follows, Section 2 introduces the general meth-
odology of this work, which includes the method developed for the co- 
design of the BTM solar-integrated WDS and the method used to account 
for long-term uncertainty considered in this study. The detailed case 
study descriptions, including the formation of the multi-objective opti-
misation problem and the simulation and optimisation methods used, 
are presented in Section 3. Section 4 includes the results and discussion, 
and Section 5 concludes the paper. 

Fig. 1. Overview of the methodology.  

J. Yao et al.                                                                                                                                                                                                                                      



Sustainable Cities and Society 98 (2023) 104844

3

2. Methodology 

2.1. Overview of the co-design of WDS integrating BTM solar system 

The primary focus of this study is to investigate the impact of 
different sources of long-term uncertainty (i.e., water demand changes 
and changes in solar PV technology into the future) on the co-design of 
BTM solar PV integrated WDSs. The general design approach that has 
been applied is shown in Fig. 1. 

The first stage of this approach is problem formation, which is 
generally made up of three parts. First, the WDS optimisation problem is 
formulated. This involves determining the design period T, design in-
terval t (e.g., a design period of 60 years is divided into 3 design intervals 
of 20 years), and the simulation timestep ΔL, identifying the WDS’s 
characteristics such as nodal water demands, pipe lengths, etc. These 
provide the required information for the hydraulic simulations and 
related calculations of the WDS. Moreover, the decision variables DV =
{DV1, DV2, …DVn} (e.g., pipe sizes) within the WDS that need to be 
decided upon the optimisation and constraints to be considered during 
the optimisation are identified. The optimisation objectives represented 
by performance metrics in terms of the system’s economic, environ-
mental performances are to be determined as well. Second, in addition 
to the design and optimisation of WDS, method for determining the BTM 
solar PV system generation capacity is developed. In this study, the solar 
PV generation capacity is considered as a dependant variable of WDS’s 
design and energy requirements, and it is determined with consideration 
of the cost and benefits of the integrated BTM solar system (Section 
2.2.1). Then the actual energy generated from each solar PV system can 
be determined based on solar resources availability at the installation 
location (Section 2.2.2). Lastly, scenarios, i.e., S = {S1, S2, …Sn}, are 
developed to account for long-term uncertainty related to the BTM in-
tegrated WDS. Each scenario may lead to one distinct plausible future 
condition, and all the scenarios are viewed as equally likely to occur into 
the future (Kwakkel et al., 2010). The different scenarios developed with 
combinations of different changes to long-term drivers represent the 
possible range of the future conditions for the integrated system under 
multiple sources of long-term uncertainties (Lempert, 2003; Maier et al., 
2016). There are different sources of long-term uncertainty that may 
affect the BTM solar PV integrated WDS in the distant future. Long-term 
uncertainty associated with water demand and solar PV technology 
development are identified as two major sources of uncertainty that may 
impact the co-designed system. The scenarios developed based on 
long-term changes of water demand, and changes in solar PV unit cost 
and conversion efficiency (referred to as ‘solar PV technology develop-
ment’) are discussed in Sections 2.3.1 and 2.3.2, respectively. 

In the second stage, the BTM solar integrated WDS is optimised under 
each developed scenario Si using evolutionary algorithms (Maier et al., 
2019). During the optimisation process, candidate solutions that are 
combinations of decision variables values are generated. For each 
generated candidate solution, the hydraulic simulation of the WDS is 
conducted using a hydraulic solver. In addition, the hydraulic simula-
tion provides relevant information for determining the integrated BTM 
solar system capacity, and thus the defined optimisation objectives are 
able to be calculated. The trade-off between optimisation objectives in 
terms of a Pareto front will then give a set of non-dominated solutions, 
which are identified as optimal design solutions for the future scenario 
considered. This optimisation process is repeated for all the scenarios 
developed in the first step, and thus yields one set of optimal design 
solutions for each scenario. 

To select design solutions that could perform well under a range of 
plausible future scenarios, in the third stage, the performances of these 
optimal design solutions are evaluated using various robustness metrics 
(McPhail et al., 2018). In this stage, all the optimal solutions obtained 
are first simulated under all future scenarios developed using the hy-
draulic solver. The optimisation objectives in terms of performance 
metrics for each scenario are then be calculated using the simulation 

data, and the values of different robustness metrics that are calculated 
based on the solutions’ performances across all scenarios are obtained. 
Finally, the Pareto-optimality of previously obtained optimal solutions 
(i.e., optimal solutions under all different scenarios) in terms of the 
values of each robustness metric considered can be assessed, leading to a 
single set of non-dominated solutions for each robustness metric under 
all scenarios representing long-term uncertainty. The detailed imple-
mentation of this methodology over the case study networks are dis-
cussed in Section 3. 

In this study, a design period of 60 years is assumed, starting from 
2020 until 2079. Considering the lifespan of pumps and solar PV panels 
in the integrated system, the design period is further divided into three 
20-year design intervals. The pumps and solar PV systems are to be 
resized at the start of each design interval. In addition, location-specific 
information required in the optimisation and simulation process are 
hypothetical and simplified. For illustration of the methodology, data 
such as solar resources availability and water demand patterns based on 
Melbourne, Australia’s conditions have been adopted. 

2.2. Integration of BTM solar PV systems 

In this study, a solar PV system is integrated into the WDS as an 
additional source of energy supply. To maximise the benefits of the in-
tegrated BTM solar system, use of the electricity generated from this 
system is prioritised over energy from the centralised electricity grid. 
When the solar energy generated cannot satisfy the energy demand of 
pumping in the WDS, additional energy is sourced from the centralised 
electricity grid. Meanwhile, the excess solar energy generated will be 
sold back to the centralised grid if the solar generation is not fully uti-
lised by the WDS. This is a common arrangement between energy pro-
viders and water utilities with BTM solar in Australia (Zhao et al., 2023). 
The BTM solar PV system generation capacity is considered as a 
dependant variable, which is determined by the WDS’s configuration 
and pumping energy requirement. This is to make sure the best BTM 
solar PV system option is used for each potential WDS solution under 
evaluation in the optimisation process. The feed-in-tariff has been taken 
as zero in this study for determining the size of the BTM solar PV system 
to avoid oversizing of the system for maximising the economic benefits 
by selling excess energy generated from BTM solar systems back to the 
centralised grid. Moreover, by assuming a zero feed-in-tariff, the out-
comes from this study are more widely applicable for the design and 
optimisation of WDSs regardless of if there is an agreement between 
water utilities and energy providers to sell excess energy back into the 
grid. Therefore, for each WDS candidate solution, a BTM solar PV system 
is sized based on the characteristics of the specific network to optimally 
meet the energy demand by the network. 

