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Abstract
In this study, a new traction-separation based constitutive model for use in finite ele-
ment simulation of masonry joints under complex loading conditions is developed
for cohesive elements. The proposed model is formulated using damage parame-
ters and plastic deformation with mutual couplings, and can accurately simulate
the complex nonlinear behaviors of masonry joints considering hardening or soft-
ening of strength and stiffness degradation. To enhance the numerical stability of
the model, plasticity and damage are separated algorithmically and implemented
in two phases. In the first phase, the plastic deformations are treated using a
multi-surface plasticity model composed of a smooth hyperbolic yield surface for
tension-shear mixed-mode failure and an elliptical cap primarily for the compressive
failure. This is implemented in effective stress space and helps restrict the evolu-
tion of yield surfaces with no softening, significantly enhancing the efficiency of
stress return mapping by the closed point projection method. In addition, an adaptive
sub-stepping scheme is adopted to further improve the robustness of the numeri-
cal implementation. In the second phase, nominal stresses are computed from the
effective stresses using damage parameters. The evolution of these damage parame-
ters is defined in terms of plastic work which is defined by a polynomial form, and
is recommended in this study for a better calibration capability. Improvements are
made in the formulation of compressive cap including incorporation of hardening
of strength and stiffness degradations as these are ignored in existing interface mod-
els. This approach helped improve simulation of masonry under cyclic loads with
tension-compression transitions. For the structural level applications, the interface
model is implemented within a finite element program, which is utilized to simulate
failure of a number of masonry specimens under in-plane/out-of-plane mono-
tonic/cyclic loading. The simulated results are rigorously validated with existing
experimental data that shows a good potential in modeling masonry structures.
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1 INTRODUCTION

Investigation of the behavior of masonry structures is an important work in the area of structural engineering that benefits
the maintenance of significant heritage buildings and the design of new architectural buildings.1 However, the prediction
of behaviors of masonry structures is challenging due to inhomogeneity in the system and complex nonlinear material
response. Though empirical based approaches2 can provide an easy solution of this problem, they only give an approxi-
mate solution that may not be adequate to assess the safety of large masonry buildings with complex architectural forms.
Thus, there is a growing trend towards the use of precise numerical modeling approaches for simulating masonry struc-
tures because they are capable of solving complex nonlinear problems.3–10 In this context, Lourenco11 has classified the
modeling strategies of masonry structures into three groups: (1) detailed micro-modeling,12 where bricks and mortars
are discretely modeled using continuum elements and brick-mortar interfaces are modeled with zero thickness cohesive
elements; (2) macro-modeling,13,14 where bricks and mortars are homogenized as a single continuum utilizing a represen-
tative volume element (RVE); and (3) simplified micro-modeling,15 where bricks are modeled using continuum elements,
while cohesive elements are used for mortar joints (entire thickness) and artificial joints placed inside bricks to simu-
late the potential crack in bricks. Amongst the above modeling strategies, the simplified micro-modeling strategy seems
an optimum approach as it can provide a balance between computational efficiency and accuracy, and this approach is
adopted in this study. As the nonlinear behavior is predominantly localized in mortar joints, the primary challenge of
a simplified micro model is to accurately define the nonlinear interfacial behavior by developing a reliable constitutive
model for the cohesive element.

Existing literature shows that damage mechanics and plasticity theory are commonly used for interface models. The
use of damage mechanics-based interface models become popular in simulating masonry structures,16,17 and this is likely
due to the availability of such interface models in commercially available finite element (FE) programs such as ABAQUS.18

However, these interface models18 do not have the option for frictional resistance which is always found in shear/mode II
failure of masonry. Though the frictional contact feature can be used in combination with the interface model to address
this issue, it is not a good option as the transition from the softening to the friction regions is not captured well. Moreover,
the determination of mixed-mode parameters under complex loading scenarios is problematic due to the lack of experi-
mental results. For mix-mode failure simulation, the Benzeggagh-Kenane fracture criterion19 along with its default values
are commonly used,16,17 but these values are calibrated from testing of polymer based composite materials. To avoid such
issues, Alfano and Sacco20 developed an interface model incorporating the frictional component in their formulation.
However, a damage mechanics-based model does not provide dilation characteristics of mortar bed joints, and this is an
important feature observed in real experiments.21

On the other hand, the use of plasticity-based interface models is found to be more popular in modeling masonry
structures, which may be due their better representation of the mortar failure. One of the earlier models was developed
by Lofti and Shing22 who proposed a single hyperbolic yield surface that can successfully capture the tension-shear mixed
mode region without using an addition yield surface for tension cut-off. A more traditional approach was adopted by
Scimemi et al.,23 who used a Mohr-Coulomb type flat surface and another flat surface for tension cut-off. The intersection
of these two yield surfaces gives a sharp corner, which needs special attention during numerical implementation since
it can lead to convergence problems or incorrect stress returns. As this model23 does not have provision for checking
compression failure, the model was extended further by adding another flat yield surface as a compression cap24,25 parallel
to the surface for tension cut-off. A similar model was introduced by Sutcliffe et al.10 and Chaimoon and Attard,26 where
the flat compression cap was replaced with a conical surface. A further improvement was made by Lourenco and Rots15

who used an elliptical surface for the compression-cap that led to a very popular model in masonry modeling. But each
of these models10,15,24–26 have two corners (problematic regions) produced by the three surfaces. The number of corners
was reduced to one by taking two hyperbolic surfaces,7 where one was used as a compression cap. To avoid any corners
without sacrificing the compression failure, single closed smooth surface having a tear-drop type shape was proposed27,28

but the performance of the model was not satisfactory as mentioned by the same researcher29 who recommended to use
a multi-yield surface-based plasticity model.

In general, plasticity-based models appear to be much better but they do not provide for stiffness degradation, which is
important in masonry structures subjected to cyclic loading due to load reversal. This limitation has motivated researchers
in recent years to develop interface elements considering damage, irreversible plastic deformations, and their possible
couplings to have a realistic modeling of masonry joints. One such attempt was made by Spada et al.9 who used yield
surfaces similar to that of Scimemi et al.23 in addition to similar failure envelopes for defining damage by extending the
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2500 NIE et al.

concept of plasticity to damage. However, linking these two failure envelops with corners made numerical implementa-
tion very cumbersome as it needs checking of 16 different cases during integration of their model at every material point.
Minga et al.24 extended the plasticity model to incorporate damage, but that model does not allow for the hardening that
can be observed in compression. Also, the authors of Reference 24 did not clarify how the problems associated with stress
return near the corners. The hardening of the compression cap was considered by Xie et al.25 who developed an interface
model, where the formulation is primarily governed by the damage to have a total deformation-based simulation that
substituted the return mapping. Yuen et al.30 proposed a comparatively simple model by using a single yield surface sim-
ilar to that of Reference 22 along with the forward Euler techniques for explicit integration of their model but did little
modifications to accommodate sub-stepping.

In addition to the capabilities of the constitutive models, numerical implementation is another important aspect for
the overall modeling success, but this is always challenging because convergence issues in the iterative solution process
are often experienced when solving real complex problems. A fully implicit integration technique with closed point pro-
jection method (CPPM) is a preferred option in a plasticity-based formulation as this technique is unconditionally stable31

and provides accurate solution.32 However, this approach usually involves a Newton–Raphson iterative technique for the
stress return mapping procedure, which can be divergent if the deformation increment in a time step is large33 or when
there is a sharp region in a yield surface with high curvatures.34–36 Furthermore, multi-surface models with corners intro-
duce additional difficulties in achieving convergence since the active yield surfaces need to be updated during iterations
and an improper strategy adopted in subsequent steps can led to an incorrect stress update.37 To address these numerical
issues, researchers have adopted different strategies such as the line search method38–40 to improve convergence stabil-
ity and accuracy for larger step size and exact/optimized/brute force38,41,42 for detecting the correct active surfaces near
corners of multi-surface plasticity models. Similar to line search method, the sub-stepping technique was adopted by
some researchers43,44 because this technique has a generic character and it is more powerful than the line search method.
Sloan44 implemented this technique for forward Euler integration scheme while Pérez-Foguet et al.43 did it for backward
Euler integration scheme.

