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Abstract

In this thesis we study a compatibility complex, derived form the Calabi complex, pro-
viding conditions for a symmetric 2-tensor on pseudo-Riemannian locally homogeneous
space to be in the image of the Killing operator. In the first chapter, we describe general
machinery to study the first cohomology group of the twisted de Rham complex of an
arbitrary vector bundle with connection. This machinery will be applied in the last two
chapters to the Killing bundle and the Killing connection, a vector bundle with connection
that arises from a prolongation of the Killing equation.

In the second chapter we introduce the Killing bundle and the Killing connection,
that provides an overdetermined system of linear partial differential equations for the
Killing equation. We prove a theorem analogous to Hano’s theorem on the splitting of
the Lie algebra of Killing vector fields of a product Riemannian manifold [26], to arbitrary
signature. Moreover, we study the structure of special subbundles of the Killing bundle
and apply these results in Chapter 3 to provide a characterisation of pseudo-Riemannian
locally homogeneous spaces in terms of the maximal parallel flat subbundle of the Killing
bundle and to give new proof of the Ambrose-Singer theorem regarding homogeneous
structures [3].

In the fourth chapter we construct a compatibility complex for the Killing operator,
that arises from a modification of the Calabi complex, and establish its equivalence to
the short twisted de Rham complex of the Killing connection. We make use of this
equivalence to provide a characterisation of the image of the Killing operator on pseudo-
Hermitian spaces of constant holomorphic sectional curvature by showing that the first
twisted de Rham cohomology group are locally trivial. Even more, we provide several
tools to study the first twisted de Rham cohomology group on product spaces. The
last chapter is dedicated to Lorentzian locally symmetric spaces and locally homogeneous
plane waves. We prove results on the Singer index of locally homogeneous plane waves
and determine exactly which ones have Singer index equal to 0. We make use of this fact
to show that the first twisted de Rham cohomology group of the Killing connections of
locally homogeneous plane waves with Singer index 0 is locally trivial. Lastly, we provide
a complete characterisation of the image of the Killing operator on Lorentzian locally
symmetric spaces, showing in which cases first twisted de Rham cohomology group of the
Killing connection is locally trivial and in which ones it is not.
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Introduction

The concept of symmetry has been of great importance in mathematics and physics since
their early beginnings. From a differential geometric point of view, they arise as a group
of diffeomorphisms of a smooth manifold that leave invariant the geometric structure of
interest. Particularly, in this thesis, the geometric structures in question will be pseudo-
Riemannian metrics on smooth manifolds, and their “continuous symmetries” will be Lie
groups of isometries. Their linear, or rather infinitesimal, counterpart are the Killing
vector fields. They are given by Lie algebras comprised of vector fields whose local flow
give rise to continuous symmetries of the metric.

Formally, a pseudo-Riemannian manifold is a pair (M, g), where M is a smooth man-
ifold and g is a non-degenerate symmetric tensor on M , and its infinitesimal symmetries
will be a vector fields in the kernel of the following first order linear differential operator:

K : Γ(TM)→ Γ(Sym2M), ξ 7→ Lξg, (1)

where TM denotes the tangent bundle of M , Sym2M the bundle of symmetric 2-tensors
on M and Lξ the Lie derivative in the direction of the vector field ξ. Perhaps it is not
evident at first sight that the operator defined above is indeed a linear differential operator
on vector fields, hence we refer to Section 2.1 for a clarification.

The differential operator defined in equation (1) will be the object of study in this
work, the so called Killing operator. Particularly, we will study differential conditions
on pseudo-Riemannian manifolds with a “large amount” of Killing vector fields, for a
symmetric 2-tensor field to be in the image of the Killing operator. The conceptual
idea of “large amount” of infinitesimal symmetries on pseudo-Riemannian manifold is
formalised by the notion of locally homogeneity. That is, a pseudo-Riemannian manifold
is locally homogeneous if for each point in M , there exists an open neighbourhood U ,
with a local frame of the tangent bundle comprised of Killing vector fields in U .

On pseudo-Riemannian locally homogeneous spaces, the kernel of the Killing operator
is well understood. However, we can wonder what could be said regarding its image. The
image of the Killing operator has been studied by physicists in the context of linearised
gravity. When analysing the linearised vacuum Einstein field equations for a metric tensor
arising from a small perturbation of a “background metric”, a tensor field that is in the
image of the Killing operator can be regarded as an infinitesimal change in the background
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metric, due to an infinitesimal change of coordinates. Any two solutions of the linearised
Einstein field equations arising from a perturbation of the background metric will be
equivalent up to gauge if they differ by a tensor field that is in the image of the Killing
operator. Thus tensor fields in the image of the Killing operator provide a set of local
gauge transformations for the linearised Einstein equations (see [40, Section 5.7] or [43,
Section 7.5] for more details).

In order to provide a complete characterisation of the image of the Killing operator, we
need to find necessary and sufficient conditions for the inhomogeneous partial differential
equation

K(ξ) = h, for some h ∈ Γ(Sym2M), (2)

to have a solution. The standard approach to provide necessary conditions for the exis-
tence of solutions to equation (2) is finding a suitable compatibility operator C, acting on
symmetric 2-tensors, such that the sequence of differential operators

Γ(TM) Γ(Sym2M) Γ(CM)K C (3)

is in fact a differential complex, where CM is an appropriate vector bundle over M where
C takes values. If such a complex exists, it will be referred to as a compatibility complex for
the Killing operator. Therefore, any compatibility complex will provide us with necessary
conditions for the inhomogeneous equation (2) to admit a solution and, moreover, these
conditions will be sufficient if and only if the complex (3) is locally exact. In other words,
the image of the Killing operator would be completely characterised by complex (3) when
it is locally exact.

A first instance of a compatibility complex for the Killing operator is due to Barré de
Saint Venant [4]. In 1864, studying conditions for a strain to arise from a linear displace-
ment (within the context of linear deformations of solids), he introduced a second order
linear differential operator providing necessary and sufficient conditions for a symmetric
2-tensor in Euclidean three-space to be in the image of the Killing operator. The result
of Saint-Venant can then be stated as the complex

Γ(TR3) Γ(Sym2R3) Γ(∧2R3 ⊗ ∧2R3)K C

begin locally exact, where C denotes the differential operator given by the formula

(Ch)abcd = ∇(a∇c)hbd −∇(b∇c)had −∇(a∇d)hbc +∇(b∇d)hac.

Here, we have employed Penrose abstract indices notation. We refer to [40] or Chapter 4
for more details on this notation.

Later on, Eugenio Calabi introduced in his article [10], the complex of linear differential
operators

Γ(TM) Γ(Sym2M) Γ(RM) . . .K C (4)
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where RM denotes the subbundle of ∧2M ⊗ ∧2M , of tensors with the same symmetries
of the Riemannian curvature tensor. The compatibility operator for the Killing operator
in Calabi’s complex, the Calabi operator, is the second order linear differential operator
given by

(Ch)abcd = ∇(a∇c)hbd −∇(b∇c)had −∇(a∇d)hbc +∇(b∇d)hac −R e
ab [chd]e −R e

cd [ahb]e,

where R denotes the curvature tensor of the Levi-Civita connection associated to g. We
note that if the manifold in question is flat, the Calabi operator coincides with Saint-
Venant’s compatibility operator. In [10], Calabi proved that on Riemannian manifolds
with constant sectional curvature, complex (4) is locally exact. In other words, on a
Riemannian manifold with constant sectional curvature, the image of the Killing operator
is completely characterised as the kernel of the Calabi operator.

Further results were obtained by Gasqui and Goldschmidt, on Riemannian locally
symmetric spaces. In [23], they provided a locally exact compatibility complex in terms
of a third order compatibility operator. These results have been recently improved in
[12], by means of a locally exact compatibility complex defined by a second order linear
operator that arises from the Calabi operator. This operator has also been studied in
Lorentzian signature in [13], where analogous results to those of [12] have been obtain for
Lorentzian locally symmetric spaces. In the context of linearised gravity, compatibility
complexes for the Killing operator have been recently obtained for several Lorentzian
manifolds of physical interest in [1, 31] and, in a more general setting, a compatibility
operator derived from the Calabi operator is presented in [19].

Lastly, we would like to remark that the Killing operator viewed as a differential
operator acting on differential 1-forms, instead of vector fields, has a hidden symmetry
built into it. Under a suitable interpretation, the Killing operator is projectively invariant
[18]. Noting that a Riemannian manifold is projectively flat if and only if it has constant
sectional curvature, by Beltrami’s Theorem [5], the Calabi complex can be seen as a
Bernstein-Gelfand-Gelfand complex in flat projective differential geometry [16, 20].

In this thesis we will study a compatibility complex for the Killing operator on pseudo-
Riemannian locally homogeneous spaces, that arises from a modification of the Calabi
operator. Moreover, we will establish an equivalence between this compatibility complex
and the twisted de Rham complex of a vector bundle with connection, which are derived
from a prolongation of the Killing equation to an overdetermined system of partial dif-
ferential equations. The first twisted de Rham cohomology group will be computed in
several pseudo-Riemannian locally homogeneous spaces, providing necessary and sufficient
conditions for a symmetric 2-tensor to be in the image of the Killing operator.

This thesis is organised as follows: In Chapter 1 we will describe the general machinery
to be applied in Chapters 4 and 5 to study the image of the Killing operator. Specifically,
we will provide conditions and tests to determine the image of a connection D, on an
arbitrary smooth vector bundle E. Particularly, they will be described in terms of the
first cohomology group of the twisted de Rham complex of (E,D).
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In Chapter 2, we will introduce a vector bundle with connection which will provide us
with an overdetermined system of partial differential equations for Killing vector fields.
This bundle will be referred to as the Killing bundle, and its parallel sections will be
in one to one correspondence with Killing vector fields. Moreover, we will establish its
relation with the Killing operator and provide a description of special subbundles defined
in terms of tensor fields on the base manifold, with particular emphasis on the kernel of
its curvature. As an application, we present an extension of a theorem from Hano [26] on
the decomposition of the Lie algebra of Killing vector fields on product spaces.

Chapter 3 will be dedicated to study pseudo-Riemannian locally homogeneous spaces
and their relation with the Killing bundle and the Killing connection. Locally homoge-
neous spaces will be characterised in terms of the Killing bundle and a new proof of the
famous theorem of Ambrose and Singer on homogeneous structures [3], by means of the
results previously described in Chapter 2.

In Chapter 4 we will describe the Calabi complex for locally homogeneous spaces, and
derive a compatibility complex for the Killing operator, by means of a modification of
the Calabi operator. We will prove the equivalence between this complex and the twisted
de Rham complex of the Killing bundle and study its local exactness on product spaces,
given previous knowledge of the local exactness on each individual factor.

Lastly, Chapter 5 will be dedicated to Lorentzian symmetric spaces and locally homo-
geneous plane waves. Particularly, we will provide necessary and sufficient conditions for
a symmetric 2-tensor on a class of locally homogeneous plane waves to be in the image of
the Killing operator. Furthermore, we will make use of these results to characterise the
image of the Killing operator on any Lorentzian locally symmetric space.

The author would like to remark that the majority of the results presented in this
work have been obtained in collaboration with Micheal Eastwood, Thomas Leistner and
Benjamin McMillan, in [12, 13]. A clarification of the author’s contributions will be made
clear at the beginning of each chapter before their presentation.



Chapter 1

The image of a connection on a
vector bundle

In this chapter we will give a presentation of the necessary machinery applied in Chapters 4
and 5 to characterise the image of the Killing operator on certain pseudo-Riemannian
locally homogeneous spaces. To this end, we will describe recent results obtained in [13],
on the image of a connection on a vector bundle. This chapter is intended as a background
chapter. However, Proposition 1.2.5 is a contribution from the author.

Letting E be a vector bundle, over a smooth manifold M , and D be a connection on
E, we will aim to give a solution to the following problem: For a given differential 1-form
φ with values on E, find necessary and sufficient conditions for the differential equation

Dη = φ

to have solutions. A system of overdetermined linear partial differential equations can be
encoded in the equation for parallel sections of a vector bundle with connection (E,D) (see
[7, 17]). The problem of finding necessary and sufficient conditions for a differentiaI 1-form
with values in E to be in the image of D, will then be its inhomogeneous counterpart.

Particularly, in this thesis, the interest in this problem will become apparent in Section
2, when we introduce a vector bundle with connection, defining an overdetermined system
of first order linear partial differential equations for Killing vector fields.

1.1 The twisted de Rham complex

Fixing notation, throughout this chapter, E → M will denote a smooth vector bundle
E, over a smooth manifold M , and D : Γ(E) → Γ(∧1M ⊗ E) will denote a connection
on E. The curvature of D will be denoted by κ and it will be considered a section of
∧2M ⊗ End(E). Our convention for its definition will be

κ(X, Y )η = DXDY η −DYDXη −D[X,Y ]η,

5



6 Chapter 1. The image of a connection on a vector bundle

with X, Y ∈ Γ(TM) and η ∈ Γ(E). We will usually consider the curvature also as the
vector bundle homomorphism κ : ∧kM ⊗ E → ∧2M ⊗ ∧kM ⊗ E defined by

κ(ω)(X, Y,X1, . . . , Xk) := κ(X, Y )ω(X1, . . . , Xk).

The exterior covariant derivative will be the natural differential operator, induced by
D, acting on E-valued differential forms

dD : Γ(∧kM ⊗ E)→ Γ(∧k+1M ⊗ E),

which generalises the usual exterior derivative on the differential k-forms, Γ(∧kM). It is
invariantly defined by the formula

(dDω)(X0, X1, . . . , Xk) =
k∑
i=0

(−1)iDXiω(X0, . . . , X̂i, . . . , Xk)

+
∑
i<j

(−1)i+jω([Xi, Xj], X0, . . . , X̂i, . . . , X̂j, . . . , Xk),

where X0, . . . , Xk are vector fields on M , ω is differential k-form with values in E, and
the hat indicates omission. The exterior covariant derivative satisfies the Leibniz rule:

dD(θ ∧ ω) = dθ ∧ ω + (−1)jθ ∧ dDω,

where θ ∈ Γ(∧jM) and ω ∈ Γ(∧kM ⊗ E). Here d : Γ(∧kM) → Γ(∧k+1M) denotes the
exterior derivative on differential forms. With the aid of an auxiliary affine connection on
the tangent bundle of M , we can extend D in a natural manner to T ∗M⊗k ⊗ E, by

(DXω)(X1, . . . , Xk) = DX(ω(X1, . . . , Xk))− ω(∇XX1, . . . , Xk)− · · · − ω(X1, . . . ,∇XXk).

In addition, if ∇ is torsion-free, the exterior covariant derivative can be expressed suc-
cinctly as

dDω = (k + 1)! Λ(k+1)(Dω) with ω ∈ Γ(∧kM ⊗ E), (1.1)

where Λ(k) : T ∗M⊗k → ∧kM denotes the skew-symmetrisation map. To be precise, if α
is in T ∗M⊗k , Λ(k)α will denote the projection of α into ∧kM . In the following, ∇ will
denote a torsion-free affine connection, unless otherwise stated.

The compositions d2
D : Γ(∧kM⊗E)→ Γ(∧k+2M⊗E) are always vector bundle homo-

morphisms, which will be denoted by κk. The homomorphism κk will be referred to as the
k-curvature homomorphism of D. To corroborate that the k-curvature homomorphisms
of D are indeed vector bundle homomorphisms, the first thing to notice is that for any
section of ∧kM ⊗ E, we have that

(Λ(2) ⊗ Λ(k))(D2ω) =
1

2
κ(ω) (1.2)
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and
Λ(k+2)(D2ω) = Λ(k+2)((Λ(2) ⊗ Λ(k))(D2ω)) = Λ(k+2)(DΛ(k+1)(Dω)). (1.3)

On the other hand, we can observe from equation (1.1) that

κk(ω) = (k + 2)!(k + 1)!Λ(k+2)(DΛ(k+1)(Dω)) = (k + 2)!(k + 1)!Λ(k+2)(D2ω).

Combining the above equation with equations (1.2) and (1.3), we obtain the following
formula for the k-curvature of D:

κk(ω) =
(k + 2)!(k + 1)!

2
(Λ(k+2) ◦ κ)(ω). (1.4)

That κk : ∧kM ⊗ E → ∧k+2M ⊗ E is a vector bundle homomorphism, follows directly
from equation (1.4), since κk is nothing but a linear combination of terms involving κ.

The exterior covariant derivative defines the twisted de Rham sequence:

0 Γ(E) Γ(∧1M ⊗ E) Γ(∧2M ⊗ E) . . .D dD dD (1.5)

It is well know that the twisted de Rham sequence is a complex if and only if D is a
flat connection [37]. To be precise, we refer to a connection being flat if its curvature
tensor vanishes identically. It can be easily spotted from equation (1.4) that κk = 0 for all
k ≥ 0, when D is a flat connection, and also that D being a flat connection is a necessary
condition for the twisted de Rham sequence to be a complex, since κ0 coincides with the
curvature of D. Generally, it is too strong of a condition for a connection to be flat. For
this reason, under milder assumptions on D, we will construct a complex arising from the
twisted de Rham sequence.

For each point p of M and each k ≥ 0, the map κkp : ∧kpM ⊗ Ep → ∧k+2
p M ⊗ Ep will

denote the restriction of κk to the fibre of ∧kM ⊗ E at p.

Definition 1.1.1. Let D be a connection on a smooth vector bundle E, over a smooth
manifold M . We will say that D is regular if for each k ≥ 0, the k-curvature of D has
constant rank.

The notion of regularity of a connection is motivated by the need of building sub-
bundles of ∧kM ⊗ E, defined in terms of the k-curvature homomorphisms of D. The
k-curvatures of a regular connection have, by definition, constant rank. For this reason,
we can define the vector bundles ker κk and Imκk over M , with fibres ker κkp and Imκkp,
at p, respectively.

In what follows, we will always be considering regular connections on E. For a given
section ω of Imκk and any section η ∈ Γ(∧kM ⊗E) such that κk(η) = ω, we can observe
that

dDω = dDκ
k(η) = d3

Dη = κk+1(dDη). (1.6)
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This means that the image of dD on the sections of Imκk is always contained in Γ(Imκk+1).
It follows from this argument that

0 Γ(Imκ0) Γ(Imκ1) Γ(Imκ2) . . .
dD dD dD (1.7)

is a well defined subsequence of the twisted de Rham sequence. The exterior covariant
derivatives descend well to the sequence

0 Γ(E) Γ(∧1M ⊗ E) Γ((∧2M ⊗ E)/Imκ0) . . .D d d (1.8)

obtained by quotienting the twisted de Rham sequence by the subsequence (1.7). Here we
have denoted by d, the maps induced by the exterior covariant derivatives in the quotients.

For completeness, we will verify explicitly that the operators

d : Γ((∧kM ⊗ E)/Imκk−2)→ Γ((∧k+1M ⊗ E)/Imκk−1)

are indeed well defined. Choosing a section [ω] of (∧k+2M⊗E)/Imκk and a representative
ω + κk(η) of [ω] such that ω ∈ Γ(∧k+2M ⊗ E) and η ∈ Γ(∧kM ⊗ E), we know that
dD ◦ κk = κk+1 ◦ dD, from equation (1.6). Thus

dD(ω + κk(η)) = dDω + κk+1(dDη),

which is a representative of [dDω] in Γ((∧k+3M ⊗ E)/Imκk+1). Therefore the exterior
covariant derivative operators descend well to the quotients. Even more, sequence (1.8) is
a complex by construction, which will be referred to as the twisted de Rham complex. The
k-th cohomology group of the twisted de Rham complex will be denoted by Hk(E,D),
which is given by

Hk(E,D) :=
ker(d : Γ((∧kM ⊗ E)/Im κk−2)→ Γ((∧k+1M ⊗ E)/Im κk−1))

Im(d : Γ((∧k−1M ⊗ E)/Im κk−3)→ Γ((∧kM ⊗ E)/Im κk−2))

Remark 1.1.2. The zeroth twisted de Rham cohomology group can be defined also when
D is not a regular connection and it is comprised by the parallel sections of E. From now
on, we will always denote the vector space of parallel sections E by H0(E,D).

1.2 The first twisted de Rham cohomology group

In this section we will present conditions, in terms of the twisted de Rham cohomology,
for an E-valued differential 1-form to be in the image of a regular connection. It is clear,
from the definition of Hk(E,D), that an E-valued differential k-form will be in the image
of dD if and only if it represents the zero cohomology class in Hk(E,D). Particularly, a
section ω, of ∧1M ⊗ E, will be in the image of D if and only if [ω] = [0] in H1(E,D).
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This means that if the first cohomology group is trivial, any section of ∧1M ⊗ E that is
mapped to the image of the curvature will be in the image of D.

Whenever it be convenient, we will make a mild change of notation by denoting the
differential operator

d : Γ((∧kM ⊗ E)/Im κk−2)→ Γ((∧k+1M ⊗ E)/Im κk−1))

by dk, so that Hk(E,D) = ker(dk)/Im(dk−1).

Definition 1.2.1. Let D be a regular connection on a vector bundle E. We will say that
(E,D), or simply D, is exact if its first de Rham cohomology group is locally trivial.

In order to avoid carrying adjectives referring to the locality of the results, we would
like to remark that in the reminder of this thesis, all results are local. This has been
the major motivation for us to define an exact connection as having a locally trivial first
twisted de Rham cohomology group rather than a globally trivial one.

The notion of exactness of a connection on a vector bundle can be defined in complete
generality, without any assumption on the regularity of the connection. A connection D
on a vector bundle E will be exact if for any section ω, of ∧1M ⊗ E, that is mapped by
dD to the image of the curvature in ∧2M ⊗ E, there exists a section η of E such that
Dη = ω. The motivation behind this definition comes from considering the short complex

Γ(E) Γ(∧1M ⊗ E) Γ((∧2M ⊗ E)/Im(κ)).D d (1.9)

To say that a connection is exact is equivalent to say that the complex (1.9) is exact. If
D is an exact connection, the E-valued differential 1-forms that are in the image of D are
exactly the ones that are mapped to the image of the curvature. To be precise ω ∈ Im(D)
if and only if dDω = κ(η), for some η ∈ Γ(E).

Definition 1.2.2. The complex defined in equation (1.9) will be referred to as the short
twisted de Rham complex of (E,D).

It is straightforward that if dD : Γ(∧1M ⊗E)→ Γ(∧2M ⊗E) is injective, D is exact,
since dDω = κ(η) implies that dD(ω − Dη) = 0. In other words, ω = Dη, for some
η ∈ Γ(E). We have then proved the following proposition.

Proposition 1.2.3. If dD : Γ(∧1M ⊗ E)→ Γ(∧2M ⊗ E) is injective, D is exact.

It is worth noticing that κ will be injective when dD : Γ(∧1M ⊗E)→ Γ(∧2M ⊗E) is
injective. From now on, E0 will denote the kernel of the curvature κ : E → ∧2M ⊗ E.

Proposition 1.2.4. The first twisted de Rham cohomology group, H1(E,D), is isomor-
phic to ker(dD)/Im(D|E0).
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Proof. Let us consider the sequence

Im(D|E0) ker(dD) H1(E,D) = ker(d)/Im(D)ι π (1.10)

where the ι and π denote the natural inclusion and projection, respectively. To be precise,
here π is the composition ker(dD) → ker(d) → ker(d)/Im(D). To say that H1(E,D) is
isomorphic to ker(dD)/Im(D|E0) is equivalent to say that π is surjective and that the
sequence (1.10) is an exact complex, as ι is injective by definition.

Firstly, let us see that π is surjective. Letting us pick [ω] ∈ H1(E,D) and any
representative ω of [ω], from the definition of H1(E,D), there exists η ∈ E such that
dDω = κ(η), or equivalently ω − Dη ∈ ker(dD). The image of ω − Dη under π is
then [ω], as needed. Clearly, this is independent of the choice of representative, since
dD(ω +Dθ) = κ(η + θ) again implies that ω −Dη ∈ ker(dD).

It is clear that sequence (1.10) is a complex, since Im(D|E0)→ ker(dD)→ ker(d) is a
complex by construction. It is only left to show that ker(π) ⊆ Im(ι). By definition, any
ω ∈ ker(π) represents the class [0] in H1(E,D), namely ω = Dη for some η ∈ Γ(E). Also,
ω is contained in the kernel of dD, which implies that

0 = dDω = dDDη = κ(η)

and thus η ∈ Γ(E0) and ω ∈ Im(D|E0).

The isomorphism between H1(E,D) and ker(d)/Im(D) is in fact natural in the sense
that it is the one which makes the following diagram commute:

Im(D|E0) ker(dD) ker(dD)/Im(D|E0)

Im(D) ker(d) H1(E,D).

ι

ι

ι

π

ι π

An immediate consequence of Proposition 1.2.4 is that a connection D is exact if and
only if the complex

Γ(E0)
D|E0−−−→ Γ(∧1M ⊗ E)

dD−→ Γ(∧2M ⊗ E)

is exact. This provides us with many tools to test the exactness of a connection. For
instance, if D has injective curvature, E0 is trivial and thus H1(E,D) is exactly the
kernel of dD. On the other hand, if dD is injective, it is immediate that H1(E,D) is
trivial, providing an alternative point of view to Proposition 1.2.3.