2.2.1. Solar PV system sizing method 
The determination of solar PV generation capacity has been formu-

lated as a single-objective optimisation where the economic cost directly 
related to the BTM solar PV system is minimised. To eliminate the 
impact of the cost of pipes and pumps, which are far beyond the cost 
associated with pumping energy, only the economic cost related to en-
ergy for pump operation of the system will be minimised. Thus, the Total 
Energy-related Cost (TEC) is defined and formulated as: 

TEC =

{
SC + PV(OC), for stage = 1

PV(SRC) + PV(OC), for stage > 1 (1)  

where SC represents the capital cost for the solar PV system; PV(OC) is 
the present value of operational cost of the water distribution network, 
which accounts for the cost of energy taken from the grid that cannot be 
fully supplied by the solar PV system; SRC refers to solar panel 
replacement cost. 

An inequality constraint is applied to the optimisation to ensure the 
solar PV system is cost-effective, and the constraint is given as a Benefit- 
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Cost-Ratio (BCR): 

BCR =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

PV(OCS)
SC

− 1 ≥ 0, for stage = 1

PV(OCS)
PV(SRC)

− 1 ≥ 0, for stage > 1
(2)  

where OCS represent the operational cost savings due to the solar PV 
integration, which is calculated as the equivalent cost of the energy 
supplied by the solar PV system energy generation. 

The BTM solar PV system size is determined for each design interval 
separately. The operational cost represents the sum of the present dis-
counted cost spent on electricity bought from the grid within each 
design interval of 20 years. The capital cost of the solar PV system is 
considered as one-off payment that only occurs at the beginning of each 
design period. 

The non-linear programming method of Sequential Least Squares 
Programming (SLSQP) was chosen to solve the single-objective optimi-
sation problem (Kraft, 1988). In this study, a python PyPi package called 
‘Scipy’, which offers the application of the SLSQP method, was adopted 
for the optimisation of solar PV system capacity (Virtanen et al., 2020). 

2.2.2. Solar PV system energy generation estimation method 
In this study, solar PV system generation is estimated hourly 

throughout the design period as a general representation of intermittent 
solar resources. First, the total annual solar PV system energy generation 
is calculated based on the approximate solar PV unit generation for the 
location of installation and the solar PV generation capacity to be 
installed. Second, the total amount of generation is disaggregated into 
each month of the year based on the interannual solar resources varia-
tion. It is assumed that there is no variation in generation within a 
month, so the total monthly generation is equally disaggregated to each 
day in a month. And lastly, 24 h solar PV generation patterns for 
different calendar months are developed by further disaggregating daily 
generation to each hour of the day. The hourly solar PV system gener-
ation is formulated as: 

SGm, t = (SpC× uSG× 365) × SGMonMultim × SGDiuMultit (3)  

where SpC is the solar PV system generation capacity, and uSG repre-
sents the unit generation for solar panels at the installation location 
(kWh/day); SGMonMulti is the disaggregation multiplier for month m, 
while SGDiuMulti stands for disaggregation multiplier for hour t within a 
day. 

Global Horizontal Irradiation (GHI) is the most important and widely 
used variable for estimating the amount of solar received by solar panels 
in solar PV potential models (Bolinger et al., 2016; Energy Sector 
Management Assistance Program, 2020). Therefore, in this study, his-
torical GHI data is used to characterise the general seasonal variation in 
solar PV system generation. It is assumed that solar PV system genera-
tion is proportional to GHI measured at the location. The monthly and 

hourly disaggregation multipliers are then be developed based on his-
torical GHI data. 

As discussed in Section 2.1, GHI and solar PV generation data of 
Melbourne, Australia is used in this study to develop the solar PV gen-
eration patterns for the case studies. The average daily production of a 
solar PV system located in Melbourne with a capacity of 1 kW is around 
3.6 kWh (Clean Energy Council, 2020). The ageing of the solar PV sys-
tem is neglected so that during the operation lifespan the generation 
efficiency of solar panels is assumed as constant. Disaggregation calcu-
lations are averaged across a 5-year (2016–2020) time series of hourly 
GHI data (Data source: NSRDB (National Solar Radiation Database, 
2022)) to eliminate the impact of extreme years. The developed monthly 
and diurnal solar PV generation patterns are illustrated in Fig. A.1 and 
Fig. A.2. 

2.3. Scenario development 

2.3.1. Changes in future water demand 
Water demand uncertainty is the first source of long-term uncer-

tainty considered in this study. Two major driving forces that may lead 
to the increase in urban water demand include population growth 
(Boretti & Rosa, 2019; Okello et al., 2015; WWAP, 2019) and climate 
change (Gato et al., 2007; State of Victoria, 2016). Meanwhile, waste-
water recycling techniques and decentralised water supply such as 
rainwater tanks may provide additional water sources for urban water 
supply and may thus reduce the burden on traditional centralised water 
distribution systems (Arora et al., 2015). Five future water demand 
change trajectories with different rates of change (from − 30% to 
+100%) have been developed to cover potential long-term changes in 
demand mentioned above. 

As illustrated in Fig. 2, the water demand trajectories include: (1) the 
baseline trajectory (i.e., D+0%) where the demand is not changing 
across the design period; (2) the demand decrease trajectory (i.e., D- 
30%) that assumes alternative sources of water supply could effectively 
reduce the urban area’s reliance on the centralised WDS, and the water 
demand will be 30% less than the demand at the design starting point; 
(3) three growth trajectories (i.e., D+30%, D+60%, and D+100%) with 
water demand increased to 130%, 160% and 200% compared to the 
demand in 2020 (i.e., the design starting point). 

2.3.2. Changes in solar PV technology 
Another major source of long-term uncertainty considered in this 

study is the uncertainty associated with the future development of solar 
PV units. This mainly results in the uncertainty in future cost (Green, 
2001; International Renewable Energy Agency, 2019) and conversion 
efficiency (Green, 2001; International Renewable Energy Agency, 2019; 
National Renewable Energy Laboratory, 2022) of solar PV panels that 
may affect the co-design of the BTM solar integrated WDSs. Three solar 
PV technological development trajectories are developed to represent: 
(1) the no technological change case (i.e., TConst., to be used as a baseline 
trajectory for comparison), where the unit cost and conversion effi-
ciency of solar PV panels remain constant into the future; (2) the 
development of conventional crystalline silicon cells (i.e., TConv.) that 
represents a steady improvement in cost and conversion efficiency of the 
widely applied crystalline silicon solar cells; and (3) the development of 
advanced 3rd generation solar cells (i.e., TAdv.). The three solar PV 
technology development trajectories developed are shown in Fig. 3. It is 
assumed that once the solar PV system is installed, the cost and con-
version efficiency will not change during its service lifespan of 20 years. 

