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Abstract

General Vision and Language Methods in Real Applications: A Focus on
Vision-and-Language Navigation

by Yanyuan Qiao

The field of Vision and Language has aroused significant interest and holds tremendous
potential for real applications, particularly in the area of Vision-and-Language Nav-
igation (VLN). The VLN task enables robots to understand navigation instructions
expressed in natural language, perceive the environment, and execute corresponding
actions, making it applicable in various scenarios such as home assistants. Despite
considerable progress in advancing the development of VLN, several challenges persist
and warrant further attention. These challenges include the lack of pre-training mod-
els that emphasize temporal information specific to VLN, the necessity for parameter-
efficient transfer learning techniques to effectively utilize pre-training models, and the
exploration of Large Language Models (LLMs) to leverage their extensive knowledge
for enhanced performance in VLN. In this thesis, we propose a series of new methods
to address these challenges. First, we introduce a history-enhanced and order-aware
pre-training and fine-tuning paradigm for VLN. We design three VLN-specific proxy
tasks: Action Prediction with History (APH) task, Trajectory Order Modeling (TOM)
task and Group Order Modeling (GOM) task. Furthermore, we develop a memory
network to address the representation inconsistency of history context between the
pre-training and the fine-tuning stages. Second, we propose the first study exploring
Parameter-Efficient Transfer Learning (PETL) methods for VLN tasks and propose
a VLN-specific PETL method named VLN-PETL. Specifically, we design two PETL
modules: Historical Interaction Booster (HIB) and Cross-modal Interaction Booster
(CIB), which are integrated with existing PETL methods such as Adapter and LoRA
to form the comprehensive VLN-PETL framework. Finally, we present a March-in-
Chat (MiC) model, enabling conversations between the REVERIE agent and an LLM
proactive planning of future steps. This model contains three modules: Goal-Oriented
Static Planning (GOSiP) module, Scene-Oriented Dynamic Planning (SODiP) mod-
ule, and one Room-and-Object Aware Scene Perceiver (ROASeP) module. Through
Extensive quantitative and qualitative experiments, we demonstrate the efficiency and
potential of our contributions to advancing the field of VLN.

http://www.adelaide.edu.au
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Chapter 1

Introduction

Vision-and-Language plays a vital role in our daily life and aroused huge interest in
deep learning research [124, 72]. The synergy between vision and language brings great
hope for advancing the frontier of artificial intelligence and creating intelligent agents,
which can cooperate in a wide range of tasks and applications to assist human life [114].
The development of vision and language could bring various real applications, such
as Visual Question Answering [6], Image Captioning [4], Referring Expression [128],
Text-to-Image Synthesis [100, 137], especially in the research of Vision-and-Language
Navigation (VLN) [28, 5]. Vision-and-Language Navigation task aims at allowing
the robot to understand navigation instructions expressed in natural language and to
perform related actions.

In this chapter, we first provide a comprehensive overview of the VLN task, in-
cluding its problem definition and an overview of related works. Subsequently, we
delve into the motivation of this thesis and identify existing challenges for the VLN
task. In light of these challenges, we present our contributions and provide an outline
of the thesis structure.

1.1 Background

In the Vision-and-Language Navigation task, an agent is required to follow natural
language instructions given by the human (oracle) and navigate to reach the goal
destination or find the target object. The agent first receives natural language in-
structions and obtains observations from the environment, and then takes actions to
interact with the environment and get rewards that reflect the underlying task. The
process of navigation of the agent is shown in Figure 1.1.

To be specific, the agent is required to predict the next step action based on
natural language instruction and current visual observation. The environment is an
undirected graph G = {V, E}, where V = {Vi}Ki=1 denotes K navigable nodes, and E
denotes connectivity edges. At first, the agent is positioned with the initial state s0 and
given a natural language instruction X = ⟨x1, x2, . . . xL⟩, where L is the instruction
length, containing a sequence of L words. At each time step t, the agent perceives
a panoramic view as the visual observation. The panoramic view contains 36 single
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Agent

Environment

Give me a book.

Instruction

Oracle

Figure 1.1. Illustration of Vision-and-Language Navigation Task.

views from 12 surrounding angles, each with 3 camera poses (up, down, horizon). Each
view representation is the concatenation of its visual and orientation representation
feature. Then the agent predicts the next action by selecting a navigable node from
the candidate list. The agent navigates the environment sequentially and generates
a trajectory τ = ⟨v1, v2, . . . vT ⟩ of length T . The agent navigates in the environment
until the special [STOP] action is selected, or the agent reaches a pre-defined maximum
trajectory length.

In the past few years, VLN has received great attention and a large number of
methods have been proposed to handle VLN [39, 38, 93, 67, 65] task. Early works were
based on encoder-decoder frameworks [5, 76, 24]. While subsequent works approached
VLN research in a variety of ways, such as data augmentation [24, 69, 59] to improve
the robustness of the agent, progress monitoring [76, 120, 136] to estimate the com-
pleteness of instruction-following, and back-tracking [77, 71] to help the agent learn
to decide when to perform backtracking depending on the state of the agent, etc. Re-
cently, BERT-based pre-training methods significantly improved agents’ performance
on VLN tasks [61, 29]. These methods follow the pretrain-and-finetune paradigm to
solve VLN tasks, which pretrain a VLN model on large instruction-and-trajectory data
with specifically designed proxy tasks and finetune a full model for each downstream
VLN task. VLNBERT [80] first proposes the pretraining-and-finetuning paradigm to
solve different downstream VLN tasks, which introduces an extra proxy task of scoring
path-instruction pairs in addition to the Masked Language Modeling proxy task. By
learning the matching degree between the instructions and the panoramic image se-
quence, the agent will select the most appropriate path according to the instructions.
PREVALENT [30] introduces a single-step action prediction proxy task, aiming to
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learn action-oriented generic visio-linguistic representation. HAMT [15] encodes past
panoramic observations as historical information explicitly.

1.2 Motivation

While there have been numerous works that have made contributions to advancing
the development of the VLN task, however, there still remain several challenges that
need to be addressed:

• One of the main challenges is the lack of a pre-trained model that emphasizes
temporal information specifically designed for the VLN task. Since VLN is
a Partially Observable Markov Decision Process (POMDP), where the agent
relies heavily on historical experiences to make the next action decision. In
addition, VLN is a spatiotemporal task that is sensitive to the sequence order of
the trajectory. Thus the ability of temporal order reasoning is also beneficial to
action decision-making. Nevertheless, existing methods do not explicitly capture
temporal order information from either instructions or visual observations.

• When using the pre-trained models, though these pretraining-and-finetuning
methods have attempted to utilize vital historical knowledge for action predic-
tion, the exploration is still limited due to the gap between the pretraining and
fine-tuning stages. Meanwhile, these methods face the same challenging during
the fine-tuning stage: oversized parameters for training and storage. Specifically,
all parameters of the full pre-trained model will be trained and stored for each
downstream VLN task. This would hinder the application of VLN in real-world
scenarios since realistic robots will have difficulty in training and storing such
huge parameters for every new task. It is essential to study parameter-efficient
transfer learning (PETL) for VLN tasks.

• The emergence of Large Language Models (LLMs) has brought significant po-
tential for research on VLN, since LLMs contain rich common sense knowl-
edge, allowing for the acquisition of deeper information through prompt learning
rather than relying on fine-tuning. In addition, navigating through high-level
instructions poses another formidable task in the VLN domain. For instance,
the instructions of REVERIE are closer to what we would say to an intelli-
gent domestic robot in daily life in terms of the instruction length and logic,
which is usually short and concise. However, most existing methods are pri-
marily designed for VLN tasks involving detailed step-by-step instructions, thus
they do not perform well on REVERIE. Consequently, it is crucial to devise
novel approaches for leveraging the wealth of knowledge provided by LLMs and
effectively applying it to VLN tasks.
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1.3 Contribution and Thesis Outline

Motivated by the aforementioned challenges, the main focus of this thesis is to inves-
tigate the methods for effectively addressing these issues in the VLN task. The main
contributions are summarized below:

• We propose a History-Enhanced and Order-Aware Pre-training with the com-
plementing fine-tuning paradigm to solve the issues existing in the previous
Vision-and-Language Navigation pre-training methods. We first carefully exam-
ine and compare previous methods, and we find these methods either overlook
the important historical context in pre-training or neglect the role of the action
order. Thus, we design an Action Prediction with History (APH) task that pro-
vides history visual observations of the action prediction in the pre-training. We
then propose two order-aware proxy tasks, including Trajectory Order Modeling
(TOM) and Group Order Modeling (GOM). In addition, we design an exter-
nal memory network in fine-tuning stage to utilize the historical information to
assist action prediction.