We will say that a subbundle F of E is parallel if Im(D|F ) ⊆ Γ(∧1M ⊗ F ). In other
words, the restriction of D to F is a connection on F . In this case, D descends well to a
connection in the quotient bundle E/F .
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Proposition 1.2.5. Let E be a vector bundle with connection D and suppose that F is
a parallel subbundle of E such that D|F is exact. If ker(dD) ⊆ Γ(∧1M ⊗ F ), then D is
exact.

Proof. Let F0 := F ∩ E0 denote the kernel of κ, restricted to F . Under the assumption
that D|F is exact, we know that ker(dD|F ) = Im(D|F0), by Proposition 1.2.4. Then, if
ker(dD) ⊆ Γ(∧1

M ⊗ F ), it follows that

ker(dD) ⊆ ker(dD|F ) = Im(D|F0) ⊆ Im(D|E0) ⊆ ker(dD).

This means that the kernel of dD is equal to the image D, restricted to E0, and therefore
by Proposition 1.2.4, H1(E,D) = {0}.

Proposition 1.2.6. Given a vector bundle E with a connection D and a parallel sub-
bundle F of E, if F and E/F are exact, and if the curvature on E/F is injective, then
E is exact.

Proof. In order to show that H1(E,D) ' {0}, we will show that ker(dD) is contained in
Γ(∧1M ⊗ F ). Then, by Proposition 1.2.5, (E,D) will be exact as (F,D|F ) is exact by
assumption.

Choosing ω ∈ ker(dD) and letting [ω] denote the class of ω in ∧1M ⊗E/F , it is clear
that [ω] is in the kernel of dD : ∧1M⊗E/F → ∧2M⊗E/F . By assumption, (E/F,D|E/F )
is exact and (E/F )0 = {0}. Then, by Proposition 1.2.4, we get

{0} = H1(E/F,D|E/F ) = ker(dD|E/F ),

which implies that ω represents the zero class in ∧1M ⊗ E/F . In other words, ω is a
section of ∧1M ⊗ F and therefore ker(dD) ⊆ Γ(∧1M ⊗ F ).

1.2.1 Twisted de Rham cohomology of direct sums

The twisted de Rham cohomology groups of (E,D) can be studied in terms of parallel
subbundles of E. Suppose that E splits as the direct sum of two parallel subbundles E1

and E2, and let Di denote the restriction of D to Ei, for i = 1, 2. In other words (E,D)
is isomorphic, as a vector bundle with connection, to the direct sum (E1 ⊕ E2, D1 + D2)
of (E1, D1) and (E2, D2). Notice that dD preserves the splitting of E, hence it splits as
well as dD1 + dD2 . Consequently we obtain the splittings

ker(dD) = ker(dD1)⊕ ker(dD2) and Im(D|E0) = Im(D1|(E1)0)⊕ Im(D2|(E2)0).

Their quotient becomes

ker(dD)/Im(D|E0) ' ker(dD1)/Im(D1|(E1)0)⊕ ker(dD2)/Im(D2|(E2)0).
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By Proposition 1.2.4, the left hand side is isomorphic to H1(E,D) and the right hand side
to H1(E1, D1)⊕H1(E2, D2). In other words, the first twisted de Rham cohomology group
splits accordingly to the splitting of (E,D). In fact, we will show that all cohomology
groups split according to this direct sum decomposition of parallel subbundles.

The k-curvature homomorphisms, κk, will split as

κk = d2
D1

+ d2
D2

+ dD1 ◦ dD2 + dD2 ◦ dD1 = κk1 + κk2 + dD1 ◦ dD2 + dD2 ◦ dD1 , (1.11)

for all k ≥ 0, where κki := d2
Di

: ∧kM ⊗E → ∧k+2M ⊗E. By taking a section ω = ω1 +ω2

of ∧kM ⊗ E, with ωi ∈ Γ(∧kM ⊗ Ei), we observe that

(dD1 ◦ dD2 + dD2 ◦ dD1)(ω) = dD1dD2ω2 + dD2dD1ω1 = 0,

since dDiωi is a section of ∧k+1M ⊗ Ei. Therefore, the splitting

κk = κk1 + κk2

of the k-curvature operators, follows from equation (1.11).

Proposition 1.2.7. Let E1 and E2 be parallel subbundles of E, such that E = E1 ⊕ E2.
Then, there is an isomorphism

Hk(E,D) ' Hk(E1, D1)⊕Hk(E2, D2),

where Di = D|Ei for i = 1, 2.

Proof. Recall that under the assumption that (E,D) splits as (E1⊕E2, D1 +D2), where
E1 and E2 are parallel subbundles of E, the induced operators by D, dD and κk, split as
well. Since Im(κk) = Im(κk1)⊕ Im(κk2), the splitting d = d|E1 + d|E2 of the operatros d are
well defined. Therefore, it follows from the definition of Hk(E,D) that

Hk(E,D) =
ker dk

Im dk−1

=
ker dk|E1

Im dk−1|E1

⊕ ker dk|E2

Im dk−1|E2

= Hk(E1, D1)⊕Hk(E2, D2),

as claimed.

An immediate corollary from the above proposition:

Corollary 1.2.8. Let E1 and E2 be parallel subbundles of E, such that (E,D) decomposes
as

(E,D) = (E1 ⊕ E2, D1 +D2).

Then (E,D) is exact if and only if both (E1, D1) and (E2, D2) are exact.

Proposition 1.2.9. Let D be an exact connection on the vector bundle E → M and
denote by π, the natural projection from the product manifold M × M̄ to M . Then π∗D
is an exact connection on the vector bundle π∗E over M × M̄ .

Proof. This is a particular instance of [13, Proposition 2.7].
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1.2.2 κ1-injectivity

In this subsection we will provide sufficient algebraic conditions for a connection to be
exact. Applications of these conditions will appear in Chapter 4, to prove that the Killing
connection is exact in certain pseudo-Riemannian symmetric spaces.

Definition 1.2.10. We will say that a connection D, on a vector bundle E, is κ1-injective
if its 1-curvature homomorphism is injective.

κ1-injectivity will provide us with a simple algebraic test for a connection to be exact.
We remark that not all connections are κ1-injective. It can be observed from equation
(1.4) that, for a given ω ∈ ∧1M ⊗ E, κ1 takes the form

κ1(ω)(X, Y, Z) = 2(κ(X, Y )ω(Z) + κ(Z,X)ω(Y ) + κ(Y, Z)ω(X)).

Example 1.2.11. On any pseudo-Riemannian manifold (M, g), we can equip the tangent
bundle of M with the Levi-Civita connection associated to g. Then, letting ω be the
element of ∧1

pM ⊗ TpM identified with the identity endomorphism of TpM , we get

κ1(ω)(X, Y, Z) = 2(R(X, Y )Z +R(Z,X)Y +R(Y, Z)X) = 0,

where the last equality is nothing but the first Bianchi identity and thus κ1(ω) = 0.

Lemma 1.2.12. Let D be a κ1-injective connection on a vector bundle E. Then D is
exact and has injective curvature.

Proof. By definition, the 1-curvature operator, κ1 is the vector bundle homomorphism
d2
D : Γ(∧1M ⊗ E)→ Γ(∧3M ⊗ E), so it is immediate that

ker(dD : Γ(∧1M ⊗ E)→ Γ(∧2M ⊗ E) ⊆ ker(κ1).

Moreover, it implies that if κ1 is injective, so is dD : Γ(∧1M ⊗E)→ Γ(∧2M ⊗E). Under
the assumption of D being κ1-injective, it follows from Proposition 1.2.3 that D is exact.

It is only left to prove that D has injective curvature. Recall that κk+1 ◦ dD = dD ◦ κk
for all k ≥ 0 and, particularly, for k = 0 we have that

dDκ(η) = κ1(Dη), (1.12)

for some section η of E. Supposing that η is a section of E0, equation (1.12) implies that
Dη = 0, since κ1 is injective by hypothesis. By choosing any non-constant function f on
M , we have that

κ(fη) = 0 and D(fη) = df ⊗ η.
Then, from equation (1.12), we can see that

0 = dDκ(fη) = κ1(df ⊗ η).

In other words, df ⊗ η ∈ ker(κ1), which is a contradiction.
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1.3 The curvature filtration

In this subsection we will build a filtration of subbundles of E, starting with the kernel of
the curvature, in order to study the exactness of connections with non-injective curvature.
Assuming D is a regular connection, the kernel of the curvature is a vector subbundle of
E. Then, E1 := {φ ∈ E : κ(φ) ∈ ∧2M ⊗ E0} is also a subbundle of E, since it is the
preimage of a vector bundle by κ. Inductively, we define for each ` ≥ 0 the subbundle

E`+1 := {φ ∈ E : κ(φ) ∈ ∧2M ⊗ E`},

of E, that contains E` by definition. The family of vector subbundles {E`}∞`=0, defines a
filtration

E0 ⊆ E1 ⊆ E2 ⊆ . . .

of subbundles of E, that will be referred to as the curvature filtration of (E,D). For later
convenience we will set E−1 = {0}.

We will be interested in vector bundles with connections that have a parallel curvature
filtration. In general, the curvature filtration is not parallel. For instance, in the following
chapters, we will see that for the Killing bundle it is rather unusual for the kernel of the
curvature to be parallel.

When the curvature filtration of (E,D) is parallel, namely E` is parallel for all ` ≥ 0,
the restriction of D to E`+1 and E`+1/E` is again a connection, and

E`+1 ∧2M ⊗ E`+1

E`+1/E` ∧2M ⊗ E`+1/E`

κ

κ

is a well defined commutative diagram. By definition, κ(φ) is in ∧2M ⊗ E` for all φ in
E`+1, so the restriction of D to E`+1/E` is in fact a flat connection. On the other hand
κ : E`+1/E` → ∧2M ⊗ E`/E`−1 is well defined and injective, for all ` ≥ 1. To see this,
let φ ∈ E`+1 be a representative of a class [φ] in E`+1/E`. Then, by definition, κ(φ) is in
∧2M ⊗ E` and [κ(φ)] = [0] if and only if κ(φ) is in ∧2 ⊗ E`−1, i.e. φ ∈ E`.

Lemma 1.3.1. If the curvature filtration of (E,D) is parallel, then for each ` ≥ 0, the
map

d : ker(dD : ∧1 ⊗ E`+1/E` → ∧2 ⊗ E`+1/E`)→ ∧2M ⊗ E`/E`−1,

is injective.

Proof. As it has been already noted, the connection induced on E`/E`−1 is flat and there-
fore exact, so for φ ∈ ker(dD : ∧1 ⊗E`+1/E` → ∧2 ⊗E`+1/E`), there exists a section ψ of
E`/E`−1 for which Dψ = φ. But if dDφ = 0, we have that

κ(ψ) = dDDψ = dDφ = 0 ∈ Γ(∧2M ⊗ E`−1/E`−2),
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which means that the curvature maps ψ so Γ(∧2M ⊗E`−2), hence ψ is a section of E`−1.
Therefore φ = Dψ = 0 ∈ Γ(∧1M ⊗ E`/E`−1).

The curvature filtration of (E,D) will stabilise after a finite number of steps, since E
has finite rank. We will denote by L, the first integer such that EL = EL+1.

Proposition 1.3.2. If the curvature filtration of (E,D) is parallel and EL = E, D is
exact.

Proof. Any class of H1(E,D) can be represented by a section φ, of ∧1M ⊗ E such that
dDφ = 0. By assumption EL = E, so φ ∈ ∧1M ⊗EL. Applying Lemma 1.3.1 inductively,
we conclude that φ is a section of ∧1M ⊗ E0. Since D is flat on E0 and dDφ = 0, there
exists a section η of E0 such that Dη = φ and thus D is exact.

The above proposition will become the key to deal with the exactness of the Killing
connection on locally homogeneous plane waves spacetimes, in Chapter 5.

Corollary 1.3.3. Suppose that the curvature filtration of (E,D) is parallel and that it
stabilises in EL. Then (EL, D|EL) is exact.

Proof. It is clear from its definition that the curvature filtration of (EL, D|EL) will be
parallel and will stabilise in the L-th step to (EL)L = EL. The exactness of (EL, D|EL)
then follows from Proposition 1.3.2.

The below theorem is an immediate consequence from Proposition 1.2.6 and Corol-
lary 1.3.3.

Theorem 1.3.4. If the curvature filtration of (E,D) is parallel and the induced connection
on E/EL is exact, then D is exact on E.

Corollary 1.3.5. If the kernel of the curvature of D is parallel and E admits a parallel
complement C, to E0, then E0 is equal to E1. In this case (E,D) is exact if and only if
the induced connection on C is exact.

Proof. If E0 admits a parallel complement C in E, clearly the curvature will map E1⊕∩C
into a subset of C, as a consequence of C being parallel, which implies that E1 = E0.
That (E,D) is exact if and only if (C,D|C) follows from identifying C with E0.

Lastly, we provide characterisation for connections with parallel curvature filtration.

Lemma 1.3.6. For a vector bundle with connection, (E,D), the following are equivalent:

(1) The curvature filtration of (E,D) is parallel.

(2) For each ` ≥ 0, φ ∈ Γ(E`) implies that (Dκ)(φ) ∈ Γ(∧1M ⊗ ∧2M ⊗ E`−1).
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Proof. Let us assume that the curvature filtration of (E,D) is parallel. Firstly, for any
section φ of E0, clearly (DZκ)(X, Y )φ = −κ(X, Y )DZφ = 0. For any fixed ` ≥ 1, choosing
a section φ of E`, we have that

(DZκ)(X, Y )φ = DZκ(X, Y )φ− κ(∇ZX, Y )φ− κ(X,∇ZY )φ− κ(X, Y )DZφ,

for some auxiliary affine connection ∇. That (Dκ)(φ) ∈ Γ(∧1M ⊗ ∧2M ⊗ E`−1), can be
observed from the above equation, since the curvature filtration is parallel and κ(X, Y )(E`)
is contained in E`−1, by definition.

Conversely, if φ ∈ Γ(E`) implies that (Dκ)(φ) ∈ Γ(∧1M ⊗∧2M ⊗E`−1), for ` = 0, we
have

0 = (DZκ)(X, Y )φ = −κ(X, Y )DZφ,

which implies that DΓ(E0) ⊆ Γ(∧1M ⊗ E0). Inductively, let us assume the statement
holds up to `. If φ ∈ Γ(E`+1), we have that

(DZκ)(X, Y )φ = DZκ(X, Y )φ− κ(∇ZX, Y )φ− κ(X,∇ZY )φ− κ(X, Y )DZφ ∈ Γ(E`)

implies that κ(X, Y )DZφ ∈ Γ(E`−1), since κ(φ) ∈ Γ(∧2M ⊗ E`) and E` was parallel, by
assumption.
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==



18 Chapter 1. The image of a connection on a vector bundle



Chapter 2

The Killing bundle

In this chapter we will introduce the Killing bundle and the Killing connection of a pseudo-
Riemannian manifold. Specifically, in Section 2.1 we will derive a prolongation of the
Killing equation giving rise to the Killing bundle and the Killing connection. Section 2.2
will be dedicated to the study of certain algebra structures on the space of sections of the
Killing bundle and of special subbundles of it, defined in terms of tensor fields on the base
manifold. Lastly, in Section 2.3, the curvature of the Killing connection will be studied,
in terms of the results described in Section 2.2.

2.1 The prolongation of the Killing equation

Let (M, g) be a pseudo-Riemannian manifold. The Killing operator on vector fields is the
first order linear differential operator

K : Γ(TM)→ Γ(Sym2M), ξ 7→ Lξg, (2.1)

where Lξ denotes the Lie derivative in the direction of the vector field ξ. The Killing
equation is the first order partial differential equation

K(ξ) = 0

for the vector fields in the kernel of the Killing operator. Solutions to the Killing equation
are called Killing vector fields. These are the infinitesimal isometries of the pseudo-
Riemannian manifold (M, g), or more precisely, the vector fields whose local flow is given
by one-parameter subgroups of the isometry group of (M, g). The set of Killing vector
fields of (M, g), with the usual vector field bracket, forms a Lie algebra which will be
denoted by kill(M, g).

The choice of an affine connection, ∇, on TM , permits us to define the family of
endomorphisms of TM

A∇ξ := −∇ξ − τ∇ξ , ξ ∈ Γ(TM),

19
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that will be referred to as Nomizu operators. Here τ∇ ∈ Γ(∧2M ⊗ TM) denotes the
torsion tensor of ∇ and we will use the following convention for its definition:

τ∇XY = ∇XY −∇YX − [X, Y ].

Conveniently, the Lie derivative in the direction of ξ can be expressed in terms of ∇ and
A∇ξ as

Lξ = ∇ξ + A∇ξ . (2.2)

If ∇ is a metric connection, it follows from equation (2.2) that the Killing operator can
be expressed as

K(ξ) = A∇ξ · g,

where · denotes the natural action of the endomorphisms of TM on covariant tensors.
This action is given explicitly by

(A · α)(X1, . . . , Xr) = −α(AX1, . . . , Xr)− · · · − α(X1, . . . , AXr),

where α ∈ T ∗M⊗r . Then, the Killing equation takes the form

(A∇ξ · g)(X, Y ) = −g(A∇ξ X, Y )− g(X,A∇ξ Y ) = 0, (2.3)

for all X, Y ∈ TM . From this point of view, we can see that the Killing operator is
a linear differential operator acting on vector fields. Indeed, for any ξ, η ∈ Γ(TM) and
a ∈ R, we have

A∇aξ+η = −∇(aξ + η)− τ∇aξ+η = −a∇ξ −∇η − aτ∇ξ − τ∇η = aA∇ξ + A∇η ,

and thus
K(aξ + η) = aA∇ξ · g + A∇η · g = aK(ξ) +K(η).

From now on, we will fix∇ to denote the Levi-Civita connection associated to g, unless
otherwise stated. Also, to simplify notation, we will omit all upper scripts on the Nomizu
operators that indicate their relation to ∇. The endomorphisms of the tangent bundle of
M , which annihilate the metric g when acted upon, form the vector bundle so(TM, g) of
skew-symmetric endomorphisms of TM . Then a vector field ξ is a Killing vector field if
and only if the endomorphism Aξ is in so(TM, g).

For a given endomorphism A of TM , we will denote by Â the projection of A to
so(TM, g), given explicitly by

Â =
1

2
(A− A∗),

where A∗ denotes the g-adjoint endomorphism of A. Analogously, we will denote the
projection of A to the symmetric endomorphisms of TM , which we shall denote by
Sym2(TM, g), by

Ȧ :=
1

2
(A+ A∗).
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To avoid confusion, we remark that we denote the bundle of symmetric 2-tensors on M
by Sym2M , and Sym2(M, g) denotes the bundle of g-symmetric endomorphisms of TM .

Remark 2.1.1. In this notation, we could define the Killing operator to be the differential
operator k : Γ(TM)→ Γ(Sym(TM, g)), defined by

k(ξ) = −Ȧξ, (2.4)

which will take values on the symmetric endomorphisms of TM , instead of symmetric
2-tensors. The minus sign in the right hand side of the above equation has been taken for
convenience in the following chapters.

The action of any given skew-symmetric endomorphism A, by definition, annihilates
the metric tensor. Then, it follows that its covariant derivatives will also be skew-
symmetric, since

0 = ∇X(A · g) = (∇XA) · g + A · ∇Xg = (∇XA) · g. (2.5)

In general, for any vector fields X, Y, ξ ∈ Γ(TM), it follows from a straightforward calcu-
lation that

(∇XAξ)(Y )− (∇YAξ)(X) = −R(X, Y )ξ. (2.6)

For future convenience, we will define the differential operator

d∇ : Γ(End(TM))→ Γ(∧1M ⊗ End(TM)),

acting on the endomorphisms of TM , to be

(d∇A)(X)Y = (∇XA)(Y )− (∇YA)(X).

Therefore, equation (2.6) takes the rather simple form

(d∇Aξ)(X)Y = −R(X, Y )ξ, (2.7)

in terms of d∇.

Lemma 2.1.2. Let (M, g) be a pseudo-Riemannian manifold and let ξ be a vector field
on M . Then

∇XÂξ = −R(X, ξ)− (d∇Ȧξ)(X) + (d∇Ȧξ)(X)∗. (2.8)

for all X ∈ TM .

Proof. For any vector field X on M , the endomorphism∇XÂξ is skew-symmetric, since Âξ
is skew-symmetric by definition. Making use of the symmetries of ∇XÂξ and contracting
it with the metric tensor, we have

g((∇XÂξ)(Y ), Z) = g((∇XÂξ)(Y ), Z)− g((∇Y Âξ)(X), Z)

−g((∇Y Âξ)(Z), X) + g((∇ZÂξ)(Y ), X)

+g((∇ZÂξ)(X), Y )− g((∇XÂξ)(Z), Y )

−g((∇XÂξ)(Y ), Z),
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which, after a rearrangement of terms, takes the form

2g((∇XÂξ)(Y ), Z) = g((d∇Âξ)(X)Y, Z)− g((d∇Âξ)(Y )Z,X) + g((d∇Âξ)(Z)X, Y ).

Letting us replace Âξ by Aξ − Ȧξ in the right hand side of the above equation, we get

2g((∇XÂξ)(Y ), Z) = g((d∇Aξ)(X)Y, Z)− g((d∇Ȧξ)(X)Y, Z)

−g((d∇Aξ)(Y )Z,X) + g((d∇Ȧξ)(Y )Z,X)

+g((d∇Aξ)(Z)X, Y )− g((d∇Ȧξ)(Z)X, Y ).

(2.9)

A direct computation reveals that for any symmetric endomorphism H, it holds that

g((d∇H)(Y )Z,X) = −g((d∇H)(X)Y, Z)− g((d∇H)(Z)X, Y ) (2.10)

and also, since (d∇H)(Z)X is skew-symmetric in X and Z,

g((d∇H)(Y )Z,X) = −g((d∇H)(X)Y, Z) + g((d∇H)(X)∗Y, Z). (2.11)

Then, we notice from equations (2.7) and (2.11) that equation (2.9) becomes

2g((∇XÂξ)(Y ), Z) = −g(R(X, Y )ξ, Z) + g(R(Y, Z)ξ,X)− g(R(Z,X)ξ, Y )

−2g((d∇Ȧξ)(X)Y, Z) + 2g((d∇Ȧξ)(X)∗Y, Z).

Finally, making use of the Bianchi identity, we obtain

g((∇XÂξ)(Y ), Z) = −g(R(X, ξ)Y, Z)− g((d∇Ȧξ)(X)Y, Z) + 2g((d∇Ȧξ)(X)∗Y, Z),

or
∇XÂξ = −R(X, ξ)− (d∇Ȧξ)(X) + (d∇Ȧξ)(X)∗,

as required.

If we consider a Killing vector field ξ, Lemma 2.1.2 together with equation (2.3) provide
us with the overdetermined system of partial differential equations{

∇Xξ = −AX, ξ ∈ Γ(TM)
∇XA = −R(X, ξ), A ∈ Γ(so(TM, g))

(2.12)

for a vector field ξ and a skew-symmetric endomorphism A, of TM , whose solutions define
Killing vector fields. This is, if the first line of equation (2.12) is satisfied, the second line
is automatically satisfied by equation (2.8). This result was first obtained by Bertram
Kostant in [34] and later by Robert Geroch in [24].

The system of partial differential equations (2.12) allows to define a connection on a
vector bundle over M , which was firstly introduced in [24] as Killing transport, whose
parallel sections define Killing vector fields.
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Definition 2.1.3. Let (M, g) be a pseudo-Riemannian manifold. We will say that the
vector bundle E := TM ⊕ so(TM, g), over M , is the Killing bundle of (M, g). The
connection D : Γ(E)→ Γ(∧1M ⊗ E) on E, defined by

DX

[
ξ
A

]
=

[
∇Xξ + AX
∇XA+R(X, ξ)

]
, X ∈ Γ(TM). (2.13)

will be referred to as the Killing connection.

For convenience we will denote sections of E, of the form (ξ, Âξ), by φξ. Particularly,

when ξ is a Killing vector field, Âξ = Aξ and φξ is a parallel section of E. It follows by
equation (2.12), these are precisely all parallel sections of E, namely

H0(E,D) = {φξ ∈ Γ(E) : ξ ∈ kill(M, g)}.

The curvature of the Killing connection κ ∈ Γ(∧2M ⊗ End(E)) will be referred to as
the Killing curvature. It has the form

κ(X, Y )

[
ξ
A

]
= −

[
0

(∇ξR)(X, Y ) + (A ·R)(X, Y )

]
. (2.14)

In what follows K will always denote the maximal parallel flat subbundle of E.
Equipped with D|K , (K,D|K) becomes a flat vector bundle over M , such that H0(E,D)
is contained in Γ(K). Consequently, Killing vector fields are uniquely determined by the
value of φξ at a point in the sense that, for a given Killing vector field ξ, by knowing the
values of ξ and ∇ξ at a point p, one can always recover ξ by parallel transporting (φξ)p.

The space of parallel sections of E can be equiped with a bracket operation defined as

{φξ, φη} := φ[ξ,η] (2.15)

for two given sections φξ and φη in H0(E,D). It is immediate that H0(E,D) is closed
under the above bracket, since the Lie bracket of ξ and η is again a Killing vector field.
Moreover, it satisfies the Jacobi identity

{φξ, {φη, φζ}} = φ[ξ,[η,ζ]] = φ[[ξ,η],ζ]+[η,[ξ,ζ]] = {{φξ, φη}, φζ}+ {φη, {φξ, φζ}}

and thus H0(E,D), equiped with the bracket defined in equation (2.15), is a Lie algebra
over the real numbers. We have proved that:

Proposition 2.1.4. The map ι : (kill(M, g), [·, ·]) → (H0(E,D), {·, ·}), ξ 7→ φξ is a Lie
algebra isomorphism.