2.3.3. Summary of scenarios 
In this study, 15 scenarios have been developed based on the 

different combinations of the five demand change trajectories and three 
solar PV technology development trajectories into the future. These 15 
scenarios are summarised in Fig. 4. Each cell in the figure shows one 
scenario, which represents a specific combination of one demand change 

Fig. 2. Water demand change trajectories.  
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trajectory and one solar PV technology development trajectory. For 
instance, the cell at the top right corner (i.e., D-30% & TAdv.) shows the 
future conditions that water demand is reduced by 30% by the end of the 
design period, while advanced solar PV units are available for the solar 
PV system within the design period. Amongst the 15 scenarios, two 
groups of scenarios named as baseline technology scenarios (i.e., D-30% 
& TConst., D+0% & TConst., D+30% & TConst., D+60% & TConst., D+100% 

& TConst.) and baseline demand scenarios (i.e., D+0% & TConst., D+0% & 
TConv., D+0% & TAdv.) that represent baseline trajectories of the two 
sources of uncertainty correspondingly, are considered in the robustness 
evaluation stage. Baseline technology scenarios include five scenarios 
where solar PV units’ cost and conversion efficiency remain unchanged, 
while all five demand change trajectories considered. Thus, investiga-
tion of results from this group of scenarios explains the impact of 

Fig. 3. Solar PV technology development trajectories (a) solar PV unit cost trajectories and (b) solar PV conversion efficiency trajectories.  

Fig. 4. Summary of the 15 scenarios.  

Fig. 5. Modified Net1 network (Pipe length: DV1=3209 m; DV2-DV11=1609 m; Nodal base demand: Node 3,7,8 = 7 L/s; Node 1,2,4,6 = 10 L/s; Node 5 = 13 L/s).  
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demand uncertainty on the co-design of BTM integrated WDSs. Simi-
larly, three baseline demand scenarios’ results provide insight into the 
impact of solar PV technology development uncertainty on the design. 

3. Case study 

3.1. Case study networks 

Two hypothetical case studies are considered in this study. First, the 
case study network 1 is modified from the example network Net 1 
provided by EPANET (Open Water Analytics, 2022a), as shown in Fig. 5. 
The modified Net 1 network, which consists of 11 pipes and 8 demand 
nodes, is supplied by a pump station located near the source of water. 
The base demand at demand nodes varies from 7 L/s to 13 L/s, with a 
total base demand equal to 74 L/s, and water is pumped directly from 
the source to each individual demand node to ensure the demands are 
always met during the design period. 

The case study network 2 is modified from the Anytown network, 
which is a hypothetical network proposed by Walski et al. (1987). The 
layout of the network is shown in Fig. 6. The network is composed of 19 
demand nodes connected by 39 pipes, and the nodal base demand 
changes from 13 L/s to 63 L/s. The pump station is operated 24 hours 
per day to deliver water from the source to each demand node. 

3.2. Multi-objective optimisation objective function formulation 

The water distribution network design considering behind-the-metre 
solar energy integration under long-term uncertainty is formulated as a 
multi-objective optimisation problem. The sizes of pipes are taken as the 
decision variables of the optimisation problem. In this problem, a min-
imum allowable pressure head of 28 meters of water is set to be satisfied 
at all times (Ghorbanian et al., 2015). The variable speed pump handles 
the pressure head constraint, as discussed in Appendix B. 

3.2.1. Minimisation of total life cycle cost (TLCC) 
The Total Life Cycle Cost (TLCC) of the system is formulated as: 

TLCC = CC + PV(PRC) + PV(SRC) + PV(OC) (4)  

where CC is the capital cost, PRC and SRC are the pump station refur-

bishment and solar panel replacement costs at the later design intervals, 
respectively, and OC represents the operational cost induced by pump 
operation during the design period. 

3.2.1.1. Capital cost (CC). The Capital Cost (CC) is given by the 
following equation: 

CC =
∑No. of Pipes

i=1
DiLi + PC + SC (5)  

where the capital cost for pipes is calculated using the unit cost of pipe i 
(Di, in $/m) and the length of the pipe (Li, in meters); PC is the cost for 
the pump station and initial pump set to be installed at the beginning of 
the design, and SC is the capital cost for the solar panel system. The unit 
cost for DICL pipes with different commercial sizes is adopted from the 
Department of Primary Industries (2014). The pump station and initial 
pump set capital cost are calculated based on the maximum pump power 
required by the network (Department of Primary Industries, 2014). The 
estimated costs for commercial solar PV systems are provided by Clean 
Energy Council (2020) for various solar PV capacity sizes, the capital 
costs for different solar PV system sizes used in this study are linearly 
interpolated or extrapolated based on the reference data. 

3.2.1.2. Pump station refurbishment cost (PRC) and solar panel replace-
ment cost (SRC). The service lifespan of pumps and solar PV units is 
assumed to be 20 years (Clean Energy Council, 2020; Water Services 
Association of Australia, 2011). Therefore, the pumps and solar PV units 
are replaced every 20 years during the whole design period of 60 years, 
and the replacements happen at the beginning of each design interval. 
The Pump station Refurbishment Cost (PRC) and Solar panel Replace-
ment Cost (SRC) are calculated as: 

PV(PRC) =
∑T

tR

PuCtR ×
1

(1 + i)tR (6)  

PV(SRC) =
∑T

tR

SpCtR ×
1

(1 + i)tR (7)  

where PuC and SpC are the cost for the new pumps and new solar panels 

Fig. 6. Modified Anytown network (Pipe length: DV1-DV3, DV32-DV33=3658 m; DV4=2743 m; DV34-DV38=1829 m; DV5-DV31=183 m; DV39=10 m; Nodal base 
demand: Node 2,3 = 13 L/s; Node 14–17,19=25 L/s; Node 6,7,9,11,12=32 L/s; Node 4,5,8,13=38 L/s; Node 10,18=63 L/s). 
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to be installed at year tR, i is the discount rate, which converts the future 
payments to present values. The sum of pump replacement and pump 
station refurbishment costs is assumed to be 70% of the capital cost for 
the pump station and pump set with the same pump power (Department 
of Primary Industries, 2014). Although the unit costs for solar PV units 
are expected to keep decreasing driven by technological development, 
as the unit price has decreased by up to 90% in the past decade (Wang 
et al., 2021), the replacement and refurbishment cost is calculated and 
discounted based on current conditions (at the starting point of the 
design period). In this study, a 6% discount rate is assumed for the 
present value calculations based on the Australian condition (Abelson & 
Dalton, 2018; Terrill & Batrouney, 2018). 