Though a number of models possessing different degrees of limitations and capabilities exist in literature, some issues
are still unresolved and there is a need for development of a comprehensive interface model for accurate and robust failure
modeling of masonry structures with computational efficiency. Such an attempt has been made in this study, by develop-
ing a coupled damage-plasticity based interfacial model for masonry joints subjected to mixed mode loading comprised
of tension, shear and compression. The main novelty of this work is proposing a robust numerical implementation strat-
egy (by using adaptive sub-stepping scheme in combination with effective stress-based formulation) of a multi-surface
plasticity model with damage to overcome diverging issues during simulation of masonry structures with complex non-
linearities. The multi-surface model and the sub-stepping scheme help to enhance the accuracy while the computational
efficiency is achieved by the effective stress-based formulation. Moreover, a fully implicit backward Euler integration
technique is used to improve accuracy.

The proposed multi-surface based constitutive model includes a smooth hyperbolic yield surface as recommended by
Caballero et al.45 and a compression cap as recommended by Lourenco and Rots.15 The evolution of damage parameters
is defined in terms of plastic work using three newly proposed polynomial expressions for effective representation of their
variations. We separated the damage and plasticity components algorithmically and they are implemented independently
that helped to improve the robustness of numerical simulation. This is achieved by using an effective stress-based formu-
lation, which helped to eliminate any softening of yield surfaces. For a better representation of the tension-compression
transition encountered in cyclic loading, the hardening effect is incorporated with the compression cap. The interface
model is implemented within the finite element program (ABAQUS) for simulation of a number of masonry structures
under monotonic and cyclic loads applied in the form of in-plane and out-of-plane modes. Finally, a thorough experi-
mental validation of the simulated results is conducted using test data available in literature, which demonstrated a very
good performance of the model in analyzing a wide range of masonry structures.

2 FORMULATION OF THE INTERFACIAL CONSTITUTIVE MODEL

The cracking failure progression in masonry joints (similarly applicable to other quasi-brittle type materials) can be char-
acterized by the stress-relative displacement response at the crack interface as shown in Figure 1. Experimental tests46,47

under uniaxial tension and simple shear indicate that the inelastic behavior of mortar joints is predominantly a strain
softening response, as shown in Figure 1B. The test under uniaxial compression48 shows a visible strain hardening region
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NIE et al. 2501

(A)

(B)

(C)

F I G U R E 1 Characterization of masonry joint failure with nominal and effective stresses

before the softening response (Figure 1C). As the failure of masonry mortar joints is simulated by an interface model, in
this study, the stress is expressed in terms of separation of mortar joints, that is, the relative displacement (u) rather than
strain commonly used for continuum models.

During the initial stage of loading after yielding, some micro-cracks are formed in masonry mortar joints or cement
matrix as well as the interface between coarse aggregates and cement paste of concrete structures. With the gradual
increase of loading F, micro-cracks grow, propagate and joined together to form a macro-crack (see Figure 1A). The degree
of failure can be defined using the damage parameter D, which is the ratio of damaged area of the mortar interface Ad to
its initial gross area A0 (Figure 1A). For a damaged joint, the nominal stress and effective stress are defined as 𝜎 = F∕A0
and 𝜎 = F∕ (A0 − Ad) , respectively, and they can be related using the damage parameter as 𝜎 = (1 − D)𝜎. It is to be noted
that the value of nominal stress (𝜎) changes with the change of load (F) only as A0 is constant while the effective stress (𝜎)
depends on the current load as well as current undamaged area. The formation of micro-cracks degrades the additional
load resisting capability that shows strain hardening behavior, which is prominent for compressive loading (Figure 1C).
Once the macro-cracks are formed, the load resistance of the material/mortar is dropped that shows a strain softening
response (Figure 1B,C). For the tensile and shear loading, the delay between the formations of micro- and macro-cracks
is not significant and leads to a negligible strain hardening region. Unlike the nominal stress (that follows the variation
pattern of load F), the effective stress remains constant without any drop after the peak load, and this helps to improve the
robustness in numerical modeling. The interfacial constitutive model has two stress components and their representations
in nominal and effective stress spaces can be related as:

{
𝜎n

𝜎s

}
=

[
1 − Dn 0

0 1 − Ds

]{
𝜎n

𝜎s

}
; {𝜎} = ([I] − [D]){𝜎}, (1)
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2502 NIE et al.

where [I] = diag{1, 1} is a unit matrix; subscripts n and s are used to denote the normal and shear components,
respectively; and other notations follow the previous descriptions.

In the elastic range of the interface, the traction-separation ({𝜎} − {u}) relationship in effective stress space can be
expressed as:

{
𝜎n

𝜎s

}
=

[
K0

n 0
0 K0

s

]{
un

us

}
; {𝜎} =

[
K0] {u}, (2)

where K0
n and K0

s are elastic stiffness of the interface interfacial in normal and shear mode deformations.
The formulation for the inelastic response of the proposed interface model involves two stages: plasticity in the first

stage and damage evolution in the second stage, which are presented in the following sections.

2.1 Plasticity formulation of the interface

A multi-surface plasticity models as shown in Figure 2 is used for the proposed interface model. The yield surface of the
model consists of a smooth hyperbolic curve F1 for simulating the behavior under tension-shear mixed mode of loading
and an elliptical curve F2 to simulate the behavior under compression (Figure 2). In the effective stress space, these yield
surfaces (F1 and F2) can be expressed as:

F1 = −
(

fs − 𝜎n tan𝜙
)
+
√
𝜎

2
s + (fs − ft ⋅ tan𝜙)2, (3)

F2 = Cnn𝜎
2
n + Css𝜎

2
s + Cn𝜎n − f 2

c , (4)

where ft, fc, fs, and tan𝜙 are tensile strength, compressive strength, shear strength, and frictional coefficient of the inter-
face; Cnn and Css are configuration parameters that control the size of the ellipse (F2) in normal and shear directions,
while Cn determine the positon of the elliptic center on 𝜎n axis.

The hyperbolic curve F1 is adopted from Caballero et al.45 who proposed a tension-shear mixed-mode interface model
within a pure plasticity framework to simulate the cracking failure of concrete materials. In their work, which is based
on nominal stress space, the yield surface has a hyperbolic curve and contracts gradually as the material softens, and
finally reduces to a conical surface with a sharp corner that can be a source of convergence problems during the stress
return mapping. As the present work is based on the effective stress space, the curve F1 does not contract as its parameters
(ft, fs, and tan𝜙) remain constant and its behavior is similar to an elastic-perfectly plastic model. The elliptic surface F2 is
used for the compressive cap, which is adopted from Lourenco and Rots15 who proposed a pure plasticity based interface
model having Mohr-Coulomb type yield surface with tension cut-off along with the compressive cap. As the model of

F I G U R E 2 Yield and potential surfaces in effective stress space and their possible evolutions
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NIE et al. 2503

Reference 15 is based on nominal stress space, F2 will shrink after peak load due the material softening, which can cause
numerical instability during the stress return mapping procedure.39 Grassl and Rempling49 proposed a model using a
single yield surface having a full elliptical shape and formulated their model in effective stress space which helped to
minimize the convergence problem due to this numerical instability. This has motivated us to formulate our model in
effective stress space that will restrict the evolution of F2 (present model) in the hardening region only (fci ≤ fc ≤ fcu) in
the form of expansion (Figure 2) with no further change or shrinking during the strain softening region after peak load
(fcu). The evolution of F2 in the hardening region only and no evolution of F1 has helped to enhance the robustness of
our numerical implementation.

A typical nonassociated behavior is observed in the post elastic deformation of quasi-brittle materials such as mortar
joints or masonry bricks since their dilation angle 𝜙Q controlling the direction of plastic deformation is much smaller
than the frictional angle 𝜙 defining the yield surface. This needs a plastic potential surface Q1 (Figure 2), different from
F1 (nonassociated), where Q1 is dependent on dilation coefficient tan𝜙Q for estimating plastic deformations. However,
the compressive cap in present work follows the associated flow rule, thus its potential surface Q2 is the same as the yield
surface F2 as it does not involve a frictional component of the material response. The expression of the potential surfaces
are as follows, where Q1 is obtained from F1 (Equation 3) by replacing 𝜙 with 𝜙Q.