Remark 2.1.5. The above proposition shows that the dimension of the Lie algebra of
Killing vector fields is bounded by above by the rank of E.
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It is a well know result by Hano [26] (see also [33, Theorem 3.5]), that if (M, g) is a
complete and simply connected Riemannian manifold with de Rham decomposition [14]
given by

(M, g) = (M0, g0)× · · · × (Mk, gk),

where (M0, g0) is an Euclidean factor, the connected component of its isometry group
decomposes accordingly:

Iso0(M, g) ' Iso0(M0, g0)× · · · × Iso0(Mk, gk),

where Iso0(Mi, gi) denotes the connected component of the isometry group of (Mi, gi),
with i = 0, . . . , k. In terms of Killing vector fields, it means that they split as well in
terms of the de Rham decomposition of (M, g), i.e.

kill(M, g) = kill(M0, g0)× · · · × kill(Mk, gk).

Even though the de Rham decomposition was generalised by Wu to pseudo-Riemannian
manifolds [44], where the factors are flat or indecomposable, i.e. when the action of the
holonomy group with basepoint p, on TpM , leaves no non-trivial non-degenerate sub-
spaces, Hano’s theorem does not directly generalise. In fact, in Lorentzian signature,
a product of Euclidean space with an indecomposable Cahen-Wallach space (see Re-
mark 5.1.5) has more Killing vector fields than just the Killing vector fields of the factors,
see [35, Remark 3.6]. Below we provide decomposition theorem, similar to the one from
Hano, in arbitrary signature.

Theorem 2.1.6. Let (M, g) be a pseudo-Riemannian manifold with de Rham-Wu decom-
position

(M, g) = (M1, g1)× · · · × (Mk, gk).

If (Ei, Di) denotes the Killing bundle and connection of (Mi, gi) and

{X ∈ TpM : R(X, ·) = 0} = {0} for all p ∈M,

then
H0(E,D) ' H0(E1, D1)⊕ · · · ⊕H0(Ek, Dk).

Proof. For the proof of Theorem 2.1.6 we refer to Theorem 4.3.9 in Section 4.3.

The Killing bundle can be endowed with a fibrewise bilinear map J·, ·Kp : Ep×Ep → Ep,
defined by s[

X
A

]
,

[
Y
B

]{
p

=

[
AY −BX

[A,B]−R(X, Y )

]
, (2.16)

where [·, ·] denotes the commutator of endomorphisms, which turns its fibres into algebras
over the real numbers. We will refer to the bracket, defined in equation (2.16) as the
Killing bracket. In general, the Killing bracket is not a Lie bracket but we will prove in
the following sections that on the fibres of certain subbundles of E, the Killing bracket
becomes a Lie bracket.
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Remark 2.1.7. The Killing bracket is C∞(M)-linear and thus it can be extended to sections
of E.

2.2 Algebras of sections of the Killing bundle

The sections of the Killing bundle define derivations on the sections of the algebra of
tensors over M , in a natural way. Since M is equipped with a metric tensor, without
loss of generality, we will always assume that the tensors which we are working with
are covariant, unless otherwise stated. For a section φ = (ξ, A) of E and a tensor field
α ∈ Γ(T ∗M⊗r), we define

φ · α := ∇ξα + A · α.

These are indeed derivations of the algebra of sections of the tensor algebra since they
preserve the tensor type and satisfy the Leibniz rule: For any α in Γ(T ∗M⊗r), β in
Γ(T ∗M⊗s) and f in C∞(M) we have that

φ · (α⊗ β) = ∇ξ(α⊗ β) +A · (α⊗ β) = (∇ξα)⊗ β+α⊗ (∇ξβ) + (A ·α)⊗ β+α⊗ (A · β).

Therefore we get
φ · (α⊗ β) = (φ · α)⊗ β + α⊗ (φ · β)

and also

φ · fα = ∇ξfα + A · fα = ξ(f)α + f∇ξα + fA · α = ξ(f)α + fφ · α,

where we have defined A ·f = 0. In general, for (α1, . . . , αk) ∈ Γ(T ∗M⊗r1⊕· · ·⊕T ∗M⊗rk ),
it is given by

φ · (α1, . . . , αk) = (φ · α1, . . . , φ · αk).

Particularly, since E is contained in the tensor algebra, for any element (X,A) of E and
any section (Y,B) of E, we have[

X
A

]
·
[
Y
B

]
=

[
∇XY + AY
∇XB + [A,B]

]
. (2.17)

It is worth noticing that the operation defined in equation (2.17) makes the pair (Γ(E), ·)
an algebra over the real numbers. The product operation on Γ(E), defined in equa-
tion (2.17) will be referred to as the Killing product. Also, for any pair of subbundles E1

and E2 of E, we will use the notation

Γ(E1) · Γ(E2) := {φ1 · φ2 ∈ Γ(E) : φ1 ∈ Γ(E1), φ2 ∈ Γ(E2)}.

In the rest of this section we will focus our attention on the derivations of the sections
of the tensor algebra which annihilate an arbitrary (but fixed) tensor field and all of its
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iterated covariant derivatives at a point, however later on we will pay special attention to
the Riemannian curvature tensor. Also, since TM is equiped with a metric tensor, without
loss of generality we will always consider covariant tensors, unless otherwise stated.

Let us fix an arbitrary tensor field α of type (0, r) and let ∇`α denote the `-th iterated
covariant derivative of α. To be precise, for a tensor field α of rank (0, r), its `-th iterated
covariant derivative is the tensor field ∇`α of rank (0, r + `). For α, a point p of M and
a non-negarive integer number `, we define the vector subspace

Kα,`
p := {φ ∈ Ep : φ · ∇iα, 0 ≤ i ≤ `},

of Ep. For convenience, when ` = 0 we will simply write Kα
p . Notice that the vector

spaces Kα,`
p correspond to the intersections

Kα,`
p =

⋂̀
i=0

K∇
iα

p ,

thus these subspaces of Ep define the non-increasing sequence

Ep ⊇ Kα
p ⊇ Kα,1

p ⊇ Kα,2
p ⊇ . . . (2.18)

of vector subspaces of Ep which will stabilise to a subspace of Ep, since Ep is finite
dimensional. We will denote the aforementioned space by Kα,∞

p .
For a given X ∈ TM we will denote by ιX , the contraction map

ιX : T ∗M⊗r+1 → T ∗M⊗r , (ιXα)(X1, . . . , Xr) = α(X,X1, . . . , Xr),

for some α ∈ T ∗M⊗r . Also, we will use the formulas

ιY (∇X∇α)− ιX(∇Y∇α) = R(X, Y ) · α and ιX(φ · ∇α) = φ · ∇Xα−∇φ·Xα. (2.19)

Here φ ∈ E and R(X, Y ) · α denotes the usual endomorphism action of R(X, Y ) on α.

Lemma 2.2.1 (Leibniz rule). Let α be a tensor field on M and let φ be a section of E.
Then

∇X(φ · α) = (DXφ) · α + ιX(φ · ∇α), (2.20)

for all X ∈ Γ(TM).

Proof. Let us choose a section φ = (ξ, A), of the Killing bundle E. Then, it follows from
the definition of D that

(DXφ) · α = ∇∇Xξ+AXα + (∇XA+R(X, ξ)) · α. (2.21)

Noticing that
∇XA · α = ∇X(A · α)− A · ∇Xα

= ∇X(A · α)− ιX(A · ∇α)−∇AXα,
(2.22)
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and
R(X, ξ) · α = ∇X∇ξα−∇ξ∇Xα−∇∇Xξα +∇∇ξXα

= ∇X∇ξα− ιX(∇ξ∇α)−∇∇Xξα
(2.23)

we can replace equations (2.22) and (2.23) in equation (2.21) to obtain, after a rearrange-
ment,

∇X(φ · α) = (DXφ) · α + ιX(φ · ∇α),

as claimed.

Even though the dimensions of Kα,`
p can vary from point to point, our interest will be

placed in manifolds and tensors where the dimension of Kα,`
p is constant on M .

Definition 2.2.2. Let α be a tensor field on M . We will say that α is Killing-regular on
(M, g) if, for each ` ≥ 0, the map p 7→ dimKα,`

p is constant.

If α is a Killing-regular tensor field, for each ` ≥ 0, we can build a vector bundle over
M with fibres Kα,`

p . We will denote such bundle by Kα,`.

Lemma 2.2.3. Let α be a Killing-regular tensor field on (M, g). Then Kα,∞ is the unique
maximal parallel subbundle of E, which is contained in Kα.

Proof. Firstly, let us see that Kα,∞ is a parallel subbundle of E. Let φ be a section of
Kα,∞, then equation (2.20) implies that

0 = −ιX(φ · ∇`+1α) = (DXφ) · ∇`α

for all ` ≥ 0. Therefore DΓ(Kα,∞) ⊆ Γ(∧1M⊗Kα,∞), i.e. Kα,∞ is a parallel subbundle of
E, contained in Kα. It is only left to prove that Kα,∞ is the maximal subbundle with this
property. Let K ′ be another parallel subbundle of E contained in Kα, and let φ ∈ Γ(K ′).
Then

0 = (DX` . . . DX1φ) · α
= −ιX`((DX`−1

. . . DX1φ) · ∇α)
...
= (−1)`ιX` . . . ιX1(φ · ∇`α),

which means that φ is a section of K∇
`α for all ` ≥ 0. Consequently K ′ ⊆ Kα,∞,

completing the proof.

If α is a Killing-regular tensor field, analogously to sequence (2.18), we define the
non-increasing sequence of vector bundles

E ⊇ Kα,0 ⊇ Kα,1 ⊇ Kα,2 ⊇ . . . (2.24)

which will converge to Kα,∞. Since E has finite rank, sequence (2.24) stabilises after a
finite number of steps and we will denote by sα, the first integer such that Kα,sα = Kα,sα+1.
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Proposition 2.2.4. Let α be a Killing-regular tensor field on (M, g). Then Kα,sα coin-
cides with Kα,∞.

Proof. Any section φ of Kα,sα will satisfy, by definition,

φ · ∇`α = 0 for all ` ≤ sα+1.

It follows, from Lemma 2.2.1, that

0 = ∇X(φ · ∇`α)− ιX(φ · ∇`+1α) = (DXφ) · ∇`α,

for all ` ≤ sα, which implies that Dφ ∈ Γ(∧1M ⊗ Kα,sα) and hence Kα,sα is parallel.
Since Kα,sα is parallel and it is contained in Kα, by Lemma 2.2.3, it must be contained
in Kα,∞. By definition Kα,∞ ⊆ Kα,sα and therefore Kα,sα = Kα,∞.

The space of sections of the bundles Kα,∞, equiped with the Killing bracket, are in
fact algebras over C∞(M). However, in general, the Killing bracket does not satisfy the
Jacobi identity.

Proposition 2.2.5. Let α be a Killing-regular tensor field on (M, g). Then Γ(Kα,∞) is
closed under the Killing bracket, inherited from Γ(E). In other words, (Γ(Kα,∞), J·, ·K) is
a subalgebra of (Γ(E), J·, ·K).

Proof. Let (X,A) and (Y,B) be sections of Kα,∞. Then, it follows from the definition of
the Killing bracket that

J(X,A), (Y,B)K · ∇`α = ∇AY∇`α−∇BX∇`α + [A,B] · ∇`α−R(X, Y ) · ∇`α. (2.25)

Since (X,A) and (Y,B) are sections of Kα,∞, we know that

ιY (∇X∇`+1α) = −ιY (A · ∇`+1α) and ιX(∇Y∇`+1α) = −ιX(B · ∇`+1α).

Recall, from equation (2.19), that ιY (A · ∇`+1α) = A · ∇Y∇`α−∇AY∇`α. Therefore

ιY (∇X · ∇`+1α) = −A · ∇Y∇`α +∇AY∇`α
= A · (B · ∇`α) +∇AY∇`α
= [A,B] · ∇`α +B · (A · ∇`α) +∇AY∇`α

(2.26)

and analogously
ιX(∇Y · ∇`+1α) = B · (A · ∇`α) +∇BX∇`α. (2.27)

Substracting equation (2.27) from equation (2.26), we obtain

ιY (∇X∇`+1α)− ιX(∇Y∇`+1α) = ∇AY∇`α−∇BX∇`α + [A,B] · ∇`α.

Recall that
ιY (∇X∇`+1α)− ιX(∇Y∇`+1α) = R(X, Y ) · ∇`α,

from equation (2.19). It follows that J(X,A), (Y,B)K · ∇`α = 0 and, as ` is arbitrary,
therefore J(X,A), (Y,B)K ∈ Γ(Kα,∞).
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The Killing bundle is equipped with natural projections onto TM and so(TM, g). Let
us denote them by πTM : E → TM and πso : E → so(TM, g), respectively.

Lemma 2.2.6. Let φ and ψ be sections of E. Then

φ · ψ = DπTM (φ)ψ + Jφ, ψK. (2.28)

Proof. The result follows directly from the definitions.

Proposition 2.2.7. Let α be a Killing-regular tensor on (M, g). Then (Γ(Kα,∞), ·) is a
subalgebra of (Γ(E), ·).

Proof. Let φ and ψ be sections of Kα,∞. By Lemma 2.2.6, we know that the Killing
product relates to the Killing connection and Killing bracket by φ ·ψ = DπTM (φ)ψ+Jφ, ψK,
hence it will be enough to show that DπTM (φ)ψ and Jφ, ψK are sections of Kα,∞. We have
showed in Lemma 2.2.3 that Kα,∞ is a parallel subbundle of E, hence DπTM (φ)ψ is a
section of Kα,∞. Also, Γ(Kα,∞) is closed under the Killing bracket, by Proposition 2.2.5.
Therefore, φ · ψ = DπTM (φ)ψ + Jφ, ψK is a section of Kα,∞, as claimed.

In what follows we will introduce a metric tensor on the Killing bundle, in terms of
the pseudo-Riemannian metric on TM , and its associated Killing form, Bg on so(TM, g).

Definition 2.2.8. On a pseudo-Riemannian manifold (M, g), we will say that the tensor
field gE : E × E → R, defined by

gE((X,A), (Y,B)) := g(X, Y )−Bg(A,B), (X,A), (Y,B) ∈ E, (2.29)

is the Killing metric of E.

Remark 2.2.9. The choice of the minus sign in the summand corresponding to the Killing
form was made for gE to be positive definite when (M, g) is a Riemannian manifold.
Moreover, when (M, g) is Riemannian, the restriction of gE to any subbundle of E remains
positive definite.

The Killing metric enjoys desired compatibility conditions with (Γ(E), ·). It is clear
that (X,A) · g = ∇Xg+A · g = 0 for all (X,A) ∈ Γ(E). The Killing form on so(TM, g) is
adso(TM,g)-invariant and, by definition, the metric in so(TM, g) induced by g. This means
that (X,A) ·Bg = ∇XB

g+A ·Bg = 0 for all (X,A) ∈ Γ(E), just as for g. The proposition
below follows.

Proposition 2.2.10. The Killing metric is annihilated by the action of (Γ(E), ·). To be
precise

φ · gE = 0,

for all φ ∈ Γ(E).
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In terms of the natural projections, and for a given Killing-regular tensor field α, we
can define the vector subbundle

Hα,` := ker(πTM : Kα,` → TM)

of Kα,`. It is explicitly by

Hα,` = {(0, A) ∈ E : A · ∇iα = 0, for all 0 ≤ i ≤ `}.

The projection of Hα,` into so(TM, g) will be denoted by hα,`, i.e.

hα,` = {A ∈ so(TM, g) : A · ∇iα = 0, for all 0 ≤ i ≤ `}.

When the restriction of the Killing form on so(TM, g) to hα,` is non-degenerate, the
vector bundle Kα,` admits an orthogonal direct sum decomposition

Kα,` = Hα,` ⊕ Cα,`, (2.30)

where Cα,` will denote the orthogonal complement of Hα,` in Kα,`, with respect to gE|Kα,` .
We will restrict ourselves to Killing-regular tensor fields such that the Killing form

restricted to hα,∞ is non-degenerate.

Proposition 2.2.11. Let α be a Killing-regular tensor field on (M, g) such that the Killing
form on hα,∞ is non-degenerate and let

Kα,∞ = Hα,∞ ⊕ Cα,∞

be an orthogonal direct sum decomposition. Then, the orthogonal direct sum decomposition
is preserved by Γ(Kα,∞), i.e.

Γ(Kα,∞) · Γ(Hα,∞) ⊆ Γ(Hα,∞) and Γ(Kα,∞) · Γ(Cα,∞) ⊆ Γ(Cα,∞).

Proof. By Proposition 2.2.7, (Γ(Kα,∞), ·) is a subalgebra of (Γ(E), ·). To show that
Γ(Kα,∞) preserves the splitting of Kα,∞, the first notice that if φ is a section of Kα,∞ and
(0, A) one of Hα,∞, we have that

φ ·
[

0
A

]
=

[
0

φ · A

]
is a section of Kα,∞. Since its TM component is equal to 0, it is in fact a section of Hα,∞.

It is only left to show that Γ(Kα,∞) · Γ(Cα,∞) ⊆ Γ(Cα,∞). By Proposition 2.2.10,
φ · gE = 0 for all φ ∈ Γ(E). Then, choosing ψ ∈ Γ(Hα,∞) and η ∈ Γ(Cα,∞), we get

0 = (φ · gE)(ψ, η) = φ · (gE(ψ, η))− gE(φ · ψ, η)− gE(ψ, φ · η) = −gE(ψ, φ · η).

Since ψ ∈ Γ(Hα,∞), this shows that φ · η ∈ Γ(Cα,∞) for all φ ∈ Γ(Kα,∞).
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Interestingly enough (for the following sections), the above proposition shows that

Γ(Hα,∞) · Γ(Cα,∞) ⊆ Γ(Cα,∞).

The following corollary shows us that an analogous statement as the one of the above
equation holds for (Γ(Kα,∞), J·, ·K).
Corollary 2.2.12. Let α be a Killing-regular tensor field on (M, g) such that the Killing
form on hα,∞ is non-degenerate and let

Kα,∞ = Hα,∞ ⊕ Cα,∞

be an orthogonal direct sum decomposition. Then,

JHα,∞, Cα,∞K ⊆ Cα,∞.

Proof. Let us chosing φ ∈ Γ(Hα,∞) and ψ ∈ Γ(Cα,∞). By Lemma 2.2.6, we can see
that Jφ, ψK = φ · ψ −DπTM (φ)ψ. However, πTM(φ) = 0 from the definition of Hα,∞ and,
consequently, Jφ, ψK = φ · ψ which is contained in Γ(Cα,∞), by Proposition 2.2.11.

In the reminder of this section, we will present a procedure to build metric connections
from sections of 1-forms taking values on subbundles of the Killing bundle. In general,
we will consider the 1-forms with values in E as

∧1M ⊗ E =
∧1M ⊗ TM

⊕
∧1M ⊗ so(TM, g)

=
End(TM)
⊕

∧1M ⊗ so(TM, g)
(2.31)

Abusing notation, the projections to each summand will be

πTM : ∧1M ⊗ E → ∧1M ⊗ TM and πso : ∧1M ⊗ E → ∧1M ⊗ so(TM, g)

and also their restrictions to subbundles of ∧1M ⊗ E. By considering ∧1M ⊗ TM as
the bundle of endomorphisms of TM , we can see from equation (2.31) that it is always
possible to build sections of ∧1M ⊗ E such that its ∧1M ⊗ TM component is equal to
IdTM , the identity endomorphism of the tangent bundle viewed as a section of ∧1M⊗TM .
In other words, this is equivalent to say that there exists a section

σ ∈ Γ(∧1M ⊗ E) such that πTM(σ) = IdTM . (2.32)

Given any σ ∈ Γ(∧1M ⊗E) satisfying equation (2.32), we will let S denote its projection
into ∧1⊗ so(TM, g), i.e. S = πso(σ). When contracted with a vector X, we will write SX
instead of S(X). Notice that

σ(X) · α = ∇Xα + SX · α, for any X ∈ TM and α ∈ Γ(T ∗M⊗r).

Since S is a section of ∧1M ⊗ so(TM, g), it is evident that

σ(X) · g = ∇Xg + SX · g = 0, for all X ∈ TM,

which means that in fact σ defines a metric connection ∇̃ := ∇+ S.
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Remark 2.2.13. The above construction holds if we replace the Killing bundle for any of
its subbundles that projects surjectively onto TM .

We will pay special attention to subbundles of E associated to families of Killing-
regular tensor. Analogously to how we have previously defined the bundles Kα and Hα,
if α1, . . . , αk are Killing-regular tensors, we can define the subbundles

K(α1,...αk) :=
k⋂
i=1

Kαi and H(α1,...αk) := ker(πTM : K(α1,...αk) → TM),

of the Killing bundle. In the case when the Killing form on h(α1,...,αk), the image of πso
on H(α1,...αk), is non-degenerate we will denote the orthogonal complement of H(α1,...αk) in
K(α1,...αk) by C(α1,...αk).

Lemma 2.2.14. Let α1, . . . , αk be a Killing-regular tensor fields such that the natural
projection πTM : K(α1,...,αk) → TM is surjective and the Killing form on h(α1,...,αk) is
non-degenerate. Then, there exists a unique section σ, of ∧1M ⊗ C(α1,...,αk), such that
πTM(σ) = IdTM .

Proof. Since H(α,...,αk) is by definition the kernel of πTM : K(α,...,αk) → TM and K(α,...,αk)

projects surjectively onto TM , so does C(α,...,αk). By the above construction, the vector
bundle ∧1M ⊗ C(α1,...,αk) admits a section satisfying equation (2.32)(see Remark 2.2.13).

Let σ be a section of ∧1M ⊗ C(α1,...,αk) such that πTM(σ) = IdTM . To prove that σ is
unique, suppose there exists a section σ′ ∈ Γ(∧1M⊗C(α1,...,αk)) such that πTM(σ′) = IdTM .
Then, if we let S and S ′ be the ∧1M ⊗ so(TM, g) components of σ and σ′, respectively,
we observe that

0 = σ(X) · αi − σ′(X) · αi = (SX − S ′X) · αi, for all i = 1, . . . , k.

The above equation implies that SX−S ′X is in h(α1,...,αk) for all X ∈ TM , which contradicts
our assumption of σ and σ′ being sections of ∧1M ⊗C(α1,...,αk). Consequently, S = S ′ and
hence σ = σ′.

At first sight, the above lemma may appear disconnected to the narrative of this
section. However, we have previously showed in Proposition 2.2.4 that the subbundle
Kα,∞ is in fact equal to Kα,sα for some integer sα <∞, which is nothing but the bundle
K(α,∇α,...,∇sαα). This means that in the instances where Kα,∞ satisfies all the hypothesis
imposed on K(α1,...,αk) in Lemma 2.2.14, the existence of a unique section of ∧1M ⊗Cα,∞

which solves equation (2.32) is guaranteed.

Lemma 2.2.15. Let α be a Killing-regular tensor such that πTM : Kα,∞ → TM is
surjective and the Killing form on hα,∞ is non-degenerate. Then, if σ is a section of
∧1M ⊗ Cα,∞ of the form σ = (IdTM , S), we have

∇XS + SX · S = 0.
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Proof. We have shown in Proposition 2.2.11 that Γ(Kα,∞) · Γ(Cα,∞) ⊆ Γ(Cα,∞) and,
particularly, Γ(Cα,∞) · Γ(Cα,∞) ⊆ Γ(Cα,∞). By Lemma 2.2.14 there exists a unique
section of ∧1M ⊗ Cα,∞ which is of the forms (IdTM , S). Let us denote this section by σ.
It is straightforward to see that

σ(X)·σ(Y ) =

[
∇XY + SXY
∇XSY + [SX , SY ]

]
=

[
∇XY + SXY
S∇XY+SXY

]
+

[
0

(∇XS)Y + (SX · S)Y

]
∈ Γ(Cα,∞).

Lastly, that ∇XS + SX · S = 0 follows from the uniqueness of σ.

Lastly, for a given Killing-regular tensor field, we will say that σ ∈ Γ(∧1M ⊗E) is an
α-Killing section if it solves the system or partial differential equations

πTM(σ) = IdTM , σ(X) · α = 0 and σ(X) · σ = 0 for all X ∈ TM (2.33)

Lemma 2.2.16. Let α be a Killing-regular tensor field on (M, g) and let σ ∈ Γ(∧1M⊗E)
be an α-Killing section. Then σ is a section of ∧1M ⊗Kα,∞.

Proof. From the first two equations in (2.33) we deduce that σ = (IdTM , S) and a section
of ∧1M ⊗Kα, for some S ∈ Γ(∧1M ⊗ so(TM, g). Expanding the third equation, we can
see that

σ(X) · σ =

[
∇XIdTM + [SX , IdTM ]
∇XS + SX · S

]
=

[
0

∇XS + SX · S

]
implies that σ(X) ·S = 0 for all X ∈ TM . In other words, σ is a section of ∧1M ⊗K(α,S).
It is only left to show that K(α,S) is in fact equal to Kα,∞. Recall that for any section φ
of E we have

ιX(φ · ∇α) = φ · ∇Xα−∇φ·Xα and ∇Xα = −SX · α.