• We introduce the first investigation into the utilization of Parameter-Efficient
Transfer Learning (PETL) methods to VLN tasks. We propose a VLN-specific
PETL approach that introduces two PETL modules, namely Historical Interac-
tion Booster (HIB) and Cross-modal Interaction Booster (CIB). These modules
are designed to enable efficient tuning of large pre-trained models for VLN down-
stream tasks. Furthermore, we incorporate the vanilla adapters to efficiently
tune the language encoder and employ LoRA to further enhance the overall
performance.

• We present a novel model March-in-Chat (MiC), which is specifically tailored
for the REVERIE task, where the VLN agent receives brief high-level instruc-
tions. MiC empowers the REVERIE agent to engage in real-time conversa-
tions with a Large Language Model (LLM) to generate plans for upcoming
steps. The model comprises three core modules: Goal-Oriented Static Planning
(GOSiP), Scene-Oriented Dynamic Planning (SODiP), and Room-and-Object
Aware Scene Perceiver (ROASeP) module. These modules work collaboratively
to facilitate effective navigation.

Based on the aforementioned contributions, we organize the thesis structure as
follows:

Chapter 2 provides a comprehensive review of the background in Vision and Lan-
guage, Embodied AI, and the Vision-and-Language Navigation task. It covers essen-
tial aspects such as simulators, datasets, and current methodologies employed in VLN
tasks.
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Chapter 3 introduces a pre-training and fine-tuning paradigm with VLN-specific
objectives. This paradigm utilizes past observations and concentrates on temporal
information to support future action prediction, offering a unique perspective on en-
hancing VLN performance.

Chapter 4 focuses on the exploration of Parameter-Efficient Transfer Learning
(PETL) techniques for VLN tasks. This chapter represents the first investigation into
PETL methods specifically tailored for VLN and proposes an innovative VLN-PETL
approach.

Chapter 5 delves into the utilization of Large Language Models (LLMs) for VLN.
The chapter presents a March-in-Chat (MiC) model that engages in conversations with
LLMs, dynamically planning actions based on the newly developed Room-and-Object
Aware Scene Perceiver (ROASeP).

Chapter 6 concludes by summarizing the primary contributions of this thesis and
providing a discussion on the future directions of VLN tasks. It highlights potential
areas of further research and explores the possibilities for advancing the field of VLN.
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Chapter 2

Literature Review

In this chapter, we first review the development of Vision and Language. Then we
introduce the concept of Embodied AI, highlighting its significance and unique char-
acteristics. Finally, we delve into one of the major tasks in Embodied AI: Vision-and-
Language Navigation (VLN) task and provide a detailed overview of VLN datasets
and methods.

2.1 Vision and Language

Vision and Language is the research area focused on the intersection of computer
vision and natural language processing, which aims to bridge the gap between visual
and textual modality. The research of vision and language has seen remarkable growth
and advancements in recent years. Early works focused on single tasks such as Image
Captioning [4, 26] (generate text description from image), text-to-image generation,
and Visual Question answering [6, 126](answer questions based on visual input), Visual
Commonsense Reasoning (requires the model to use commonsense knowledge to reason
about images).

Recently, significant progress has been made in the area of visual and language re-
search due to advances in deep learning and the availability of large-scale multimodal
datasets. Models like UNITER (UNiversal Image-TExt Representation) [18], Os-
car (Object-Semantics Aligned Pre-training) [62], LXMERT (Cross-Modality Trans-
former) [115], and ViLBERT (Vision-Language BERT) [74] have demonstrated sig-
nificant improvements in capturing visual-language correlations and achieving state-
of-the-art performance across various tasks. CLIP (Contrastive Language-Image Pre-
training) [97] is a powerful pre-trained model that learns joint representations of im-
ages and text, which is trained on a large corpus of image-text pairs using a contrastive
loss. It can perform tasks like zero-shot image classification tasks.

Visual perception networks play an important role in enabling the model to un-
derstand visual content, analyzing its semantic information, and extracting visual
features for multimodal understanding. ResNet [33] is a widely used deep convolu-
tional neural network architecture for visual perception tasks. It is composed of mul-
tiple residual blocks with skip connections, which allows training very deep networks.
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By introducing shortcut connections that bypass certain layers, ResNet allows the
network to learn residual mappings, focusing on learning the difference between the
input and the required output. These skip connections promote the flow of gradients
and alleviate the degradation problem associated with deeper networks. ResNet vari-
ants (such as ResNet-50, ResNet-101, and ResNet-152) have different network depths,
with more layers typically resulting in higher accuracy but increased computational
cost. These architectures have become widely adopted and serve as the backbone for
numerous computer vision tasks. They are often used for feature extraction, where
the learned representations from pre-trained ResNet models are employed in transfer
learning settings. ResNet models can effectively capture hierarchical visual features
and have been successfully applied in various tasks such as image classification, ob-
ject detection, and image understanding. In the VLN task, ResNet-152 pre-trained on
Place365 [134] is usually used to extract visual features. Bottom-Up visual attention
models, such as Faster-RCNN [102] or Mask R-CNN [32], focus on detecting and lo-
calizing objects within images. These models utilize Region Proposal Network (RPN)
to generate region proposals and convolutional neural networks to extract features
from these regions of interest. Bottom-up models are suitable for tasks that require
object recognition. In the REVERIE task, the VLN model uses the Faster-RCNN
pre-trained on the Visual-Genome [53] to encode object features. Vision Transformer
(ViT) [23] extends the Transformer architecture originally designed for natural lan-
guage processing to the computer vision domain. The ViT model divides an image
into blocks and processes them with a Transformer encoder to capture global relations
and contextual information. The ViT model has shown good performance in image
classification tasks. For the VLN task, HAMT [15] uses ViT-B/16 for image encoding,
which brings significant performance improvements.

Language understanding involves the comprehension and interpretation of natural
language instructions, requiring the agent to understand the semantics, syntax, and
contextual cues embedded in the textual instruction. This understanding is crucial
for effectively navigating and interacting with visual content in environments. Early
works [5] normally used LSTM (Long Short-Term Memory) networks [19] were com-
monly used to extract textual features. Subsequently, the development of transformer-
based models shows superiority in language understanding and has been widely ap-
plied in VLN methods [39, 15].

The research of Vision-and-Language has made significant progress in integrat-
ing visual and language modalities to develop artificial intelligence capable of under-
standing and generating multimodal information. The field has evolved from indi-
vidual tasks to more complex and interactive scenarios, pushing the boundaries of
multimodal understanding and reasoning. With continuous advances in deep learn-
ing, pre-training and fine-tuning paradigm, and multimodal architectures, Vision and
Language research holds tremendous potential for various applications, the Vision
and Language research holds great potential for applications ranging from content
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generation to human-machine collaboration.

2.2 Embodied AI

Embodied Artificial Intelligence (Embodied AI) has emerged as a fascinating field at
the intersection of artificial intelligence, robotics, and cognitive science [20]. It focuses
on developing intelligent agents capable of perceiving, understanding, and interact-
ing within real-world environments in a human-like manner. Unlike traditional AI
approaches that mainly rely on static data from the internet and pre-defined rules,
Embodied AI aims to create agents that can actively explore and navigate their sur-
roundings, allowing them to acquire knowledge through direct interaction. In addition,
Embodied AI agents could be physically located in the real world, interacting with
their environment through sensory input such as vision and language.

The concept of Embodied AI dates back to the early days of artificial intelligence
research. Researchers recognize the limitations of traditional AI approaches that rely
solely on symbolic reasoning and static knowledge representation. Brooks et al. [8]
introduce a behavior-based architecture for robots, emphasizing the importance of
interaction with the physical world for intelligence, which is considered the foundation
work in the field of Embodied AI. This marked a shift from traditional AI approaches
focused on symbolic reasoning to a more embodied and interactive approach in AI
research.

By combining visual perception with natural language understanding and applying
it to Embodied AI, agents can perceive, understand and interact with the environment
in a more human-like way, which can be applied to smart homes, self-driving cars,
and other fields. Embodied AI empowers the agent to not only passively observe
their surrounding environments but also actively navigate, communicate, and even
manipulate objects to achieve specific goals.