Q1 = −
(

fs − 𝜎n tan𝜙Q
)
+
√
𝜎

2
s +

(
fs − ft ⋅ tan𝜙Q

)2
, (5)

Q2 = F2. (6)

During hardening of the compression cap, the evolution of the compressive strength fc needed to define F2 or Q2
(Equation 4) is expressed in terms of accumulated plastic work W p used as internal variable (see Section 2.2). The same
internal variable is used to define the evolution of damage parameter needed to estimate the nominal stress of the com-
pression cap from its effective stress in the strain softening range. Similarly, plastic work (dissipated energy) is used to
define the evolution of the damage parameter for tension-shear mixed-mode deformation characterized by F1. In numer-
ical implementation, the integral form of plastic work is computed incrementally as W p = ∫ dW p =

∑
dW p by updating

its value after convergence of every load increment. The increment of plastic work dW p
1 and dW p

2 corresponding to the
two yield surfaces F1 and F2 can be defined as:

dW p
1 =

{
𝜎ndup1

n + 𝜎sdup1
s , 𝜎n ≥ 0,|||dup1

s
||| (||𝜎s|| + 𝜎ntan𝜙

)
, 𝜎n < 0,

(7)

dW p
2 = 𝜎ndup2

n + 𝜎sdup2
s , (8)

The estimation of dW p
1 depends on the nature of normal stress 𝜎n, that is, tension or compression. If the interface

is under tension (𝜎n ≥ 0), the dissipated energy is produced by both normal and shear deformations, while the effect
of shear deformation is only considered under compression (𝜎n < 0) with a deduction for the frictional component(|||dup1

s
||| ⋅ 𝜎n tan𝜙

)
since it is not included in characterize the cohesive behavior and related fracture energy in shear. On

other hand, the determination of dW p
2 depends on normal and shear modes of deformation and it is not affected by the

nature of normal stress. The 2D cohesive model presented above can be easily extended to 3D model by incorporating
another shear component and the resulting formulation of the 3D model is presented in Appendix A.

2.2 Evolution of damage parameters and nominal stresses

Due to heterogeneity in the behavior of mortar-brick joints under different modes of deformation, the degradation of
interface strengths during material softening is determined by using three different damage parameters corresponding
to tensile (dt), shear, (ds) and compressive (dc) modes of failures. A single scale damage parameter may be conveniently
used for continuum models for isotropic material,50,51 but multiple damage parameters are needed for interfacial based
constitutive models52 or continuum models for anisotropic materials such as wood42 or composites.53 The experimental
testing of masonry couplet/prism specimens under uniaxial tension,47 uniaxial shear,46 and uniaxial compression48 show
dissimilar response in terms of their strengths and fracture energies. The damage parameters used in the present model
are expressed in terms of plastic work, fracture energies, material strength parameters, and some additional parameters
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2504 NIE et al.

controlling the shape of damage evolution (shape parameters) as:

dt =
⎧⎪⎨⎪⎩
𝛼t

(
Wp

1
Gft

)
𝛼t−1

− (𝛼t − 1)
(

Wp
1

Gft

)
𝛼t
, W p

1 < Gft,

1,W p
1 ≥ Gft,

(9)

ds =
⎧⎪⎨⎪⎩
𝛼s

(
Wp

1
Gfs

)
𝛼s−1

− (𝛼s − 1)
(

Wp
1

Gfs

)
𝛼s
, W p

1 < Gfs,

1,W p
1 ≥ Gfs,

(10)

dc =

⎧⎪⎪⎨⎪⎪⎩

0,W p
2 ≤ Gfch(

1 − fcr
fcu

)[
𝛼c

(
Wp

2−Gfch

Gfcs

)𝛼c−1
− (𝛼c − 1)

(
Wp

2−Gfch

Gfcs

)𝛼c
]
,Gfch < W p

2 ≤ Gfc(
1 − fcr

fcu

)
,W p

2 > Gfc,

, (11)

where Gft, Gfs, and Gfc are fracture energies for tensile, shear, and compressive modes of deformation; 𝛼t, 𝛼s, and 𝛼c
are shape parameters for tensile, shear, and compressive mode of damage evolution; fcu and fcr are ultimate and resid-
ual compressive strengths. It is to be noted that the hardening component Gfch and the softening component Gfcs of
Gfc

(
= Gfch + Gfcs

)
are needed separately to express the damage parameter under compression dc.

With these damage parameters, the damage matrix appeared in Equation (1) can be formed as:

[D] =

[
Dn 0
0 Ds

]
, (12)

where

Dn =

{
dt, 𝜎n ≥ 0
dc, 𝜎n < 0

and Ds =
⎧⎪⎨⎪⎩

ds, 𝜎n ≥ 0,
ds

fs0
fs0+|𝜎n| tan𝜙

, 𝜎n < 0.
(13)

In above equation, the expressions of shear damage variable Ds are different in tension (crack opening) and compres-
sion (crack closing) since the friction resists the crack growth in shear, while the additional resistance provided by friction
increases with the increase of compressive stress and becomes zero in tension.

With the damage parameters, the material strengths (normal and shear) under opening and closing modes of
deformation are expressed as:

𝜎n =

⎧⎪⎪⎨⎪⎪⎩

ft = (1 − dt) ft0 Opening mode,

fc =
⎧⎪⎨⎪⎩

fci + (fcu − fci)
(

2Wp
2

Gfch
−
(

Wp
2

Gfch

)2)𝛽

,W p
2 ≤ Gfch

(1 − dc) fcu,W p
2 > Gfch

Closing mode,
(14)

𝜎s = fs =
⎧⎪⎨⎪⎩
(1 − ds) fs0,Opening mode,(

1 − ds
fs0

fs0+|𝜎n|tan𝜙

)
fs0, Closing mode,

(15)

where ft0 and fs0 are initial strength for tension and shear separately; fci is the initial compressive strength at the onset of
yielding; 𝛽 is the shape parameter for the evolution of compressive strength during hardening. It should be noted that,
unlike other strength parameters, the evolution of compressive strength during hardening is not dependent on damage
parameters, but it needs the plastic work and hardening part of the fracture energy apart from the initial and ultimate
compressive strengths.

The variations of damage parameters and strengths with respect to plastic work under different modes of uniaxial
loading are plotted in Figure 3. The strength parameters are degraded gradually with the increase of damage parameters,
which are in turn dependent on the plastic work (W p

1 and W p
2 ). For tensile loading, the influence of the shape parameter
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NIE et al. 2505

F I G U R E 3 Evolution of damage and strength of masonry joints under different modes of uniaxial loading. (A) Evolution of damage
and strength under tension, (B) uniaxial shear damage and strength, and (C) uniaxial compressive damage and strength

 10970207, 2023, 11, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/nm

e.7218 by U
niversity of A

delaide A
lum

ni, W
iley O

nline L
ibrary on [26/11/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



2506 NIE et al.

𝛼t on the variation of strength is shown in Figure 3A where the rate of strength degradation at the initial stage (lower
value of W p

1 ) is found to be very small for a higher value 𝛼t. This is absolutely negligible as the curve became initially flat
for 𝛼t > 3 and the flat region extends with the increase of 𝛼t. This is similarly observed in Figure 3B,C, which demonstrate
that shape parameters (𝛼t, 𝛼s, and 𝛼c) can efficiently help to calibrate the strength parameters in terms of plastic work.
Figure 3B shows that the shear strength of the interface decreases to zero when the interface is subjected to tension or
no normal loading, while the interface has a residual strength due to frictional resistance (|𝜎n| ⋅ tan𝜙) if the interface is
under compression.

Figure 3C shows the behavior of the interface under compression, where the curves for the strength evolution are
divided into hardening and softening regions at the same point (indicated by the vertical dashed line) when the plastic
work W p

2 reaches the value of Gfch (portion of the fracture energy under compression corresponds to the hardening part).
Also, the hardening curve becomes stiffer with the decrease of the hardening shape parameter 𝛽.

