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Abstract
In this expository review paper, we show that co-kriging, a widely used geostatistical
multivariate optimal linear estimator, has a diverse range of extensions that we have
collected and illustrated to show the potential of this spatial interpolator. In the con-
text of spatial stochastic processes, this paper covers scenarios including increasing
the spatial resolution of a spatial variable (downscaling), solving inverse problems,
estimating directional derivatives, and spatial interpolation taking boundary condi-
tions into account. All these spatial interpolators are optimal linear estimators in the
sense of being unbiased and minimising the variance of the estimation error.

Keywords Co-kriging · Upscaling · Downscaling · Spatial interpolators · Inverse
problems · Estimating directional derivatives · Spatial boundary conditions

1 Introduction

Geostatistical spatial estimators are standard techniques used in spatial analyses in the
geosciences and geographical information systems. They are applied in remote sensing
(Van der Meer 2012), meteorology (Teegavarapu et al. 2015), machine learning (De
Iaco et al. 2022), medical geology (Zhang et al. 2021) and epidemiology (Graham et al.
2004), among others. In this context, co-kriging (Matheron 1963) is a multivariate
geostatistical interpolation method that is used to generate maps of a primary variable
by using experimental data of that variable and experimental data from auxiliary
variables correlated with the former. Without loss of generality, and for simplicity, we
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consider the case of only one auxiliary variable, which is also the most frequent case
encountered in practice.

In geostatistics, an observed value at a spatial location ui is modelled as a realisation
of a random variable Z(ui ). For example, Z may represent a spatial variable, such as
temperature, and ui = {xi , yi } is a spatial location on the plane; thus Z(ui ) models
the temperature at that location. The set of all random variables Z(ui ) in a region χ

of the space ui ∈ χ is a random function, or a random field, Z(u). For χ ⊂ Rd and
d = 2, the problem is two-dimensional, which is the case in the work presented here.

It is assumed that the random function Z(u) is second-order stationary, that is, with
constant spatial mean and covariance function CZ (u,u + h) that depends only on the
vector h

E{Z(u)} = mZ , (1)

CZ (h) = E{Z(u)Z(u + h)} − m2
Z , (2)

CZ (0) = σ 2
Z , (3)

where mZ , σ 2
Z and CZ (h) are the mean, variance and covariance, respectively, of the

random function Z(u) and E{.} is the mathematical expectation operator. Although
the variogram is most often used in geostatistics, only covariances are used in the work
presented here.

Co-kriging is a linear estimator that can be written as (e.g., Journel and Huijbregts
1978; Ver Hoef and Cressie 1993)

Z∗(u0) =
n∑

i=1

λ0i Z(ui ) +
m∑

j=1

β0
j Y

(
u j

)
, (4)

where Z∗(u0) is the estimated value of the primary variable at the spatial location
u0 = {x0, y0}, that is, Z(u0), where u0 is a point on the plane with coordinates x0 as
easting and y0 as northing. {Z(ui ); i = 1, . . . , n} is the set of n experimental data of the
primary variable in Eq. (4), and

{
Y

(
u j

); j = 1, . . . ,m
}
is the set of m experimental

data of the auxiliary variable used in Eq. (4). λ0i is the weight applied to the primary
variable Z(ui ) in the estimation of Z(u0), and β0

j is the weight applied to the auxiliary

variable Z
(
u j

)
in the estimation of Z(u0).

The set of optimal weights
{
λ0i ; i = 1, . . . , n

}
and

{
β0
j ; i = 1, . . . , n

}
are obtained

by minimising the variance of the estimation error

Var
{
Z∗(u0) − Z(u0)

}
, (5)

subject to the unbiasedness condition

E
{
Z∗(u0) − Z(u0)

} = 0. (6)
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Fig. 1 Spatial support of the
random variable. In
two-dimensional problems, the
spatial support is the area to
which the experimental
information is assigned, that is,
the pixel size or the area covered
by the values

The position ofu0 can vary in order to define a grid (raster image), a polygon, lineation,
and so on.

An important aspect to be considered in co-kriging is the spatial support of a random
variable as shown in Fig. 1, which shows six random variables with three different
types of support: point support, •(), and two different sizes of areal support (v and V )

with • << v < V . For example, ZV (u5) represents the mean value of the random
variable over the surface V .

In two dimensions, the spatial support of a random variable is the area over which
the random variable is measured. In remote sensing, for example, the spatial support
may be the pixel size or the spatial resolution of a satellite image. A rain gauge, for
example, measures rainfall on a spatial support that is very small with respect to the
area over which the rainfall is to be estimated, and is sometimes referred to as a point
support. If, for example, rainfall is measured by the variation in the height of water in
a swimming pool, the support would be the area of the swimming pool. If the mean
rainfall over a river basin is known, the spatial support is the area of the river basin.
When using data for the same variable measured on different spatial supports, the
support effect must be taken into account.