Since training and testing agents directly in physical environments are expensive,
poorly reproducible, and time-consuming, virtual environments simulate real-world
scenarios, allowing researchers to test and refine their algorithms and architectures
in a controlled environment. These simulators provide realistic physics and diverse
environments, enabling researchers to generate large-scale training data for agent de-
velopment. They also provide tools for benchmarking agent performance, promoting
reproducibility and fair comparison across different methods. Simulators enable agents
to interact with 3D scenes, receive sensory input, and perform actions, facilitating the
training and evaluation of embodied AI models at scale. Mainstream simulators in
the field of Embodied AI include Matterport [10, 5], AI2-THOR [51], Habitat [104],
iGibson [106], and RoboTHOR [21], etc.

Embodied AI covers a range of tasks that require agents to perceive, reason, plan,
and act within their environments. These tasks include Locomotion [56, 90, 125],
Visual Navigation [82, 99], Visual-and-Language Navigation [5, 107, 118], Object
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Manipulation [1, 44, 85] and Rearrangement [113], etc. Each task presents unique
challenges and requires agents to integrate visual perception, language understanding,
and physical actions to achieve their objectives.

2.3 Vision-and-Language Navigation

In recent years, the progress of Embodied AI has been accelerated by the development
of vision and language, the availability of large-scale datasets, powerful deep-learning
models, and advanced simulators. Vision-and-Language Navigation (VLN) [52] emerged
as a key task within embodied AI, focusing on integrating vision and language under-
standing to enable agents to navigate and comprehend complex instructions in their
environment. VLN tasks typically involve agents receiving natural language instruc-
tions and using visual perception to navigate through a scene toward a specific goal
location. In the VLN task, the agent is required to develop a comprehensive under-
standing of their surroundings, interpret natural language instructions, and execute
actions accordingly. And it has huge potential to apply for autonomous robots, virtual
assistants, and augmented reality applications.

2.3.1 Simulator

Recent advancements in the field of VLN have witnessed the emergence of several
prominent simulators, such as Matterport3D [10], Habitat [104, 114], and AI2-THOR [51].
These simulators offer researchers a controlled and realistic environment to study and
develop VLN algorithms.

Matterport3D

Matterport3D Simulator [5] constructed based on the Matterport3D Dataset [10],
which contains 10,800 panoramic views of 90 building-scale scenes. It includes diverse
scenes such as houses, apartments, hotels, and offices. And the scenes are meticulously
captured using 3D cameras, resulting in highly detailed and realistic reproductions of
real-world spaces. It supports simulated RGB and depth cameras as well as semantic
segmentation, allowing agents to extract visual information from their surrounding
environments. Agents can navigate through complex spaces, through corridors, up and
down the stairs, and between different rooms. The simulator provides local and global
path-planning algorithms that enable agents to efficiently navigate the environment
while taking obstacles and constraints into account.

Habitat

Habitat 1.0 [104] is developed by Facebook AI Research, and it provides a realistic
and interactive virtual environment for training and evaluating agents in navigation
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Table 2.1. Major datasets for VLN and their main characteristics.

Dataset #Path #Instr #Words Instr Length Language

R2R [5] 7K 21.7K 625K 29 1
REVERIE [95] 7K 21.7K 388K 18 1
CVDN [117] 7K 2.1K† 167K - 1
RxR [54] 16.5K 126.1K 9.8M 78 3
†The number of dialogues.

and interaction tasks. Habitat offers a diverse collection of highly detailed 3D en-
vironments that simulate real-world indoor scenes. The scenes are generated from
real-world scans and exhibit detailed geometry, texture, and lighting. Habitat pro-
vides agents with realistic sensory inputs such as visual observations, depth maps, and
semantic segmentation. This enables agents to perceive their surroundings and make
informed decisions based on the available sensory information. Habitat 2.0 [114] is an
upgraded version of Habitat 1.0, which is for agents in interactive 3D environments
and supports piece-wise rigid objects as well as rigid-body mechanics. Habitat 2.0
supports a variety of actions and control mechanisms, enabling the agent to perform
tasks such as navigation, object manipulation, and interaction with virtual objects as
a home assistant.

AI2-THOR

AI2-THOR [51] is a highly interactive and realistic 3D simulator developed by Allen
Institute for AI. The simulator provides diverse and dynamic indoor environments such
as residential apartments and offices. It supports various sensory inputs, including
RGB, depth, and semantic segmentation. AI2-THOR emphasizes interaction with
objects and incorporates a realistic physics engine that enables agents to interact
with objects in the environment. The agent can perform actions such as opening
doors, picking up objects, and manipulating objects, thus facilitating realistic dynamic
interactions between the agent and its surrounding environment.

2.3.2 Datasets

A number of datasets have been proposed specifically for the VLN task. In the follow-
ing paragraphs, we provide an overview of the available datasets. Key characteristics
are summarized in Table 2.1.

Room-to-Room (R2R)

Room-to-Room task [5] requires agents to follow detailed instructions to navigate
from one room to another. These instructions contain rich linguistic information,
such as “Exit the room. Walk across the hallway. Turn slightly right and walk across
the kitchen towards the sofas. Turn left and walkthrough doorway just right of the
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portraits of a family.”, “Go into the archway to the left of the room with the dining
table into the room with the circle table in the middle, make a right towards the front
door, take two steps up the stairs onto the level and stop.”.

The R2R dataset is collected from the Matterport3D simulator [11]. The tra-
jectory is the shortest path sampled from the start pose and goal location pairs in
different rooms. It contains 21,567 navigation instructions, 7,189 trajectories, and
10,800 panoramic views of 90 real-world building-scale indoor environments. The av-
erage length of each instruction is 29 words. The R2R dataset consists of four splits:
train, validation seen and validation unseen, and test unseen.

Room-Across-Room (RxR)

The task of RxR [54] is an updated version of R2R and is more challenging than
R2R. For example, instructions in RxR are longer and more detailed, describing more
landmarks and including dense spatiotemporal grounding than R2R does. Besides,
instructions in RxR no longer describe the shortest path between the starting room to
the ending room and the length variance of paths is very large. Thus, agents cannot
simply go directly to the targets and cannot simply use the strong prior of path length
to navigate.

The RxR dataset contains 126,069 navigation instructions and 16,522 trajectories.
IR consists of training, validation, and test set. In the training set it contains 11,089
paths. The validation set contains 1,232 paths for val-seen and 1,517 paths for val-
unseen. And test set has 2,684 paths. The average length of each instruction is 78
words. The instructions of RxR are in three languages (i.e. English, Hindi, and
Telugu). Here are examples of instructions, “Okay, now you are in a room facing
towards two bathtubs, one on the right side and the other on the left side. Now turn
to your left and slightly move forward. Now slightly turn to your right and go straight
and stand next to the white bathtub, which is on the left side. Now in front of you
there are two steps, go straight and stand on the second step. Now you are standing
on the second step with white bathtub on the left side and this is the end point”, “You
are facing towards the wall, turn left and move forward. You can see an open door
right in front of you, move towards the door. Turn left and enter into the room. Turn
right you can see sofa in-front of you, move towards the sofa. You are standing next
to the sofa, which is your final destination. ”

REVERIE

The task of Remote Embodied Visual referring Expressions in Real 3D Indoor Envi-
ronments (REVERIE) [95] gives concise, high-level instructions referring to a remote
object, such as “Close the kitchen window”, “Go to the entryway and turn off the
lamp”. REVERIE requires the agent to follow instructions to navigate and identify
the target object in the unseen environment.
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The REVERIE dataset contains 21,702 instructions. The average length of each
instruction is 18 words. The dataset has 10,567 panoramas and 4,140 target objects,
divided into 489 categories. On average, each target viewpoint has 7 objects with 50
bounding boxes. REVERIE follows the same train/validation/test split strategy as
the R2R dataset. The training set contains 59 scenes with over 2,353 objects and
10,466 instructions. The validation set contains 63 scenes, 953 objects, and 4,944
instructions. The test set contains 16 scenes, 834 objects, and 6,292 instructions.