Then, a direct calculation reveals

ιY (σ(X) ·∇α) = σ(X) ·∇Y α−∇σ(X)·Y α = −σ(X) · (SY ·α) +Sσ(X)·Y α = −(σ(X) ·S)Y ·α

which is equal to 0, since σ ∈ Γ(∧1M ⊗K(α,S)). Inductively, we can see that

ιY (σ(X) · ∇`+1α) = −(σ(X) · S)Y · ∇`α

for all ` ≥ 0. This means that σ is a section of ∧1M ⊗Kα,∞.

2.3 The Killing curvature

The kernel of the Killing curvature at a point p is, by definition, the vector subspace of
Ep comprised by elements (X,A) such that

∇XR + A ·R = 0,
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namely, KR
p . In [38], Katsumi Nomizu introduced the notion of Killing generators of a

pseudo-Riemannian manifold. These are elements (X,A) ∈ Ep, solutions to the following
equation

∇X∇`R + A · ∇`R = 0 (2.34)

for all ` ≥ 0, i.e. the space of Killing generators at p is precisely KR,∞
p . Moreover, in [39],

it was proven that the space of Killing generators at a point p, equiped with the Killing
bracket, becomes a real Lie algebra.

For completeness, we will show that the Killing bracket, defined in equation 2.16 is
indeed a Lie bracket on KR,∞

p . That KR,∞
p is closed under the Killing bracket follows

from Proposition 2.2.5, with the Riemannian curvature tensor taking the place of α. To
show that the bracket defined in equation (2.16) satisfies the Jacobi identity, we compute

s[
X
A

]
,

s[
Y
B

]
,

[
Z
C

]{{
=

[
ABZ − ACY − [B,C]X +R(Y, Z)X

[A, [B,C]]− [A,R(Y, Z)] +R(BZ,X) +R(X,CY )

]
.

A direct computation reveals that the TM component of the cyclic sum of the above
equation vanishes identically. Letting C denote the cyclic sum, its so(TM, g) component
becomes

(πso ◦C)

s[
X
A

]
,

s[
Y
B

]
,

[
Z
C

]{{
= −(A ·R)(Y, Z)− (B ·R)(Z,X)− (C ·R)(X, Y ). (2.35)

Since (X,A), (Y,B) and (Z,C) are Killing generators, it follows that

A ·R = −∇XR, B ·R = −∇YR and C ·R = −∇ZR

and therefore

(πso ◦ C)

s[
X
A

]
,

s[
Y
B

]
,

[
Z
C

]{{
= (∇XR)(Y, Z) + (∇YR)(Z,X) + (∇ZR)(X, Y ).

which, by the second Bianchi identity, vanishes identically. It is worth noticing that
equation (2.35) is the only obstruction for the Killing bracket on Kα,∞

p , to be a Lie
bracket. The proposition below follows directly from this argument.

Proposition 2.3.1. Let α ∈ Γ(T ∗M⊗r). Then (Kα,∞
p ∩KR,∞

p , J·, ·K) is a Lie subalgebra
of (KR,∞

p , , J·, ·K).

Interested in pseudo-Riemannian manifolds whose curvature tensors are Killing-regular,
we obtained the following relation between the maximal parallel flat subbundle K, of the
Killing bundle, and the bundles of derivations of R.

Proposition 2.3.2. Let (M, g) be a pseudo-Riemannian manifold and let K be the max-
imal parallel flat subbundle of E. Then, for each p ∈ M , Kp ⊆ KR,∞

p and the equality
holds if and only if R is Killing-regular.
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Proof. Let φ be any section of K. For each p ∈ M , by definition Kp is contained in KR
p ,

the kernel of the Killing curvature at p. Since K is parallel we obtain

0 = (DX` . . . DX1φ) ·R
= −ιX`((DX`−1

. . . DX1φ) · ∇R)
...
= (−1)`ιX` . . . ιX1(φ · ∇`R)

which follows from Lemma 2.19. This is independent of the point and of ` and therefore
Kp ⊆ KR,∞

p .
If in addition we assume that R is a Killing-regular tensor field, the kernel of the

Killing curvature is the vector bundle KR. By Lemma 2.2.3, the bundle KR,∞ is the
maximal parallel subbundle of E which contained in KR. This is precisely the definition
of K.

Corollary 2.3.3. If (M, g) is a pseudo-Riemannian manifold whose curvature tensor is
Killing-regular, K = KR,∞.

The following proposition is a well known result, which we have taken from the book
of Kobayashi and Nomizu [33, Proposition 2.6, Chapter VI]. We should say that there is
a sign mistake in the statement of the proposition.

Proposition 2.3.4. Let ξ and η be Killing vector fields. Then

A[ξ,η] = [Aξ, Aη]−R(ξ, η). (2.36)

Proof. In general, the bracket of vector fields can be expressed in terms of the Nomizu
operators as

[ξ, η] = ∇ξη −∇ηξ = Aξη − Aηξ. (2.37)

Then, it is straightforward to see that

A[ξ,η]X = −∇X(Aξη − Aηξ) = −(∇XAξ)(η)− Aξ∇Xη + (∇XAη)(ξ) + Aη∇Xξ. (2.38)

Notice that in the right hand side of equation (2.38) we have that

−Aξ∇Xη + Aη∇Xξ = AξAηX − AηAξX = [Aξ, Aη]X.

Since ξ and η are Killing vector fields, we have that

(∇XAξ)(η) = −R(X, ξ)η and (∇XAη)(ξ) = −R(X, η)ξ

by equation (2.12). Then, the remaining terms of the right hand side of equation (2.38)
become

−(∇XAξ)(η) + (∇XAη)(ξ) = R(X, ξ)η −R(X, η)ξ = −R(ξ, η)X,
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where the last equality follows from the Bianchi identity. It follows that equation (2.38)
becomes

A[ξ,η]X = [Aξ, Aη]X −R(ξ, η)X

as claimed.

Corollary 2.3.5. The natural inclusion map (H0(E,D), {·, ·}) → (Γ(K).J·, ·K) is a Lie
algebra monomorphism.

Proof. Let ξ and η be Killing vector fields. From the definition of the bracket in H0(E,D),
we have that {[

ξ
Aξ

]
,

[
η
Aη

]}
=

[
[ξ, η]
A[ξ,η]

]
.

From equations (2.36) and (2.37) in Proposition (2.3.4), it follows that[
[ξ, η]
A[ξ,η]

]
=

[
Aξη − Aηξ

[Aξ, Aη]−R(ξ, η)

]
=

s[
ξ
Aξ

]
,

[
η
Aη

]{
,

where the last equality follows from restricting the Killing bracket to sections of K.

To conclude this chapter, let kR,∞p denote the projection of KR,∞
p to so(TpM, gp) and

let holp(M, g) be the holonomy Lie algebra of (M, g) with base point p.

Proposition 2.3.6. The projection of KR,∞
p to so(TpM, gp) is contained in

np := {A ∈ so(TpM, gp) : [A,H] ∈ holp(M, g), ∀H ∈ holp(M, g)}, (2.39)

the normaliser of the holonomy algebra of (M, g).

Proof. Choosing (ξ, A) in KR,∞
p , it follows by equation (2.34) that

A · ∇`R = −∇ξ∇`R ∈ (∧1
pM)⊗

`+1 ⊗ ∧2
pM ⊗ holp(M, g).

A closer look at the above equation reveals that

[A, (∇`R)(X1, . . . , X`;X, Y )] = −(∇`+1R)(ξ,X1, . . . , X`;X, Y )
+(∇`R)(AX1, . . . , X`;X, Y )
...
+(∇`R)(X1, . . . , X`;X,AY )

The right hand side of the above equation is contained in the holonomy algebra of (M, g),
since it is contained in the span of the curvature tensor and its derivatives. It follows that

[A, (∇`R)(X1, . . . , X`;X, Y )] ∈ holp(M, g),

for all X1, . . . , X`, X, Y ∈ TpM , which implies that A is in the normaliser of holonomy
algebra, np.



Chapter 3

Pseudo-Riemannian locally
homogeneous spaces

In this chapter we provide a characterisation of pseudo-Riemannian locally homogeneous
spaces by means of the Killing bundle and the Killing connection, and give a new proof of
the Ambrose-Singer on homogeneous structures [22], under slightly different assumptions.
In the last Section, we discuss the Singer index of pseudo-Riemannian locally homogeneous
spaces and relate it to properties of subbundles of the Killing bundle.

3.1 The Killing bundle of pseudo-Riemannian locally

homogeneous spaces

A pseudo-Riemannian manifold (M, g) is called locally homogeneous if for any given pair
of points p and q of M , there exist open neighbourhoods U and V of p and q, respectively,
and a local isometry f : U → V such that f(p) = q. Equivalently, in terms of local Killing
vector fields, (M, g) is a pseudo-Riemannian locally homogeneous space if and only if for
each point p ∈ M , there exists an open neighbourhood of p such that its Killing vector
fields provide a frame of the tangent bundle of M . Particularly, (M, g) will be called
(globally) homogeneus if there exist a subgroup of the isometry group Iso(M, g), acting
transitively by isometries on M . In other words, for any two given points p and q of
M , there exists g ∈ G such that g · p = q. A pseudo-Riemannian homogeneous space
might admit many subgroups of its isometry group acting transitively, for which the same
homogeneous space could be represented by different quotient spaces. If M = G/H, and
we let g and h be the Lie algebras of G and H, respectively, we will say that the pair
(g, h) is reductive if g admits a direct sum decomposition,

g = h⊕m such that [h,m] ⊆ m.

We have shown in Proposition 2.1.4 that the Lie algebra kill(M, g), of Killing vector

37
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fields of (M, g), is isomorphic to the Lie algebra of the parallel sections of its Killing
bundle, equiped with the bracket defined in equation (2.16). Therefore we can provide a
characterisation of the local homogeneity of (M, g) in terms of the local parallel sections
of its Killing bundle. In general, for any open subset U of M , the map

kill(U, g|U)→ Γ(U,K), ξ 7→
[
ξ
Aξ

]
.

is an injection of the local Killing vector fields on U into the local sections of the maximal
parallel flat subbundle K, of E. Letting kill(U, g|U)p denote the vector subspace of TpM ,
obtained by evaluating the local Killing fields of U at p, it follows that when (M, g) is
locally homogeneous, the composition

kill(U, g|U)p → Kp → TpM

is surjective for all p in M . In other words, the natural projection from K to TM is
surjective. On the other hand, K being a flat and parallel subbundle of the Killing
bundle implies that, locally, there exist a frame of K composed of local parallel sections
of E. If in addition K → TM is a surjection, for each point of M , there exist a local
frame of TM comprised of Killing vector fields. Therefore, we have proven the following
proposition.

Proposition 3.1.1. A pseudo-Riemannian manifold (M, g) is locally homogeneous if and
only if the natural projection K → TM is a surjection.

The previous proposition was known to Nomizu in [38] for the Riemannian setting.
However, he enunciated his result in a slightly different language than ours. In our
terminology, he showed that a Riemannian manifold (M, g) is locally homogeneous if and
only if

(1) R is Killing-regular.

(2) The projection KR,∞
p → TpM is surjective for all p in M .

These two conditions are in fact equivalent to K → TM being a surjection. Indeed,
condition (1) implies that we can build the vector bundle KR,∞ whose fibres are given
by Killing generators which, by condition (2), will project subjectively onto TM . That
K → TM is a surjection follows from Corollary 2.3.3, which provides us with the equality
between KR,∞ and K.

In the previous chapter we provided a description of subbundles of the Killing bundle,
associated to Killing-regular tensors. Now, we will focus on tensor fields on pseudo-
Riemannian locally homogeneous spaces, which are invariant by local isometries. To be
precise, we will say that a tensor field α ∈ Γ(T ∗M⊗r) is invariant by local isometries if
for any local isometry of (M, g), f : U → V , then f ∗α|U = α|U .
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If α is a tensor field invariant by local isometries of a pseudo-Riemannian locally
homogeneous space, we have a natural isomorphism between Kα,`

p and Kα,`
q , for any pair

of points p, q in M and consequently, for each ` ≥ 0, the map p 7→ dimKα,`
p is a constant

function on M . In other words, invariant tensor fields on locally homogeneous spaces are
Killing-regular, which will allow us to define the vector bundles Kα,` over M , with fibres
Kα,`
p at p ∈ M . Particularly, we will apply the results obtained in Chapter 2 to build

metric connections that parallelise invariant tensor fields.
Recall that the kernel of the Killing curvature at a point p of M is given by KR

p .
The curvature tensor of the Levi-Civita connection is of course invariant by local isome-
tries and, for this reason, local homogeneity guarantees us that the kernel of the Killing
curvature is in fact a vector subbundle of E. Moreover, for each ` ≥ 0, KR,`

p is defined
solely in terms of R and its iterated covariant derivatives and, for this reason, KR,` will
be subbundle of E.

Proposition 3.1.2. Let (M, g) be a pseudo-Riemannian locally homogeneous space. Then
the maximal parallel flat subbundle K of E is the vector bundle over M whose fibres consist
of Killing generators.

Proof. Since (M, g) is locally homogeneous, its curvature tensor is invariant by local
isometries and ,therefore, it is Killing-regular. It follows by Corollary 2.3.3, that the
maximal parallel flat subbundle of E is equal to KR,∞ which, by definition, has fibres
comprised by the Killing generators.

Establishing conventions for the reminder of this chapter, we will simplify our notation
when considering locally homogeneous spaces. We write K instead of KR,∞ and analo-
gously H and h will take the place of HR,∞ and hR,∞, respectively. Lastly, if the Killing
form on h is non-degenerate, C will denote the orthogonal complement of H in K.

3.2 Homogeneous structures

It is a well known result, due to E. Cartan, that a connected, simply connected and
complete Riemannian manifold is a symmetric space if and only if its curvature tensor
is covariantly constant. In [3], W. Ambrose and I. M. Singer provided a characterisation
of a Riemannian homogeneous space (M, g), extending the aforementioned result from
E. Cartan, to homogeneous spaces. To be precise, they proved that a connected, simply
connected and complete Riemannian manifold (M, g) is homogeneous if and only if there
exists a tensor field S ∈ Γ(∧1M ⊗ End(TM)), that is a solution to the system of partial
differential equations

SX · g = 0, ∇XR + SX ·R = 0 and ∇XS + SX · S = 0, (3.1)

for all X ∈ Γ(TM). The above system of partial differential equations will be referred
to as the Ambrose-Singer equations. These conditions for the tensor field S are in fact
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equivalent to the existence of a metric connection ∇S := ∇+S with covariantly constant
curvature and torsion tensors, with respect to ∇S. Namely,

∇Sg = 0, ∇ST S = 0 and ∇SRS = 0, (3.2)

where T S and RS are the torsion and curvature tensors of ∇S, respectively. Any tensor
field satisfying equations (3.1) will be referred to as a homogeneous structure on (M, g)
and its associated connection or, equivalently, a connection satisfying equation (3.2) will
be called an Ambrose-Singer connection. The torsion and curvature of ∇S relate to R
and S by the formulas

T SXY = SXY − SYX and RS(X, Y ) = R(X, Y )− [SX , SY ] + STSXY (3.3)

and, contracting S with the metric tensor, we can recover the homogeneous structure S
from T S by

2g(SXY, Z) = g(T SXY, Z)− g(T SY Z,X) + g(T SZX, Y ). (3.4)

In the book [42], of Tricerri and Vanhecke, a new proof of the results of Ambrose and
Singer was given. In the pseudo-Riemannian setting, Gadea and Oubiña showed in [22]
that a homogeneous structure on a pseudo-Riemannian manifold exists if and only if it
is a reductive homogeneous space. The most general statement, due to Kiričenko [32],
shows that the Ambrose-Singer connection also preserves any tensor field that is invariant
by local isometries. We also refer to the book of Calvaruso and Castrillón López [11] for
a proof of the most general, Ambrose-Singer-Kiričenko theorem.

In what follows, we will apply the results obtained in Chapter 2 to provide a descrip-
tion of the Ambrose-Singer equations and the Ambrose-Singer-Kiričenko theorem in the
language of the Killing bundle. Recall that a section of ∧1M ⊗ E, solving the system of
differential equations

πTM(σ) = IdTM , σ(X) ·R = 0 and σ(X) · σ = 0, (3.5)

has been called an R-Killing section. The existence of such a section is in fact equivalent
to the existence of a homogeneous structure on (M, g), and equation (3.5) is in a sense,
an embedding of the Ambrose-Singer equations into the Killing bundle setting. Indeed,
the first of the above equations implies that σ = (IdTM , S), where S is some section of
∧1M ⊗ so(TM, g). Therefore

σ(X) ·R = ∇XR + SX ·R

and

σ(X) · σ =

[
∇XIdTM + [SX , IdTM ]
∇XS + SX · S

]
=

[
0

∇XS + SX · S

]
(3.6)

show that equations (3.1) and (3.5) are equivalent. For future convenience, we note that
equation (3.6) is equivalent to

σ(X) · σ =

[
0

σ(X) · S

]
. (3.7)



3.2. Homogeneous structures 41

Proposition 3.2.1. Let (M, g) be a pseudo-Riemannian manifold let σ be an R-Killing
section. Then (M, g) is locally homogeneous.

Proof. In order to show that (M, g) is locally homogeneous, we will prove that σ is in fact a
section of ∧1M⊗K. Then, as πTM(σ) = IdTM , we would get that the projection K → TM
is surjective and therefore, by Proposition 3.1.1, (M, g) will be locally homogeneous.

Let us denote the ∧1M ⊗ so(TM, g) component of σ by S. From σ(X) · R = 0, we
observe that

ιY (σ(X) ·∇R) = σ(X) ·∇YR−∇σ(X)·YR = −(σ(X) ·SY −Sσ(X)·Y ) ·R = −(σ(X) ·S)Y ·R.
From Lemma 2.2.1 we obtain

(DY σ(X)) ·R = −ιY (σ(X) · ∇R) = (σ(X) · S)Y ·R = 0,

where the last equality follows from equation (3.7). Inductively, we can see that

σ(X) · ∇`R = 0 for all ` ≥ 0.

In other words, σ is a section of ∧1M ⊗KR,∞. From Proposition 3.1.2, we then conclude
that σ is in fact a section of ∧1M ⊗K. As claimed before, K → TM is surjective and by
Proposition 3.1.1, (M, g) is locally homogeneous.

For the converse statement, we will provide a proof in the more restrictive case when
the Killing form on h is non-degenerate, instead of assuming reductivity.

Proposition 3.2.2. Let (M, g) be a pseudo-Riemannian locally homogeneous space such
that the Killing form on h is non-degenerate. Then, there exists a unique section σ of
∧1M ⊗ C, solution to equation (3.5). Moreover

σ(X) · α = 0,

for any tensor field which is invariant by local isometries of (M, g).

Proof. Under the assumption of (M, g) being locally homogeneous, by Proposition 3.1.2
we get the equality K = KR,∞. Proposition 2.2.4 tells us that K = KR,sR for some
integer sR < ∞, hence K = KR,sR = K(R,∇R,...,∇sRR). Setting K = H ⊕ C and applying
Lemma 2.2.14 we know that the exists a unique section σ, of ∧1M ⊗C, such that πTM(σ)
is equal to IdTM . Lastly, that

σ(X) · σ = 0 and σ(X) ·R = 0

follows by Lemma 2.2.15 and by construction, respectively.
It is only left to prove that if α is a tensor field which is invariant by local isometries

of (M, g), then σ(X) · α = 0 for all X ∈ TM . Recall that the Lie derivative can always
be expressed as LX = ∇X +AX for any vector field X. Particularly, if ξ is a local Killing
vector field, we have that

φξ · α = ∇ξα + Aξ · α = Lξα = 0, where φξ = (ξ, Aξ) ∈ Γ(K).

It follows that φ · α = 0 for all sections of Γ(K) and, particularly σ(X).
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3.3 The Singer homogeneous index

Let (M, g) be a pseudo-Riemannian manifold and let p be a point in M . We will define
a non-increasing sequence of subalgebras of so(TpM, gp), analogously to the sequence
introduced in equation (2.18), depending on the curvature tensor of (M, g). Recall, from
Chapter 2, that the Lie algebra of skew-symmetric endomorphisms which annihilate the
curvature tensor and its iterated covariant derivatives at a point p and up to order `,
when acted upon, has been defined as

hR,`p = {A ∈ so(TpM, gp) : A · ∇iR = 0, ∀0 ≤ i ≤ `}.

It is clear from their definition that hR,`+1
p is contained in hR,`p and, consequently, they

define the non-increasing sequence of subalgebras

so(TpM, gp) ⊇ hRp ⊇ hR,1p ⊇ hR,2p ⊇ hR,3p ⊇ . . . (3.8)

It is clear that the above sequence will stabilise after a finite amount of steps. We will

denote by kg(p), the first integer such that h
R,kg(p)
p = h

R,kg(p)+`
p , for all ` ≥ 0, and we

will refer to kg(p) as the Singer index of (M, g) at p. We note that in the literature it is
usually referred to as the Singer invariant.

In a general setting, the Lie algebras hR,`p depend on p and so does kg(p). Nevertheless,
it will be of our interest to focus on pseudo-Riemannian manifolds such that for each pair
of points, p and q in M , there exists an isomorphism between hR,`p and hR,`q . Particularly,
when (M, g) is locally homogeneous, the curvature tensor and its covariant derivatives are
invariant by local isometries. Consequently, any local isometry f that maps a point p to a
point q, will induce an isomorphism between hR,`p and hR,`q . It follows from this argument
that the Singer index map, p 7→ kg(p), will be constant on locally homogeneous spaces.
In general, when the Singer index is constant, we will ignore the point and we will simply
denote it by kg.

The curvature tensor of a locally homogeneous space is always Killing-regular and
therefore, for each ` ≥ 0, we can define the vector bundle hR,` with fibre hR,`p at p.
Considering HR,` instead, we have the sequence

E ⊇ HR ⊇ HR,1 ⊇ HR,2 ⊇ HR,3 ⊇ . . . (3.9)

of subbundles of E, that will clearly stabilise in the kg step.

Proposition 3.3.1. Let (M, g) be a pseudo-Riemannian locally homogeneous space. Then
kg ≤ sR and the equality holds when (M, g) is reductive.

Proof. We have shown in Proposition 2.2.4 that the sequence defined in equation (2.24)
stabilises at the sR-th step. That is, KR,sR = KR,sR+k for all k ≥ 0. For each ` ≥ 0, HR,`
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is contained in KR,` and particularly for ` = sR. Consequently, HR,sR = HR,sR+k for all
k ≥ 0 which implies that kg ≤ sR.

It is only left to prove that, in the case when (M, g) is reductive, kg = sR. When
(M, g) is reductive we have

KR = HR ⊕ CR,∞, (3.10)

as a consequence of the existence of a homogeneous structure. It follows that from the
decomposition of KR in equation (3.10) that the sequence for KR will stabilise in the
same step as the sequence for HR, hence kg = sR.

Examples in the literature for locally homogeneous spaces of arbitrarily high Singer
index can be found in [36]. Locally homogeneous spaces with kg = 0 will be of our
particular interest in the rest of this thesis. Non-trivial examples of such spaces are scarce
in the literature, a few of them can be found in [28].

Example 3.3.2. Locally symmetric spaces are pseudo-Riemannian manifolds whose curva-
ture tensor is parallel with respect to the Levi-Civita connection. Particularly they are
locally homogeneous. Since ∇R = 0, A · ∇R = 0 for all A ∈ so(TM, g), which implies
that hR = hR,1. Consequently, locally symmetric spaces have Singer index equal to 0.

The following corollary is an immediate consequence of Proposition 3.3.1.

Corollary 3.3.3. Let (M, g) be a reductive pseudo-Riemannian locally homogeneous space.
Then KR is parallel if and only if kg = 0.

Proof. By Proposition 3.3.1, kg = sR. Also, by the Ambrose-Singer theorem, if (M, g) is
a reductive locally homogeneous space it admits a homogeneous structure S. Then, we
observe that CR

p = CR,∞
p = {(X,SX) : X ∈ TpM}, which implies that sR will depend

only on the sequence
HR ⊇ HR,1 ⊇ HR,2 ⊇ . . .

and that KR = HR ⊕ CR,∞. By Proposition 2.2.4, the kernel of the Killing curvature
is parallel if and only if it is equal to KR,∞, and this equality will happen if and only if
HR = HR,∞, i.e. kg = 0.

Corollary 3.3.3 provides us with a criterion to find locally homogeneous spaces such
that the kernel of their Killing curvatures are parallel. In Chapter 5 we will present
examples of a class of locally homogeneous Lorentzian manifolds which have Singer index
equal to 0.
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Chapter 4

The Calabi complex

In this chapter we will give an introduction and present results obtained on the main
topic of this thesis, concerning the problem of finding necessary and sufficient conditions
for a symmetric 2-tensor to be in the image of the Killing operator. The results pre-
sented in Sections 4.1 and 4.2 have already appeared in [12, 13] for pseudo-Riemannian
locally symmetric spaces. The author’s contribution has been the adaptation of the afore-
mentioned results found in [12, 13] to reductive pseudo-Riemannian locally homogeneous
spaces. Most of Section 4.3.2 has already appeared in [13], and the majority has been of
the author’s contribution.