Figure 2 provides two-dimensional illustrative representations of the various forms
of co-kriging. Figure 2a is the classical application of (ordinary) co-kriging to estimate
the primary variable at an unsampled spatial location by using the available primary
variable data (shown as open circles) and the available auxiliary data (shown as solid
squares). The cross represents a location at which the primary variable has not been
measured and is to be estimated. The black cross can be located arbitrarily, and thus
the primary variable can be estimated at a grid of locations to generate contour maps
or colour-coded maps. Figure 2b provides an example of block ordinary co-kriging
or upscaling co-kriging where the mean value of the grey square, or any other arbi-
trary polygon, is to be estimated. The areal average represents the mean value of the
primary variable inside the polygon. The black cross at the centre of the square is a
reference point and not necessarily a location to be estimated. The spatial support of

123



390 Mathematical Geosciences (2024) 56:387–413

Fig. 2 a The general ordinary co-kriging case. b Block ordinary co-kriging or upscaling co-kriging. c The
case in which the auxiliary variable has been measured at every location (blue square) of a grid or raster
image. d The objective here is to estimate a directional derivative of the primary variable. e Co-kriging
when the primary variable is to be estimated using the boundary conditions of the problem expressed as
directional derivatives. f An example of inverse problem co-kriging. g Downscaling co-kriging
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Fig. 2 continued

the estimation is larger than the support of the experimental data and is an example of
upscaling the primary variable. In Fig. 2c, the auxiliary variable has been measured
at every location (blue square) of a grid or raster image, such as a satellite image or a
digital elevation model. Often the primary variable is to be estimated on the same grid.
An example of this is estimating rainfall from rainfall data measured in rain gauges
together with altitude data as a secondary variable obtained from a digital elevation
model (a raster image). In Fig. 2d, the objective is to estimate a directional derivative
of the primary variable (open circles) by using the secondary data provided by the
directional derivatives of the variable (arrows). In this way, the gradient of the primary
variable can be estimated, and the auxiliary data could also be the known gradient
values. In the co-kriging problem in Fig. 2e, the primary variable (a scalar) is to be
estimated using the boundary conditions of the problem (no flow and constant value)
expressed as directional derivatives. The derivative perpendicular to the boundary for
the no-flow case and the derivative parallel to the boundary for the constant value case
are null. Figure 2f is an example of inverse problem co-kriging. Although a groundwa-
ter flow model has been used here, the procedure is completely generalisable to other
partial differential equation problems. In inverse problem co-kriging, the parameters
of the model (primary variable) are estimated from the experimental values of the
parameters and the model output values (auxiliary variables). In the groundwater flow
problem, these are log-transmissivity and water head for the primary and auxiliary
variables, respectively. In Fig. 2g, downscaling co-kriging can be used in a setting
such as that shown in Fig. 2a, but it has a clearer application in increasing the spatial
resolution of satellite images where the image is to be estimated at the same resolution
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Fig. 3 The many forms of co-kriging

as that of the secondary information. The spatial resolution to be estimated could even
be a point support.

Extensions of co-kriging considered in the work presented here are as follows:

• Co-kriging to estimate the directional derivative of the primary variable at specified
locations by using the available directional derivative data and the gradient of the
primary variable (Fig. 2d).

• Boundary co-kriging, in which the primary variable is estimated using primary
variable data together with secondary variable boundary conditions in the form of
directional derivatives (Fig. 2e).

• Inverse problem co-kriging, in which the primary and the auxiliary variables are
physically linked by a differential equation with given boundary conditions. Inverse
problem co-kriging is used to solve an inverse problem (Fig. 2f).

• Downscaling co-kriging or estimating the primary variable on a support smaller
than the support of the experimental data of the primary variable (Fig. 2g).

The different aspects of co-kriging are summarised in Fig. 3 and Table 1. In this
paper,without any loss of generality,we consider the interpolationof a primaryvariable
using primary variable data and auxiliary variable data, that is, ordinary co-kriging
with two variables. If there are no available auxiliary variable data, co-kriging reduces
to kriging (1). Ordinary co-kriging assumes that the spatial means of the variables are
constant. If there is a spatially variable mean (a trend) in the primary or secondary
variables, the universal co-kriging estimator is used (2). If the support (or pixel size)
of the estimation is larger than that of the experimental support, then up-scaling co-
kriging is applied (3).When the support to be estimated is smaller than the experimental
support of the primary variable, then downscaling co-kriging is the interpolator (4).
If the primary and auxiliary variables are related by a physical model described by a
partial differential equation, then the interpolator is inverse problem co-kriging (5).
Co-kriging can be adapted to estimate the directional derivatives of a scalar variable by
using the directional derivatives as auxiliary data (6). The boundary conditions of no
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Table 1 The many forms of co-kriging shown as a diversity of interpolation problems

Interpolator Main particularities

Ordinary co-kriging The primary variable is to be estimated on the same
spatial support as the experimental data

Ordinary Kriging There is no auxiliary variable

Universal co-kriging There is a trend, or spatially variable mean, in the primary
and/or auxiliary variable

Upscaling co-kriging The spatial support of the estimate is larger than the
spatial support of the primary variable

Downscaling co-kriging The spatial support of the estimate is smaller than the
spatial support of the primary variable

Inverse problem co-kriging The primary and auxiliary variables are physically linked
by a differential equation

Co-kriging of directional derivatives The variable to be estimated is the directional derivative
of the primary variable

Co-kriging with boundary conditions The auxiliary variable is given in the form of directional
derivatives from the boundary conditions of no-flow and
fixed flow

flowandfixed value can be incorporated into co-krigingwith boundary conditions. The
following sections provide a brief review of ordinary co-kriging before dealing with
upscaling co-kriging, downscaling co-kriging, inverse problem co-kriging, co-kriging
of directional derivatives and co-kriging with boundary conditions.