3.2.1.3. Operational cost (OC). The Operational Cost (OC) over the 
design period is given below: 

PV(OC) = ET ×
∑No. of Years

t=1
TGECt ×

1
(1 + i)t (8)  

where, ET represents the electricity tariff for energy purchased from the 
grid, which is assumed as $0.23/kWh for the whole design period, and it 
is calculated based on the Victoria default price with daily price fluc-
tuation being neglected (Essential Services Commission, 2021); and 
TGECt is the total grid energy consumed by the network during year t. 

3.2.2. Minimisation of total grid energy consumed (TGEC) 
The Total Grid Energy Consumed (TGEC) is formulated as: 

TGEC =
∑No. of years

y=1

∑12

m=1

(

Daysm ×
∑24

h=1
GECh,m,y

)

(9)  

where Days is the number of days in month m, and GECh,m,y represents 
the hourly grid energy consumed for month m in year y. 

The grid energy consumed (GEC) for a particular hour is calculated 
using the following equation: 

GECt =

{
0 , when PuE ≤ SG

PuEt − SGt, when PuE > SG
(10)  

where, PuEt is the pump energy consumed for time t, which is calculated 
by the pump head and flow delivered at that time, using PuE = γQHP/η 
(γ – specific weight of water, 9789 N/m3 for water at 20 ◦C, Q – flow at 
time t in m3/s, HP – pump head at time t in m, and η – pump efficiency, in 
this case, a combined pump and motor efficiency of 0.8 is assumed); SGt 
is the solar PV system generation at time t, which is estimated based on 
the solar PV system size and solar resources available at the particular 
time. 

3.3. Water demand patterns 

To characterise the networks’ daily and seasonal water demand 
variation, a diurnal water demand curve has been developed for each 
season based on Melbourne’s water consumption. In other words, there 
are in total 4 demand diurnal curves that have been developed for both 
case studies considered. 

The water demand at each demand node in a water distribution 
network is assumed to follow the same diurnal and seasonal water de-
mand variation pattern. The diurnal and seasonal variations of water 
demand are represented as hourly and monthly multipliers applied to 
the base demand of each demand node. The hourly water demand at a 
certain demand node has been calculated using: 

WDn, m, t = BDn × WDDiuMultit × WDMonMultim (11)  

where, BDn represents the base demand of node n; WDDiuMultit is the 
aggregation multiplier for hour t, and WDMonMultim is the aggregation 
multiplier for month m. 

This study adopts a typical daily water demand pattern for Mel-
bourne suburbs to characterise the demand variation within a day in this 
region (Gato-Trinidad & Gan, 2012; Roberts, 2005). It is assumed that 
there is no variation in the diurnal water demand pattern amongst 
different seasons, and that water demand patterns change in the 
long-term caused by improved water-efficient technology, behavioural 
changes of users or other factors are neglected (Beal & Stewart, 2014; 
Gato-Trinidad & Gan, 2012). Fig. 7 shows the water demand diurnal 
pattern with a 1-hour timestep, which has been applied in the network’s 
Extended Period Simulation (EPS). 

To account for seasonal water demand variation, monthly multi-
pliers for the four seasons have been generated, as shown in Table 1. The 
monthly multipliers are developed based on previous research on 

Fig. 7. Diurnal water demand pattern.  

Table 1 
Seasonal water demand variations.  

Months of the Year Monthly Demand Multiplier 

January, February, and March 1.23 
April, May, and June 1.03 
July, August, and September 0.82 
October, November, and December 0.92  
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household water use variability for Melbourne (Rathnayaka et al., 
2014). The monthly multipliers are assumed to remain constant for the 
whole design period. 

3.4. Optimisation and hydraulic simulation tools 

The multi-objective optimisation problem has been conducted using 
the Non-dominated Sorting Genetic Algorithm (NSGAII), an optimisa-
tion algorithm that has been extensively applied in the planning and 
design of water distribution systems (Deb et al., 2002). In this study, a 
python PyPi package called ‘pymoo’, which offers different optimisation 
algorithms including the NSGAII, has been applied in designing the 
networks (Blank & Deb, 2020). 

The extended-period simulations (EPS) of water distribution net-
works were conducted using the EPANET 2.2 Programmer’s Toolkit 
(Rossman, 2000), and the python package called ‘owa-epanet 2.2.4′ 
which is a python wrapper for the EPANET toolkit library originally 
written in C (Open Water Analytics, 2022b). The simulation timestep for 
an EPS has been set as 1 hour, and the simulation length for one EPS is 24 
hours, which was determined by the diurnal water demand pattern 
applied for the network. Considering the seasonal water demand vari-
ation, 12 EPSs with 24 hours length, have been conducted for one 
particular year within the design period. Moreover, since the water 
demand is changing annually under the water demand growth scenarios, 
the simulations have been repeated every year across the whole design 
period of 60 years. The detailed simulation method for variable speed 
pumps is discussed in Appendix B. The ageing impact of DICL pipes has 
been neglected in the simulation of the networks, and a pipe roughness 
of 100 (Hazen-Williams coefficient) has been assumed for all pipes 
within the network (PVC Pipe Association, 2017; Rossman, 2000). 

3.5. Robustness evaluation 

Robustness provides system performance evaluation under a range of 
plausible future conditions, and a robust solution is the solution that 
performs consistently well under these conditions (Maier et al., 2016). 
However, a number of robustness metrics have been developed that 
focus on assessing system performance in different ways, in terms of how 
performance metrics are used, how many scenarios are considered, and 
how the robustness calculation is conducted (McPhail et al., 2018). 
Therefore, three robustness metrics with totally different focuses have 
been selected in this study to include the impact of robustness metrics 
selection on the design results, as summarised in Table 2. 