Vision-and-Dialog Navigation (CVDN)

The CVDN dataset [117] is used for the NDH task, which contains 2050 human-human
navigation dialog and over 7K trajectories. In the NDH task, the agent is required
to find the target location based on the dialog history, which consists of multiple
question-and-answer interactions between the agent and its partners. Unlike tradi-
tional VLN datasets, the CVDN dataset introduces dialogue information, simulating
interactive dialogue between two humans. Dialogues consist of question-and-answer
information, allowing agents to request additional information and interact coopera-
tively. It is much more challenging because the instructions from the dialog history
are often ambiguous and unspecified. As a result, agents can hardly navigate to the
final location directly. NDH has three settings: (1) Oracle, which utilizes the shortest
path as ground truth observed by the Oracle; (2) Navigator, which uses the path
adopted by the human navigator as ground truth; (3) Mixed, which takes the shortest
path or the path of human if the human visits the target location. Here are examples
of instructions, “navigator: Should I go up the stairs or toward the toilet? oracle: yes
i belive so. navigator: Can you be more specific. Up the stairs or move toward the
toilet? oracle: don’t go up the stairs look to your right and it’s not in the bathroom
find a couch. navigator: Is that the couch I am looking for? oracle: it is blue in color
has many pillows on it.”

2.3.3 VLN Methods

Letting an agent navigate in a simulated environment according to instructions has
attracted increasing attention, and there have been many studies on the Vision-and-
Language Navigation task. Early works were based on an encoder-decoder frame-
work [5], which utilizes an LSTM-based sequence-to-sequence architecture with an
attention mechanism. In this seq2seq framework, the language and vision are en-
coded as input and an action sequence is decoded as output. Later there are many
works devoted to improving the performance of VLN tasks from various aspects. And
we summarize existing approaches to VLN in Figure 2.1.
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VLN methods

Representation Learning

Semantic Understanding

Graph Representation

Pre-training & Transformer

Memory-augmented Model

Action Strategy Learning
Reinforcement learning

Progress Estimation

Data-centric

Data Augmentation

Curriculum Learning

Models using external knowledge

Figure 2.1. Categories of VLN methods.

Representation Learning

Representation learning methods aim to enable the agent to comprehend the relations
between multiple modalities in VLN tasks. Effective representation learning methods
aid in capturing the complex dependencies and correlations between these modalities,
enabling agents to derive meaningful insights and make informed decisions.

• Semantic Understanding Qi et al. [94] introduce an object-and-action ac-
tion aware model (OAAM), which contains three parts: object-aware module,
action-aware module, and adaptive combination module. It proposes to de-
couple action and object-related sub-instructions to facilitate the learning of
action-orientation alignment and visual-textual alignment. An et al. [2] take
into account information from neighbor views to overcome the single view limit
when aligning visual-textual counterparts.

• Graph Representation Hong et al. [36] further models the relationship
among action, orientation, and scene via a graph leading to effective repre-
sentations for better action prediction. Chen et al. [13] propose a Structured
state-Evolution (SEvol) model, which uses the graph-based feature to repre-
sent the navigation state. It contains a Reinforced Layout clues Miner (RLM)
and a Structured Evolving Module (SEM). The dual-scale graph transformer
(DUET) [17] employs graph transformers to encode the topological map for
long-term action planning and learn cross-modal relations with the instruction.

• Pre-training & Transformer Inspired by the great success of Vision-Language
BERT pre-training on several visual-textual matching tasks, such as image-
text retrieval [57] and referring expression grounding [129], several pre-training
methods have been proposed for VLN [29, 30, 42, 80]. PRESS [61] fine-tunes
the pre-trained language model BERT to obtain the textual representation for
the agent. VLN-BERT [80] pre-trains its model by predicting the compatibil-
ity of a pair of instruction and visual trajectory. In the downstream tasks, it
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formulates the navigation as a trajectory selection problem. Lin et al. [68]
introduce two pre-training tasks: Scene Grounding task to learn where to nav-
igate and Object Grounding task to learn what object to localize. In addition,
a memory-augmented action decoder is proposed to fuse grounded textual and
visual representation. AirBERT [29] further adopts a binary classification task
to predict whether the given instruction and visual trajectory are paired. These
methods discard navigating action prediction during pre-training, weakening the
relationship between the learned representation and the final goal: navigation ac-
tion prediction. By contrast, PREVALENT [30] introduces a single-step action
prediction task, aiming to learn action-oriented generic visiolinguistic represen-
tation, which can be applied to the greedy search VLN. However, PREVALENT
largely overlooked the important historical context in pre-training. It only takes
the static panoramic image of a single step as visual input, while failing to take
into account the history trajectory information. LOViS [131] designs two specific
VLN pre-training tasks: an Orientation Matching task to predict the current
orientation, and a Vision Matching task to predict whether the current visual
information matches with instruction. At the fine-tuning stage, it also includes
an orientation module and a vision module to capture the orientation and visual
information. Different conventional methods of fine-tuning, Liang et al. [63]
introduce prompt tuning techniques to improve learning efficiency.

Recently, VLBERT-based methods significantly improve performance on VLN
tasks. Hong et al. [39] develop a recurrent model VLN⟳ BERT that reuses the
[CLS] token to maintain the history information. Qi et al. [93] propose Object-
and-Room Informed Sequential BERT (ORIST), which is an object-informed
sequential BERT to encode visual perceptions and linguistic instructions. It
contains three components: the object-level initial embedding module, the se-
quential BERT module, and the room-and-direction multi-task module. Similar
to VLN⟳ BERT, the Scene-and object-aware transformer (SOAT) includes ob-
ject features as additional input to support object-level processing.

• Memory-augmented Model Zhu et al. [139] introduce the Cross-modal
Memory Network (CMN) as a solution for effectively remembering and com-
prehending the diverse and relevant information associated with historical nav-
igation actions. It contains three memory modules: language memory module,
vision memory module, and Cross-modal Memory. VLN⟳ BERT employs a
recurrent hidden state to encode the temporal context. ORIST [93] utilizes
an extra LSTM module to maintain history visual and language information.
E.T. [89] encodes the whole history of visual observations and actions into a
multimodal transformer. Similarly, HAMT [15] encodes all past panoramic ob-
servations via a hierarchical vision transformer (ViT) and explicitly stores his-
torical information. However, this leads to time-consuming training, especially



16 Chapter 2. Literature Review

for long-horizon tasks such as RxR which is with an average of 12 navigation
steps.

Action Strategy Learning

Action Strategy Learning refers to a category of methods in VLN tasks that focus on
learning and optimizing the action strategies of agents. These methods aim to develop
effective strategies for agents to make informed decisions and take appropriate actions
based on the instructions and their observations. Techniques such as Reinforcement
Learning are commonly used to train agents to interact with the environment and
adjust their actions to maximize long-term rewards. Progress estimation may also be
employed to estimate the progress of agents and guide their actions during navigation.
The goal of Action Strategy Learning methods is to enhance the decision-making and
action-taking abilities of agents, ultimately improving their performance in VLN tasks.

• Reinforcement learning Reinforcement learning [64, 86] is also an important
research direction to improve the navigation ability of agents. Wang et al.
[123] proposed a Reinforced Planning Ahead (RPA) model, which is the first
to combine model-free and model-based deep reinforcement learning (DRL) for
VLN tasks. Later, Wang et al. [122] introduce a Reinforced Cross-modal
Matching method that utilizes reinforcement learning and imitation learning
methods. They design a reasoning navigator to learn the cross-modal grounding
and also propose a cycle-reconstruction reward to let the agent better understand
the language input. Tan et al. [116] also train the agent by mixing imitation
learning (IL) and reinforcement learning (RL) to combine the benefits from
off-policy and on-policy optimization. Further, a Soft Expert Reward Learning
(SERL) model et al. [120] is proposed to learn adaptive rewards instead of hand-
crafted hard rewards. The model contains two parts: a Soft Expert Distillation
(SED) module and a Self Perceiving (SP) module. The SED module aims at
encouraging the agent to behave as an expert and the SP module lets the agent
towards the target location as fast as possible.

• Progress Estimation Ke et al. [49] present the Frontier Aware Search with
backTracking (FAST) Navigator, which utilizes asynchronous search to let the
agent could backtrack when it is detected as lost. This method aims at alleviat-
ing the expense of beam search. Without beam search, Ma et al. [76] introduce
a self-monitoring agent, which uses greedy decoding selection with one condi-
tion. It contains two complementary modules: a visual-textual co-grounding
module and a progress monitor. The visual-textual co-grounding module per-
forms grounding across visual and textual modalities, and the progress mon-
itor reflects the progress towards the goal via estimating the completeness of
instruction-following. When the progress monitor output decreases, the agent
will move back to the last viewpoint and select the action. Similarly, Ma et al.
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[77] propose a regretful navigation agent. It contains a regret module to allow
the agent to learn when to roll back to the previous location, and a progress
marker to avoid going to a visited location. Zhu et al. [136] propose the Aux-
iliary Reasoning Navigation (AuxRN) framework, which contains four auxiliary
reasoning tasks: a trajectory retelling task to explain previous actions, a progress
estimation task, and an angle prediction task, and a cross-modal matching task.
These tasks cooperate to explore the semantic meaning of visual features and
enhance the reasoning ability of agents.