2 Ordinary Co-kriging

In the simplest case, a spatial variable of interest Z(u), or primary variable, is
to be estimated at a location u0 at which the variable was not sampled. The
variable is to be estimated by using the experimental values of the primary vari-
able {Z(ui ); i = 1, . . . , n} and the experimental values of an auxiliary variable{
Y

(
u j

); j = 1, . . . ,m
}
. The ordinary co-kriging estimator is given in Eq. (4), and

the optimal weights are obtained by minimising the variance of the estimation error
given in Eq. (5) subject to the unbiasedness condition in Eq. (6). The unbiasedness
condition of the co-kriging in Eq. (6) implies that the following conditions must be
satisfied

n∑

i=1

λ0i = 1, (7)

m∑

j=1

β0
j = 0. (8)
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Isaaks and Srivastava (1989) showed that a single unbiased condition in co-kriging

n∑

i=1

λ0i +
m∑

j=1

β0
j = 1, (9)

may be preferable to using the two individual unbiased conditions in (7) and (8).
In particular, the condition in Eq. (8) that the sum of the weights assigned to the
secondary variable must be zero implies that some of the weights must be negative,
which can produce problematic estimates. This problem is avoided by using the unique
unbiasedness condition given in Eq. (9).

The ordinary co-kriging system is given in “Appendix A”. The constant mean
condition in Eq. (1) can be relaxed to consider a spatially variable mean. In the latter
case, the interpolator is given by universal co-kriging, which is reviewed in “Appendix
B”.

The variance of the estimation error, or estimation variance, can bewritten as (Myers
1982, 1983, 1991; Isaaks and Srivastava 1989; Wackernagel 2003)

Var
{
Z∗(u0) − Z(u0)

} =
n∑

i=1

n∑

j=1

λ0i λ
0
jCZ

(
hi j

) +
m∑

i=1

m∑

j=1

β0
i β

0
j CY

(
hi j

)

+
n∑

i=1

m∑

j=1

λ0i β
0
j CZY

(
hi j

) +
m∑

j=1

n∑

i=1

β0
j λ

0
i CY Z

(
h j i

)

− 2
n∑

i=1

λ0i CZ (hi0) − 2
m∑

j=1

β0
j CY

(
h j0

) + CZ (h00), (10)

where CZ (hi j ) is the covariance between the random variables Z(ui ) and Z(u j ) for
which the spatial distance is equal to the vector hi j = u j − ui . In a similar way,
CZY (hi j ) is defined as the cross-covariance between the random variables Z(ui ) and
Y (u j )

CZY
(
hi j

) = E
{
Z(ui )Y

(
u j

)} − mZmY . (11)

Similarly, CY Z (h j i ) is the cross-covariance between the random variables Y
(
u j

)
and

Z(ui ).
If the number of auxiliary data,m, inEq. (4) is zero, thenordinary co-kriging reduces

to ordinary kriging. The main additional requirement is the inclusion of the auxiliary
information in the estimator in Eq. (4). This is a type of statistical inference because,
in addition to the inference of the covariance of the primary variable, it is necessary to
infer the covariance of the auxiliary variable and the cross-covariance between the two
variables, although in special cases some simplifications could be assumed (Journel
1999; Babak and Deutsch 2009). The co-kriging system is given in “Appendix A” and
is known as the ordinary co-kriging system (Journel and Huijbregts 1978; Isaaks and
Srivastava 1989;Deutsch and Journel 1992;Goovaerts 1997;Chilès andDelfiner 1999;
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Remy et al. 2009) and is the most often used in practice, as in mining (e.g., Journel and
Huijbregts 1978), hydrogeology (e.g., Hoeksema et al. 1989), remote sensing (e.g.,
Atkinson et al. 1994), soil science (e.g., Lesch et al. 1995), geophysics (e.g., Doyen
1988), meteorology and climatology (e.g., Pardo-Igúzquiza 1998), among many other
earth science disciplines.

3 Upscaling Co-kriging

A random variable Z(u0)with point support is a random variable at the spatial location
u0 = {x0, y0}, that is, a point in the plane. However, Z(u0) could represent the mean
value of an area (areal support), for example, a square centred at the spatial location
u0 = {x0, y0}. In this case, the value of the random variable at any location is an areal
average and is denoted ZV (u0), referring to the mean value of the random function
Z(u) over the polygon V

ZV (u0) =
∫

V

Z(x)dx . (12)

In the notation ZV (u0), u0 is an arbitrary point denoting the polygon V , for example,
the centroid.

The ordinary co-kriging estimator Z∗
V (u0) is similar to the estimator in Eq. (4), and

the weights are obtained by solving the block co-kriging system, similar to that given
in “Appendix A”, but with a new vector B

B =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

CZ (h1V )
...

CZ (hnV )

CZY (hV 1)
...

CZY (hVm)

1
0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (13)

where CZ (hiV ) is the mean covariance between the ith experimental location and the
polygon V (u0)

CZ (hiV ) ≈ 1

M

M∑

j=1

CZ
(
hi j

)
, (14)

in which the polygon V has been approximated by M points, for example, points on a
regular grid inside the polygon. In the same manner, the cross-covariance CZY (hV j )
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can be defined between the primary variablewith support V and the secondary variable
with point support.

Note that the support of the estimate is equal to, or greater than, the support of the
experimental data. Equation (12) can be made more general by introducing a function
that gives a different weight to every point that defines the support V , for example, in
remote sensing, in which a satellite sensor has a point spread function that, in general,
gives more weight to the centre of a pixel than to the borders.

4 Downscaling Co-kriging

In downscaling co-kriging, the estimation support of the primary variable is smaller
than its experimental support. A typical application is in remote sensing where the
spatial resolution of a satellite image, for a particular spectral band, is to be increased.
The ordinary co-kriging estimator in Eq. (4) can be rewritten to take explicit account
of the support of each random function, as

Z∗
v (u0) =

n∑

i=1

λ0i ZV (ui ) +
m∑

j=1

β0
i Yv(ui ), (15)

where v is the high spatial resolution support (or pixel size), and V is the low spatial
resolution pixel size, expressed as

• << v < V , (16)

where • represents the point support.
The resolution of the downscaling co-kriging system provides the weights of the

estimator given in Eq. (15) and is similar to the co-kriging system given in “Appendix
A”, but takes into account the different supports as, for example, the following matrix
B

B =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

CV v
Z (h10)

...