As shown in Table 2, the first robustness metric considered in this 
study is Mean-variance, which is calculated by multiplying the average 
performance of the solution across all the scenarios and the range of its 
performances. The Hurwicz optimism-pessimism rule calculates the 
weighted sum of the best and worst performances, providing charac-
teristic similar to the solution’s average performance. As there is no 
preference for either more optimistic results or more pessimistic results, 
in this research, the same weightings have been applied to the best and 
worst performances (i.e., 0.5 has been assigned for both performance 
values) for the calculation of Hurwicz optimism-pessimism robustness. 
In comparison, the Undesirable deviations assesses the range of the 
worst half of performances (i.e., the undesirable performances), and 
expresses the deviations in terms of the sum of their deviations from the 
median performance. 

4. Results and discussion 

4.1. Impact of different sources of long-term uncertainty on BTM 
integrated WDSs design 

Optimisations of the BTM solar integrated case study WDSs have 
been conducted under (1) five baseline technology scenarios (i.e., D- 
30% & Tconst., D+0% & Tconst., D+30% & Tconst., D+60% & Tconst., and 
D+100% & Tconst.), (2) three baseline demand scenarios (i.e., D+0% & 
Tconst., D+0% & Tconv. and D+0% & TAdv.), and (3) all 15 scenarios 
considering various changes in demand and solar PV technology 
development. Fig. 8 shows the optimisation trade-offs between the two 
objective functions of TLCC and TGEC for the Net1 network under the 
three baseline demand scenarios. The optimisation trade-offs under the 
other groups of scenarios for both case studies are illustrated in Fig. C.1 – 
Fig. C.5 in Appendix C. 

As shown in Fig. 8, with the increasing improvements in solar 
technology into the future, the Pareto trade-off which is composed of the 
non-dominated design solutions generally moves downwards, indicating 
reduced energy consumption from the centralised electricity grid. This 
result is intuitive, as the development of solar PV technology will reduce 
WDS’s energy consumption that are purchased from the grid. 

To further investigate the impact of solar PV technology develop-
ment on the detailed design of the WDS, heatmaps showing the selection 
of pipe sizes of the optimal solutions obtained under the three baseline 
demand scenarios (i.e., D+0% & Tconst., D+0% & Tconv. and D+0% & 
TAdv.) for Net1 network are presented in Fig. 9. The colours indicate the 
probability of selection of the pipes’ sizes in the Net1 network for all the 
optimal solutions obtained under the three baseline demand scenarios. 
As demonstrated in Fig. 9, the selections of pipe sizes for optimal solu-
tions optimised under the baseline demand scenarios are almost iden-
tical. Though, there are still some mismatch of pipe diameters selected 
amongst three different baseline demand scenarios. For instance, for 
results obtained under the scenario where development of advanced 
solar PV units is expected (i.e., D+0% & TAdv.) and no technology 
development (i.e., D+0% & Tconst.), the pipe linking node 1 and 5 (i.e., 
DV2) has a higher probability of being sized larger than 500 mm 
compared to those optimal solutions optimised under development of 
advanced solar PV units scenario (i.e., D+0% & Tconv.). Meanwhile, for 

Table 2 
Robustness metrics considered.  

Robustness metric Statistical characteristics 
Average of 
performances 

Range of 
performances 

Mean-variance (Kwakkel et al., 
2016) 

✓ ✓ 

Hurwicz optimism-pessimism rule ( 
Hurwicz, 1951) 

✓  

Undesirable deviations (Kwakkel 
et al., 2016)  

✓  

Fig. 8. Optimisation trade-offs under three baseline demand scenarios (Net1) 
(D+0% & Tconst., D+0% & Tconv. and D+0% & TAdv.). 

J. Yao et al.                                                                                                                                                                                                                                      



Sustainable Cities and Society 98 (2023) 104844

9

pipes connecting the other path between node 1 and 5 (i.e., DV7), there 
is a higher probability of pipe diameter larger than 500 mm being ob-
tained for the later scenario mentioned above. These differences are 
mainly caused by the nature of a looped network, where water is likely 
to be delivered through different paths to a demand node (i.e., node 5 
that has the highest demand in Net1 network) for meeting its demand. In 
this case, water is delivered either through DV2 & DV8 or through DV7 

& DV4. While considering the overall pipe capital cost, the optimal so-
lutions obtained under the three baseline demand scenarios all vary 
within a similar range of $0.4 × 107 to $1.2 × 107. This also indicates 
that the sizes of WDS optimised under different baseline demand sce-
narios are comparable. In addition, since the pump head required by the 
network is only determined by the hydraulics within the network, the 
pump selected will not be impacted by the solar PV integration either. 

Fig. 9. Comparison of optimal solutions obtained under (a) D+0% & TConst. (b) D+0% & TConv. (c) D+0% & TAdv. (Net1).  

Fig. 10. Comparison of optimal solutions obtained under (a) D+0% & TConst. (b) D+100% & TConst. (Net1).  
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Therefore, the integration of BTM solar PV systems into WDSs, and the 
future development of solar PV technology has limited impact on the 
sizing of WDSs. 

On the contrary, the pipe sizes of the WDS are significantly influ-
enced by the future water demand considered when designing the sys-
tem. The selection of pipe sizes for optimal solutions obtained under two 
baseline technology scenarios with the baseline and the largest demand 
growth (i.e., D+0% & Tconst. and D+100% & Tconst.) for Net1 network are 
demonstrated in Fig. 10. The results illustrated in Fig. 10 clearly show 
that for pipes within the network, in general, relatively larger pipe sizes 
are chosen for optimal solutions obtained under baseline technology 
scenario with the higher demand growth. While some exceptions are 
observed, for example, pipe (i.e., DV8) connecting directly to the highest 
demand node (i.e., node 5) is more likely to be sized larger when there is 
no water demand change. This can be explained by changes in the de-
livery path for meeting the highest nodal demand and is mainly due to 
the nature of a looped network as discussed previously. More impor-
tantly, the trunk main pipe (i.e., DV1 in Net1 network, which connects 
the water source with the rest of the network) are generally sized with a 
much larger diameter of equal to or larger than 500 mm under the 
scenario with +100% demand growth, compared to the that of the 
scenario with +0% demand growth. This is because the trunk main pipe 
is sized to meet the total demand of the network, which is directly 
affected by the water demand growth considered. The optimal design 
solutions under the other three technology baseline scenarios for Net1 
are illustrated in Fig. C.6. And similar results have been found for the 
Anytown network (see Fig. C.7 – Fig. C.9 in Appendix C). 