Oftentimes, throughout this chapter, we will employ Penrose’s abstract index notation.
At first glance, this change of notation may appear inelegant for the exposition, however
its usefulness will become apparent in the proofs of the main results obtained in this
chapter and Chapter 5. We will proceed to give a brief description of Penrose’s notation.

Upper indices will denote covariant tensors and lower indices will denote contravariant
ones. For instance, a vector field will be denoted by ξa and, with the aid of a metric tensor,
ξa = gabξ

b will denote the 1-form that is dual to ξa, with respect to gab. We will always
raise or lower indices with the metric tensor without expressly saying it. Enclosing indices
with round and square brackets will indicate to take the symmetric and skew-symmetric
part of a tensor, respectively. For instance, if ξab ∈ ∧1M ⊗∧1M , ξ(ab) and ξ[ab] will be the
tensor fields given by the formulas

ξ(ab) =
1

2
(ξab + ξba) and ξ[ab] =

1

2
(ξab − ξba).

The curvature tensor Rabcd ∈ Γ(RM), of an affine torsion-free connection ∇a, will be
defined by the formulas

(∇a∇b −∇b∇a)ξ
c = R c

ab dξ
d and (∇a∇b −∇b∇a)ξc = −R d

ab cξd

for ξa ∈ TM and ξa ∈ ∧1M . For more details about Penrose abstract indices notation we
refer to the book of Roger Penrose and Wolfgang Rindler [40].

45
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The role played by Killing vector fields in the former chapters will be replaced by
Killing 1-forms. For this reason, the Killing operator will be consider as the first order
linear differential operator

K : Γ(∧1M)→ Γ(Sym2M) σb 7→ ∇(aσb), (4.1)

acting on differential 1-forms, rather than on vector fields. We note that if we let Xa =
gabσb, the Killing operator acting on σa is nothing but

(Kσ)ab = ∇(aσb) =
1

2
(LXg)ab.

4.1 The twisted de Rham complex and a Calabi com-

plex

In this section, we will derive a complex of linear differential operators providing necessary
conditions for a symmetric 2-tensor on pseudo-Riemannian locally homogeneous space to
be in the image of the Killing operator. Furthermore, we will establish a relation between
the Calabi complex and the short twisted de Rham complex of the Killing bundle with its
Killing connection (see Definition 1.2.2). Before proceeding, we remark that the results
presented below have already appeared in [12, 13].

Recall that we have defined the Killing operator, as a differential operator acting
on vector fields and taking values on the symmetric endomorphisms of the pseudo-
Riemannian manifold (M, g), to be the first order linear differential operator

k : Γ(TM)→ Γ(Sym(TM, g)),

defined by

k(ξ) = −Ȧξ, with Aξ = −∇ξ and Ȧξ =
1

2
(Aξ + A∗ξ). (4.2)

The kernel of the Killing operator on locally homogeneous spaces is well understood, but
what about its image? For a given symmetric endomorphism Q of the tangent bundle of
M , we can ask ourselves the following question:

Is there a vector field on M such that k(ξ) = Q?

This problem can be formulated as an existence problem for a solution to the linear first
order the partial differential equation:

k(ξ) = Q, (4.3)

for a given symmetric endomorphism Q, of TM . We will refer to equation (4.3) as the
inhomogeneous Killing equation. The first thing to notice from equation (4.2) is that the
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inhomogeneous Killing equation will have a solution if and only if there exists a vector
field ξ ∈ Γ(TM) such that

QX = −ȦξX = ∇Xξ + ÂξX, for all X ∈ Γ(TM).

The right hand side of the above equation suggests an embedding of the inhomogeneous
Killing equation into the Killing bundle. Indeed, the following theorem provides us with
an overdetermined system of partial differential equations, built into the Killing bundle,
that is equivalent to the inhomogeneous Killing equation.

Theorem 4.1.1. Let (M, g) be a pseudo-Riemannian manifold. Then, ξ ∈ Γ(TM) is a
solution to the inhomogeneous Killing equation

k(ξ) = Q for a given Q ∈ Γ(Sym(TM, g))

if and only if

DX

[
ξ
A

]
=

[
QX

(d∇Q)(X)− (d∇Q)(X)∗

]
for some A ∈ Γ(so(TM, g)).

Proof. Suppose that ξ ∈ Γ(TM) is a solution to the inhomogeneous Killing equation with
inhomogeneous term Q ∈ Γ(Sym(TM, g)). Inspecting equation (4.2), we can observe that
QX = −ȦξX and also QX = ∇Xξ + ÂξX. By Lemma 2.1.2 we obtain

∇XÂξ +R(X, ξ) = −(d∇Ȧξ)(X) + (d∇Ȧξ)(X)∗ = (d∇Q)(X)− (d∇Q)(X)∗.

Consequently, it follows immediately that[
QX

(d∇Q)(X)− (d∇Q)(X)∗

]
=

[
∇Xξ + ÂξX

∇XÂξ +R(X, ξ)

]
= DX

[
ξ

Âξ

]
.

To prove that the converse statement holds, it will be required only to look at the TM
component of

DX

[
ξ
A

]
=

[
∇Xξ + AX
∇XA+R(X, ξ)

]
=

[
QX

(d∇Q)(X)− (d∇Q)(X)∗

]
.

Since Q is symmetric by assumption, the same must be true for the endomorphism∇ξ+A.
This means that

Q+ Ȧξ = −Âξ + A,

since ∇ξ = −Âξ−Ȧξ. The left hand side of the above equation is a section of Sym(TM, g)

and the one on the right hand side is on Γ(so(TM, g)), hence A = Âξ andQ = −Ȧξ = k(ξ),
as required. The equation on the so(TM, g) component is automatically satisfied by
Lemma 2.1.2.



48 Chapter 4. The Calabi complex

The above theorem provides us with an overdetermined system of linear partial differ-
ential equations, embedded into the Killing bundle, which is equivalent to the inhomoge-
neous Killing equation, however before investigating the consequences of Theorem 4.1.1,
we will change the notation for the reminder of this section. In the following we will
employ Penrose’s abstract index notation and establish a few conventions for the objects
that we have been working with.

The Killing bundle will be considered as the vector bundle with connection

E = ∧1M ⊕ ∧2M Da

[
σb
µbc

]
=

[
∇aσb − µab
∇aµbc −R d

bc aσd

]
, (4.4)

instead of the one defined previously. It is worth noticing that the Killing connection
defined as above differs from the one defined throughout this work by a sign. To be
precise, in abstract indices notation, the Killing connection defined in Chapter 2 would
be

Da

[
σb
µbc

]
=

[
∇aσb + µab
∇aµbc +R d

bc aσd

]
.

Nevertheless, our interest has been placed in the kernel and image of this connection, for
which this sign discrepancy becomes irrelevant.

The role played by Killing vector fields in the former chapters will be replaced by
Killing 1-forms. For this reason, the Killing operator will be consider as the linear first
order differential operator

K : Γ(∧1M)→ Γ(Sym2M) σb 7→ ∇(aσb), (4.5)

acting on differential 1-forms, rather than on vector fields, just as it has been defined in
the introduction of this chapter. It can be observed from its definition in equation (4.5)
that

∇(aσb) = 0 if and only if ∇aσb = ∇[aσb]. (4.6)

Therefore, the isomorphism provided in Proposition 2.1.4 can be translated into this new
construction by

ker(K)→ H0(E,D) σa 7→
[
σa
∇aσb

]
.

In other words, the parallel sections of the new Killing bundle are exactly those of the
form [

σa
∇aσb

]
such that ∇aσb = ∇[aσb].

The curvature of the Killing connection will take the form

(DaDb −DbDa)

[
σb
µbc

]
=

[
0

−σe(∇eRabcd) + 2R e
ab [cµd]e + 2R e

cd [aµb]e

]
, (4.7)
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and the exterior covariant derivative, acting on Γ(∧1M ⊗ E), will be taken to be the
differential operator D∧ : Γ(∧1M ⊗ E)→ Γ(∧2M ⊗ E) given by

D∧a

[
ηbc
ψbcd

]
:= D[a

[
ηb]c
ψb]cd

]
=

[
∇[aηb]c + ψ[ab]c

∇[aψb]cd −R e
cd [aηb]e

]
. (4.8)

With these conventions 2D∧ is equal to the exterior covariant derivative operator

dD : Γ(∧1M ⊗ E)→ Γ(∧2M ⊗ E),

defined in Chapter 1, and the curvature of the Killing connection can be expressed, in
terms of D and D∧, as the composition 2D∧ ◦D = κ.

We remark that the terms involving µ in the formula for the curvature of the Killing
connection are precisely µ, thought as a skew-symmetric endomorphism of TM , acting
on the Riemannian curvature tensor in the usual sense. Moreover, it defines the homo-
morphism of vector bundles R : ∧2M → RM , given by

(Rµ)abcd := 2R e
ab [cµd]e + 2R e

cd [aµb]e, (4.9)

where RM denotes the vector subbundle of ∧2M ⊗ ∧2M of tensors with the symmetries
of the Riemannian curvature tensor, i.e.

RM := {Tabcd ∈ ∧2M ⊗ ∧2M : Tabcd = Tcdab and T[abc]d = 0}.

Lastly, we remark that differential forms taking values on the Killing bundle will be
denoted with Greek upper scripts, namely φα will be a section of E and φ α

a will denote
a section of ∧1M ⊗ E.

Given that our new conventions are settled, we will return to the consequences of
Theorem 4.1.1. In abstract indices notation it can be restated as follows: Let hab be a
given symmetric 2-tensor field on a pseudo-Riemannian manifold (M, g). Then

hab = ∇(aσb), for some σb ∈ Γ(∧1M),

if and only if

Da

[
σb
µbc

]
=

[
hab

2∇[bhc]a

]
, for some σb ∈ Γ(∧1M) and µbc ∈ Γ(∧2M).

We are now in condition to consider the existence problem for solutions to the inho-
mogeneous Killing equation in terms of the Killing bundle. This problem can be stated
as follows: For a given section of ∧1M ⊗ E of the form

ω α
a =

[
hab

2∇[bhc]a

]
for some hbc ∈ Γ(Sym2M). (4.10)
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Does there exists a section ωα of the Killing bundle such that Daω
α = ω α

a ?
Conditions for such a problem to have a solution have been presented in Chapter 1,

for arbitrary vector bundles with connections. We will proceed to investigate these con-
ditions specifically for the Killing bundle. For ω α

a ∈ Γ(∧1M ⊗ E) of the form given in
equation (4.10), we can see that a necessary condition for the inhomogeneous problem to
have a solution is that

D∧a

[
hbc

2∇[chd]b

]
=

1

2

[
0

−(∇eRabcd)σ
e + 2R e

ab [cµd]e + 2R e
cd [aµb]e

]
for some

[
σc
µcd

]
∈ Γ(E).

A straightforward (but rather long) calculation shows that

D∧a

[
hbc

2∇[chd]b

]
=

1

2

[
0

(Ch)abcd

]
, (4.11)

where C : Γ(Sym2M) → Γ(RM) denotes the Calabi operator. Recall that the Calabi
operator is the second order linear differential operator acting on symmetric 2-tensors
which is defined by the formula

(Ch)abcd = ∇(a∇c)hbd −∇(b∇c)had −∇(a∇d)hbc +∇(b∇d)hac −R e
ab [chd]e −R e

cd [ahb]e.

If we let µab = ∇[aσb] for some differential 1-form σa, a straightforward but rather lengthy
calculation shows that the composition

Γ(∧1M) Γ(Sym2M) Γ(RM)K C (4.12)

takes the simple form

(C ◦ K)(σ)abcd = −(∇eRabcd)σ
e + 2R e

ab [cµd]e + 2R e
cd [aµb]e = −(∇eRabcd)σ

e + (Rµ)abcd.

In the special cases when (M, g) is a reductive locally homogenous space, we can
say more about sequence (4.12). By the Ambrose-Singer theorem [11, Theorem 2.2.1],
there exists a tensor field Sabc ∈ Γ(∧1M⊗∧2M) (a homogeneous structure) solution to the
Ambrose-Singer equations, so let us assume that (M, g) is a reductive locally homogeneous
space with homogeneous structure Sabc. In abstract indices, the Ambrose-Singer equations
(see equation (3.1)) take the form

σe∇eRabcd = σfS e
fa Rebcd + σfS e

fb Raecd + σfS e
fc Rabed + σfS e

fd Rabce (4.13)

σe∇eSabc = σfS e
fa Sebc + σfS e

fb Saec + σfS e
fc Sabe (4.14)

for all σa ∈ TM . After a rearrangement of terms on the right hand side of equation (4.13),
it takes the simpler form

σe∇eRabcd = −2R f
ab [cσ

eS|e|d]f − 2R f
cd [aσ

eS|e|b]f ,
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which is nothing but R applied to the 2-form −σeSeab. Here the vertical bars indicate
that the indices enclosed by them are not being affected by the skew-symmetrisation. For
instance 2S[a|b|c] = Sabc − Scba. Defining the linear differential operator S : ∧1M → ∧2M
to be the map

σb 7→ σeSeab +∇[aσb], (4.15)

we have proved the following proposition:

Proposition 4.1.2. Let (M, g) be a reductive pseudo-Riemannian locally homogeneous
space with homogeneous structure Sabc. Then the following diagram commutes

Γ(∧1M) Γ(Sym2M)

Γ(∧2M) Γ(RM).

S

K

C

R

(4.16)

The vector bundle homomorphism R, is defined solely in terms of the Riemannian
curvature tensor which means that, in the cases when (M, g) is locally homogeneous, it
will have constant rank. When this is the case, the kernel and image of R will be in
fact well defined vector subbundles of ∧2M and RM , respectively. Defining the quotient
bundle CM := RM/Im(R), the composition map

Γ(Sym2M) Γ(RM) Γ(CM)C

which will be denoted by L : Γ(Sym2M) → Γ(CM), provides us with the following
complex of linear differential operators

Γ(∧1M) Γ(Sym2M) Γ(CM).K L (4.17)

The complex (4.17) will be called the Calabi complex.
Before proceeding to the main theorem of this section, we remark that if we write

dσab := ∇[aσb], then σcScab = (Sσ)ab − dσab and by the Ambrose-Singer equation (4.13),
the curvature of the Killing connection takes the form[

σc
µcd

]
7→ −

[
0

R(Sσ − dσ + µ)abcd

]
. (4.18)

Theorem 4.1.3. Let (M, g) be a reductive pseudo-Riemannian locally homogeneous space.
Then, the Calabi complex

Γ(∧1M) Γ(Sym2M) Γ(CM)K L (4.19)

is locally exact if and only if the short twisted de Rham complex

Γ(E) Γ(∧1M ⊗ E) Γ((∧2M ⊗ E)/κ(E))D d (4.20)

is locally exact.
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Proof. If the short twisted de Rham complex of the Killing bundle is locally exact, the
Calabi complex will be exact by construction. Suppose that hab is in the kernel of L, then
(Ch)abcd = 2R e

ab [cωd]e + 2R e
cd [aωb]e = (Rω)abcd for some 2-form ωab. Embedding hab into

the Killing bundle, we can see that

D∧a

[
hbc

2∇[chd]b

]
=

1

2

[
0

(Ch)abcd

]
=

1

2

[
0

(Rω)abcd

]
∈ κ(E).

Since the short twisted de Rham complex is exact by assumption, there exist a 1-form σa
and a 2-form µab such that

Da

[
σb
µbc

]
=

[
∇aσb − µab

∇aµbc −R d
bc aσd

]
=

[
hab

2∇[bhc]a

]
,

which implies that ∇(aσb) = hab, since µab is a 2-form. Thus the Calabi complex is exact.
To show the converse, let us choose ηab ∈ Γ(∧1M ⊗∧1M) and φabc ∈ Γ(∧1M ⊗∧2M)

such that

D∧a

[
ηbc
φbcd

]
= −1

2

[
0

(Rµ)abcd

]
, for some µab ∈ ∧2M.

If we denote by ωab and hab the skew-symmetric and symmetric part of ηab, respectively,
by adding a convenient section of ∧2M ⊗ E to the above equation, we get

D∧a

([
ωbc + hbc
φbcd

]
+Db

[
0
ωcd

])
= D∧a

[
hbc

φbcd +∇bωcd

]
= −1

2

[
0

(Rµ+Rω)abcd

]
.

A closer inspection reveals that

D∧a

[
hbc

φbcd +∇bωcd

]
=

[
∇[ahb]c + φ[ab]c +∇[aωb]c

∇[aφb]cd +∇[a∇b]ωcd −R e
cd [ahd]e

]
= −1

2

[
0

(Rµ+Rω)abcd

]
,

which implies that

φ[ab]c +∇[aωb]c = −∇[ahb]c ∈ Γ(∧2M ⊗ ∧1M). (4.21)

The map ∧1M ⊗ ∧2M → ∧2M ⊗ ∧1M defined as Tabc 7→ T[ab]c is an isomorphism with

inverse given by T̃abc 7→ T̃abc + 2T̃c(ab). Applying this isomorphism to equation (4.21), we
find that

φbcd +∇bωcd = −∇[ahb]c −∇[cha]b −∇[chb]a = 2∇[chb]a,

where the last equality follows from the identity ∇[ahb]c +∇[bhc]a +∇[cha]b = 0, which is
nothing but a consequence of the symmetries of hab. Lastly, we can see from

D∧a

[
hbc

φbcd +∇bωcd

]
= D∧a

[
hbc

2∇[chd]b

]
=

1

2

[
0

(Ch)abcd

]
,
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and from the exactness of the Calabi complex and Theorem 4.1.1 that there exist a 1-form
σb and a 2-form µbc such that

Da

[
σb
µbc

]
=

[
hbc

2∇[chd]b

]
=

[
ωbc + hbc
φbcd

]
+Db

[
0
ωcd

]
,

which after a rearrangement yields[
ηbc
φbcd

]
= Da

[
σb

µbc − ωbc

]
.

Consequently, the short twisted de Rham complex is exact.

4.2 The curvature filtration of the Killing connection

In this section we will apply the results described in Section 1.3, on the curvature filtration
of a vector bundle with connection, to the Killing bundle and the Killing connection on a
special class of pseudo-Riemannian locally homogeneous spaces. The results presented in
this section are a slightly more general to the ones that have appeared previously in [13],
for the Killing connection on pseudo-Riemannian locally symmetric spaces. Here we will
present analogous results which extend the locally symmetric case to locally homogeneous,
under extra assumptions on their holonomy algebras. We will assume that (M, g) is a
pseudo-Riemannian locally homogeneous space whose holonomy algebra with base point
p is contained in hRp = {A ∈ so(TpM, gp) : A ·R = 0} for all p in M .

This condition on the holonomy algebra may appear to be quite a strong of condi-
tion, however this is always the case for any pseudo-Riemannian locally symmetric space.
Recall that a pseudo-Riemannian locally symmetric space is characterised by possesing a
curvature tensor which is invariant by parallel transport, i.e. ∇R = 0. The famous holon-
omy theorem from Ambrose and Singer [2] tells us that the holonomy algebra of (M, g)
is generated by its curvature endomorphisms, hence ∇R = 0 implies that H · R = 0 for
all H ∈ holp(M, g).

Instances of non-symmetric locally homogeneous spaces whose holonomy algebras are
contained in hRp are locally homogeneous plane waves, which shall be properly presented
in Chapter 5. It will be observed in equation (5.7) that the holonomy algebra of an
(n + 2)-dimensional locally homogeneous plane wave, which is defined by a rank k ≤ n
symmetric endomorphism of the tangent bundle, is

holp(M, g) '


0 xt 0

0 0 −x
0 0 0

 ∈ so(1, n+ 1) : x ∈ Rk

 ,
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and in Proposition 5.2.3 we showed that

hRp ' zso(Ep)(Qp)n(E∧X−)p '


0 xt 0

0 A −x
0 0 0

 ∈ so(1, n+ 1) : A ∈ zso(n)(Q0)x ∈ Rn

 ,

where Q0 is a constant symmetric n × n matrix. Thus the inclusion of holp(M, g) in hRp
becomes evident. We refer to Sections 5.1 and 5.2 for more details.

Remark 4.2.1. When holp(M, g) is contained in hRp , the vector space

rp := span{R(X, Y ) : X, Y ∈ TpM},

is in fact an ideal in hRp .

We will proceed to study the curvature filtration of the Killing bundle of pseudo-
Riemannian locally homogeneous spaces. Recall that the curvature filtration {E`}∞`=0 is
defined by setting E0 := kerκ, which for the Killing bundle is KR, inductively by

E` := {φ ∈ E : κ(φ) ∈ ∧2M ⊗ E`−1}, for each ` ≥ 1.

The curvature of the Killing connection is given by

κ(φ) = −
[

0
φ ·R

]
, for some φ ∈ E.

As usual, we will let πTM : E → TM and πso : E → so(TM, g) denote the natural
projections from E to TM and so(TM, g), respectively. The projection onto the tangent
bundle allows us to define

h` := ker(πTM |E` : E` → TM), for each ` ≥ 0.

Particularly, h0 = hR and for aesthetic reasons we shall simply use h0 rather than hR.
Inspecting the definitions of E` and h`, we notice that for an arbitrary element φ of E,

φ ∈ E` if and only if φ ·R ∈ ∧2M ⊗ h`−1.

More precisely,
E` = {φ ∈ E : φ ·R ∈ ∧2M ⊗ h`−1}.

Notice that the family of vector bundle {h`}∞`=0, defines a the filtration

h0 ⊆ h1 ⊆ h2 ⊆ . . .

of subbundles of so(TM, g). Also, in general, a direct calculation reveals that

(φ ·R)(X, Y ) = [A,R(X, Y )] mod hol(M, g), (4.22)
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for any element φ of E such that πso(φ) = A. If in addition we assume the contention
hol(M, g) ⊆ h0, we get that

(φ ·R)(X, Y ) ∈ h` if and only if [A,R(X, Y )] ∈ h`.

For the reminder of this section, we will only consider locally homogeneous spaces with the
properties described in the first paragraph of this section, namely spaces whose holonomy
algebras are contained in h0.

By letting r denote the subbundle of so(TM, g) whose fibres at p are given by the rp
as in Remark 4.2.1, we have showed that

h` = {A ∈ so(TM, g) : [A,B] ∈ h`−1, ∀ B ∈ r}, ` ≥ 1.

Lastly, notice that the Killing curvature will map any element φ in E such that πso(φ) = 0,
to ∧2M ⊗ E1. Since E1 is contained in E` for all ` ≥ 1, we have proved the following
proposition.

Proposition 4.2.2. Let (M, g) be a pseudo-Riemannian locally homogeneous space such
that hol(M, g) is contained in h0. Then

h` = {A ∈ so(TM, g) : [A,B] ∈ h`−1, ∀ B ∈ r}, for all ` ≥ 1. (4.23)

Moreover
E` = TM ⊕ h`, for all ` ≥ 1. (4.24)

We recall, before the proposition below, that kg denotes the Singer homogeneous index
of a pseudo-Riemannian locally homogeneous space (M, g).

Proposition 4.2.3. Let (M, g) be a reductive pseudo-Riemannian locally homogeneous
space such that hol(M, g) is contained in h0. Then the curvature filtration of (E,D) is
parallel if and only if kg = 0.

Proof. That kg = 0 when the curvature filtration of (E,D) is parallel follows directly
from Corollary 3.3.3, since E0 = KR. To show the converse, we will prove that φ ∈ Γ(E`)
implies that (Dκ)(φ) ∈ Γ(∧1M⊗∧2M⊗E`−1) for all ` ≥ 0, where we have set E−1 := {0}.
Then, that the curvature filtration of (E,D) is parallel, would follow from Lemma 1.3.6.

First of all, we will calculate Dκ. Choosing φ ∈ Γ(E) and X, Y, Z ∈ Γ(TM), by
definition we have

(DZκ)(X, Y )φ = DZκ(X, Y )φ− κ(∇ZX, Y )φ− κ(X,∇ZY )φ− κ(X, Y )DZφ.

Expanding the above equation, it is not hard to see that

(DZκ)(X, Y )φ =

[
−(φ ·R)(X, Y )Z

−(∇Z(φ ·R))(X, Y ) + ((DZφ) ·R)(X, Y )

]
.
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Applying Lemma 2.2.1 to the so(TM, g) component of (DZκ)(X, Y )φ, we obtain

(DZκ)(X, Y )φ = −
[

(φ ·R)(X, Y )Z
(φ · ∇R))(Z;X, Y )

]
.

When kg = 0, it is immediate that φ ∈ Γ(E0) implies that

(Dκ)(φ) ∈ Γ(∧1M ⊗ ∧2M ⊗ E−1) = {0}.

For ` ≥ 1, we can see from equation (4.22) that φ · ∇R ∈ Γ(∧1M ⊗ ∧2M ⊗ h`−1) when
φ ∈ Γ(E`). To conclude, by Proposition 4.2.2 we have that E` = TM ⊕ h` for ` ≥ 1 and
therefore (Dκ)(φ) ∈ Γ(∧1M ⊗ ∧2M ⊗ E`−1) when φ ∈ Γ(E`), as desired.

When the restriction of the Killing form of so(TM, g) to h0 is non-degenerate, it
provides us with the orthogonal decompositions

so(TM, g) = h0 ⊕ h⊥0 and E = E0 ⊕ h⊥0

of so(TM, g) and E, respectively. Such decompositions will be of great help for in the
reminder of this chapter, when dealing with Riemannian locally homogeneous spaces.