It should be noted that, the value of hardening shape parameter 𝛽 should be 1 or less (not negative) while the softening
shape parameters 𝛼t, 𝛼s, and 𝛼c should be 2 and more (may be +∞).

2.3 Evolution of dilation coefficient

The direct shear tests conducted by Chainmoon54 on masonry couplets show that the normal displacement of joints
caused by the dilation effects was gradually reduced with the shear loading to a small constant value that may
be close to zero in some scenarios (Figure 4). This experimental observation indicates that the dilation coefficient
tan𝜙Q

(
= dup

n∕dup
s
)

has softening characteristics with the progression of shear loading. This effect is incorporated in the
present model through a parameter d𝜙Q which is used to simulate the degradation of the dilation coefficient tan𝜙Q from
its initial and residual values tan𝜙Q0 and tan𝜙Qr, respectively, as recommended in Equation (16).

tan𝜙Q =

{
tan𝜙Q0 −

(
tan𝜙Q0 − tan𝜙Qr

)
d𝜙Q ,W

p
1 < Gfs,

tan𝜙Qr,W p
1 ≥ Gfs,

(16)

where

d𝜙Q =
⎡⎢⎢⎣𝛼𝜙Q

(
W p

1

Gfs

)
𝛼
𝜙Q−1

−
(
𝛼𝜙Q − 1

)(W p
1

Gfs

)
𝛼
𝜙Q⎤⎥⎥⎦ .

The above parameter d𝜙Q is expressed in terms of plastic work W p
1 , fracture energy under shear Gfs, and a shape

parameter 𝛼𝜙Q in the form of a polynomial as recommend in Equation (16). The concept behind the proposed expression
for d𝜙Q is extracted from the formats used for defining the damage parameters. The variation of tan𝜙Qr with respect to
W p

1 is plotted in Figure 5, which shows a similar pattern as found for the damage parameter, that is, the curve becomes
more flat in the initial stage with the increase of 𝛼𝜙Q.

F I G U R E 4 Variation of normal displacement versus shear displacement (relative) under shear loading54
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NIE et al. 2507

F I G U R E 5 Evolution of dilation coefficient with respect to plastic work under shear loading

3 NUMERICAL IMPLEMENTATION

The effective stress-based formulation used for the proposed model facilitates the separation of damage and plasticity
components algorithmically, as mentioned earlier, which helps to improve the computational efficiency and robustness
in the implementation of the constitutive model in an incremental-iterative scheme. The main steps associated with its
numerical implementation for a load step/increment are listed below and the flow of operation is shown in Figure 6.

Transferring nominal stress
{
𝜎

t} from the converged previous load/time step “t” to effective stress
{
𝜎

t
}

by using the
damage matrix

[
Dt];

1. From
{
𝜎

t
}

, the effective stress
{
𝜎

t+1
}

and plastic work W p,t+1 in the current load/time step “t+ 1” are iteratively
computed by using an elastic predictor-plastic corrector strategy until the converged is attained;

2. Using W p,t+1, the damage matrix
[
Dt+1] is updated and it is used to calculate the nominal stress

{
𝜎

t+1} for the time
step “t+ 1.”

Figure 7 shows the stress return mapping procedure in the effective stress space for a typical load step. First the
trial stress

{
𝜎

t+1
}

trial
is calculated as elastic predictor from

{
𝜎

t
}

, and if it is found outside of the yield surface, that

is, F(trial{𝜎}t+1) > 0, the material is in inelastic stage and a fully implicit backward Euler integration scheme is utilized
for the stress return mapping procedure to calculate

{
𝜎

t+1
}

. For the tension-shear mixed mode loading scenario, the

trial stress
{
𝜎

t+1
}

trial
returns back to the fixed (non-evolving) hyperbolic yield surface F1 following the closest point

F I G U R E 6 Overall process for stress update
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2508 NIE et al.

F I G U R E 7 Stress return mapping progress

projection method (CPPM) introduced by Simo and Hughes.37 In case of compression or compression-shear mode of
loading,

{
𝜎

t+1
}

trial
returns back to the yield surface F2 (compressive cap), which can expand (evolve) during hardening

stage but remains fixed (not moving) after peak load (see Figure 2).

3.1 Determination of the correct active surface

For multi-surface plasticity models, a complex scenario is commonly encountered when the trial stress is located near
a corner, that is, interaction of multiple yield surfaces, which can lead to wrong stress return mapping due to incorrect
selection of yield surface. A typical region near a corner is shown in Figure 8 where the region of the effective stress
space can be divided into six subregions (EL, B1, B2, C1, C2, A) produced by the yield surfaces Fi (F1 and F2 in our model)
and their normal (i.e., plastic flow) directions 𝜕Fi∕𝜕{𝜎}. If the trial stress is located within EL, which is enveloped by the
yield surfaces, the stress point is in the elastic domain of the stress space and no stress return mapping is needed and the
trial stress (elastic predictor) is the final stress. If the trial stress point is located in region B2 (F1 < 0, F2 > 0) or region C2
(F1 > 0, F2 < 0), the correct yield surface will be F2 or F1, respectively, that will be used for the stress return. However,
both yield surfaces are active in terms of violating yield condition, that is, F1 > 0 and F2 > 0, if the trial stress point is in
region B1, C1, and A. For a general case of multi-surface plasticity models having any number of yield surfaces, the active
set of yield surfaces for a trial set can be expressed as:

{Jact} = {i ∈ {1, 2, …} | Fi > 0} . (17)

In this scenario, we need to identify the correct yield surface from this set of active surfaces for stress return. A simple
solution of this problem has been adopted in some studies (e.g., Reference 7) where the trial stress point belong to all these

F I G U R E 8 Return mapping path of the multi-surface plasticity model
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NIE et al. 2509

regions (B1, C1, and A) predicted by Equation (17) is returned back to the corner. However, this may lead to incorrect
stress return that may be significant in some occasions. For example, the trial stress in B1 should return back to F2 but not
F1 (see Figure 8). Thus the stress return from the trial stress point belonging to different regions (B1, C1, and A) should
be treated separately to avoid any issue, which needs identification of the correct region (B1, C1, or A).

Therefore, the stress return mapping procedure of multi-surface plasticity models is more challenging than that of
single surface plasticity model because the difference of region (B1, C1, and A) cannot be distinguished by checking
the yield conditions Fi > 0 only, that is, Equation (17). Simo and Hughes37 recommended a generic solution that needs
checking of yield conditions Fi > 0 as well as plastic multipliers (d𝜆i > 0), which provides a more precise set of active
surfaces that can be represented as:

{Jact} = {i ∈ {1, 2, …} |Fi > 0 and d𝜆i > 0} . (18)

As the stress return is based Newton–Raphson (NR) iterative technique, different strategies may be adopted for
determination of {Jact} and these are broadly classified by Pech et al.42 as follows:

• Exact method: remove a yield surface Fi from the set of active surfaces {Jact} if d𝜆i < 0 but do the checking (d𝜆i < 0)
and deactivate Fi only after the convergence of NR iterative method.

• Optimized method: check d𝜆i after every iteration of the NR iterative method, and update {Jact} by deactivating Fi
once d𝜆i < 0 is found.

Another method was proposed by Adhikary et al.38 that considers all possible combinations of active surfaces. They
defined this method as “dumb” as it is not efficient but found it useful in solving a complex scenario with large number
of yield surfaces when the above two methods did not work.

There might be a concern with the exact and the above method since they can violate the condition (d𝜆i > 0), but
that should be a necessary requirement for feasible solution of a general constrained problem.55 However, all numerical
simulations in this study are solved by the optimized method that worked successfully without facing such an issue.