CV v
Z (hn0)

Cvv
ZY (h01)

...

Cvv
ZY (h0m)

1
0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (17)

CV v
Z (h10) is the covariance between the random variables ZV (u1) and Zv(u0), and

Cvv
ZY (h01) is the covariance between Zv(u0) and Yv(u1).
There are no experimental data for the random variable Zv(u) because it has not

been observed at that high spatial resolution. Thus, the matrix in Eq. (17) cannot be
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experimentally estimated. The solution proposed in Pardo-Igúzquiza et al. (2006) and
Atkinson et al. (2008) is a numerical one that implies convolutions and deconvolutions.
The method consists of proposing covariance models with point support C••

Z (h) that
are introduced in the equation (Matheron 1963)

C̃V V
Z (h) = C••

Z (h) ∗ ρV (h), (18)

which produces the induced covariance model C̃V V
Z (h) that can be compared with the

experimental covariance ĈV V
Z (h). In Eq. (18), ρV (h) is the geometric covariogram in

Matheron (1975), and * is the convolution operator. The iterative process consists in
finding the covariancemodel with point support that minimises the difference between
the covariance with support V induced by Eq. (18) and the experimental covariance
with support V . Once the covariance model with point support has been estimated, the
covariance over any other support can be calculated using Eq. (18). In particular, all
the covariances required in the downscaling co-kriging system can be calculated. A
detailed account of downscaling co-kriging is given in Pardo-Igúzquiza et al. (2006)
and Pardo-Igúzquiza and Atkinson (2007), and a computer program for downscaling
co-kriging is given in Pardo-Igúzquiza et al. (2010). In remote sensing, downscaling
co-kriging can be used for image sharpening and image fusion.

5 Co-kriging as a Solution to the Inverse Problem

Another application of co-kriging is related to the geostatistical solution of the inverse
problem. For a physical system, the direct problem is to predict the system given
the values of the parameters that characterise the system. The inverse problem uses
experimental measurements to infer the values of the parameters that characterise the
system. For example, solving the inverse problem in groundwater hydrology consists
of gathering transmissivity and water head data and taking into account that both
variables are related by the groundwater flow equations (Hoeksema and Kitanidis
1984; Dagan 1985; Ahmed and De Marsily 1993). Transmissivity is the primary
variable that defines the parameters of the system. Water head, the output of the direct
problem, is the auxiliary variable. The co-kriging solution of the inverse problem
consists of using co-kriging with a cross-covariance between transmissivity and water
head obtained from theoretical considerations by taking into account the groundwater
flow equations and the aquifer boundary conditions; in particular, taking into account
the steady-state groundwater flow equations (Kitanidis 1997)

∂Z(u)

∂x

∂Y (u)

∂x
+ ∂Z(u)

∂ y

∂Y (u)

∂ y
+ ∂2Y (u)

∂x2
+ ∂2Y (u)

∂ y2
= 0, (19)

where Z(u) is the logarithm of transmissivity and Y (u) is the water head. The cross-
covariance between the primary and auxiliary variables in Eq. (19), together with
any boundary conditions, can be found analytically or by a Monte Carlo methodology
(Kitanidis 1997). Dagan’s (1985) analytical solution for Eq. (19) is given in “Appendix
C”.
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6 Co-kriging for Estimating Directional Derivatives

For some problems in the geosciences and in other disciplines, the interest is in calcu-
lating the directional derivative of a given scalar variable. For example, the hydraulic
gradient is a vector variable, the two components of which are the directional deriva-
tives of thewater head in the directions of the principal axes. Co-kriging can be adapted
for this type of estimation. Furthermore, by using linear systems theory, the covari-
ance of the directional derivative and the cross-covariance between the directional
derivative and the scalar variable can be theoretically obtained from the covariance of
the scalar variable. Other earth science applications can be found in terrain analysis,
remote sensing, geophysics and meteorology, among others.

The directional derivative of the random function Z(u) can be estimated by extend-
ing the trend model in equation (B2) to distinguish two components in the residual
R(u), namely a correlated stochastic component R̃(u), and a non-correlated stochastic
component N (u). The geostatistical model is then

Z(u) = m(u) + R̃(u) + N (u). (20)

There is no correlation between the three components in Eq. (20). The non-
correlated stochastic component N (u) is a zero-mean random function with no spatial
correlation and is discontinuous at every point, is non-differentiable, and represents
the variability associated with a second-order stationary nugget covariance CN (h)

CN (h) =
{
C0 |h| = 0
0 |h| > 0

. (21)

In applications, there will be a component N (u) if there is a nugget variance in the
experimental covariance.