Proposition 4.2.4. Let (M, g) be a pseudo-Riemannian locally symmetric space such
that the Killing form on h0 is non-degenerate. Then E0 = E1 and, in addition, D is exact
if and only if the connection that is induced on h⊥0 from the Levi-Civita connection of g
is exact.

Proof. Since (M, g) is locally symmetric, ∇R = 0, which implies that E0 = TM ⊕ h0.
Choosing φ ∈ E1 such that A is its component in h⊥0 , we get that

κ(φ) = −
[

0
A ·R

]
∈ ∧2M ⊗ E0

and thus A · R ∈ ∧2M ⊗ h0. This implies that [A,R(X, Y )] ∈ h0 for all X, Y ∈ TM .
On the other hand, R(X, Y ) ∈ h0 and [h0, h

⊥
0 ] ⊆ h⊥0 , since so(TM, g) = h0 ⊕ h⊥0 is an

orthogonal decomposition. Hence [A,R(X, Y ) = 0. By the pairwise symmetry of R, we
also get that

R(AX, Y ) +R(X,AY ) = 0 for all X, Y ∈ TM.

Consequently A ∈ h0 ∩ h⊥0 = {0}.
Lastly, from Theorem 1.3.4, (E,D) will be exact if the connection induced in E/E0 =

h⊥0 is exact. Also, we have that

DX

[
0
A

]
=

[
AX
∇XA

]
=

[
0
∇XA

]
mod E0.

Since the Killing form on so(TM, g) is induced by g, h⊥0 is parallel with respect to the
Levi-Civita connection, so the connection on h⊥0 , induced by D, is indeed the Levi-Civita
connection.
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4.3 The exactness of the Killing connection

4.3.1 Spaces of constant holomorphic sectional curvature

In this subsection we will study the exactness of the Killing connection on pseudo-
Hermitian manifolds with constant holomorphic sectional curvature. A pseudo-Hermitian
manifold is a triplet (M, g, J), where (M, g) is a pseudo-Riemannian manifold and J is
complex structure, namely an endomorphism of TM such that J2 = −IdTM , which is
compatible with the metric in the sense that g(JX, JY ) = g(X, Y ), for all X, Y ∈ TM .
We will say that (M, g, J) has constant holomorphic sectional curvature if the sectional
curvatures of (M, g, J) restricted to complex planes are constant. Here, by complex planes
we mean a subspace of TpM that is spanned by pairs of vectors of the form X, JX.

Instances of peudo-Hermitian manifolds with constant holomorphic sectional curvature
are, in the Riemannian setting, CP n, CHn and Cn for positive, negative and zero constant
curvatures, respectively. In general, if we let (M, g, J) be a pseudo-Hermitian manifold of
constant holomorphic sectional curvature k and ω(X, Y ) := g(JX, Y ) be its fundamental
2-form. Its curvature tensor is of the form

R(X, Y ) = −k
4

(X ∧ Y + JX ∧ JY + 2ω(X, Y )J), (4.25)

where X∧Y = g(X, ·)Y −g(Y, ·)X. We refer to [41] for more details on the curvature ten-
sors of almost-Hermitian manifolds. Notice that the terms X∧Y and JX∧JY correspond
to curvature tensors of pseudo-Riemannian manifolds with constant sectional curvature.
Therefore, if we let A be any skew-symmetric endomorphism of TM , a straightforward
computation reveals that its action on the curvature tensor takes the rather simple form:

(A ·R)(X, Y ) = −k
2
ω(X, Y )[A, J ]− k

2
g([A, J ]X, Y )J. (4.26)

All spaces of constant holomorphic sectional curvature are Kähler and, particularly,
locally symmetric. This can be easily seen from the formula for the curvature tensor given
in equation (4.25), since R is constructed entirely in terms of the metric tensor and the
complex structure, which are parallel tensor fields.

We have shown in the previous sections that locally symmetric spaces have Singer
index equal to 0 (see Example 3.3.2), hence the kernel of the Killing curvature on locally
symmetric spaces is equal to the maximal parallel flat subbundle of E and it is given
by K = TM ⊕ hR. Particularly, in the case of spaces of constant holomorphic sectional
curvature, hRp coincides with the holonomy algebra of (M, g) at p, which is equal to

u(TpM, gp, Jp) := {A ∈ so(TpM, gp) : [A, Jp] = 0}.

Therefore, the kernel of the Killing curvature is given by

K = TM ⊕ u(TM, g, J), (4.27)



58 Chapter 4. The Calabi complex

where u(TM, g, J) denotes the vector bundle over M , with fibre u(TpM, gp, Jp) at p. To
simplify notation, from now on, we will use hR instead of u(TM, g, J).

The goal of this subsection is to prove the following theorem.

Theorem 4.3.1. The Killing connection of a pseudo-Hermitian manifold of constant
holomorphic sectional curvature is exact.

The approach to this problem we will be the following: Since K is a parallel flat
subbundle of E, (K,D|K) is trivially exact. By Proposition 1.2.6, if (E/K,D|E/K) is
exact and the curvature homomorphism,

κ : E/K → ∧2M ⊗ E/K

induced on the quotient bundle is injective, (E,D) will be exact.
First of all, we will show that κ : E/K → ∧2M ⊗E/K is injective. Notice that, from

equation (4.27), the quotient E/K is equal to so(TM, g)/hR. Choosing a representative
A of a class [A] ∈ E/K, we can see that the Killing curvature on E/K can be expressed
as

κ(X, Y )(A) = −(A ·R)(X, Y ) =
k

2
ω(X, Y )[A, J ] mod hR, (4.28)

where the last equality follows from the fact that hol(M, g) = hR and from equation (4.26).
From the above equation follows that [A] will be in the kernel of κ : E/K → ∧2M ⊗E/K
if and only if [A, J ] is in hR. Particularly, κ will be injective if hR is self-normalising in
so(TM, g).

Proposition 4.3.2. u(TM, g, J) is self-normalising in so(TM, g).

Proof. Suppose that A ∈ so(TM, g) is in the normaliser of u(TM, g, J) in so(TM, g). By
definition, [A,U ] will be in u(TM, g, J) for all U ∈ u(TM, g, J). Making use of the Jacobi
identity, we can see that

0 = [A, [U, J ]] = [[A,U ], J ] + [U, [A, J ]] = [U, [A, J ]], for all U ∈ u(TM, g, J).

Because [A, J ] is in u(TM, g, J), the above equation implies that [A, J ] is in the centre of
u(TM, g, J), which is nothing but RJ . In other words, [A, J ] is a multiple of J . If we let
[A, J ] = cJ , for some c ∈ R, multiplying by J and tracing we obtain

tr([A, J ]J) = c tr(J2) = −c tr(Id) = −2nc.

A closer look at the left hand side of the above equation reveals

tr([A, J ]J) = tr(AJ2)− tr(JAJ) = −tr(A) + tr(JAJ−1) = 0,

which implies that c = 0. It follows that A commutes with J and therefore A is in
u(TM, g, J).
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We have showed that the curvature on E/K is injective, as a consequence of the
above proposition. It is only left to show that (E/K,D) is exact. In order to do this,
we will investigate κ1 : ∧1M ⊗ E/K → ∧3M ⊗ E/K. We conclude with the proof of
Theorem 4.3.1.

Proof of Theorem 4.3.1. Recall that κ1 : ∧1M ⊗ E/K → ∧3M ⊗ E/K is defined by

κ1(φ)(X, Y, Z) = 2κ(X, Y )φ(Z) + 2κ(Z,X)φ(Y ) + 2κ(Y, Z)φ(X),

for an E/K-valued 1-form φ. Explicitly, by equation (4.26), κ1(φ) takes the form

κ1(φ)(X, Y, Z) = kω(X, Y )[φ(Z), J ]+kω(Z,X)[φ(Y ), J ]+kω(Y, Z)[φ(X), J ] mod hR.

Letting us choose a g-orthonormal frame {Xi, JXi}ni=1, of TM , and fixing ` ∈ {1, . . . , n},
for any Z ∈ span{X`, JX`}⊥ we get

κ1(φ)(X`, JX`, Z) = kω(X`, JX`)[φ(Z), J ] = k[φ(Z), J ] mod hR.

We can observe from the above equation that [φ] will be in the kernel of

κ1 : ∧1M ⊗ E/K → ∧3M ⊗ E/K

if and only if [φ(Z), J ] ∈ hR. However, by Proposition 4.3.2, hR is self-normalising in
so(TM, g), which implies that [φ] = [0] and therefore κ1 : ∧1M ⊗ E/K → ∧3M ⊗ E/K
is injective. By Lemma 1.2.12, the exactness of (E/K,D) follows from the injectivity
of κ1 : ∧1M ⊗ E/K → ∧3M ⊗ E/K. By Proposition 1.2.6, (E,D) is exact, since
(E/K,D|E/K) is exact and the curvature homomorphism,

κ : E/K → ∧2M ⊗ E/K

induced on the quotient bundle is injective.

4.3.2 Product spaces

This subsection will be dedicated to study the exactness of the Killing connection for
products of pseudo-Riemannian spaces, provided previous knowledge of each individual
de Rham-Wu factor [44]. Throughout this subsection, we will return to Penrose abstract
index notation (see Section 4.1 or [40] for more details). To work with product spaces,
we will borrow standard notation from complex geometry as follows: Letting (M, g) be
a pseudo-Riemannian manifold which is a product of two pseudo-Riemannian manifolds
(M1, g1) and (M2, g2), that is, M = M1 ×M2 and g = g1 + g2, we will write

∧1,0M := π∗1(∧1M1) and ∧0,1 M := π∗2(∧1M2)
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for the pullback bundles of 1-forms overM1 andM2, respectively. Here πi : M1×M2 →Mi,
i = 1, 2 denotes the natural projection. Analogously, for the bundles of 2-forms we will
write

∧2,0M := π∗1(∧2M1) and ∧0,2 M := π∗2(∧2M2)

and its complement in ∧2M will be denoted by ∧1,1M . That is, the bundle of 2-forms on
M decomposes as

∧2M = ∧2,0M ⊕ ∧1,1M ⊕ ∧0,2M.

The curvature tensor will be regarded as a section of (∧2,0M⊗∧2,0M)⊕ (∧0,2M⊗∧0,2M).
In regards with the Killing bundle, it will have the decomposition

E = E1,0 ⊕ E0,1 ⊕ ∧1,1M, (4.29)

inherited from the bundles of 1-forms and 2-forms. Here E1,0 = ∧1,0M ⊕ ∧2,0M and
E0,1 = ∧0,1M ⊕ ∧0,2M correspond to the pullbacks of the Killing bundles of M1 and M2

by the natural projections. We will denote indices from ∧1,0M with a, b,..., indices from
∧0,1M with ā, b̄, ..., and A, B,... for both groups of indices.

Lemma 4.3.3. The vector bundles E1,0 and E0,1 are parallel subbundles of E.

Proof. It follows from their definitions.

Recall that in Proposition 1.2.5 we have showed that if F is a parallel and exact
subbundle of E and the kernel of D∧ : Γ(∧1⊗E)→ Γ(∧2⊗E) is contained in Γ(∧1⊗F ),
then (E,D) is exact. The aim for the rest of this subsection will be to find conditions
for the kernel of D∧ : Γ(∧1 ⊗ E) → Γ(∧2 ⊗ E) to be contained in Γ(∧1 ⊗K), where K
denotes the maximal parallel flat subbundle of E. Since K is flat, it is trivially exact,
hence the exactness of the Killing connection on E would follow from Proposition 1.2.5.
For simplicity we will denote the kernel of D∧ : Γ(∧1 ⊗ E)→ Γ(∧2 ⊗ E) by ker(D∧).

First of all, let us choose sections ηBC of ∧1M⊗∧1M , ψBCD of ∧1M⊗(∧2,0M⊕∧0,2M)
and φBCD of ∧1M ⊗ ∧1,1M , and let us considered them as the sections[

ηBC
ψBCD

]
∈ Γ(∧1 ⊗ (E1,0 ⊕ E0,1)) and

[
0

φBCD

]
∈ Γ(∧1M ⊗ ∧1,1) ⊆ Γ(∧1M ⊗ E),

of the Killing bundle. We will find constraints on ηBC , ψBCD and φBCD for

Ω α
B :=

[
ηBC

ψBCD + φBCD

]
∈ Γ(∧1M ⊗ E),

to be in the kernel of D∧. The map D∧ : Γ(∧1 ⊗ E)→ Γ(∧2 ⊗ E), on Ω α
B is given by

D∧AΩ α
B =

[
∇[AηB]C + ψ[AB]C + φ[AB]C

∇[AψB]CD −R E
CD [AηB]E

]
+

[
0

∇[AφB]CD

]
,
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where the first summand of the right hand side is a section of ∧2M⊗ (E2,0⊕E0,2) and the
second one is of ∧2M ⊗∧1,1M ⊂ ∧2M ⊗E. Then Ω α

B will be in the kernel of D∧ if and
only if ηBC , ψBCD and φBCD are solutions to the system of partial differential equations:

∇[AηB]C + ψ[AB]C + φ[AB]C = 0, ∇[AψB]CD −R E
CD [AηB]E = 0, ∇[AφB]CD = 0. (4.30)

The following lemmas will provide us with helpful constraints on sections ∧1M ⊗ E,
to be in the kernel of D∧ on product manifolds.

Lemma 4.3.4. On a product of pseudo-Riemannian manifolds with curvature tensor
RABCD, let φAbc̄ ∈ Γ(∧1M ⊗ ∧1,1M) be a solution of

∇[AφB]CD = 0. (4.31)

Then
R e
ab cφāeb̄ = 0, and R ē

āb̄ c̄φabē = 0. (4.32)

Proof. Re-writing equation (4.31) using barred and unbarred indices, we obtain

∇[aφb]cā = 0, ∇[āφb̄]ac̄ = 0 and ∇aφābb̄ −∇āφabb̄ = 0.

Differentiating the first equation with respect to the barred indices, we have

0 = ∇ā(∇aφbcb̄ −∇bφacb̄) = ∇a∇āφbcb̄ −∇b∇āφacb̄.

The third equation implies that

∇a∇āφbcb̄ −∇b∇āφacb̄ = ∇a∇bφācb̄ −∇b∇aφācb̄ = −R e
ab cφāeb̄,

and therefore R e
ab cφāeb̄ = 0. Analogously, differentiating the second equation with respect

to the unbarred indices, we obtain R ē
āb̄ c̄
φabē = 0, as claimed.

Remark 4.3.5. We can observe from equations (4.32) that a section φ of ∧1M ⊗ ∧1,1M
will be a solution of equation (4.31) if and only if φc = X āY b̄φāeb̄ and φc̄ = XaY bφabc̄ are
contained in {XD ∈ ∧1M : R D

AB CXD = 0} for all XA, YB ∈ ∧1M . In other words, if the
curvature endomorphisms R d

ab c are injective, the map φBCD 7→ ∇[AφB]CD will be injective,
which will allow us to reduce the problem of the exactness of the Killing connection to
the equations on ∧M ⊗ (E1,0 ⊕ E0,1).

This leads us to the nullity of a pseudo-Riemannian manifold. If we let R be the
curvature tensor of a pseudo-Riemannian manifold, the nullity of (M, g) at a point p will
be the vector subspace of TpM defined as νp(M, g) := {X ∈ TpM : ιXR = 0}. In the
cases when p 7→ dim νp(M, g) is a constant map, the nullities define a vector subbundle
of TM , which shall be referred to as the nullity bundle of (M, g) and it will be denoted
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by ν(M, g). To simplify notation we will write ν instead of ν(M, g), unless otherwise
necessary.

Particular instances of pseudo-Riemannian manifolds admitting a nullity bundle are
locally homogeneous ones. Indeed, for any pair of points p, q ∈ M there exists a local
isometry f : U → V mapping p to q such that f ∗νq = νp, which is a simple consequence
of the curvature tensor being invariant by local isometries.

On a product pseudo-Riemannian manifold (M, g) = (M1, g1)× (M2, g2), we will write
ν1,0 := π∗1ν(M1, g1) and ν0,1 := π∗2ν(M2, g2), in order to fit the nullity bundles in our
conventions for vector bundles over product manifolds.

In terms of the nullity bundles, Lemma 4.3.4 could be stated as follows.

Lemma 4.3.6. On a product (M1, g1) × (M2, g2) of pseudo-Riemannian manifolds with
nullity bundles ν1,0 and ν0,1, respectively, let φ ∈ Γ(∧1M ⊗ ∧1,1M) be a solution of

∇[AφB]CD = 0.

Then φ is a section of (∧1,0M ⊗ (∧1,0M ∧ ν0,1))⊕ (∧0,1M ⊗ (∧0,1M ∧ ν1,0)).

Lemma 4.3.6 suggests that the study of the exactness of the Killing connection on
product spaces is simplified if the manifolds in question have zero nullity, namely ν = {0}.
We will proceed to do that but before, we note that (M, g) will have zero nullity if and only
if each local de Rham-Wu decomposition of (M, g) has factors with zero nullity bundles.
The below lemma follows from this observation and Lemma 4.3.6.

Lemma 4.3.7. Let (M, g) be a pseudo-Riemannian manifold with ν = {0}. If (M, g)
splits as a product, i.e. (M, g) = (M1, g1)× (M2, g2), then

ker(D∧) ⊆ Γ(∧1M ⊗ (E1,0 ⊕ E0,1)).

The following theorem will provide us with a characterisation of the exactness of the
Killing connection on spaces with zero nullity.

Theorem 4.3.8. Let (M, g) be a pseudo-Riemannian manifold with zero nullity bundle.
Suppose that (M, g) is the product of two pseudo-Riemannian manifolds (M1, g1) and
(M2, g2), then the first twisted de Rham cohomology group of (E,D) splits as

H1(E,D) = H1(E1,0, D|E1,0)⊕H1(E0,1, D|E0,1).

Particularly, the Killing connection of (M, g) is exact if and only if the Killing connections
of (M1, g1) and (M2, g2) are exact.

Proof. The idea behind the proof is to make use of Proposition 1.2.4, which states that the
first twisted de Rham cohomology group of (E,D) is isomorphic to ker(D∧)/Im(D|E0).
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First of all, we will show that E0 = E1,0
0 ⊕ E

0,1
0 , which will yield the decomposition

Im(D|E0) = Im(D|E1,0
0

) ⊕ Im(D|E1,0
0

), since E1,0 and E0,1 are parallel subbundles of E,

by Lemma 4.3.3. Suppose that there exists a section φab̄ of ∧1,1M such (0, φab̄) is in the
kernel of the Killing curvature. Then, we would get that

R E
AB [CφD]E +R E

CD [AφB]E = 0. (4.33)

By taking ABCD = abcd̄ and ABCD = āb̄c̄d, the above equation becomes

R e
ab cφd̄e = 0 and R ē

āb̄ c̄φdē = 0.

By assumption, the nullity bundles of the curvature tensors of (M1, g1) and (M2, g2) were
trivial, thus φab̄ = 0. We have proved that E0 = E1,0

0 ⊕ E
0,1
0 .

By Proposition 4.3.7, we know that ker(D∧) ⊆ Γ(∧1M⊗(E1,0⊕E0,1)) and, by Lemma
4.3.3, E1,0 and E0,1 are parallel subbundles of E. Therefore we get that ker(D∧) splits as

ker(D∧) = ker(D|∧E1,0)⊕ ker(D|∧E0,1).

The isomorphism provided in Proposition 1.2.4 reveals that the first twisted de Rham
cohomology group of (E,D) will be given by

H1(E,D) ' ker(D∧)/Im(D|E0) = ker(D|∧E1,0)/Im(D|E1,0
0

)⊕ ker(D|∧E0,1)/Im(D|E1,0
0

),

which again, by Proposition 1.2.4, yields the desired isomorphism

H1(E,D) ' H1(E1,0, D|E1,0)⊕H1(E0,1, D|E0,1).

That the Killing connection of (M, g) is exact if and only if the Killing connections of
(M1, g1) and (M2, g2) are exact follows directly from Proposition 1.2.9.

Before proceeding to the consequences of Theorem 4.3.8, we would like to remark that
hidden in its proof is the key to prove the following:

Theorem 4.3.9. Let (M, g) be a pseudo-Riemannian manifold with zero nullity bundle.
Suppose that (M, g) is the product of two pseudo-Riemannian manifolds (M1, g1) and
(M2, g2), then the zeroth twisted de Rham cohomology group of (E,D) splits as

H0(E,D) = H0(E1,0, D|E1,0)⊕H0(E0,1, D|E0,1).

Proof. Let φα be a section in H0(E,D) of the form

φα =

[
σB
µBC

]
+

[
0

ωBC

]
, with µBC ∈ Γ(∧2,0M ⊕ ∧0,2M) and ωBC ∈ Γ(∧1,1M).
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Since φα is in H0(E,D), we know that

0 = −σE∇ERABCD +R E
AB [CµD]E +R E

CD [AµB]E +R E
AB [CωD]E +R E

CD [AωB]E.

Noticing that the above equation decouples as

0 = −σE∇ERABCD +R E
AB [CµD]E +R E

CD [AµB]E ∈ Γ(�2 ∧2,0 M ⊕�2 ∧0,2 M)

and

0 = R E
AB [CωD]E +R E

CD [AωB]E ∈ Γ((∧2,0 ⊕ ∧0,2)� ∧1,1),

where� denotes the symmetric product, we are in the same situation as in equation (4.33).
Since (M, g) has zero nullity, from the above equation we get that

R e
ab cωd̄e = 0 and R ē

āb̄ c̄ωdē = 0

imply that ωAB = 0. In other words H0(E,D) = H0(E1,0⊕E0,1, D|E1,0⊕E0,1). Lastly, that
H0(E,D) = H0(E1,0, D|E1,0) ⊕ H0(E0,1, D|E0,1) follows from the fact that E1,0 and E0,1

are parallel, by Lemma 4.3.3.

Returning to the consequences of Theorem 4.3.8, the simplest instances of pseudo-
Riemannian manifolds with zero nullity bundles are spaces with constant sectional cur-
vature. They have curvature tensors of the form

Rabcd = k(gacgbc − gadgbc), k ∈ R.

If they are non-flat, their nullity spaces are always equal to {0}. In the complex setting,
analogously to spaces of constant sectional curvature, are pseudo-Hermitian manifolds
with constant holomorphic sectional curvature. Letting ωab denote their fundamental
2-firm, their curvature tensors are of the form

Rabcd = k(gacgbc − gadgbc + ωacωbc − ωadωbc + 2ωabωcd), k ∈ R,

and also they will have zero nullity bundles, if they are non-flat.

Corollary 4.3.10. The Killing connection of the product of pseudo-Riemannian man-
ifolds with non-zero constant sectional curvature and pseudo-Hermitian manifolds with
non-flat constant holomorphic sectional curvature is exact.

Proof. The Killing connection of a space of constant sectional curvature is flat and thus
trivially exact. On the other hand, we have proved in Theorem 4.3.1 that the Killing
connection of spaces of constant holomorphic sectional curvature are exact. The exactness
of the Killing connection follows straightforwardly from Theorem 4.3.8.
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In the Riemannian case, it was proved in [15, Proposition C] that if (G/H, g) is a
simply connected homogeneous Riemannian manifold without an Euclidean de Rham
factor [14], in the following cases the nullity bundle of (G/H, g) is trivial:

(1) The Lie algebra of G is reductive, i.e., the direct sum of a semisimple and an abelian
ideal.

(2) The Lie algebra of G is 2-step nilpotent.

These spaces provide us with large families of examples where the above proposition
reduces the problem of studying the exactness of the Killing connection is completely
reduced to their irreducible de Rham factors. Particularly, it is well known that all
non-flat irreducible Riemannian symmetric spaces have a simple Lie group of isometries
and, in fact, they are all classified by the real simple Lie algebras. We refer to the
book of Helgason [27] for more details about the classification of Riemannian symmetric
spaces. The exactness of the Killing connection in such spaces was addressed in [12],
where it was proved that the Killing connection of a Riemannian locally symmetric space
is exact, unless they have at least one Hermitian and one flat factor in its local de Rham
decomposition. Clearly, non-flat irreducible Riemannian symmetric spaces are a particular
cases of those, so Theorem 4.3.8 provides us with an alternative proof of the exactness
of the Killing connection for their products, given a priori knowledge of the exactness of
each irreducible de Rham factor.

Corollary 4.3.11. The Killing connection of a Riemannian symmetric spaces without
Euclidean de Rham factors is exact.

Before finishing this section, we will make a last comment on the implications of
Lemma 4.3.4. Suppose that φBCD ∈ Γ(∧1M ⊗ ∧1,1M) is a solution to equation (4.31).
By tracing equations (4.32) in Lemma 4.3.4 we observe that

Racφ
c
ā b̄ = 0 and Rāc̄φ

c̄
ab = 0

imply that φBCD 7→ ∇[AφB]CD will be injective when the Ricci tensor is non-degenerate.

Proposition 4.3.12. Suppose that (M, g) = (M1, g1) × (M2, g2) has a non-degenerate
Ricci tensor. Then ker(D∧) ⊆ Γ(∧1M ⊗ (E1,0 ⊕ E0,1)).

Perhaps the simplest instance of pseudo-Riemannian manifolds with non-degenerate
Ricci tensor are Einstein manifolds with non-zero scalar curvature.