3.2 Fully implicit backward Euler integration

The increment of relative displacement
{

dut+1} in current time/load step consists of elastic and plastic components as{
dut+1} = {

due,t+1} + {
dup,t+1} and it can be used to update the stress as:{
𝜎

t+1
}
=
{
𝜎

t
}
+
{

d𝜎t+1
}
=
{
𝜎

t
}
+
[
K0] ({dut+1} − {

dup,t+1})
,

=
({
𝜎

t
}
+
[
K0] {dut+1}) − [

K0] {dup,t+1}
, (19)

where the first part of the above equation provides the trial stress
{
𝜎

t+1
}

trial
=
{
𝜎

t
}
+
[
K0] {dut+1}, which is the elastic

predictor, while the second part −
[
K0] {dup,t+1} is the plastic corrector. Using the plastic potential functions Qi, the

increment of plastic displacement resultant for multi-surface plasticity model56 can be determined as:
{

dup} = ∑
i∈{Jact}

d𝜆i
𝜕Qi

𝜕{𝜎}
(20)

where the subscript “i” in above equation corresponds to the set of active yield surface {Jact} which is defined in
Equation (18). Substituting Equation (20) into Equation (19), it can be rewritten as:

{
𝜎

t+1
}
= {trial

𝜎
t+1} −

∑
i∈{Jact}

d𝜆t+1
i

[
K0]( 𝜕Qi

𝜕{𝜎}

)t+1

. (21)

The above equation cannot be solved directly due to nonlinearity, and will be solved iteratively using the NR method
that will need updated stress within an iteration as well as updated yield functions or plastic multipliers within that
iteration. For the implementation of the iterative technique, the full consistency condition for the yield functions are used
and it is expressed as:

Fi = 0, i ∈ {Jact} , (22)
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2510 NIE et al.

where F1

({
𝜎

t+1
})

is dependent on effective stress only whilst F2

({
𝜎

t+1
}
, f t+1

c

)
depends on both effective stress and

compressive strength.
To facilitate the iterative solution scheme of Equation (21) along with Equation (22), the residual vector

{
rk} for k-th

iteration can be written as:

{
rk} =

⎧⎪⎨⎪⎩

{
rk
𝜎

}

rk
F

⎫⎪⎬⎪⎭
=
⎧⎪⎨⎪⎩
{
𝜎

k
}
− {trial

𝜎
t+1} +

∑
i

d𝜆k
i

[
K0] ( 𝜕Qi

𝜕{𝜎}

)k

Fk
i

⎫⎪⎬⎪⎭
, i ∈

{
J

k
act
}
, (23)

where a maximum number of iterative “kmax” should be predefined to avoid unlimited loops in case of divergence. The
converging criteria used in the present study to stop the iteration is defined as:

||r|| = Max(‖{r𝜎}‖ , |rF|) < TOL, (24)

where ||r|| is the norm of residual vector but it is calculated for the two components separately corresponding to
Equations (21) and (22) and the larger value is adopted. A small value of the tolerances (TOL) is predefined to stop the
iteration with an acceptable level of solution accuracy. The increments of the effective stress vector

{
𝛿𝜎

k
}

and the incre-
mental plastic multipliers 𝛿d𝜆k

i (may be a vector but written in the form of index for simplicity in the presentation) within
an iteration (k) is written as:

{
𝛿

k} =
⎧⎪⎨⎪⎩
{
𝛿𝜎

k
}

𝛿d𝜆k
i

⎫⎪⎬⎪⎭
=
[
Jk]−1 {rk}

, i ∈
{
J

k
act
}
, (25)

where the Jacobian matrix
[
Jk] is the gradient of the residual vector (Equation 23) with respect to {𝜎} and d𝜆i (the iteration

number k is not written for simplicity in the presentation) and it can be expressed as:

[J] = 𝜕{r}
𝜕({𝜎}, d𝜆)

=
⎡⎢⎢⎢⎣
[I] +

∑
i

d𝜆i
[
K0] 𝜕

2Qi
𝜕{𝜎}2

[
K0] 𝜕Qi

𝜕{𝜎}(
𝜕Fi
𝜕{𝜎}

)T
𝜕Fi
𝜕d𝜆i

⎤⎥⎥⎥⎦
, i ∈

{
J

k
act
}
. (26)

Using Equation (25), the incremental plastic multiplier and the set of active yield surfaces can be updated as:

d𝜆k+1
i = d𝜆k

i + 𝛿d𝜆k
i , i ∈

{
J

k
act
}
, (27)

{
J

k+1
act

}
=
{

i ∈ {1, 2, …} | d𝜆k+1
i > 0

}
. (28)

In some situations,
{
J

k+1
act

}
may be changed from its previous iteration

{
Jk

act
}

if one of the incremental plastic multipli-
ers d𝜆k+1

i becomes negative. In that scenario, the new set of active yield surfaces is use and the iteration process is restarted
from the beginning of the load step. Otherwise, proceed further after updating the effective stress and the plastic work as:

{
𝜎

k+1
}
=
{
𝜎

k
}
+
{
𝛿𝜎

k
}
, (29)

W p,k+1 = W p,k
i + dW p,k

i , i ∈
{
J

k
act
}
. (30)

The plastic work increment dW p
i in the above equation can be determined by substituting Equation (20) into Equations (7)

and (8) is formulated as (iteration number k again omitted for simplicity of presentation):

dW p
1 =

⎧⎪⎨⎪⎩
d𝜆1

(
𝜎n

𝜕Q1
𝜕𝜎n

+ 𝜎s
𝜕Q1
𝜕𝜎s

)
, 𝜎n ≥ 0,

d𝜆1 (|𝜎s| + 𝜎n tan𝜙) ||| 𝜕Q1
𝜕𝜎s

||| , 𝜎n < 0,
(31)
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NIE et al. 2511

dW p
2 = d𝜆2

(
𝜎n
𝜕Q2

𝜕𝜎n
+ 𝜎s

𝜕Q2

𝜕𝜎s

)
, (32)

The numerical implementation of the procedure presented this section is shown in Appendix B.

3.3 Adaptive sub-stepping scheme for the implicit integration

Even though the implicit integration technique is unconditionally stable, theoretically, for load increments of any size,31

convergence may be an issue in reality if the integration point is subjected to a complex loading scenario due to some
reason such as large curvatures of the yield surface at the tension apex57 or the size of load step is large. The solution
to this problem is the reduction of the load increment size. Though some high-end FE software18,58 can automatically
reduce the load increment, if needed, this is applied globally, that is, all integration points of the whole structure, which
significantly affects the computation efficiency. A more efficient and economic strategy is use of sub-stepping scheme in
local (material model) level where the reduction of load increment is applied to severely affected integration points only.

As shown in Figure 9, the time step sizeΔt at global level is sub-divided into a number of sub-steps, which are denoted
by tm ∈ [0, 1] and the corresponding stresses are denoted as 𝜎m. The size of a sub-step Δtm is adaptively adjusted based
on the performance of the NR iteration in the previous sub-step using a multiplier 𝛿m based on the concept of Reference
41, which is defined as:

𝛿
m = max

(√
kd

k
, 𝜁

)
, (33)

where kd is a predefined value which is the desirable number of maximum iterations to achieve convergence and k is
the number of iterations utilized in the previous sub-step. If k < kd, the step size adjustment multiplier 𝛿m will be larger
than 1, which indicates that the size of next sub-step will be larger than previous step and vice versa. Another predefined
multiplier 𝜁 (0 < 𝜁 < 1) is used to control the minimum size of a sub-step. This multiplier 𝜁 is directly used to reduce
the sub-step size when the NR iteration scheme is failed in addition to calculate 𝛿m. For the last sub-step, tm should not
exceed 1 and this is achieved by restricting the maximum value of the sub-stepping size as:

Δtm+1 = min
(
𝛿

mΔtm
, 1 − tm)

. (34)

Figure 10 shows a flowchart to demonstrate the overview of the adaptive sub-stepping procedure while the detail of
its numerical implementation is given in Appendix C.

4 NUMERICAL ANALYSIS

4.1 Performance of stress return mapping technique

Before application of the proposed model at the structural scale to problems such as masonry walls, the performance of the
model is scrutinized at different levels (material point, single element, and specimen) to have a thorough understanding

F I G U R E 9 Time steps in global (structural) and local (material) levels
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2512 NIE et al.