The correlated stochastic component R̃(u) is a zero-mean random function with
spatial covariance C̃(h). Thus, the spatial correlation C(h) of the random function
Z(u) is given by

C(h) =
{
C0 + C̃(0) |h| = 0

C̃(h) |h| > 0
. (22)

A random function, Z̃(u), that is continuous and differentiable can be obtained
from Z(u) by filtering the nugget component,

Z̃(u) = m(u) + R̃(u), (23)

the covariance of which is C̃(h). The first requirement is for Z̃(u) to be differentiable
for which the trend, m(u), must be differentiable (Parzen 1972), which is the case
for the polynomial drift considered here. A second requirement is that the covariance,
C̃(h), must be at least twice differentiable. In particular, the Gaussian covariance and
the Matérn covariance (Pardo-Igúzquiza et al. 2009) are appropriate.
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We use De{Z̃(u)} to denote the directional derivative of Z̃(u) in the direction
described by the unitary vector e = cos(ϕ)i+sin(ϕ)j, where ϕ is the counterclockwise
angle between the unitary vector e and the X axis, and i and j are the unitary vectors
of the coordinate axes X and Y . The directional derivative is defined as

De

{
Z̃(u)

}
= lim

h→0

[
Z̃(u + he) − Z̃(u)

h

]
. (24)

The gradient of a scalar random function Z̃(u), denoted by ∇ Z̃(u), is a vector field
defined at any point u by its components

∇ Z̃(u) =
(
Di

{
Z̃(u)

}
, Dj

{
Z̃(u)

})
. (25)

The relationship between the directional derivative and the gradient is (Bradley and
Smith 1989; Meyer et al. 2001)

De

{
Z̃(u)

}
= ∇ Z̃(u) · e, (26)

where a · bis the scalar product of the vectors a and b.
Direct measurements of the gradient can be incorporated in the estimation of the

directional derivative by using co-kriging

D̂e0

{
Z̃(u0)

}
=

n∑

i=1

λ0i Z(ui ) +
m∑

j=1

β0
j De j

{
Z̃
(
u j

)}
, (27)

where D̂e0{Z̃(u0)} is the estimator of the directional derivative De0{Z̃(u0)} at the
spatial location u0 in direction e0 using n experimental values Z(ui ) and m experi-
mental measurements of the directional derivatives of Z(u). De j {Z̃(u j )} provides the
auxiliary information in the same way that Y (u j ) does in Eq. (4).

The concept of estimating the gradient by ordinary kriging is given in Philip and
Kitanidis (1989), and the estimation of the directional derivative by co-kriging is
given in Pardo-Igúzquiza and Chica-Olmo (2004, 2007) in which co-kriging has been
extended to take into account the trend that is observed in many spatial variables when
considered at the regional scale. This is the case, for example, for the piezometric
level or the water head in an aquifer, the rainfall in an area of rough orography, and
the trend shown by geophysical variables associated with a sedimentary basin or a
tectonic structure.

7 Co-kriging Taking Boundary Conditions into Account

This extension of co-kriging is related to the previous one, but the variable of inter-
est is not the derivative of the primary variable but rather the primary variable itself.
Thus, boundary conditions can be included in the co-kriging estimation by expressing
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the boundary conditions in the form of directional derivatives that play the role of
the auxiliary variable. For example, no-flow boundary conditions in an aquifer indi-
cate that the directional derivatives of water head perpendicular to the boundary are
null. In a similar manner, constant-head boundary conditions indicate that the direc-
tional derivatives parallel to the boundary are null (Fig. 1f). Thus, the new co-kriging
estimator is given by

Z̃∗(u0) =
n∑

i=1

λ0i Z(ui ) +
m∑

j=1

β0
j De0

{
Z̃
(
u j

)}
. (28)

Although the right-hand sides of Eqs. (27) and (28) are the same, the weights will
be different because the co-kriging systems are different. For example, the B matrix
is given by

B =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

C̃{h10}
...

C̃{hn0}
C̃∗
e0{h10}

...

C̃∗
e0{hm0}
f1(u0)

...

fL(u0)

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (29)

The implementation of the methodology is given in detail in Kuhlman and Pardo-
Igúzquiza (2010).

8 Illustrative Examples

We use a simulation to illustrate the different applications of co-kriging because,
when the target field is known, the true errors can be evaluated and assessed. A 100
× 100 grid of log-transmissivity values was simulated using the spectral simulation
method for generating realisations of correlated random fields (Pardo-Igúzquiza and
Chica-Olmo 1994a, b). A realisation of a random field of the log-transmissivity of an
aquifer is shown in Fig. 4a. The auxiliary variable shown in Fig. 4b was obtained from
Fig. 4a by adding noise (an uncorrelated variable) so that both random fields reproduce
the same covariance model but with a nugget variance in Fig. 4b. The coefficient of
correlation between the realisations in Fig. 4a, b is 0.718. Another auxiliary variable
is provided in Fig. 4c which was obtained as the solution of the direct problem of the
groundwater flow in an unconfined aquifer given Eq. (19) and the boundary conditions
shown in Fig. 2f, with H1 = 400 m and H2 = 300 m and using as parameters the
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Fig. 4 a Realisation of a random field representing the primary variable. b Realisation of the auxiliary
variable obtained as a noisy version of (a). c Realisation of a random field obtained as the solution of
a direct problem in groundwater flow for which (a) is the parameter field. d Gradient field of (c). This
representation consists of small arrows that represent the magnitude and orientation of the gradient vector
field. Each of the four realisations comprises 100 × 100 elements

log-transmissivity field given in Fig. 4a. The gradient field of the scalar field of water
head data in Fig. 4c is shown in Fig. 4d.

The experimental data were obtained by randomly sampling the gridded data in
Fig. 4. In this way 100, 300, 300 and 100 data are sampled for log-transmissivity,
porosity, water head and gradient. respectively. and are shown in Fig. 5a to d, respec-
tively. The covariance models of log-transmissivity, porosity, and water head were
inferred by maximum likelihood (Pardo-Igúzquiza 1997) assuming a constant mean
and exponential covariance for log-transmissivity and porosity. A linear trend and
a Gaussian covariance were assumed for the water head data. The cross-covariance
between log-transmissivity andporositywas estimatedusing sgems (Remyet al. 2009).
The estimated covariance parameters are given in Table 2.