To conclude, we prove the following lemma providing conditions for exactness of the
Killing connection of a product space, given previous knowledge on the de Rham-Wu
factors.
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Lemma 4.3.13. Let (M, g) = (M1, g1)× (M2, g2) be a product of two pseudo-Riemannian
manifolds such that the Killing connection of each factor is exact and E0 = K. Then

ker(D∧) ∩ Γ(∧1M ⊗ (E1,0 ⊕ E0,1)) ⊆ Γ(∧1M ⊗K).

Proof. Let us pick an element (ηAB, ψABC) of ker(D∧) ∩ Γ(∧1M ⊗ (E1,0 ⊕ E0,1)). From
equation (4.30) with all indices unbarred and all indices barred, i.e. ABC = abc and
ABC = āb̄c̄, we know that[

ηab
ψabc

]
=

[
∇aσb − µab
∇aµbc −R e

bc aσe

]
and

[
ηāb̄
ψāb̄c̄

]
=

[
∇āσb̄ − µāb̄
∇āµb̄c̄ −R ē

b̄c̄ ā
σē

]
, (4.34)

by the exactness of each factor. Here, the sections (ηab, ψabc) and (ηāb̄, ψāb̄c̄), are still
depending on the unbarred and barred coordinates respectively. By assumption, E0 is
equal to K, and by the isomorphism from Proposition 1.2.4, we get that (σa, µab) and
(σā, µāb̄) are sections of K. Furthermore, since K is parallel, (ηab, ψabc) and (ηāb̄, ψāb̄c̄) are
sections of ∧1 ⊗K. The first equation in (4.30) with ABC = ābc tells us that

ψābc = ∇bηāc −∇āηbc = ∇bηāc −∇ā(∇bσc − µbc).

Since ψābc = ψā[bc] and ∇b and ∇ā commute, we can rewrite the above equation as

ψābc = ∇bθāc +∇āµbc = ∇[bθ|ā|c] +∇āµbc (4.35)

where θāa := ηāa −∇āσa. From equation (4.35) we can see that

∇(bθ|ā|c) = 0

This means that θāa is a Killing 1-form with respect to the unbarred index. To be precise,
picking a vector field X ā that is the pull-back of a vector field on M2 and such that
∇aX

ā = 0, the 1-form θa := X āθāa satisfies

0 = X ā∇(bθ|ā|c) = ∇(bθc).

For this reason we can conclude that[
ηāb
ψābc

]
=

[
θāb +∇āσb
∇bθāc +∇āµbc

]
=

[
θāb
∇bθāc

]
+Dā

[
σb
µbc

]
∈ Γ(∧1M ⊗K).

In an analogous way, interchanging the barred and unbarred indices, we can see that
(ηab̄, ψab̄c̄) is contained in Γ(∧1M ⊗ K) and therefore (ηAB, ψABC) ∈ Γ(∧1M ⊗ K), as
required.



Chapter 5

Lorentzian symmetric spaces and
plane waves spacetimes

In this chapter we will study the exactness of the Killing connection on locally homoge-
neous Lorentzian manifolds. Specifically, in Section 5.1, we described known results about
locally homogeneous plane wave spacetimes. Section 5.2 will be dedicated to the Singer
index of locally homogeneous plane waves, where we characterise all locally homogeneous
plane waves with Singer index equal to 0. Lastly, in Section 5.3 we study exactness of the
Killing connection of locally homogeneous plane wave with Singer index 0 is exact and
Lorentzian locally symmetric spaces. In addition, the author would like to remark that
the results obtained in Section 5.3, regarding Lorentzian locally symmetric spaces, have
appeared previously in [13], and are one of his contributions to the article.

5.1 Locally homogeneous plane waves

Throughout this section, (M, g) will denote a Lorentzian manifold. For a given a vector
field X ∈ Γ(TM) and a given point p of M , we will let

X⊥ := {Y ∈ TM : g(X, Y ) = 0}

denote the vector subbundle of TM with fibre RX⊥p at a point p of M . A Lorentzian
manifold (M, g) is called a pp-wave spacetime (where pp stands for plane fronted with
parallel rays) if it admits a vector field, which shall be denoted by X−, that is parallel,
null and such that its curvature tensor is non-null and it vanishes identically on X⊥− ∧X⊥− ,
namely

∇X− = 0, g(X−, X−) = 0 and R(X, Y ) = 0 for all X, Y ∈ Γ(X⊥− ).

Originally, four dimensional pp-waves spacetimes were discovered by Brinkmann [8] as a
class of Einstein manifolds that can be mapped conformally to each other, however, their

67
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name was introduced in [30], by Jordan, Ehlers and Kundt, in the English republication
of their article [29].

Our convention for bivectors, considered as skew-symmetric endomorphisms of the
tangent bundle of M , will be

X ∧ Y := (ιXg)⊗ Y − (ιXg)⊗X.

In general, any two vector subbundles of the tangent bundle, V1 and V2, will define the
subbundle

V1 ∧ V2 := span{X ∧ Y ∈ so(TM, g) : X ∈ V1 and Y ∈ V2}

of the skew-symmetric endomorphisms of TM .
An (n + 2)-dimensional pp-wave spacetime always admits a special set of local coor-

dinates (x−, x1, . . . , xn, x+), such that its metric tensor is of the following form:

g = 2dx−dx+ + 2H(x1, . . . , xn, x+)dx2
+ +

n∑
i=1

dx2
i . (5.1)

Here H denotes a smooth function on M that does not depend on the coordinate x−. In
the literature, these coordinate charts are referred to as Brinkmann coordinates, see for
example [21]. In Brinkmann coordinates, the Levi-Civita connection, associated to g, is
given by

∇∂− = 0, ∇∂i = (∂iH)dx+ ⊗ ∂− and ∇∂+ = dH ⊗ ∂− − dx+ ⊗ grad(H), (5.2)

where grad is taken with respect to the Euclidean metric in span{∂1, . . . , ∂n}. It is straight-
forward to verify from equations (5.1) and (5.2), for the metric tensor and its Levi-Civita
connection, that the coordinate vector field ∂− is null and parallel. Particularly, from
equation (5.2), we can observe that the vector subbundle X⊥− := ∂⊥− is parallel with
respect to the Levi-Civita connection.

The Riemannian curvature tensor and of a pp-wave spacetime and its first covariant
derivative, in Brinkmann coordinates, are given by the formulas

R =
n∑

i,j=1

4Hij(dxi∧dx+) · (dxj∧dx+) and ∇R =
n∑

i,j=1

4dHij⊗ (dxi∧dx+) · (dxj∧dx+),

where Hij denotes ∂i∂jH.
A special class of pp-waves spacetimes are the so called plane waves. These are pp-

waves spacetimes for which, in addition, the curvature tensor is parallel in the directions
of the subbundle X⊥− of TM . To be precise, for the curvature tensor of a plane wave, it
must hold that

∇XR = 0, for all X ∈ Γ(X⊥− ).
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This implies that it is a necessary and sufficient condition, for a pp-wave spacetime to be
a plane wave, that the function H satisfies

∂i∂j∂kH = 0, for all i, j, k = 1, . . . , n,

forcing H to be a quadratic function on the variables x1, . . . , xn. Therefore, the function
H will be of the form

H =
1

2

n∑
i,j=1

Qij(x
+)xixj,

where Qij corresponds to the ij-entry of an n×n symmetric matrix Q, that is a function
of only the coordinate x+. Letting E denote the vector subbundle of TM , spanned by
{∂1, . . . , ∂n}, we will often consider Q as a symmetric endomorphism of E, with respect
to the restriction of g to E. Abusing notation, we will also consider Q as the symmetric
2-tensor on M defined

Q =
n∑

i≤j=1

Qij(x+)dxidxj.

From now on, we will fix once and for all, the frame {X−, X1, . . . , Xn, X+} of TM
which is given by

X− = ∂−, Xi = ∂i, X+ = −H∂− + ∂+. (5.3)

In this frame, the non-vanishing components of the curvature tensor and its iterated
covariant derivatives are

(∇`R)(X+, . . . , X+;X,X+, Y,X+) = g(Q(`)X, Y ), with X, Y ∈ Γ(E) (5.4)

where Q(`) denotes the symmetric endomorphism of E, defined by

Q =
n∑

i≤j=1

(∂`+Qij)(x+)dxidxj.

The endomorphisms Q(`), in this frame, will be

Q =
n∑

i,j=1

Qij(ιXig)⊗Xj.

Regarding the skew-symmetric endomorphisms of TM , their matrices will take the forma xt 0
y A −x
0 −yt −a

 with a ∈ R, x, y ∈ Rn and A ∈ so(n), (5.5)

when expressed in the frame (5.3).
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In order to simplify our notation, we will usually write ∇`
+R for the iterated covariant

derivatives of R in the direction of X+, i.e.

(∇`
+R)(U, V,X, Y ) := (∇`R)(X+, . . . , X+;U, V,X, Y ).

Notice that all of the covariant derivatives of R are of the same algebraic type, in the
sense that ∇`

+R is completely determined by a symmetric endomorphism which, in this
case, is Q(`). The curvature endomorphisms can be expressed in terms of bivectors as

(∇`
+R)(X,X+) = (Q(`)X) ∧X−.

Remark 5.1.1. When (M, g) is indecomposable, Q is injective. It follows straightforwardly
that the holonomy algebra of an indecomposable plane wave is isomorphic to Rn:

holp(M, g) ' (E ∧X−)p '


0 xt 0

0 0 −x
0 0 0

 ∈ so(1, n+ 1) : x ∈ Rn

 . (5.6)

In the case that (M, g) is a decomposable plane wave, i.e. the product of an indecompos-
able plane wave and a flat factor (Rk, gRk), in terms of Q, it will mean that dim ker(Q) = k.
In this case, we will let Hp := ker(Qp)

⊥ ⊆ so(TpM, gp) and H will denote the vector bundle
over M with fibre Hp at p. Therefore, we have that the holonomy algebra is

holp(M, g) ' (H ∧X−)p '


0 xt 0

0 0 −x
0 0 0

 ∈ so(1, n+ 1) : x ∈ Rn−k

 . (5.7)

For a given point p in M , we will let np denote the normaliser in so(TpM, gp) of the
holonomy algebra of (M, g), with basepoint p. That is

np := {A ∈ so(TpM, gp) : [A,H] ∈ holp(M, g), ∀ H ∈ holp(M, g)}.

Proposition 5.1.2. Let (M, g) be an indecomposable plane wave spacetime. Then, np is
isomorphic to the parabolic subalgebra

p :=


a xt 0

0 A −x
0 0 −a

 ∈ so(1, n+ 1) : a ∈ R, x ∈ Rn, A ∈ so(n)

 ,

of so(1, n+ 1).

Proof. From equations (5.5) and (5.6), and a straightforward calculation we can observe
that a xt 0

y A −x
0 −yt −a

 ,

0 ut 0
0 0 −u
0 0 0

 =

−ytu ut(aId− A) 0
0 yut − uyt −(aId + A)u
0 0 ytu


will be in the holonomy algebra of (M, g) if and only if ytu = 0. Since a, x and A can be
chosen freely, it follows that np will be isomorphic to p.
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We will denote by pp, the Lie algebra spanned by the skew-symmetric endomorphisms
of TpM , spanned by

{(X− ∧X+)p, (Xi ∧Xj)p, (Xi ∧X−)p}ni,j=1,

which is isomorphic to p, the parabolic subalgebra of so(1, n+ 1).

Corollary 5.1.3. Let (M, g) be a locally homogeneous plane wave, and let kR,∞p be the
projection of KR,∞

p to so(TpM, gp). Then kR,∞p is contained in pp.

Proof. By assumption, (M, g) is a locally homogeneous plane wave and therefore it fol-
lows from Proposition 5.1.2 that np ' p. On the other hand, by Proposition 2.3.6, the
projection of KR,∞

p to so(TpM, gp) is always contained in the normaliser of the holonomy
algebra of (M, g). It follows that kR,∞p is contained in pp, as claimed.

In the rest of this section we will place our attention on the plane waves which are
locally homogeneous. In [6], Blau and O’Laughlin provided a classification of homogeneous
plane waves spacetimes and, later on, Globke and Leistner showed that an indecomposable
locally homogeneous pp-wave such that the rank of the curvature endomorphism is greater
than 1, is a plane wave [25]. Therefore, with the exception of the cases when the curvature
endomorphism has rank equal to 1, indecomposable locally homogeneous pp-waves are
completely classified in terms of the symmetric matrices Q. In adequate coordinates, an
(n+ 2)-dimensional indecomposable locally homogeneous pp-wave is defined by a matrix
that takes the form

Q(x+) = ex+PQ0e
−x+P (5.8)

or

Q(x+) =
1

(x+ + x0)2
elog(x++x0)PQ0e

− log(x++x0)P , (5.9)

where x0 ∈ R, Q0 ∈ Sym(n) with trivial kernel and P ∈ so(n). For Q defined in equation
(5.9), we will always take {x+ ∈ R : x+ + x0 > 0} as its domain. We will say that a
locally homogeneous pp-wave (M, g) is regular, if Q is of the form (5.8), and we will say
that (M, g) is singular if Q is of the form (5.9). We will usually write Q, in generality, as

Q = (φ′)2eφPQ0e
−φP , (5.10)

where φ is a smooth function, depending only on x+. In this notation, a regular locally
homogeneous plane wave will correspond to the endomorphism Q, with φ(x+) = x+, and
a singular one will correspond to the one with φ(x+) = log(x+ + x0). For convenience,
and without loss of generality, we will always choose singular locally homogeneous plane
waves with x0 = 1. In this case, it is worth noticing that Q(0) = Q0.

Remark 5.1.4. Singular locally homogeneous singular plane waves with the same matrices
P and Q0 are isometric.
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Remark 5.1.5. A special class of indecomposable locally homogeneous plane waves are the
so called Cahen-Wallach spaces, introduced in [9]. They are indecomposable, in the sense
of the de Rham-Wu decomposition theorem [44], and they are locally symmetric spaces,
i.e. ∇R = 0. They are the locally homogeneous plane waves which are defined by a pair
(Q0, P ) such that [P,Q0] = 0. Results regarding the image of the Killing operator on
Lorentzian locally symmetric spaces were obtained in [13], and in Section 5.5 we extend
this results to locally homogeneous plane waves with Singer index equal to 0. In fact,
P = 0 can be chosen.

We will let zso(n)(A) := {B ∈ so(n) : [A,B] = 0} denote the centraliser of a matrix,
A ∈ gl(n,R), in so(n). For the centraliser of a family of matrices, {A1, . . . , A`}, we will
write

zso(n)(A1, . . . , A`) := ∩`i=1zso(n)(Ai).

Recall that if A and B are matrices in gl(n,R) which commute, then eA+B = eAeB. If
(M, g) is a locally homogeneous plane wave, defined by the pair (Q0, P ), we can always
add elements from the centraliser of Q0 and P , to P , leaving Q invariant. This follows by
inspecting

Q = (φ′)2eφ(P+Z)Q0e
−φ(P+Z) = (φ′)2eφPQ0e

−φP .

Consequently, any other locally homogeneous plane wave defined in terms of the pair
(Q0, P + Z), with Z ∈ zso(n)(Q0, P ), will be isometric to (M, g).

5.2 The Singer index of locally homogeneous plane

waves

In this subsection we will study the Singer index of locally homogeneous plane waves.
Particularly, we will determine exactly those with Singer homogeneous index equal to 0,
in terms of the pairs of matrices (Q0, P ) defining them.

In order to compute the Singer homogeneous index of locally homogeneous plane
waves, first we will describe the Lie algebras of automorphisms of algebraic curvature ten-
sors of the same type of locally homogeneous plane waves. We will let V n+2 denote a real
vector space of dimension n+ 2, equiped with a non-degenerate symmetric bilinear form
of signature (1, n+1), which shall be denoted by 〈·, ·〉. The Lie algebra of endomorphisms
of V n+2, i.e. so(V n+2) := {A ∈ End(V n+2) : 〈Ax, y〉 + 〈x,Ay〉, for all x, y ∈ V n+2}, is
naturally isomorphic to so(1, n + 1). We will fix an orthogonal basis {e−, e1, . . . , en, e+}
of V n+2 such that

〈e−, e−〉 = 〈e−, ei〉 = 〈ei, e+〉 = 0, 〈e−, e+〉 = 1 and 〈ei, ej〉 = δij,

and will denote by V n, the vector subspace of V n+2 spanned by {e1, . . . , en}. In this basis,
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a generic element of so(V n+2) will be of the forma xt 0
y A −x
0 −yt −a

 , a ∈ R, u, v ∈ Rn, A ∈ so(n). (5.11)

We will consider the algebraic curvature tensors on V n+2 of the same algebraic type
of the curvature tensor of an indecomposable locally homogeneous plane wave at a point.
The vector space of tensors with the symmetries of Riemannian curvature tensors on a
vector space V will be denoted by RV . Explicitly,

RV := {T ∈ Sym2∧2V ∗ : T (w, x, y, z)+T (y, w, x, z)+T (x, y, w, z) = 0, ∀ w, x, y, z ∈ V }.

Let Q be a symmetric endomorphism of V n with trivial kernel and let RQ ∈ RV n+2 be
the algebraic curvature tensor such that its only non-zero components, up to symmetries,
are given by

RQ(x, e+, y, e+) = (Qx, y), with x, y ∈ V n. (5.12)

Here (·, ·) denotes the restriction of 〈·, ·〉 to V n. We will denote the Lie algebra of skew-
symmetric automorphisms of RQ by

aut(RQ) = {A ∈ so(V n+2) : A · RQ = 0}.

Proposition 5.2.1. Let RQ ∈ RV n+2 be an algebraic curvature tensor defined by a
symmetric endomorphism Q of V n, as in equation (5.12). Then

aut(RQ) ' zso(V n)(Q) n V n,

where

zso(V n)(Q) n V n =


0 ut 0

0 A −u
0 0 0

 ∈ so(V n+2) : A ∈ zso(V n)(Q), u ∈ V n

 .

Proof. Let Ã be an element of aut(RQ) which, in the basis {e−, e1, . . . , en, e+}, takes the
form a ut 0

v A −u
0 −vt −a

 , a ∈ R, u, v ∈ Rn, A ∈ so(n),

and let x and y be elements of V n. By inspection, we can see that

Ãe− = ae− + v, Ãx = (u, x)e− + Ax− (v, x)e+, Ãe+ = −u− ae+.
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By definition, the action of Ã annihilatesRQ. Expanding (Ã·RQ)(x, e+, y, e+) = 0 reveals
that

0 = RQ(Ax, e+, y, e+)− aRQ(x, e+, y, e+) +RQ(x, e+, Ay, e+)− aRQ(x, e+, y, e+),

which, by equation (5.12) is nothing but

0 = (QAx, y) + (Qx,Ay)− 2a(Qx, y) = (([Q,A]− 2aQ)x, y), for all x, y ∈ V n.

The inner product (·, ·) is of definite signature and therefore it must hold that

[A,Q] + 2aQ = 0.

Multiplying the above equation by Q and taking its trace we get

0 = tr([A,Q]Q) = −2a tr(Q2) 6= 0,

which implies that a = 0 and A ∈ zso(n)(Q). Lastly, we can observe that

0 = (Ã · RQ)(e−, e+, x, e+) = −RQ(v, e+, x, e+) = −(Qv, x)

for all x ∈ V n. Since Q is injective, v must be equal to 0. The remaining cases do not
reveal any extra constraint for Ã and thus

Ã =

0 ut 0
0 A −u
0 0 0

 , with u ∈ V n and A ∈ zso(V n)(Q),

as claimed.

If (M, g) is a locally homogeneous plane wave defined by the pair (Q0, P ), by choosing
a point p in M , we can observe that Rp and RQp are of the same algebraic type in the
sense that they are equal as elements of RTpM . Consequently, by Proposition 5.2.1, we
have obtained the isomorphism

hRp = aut(RQp) ' zso(V n)(Qp) n V n.

More generally, the iterated covariant derivatives (∇`
+R)p, of the curvature tensor, are of

the same algebraic type as RQ
(`)
p , which yields the isomorphism

h
∇`+R
p ' zso(V n)(Q

(`)
p ) n V n,

again by Proposition 5.2.1. Identifying zso(V n)(Q
(`)
p ) n V n with zso(Ep)(Q

(`)
p ) n (E ∧X−)p,

we have showed that
h∇

`
+R = zso(E)(Q

(`)) n E ∧X−. (5.13)
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Lemma 5.2.2. Let Q : I ⊆ R→ Sym(n) be a smooth function of the form

Q(t) = φ′(t)2eφ(t)PQ0e
−φ(t)P ,

where Q0 ∈ Sym(n), P ∈ so(n) and φ ∈ C∞(I) such that φ′(t) 6= 0 for all t ∈ I. Then,
for each ` ≥ 0,

zso(n)(Q(t), Q′(t), . . . , Q(`)(t)) = zso(n)(Q(t), ad(P )Q(t), . . . , ad(P )`Q(t)). (5.14)

Proof. Letting q : I ⊆ R→ Sym2(n) be the map q = eφPQ0e
−φP and recalling that

d

dt
eφP = φ′PeφP = φ′eφPP,

it is straightforward from the Leibniz rule that

q′ = φ′PeφPQ0e
−φP − φ′eφPQ0e

−φPP = φ′[P, q].

Since Q = (φ′)2q, we have that Q′ is given by

Q′ = 2φ′φ′′q + (φ′)3ad(P )q = 2φ′′(φ′)−1Q+ φ′ad(P )Q. (5.15)

Inductively, it is clear that Q(`) will be a linear combination of Q, ad(P )Q, . . . , ad(P )`Q,
since Q′ is a linear combination of Q and ad(P )Q, namely

Q(`)(t) = f`,0Q(t) + f`,1(t)ad(P )Q(t) + · · ·+ f`,`(t)ad(P )`Q(t), (5.16)

where f0, . . . , f` are smooth functions on I. Now, suppose that equation (5.14) holds for
all ` up to k. Then

zso(n)(Q,Q
′, . . . , Q(k+1)) = zso(n)(Q, ad(P )Q, . . . , ad(P )kQ) ∩ zso(n)(Q

(k+1)).

Since Q(k+1) is of the form found in equation (5.16), the right hand side of the above
equation is exactly equal to zso(n)(Q, ad(P )Q, . . . , ad(P )kQ, ad(P )k+1Q).

Proposition 5.2.3. Let (M, g) be a locally homogeneous plane wave. Then

hR,` = zso(E)(Q, ad(P )Q, . . . , ad(P )`Q) n E ∧X−.

Proof. Let us choose an element A of hR,`. By equation (5.13), for any vector X in TM ,
it is clear that AX ∈ X⊥− , since hR,` ⊆ hR. Then

ιX(A · ∇`+1R) = A · ∇X∇`R−∇AX∇`R = A · ∇X∇`R,
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follows from the fact that, for each ` ≥ 0, ∇`R is parallel in the directions of X⊥− . The

above equation implies that A is in hR,`+1 if and only if A is in h∇X+∇`R. Particularly,
when ` = 0, this yields the isomorphism

hR,1 ' hR ∩ h∇+R.

Inductively, we observe that for each ` ≥ 0

hR,` =
⋂̀
i=0

h∇
i
+R, (5.17)

which, by equation (5.13), yields

hR,` = zso(E)(Q, . . . , Q
(`)) n E ∧X−.

Applying Lemma 5.2.2 to each fibre of hR,`, we get the desired isomorphism:

hR,` ' zso(E)(Q, ad(P )Q, . . . , ad(P )`Q) n E ∧X−.

The above proposition allows us to construct examples of locally homogeneous plane
waves with Singer homogeneous index equal to 0. The simplest one, perhaps, is a locally
homogeneous plane wave defined by a Q0 with all of its eigenvalues possessing multiplicity
1. In this case, the centraliser of Q0 in so(n) is trivial and, therefore, hR = hR,∞ = E∧X−.
Here is a non-trivial example:

Example 5.2.4. The locally homogeneous plane wave with Q0 ∈ Sym2(n) and P ∈ so(n)
given by

Q0 =

(
Idn−2 0

0 q

)
and P =

(
0 0
0 p

)
with q ∈ Sym2(2) and p ∈ so(2), such that q has different non-zero eigenvalues and p 6= 0.
The commutator of P and Q0 is

[P,Q0] =

(
0 0
0 [p, q]

)
.

Clearly, P and Q0 do not commute, since the commutator of p and q does not vanish,
and their centralisers in so(n) coincide and are given by

zso(n)(Q0) = zso(n)(P ) =

{(
A 0
0 0

)
: A ∈ so(n− 2)

}
Consequently, hR = hR,∞ or, in other words, the locally homogeneous plane wave defined
by the pair (Q0, P ) has a Singer homogeneous index equal to 0.
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We will show in Theorem 5.2.7 that all locally homogeneous plane wave with kg = 0
are, in a sense, of the same form as in Example 5.2.4.

Lemma 5.2.5. Let Q ∈ gl(n,R) and P ∈ zso(n)(Q)⊥. Then zso(n)(Q, [P,Q]) = zso(n)(Q,P ).

Proof. The inclusion of zso(n)(Q,P ) in zso(n)(Q, [P,Q]) follows directly from the Jacobi
identity. To verify that zso(n)(Q, [P,Q]) ⊆ zso(n)(Q,P ), let us choose an element A, of
zso(n)(Q, [P,Q]). Since [A,Q] = [A, [P,Q]] = 0, by the Jacobi identity we can observe that

0 = [A, [P,Q]] = [[A,P ], Q] + [P, [A,Q]] = [[A,P ], Q],

which implies that [A,P ] ∈ zso(n)(Q). As A ∈ zso(n)(Q, [P,Q]) and P ∈ zso(n)(Q)⊥, the
commutator [A,P ] is in zso(n)(Q)⊥, since

zso(n)(Q, [P,Q]) ⊆ zso(n)(Q) and [zso(n)(Q), zso(n)(Q)⊥] ⊆ zso(n)(Q)⊥.