F I G U R E 10 Flow-chart for the adaptive sub-stepping procedure

of its performance. In this section, the numerical performance of the model at a material/integration point (i.e., stress
return mapping process) is evaluated in terms of efficiency of convergence. A number of stress return mapping tests
are numerically conducted with/without sub-stepping to show the importance of sub-stepping. For this purpose, both
yield surfaces are assumed to be non-evolving. In this section, the results are presented in schematic form to explain the
process, while the actual results for two numerical examples are provided as Supplementary Material (S.2) to provide
more detailed results. The stress return mapping technique is implemented numerically by writing a stand-alone program
in FORTRAN.

Figure 11 illustrates the different scenarios of stress return mapping process of a trial stress point to the yield surface F1
where the stress point is located in the region C2 (see Figure 8) and bit far from F1. For the first two cases (Figure 11A,B),
the sub-stepping option is not be activated, which leads to no convergence in Figure 11A as the stress point oscillated
between N1 and N2 with no exit while a convergence is somehow attained in Figure 11B (trial stress point distance is
relatively less) but it took a very large number of iterations. Figure 11C shows the use of sub-stepping option for the trial
stress in first case (Figure 11A) where a quick convergence is achieved with no numerical trouble. For one of its sub-steps,
the return mapping process is illustrated in Figure 11D.

Similarly, the stress return of a trial stress point located in the region B2 (see Figure 8) is conducted for return-
ing the stress point to the yield surface F2. In this case, the stress return process performed better than the previous
case (Figure 11), which is due to a gentle curvature of F2 (elliptical curve) while the hyperbolic curve has a high cur-
vature (sharp change) near its tip. However, this took a large number of iterations that may be an issue for solving a
large-scale problem. The sub-stepping option is used for the same problem that has shown a significant improvement of
the convergence efficiency.

Figure 12 illustrates the stress return paths of a trial stress point located in the region A (see Figure 8) when the
sub-stepping option is not used. The stress should go back the corner point but it can drift since the stress point may be
moved from region A to B1 or C1 (see Figure 8) during the iterative process. This drifting can be avoided by using the
sub-stepping option that helps to bring the stress point exactly at the corner. Though the deviation is small, it may be
accumulated in a large size complex structural problem.

Before application of the proposed interfacial model to masonry structures, the model is implemented within the finite
element (FE) program Abaqus 6.1418 to investigate its performance using single element (cohesive element COH3D8)
test. Results along with the other details are provided as Supplementary Material (S.1).

4.2 Specimen (couplet/prism) level validation

In this section, the proposed model is validated using couplets and prismatic specimens made of a few bricks, which
are subjected to monotonic and cyclic loadings. A brick unit is modeled with solid element (C3D8R) using meshing size
of 4× 2× 2 while the cohesive elements (COH3D8) is used for mortar joints that followed the meshing arrangement of
the bricks. The cohesive elements used the coupled damage-plasticity based constitutive model developed in this study
while the bricks are assumed to be elastic. Though the implicit static solver has been used for the single element test,
the implicit dynamic solver with a quasi-static mode is adopted from this section to minimize the convergence issue at
global/structural level (FE analysis) as the complexity of the problems, need to be simulated, will be increased. For the
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NIE et al. 2513

F I G U R E 11 Stress return mapping paths corresponding to yield surface F1.(A) Infinite iteration (no convergence), (B) converged with
a large number iteration, (C) sub-stepping scheme, (D) convergence within a sub-step

numerical modeling conduced in this section, the material properties used for the interface are listed in Table 1. The
density used for the mortar joints as well as brick and are 2000 kg/m3 but it is appropriately scaled internally by the
quasistatic option of the ABAQUS solver.18 Material properties used in numerical modeling are collected from experimen-
tal literature46,47,54,59,60 and some parameters are calibrated based on other studies11,28,30,54,60 which simulated the same
experiments.

A displacement controlled tension test was performed by van der Pluijm47 on clay brick masonry couplets each made of
two brick units (size of a unit: 210 mm× 80 mm× 100 mm) and a 10 mm thick mortar joint between the units (Figure 13A)
where 80 mm is the height. The experimental results (post elastic softening response) reported by van der Pluijm47 are
presented in Figure 13A for the validation of numerical results predicted by the proposed model for the same problem
(uniaxial tension test of the masonry couplet). The numerical results are mostly enveloped within the measured test data
set. Similarly, the direct shear tests were conducted by van der Pluijm46 on masonry couplets having same geometry and
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2514 NIE et al.

F I G U R E 12 Stress return mapping paths for the corner region

T A B L E 1 Material properties of the mortar joints for couplet/prismatic specimens

Material
parameters Unit

Uniaxial
tension
(T)

Uniaxial
shear
(S)

Cyclic
shear
(S-Cyc)

Compression
(un/re-loading)
(C-UR)

Shear
(un/re-loading)
S-UR,
Pv = −0.28 MPa

Shear
(un/re-loading)
S-UR,
Pv = −0.51 MPa

Kn N/mm3 82 - - 300 - -

Ks N/mm3 - 400 36 - 10 4.25

ft0 MPa 0.3 - - - - -

Gft N/mm 0.035 - - - - -

𝛼t 2 - - - - -

fs0 MPa - 1.2 1.2 - 0.07 0.3

tan𝜙 - 1 0.67 - 0.82 0.76

Gfs N/mm - 0.25 3.78 - 0.082 0.14

𝛼s - 2 2 - 2 2

fci MPa - - - 2 - -

fcu MPa - - - 29 - -

fcr MPa - - - 2 - -

Gfch N/mm - - - 8 - -

Gfcs N/mm - - - 20 - -

𝛽 - - - 0.5 - -

𝛼c - - - 3 - -

tan𝜙Q0 - 1 0.1 - 0.15 0.15

tan𝜙Qr - 0.1 0.01 - 0.065 0.001

𝛼
𝜙Q - 2 2 - 2 4

 10970207, 2023, 11, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/nm

e.7218 by U
niversity of A

delaide A
lum

ni, W
iley O

nline L
ibrary on [26/11/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



NIE et al. 2515

F I G U R E 13 Masonry couplet tests. (A) Uniaxial tension, (B) uniaxial shear, (C) cyclic shear, (D) compression, (E) shear stress versus
shear displacement, and (F) normal displacement versus shear displacement
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2516 NIE et al.

materials by imposing three different levels of constant pre-pressure (0.1, 0.5, and 1.0 MPa) applied vertically. The couplets
under this loading scenario are simulated with the proposed model and the predicted results are presented with the test
results46 in Figure 13B for experimental validation. The variation of shear stress with respect to the inelastic displacement
(Figure 13B) shows an exponential softening followed by a constant residual friction. In the numerical modeling, the
values of the shape parameters 𝛼t and 𝛼s are taken as 2 to simulate the exponential softening as observed in the experiment.
Figure 13B shows a good correlation between the numerical and experimental results.

Atkinson et al.59 performed cyclic shear tests on masonry bed joints having a different size and configuration as shown
in Figure 13C using two levels of constant pre-pressure (1.34 and 4.31 MPa) for a complete cycle. The numerical simulation
of these specimens are conduced by the proposed model, and the predicted results (shear stress-relative displacement
variation) are validated with the experimental results59 in Figure 13C. Modeling results have a good agreement with
experiments in terms of peak load and residual frictional resistance.

The performance of the interface model under uniaxial compression with unloading/reloading scenarios for esti-
mating stiffness degradation is validated with the experiment results of Reference 60. A prismatic specimen consisting
of 5 bricks as shown in Figure 13D was subjected to vertical compressive load by using a steel plate bonded to
the top surface of the specimen that was resting at its bottom surface on a fixed plate.60 The numerical resulted
produced by the proposed model are compared with the experimental results in Figure 13D. Since the stiffness degra-
dation is not observed experimentally during strain hardening region, the unloading-reloading scenario is simulated
by the proposed model for one time only before the peak load which has shown the expected behavior of no stiffness
degradation. In the softening phase, the unloading/reloading scenario is simulated by the model for three cycles, as was
done in experiment, and the results show a stiffness reduction consistent with the experimental response.