4.2. Impact of robustness metrics on the selection of robust solutions 

The robustness of optimal solutions obtained under (1) five baseline 
technology scenarios (i.e., D-30% & TConst., D+0% & TConst., D+30% & 
TConst., D+60% & TConst., D+100% & TConst.), (2) three baseline demand 
scenarios (i.e., D+0% & TConst., D+0% & TConv., D+0% & TAdv.), and (3) 
the 15 scenarios have all been evaluated using the three different 
robustness metrics (referred to as Mean-variance, Hurwicz optimism- 
pessimism rule, and Undesirable deviations and discussed in Section 
3.5). Robust solutions have been identified as well from the optimal 
solutions for the three groups of scenarios. The identified robust solu-
tions are summarised based on the scenarios under which these solutions 
are obtained from, as shown in Figs. 11 and 12 for the two case studies. 

As can be observed in the figures, it is obvious that the robust solu-
tions identified using various robustness metrics come from optimal 
solutions obtained under different scenarios. When only considering the 
baseline technology scenarios within the design period, 100% of robust 
solutions come from the optimal solutions obtained under the highest 
demand growth scenario when the robustness is evaluated using mean- 
variance and undesirable deviations (Figs. 11(a) & (c), 12(a) & (c)). In 
addition, when Hurwicz optimism-pessimism rule is applied, as illus-
trated in Figs. 11(b) and 12(b), up to 60% of optimal solutions obtained 
under the largest demand growth scenarios are recognised as robust 
solutions. Thus, it is evident that optimal solutions resulting under larger 
water demand growth scenarios are generally identified as more robust 
solutions regardless of which robustness metric is considered. This is 
because designing for more extreme future water demand with larger 
capital costs spent for the network effectively reduces the risk of addi-
tional payments in terms of operational costs and operational energy 
consumed in the future. When considering technology development as 

Fig. 11. Robust solutions identified using (a & d & g) Mean-variance, (b & e & h) Hurwicz Optimism-pessimism Rule, (c & f & i) Undesirable Deviations under (a-c) 
Five baseline technology scenarios, (d-f) three baseline demand scenarios, and (g-i) all 15 scenarios (Net1). 
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the only source of uncertainty (i.e., the three baseline demand sce-
narios), only Hurwicz optimism-pessimism rule shows a clear preference 
for optimal solutions obtained under the advanced technology devel-
opment scenario, as can be seen in Figs. 11(d)-(f) and 12(d)-(f). This 
could be explained by the change in the positions of robustness trade- 
offs. The development in solar PV technology significantly improves 
the robustness of energy performances (i.e., robustness of TGEC) of the 
network, with the cost of slight deterioration in the robustness of eco-
nomic performances (i.e., robustness of TLCC). For a particular network 
design configuration, solar PV system generation capacity determined 
under more developed technology scenarios (e.g., TAdv. compared to 
Tconv.) would be smaller, due to its higher conversion efficiency and 
lower unit cost expected. Therefore, more developed solar technology 
scenarios tend to yield to solutions with smaller capital investment while 
ensuring relatively high solar PV generation utilisation. 

The effects of technology development on the operational costs and 
energy consumption together impact the robustness evaluations of 
optimal solutions. In consideration of the uncertainty related to both 
demand and solar PV technology (i.e., robustness evaluation considering 
all 15 scenarios), as shown in Figs. 11(g)-(i) and 12(g)-(i), the devel-
opment of solar technology enables more optimal solutions obtained 
under lower demand growth scenarios to be identified as robust solu-
tions. This is explained by the large reduction in grid energy consumed 
by the WDS as well as the improved solar energy utilisation efficiency 
due to the development in solar technology. These improvements 
together make up for the potential additional operational energy 
required than expected caused by an underestimation of future demand 
when designing the WDS. As a result, lower capital cost solutions pro-
vided by optimisation under scenarios with lower demand growth 
become robust solutions when considering solar PV technology 

development. These solutions are usually characterised by considerably 
lower grid energy consumed under all plausible future scenarios. To 
some extent, the better energy performance of these solutions offsets 
their worse economic performance and thus recognises them as non- 
dominate robust solutions across all plausible future scenarios. 

When assessing the performance of optimisation optimal solutions 
across the combined scenarios, the robustness metrics considered have 
been calculated, the calculated robustness results for both case studies 
are included as Fig. C.10 and Fig. C.11 in Appendix C. Three robustness 
metrics generally provide quite different trade-offs between the 
robustness of the two objective functions. To investigate the impact of 
robustness metrics selection on the resulted robustness trade-off, 
robustness calculations for optimal solutions obtained under highest 
demand growth and advanced technology development scenario (i.e., 
D+100% & TAdv.) are demonstrated as an example in Fig. 13. Similar 
results for the Anytown network are obtained as shown in Fig. C.13. 

As can be seen in Fig. 13, the robustness trade-offs between the 
calculated robustness of TLCC and TGEC using various robustness 
metrics (i.e., Mean-variance, Hurwicz optimism-pessimism rule, and 
Undesirable deviations) are completely different. Compared to the 
optimisation trade-off between the two objectives of TLCC and TGEC, 
the Pareto optimality of the original optimisation is preserved when 
assessing robustness using Hurwicz optimism-pessimism rule, as illus-
trated in Fig. 13(b) & (e). In more detail, the trade-off between the two 
robustness values is almost identical to the trade-off between the orig-
inal optimisation trade-off between the objectives, with almost all the 
Pareto optimal optimisation solutions forming a clear Pareto front for 
the robustness trade-off. On the contrary, the Pareto-optimality of the 
original optimisation trade-off completely changed when Undesirable 
deviations is applied as the robustness metrics, as shown in Fig. 13(c) & 

Fig. 12. Robust solutions identified using (a & d & g) Mean-variance, (b & e & h) Hurwicz Optimism-pessimism Rule, (c & f & i) Undesirable Deviations under (a-c) 
Five baseline technology scenarios, (d-f) three baseline demand scenarios, and (g-i) all 15 scenarios (Anytown). 
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(f). The result shows that the undesirable deviations of TLCC of the 
optimal solutions are positively related to the solutions’ Undesirable 
deviations of TGEC, which means solutions with more robust in terms of 
TLCC are viewed as more robust considering TGEC as well. While mean- 
variance robustness metric shows mixed behaviour when evaluating the 
robustness of optimal design solutions, as can be seen in Fig. 13(a) & (d). 