It follows from this argument that A commutes with P and thus zso(n)(Q, [P,Q]) is equal
to zso(n)(Q,P ), as claimed.

The above lemma will provide us with a useful tool to characterise the locally homo-
geneous plane waves with Singer homogeneous index equal to 0. For the reminder of this
section, we will let P0 denote the zso(n)(Q0)⊥ component of P .

Proposition 5.2.6. Let (M, g) be a locally homogeneous plane wave defined by the pair
(Q0, P ). Then, kg = 0 if and only if zso(n)(Q0) = zso(n)(Q0, P0).

Proof. On a locally homogeneous space, to posses Singer index equal to 0 is equivalent
to have hRp = hR,1p for an arbitrary point p. To prove this proposition, we will show that
hRp = hR,1p if and only if zso(n)(Q0) = zso(n)(Q0, P0).

We have showed in Proposition 5.2.3, that

hR = zso(E)(Q) n E ∧X− and hR,1 = zso(E)(Q, [P,Q]) n E ∧X−.

The choice of a point such that x+ = 0, yields

hRp ' zso(n)(Q0) nRn and hR,1p ' zso(n)(Q0, [P,Q0]) nRn = zso(n)(Q0, [P0, Q0]) nRn.

Lastly, by Lemma 5.2.5 it follows that zso(n)(Q0, [P0, Q0]) = zso(n)(Q0, P0) which implies
that hRp = hR,1p if and only if zso(n)(Q0) = zso(n)(Q0, P0).

To conclude this chapter, for a given Q0, we will characterise explicitly the matrices
P for which the pair (Q0, P ) defines a locally homogeneous plane wave with Singer index
equal to 0. In order to do this, we will make use of Proposition 5.2.6, by finding all
possibles P0 ∈ zso(n)(Q0)⊥ such that zso(n)(Q0) = zso(n)(Q0, P0). To be clear, we will find
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conditions on P0 such that [A,P0] = 0 for all zso(n)(Q0). However, before stating the
theorem, we will set up the notation.

We will let λ1, . . . , λk denote all the different eigenvalues of Q0, i.e. not counting
multiplicities, and Wi will denote the eigenspace associated to the eigenvalue λi. If we
let µ(λi) denote the multiplicity of λi, without loss of generality, we will assume that the
eigenvalues are ordered in a way such that µ(λ1) ≥ µ(λ2) ≥ · · · ≥ µ(λk). Also we will
assume that µ(λ1) ≥ · · · ≥ µ(λ`) > 1 and µ(λ`+1) = · · · = µ(λk) = 1 for some ` and we
will set

Wµ6=1 :=
⊕̀
i=1

Wi and Wµ=1 :=
k⊕

i=`+1

Wi.

Theorem 5.2.7. Let (M, g) be a locally homogeneous plane wave defined by the pair
(Q0, P ). Then, kg = 0 if and only if the projection of P into zso(n)(Q0)⊥, i.e. P0, lies in
so(Wµ=1) ⊆ so(n).

Proof. Let πij : so(n) → so(Wi ⊕Wj) be the natural projection, for i, j = 1, . . . k. The
centraliser of Q0 in so(n) is then given by zso(n)(Q0) ' so(W1) ⊕ · · · ⊕ so(W`) and the
projection of P0 to so(Wi ⊕Wj) will be of the form

πij(P0) =

(
0 pij
−ptij 0

)
for some pij ∈ Wi ⊗Wj.

Choosing an arbitrary element of so(Wi) ⊆ zso(n)(Q0), we have that[(
A 0
0 0

)
,

(
0 pij
−ptij 0

)]
=

(
0 Apij

−ptijA 0

)
=

(
0 0
0 0

)
for all A ∈ so(Wi)

will hold if and only if pij = 0. It follows that in order to get the equality between
zso(n)(Q0) and zso(n)(Q0, P0), we need pij = 0 and thus πij(P0) = 0. Repeating this process
for all i, j = 1, . . . , `, we conclude that πµ 6=1(P0) = 0, where πµ 6=1 : so(n) → so(Wµ6=1) is
the natural projection.

Lastly, writing P0 in blocks as

P0 =

(
0 p
−pt p1

)
, with p ∈ Wµ 6=1 ⊗Wµ=1 and p1 ∈ so(Wµ=1),

reveals that[(
A 0
0 0

)
,

(
0 p
−pt p1

)]
=

(
0 Ap
−ptA 0

)
=

(
0 0
0 0

)
for all A ∈ so(W1)⊕ · · · ⊕ so(W`)

will hold if and only if p = 0. Consequently, zso(n)(Q0) = zso(n)(Q0, P0) if and only if
P0 ∈ so(Wµ=1). Lastly, the claim follows from Proposition 5.2.6.
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5.3 Exactness on Lorentzian symmetric spaces and

plane waves spacetimes

In this section we will study the exactness of the Killing connection on Lorentzian locally
symmetric spaces and locally homogeneous plane waves with Singer index equal to 0.
Particularly, the main result obtained on locally homogeneous plane wave is the following
theorem:

Theorem 5.3.1. The Killing connection of a locally homogeneous plane wave spacetime
with Singer index equal to 0 is exact.

Particular instances of locally homogeneous plane waves with Singer index 0 are the
locally symmetric ones, i.e. Cahen-Wallach spaces (see Remark 5.1.5). We therefore get
the following corollary.

Corollary 5.3.2. The Killing connection of a Cahen-Wallach space is exact.

Lorentzian symmetric spaces were classified in 1970 by Cahen and Wallach [9]. In
their article they proved that if (M, g) is a simply connected Lorentzian symmetric space,
then (M, g) is the product of a Riemannian symmetric space with one of the following:

(1) R with metric −dt2.

(2) The universal covering space of an n-dimensional de Sitter or anti de Sitter space
with n ≥ 2.

(3) An n-dimensional Cahen-Wallach space, with n ≥ 3.

Particularly, any Lorentzian locally symmetric spaces is universally covered by a simply
connected Lorentzian symmetric space. Regarding the exactness of the Killing connection
on Lorentzian locally symmetric spaces, the main result obtained in this section is the
following theorem:

Theorem 5.3.3. Let (M, g) be a Lorentzian locally symmetric space. Then the Killing
connection is exact unless the de Rham-Wu decomposition of (M, g) contains a Hermi-
tian factor and a factor that is flat or a Cahen-Wallach space, in which case the Killing
connection is not exact.

We will first proceed to prove Theorem 5.3.1. In order to achieve this goal, we will
compute explicitly the curvature filtrations of locally homogeneous plane waves spacetimes
and apply the machinery previously described in Sections 1.3 and 4.2. The proof of
Theorem 5.3.1 will be organised as follows: Locally homogeneous plane waves have their



80 Chapter 5. Lorentzian symmetric spaces and plane waves spacetimes

holonomy algebras contained in h0 (see Remark 5.1.1) and it has been proved in [25]
that they are reductive. If in addition we assume that kg = 0, by Proposition 4.2.3 the
curvature filtration of (E,D) will be parallel. Lastly, we will compute their curvature
filtrations and show that they stabilise at the second step and that E2 = E. Then, that
(E,D) is exact would follow from Proposition 1.3.2. Before proceeding to calculate the
curvature filtration of locally homogeneous plane waves, we will set up the notation for
this subsection and recall previous results about locally homogeneous plane waves.

We will let (M, g) be an (n+ 2)-dimensional locally homogeneous plane wave, defined
by the pair (Q0, P ), and we will let P0 denote the projection of P to zso(n)(Q0)⊥. We
will often refer to Q0 and P as endomorphisms of the vector bundle E, or its matrices in
an appropriate orthogonal frame. If the rank of Q is equal to k, we will let H to be the
subbundle of E of rank k with fibre ker(Qp)

⊥ ⊆ Ep at p. The bundle with fibre holp(M, g)
at p will be hol(M, g) = H ∧X− and h0 = zso(E)(Q) n (E ∧X−). We will make use of the
identifications

holp(M, g) '


0 xt 0

0 0 −x
0 0 0

 ∈ so(1, n+ 1) : x ∈ Rk

 =: hol

and

(h0)p '


0 xt 0

0 A −x
0 0 0

 ∈ so(1, n+ 1) : A ∈ zso(n)(Q0) x ∈ Rn

 = zso(n)(Q0) nRn

We will let p := (X− ∧X+⊕ so(E))nE∧X− be the subbundle of so(TM, g) whose fibres
will be identified by the isomorphism

pp '


a xt 0

0 A −x
0 0 −a

 ∈ so(1, n+ 1) : a ∈ R, A ∈ so(n), x ∈ Rn

 = (R⊕ so(n)) nRn.

Lastly, we also remark that holp(M, g) is generated by the curvature endomorphisms and
therefore hol(M, g) coincides with r = {R(X, Y ) : X, Y ∈ TM}.

We are now in condition to proceed to compute the curvature filtration of (E,D).
Firstly, we will calculate the kernel of the Killing curvature and, for the remaining steps
of the curvature filtration, we have proved in Proposition 4.2.2 that for each ` ≥ 1 the
curvature filtration is given by E` = TM ⊕ h`, with

h` = {A ∈ so(TM, g) : [A,B] ∈ h`−1, ∀ B ∈ r}.

Thus, it will only be required to calculate h`.
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Proposition 5.3.4. Let (M, g) be a locally homogeneous plane wave, defined by the pair
(Q0, P ). Then, the kernel of the Killing curvature is KR = HR ⊕ CR, where

HR =

[
0

zso(E)(Q) n E ∧X−

]
and CR =

[
X⊥−
0

]
⊕ R

[
X+

A+

]
,

with A+ given by

A+ = −
∑
i<j

(P0)ijXi ∧Xj

in the case when (M, g) is a regular plane wave and

A+ = − 1

x+ + 1

(
X− ∧X+ +

∑
i<j

(P0)ijXi ∧Xj

)
,

when (M, g) is singular plane wave.

Proof. Recall that the bundle HR is the subbundle of E, defined by elements of the form
(0, A), such that A · R = 0. We have showed, in Proposition 5.2.3, that hR is equal to
zso(E)(Q) n E ∧X−. Therefore, the bundle HR is given exactly by

HR =

[
0

zso(E)(Q) n E ∧X−

]
.

The subbundle CR of KR, complementary to HR is given by elements (X,A) of E, solu-
tions to the equation

∇XR + A ·R = 0.

Notice that if the TM component of (X,A) ∈ CR is in X⊥− , the endomorphism A can be
taken to be equal to 0, since R is parallel in the directions of X⊥− . It is immediate that
X⊥− injects into CR as

X⊥− ↪→
[
X⊥−
0

]
⊆ CR.

It is only left to find an element, A+ in so(TM, g), such that

∇X+R + A+ ·R = 0. (5.18)

At each p ∈ M , Proposition 2.3.6 implies that A+ must be in the normaliser of the
holonomy algebra of (M, g), which is isomorphic to pp, by Corollary 5.1.3. Also, A+ lies
in a complement of hR in so(TM, g) hence, without loss of generality, we can assume that
A+ is of the form

A+ = −a X− ∧X+ +
∑
i<j

Aij Xi ∧Xj =

a 0 0
0 A 0
0 0 −a

 ,
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such that a ∈ R and A ∈ zso(E)(Q)⊥. We note that if (X+, B+) is another element in CR,
A+ −B+ would lie in hR, which implies that A+ will be unique modulo hR.

A closer look at equation (5.18) reveals that

0 = (∇X+R)(X,X+, Y,X+) + (A+ ·R)(X,X+, Y,X+)
= g(Q′X, Y ) + g([A,Q]X, Y ) + 2a g(QX, Y ).

The vector fields X, Y ∈ Γ(E) were arbitrary, hence

Q′ + [A,Q] + 2aQ = 0. (5.19)

must hold. Recall that Q = (φ′)2eφPQ0e
−φP . Then, a direct calculation yields

Q′ = 2φ′′(φ′)−1Q+ φ′[P,Q],

for what equation (5.19) becomes

[φ′P + A,Q] + 2(φ′′(φ′)−1 + a)Q = 0. (5.20)

The endomorphism A+ is unique modulo hR, so we will take

a = −φ′′(φ′)−1 and A = −φ′P0,

since A ∈ zso(E)(Q)⊥, by assumption. In the case that (M, g) is regular plane wave,
φ(x+) = x+ and thus a = 0. It follows that A+ is given by

A+ = −
∑
i<j

(P0)ij Xi ∧Xj.

Lastly, in the case when (M, g) a singular plane wave, φ(x+) = log(x+ + 1) and therefore
a = (x+ + 1)−1 and

A+ = − 1

x+ + 1

(
X− ∧X+ +

∑
i<j

(P0)ijXi ∧Xj

)
.

We can conclude that

CR =

[
X⊥−
0

]
⊕ R

[
X+

A+

]
.

Now we will proceed to calculate h` for ` ≥ 1. We will show that h1 = p and
h2 = so(TM, g), hence h` = so(TM, g) for all ` ≥ 2. Following the notation used in
Section 4.2, and using the identifications established in the beginning of this subsection,
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we have showed that (h0)p is isomorphic to zso(n)(Q0)nRn. For locally homogeneous plane
waves we can observe that, for ` = 1, we have

(h1)p ' {A ∈ so(1, n+ 1) : [A,B] ∈ zso(n)(Q0) nRn ∀ B ∈ hol}.

Choosing arbitrary elements A ∈ so(1, n+ 1) and B ∈ hol, of the form

A =

a xt 0
y Z −x
0 −yt −a

 and B =

0 ut 0
0 0 −u
0 0 0

 ,

we get that their commutator is given by

[A,B] =

−ytu (au+ Zu)t 0
0 yut − uyt −(au+ Zu)
0 0 ytu

 . (5.21)

The first thing to notice is that there are no constraints in a, x or Z for [A,B] to be in
hol, whereas for y we have that it must solve the following equations

ytu = 0 and [yut − uyt, Q0] = 0 for all u ∈ Im(Q0) = ker(Q0)⊥.

The first equation implies that y ∈ ker(Q0), since u ∈ ker(Q0)⊥. This implies that yut−uyt
takes an off diagonal form, but the centraliser of Q0 is block diagonal, hence y needs to be
equal to 0. Consequently, we have showed that (h1)p is isomorphic to (R ⊕ so(n)) n Rn,
which translated into the vector bundles becomes

h1 = p = (X− ∧X+ ⊕ so(E)) n E ∧X−.

Analogously as for the case of h1, we can observe from equation (5.21) that there are not
constraints A ∈ so(1, n + 1) for it to satisfy [A,B] ∈ (R ⊕ so(n)) n Rn for all B ∈ hol,
hence (h2)p ' so(1, n+ 1). We have showed that h2 = so(TM, g).

Proof of Theorem 5.3.1. It was noted in Remark 5.1.1 that the holonomy algebras of
locally homogeneous plane waves are always contained in h0, hence E` = TM ⊕ h` for all
` ≥ 1, by Proposition 4.2.2. We have proved in Proposition 5.3.4 that

h0 = zso(E)(Q) n E ∧X−,

and also we have computed

h1 = (X− ∧X+ ⊕ so(E)) n E ∧X− and h2 = so(TM, g),

which implies that the curvature filtration of (E,D) stabilises at the second step and that
E = E2. By assumption, the Singer index of (M, g) is equal 0, hence that the curvature
filtration is parallel follows from Proposition 4.2.3. Lastly, it follows from Proposition 1.3.2
that (E,D) is exact, since the curvature filtration is parallel and E = E2.
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Before moving into the proof of Theorem 5.3.3, we need to remark that Cahen-Wallach
spaces and of course flat manifolds, have a non-trivial nullity bundle. To deal with prod-
ucts of such spaces we will need to prove a rather technical proposition and, for conve-
nience, we will enunciate a crucial lemma from [12]:

Lemma 5.3.5. [12, Lemma 3] Supouse (M, g) is a Riemannian locally symmetric space
with neither Hermitian not flat factors. If µbc is a 2-form on M so that

∇aµbc −R d
bc aσd, for some uniquely determined 1-form σc,

then ∇bσc = µbc.

Proposition 5.3.6. Let (M1, g1) be a locally symmetric space of dimension > 1 that is
either one of the following:

1. Pseudo-Riemannian of non-zero constant sectional curvature.

2. Non-Hermitian indecomposable Riemannian.

If (M2, g2) is another pseudo-Riemannian locally symmetric space whose Killing connec-
tion is exact, then the Killing connection of (M, g) = (M1, g1)× (M2, g2) is exact.

Proof. The proof is structure as follows: First, we will show that the kernel of D∧ is
contained in Γ(∧1M ⊗ (E1,0 ⊕ E0,1)). Then, by Lemma 4.3.13, the kernel of D∧ would
be contained in Γ(∧1M ⊗K). Since K is a parallel flat sub-bundle of E, D|K is trivially
exact and therefore , by Proposition 1.2.5, D would be exact.

Let Ω α
B ∈ Γ(∧1M ⊗ E) be in the kernel of D∧, with

Ω α
B =

[
ηBC
ψBCD

]
+

[
0

φBCD

]
such that

[
ηBC
ψBCD

]
∈ Γ(∧1M ⊗ (E1,0 ⊕ E0,1))

and φBCD ∈ Γ(∧1M ⊗ ∧1,1M). By hypothesis, M1 is pseudo-Riemannian of non-zero
constant sectional curvature or a non-Hermitian indecomposable Riemannian symmet-
ric space, for which R e

ab c has trivial kernel as an endomorphism acting on 1-forms.
Lemma 4.3.4 guarantees us that R e

ab cφāeb̄ = 0, hence φāab̄ = 0.
Now we will show that φabā = φ(ab)ā. Since ∇[bφc]dē = 0, we have

0 = ∇[a∇bφc]dē = −Re
d[abφc]eē. (5.22)

Fixing X ē, set X ēφabē = hab + ωab, with hab = X ēφ(ab)ē and ωab = X ēφ[ab]ē. Contracting
equation (5.22) with X ē we obtain

0 = Re
d[abhc]e +Re

d[abωc]e. (5.23)
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In the case of (1) that (M1, g1) is pseudo-Riemannian of non-zero constant sectional
curvature, we have that Rabcd is a non-zero constant multiple of gacgbd − gadgbc, so that
equation (5.23) gives

0 = ge[ahc
egb]d − ge[bhcega]d + ge[aωc

egb]d − ge[bωcega]d = −2ge[aωb
egc]d,

since hab is symmetric. But this is nothing else than

0 = ω[abgc]d,

which implies that ωab = 0.
In case (2), when (M1, g1) is non-Hermitian indecomposable Riemannian, tracing equa-

tion (5.23) over bd we have

0 = 2Re
[ahc]e + 2Re

[aωc]e +Rac
efωef . (5.24)

As (M1, g1) is an indecomposable Riemannian symmetric space, it is Einstein and without
loss of generality, we can assume Rab = ±gab. Then equation (5.24) becomes the eigenvalue
equation

Rac
efωef = ±2ωac (5.25)

for a 2-form on M1. It was proven in [12, Theorem 2] that if equation (5.25) holds on M1,
then ωab has to be parallel, and hence (M1, g1) is a Hermitian locally symmetric space
with ωab a constant multiple of its Kähler form. Therefore, by our assumption on (M1, g1),
we obtain as well that ωab = 0.

Hence, in both cases we have X c̄φ[ab]c̄ = ωab = 0. This holds for every vector field X ā

and therefore it must hold that φ[ab]ā = 0.
In a similar way as in Lemma 4.3.13, we know that

ηab = ∇aσb − µab and ψabc = ∇aµbc −R e
bc aσe (5.26)

by the exactness of the Killing connection of (M1, g1) for some σa ∈ ∧1 and µab ∈ ∧2.
From the first equation in (4.30) with ABC = ābc and equation (5.26) we have

∇ā(∇bσc − µbc)−∇bηāc + ψābc + φbcā = 0.

Defining θāb := ηāb −∇āσb, it takes the form

−∇bθāc −∇āµbc + ψābc + φbcā = 0. (5.27)

Symmetrising and skew-symmetrising Equation (5.27) in bc, we obtain

ψābc = ∇[bθ|ā|c] +∇āµbc and φbcā = ∇(bθ|ā|c), (5.28)
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as ψābc = ψā[bc] and φabā = φ(ab)ā. Then

∇āψbcd −∇bψācd = ∇ā(∇bµcd −R e
cd bσe)−∇b(∇[cθ|ā|d] +∇āµcd)

= (∇ā∇b −∇b∇ā)µcd −R e
cd b∇āσe −∇b∇[cθ|ā|d]

= −R e
cd b∇āσe −∇b∇[cθ|ā|d]

(5.29)

The second equation in (4.30) with ABCD = ābcd becomes

∇āψbcd −∇bψācd = −R e
cd bηāe. (5.30)

Combining above equations we obtain

R e
cd b(ηāe −∇āσe) = ∇b∇[cθ|ā|d],

which is nothing but
R e
cd bθāe = ∇b∇[cθ|ā|d]. (5.31)

Since (M1, g1) is a space of non-zero constant sectional curvature or a non-Hermitian in-
decomposable Riemannian symmetric space, by Lemma 5.3.5, the above equation implies
that

∇bθāc = ∇[bθ|ā|c] (5.32)

This means that φbcā = ∇(bθ|ā|c) = 0 and therefore φABC = 0.
We have shown that the kernel of D∧ is contained in Γ(∧1M ⊗ (E1,0 ⊕ E0,1)). Then,

by Lemma 4.3.13, ker(D∧) is contained in Γ(∧1M ⊗K). Moreover, by Proposition 1.2.5,
D is exact, as D|K is exact.

The following example illustrates the need of excluding Hermitian symmetric spaces
in the previous theorem. A different version of it appeared in [12, Proposition 4].

Example 5.3.7. Let (M1, g1) be an indecomposable Riemannian Hermitian symmetric
space and let (M2, g2) be a symmetric space with non-injective curvature R d̄

āb̄ c̄
. In

other words, M2 has a parallel differential 1-form ξā. Then the Killing connection of
(M, g) = (M1 ×M2, g1 + g2) is not exact.

To see this, and here we follow [12, Proposition 4], let ωAB = ωab be the Kähler form
of (M1, g1) with Kähler potential φB = φb, i.e. ∇[AφB] = ωAB, and ξA = ξā be the parallel
vector field on M2. Then we set hAB = φ(AξB),

ψBCD = 2∇[ChD]B = ωCDξB + 1
2

(∇CφBξD −∇DφBξC) and η α
B =

[
hBC
ψBCD

]
.

Then ψ[BCD] = 0, and for the exterior covariant derivative of η α
B it is

D∧Aη
α

B =

[
0

∇[AψB]CD −RCD
E

[AhB]E

]
.
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Since ωAB is parallel, it is ∇A∇BφC = ∇A∇CφB, so that, together with ∇AξB = 0,

∇[AψB]CD = 1
2

(
∇[A∇B]φCξD −∇[A∇B]φDξC

)
= −1

2
RAB

E
[CξD]φE.

On the other hand,
RCD

E
[AhB]E = 1

2
RCD

E
[AξB]φE,

so that, for µAB = φ[AξB],

D∧Aη
α

B =

[
0

RAB
E

[CµD]E +RCD
E

[AµB]E

]
is in the range of the curvature of the Killing connection. However, if η α

B was in the
range of the Killing connection, then there would be a one-form σC = σc + σc̄ such
that hBC = ∇BσC − µBC , and this, by the definition of hBC and µBC , implies that
∇BσC = φBξC = φbξc̄. Hence

0 = ∇bσc = ∇b̄σc = ∇b̄σc̄ and ∇bσc̄ = φbξc̄.

Therefore, σc is a lift of a parallel vector field on M1, and, with M1 being indecomposable
and Riemannian, must be zero. The last equation implies that

0 = ∇[a∇b]σc̄ = ωabξc̄,

which is a contradiction, as the Kähler form and the parallel vector field are both not
zero.

We conclude with the proof of main theorem of this section.

Proof of Theorem 5.3.3. Let (M1, g1)× · · · × (Mk, gk)× (L, gL) be the local de Rham-Wu
decomposition of (M, g) into irreducible Riemannian factors (Mi, gi) and a Lorentzian
factor (L, gL), such that (L, gL) does not contain a non-flat Riemannian factor, that is,
(L, gL) is either one of the following:

1. Indecomposable Lorentzian, i.e. with non-zero constant sectional curvature or a
Cahen-Wallach space.

2. A product of an indecomposable Lorentzian symmetric space with a Euclidean fac-
tor.

3. Minkowski space.

In all three cases, Corollaries 4.3.10 and 5.3.2 imply that the Killing connection of (L, gL)
is exact. Moreover, by [12] the same holds for (Mk, gk), so that we can apply Proposi-
tion 5.3.6 to obtain that the Killing connection is exact for (Mk, gk) × (L, gL), provided
that (Mk, gk) is an irreducible Riemannian symmetric space that is non-Hermitian if L
admits a parallel vector field. Inductively, it follows that the Killing connection of (M, g)
is exact unless it contains a Hermitian factor in its local de Rham decomposition and L
admits a parallel vector field.
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