Data-centric

Data-centric methods focus on utilizing data to enhance the agents’ performance.
These methods involve techniques such as data augmentation, curriculum learning,
and leveraging additional knowledge sources. Data augmentation techniques aim to
increase the diversity and quantity of training data to improve model robustness and
generalization. Curriculum learning gradually increases the difficulty of training tasks
to enhance learning effectiveness. Leveraging additional knowledge involves incorpo-
rating external information to enrich training data and enhance model performance.

• Data Augmentation To overcome the limited seen environments and en-
hance the generalisability to unseen environments, several works concentrate
on augmenting the training dataset, such as instruction-trajectory pairs and
environments. For instruction-trajectory pairs, Speaker-Follower [24] model is
introduced to address the data scarcity problem and augments the instruction-
trajectory pairs. It synthesizes new instructions for randomly sampled trajecto-
ries. It designs a language model as a speaker to learn the relationship between
vision and language information thus could synthesis new instructions, and a
follower network to take action. Kamath et al. [48] constuct a large-scale
dataset with 4.2M instruction-trajectory pairs, which is larger than existing
human-annotated datasets. To build the dataset, they use a high-quality mul-
tilingual navigation instruction generator Marky [121] to generate instructions,
and utilize an image-to-image GAN [50] to synthesize image observations. For
environments, Tan et al. [116] propose EnvDrop, which is an environmental
dropout strategy to generate new environments (i.e. paths and instructions).
The Random Environmental Mixup (REM) method [69] leverages mixup envi-
ronments to generate augmented data with cross-connected house scenes. For
each scene, REM identifies key viewpoints based on the room connection graph.
Then it constructs augmented scenes by cross-connect the key views from dif-
ferent scenes and it generates augmented instruction path pairs. ENVEDIT [59]
creates new environments by editing the training environment in three diverse
aspects: style, object appearance, and object classes.
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• Curriculum Learning Some works concentrate on transferring the agent’s
navigation ability from shorter instructions to longer instructions and utilize the
curriculum-based training paradigm on VLN tasks. Basically, curriculum learn-
ing is a concept of beginning with simpler aspects of a task and progressively
escalating the difficulty level. Wang et al. [138] propose BabyWalk to com-
pose long instructions into shorter ones, which is the first to apply Curriculum
Learning in VLN tasks. The learning process comprises two phases: imitation
learning to achieve BabySteps and curriculum-based reinforcement learning for
maximizing rewards on increasingly complex navigation tasks with longer in-
structions. Similarly, Hong et al. [37] build the Fine-Grained Room-to-Room
dataset (FGR2R), which segments the long instructions into sub-instructions.
They employ a heuristic method based on grammatical relations provided by
the Standford NPL Parser [92] to segment lengthy and complex instructions
into shorter sub-instructions. Then a shifting module determines the comple-
tion status of each sub-instruction, ensuring that only one sub-instruction is
accessible to the agent at each time step for textual grounding. Different di-
rectly separate the long instructions into short instructions, Zhang et al. [130]
introduce the self-paced curriculum learning (SPCL) to incorporate human prior
knowledge and re-arrange the benchmark Room-to-Room datasets to make it
suitable for curriculum learning.

• Models using external knowledge There are several works employing ex-
ternal knowledge to assist navigation. To incorporate commonsense knowledge
for navigation, the Cross-modality Knowledge Reasoning (CKR) model [25] pro-
poses a Knowledge-enabled Entity Relationship Reasoning (KERR) module that
incorporates the external knowledge from ConceptNet [110] to assist room entity
and object entity reasoning. ADAPT [65] first uses the Contrastive Language-
Image Pre-training (CLIP) model to build an Action Prompt Base. During the
navigation process, the agent retrieves the relevant action prompts and then
concatenated with instruction encoding to obtain the prompt-based instruction
features.
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Chapter 3

History-Enhanced and
Order-Aware Pre-training

In order to address the challenge posed by the lack of a pre-trained model specifically
designed to emphasize temporal information for the VLN task, In this Chapter, we
propose a history-enhanced and order-aware pre-training with the complementing fine-
tuning paradigm for the VLN task. This paradigm aims to enhance the temporal
understanding capabilities of models utilized in VLN by incorporating historical and
temporal information.

3.1 Introduction

Vision-and-Language Navigation (VLN) has attracted large attention in recent years.
It lies in the interaction of computer vision, natural language processing, and robotics
and has great importance in real-world applications. VLN task requires an agent
to follow a natural language instruction and navigate in 3D simulated environments
rendered by realistic images. Generally speaking, VLN tasks could be categorized
into three types: (I) VLN with detailed navigation instructions such as R2R [5] and
RxR [54]; (II) VLN with high-level, concise instructions for remote object grounding,
such as REVERIE [95] and SOON [135]; (III) VLN with communication dialogs, such
as NDH [117].

Inspired by the great success of pre-trained Vision-and-Language Transformer-
based models, which demonstrate the great effectiveness of modeling cross-modality
correspondence. Recently, there are many pre-training strategies for VLN tasks [80,
30, 29, 15]. VLN-BERT [80] pre-trains its model by predicting the compatibility of
a pair of instructions and visual trajectory. It selects the best matching trajectory
from several candidate paths. AirBERT [29] further adopts a binary classification
task to predict whether the given instruction and visual trajectory are paired. Both
VLN-BERT and AirBERT discard navigating action prediction during pre-training,
weakening the relationship between the learned representation and the final goal:
navigation action prediction. By contrast, PREVALENT [30] introduces a single-step
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Figure 3.1. Illustration of the proposed pre-training and fine-tuning
paradigm for VLN. The model is pre-trained with five proxy tasks, and
fine-tuned on four downstream VLN tasks: R2R, RxR, REVERIE and

NDH (detailed in Section 5.3).

action prediction task, aiming to learn action-oriented generic visiolinguistic repre-
sentation, which can be applied to the greedy search VLN. However, PREVALENT
largely overlooked the important historical context in pre-training. It only takes the
static panoramic image of a single step as visual input, while failing to take into
account the history trajectory information. Indeed, VLN is a Partially Observable
Markov Decision Process (POMDP), where the agents rely heavily on past experi-
ences for making future action decisions. Furthermore, VLN is a spatiotemporal task
that is sensitive to the sequence order of the trajectory. Thus the ability of tempo-
ral order reasoning is also beneficial to action decision-making. Nevertheless, all the
above three methods do not mine temporal order information from instructions or
visual observations explicitly.

To address the above-mentioned issues in pre-training, we propose a novel history-
and-order aware pre-training paradigm (HOP) to enhance the learning of visual-
textual correspondence for VLN tasks. First, we provide history visual observations
to the action prediction task, called Action Prediction with History (APH), which
helps the model locate the sub-instruction to be executed and thus improve the ac-
tion prediction accuracy. Second, we design two order-aware proxy tasks, Trajectory
Order Modeling (TOM) and Group Order Modeling (GOM). Given an instruction,
TOM requires the model to recover the order of shuffled visual trajectory from a
fine-grained level, and GOM requires the model to predict the order of two groups of
sub-trajectories from a coarse level. These two tasks explicitly equip the model with
the ability to understand the temporal order within instructions, in addition to the
visual-textual matching capability. The overall proposed pre-training and fine-tuning
tasks are illustrated in Figure 3.1.
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Figure 3.2. Overview of our pre-training and fine-tuning paradigm
for VLN. Our model is pre-trained with five proxy tasks: Mask Lan-
guage Modeling (MLM), Trajectory-Instruction Matching (TIM), Tra-
jectory Ordering Modeling (TOM), Group Ordering Modeling (GOM),
and Action Prediction with History (APH). We also devise an external

memory network for fine-tuning to better utilize history context..

Although HOP has largely boosted the navigation performance on several down-
stream tasks, we find its potential is limited by the processing inconsistency of history
information between the pre-training and fine-tuning stages. During pre-training, our
preliminary work HOP takes all the past visual observations as history input tokens
for the transformer. But during the fine-tuning stage, HOP utilizes only a single
state vector to hold history information that is updated at each navigation step, thus
making it easy to forget long-term memories. A naive solution is to use the same
history input during fine-tuning. Although this is demonstrated effective in our later
experiments, the improvement is slight and it causes huge undesired computational
costs (the longer the trajectory, the more computational burden). In addition, the
history trajectory may contain misleading information. Specifically, if an agent takes
a wrong step, then this historical trajectory is not helpful for decision-making. Thus,
how to dynamically select effective history information remains a challenging task.