The robustness trade-offs are further related to the optimisation 
objectives, as illustrated in Fig. 13 with the colours of each solution 
related to its TLCC (Fig. 13(a)-(c)) and TGEC (Fig. 13(d)-(f)). Hurwicz 
optimism-pessimism rule robustness metric identified all the solutions 
obtained under the current scenario as non-dominated robust solutions. 
This indicates Hurwicz optimism-pessimism rule is not able to distin-
guish amongst optimal optimisation solutions. While undesirable de-
viations only recognise the largest cost with the lowest grid energy 
consumed solution as the robust solution, as highlighted in red square in 
Fig. 13(c) & (f). Since mean-variance robustness partially changes the 
optimisation optimality, as can be seen in Fig. 13(a) & (d), the larger cost 
with lower grid energy consumed part of optimal optimisation solutions 
(lower part of the trade-off, which is marked in red) are identified as 
equally robust in this case. Therefore, although the available optimal 
solutions for robustness evaluation are the same, the selection of 
different robustness metrics may lead to very different solutions iden-
tified as robust solutions. 

Robustness metrics are calculated based on the statistical charac-
teristics of the optimal solutions’ performances under different sce-
narios. The differences in evaluation results are basically due to the 
different focuses of the various robustness metrics during calculation 
based on performances across all 15 scenarios. The distribution of TLCC 

(Fig. 11(a)) and TGEC (Fig. 11(b)) of all optimal solutions obtained 
under one scenario (i.e., D+100% & Tadv.) across the 15 scenarios for 
Net1 are illustrated in Fig. 14. 

From the results demonstrated in Fig. 14, it is obvious that optimal 
solutions with larger average TLCC generally have smaller variations in 
TLCC across the 15 scenarios. While optimal solutions with larger 
average TGEC also have a wider range of performance across all sce-
narios. Since the improvement in mean performance (i.e., smaller 
average TGEC) agrees with the better performance in the range of TGEC 
(i.e., smaller variation in TGEC across 15 combined scenarios), this leads 
to the lower TGEC solutions are always preferred no matter which 
robustness metrics are considered. The lower TGEC solutions that are 
considered more robust in terms of their performances across all sce-
narios also in line with the preference of optimisation optimality, where 
solutions with smaller TGEC are preferred. However, considering TLCC, 
the robustness in terms of the TLCC of optimal solutions depends largely 
on the robustness metric calculations. Robustness metric such as Hur-
wicz optimism-pessimism rule, which is calculated reflecting the 
average performance of solutions’ performances across all scenarios, the 
robust solution identified is generally consistent with the original opti-
mality of the optimisation. This is because the average performance 
decreases with the decreasing optimisation objective of TLCC, as shown 
in Fig. 14(a). As both the Hurwicz optimism-pessimism rule robustness 
of TLCC and TGEC agree with the optimality of optimisation objectives 
of TLCC and TGEC, the Pareto optimality remains unchanged after the 
robustness evaluation. In comparison, undesirable deviations focuses on 
the range of the worst half of solutions’ performances across all 15 
scenarios, and as a result it provides totally opposite optimality 

Fig. 13. Robustness evaluation using (a & d) Mean-variance, (b & e) Hurwicz Optimism-pessimism Rule, and (c & f) Undesirable deviations of optimal solutions 
obtained under D+100% & Tadv. against (a-c) optimisation objective of total life cycle cost, (d-f) optimisation objective of total grid energy consumed (Net1). 
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compared to the objective of TLCC. Trade-offs between totally opposite 
preference in robustness of TLCC and entirely the same preference in 
robustness of TGEC, the Pareto optimality completely changes when 
applying Undesirable deviations for robustness evaluation. Mean- 
variance robustness assesses both the mean and the range of optimal 
solutions’ performance across all scenarios, this leads to a changing 
point in the middle of the trade-off, as demonstrated in Fig. 14(a) & (d). 
The mean-variance robustness of TLCC of the upper part (i.e., optimal 
solutions with smaller TLCC and larger TGEC) is dominated by the larger 
variance, which pushes these solutions to dominated solution region. 
While the mean-variance robustness of TLCC of the lower part (i.e., 
optimal solutions with larger TLCC and smaller TGEC) is dominated by 
the larger average, and these solutions are pushed downwards by the 
superior robustness of TGEC. The robustness evaluation results indicate 
that the selection of robustness metrics will have a major impact on the 
robust solutions identified through changing of the Pareto optimality 
between the objectives. As different robustness metrics focus on 
different aspects of the statistical characteristics of optimal design so-
lutions’ performances distribution across the scenarios considered. 
Moreover, the formulation of the optimisation problem and the future 
scenarios developed for the robustness evaluation problem may also 
have an impact on the robustness assessment, as it impacts the perfor-
mance distribution across scenarios. 

In summary, the robustness evaluation of optimal solutions opti-
mised under all 15 scenarios using different robustness metrics provide 
very different results, which leads to totally different design solutions for 
the WDS. However, despite various robustness metrics applied, the 
development in solar PV technology is always beneficial to improving 
the overall robustness of WDS under long-term demand change uncer-
tainty. By considering solar PV technology development in the co-design 
of WDS integrating BTM solar, a wider variety of design solutions are 
offered as robust solutions. Especially more design solutions obtained 
under scenarios with lower water demand growth are identified as 
robust solutions considering all plausible long-term changes in water 

demand. This clearly shows the ability of BTM solar PV integration to 
improve the performance of WDSs across a range of uncertain future 
conditions through sustainable energy supply to the systems. Never-
theless, it also provides more sustainable and resilient design choices for 
decision-makers when designing future WDSs under changing water 
demand conditions. More importantly, integrating BTM solar PV system 
into existing WDSs that are already in place, where the water demand 
was underestimated when the WDS was designed, is beneficial as well. 
As these systems are supposed to serve people in the longer term into the 
future, it is critical that these systems can maintain their level of service 
while still being sustainable and energy efficient. A BTM solar PV system 
has been identified as a good option for improving WDS’s resilience 
through considerable operational energy savings from the centralised 
electricity grid with little additional investment. 

5. Conclusions 

The energy supply and demand balance amongst varying pumping 
energy demand, intermittent solar energy generation, and the central-
ised electricity grid impacts the design of Behind-the-metre (BTM) solar 
integrated water distribution systems (WDSs). Long-term uncertainty in 
water demand and solar PV technology development further compli-
cates the design optimisation problem. This paper proposes a co-design 
approach to incorporate the BTM solar PV system as an additional 
electricity supply to the design of WDSs under long-term water demand 
and solar PV technology development uncertainty. The WDS design 
problem has been formulated as a multi-objective optimisation problem, 
focusing on two objectives: minimising total life cycle cost and mini-
mising total grid energy consumed. In addition, the BTM solar PV system 
sizing is included in the optimisation as a dependant variable. Fifteen 
scenarios representing the plausible future conditions for the BTM solar 
integrated WDSs have been developed, taking account of the long-term 
water demand change and solar PV technology development. Two 
benchmark case studies have been studied to demonstrate the co-design 

Fig. 14. Distribution of performances (a) optimisation objective of total life cycle cost, (b) optimisation objective of total grid energy consumed of optimal solutions 
obtained under D+100% & Tadv. across all 15 scenarios (Net1). 
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approach and conduct analyses. Three different robustness metrics have 
been used to evaluate the design solutions performances across all sce-
narios, and further to investigate the impact of different robustness 
metrics on the identified robust design solutions. 