When there are no auxiliary data, ordinary co-kriging reduces to ordinary kriging.
The kriging estimates of the log-transmissivity field in Fig. 4a obtained by using only
the experimental data of the primary variable (Fig. 5a) are shown in Fig. 6a. Validation
statistics were used to compare the target field (Fig. 4a) and the interpolated field
(Fig. 6a). The validation statistics used are the mean error (ME), mean squared error
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Fig. 5 Experimental data obtained by sampling from realisations on a 100× 100 grid. a 100 data obtained by
random sampling from Fig. 2a. b 300 data obtained by random sampling from Fig. 2b. c 300 data obtained
by random sampling from Fig. 2c. d 100 data obtained by random sampling from Fig. 2d

(MSE) and the mean absolute error (MAE),

ME = 1

N

N∑

i=1

(
Z∗(ui ) − Z(ui )

)
, (30)

MSE = 1

N

N∑

i=1

(
Z∗(ui ) − Z(ui )

)2
, (31)

MAE = 1

N

N∑

i=1

∣∣Z∗(ui ) − Z(ui )
∣∣, (32)

where (ui ) is the target or true value at spatial location ui , Z∗(ui ) is an interpolated
or estimated value at spatial location ui , σ 2∗ (ui ) is the estimation variance at spatial
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Table 2 Estimated parameters of covariances and cross-covariances of the experimental data using
MLREML (Pardo-Igúzquiza 1997) for the covariances and sgems (Remy et al. 2009) for the cross-
covariance

Spatial variable(s) Type Nugget variance Partial sill Range

Covariance of
log-transmissivity

Exponential
k = 0

0 2.07 9.28

Covariance of porosity Exponential
k = 0

4.38 5.35 10.59

Cross-covariance between
log-transmissivity and
porosity

Exponential
k = 0

0 3 10.00

Covariance of water head Gaussian
k = 1

0.25 1.99 8.41

The order (k) of the trend implies a constant spatial mean (k = 0) or a linear trend (k = 1). The linear trend
estimated by maximum likelihood for the water head is m(x, y) = 400.65 − 0.999x − 0.009y

Fig. 6 Interpolated fields on a 100 × 100 grid. a Ordinary kriging map using the data in Fig. 3a. b Ordinary
co-kriging map using the data in Fig. 3a and b. c Inverse problem universal co-kriging map using the data
in Fig. 3a and c. d Gradient co-kriging using the data in Fig. 3a and d
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Table 3 Validation statistics for
the estimated log-transmissivity
for the different interpolators:
ordinary kriging (O-K), ordinary
co-kriging (O-COK) and inverse
problem universal co-kriging
(IP-U-COK)

Interpolator ME MSE MAE

O-K −0.061 1.078 0.828

O-COK −0.072 0.932 0.766

IP-U-COK −0.0772 1.115 0.839

Table 4 Validation statistics
using the direct problem of
Eq. (18). Ordinary kriging
(O-K), ordinary co-kriging
(O-COK) and inverse problem
universal co-kriging
(IP-U-COK)

Interpolator ME MSE MAE

True field 0 0 0

O-K 0.218 2.591 1.239

O-COK 0.138 1.871 1.041

IP-U-COK 0.163 2.117 1.135

location ui , and N is the number of spatial locations at which the variable was esti-
mated. For an unbiased model, ME should be zero. MSE and MAE should be as small
as possible.

Table 3 shows the validation statistics for the estimation of the log-transmissivity
field by ordinary kriging (O-K) using only log-transmissivity data (Fig. 5a); ordinary
co-kriging (O-COK) using log-transmissivity data (Fig. 5a) and the auxiliary porosity
variable (Fig. 5b); and inverse problem universal co-kriging (IP-U-COK) using the
water head data (Fig. 5c) as the secondary variable. The latter case is a different way
of incorporating a different type of auxiliary data. A comparison of the MSE values
shows that co-kriging is a clear improvement over kriging, but that is not the case for
IP-U-COK. The latter case should be compared with the output of the direct problem
of estimating water head from a log-transmissivity field, the results of which are given
in Table 4, which clearly show the improvement of IP-U-COK over kriging.

When estimating water head (Fig. 4c) as the primary variable, the universal kriging
results using the experimental data in Fig. 5c can be compared with those of universal
co-kriging taking the boundary conditions in Fig. 2e into account. This gives the esti-
mated field in Fig. 7a. Table 5 lists the validation statistics that show the improvement
of co-kriging with boundary conditions. With respect to the estimation of gradients,
Fig. 6d shows the estimated gradient field that can be compared with the true gradient
field in Fig. 4d to obtain the validation statistics given in Table 6. Finally, the log-
transmissivity image in Fig. 4a has been degraded to a resolution image by a factor
of 4 and to a high-resolution image by a factor of 2. Similarly, the auxiliary image in
Fig. 4b has been degraded to a high-resolution image by a factor of 2. The purpose of
downscaling co-kriging is to estimate a high-resolution image of the primary variable
by using the low-resolution image of the primary variable and the high-resolution
image of the auxiliary variable. The results are shown in Fig. 7, and the validation
statistics are given in Table 7. Whilst every study must be considered in its own right,
the results shown here demonstrate the potential of the methodology. Each estimation
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Fig. 7 Interpolated fields on a 100 × 100 grid. a Boundary co-kriging map using the data in Figs. 1e and
3a. b Low-resolution image from Fig. 2a. c High-resolution image from Fig. 2a. d High-resolution image
estimated by downscaling co-kriging