To address this issue, in this work, we extend our HOP to HOP+ by designing
a memory network for fine-tuning, which effectively selects and summarizes useful
historical information adaptively for action prediction. The Overview of our pre-
training and fine-tuning paradigm for VLN are as shown in Figure 3.2 Thus, the
agent is able to access all the memories at each step and almost does not increase
large computation to the transformer. Specifically, the memory network consists of an
attention module and a memory update module. The network first uses an attention-
based GRU to learn relevant information from historical trajectories based on current
observations and instruction, and then stores them in memory and updates them at
each time step. The output feature of the memory network and the output features of
the vision encoder are concatenated as the input of the cross-modal encoder to make
final decisions.

Finally, we conduct extensive experiments on various VLN tasks, including R2R [5],
REVERIE [95], RxR [54], and NDH [117]. These tasks are characterized by different
aspects, so the validity of the model can be verified from multiple aspects. R2R is an
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in-domain task to verify the performance of the agent in an unseen environment. The
other tasks are out-of-domain tasks, which aim at validating the generalization perfor-
mance of the agent for new tasks. RxR has much longer instructions and is challenging
to understand for the agent. NDH requires the agent to reach the destination based on
the historical dialogue. REVERIE gives concise and high-level instructions, focusing
on grounding target objects. Extensive experiments on these downstream tasks illus-
trate the superiority of our HOP+ over other methods and achieve state-of-the-art
performance. In addition, our ablation study shows that the proposed memory net-
work can save computational costs and achieve better performance. Our final model
obtains 60% in SPL on R2R, 3.90 in GP on NDH, 28.24% in SPL (16.86% in RGSPL)
on REVERIE, and 0.36 in sDTW on RxR.

3.2 Background

3.2.1 Pre-training

By pre-training on large amounts of diverse unlabeled data, models can learn repre-
sentations that capture general semantic and contextual information. These learned
representations can then be fine-tuned on smaller labeled datasets or on specific tasks,
where the model is adapted to task-specific data. Self-supervised learning aims to
create artificial supervision signals from unlabeled data itself, effectively transforming
unsupervised learning problems into supervised learning problems. Transformer-based
architectures, such as BERT (Bidirectional Encoder Representations from Transform-
ers) [22], has gained significant attention due to their ability to capture long-range
dependencies and contextual relations in sequential data. The self-attention mech-
anism lets the model focus on relevant information in the input sequence, resulting
in a more comprehensive and context-aware representation. The effectiveness of pre-
training has been demonstrated on a wide range of computer vision and natural lan-
guage processing tasks [62, 18, 115], such as image-text retrieval, Image Captioning,
and Visual Question Answering (VQA).

3.2.2 Vision-and-Language Navigation Pre-training

With the success of large-scale pre-training for vision-and-language [74, 115, 18, 62], a
variety of pre-training methods [80, 15, 61] have been proposed to handle VLN tasks
and achieve state-of-the-art performance. Majumdar et al. [80] propose VLN-BERT,
which learns the matching degree between the instruction and panoramic image se-
quence. Guhur et al. [29] builds a large-scale in-domain pre-training dataset BnB
from online rental marketplaces. However, these pre-training tasks remain similar to
general vision-and-language tasks, such as image-text matching, while ignoring the
important action decision in the VLN task. Then Hao et al. [30] introduces the
task of Action Prediction (AP) in PREVALENT. While it still ignores the historical



3.2. Background 23

Table 3.1. Comparison with previous VLN pre-training works.

HOP+ (proposed) VLN-BERT [80] PREVALENT [30] Airbert [29]

Dataset

Augmented R2R dataset Conceptual Captions [105] Augmented R2R dataset Conceptual Captions [105]

Processed BnB dataset Wikipedia and BookCorpus BnB dataset

R2R dataset

Visual Input Trajectory Trajectory Panoramic view (single step) Trajectory

Objectives

Masked Language Modeling Masked Language Modeling Masked Language Modeling Masked Language Modeling

Action Prediction with History Image-Caption matching Action Prediction Image-Caption matching

Trajectory-Instruction Matching Trajectory-Instruction matching Trajectory-Instruction matching

Trajectory Order Modeling (shuffling loss)

Group Order Modeling

Pre-training Device 4 V100 GPUs - 8 V100 GPUs 8 V100 GPUs

Downstream task R2R, REVERIE, RxR, NDH R2R R2R, NDH, HANNA R2R, REVERIE

trajectory and temporal information. In addition, VLN-BERT and PREVALENT do
not model temporal order contained in both instructions and trajectories, and thus
are weak at temporal reasoning. To alleviate this problem, ALTR [42] propose a “Next
Visual Scene” task to predict the visual features of future steps, which only connects
two consecutive steps. AirBERT tries to distinguish aligned instruction and trajectory
from shuffled ones at a coarse level, which does not take full advantage of the tem-
poral correspondence in training data. Our preliminary work HOP [96] enhances the
learning of temporal order modeling and historical information by introducing three
VLN-specific proxy tasks for pre-training. These tasks make the model understand
the historical context and temporal order information while learning visual-textual
correspondence, which facilitates the final action prediction. We compare our method
HOP+ with previous VLN pre-training methods, as shown in table 3.1,

3.2.3 Memory Networks

Memory networks have been widely used in a variety of research areas, such as Ques-
tion Answering [111, 55], Visual Question Answering (VQA) [126, 75], and Visual-and-
Language Navigation [139]. The earliest work can be traced back to Neural Turing
Machine [27] and Memory Neural Network [46]. They both propose an external mem-
ory with a read-write mechanism. Sukhbaatar et al. [111] propose an end-to-end
Memory Network (MemNN) for the Question and Answering task, which first stores
all the sentence inputs as facts and then retrieves relevant memory blocks based on the
given question to output answer. Ma et al. [75] apply Memory-Augmented Networks
to VQA tasks to learn uncommon question-answer pairs. It uses visual and question
features as augmented memories and utilizes an LSTM controller to determine when
to write and read the memory, thus selectively paying more attention to scarce train-
ing items. Recently, Zhu et al. [139] introduce a Cross-modal Memory Network to
specifically address the task of Navigation from Dialog History. It concentrates on
memorizing the dialog history and panoramic views while neglecting the historical
trajectory information. Our proposed HOP+ introduces an external memory network
at the fine-tuning stage to exploit historical information from pre-training in order
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Figure 3.3. The main architecture of our pre-training model and five
proxy tasks.

to assist the agent in action prediction. To be specific, our HOP+ consists of an
attention-based module and a memory update module. Our proposed memory model
differs from the aforementioned memory networks in several ways. Firstly, it uses his-
torical observations as facts and the fact changes dynamically as the agent navigates,
rather than as a static input. Secondly, we utilize a memory update module to update
the memory during navigation. Furthermore, our HOP+ can be applied to different
downstream tasks instead of one specific task.

3.3 Method

3.3.1 Pretrain Model Architecture

The model architecture is illustrated on the top-left of Figure 3.3, which is similar to
LXMERT [115]. Taking the instruction-trajectory pair as input, the model first uti-
lizes a language encoder and a vision encoder to extract single-modal representations
from the instruction and image sequence, respectively. Then, these representations are
fed into a cross-modal encoder to implement interactions between the two modalities
and generate the final fused representations.

Language Encoder

We first use WordPieces [47] to tokenize all words in an instruction, obtaining a
sequence of tokens: [CLS], w1, w2, . . . , wL, [SEP], where [CLS] and [SEP] are added
special tokens. Then, the text embedding of each token is obtained via summing up the
token embedding and the position embedding, followed by Layer Normalization (LN).
At last, the text embedding is passed through the single-modal language encoder, of
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which each layer consists of a self-attention sub-layer and a feed-forward sub-layer.
The outputs of the language encoder are used as language features.

Vision Encoder

Trajectory τ = ⟨v1, v2, . . . vT ⟩ represents the image sequences observed by the agent
when traversing the environment, where vi is the observed image of the environment
at step i and T is the number of total steps. To better capture order information
from the trajectory, we use the front view image of the agent’s observation at each
position, rather than using the panoramic image. This is because panoramic images
of the adjacent observation points in the same room are similar, causing difficulties for
the agent to explore the dynamic and temporal information of the entire trajectory.