In this study, both case study networks have been optimised under 
five baseline technology scenarios and three baseline demand scenarios. 
By comparing the optimal sizing of pipes within the networks under the 
two groups of scenarios, it has been found that the BTM solar PV inte-
gration has limited impact on the optimal WDS design. However, the 
optimal sizes of pipes and pumps for WDS are significantly affected by 
the changes in water demand conditions of the system into the future. 
The pipes are generally sized larger for scenarios with higher water 
demand growth expected in the longer-term, and this is more obvious 
for the trunk main pipe size selection within the WDS. Three robustness 
metrics emphasising different characteristics of the optimal solutions 
performances distribution across the 15 scenarios have been applied to 
obtain robust solutions from the optimisation optimal solutions. Based 
on the robust evaluation results, it is evident that different robustness 
metrics applied will lead to very different robust solutions identified. 
The Pareto optimality of the trade-off between the two robustness values 
calculated for the optimisation optimal solutions also varies when 
different robustness metrics are used. However, regardless of which 
robustness metric selected, the integration of BTM solar PV system and 
its associated technology development can effectively improve the 
robustness of WDS with uncertain water demand in the future. 

The results of this study clearly point out the potential for im-
provements in WDS’s energy performances under changing future con-
ditions by integrating the BTM solar PV system as an additional source of 
energy supply. For WDSs that are already built and put in operation, 
BTM solar PV system is viewed as a good add-on component. As the BTM 
solar PV system is flexible to be customised based on the energy demand 
of the WDS with little economic investment, while it greatly improves 
the WDS’s energy performance in return. Moreover, the potential 
decrease in cost and increase in conversion efficiency of solar PV mod-
ules are proven to effectively increase WDS design solutions’ robustness 
across varying water demand change conditions in future through the 
improved energy performances of the system. The continuously 
lowering reliant on centralised grid energy of the WDS and increasing 
BTM solar PV generation penetration to the WDS also help reduce the 
risk of oversizing the WDS’s components (i.e., pipes) when designing a 
new WDS. This is because lower capital cost design solutions performs 
consistently better across potential future water demand change con-
ditions, which makes them become more feasible solutions for decision- 
makers. This highlights the potential opportunity of maintaining or even 
improving system performance under changed future demand by inte-
grating BTM solar PV to originally under-sized WDSs, improving the 
WDS’s robustness from an energy perspective. 

However, there are still limitations in this study which could be 
considered in future research. First, only a certain proportion of BTM 

solar PV generation could be utilised by the WDS, due to the temporal 
mismatch between the BTM solar PV generated energy supply and the 
WDS pumping energy demand. Adding an energy storage system such as 
a battery is considered a better way to make use of the BTM solar PV 
system. In addition, making use of elevated water storages in a WDS is 
another potential option to maximise the benefits from the BTM solar 
energy generated and improve overall system efficiency. The design of 
the energy storage system together with the BTM solar PV system, and 
the interactions amongst energy demand, energy supply, and energy 
storage could be considered in future works. Furthermore, as discussed 
in this study, the selection of robustness metrics for assessing design 
solutions’ performances across a range of future conditions significantly 
impacts the solutions’ optimality and the final identified solutions. 
Therefore, a comprehensive study focusing on the impact of different 
robustness metrics on the identified robust solutions, and the charac-
teristics of the robust solutions could be useful for guiding decision- 
making in the future. 

This study investigates the optimal design of future WDSs, which are 
important infrastructure affecting the everyday life of people in cities. 
By integrating BTM solar PV systems, the environmental impact of WDSs 
due to the consumption of energy generated from fossil fuels is effec-
tively reduced. By considering potential changes in future system 
operation conditions induced by various human activities, robust WDSs 
can be designed so that their level of service to consumers can be 
maintained into the future. More importantly, the implications of the 
major findings from this study are not only restricted to WDSs, they can 
also be extended to provide insightful information for decision-makers 
when designing other critical infrastructure for future cities. 
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Appendix B. Simulation of variable speed pump and pump power estimation 

In this research, water is pumped from a single source to the demand nodes without storage tanks or reservoirs that may affect the hydraulics of 
pipe flow in the network. Therefore, the nodal heads in the network are linearly correlated to the pump head provided by the pump station. A 
simplification method for simulation of Variable Speed Pump (VSP) is proposed here. A Pressure Reducing Valve (PRV) is applied instead of a fixed 
speed pump with pre-determined pump curves to simulate the adjustments of pump speed in the hydraulic solver. 

Fig. A.1. Solar PV system monthly generation pattern (Melbourne, Australia).  

Fig. A.2. Solar PV system diurnal generation patterns for different months.  
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As illustrated in Fig. B.1, the water distribution network is connected to a water source by a pump represented as a PRV. The pressure head 
provided by the water source is set to be high enough for the system, which is the head before the PRV. Meanwhile, the pressure head after the PRV is 
expressed as the PRV setting in EPANET, and the pump head provided could be calculated as the pressure difference before and after the PRV. The PRV 
setting is adjusted to ensure the pressure head of the critical demand node (node with minimum pressure head in the network) always remains to be 
equal and higher than the minimum allowable head of 28 m of water(Ghorbanian et al., 2015). The pump head at each simulation time-step could be 
calculated using the following equations: 

ΔH = HNC − Hmin (B.1)  

Hpump =
(
HNp1 − HNp2

)
− ΔH (B.2) 

Where, ΔH is the pressure deficit of the network, which is expressed as the difference between the minimum allowable pressure head (Hmin) and the 
actual pressure head of the critical demand node; Hpump is the adjusted pump head. 

The pump power for each simulation time-step could then be calculated using the pump head determined and the flow delivered by the pump 
according to the network requirements. The size of the VSP will be characterised by the maximum pump power within the pump’s service lifespan. 

Supplementary materials 

Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.scs.2023.104844. 
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