Table 5 Validation statistics of
the estimated water head for the
different interpolators

Interpolator ME MSE MAE

U-K −0.049 1.165 0.894

B-COK −0.054 1.015 0.717

Universal kriging (U-K) and co-kriging with boundary conditions (B-
COK)

Table 6 Validation statistics for
the estimated gradient
(directional derivatives in the X
direction and the Y direction)

Derivative ME MSE MAE

X direction 0.001 0.162 0.306

Y direction −0.010 0.095 0.232

Table 7 Validation statistics for
downscaling co-kriging
(DS-COK) for the result shown
in Fig. 7d

Interpolator ME MSE MAE

DS-COK 0.123 0.959 0.788
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is accompanied by a map of the associated estimation variance which can be used as
a measure of the uncertainty of the estimates.

9 Conclusions

The ordinary co-kriging estimator that has traditionally been used to estimate a primary
variable using data from that variable and data from an auxiliary variable can be
modified to take into account a variety of aspects of significant practical interest as
shown in Fig. 3. These aspects include accounting for different supports of the primary
and auxiliary variables and the mathematical link between the primary and auxiliary
variables which provide a means of solving problems such as the following:

• Downscaling co-kriging to increase the spatial resolution of the primary variable
• Solving inverse problems
• Estimating directional derivatives and hence the gradient of a scalar variable
• Including boundary conditions in the estimation of a scalar variable.

This is not an exhaustive list of applications, and more are likely to arise in future
research. In addition, there are cases in which diverse forms of co-kriging are required
because of the type of data. Examples include indicator co-kriging (Pardo-Igúzquiza
and Dowd 2005), compositional co-kriging (Pardo-Igúzquiza et al. 2015) and estimat-
ing spatial factors or spatial components using factorial co-kriging (Pardo-Igúzquiza
and Dowd 2002).

All the methods discussed here include an evaluation of the uncertainty of the esti-
mates given by the estimation variance in Eq. (9). For each map of estimates, there
is a corresponding map of the associated estimation variance. Among other applica-
tions, the evaluation of uncertainty is important for establishing interval estimates, for
optimal sampling and for the propagation of the uncertainty of measurements.
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Appendix A. Ordinary co-kriging

The co-kriging system can be written in matrix form as

Cλ = B, (A1)

with

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

C =

CZ (h11) · · · CZ (h1n) CZY (h11) · · · CZY (hnm) 1 0
...

. . .
...

...
. . .

...
...

...

CZ (hn1) · · · CZ (hnn) CZY (hn1) · · · CZY (hnm) 1 0
CY Z (h11) · · · CY Z (h1n) CY (h11) · · · CY (h1m) 0 1
...

. . .
...

...
...

...
...

...

CY Z (hm1) · · · CY Z (hmn) CY (hm1) · · · CY (hmm) 0 1
1 · · · 0 0 0 0
0 · · · 1 1 0 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(A2)

λ =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

λ01
...

λ0n
β0
1
...

β0
m

μ1

μ2

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, B =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

CZ (h10)
...

CZ (hn0)
CZY (h01)

...

CZY (h0m)

1
0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(A3)

where μ1 and μ2 are two Lagrange multipliers or parameters in the minimization of
the estimation variance subject to the constraints given in Eqs. (7) and (8). Note that
CZY

(
hi j

) = CY Z
(
h ji

)
always so that the matrix C is symmetric.

The solution of the co-kriging system

λ = C−1B, (A4)

provides the weights required in the estimator in Eq. (4).
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Appendix B. Universal cokriging: spatially variable mean

The primary variable or the auxiliary variable or both variables often show a spatial
trend or a spatially variable mean. In this case, Eq. (1) should be replaced by

E{Z(u)} = m(u), (B1)

and the geostatistical model is a random function Z(u) with two components (Wack-
ernagel 2003)

Z(u) = m(u) + R(u), (B2)

wherem(u) is a deterministic component that represents the trend or spatially variable
mean, i.e., a smooth component of low frequency variability. Equation (B1) expresses
the trend as the mathematical expectation of the random function, which is usually
modelled as a low order polynomial, although there are other alternatives (see for
example Brochu and Marcotte 2003)

m(u) =
p∑

i=0

bi fi (u), (B3)

where {bi ; i = 0, ..., p}: is a set of coefficients to be estimated. { fi (u); i = 0, ..., p}:
is a set of known base functions, usually monomial, of the co-ordinates. For example,
{1, x, y, xy, x2, y2} are the six base functions for the case of a quadratic polynomial
trend on the plane.

R(u) is the residual, a second order stationary random function (Chilès and Definer,
1999) with zero mean, covariance CR(h) and variogram γR(h) = CR(0) − CR(h).
The residual represents a component of high frequency variability around the trend.
Note that the covariance of the residual R(u) is identical to the covariance of the
random function Z(u)

CR(h) = E{R(u)R(u + h)}
= E{[Z(u) − m(u)][Z(u + h) − m(u + h)]} = CZ (h) (B4)

Also note that the case of a constant mean in Eq. (1) is accommodated in the
polynomial drift model of equation (B3) by setting, p = 0, b0= mZ and f0 = 1.