We first use ResNet-152 [33] pre-trained on ImageNet [103] to extract a 2048-
dimensional image feature vector vvis for each front view image vi. Then, we compute
the orientation feature of heading α and elevation β as [sinα; cosα; sinβ; cosβ], and
repeat it for 32 times to constitute a 128-dimensional direction feature vector vd

as same as [116]. Each image vi in the trajectory is finally represented by a 2176-
dimensional feature vector vi = [vvis; vd] by concatenating vvis and vd. At last, the
image features of trajectory τ are passed through the single-modal vision encoder, of
which each layer consists of a self-attention sub-layer and a feed-forward sub-layer.
The outputs of the vision encoder are used as vision features.

Cross-Modal Encoder

We use the Cross-Modal Encoder to fuse features from both language and vision
modalities. For the cross-modal encoder, each layer contains two self-attention sub-
layers, one bi-directional cross-attention sub-layer and two feed-forward sub-layers.
The outputs of the cross-modal encoder are used as cross-modal features for pre-
training and downstream tasks.

Following [30], we set the layers’ number Ntext, Nimage, Ncross of text encoder,
vision encoder, and cross-modal encoder to 9, 1, and 3, respectively.

3.3.2 Pre-training Proxy Tasks

Masked Language Modeling (MLM)

As shown in Figure 3.4, the input instruction tokens w = ⟨w1, w2, . . . , wL⟩ is randomly
replaced by a special token [mask] with probability 15%. The output feature is trained
to predict masked words wm based on surrounding words w\m and the image trajectory
τ = ⟨v1, v2, . . . , vT ⟩, by minimizing the negative log-likelihood:

LMLM(θ) = −E(w,τ)∼D logPθ(wm|w\m, τ) , (3.1)
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Figure 3.5. Illustration of the Trajectory-Instruction Matching
(TIM) task.

where θ represents trainable parameters. And each pair (w, τ) is sampled from the
training set D.

Trajectory-Instruction Matching (TIM)

TIM task aims at training a binary classifier to predict whether the image trajectory
and instruction are matched. As illustrated in Figure 3.5, the output on the spe-
cial token [CLS] is the fused instruction-pairs (w, τ) representation. We use a fully
connected (FC) layer to calculate the matching score sθ(w, τ). We apply the binary
cross-entropy loss for optimization:

LTIM(θ) = −E(w,τ)∼D[y logPθ + (1− y) logPθ], (3.2)

where Pθ = sθ(w, τ), and y ∈ {0, 1} is the binary label that indicates if the sampled
pair is a match.

In addition, to make the model focus on the differentiation between paths, we
randomly generate negative samples (i.e. , mismatched trajectory) in the same envi-
ronment, with a probability of 50%.

Trajectory Order Modeling (TOM)

A good VLN agent should not only understand visual-textual correspondence but also
be able to be aware of the sequence order among the correspondence. The motivation
for the TOM task is to make the model reconstruct the correct order of the visual
trajectories based on given instructions, thus mining temporal order information. Here
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0 4 5 2 3 1

reordered 

Multi-Layer Transformer

Figure 3.6. Illustration of the Group Order Modeling (TOM) task.
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[SEP]
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Figure 3.7. Illustration of the Group Order Modeling (GOM) task.

we randomly shuffle 50% images of the trajectory. As is shown in Figure 3.6, the inputs
are instruction w and reordered trajectory τ ′. The output vision feature of the cross-
modality encoder is fed into an FC layer that predicts the order r′k of each image k.
This task is optimized by minimizing the cross-entropy loss:

LTOM(θ) = −E(w,τ ′)∼D

N∑
i=1

yi logPθ(r
′
k|w, τ ′) , (3.3)

where N is the number of steps of the trajectory, yi = 1 indicates the predicted order
r′k for image k is the original order i, and otherwise yi = 0.

Group Order Modeling (GOM)

The goal of the GOM task is to make the model learns temporal information from the
level of sub-trajectories. As shown in Figure 3.7, the inputs are the instruction w and
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[SEP]
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next view index

Figure 3.8. Illustration of the Group Order Modeling (APH) task.

image sequence group (G1, G2). The trajectory τ is divided into two sequence groups
in an even way. We randomly choose to keep G2 after G1, place before G1, or replace
it with image sequence groups sampled from other trajectories, all with a probability
of 1/3. Thus GOM is formulated as a triple classification problem, which predicts
the previous, next, or random relation between two sub-trajectories. c = 1 denotes
that G1 is before G2; c = 2 indicates that G1 comes after G2; c = 3 indicates that
G2 is a random set of image sequences from other trajectories. We use the special
token [SEP] to distinguish between the two groups of trajectories. The output on the
[CLS] indicates the fused representation of the input visual and textual information,
and then be fed into an FC layer with softmax function to predict c′. We optimize
the GOM task via the cross-entropy loss:

LGOM(θ) = −E(w,(G1,G2))∼D

∑
c

yc logPθ(c
′|w, (G1, G2)), (3.4)

where yc ∈ {0, 1} denotes whether the predicted class c′ is the desired class c or not.

Action Prediction with History (APH)

As shown in Figure 3.8, The inputs are the instruction w, the history trajectory τt−1 =

⟨v1, v2, . . . , vt−1⟩, and the panoramic view p = {p1, p2, . . . , p36} of the current step t.
We concatenate the history trajectory τt−1 and panoramic view p as vision input.
APH is considered a classification problem and the action prediction is performed
by selecting the next view image v′t+1 from the candidate views. We feed the fused
representation of [CLS] into an FC layer to predict the next view view v′t+1, by
minimizing the cross-entropy loss:

LAPH(θ) = −E(w,τ,vpano)∼D

∑
p

yp logPθ(v
′
t+1|w, τt−1, vtp), (3.5)

where p indicates labels of the 36 views in the panoramic view image, and yp ∈ {0, 1}
denotes whether the predicted next view image v′t+1 is the desired one.

3.3.3 Pre-training Datasets

We construct our pre-training dataset based on existing datasets: PREVALENT [30]
and BnB [29]. PREVALENT uses a pre-trained speaker model to produce more
instructions to augment R2R dataset. It contains 104K original R2R samples and
6482K synthesized samples. BnB dataset collects image-caption pairs from Airbnb.
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Figure 3.9. Overview of fine-tuning with memory network.

We use raw images and captions from the BnB dataset and reprocessed them. Indeed,
nearly half of the BnB images are captionless (i.e. images without captions). Thus, to
better adapt BnB dataset to the designed pre-training tasks such as Trajectory Order
Modeling, we remove these captionless images. To construct path-instruction pairs,
we concatenate the images and concatenate the corresponding captions. Each path
contains 5-7 images, which is consistent with the R2R dataset. For image features, we
used a Resnet-152 network pre-trained on ImageNet to extract a mean-pooled feature
vector, the same as the encoding method of images in Matterport3D. Our processed
BnB data contains 342K image sequence-caption pairs.

3.3.4 Fine-tuning with Memory Network

During fine-tuning, our preliminary work HOP [96] uses the state vector as historical
information and updates it at each step. This method is more dependent on the
state of the previous step and thus easily forgets long-term memories. While if all
the observations of previous steps are used as history input during fine-tuning, it will
largely increase the computational cost as the trajectory becomes longer. To address
this problem, we design a memory network for fine-tuning (Figure 3.9), which selects
and summarizes historical information for action prediction during fine-tuning.

The overview of finetuning with the memory network is illustrated in Figure 3.9,
where the architecture of the language encoder, vision encoder, and cross-modality
encoder is the same as that of the pre-training stage. We additionally introduce
a history encoder that shares the same structure with a vision encoder to encode
historical trajectory information, and a memory network to store and update historical
information for action prediction.
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Figure 3.10. Details of the memory network.

To be specific, the inputs are the instruction w, the history views τt−1 = ⟨v1, v2, . . . , vt−1⟩,
and the panoramic observation pt = {p1t , p2t , . . . , p36t } of current time step t. The out-
put features of the instruction from the language encoder are pooled as global repre-
sentation Q, and the output features of panoramic view images pt = {p1t , p2t , . . . , p36t }
from vision encoder are pooled as global representation Pt. Then, W and Pt are
concatenated as a query q for the memory network. Meanwhile, we use the history
encoder to encode historical trajectory before the current time step t, which shares
the same architecture but with different parameters as the vision encoder. This re-
quires fewer computation resources than directly passing the concatenated trajectory
and panoramic observation features into a single vision encoder to implement self-
attention. The output features of the history encoder are then passed into the memory
network as input facts F = {f1, ..., ft−1} for memory updating.