The dilation of a masonry joint is now studied by the proposed model that followed the experimental investigation
of Reference 54. They applied shear loading on masonry couplets, made of two full size clay bricks (each: 230 mm ×
51 mm × 110 mm) connected by a 10 mm thick mortar joint, keeping the couplets under constant pre-pressure having
two different values of (0.28 and 0.51 MPa), which show a distinct variation of dilation behaviors. For the specimen under
lower confining pressure (0.28 MPa), the peak shear strength was marginally higher than the residual frictional resistance
(Figure 13E) while the normal displacement increased steadily with the tangential shear deformation (Figure 13F). In the
case with higher pre-pressure (0.51 MPa), the peak strength was visibly higher than the frictional resistance (Figure 13E)
while the variation of normal displacement stopped quickly and became nearly flat once the frictional resistance was
reached (Figure 13F). The numerical results simulated by the proposed model are compared with the experimental results
in Figure 13, and show that the model is capable of capturing all these features with a satisfactory agreement with experi-
mental results. The unloading-reloading scenarios are also simulated as done in the experiment54 but it shows no stiffness
degradation under this mode of loading.

4.3 Masonry walls under monotonic in-plane and out-of-plane loads

The testing of masonry wall specimens under monotonic in-plane loading, conducted by Reference 61 is widely used
as a benchmark example for experimental validations of numerical models and such an attempt is made in this section
to assess the performance of our model. For this purpose, three masonry wall specimens, as shown Figure 14A, are
adopted from this study61 who designated them as J4D, J5D, and J7D. These three single leaf wall panels have a
geometry (990 mm width× 1000 mm height× 100 mm thickness) composed by 18 courses of solid clay bricks (each:
210 mm× 52 mm× 100 mm) and 10 mm thick mortar joints. The bottom surface of these walls is fully restrained at the
ground and the top surface (connected with a steel beam) is subjected to a constant confining pressure (Pv = 0.3 MPa for
J4D and J5D; Pv = 2.12 MPa for J7D) and a horizontal load imposed through the steel beam in the form of displacement
control.

In our FE modeling of the masonry walls, artificial joints/interfaces are placed through vertical planes of full size
bricks at their middle lengths to simulate the potential cracks of brick units as shown in Figure 14B apart from the
real mortar joints. For both type of joints, the material properties referenced from References 7,11,24,52 used for the
numerical modeling are listed in Table 2. Similar to the previous section, all nonlinear inelastic behaviors of the masonry
walls are simulated by the interface model while the bricks (and half bricks) are treated as elastic with Young’s modulus
E = 16,700 MPa and Poisson’s ratio v = 0.18. Though the results presented in the previous section corresponds to a mesh
size based on 4× 2× 2 for single brick unit, it was observed from a mesh convergence study that a relatively less refined
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NIE et al. 2517

F I G U R E 14 Masonry wall panels under monotonic in-plane loading. (A) Masonry wall panels and their failure modes from
experiment,61 (B) FE mode, (C) lead displacement response, and (D) simulated cracking patterns
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2518 NIE et al.

T A B L E 2 Interfacial material properties of the masonry walls under monotonic loading

Material parameters In-plane loading (Pv = −0.3 MPa) In-plane loading (Pv = −2.12 MPa) Out-of-plane loading

Joints Unit Mortar Artificial Mortar Artificial Mortar Artificial

Kn N/mm3 82 100 82 100 220 280

Ks N/mm3 36 100 36 100 105 280

ft0 MPa 0.3 2 0.16 2 1 2

Gft N/mm 0.072 0.12 0.012 0.25 0.072 0.25

𝛼t 2 2 2 2 2 2

fs0 MPa 0.45 2.8 0.224 4 1.2 2.8

tan𝜙 1 1 0.75 1 0.5 1

Gfs N/mm 0.15 0.5 0.05 1 0.25 0.5

𝛼s 2 2 2 2 2 2

fci MPa 2 10 6.5 30 5 30

fcu MPa 5.5 20 10.5 50 10 50

fcr MPa 1 5 1 5 2 10

Gfch N/mm 0.8 10.5 2 20.5 10.5 25

Gfcs N/mm 4.2 10.5 3 20.5 10.5 25

𝛽 1 1 1 1 1 1

𝛼c 2 2 2 2 2 2

tan𝜙Q0 0.01 1 0.01 1 0.5 1

tan𝜙Qr 0.01 1 0.01 1 0.1 1

𝛼
𝜙Q 2 2 2 2 2 2

meshing can be adequate for getting good results. Therefore, a meshing arrangement based on 2× 1× 1 for a single brick
unit is adopted in this section for analyzing bigger size problems (walls) with a good degree of computational efficiency.

Numerical results for the load–displacement response at the wall top surface (horizontal direction) simulated by the
model are compared with the experimental results in Figure 14C, which shows a good predictive capability of the model
for such complex problems. For walls under lower confining pressure (0.3 MPa), the peak load is around 50 kN with a
long flat plateau proving a good degree of durability, while the wall under higher confining pressure (2.12 MPa) resisted
a higher peak load of around 100 kN but it lost strength rapidly in the post-peak region. Modeling result in this study is
compared with that from Reference 15. Figure 14C shows that the post-peak branch predicted by the numerical model
has a moderate softening compared to the experimental result. This is probably due to the elastic modeling of the bricks
with a single “artificial” vertical interface that attempted for capturing all the nonlinearity of the brick units to reduce the
computing time. This modeling strategy allows step-wise cracks with vertical and horizontal cracking planes, which can
provide higher strength/stability than brick with inclined cracking. This may be addressed by using an inelastic modeling
of the bricks such as concrete damage-plasticity or XFEM based modeling.

Cracking patterns produced by the numerical models (Figure 14D) show typical diagonal cracks go through the entire
walls with small horizontal cracks near the corners. Cracks produced by the FE models include failure of mortar (bed and
head) joints as well as splitting of bricks though the artificial joints, which helped to simulate the real failure patterns of
the walls well.

The capability of the model to simulate the response of masonry walls subjected to out-of-plane monotonic loading is
now assessed. For this purpose, a masonry wall panel tested by Ng62 is adopted. The single leaf wall specimen has 795 mm
width, 1190 mm height and 53 mm thickness and was built with solid clay bricks (each: 112 mm× 36 mm× 53 mm) and
10 mm thick mortar joints. In the experimental set-up, an airbag was placed between the masonry wall (back surface) and
a stiff support (concrete wall) to provide lateral (out-of-plane) pressure on the back surface of the panel. Four edges of the
masonry wall were firmly supported by using a steel frame (Figure 15A) that cause deformation of the wall under two-way
bending (Figure 15B). The meshing pattern used for the FE modeling of the wall is identical to that used in the previous
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NIE et al. 2519

F I G U R E 15 A masonry wall panel subjected monotonic out-of-plane loading. (a) a steel frame to support the panel at four edges, (B)
failure mode of the wall, (C) FE model of the wall with boundary conditions and RP, (D) load-displacement response, and (E) cracking patterns
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2520 NIE et al.

case (Figure 14). To simulate the uniform pressure exerted by the air-bag on the wall, a reference point (RP) is used and
it is coupled with the loading surface of the panel using the feature “structural distributing” of ABAQUS (Figure 15C). A
displacement control technique is applied to the RP that helped to develop pressure on the panel surface but the pressure
will be automatically increased or decreased depending on the load resisting capability of the panel during its entire
loading range with both hardening and softening behaviors. The material used for the interfaces are same as provided in
Table 2 while the bricks are taken as elastic with elastic modulus E = 16,700 MPa and Poisson’s ratio v = 0.15.

The load–displacement response (deflection at the panel central vs. uniform pressure) predicted by the model is
plotted in Figure 15D. For its experimental validation, the measured response as reported by Reference 62 is included in
Figure 15D. However, the entire range of the panel response could not be measured experimentally due to unexpected
sudden failure of the LVDT before reaching the peak load. Ng62 could however measure the peak load which is also

F I G U R E 16 Masonry walls under cyclic in-plane loading. (A) T3-ETH, (B) COMP4 - TUD, (C) load-displacement response (ETH wall),
and (D) load-displacement response (TUD wall)
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NIE et al. 2521

included in Figure 15D. The figure shows that the numerical results have a satisfactory correlation with the peak load
and the load–displacement response that could be measured. Modeling result is compared with that from Reference 52.
Figure 15E shows the failure modes simulated by the model at two different stages of loading. First the straight vertical
crack along the longitudinal central line of the panel is produced, and it is then propagated diagonally in four branches
from the vertical crack tips to the four corners of the wall.