The universal kriging estimator is equal to the ordinary co-kriging estimator of
Eq. (4) but the weights are obtained from the universal co-kriging system. As an
example, when there is a linear drift only in the primary variable, the co-kriging
system must include the following unbiasedness conditions

n∑

i=1

λ0i = 1, (B5)
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n∑

i=1

λ0i xi = x0, (B6)

n∑

i=1

λ0i yi = y0, (B7)

m∑

j=1

β0
j = 0 (B8)

The universal co-kriging system in matrix form is similar to equations (A2) and
(A3) and can be found elsewhere (for example Goovaerts 1997). Universal co-kriging
can be found in the geostatistical literature (Goovaerts 1997; Olea 1999; Chilès and
Delfiner 1999).

Appendix C. Co-kriging as a solution of an inverse problem

For an unbounded aquifer, in which the water head has a linear trend along one of the
main co-ordinate axes and using an exponential covariance for the log-transmissivity,
Dagan (1985) found that the cross-covariance between log-transmissivity and water
head is equal to

CZY (h) = σ 2
Y b1


hx
h2

[
1 − (1 + h) exp(−h)

]
, (C1)

where σ 2
Y : is the variance, or total sill, of the log-transmissivity Z(u). � : is the

range of the exponential covariance of log-transmissivity Z(u). The covariance of
log-transmissivity is

CZ (h) = C0 + C1 exp(−h/
). (C2)

σ 2
Y = C0 + C1. (C3)

where C0 : is the nugget variance. C1 : is the partial sill variance. h = (
hx , hy

) =(
x1−x2

� ,
y1−y2

�
)
is the distance vector standardized by the range of log-transmissivity.

h =
√
h2x + h2y is the magnitude of the standardized distance vector and m(x, y) =

b0 +b1x is the linear trend of the water head which, in this case, is an east–west trend.
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Appendix D. Co-kriging for estimating directional derivatives

In the estimation of directional derivatives, the non-bias conditions for the co-kriging
estimator are

n∑

i=1

λi f
(ui ) +
m∑

j=1

w j De j
{
f


(
u j

)} = De0{ f
(u0)}, 
 = 0, . . . , p, (D1)

and the estimation variance is

Var
{
D̂e0

{
Z̃(u0)

}
− De0

{
Z̃(u0)

}}

= C̃∗∗
e0 (0) +

n∑

i=1

n∑

j=1

λiλ jC
(
hi j

) +
m∑

k=1

m∑


=1

wkw
C̃
∗∗
e0 (hk
)

+ 2
n∑

s=1

m∑

t=1

λswt C̃
∗
e0(hst ) − 2

n∑

i=1

λi C̃
∗
e0(hi0) − 2

m∑

j=1

w j C̃
∗∗
e0

(
h j0

)
, (D2)

where De0{ f�(u0)} is the directional derivative of the basis functions f�(.) evaluated
in direction e0 for position u0. C(h) is the covariance of Z(u). C̃(h) is the covariance
of Z̃(u) = m(u)+ R(u), that is, the covariance C(h) but without the nugget variance.
The covariance of the directional derivative of the random function is

C̃∗∗
e0 (h) = Cov

{
De0

{
Z̃(u)

}
, De0

{
Z̃(u + h)

}}
= −D2

e0

{
C̃(h)

}
, (D3)

and is equal to minus the second directional derivative of the covariance C̃(h). Finally,
the cross-covariance between the random function Z̃(u) and its directional derivative
is given by

C̃∗
e0(h) = Cov

{
Z̃(u), De0

{
Z̃(u + h)

}}
= −De0

{
C̃(h)

}
(D4)

and is equal to minus the directional derivative of the covariance C̃(h).
The last two results are from linear systems theory (Parzen 1972; Papoulis 1984)

and it can be concluded that the only covariance that must be inferred experimentally
is the covariance C̃(h) of the scalar variable.

The optimal weights in Eq. (26) are obtained byminimizing the estimation variance
of equation (D2) subject to the unbiased conditions in equation (D1). Thus, the optimal
weights are obtained by solving the co-kriging system C = λB which in matrix form
are
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C =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

C(h11) · · · C(h1n) C̃∗
e0 (h11) · · · C̃∗

e0 (h1m ) f1(u1) · · · fL (u1)
.
.
.

. . .
.
.
.

.

.

.
. . .

.

.

.
.
.
.

. . .
.
.
.

C(hn1) · · · C(hnn) C̃∗
e0 (hn1) · · · C̃∗

e0 (hnm ) f1(un) · · · fL (un)

C̃∗
e0 (h11) · · · C̃∗

e0 (h1n) C̃∗∗
e0 (h11) · · · C̃∗∗

e0 (h1m ) De0 { f1(u1)} · · · De0 { fL (u1)}
.
.
.

. . .
.
.
.

.

.

.
. . .

.

.

.
.
.
.

. . .
.
.
.

C̃∗
e0 (hm1) · · · C̃∗

e0 (hmn) C̃∗∗
e0 (hm1) · · · C̃∗∗

e0 (hmm ) De0 { f1(um )} · · · De0 { fL (um )}
f1(u1) · · · f1(un) De0 { f1(u1)} · · · De0 { f1(um )} 0 · · · 0
.
.
.

. . .
.
.
.

.

.

.
. . .

.

.

.
.
.
.

. . .
.
.
.

fL (u1) · · · fL (un) De0 { fL (u1)} · · · De0 { fL (um )} 0 · · · 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(D5)

λ =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

λ01
...

λ0n
β0
1
...

β0
m

μ1
...

μL

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, B =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

C̃∗
e0{h10}

...

C̃∗
e0{hn0}

C̃∗∗
e0 {h10}

...

C̃∗∗
e0 {hm0}

De0{ f1(u0)}
...

De0{ fL(u0)}

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(D6)
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