4.4 Masonry walls under in-plane cyclic loading

In this section, two single leaf masonry wall specimens subjected to cyclic in-plane loading are selected from litera-
ture for experimental validation of the proposed model. Figure 16A shows one of these specimens that was tested by
Salmanpour et al.63 in Swiss Federal Institute of Technology (ETH) Zurich under constant pre-pressure of 1.16 MPa.
The wall designated as T361 had a dimension of 1590 mm× 1550 mm× 150 mm that was made of 13 courses of clay
bricks (each: 250 mm× 190 mm× 150 mm) and 10 mm thick mortar joints. The other wall specimen as shown in
Figure 16B was tested under 0.5 MPa pre-pressure by Messali et al.64 in the Delft University of Technology (TUD).
This wall (designated as COMP4) had a dimension of 4000 mm× 2760 mm× 102 mm that was made by 34 courses
of calcium silicate bricks (210 mm× 71 mm× 102 mm) and 12 mm mortar joints. Both walls were firmly supported
at their bases and subjected to horizontal reversible displacements through a steel beam perfectly bonded at their
upper surfaces.

For the FE modeling of these two walls, the meshing system followed the same strategy used in the previous example
(Section 4.3). The material properties referenced from References 25, 65 used for the interface modeling are listed in
Table 3 while the elastic properties taken for the bricks are: E = 3000 MPa and v = 0.2 for the ETH wall; E = 9000 MPa
and v = 0.14 for the DUT wall. Based on the suggestion of Reference 25, different interfacial properties are taken for head
and bed joints (mortar) in the present case of cyclic loading.

T A B L E 3 Interfacial material properties of the walls subjected to in-plane cyclic loading

Material parameters Unit IP-Cyc-ETH (Pv = −1.16 MPa) IP-Cyc-DUT (Pv = −0.5 MPa)

Joints Mortar-head Mortar-bed Artificial Mortar-head Mortar-bed Artificial

Kn N/mm3 50 20 100 100 10 100

Ks N/mm3 25 10 100 40 16 100

ft0 MPa 0.2 0.2 2 0.1 0.01 2.2

Gft N/mm 0.1 0.1 1 0.05 0.025 0.03

𝛼t 2 2 2 2 2 2

fs0 MPa 0.45 0.24 2.8 0.14 0.02 1.5

tan𝜙 0.3 0.48 1 0.46 0.43 0.46

Gfs N/mm 1.5 1.5 2 3 0.05 0.05

𝛼s 5 5 2 2 2 2

fci MPa 5 2 30 4 6 30

fcu MPa 9.5 5 50 6 8 50

fcr MPa 1 1 10 2 2 10

Gfch N/mm 2.5 0.8 25 7.5 17 10.5

Gfcs N/mm 2.5 2 25 7.5 17 10.5

𝛽 1 1 1 1 1 1

𝛼c 2 2 2 2 2 2

tan𝜙Q0 0.1 0.1 1 0.1 0.02 0.36

tan𝜙Qr 0.01 0.01 1 0.01 0.01 0.01

𝛼
𝜙Q 2 2 2 2 2 2
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2522 NIE et al.

F I G U R E 17 Cracking patterns of FE models under cyclic in-plane load. (A) T3-ETH and (B) COMP4 - TUD

The cyclic response (horizontal displacement at top surface vs. load) of the two walls predicted by the proposed model
is compared with the experimental results in Figure 16C,D, which show a reasonable consistency between them in terms
of peak load and overall hysteretic behavior for such a complex loading scenario.

The gradual degradation of stiffness with the increase of cycles was observed in the ETH masonry panel during
experiment, which was due to the compressive crushing failure of mortar bed joints near the bottom edge. This has
been successfully captured by the numerical model in Figure 16C. The failure modes of the two walls predicted by
the FE model are presented in Figure 17. Figure 17A clearly shows complete crushing of mortar joints near the bot-
tom edge that lead to drop the load resting capacity to zero (see Figure 16C). In contrast, the experiment as well
as the FE modeling (Figure 16D) show insignificant stiffness degradation of the TUD masonry wall probably due
to lower pre-compression. The simulation shows a typical shear failure mode of the wall (TUD) with two symmet-
ric localized diagonal cracks up to the final stage of loading (Figure 17B), which is similarly observed in experiment
(Figure 16B).

5 CONCLUSIONS

The present study has developed an accurate and robust interfacial constitutive model for masonry joints for use in
predicting the nonlinear response of masonry walls subjected to monotonic and cyclic loads applied either in- or
out-of-plane. The interface model is implemented within a reliable finite element program (ABAQUS) for failure mod-
eling of structural level problems under complex loading scenarios. The major contributions of this work includes
incorporation of damage within a multi-surface plasticity framework in a consistent manner to accommodate strength
hardening/softening as well as stiffness degradation of masonry joints subjected to tension, shear, compression or a mixed
mode of loading. A smooth hyperbolic yield surface is used to capture the tensile-shear mixed mode behavior. The other
yield surface of the plasticity model is an elliptic cap for simulating the compression-shear mixed model scenarios. The
interface model is formulated in effective stress space that helped to provide no softening of the yield surfaces and it leads
to enhance the robustness of the model by improve the numerical stability.

In the numerical implementation of the interfacial model, a fully implicit backward Euler integration technique
is used to achieve enhanced accuracy and robustness in the NR iterative process for the stress return mapping. For a
multi-surface plasticity model, the strategy for selection of active yield surfaces and their updating within the iterative
process is very important and it has been addressed carefully in this study. To improve the robustness of numerical imple-
mentation, an adaptive sub-stepping method is adopted here. Moreover, to enhance the computational efficiency and
robustness, an adaptive sub-stepping scheme is implemented that can adjust the load increment size at local (material
point) level automatically based on the performance of NR iteration in previous sub-steps.
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NIE et al. 2523

The performance of the interface model is investigated by analyzing masonry structures in different scales and load-
ing scenarios. This is facilitated with the finite element (FE) modeling of these masonry structures that utilized solid
elements for bricks, and cohesive elements for mortar joints as well as artificial joints within brick units. Apart from mak-
ing some initial checks at the material point and single element level, the different problems simulated by the FE model
are: (1) masonry couplets/prismatic specimens under tension, compression and shear with constant pre-compression
where these loads may be monotonic or cyclic and may have unloading-reloading scenarios; (2) masonry panels under
in-plane and out-of-plane monotonic loads; and (3) masonry walls under in-plane cyclic loads. A thorough experimental
validation of the load-deformation response and failure modes of these structures predicted by the model is conducted
using benchmarking test results available in literature. The numerical analysis confirmed a very good performance of
the model in solving such complex problems of masonry system in terms of accuracy, robustness, and computational
efficiency.
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APPENDIX A

THREE-DIMENSIONAL MODEL
Figure A1 displays the yield surfaces of the proposed model in 3D stress space.
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F I G U R E A1 Yield surfaces of the proposed model in 3D stress space
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APPENDIX B. NUMERICAL IMPLEMENTATION OF DAMAGE-PLASTIC MULTI-SURFACE
MODEL

 10970207, 2023, 11, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/nm

e.7218 by U
niversity of A

delaide A
lum

ni, W
iley O

nline L
ibrary on [26/11/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



2528 NIE et al.

APPENDIX C. NUMERICAL IMPLEMENTATION OF ADAPTIVE SUB-STEPPING

The procedure of this adaptive sub-stepping can be implemented by Algorithm C1. In the step 3 of Algorithm C1, after
determining the increment of relative displacement in sub-stepping scheme

{
dum}, an elastoplastic procedure as shown

in Algorithm C1 (steps 3–7) is activated.
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