Memory Network

As shown in Figure 3.10, the memory network is comprised of an attention-based
GRU to implement an internal attention mechanism and a linear layer to implement
a memory update mechanism. To produce a contextual vector ct for memory updating,
the attention-based GRU computes a scalar attention gate gti for each fact fi according
to the query q and the previous memory mt−1:
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zti = [fi ◦ q; fi ◦mt−1; |fi − q|; |fi −mt−1|] (3.6)

Zt
i = W (2) tanh

(
W (1)zti + b(1)

)
+ b(2) (3.7)

gti =
exp(Zt

i )∑t−1
k=1 exp(Z

t
k)
. (3.8)

where ◦ indicates the elementwise product, [; ] denotes concatenation on feature chan-
nel, and | · | denotes the elementwise absolute function.

Then, the attention gate gti is applied in the GRU to generate contextual vector
ct:

ri = σ
(
W (r)fi + U (r)hi−1 + b(r)

)
(3.9)

h̃i = tanh
(
W (h)fi + ri ◦ U (h)hi−1 + b(h)

)
(3.10)

hi = gti ◦ h̃i + (1− gti) ◦ hi−1 (3.11)

ct = ht−1 (3.12)

where W , U and b are learnable parameters, h is the hidden state of the GRU network.
The contextual vector ct is the last hidden state of the GRU network. We update the
memory by a linear layer with reference to previous memory mt−1, current contextual
vector ct, and query q:

mt = ReLU
(
W [mt−1; ct; q] + b

)
(3.13)

At last, we concatenate memory token mt and current panoramic observation
tokens pt as vision modality representation and feed it into cross-modality encoder
to make decisions. In fact, the input token length of cross-modality encoder will be
increased by only one due to the scalar memory mt. Undoubtedly, this will further
reduce the computation consumption compared to directly passing the concatenated
trajectory and observation features from vision encoder to cross-modality encoder,
which has much more tokens than combining scalar memory mt.

3.4 Experiments

3.4.1 Experimental Setup

Datasets

We evaluate our method on four VLN tasks: VLN with low-level, fine-grained in-
structions (R2R [5], RxR [54]); Navigation from Dialog History (NDH) [117], and
VLN with high-level instructions (REVERIE [95]).
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Room-to-Room (R2R) gives detailed instructions to let the agent navigate in the
indoor environment. These instructions contain rich linguistic information, such as
“Exit the room using the door on the left. Turn slightly left and go past the round table
an chairs. Wait there”. The dataset consists of 21,567 instructions, 10,800 panoramic
views, and 7,189 trajectories. The average length of instructions is 29 words.
Room-Across-Room (RxR) is an updated version of R2R. It has longer and more
detailed instructions, such as “You are currently facing towards a bathtub which is
in the centre of a room, turn to your left, take a few steps ...... that is your end
point”. In addition, the instructions are in three languages (i.e. English, Hindi, and
Telugu). The RxR dataset contains 16,522 trajectories and 126,069 instructions, with
an average length of 78 words.
REVERIE requires the agent not only to reach the goal destination but also to find a
target object. The instructions are short and high-level, such as “Clean coffee table on
a shag blue rug on first floor”. It contains 4,140 target objects and 21,702 instructions,
with an average length of 18 words.
Navigation from Dialog History (NDH) requires an agent to reach the target
location based on the dialog history. Because the dialogue is unclear and ambiguous,
it can be difficult for the agent to reach a destination based on the information in the
dialogue. It has three settings: (1) Oracle, which uses the shortest path as ground
truth observed by the Oracle; (2) Navigator, which utilizes the path adopted by the
human navigator as ground truth; (3) Mixed, which takes the shortest path or the
path of human if the human visits the target location. The CVDN dataset is used for
the NDH task, which consists of 2,050 dialogs.

Implementation Details

Following [30], we set the layers’ number Ntext, Nimage, Ncross of language encoder,
vision encoder, and cross-modal encoder to 9, 1, and 3, respectively. For pre-training,
the whole model is trained for 15 epochs on 4 Tesla V100 GPUs using a learning
rate of 5×10−5 and batch size of 512. The optimizer is AdamW [73]. We sample
proxy tasks for each mini-batch to train the HOP+ model. When fine-tuning on the
R2R task, we use the same augmented data as [39]. The model is trained for 300,000
iterations with a batch size of 16 and a learning rate of 1×10−5. When fine-tuning
on NDH task, we train the model for 200,000 iterations with a batch size of 4 and a
learning rate of 1×10−5. When fine-tuning on REVERIE task, we train the model for
200,000 iterations with a batch size of 8 and a learning rate of 1×10−5. These tasks
are fine-tuned on a single 1080Ti GPU. When fine-tuning on the RxR task, the model
is trained for 500,000 iterations with a batch size of 16 and a learning rate of 7×10−6.
It is finetuned on a single Tesla V100 GPU. We train the model with a mixture of
imitation learning (IL) and A2C reinforcement learning (RL) [83]. The best model is
selected according to performance on validation unseen split.
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Table 3.2. Comparison with state-of-the-art methods on R2R.

Methods Validation Seen Validation Unseen Test Unseen
TL NE ↓ SR ↑ SPL ↑ TL NE ↓ SR ↑ SPL↑ TL NE ↓ SR ↑ SPL ↑

SF [24] - 3.36 66 - - 6.62 35 - 14.82 6.62 35 28
RCM [122] 10.65 3.53 67 - 11.46 6.09 43 - 11.97 6.12 43 38
Regretful [77] - 3.23 69 63 - 5.32 50 41 13.69 5.69 48 40
Fast-short [49] - - - - 21.17 4.97 56 43 22.08 5.14 54 41
EnvDrop [116] 11.00 3.99 62 59 10.70 5.22 52 48 11.66 5.23 51 47
OAAM [94] 10.20 - 65 62 9.95 - 54 50 10.40 5.30 53 50
EntityGraph [36] 10.13 3.47 67 65 9.99 4.73 57 53 10.29 4.75 55 52
NvEM [2] 11.09 3.44 69 65 11.83 4.27 60 55 12.98 4.37 58 54
ActiveVLN[119] 19.70 3.20 70 52 20.6 4.36 58 40 21.6 4.33 60 41

Press [61] 10.57 4.39 58 55 10.36 5.28 49 45 10.77 5.49 49 45
PREVALENT [30] 10.32 3.67 69 65 10.19 4.71 58 53 10.51 5.30 54 51
DR-Attacker [66] - 3.52 70 67 - 4.99 53 48 - 5.53 52 49
RecBERT [39] 11.13 2.90 72 68 12.01 3.93 63 57 12.35 4.09 63 57
AirBERT [29] 11.09 2.68 75 70 11.78 4.01 62 56 12.41 4.13 62 57
REM [69] 10.88 2.48 75 72 12.44 3.89 64 58 13.11 3.87 65 59
SOAT [84] - - - - 12.15 4.28 59 53 12.26 4.49 58 53
HAMT-ResNet152 [15] - - 69 65 - - 64 58 - - - -
HAM-ViT [15] 11.15 2.51 76 72 11.46 2.29 66 61 12.27 3.93 65 60

HOP [96] 11.26 2.72 75 70 12.27 3.80 64 57 12.68 3.83 64 59
HOP+ 11.31 2.33 78 73 11.76 3.49 67 61 12.67 3.71 66 60

3.4.2 Quantitative Results

Room-to-Room (R2R)

Evaluation Metrics For the Room-to-Room task, we evaluate our model with four
metrics:

TL Trajectory Length measures the average length of all the predicted navigation
trajectories in meters.

NE Navigation Error is the mean of the shortest path distance in meters between
the agent’s final location and the target location.

SR Success Rate measures the ratio of successful tasks, of which the agent’s stop
location is less than 3 meters away from the target location.

SPL Success weighted by Path Length [3] trades-off SR (Success Rate) against
TL (Trajectory Length). It measures both the accuracy and efficiency of navi-
gation. SPL is the key metric for R2R.

Comparison with SoTA As shown in Table 3.2, our method achieves better per-
formance compared to the state-of-the-art models, such as HAMT [15]. It is worth
noting that HAMT was trained on 20 NVIDIA V100 GPUs, while our model uses only
a quarter of its computational resources. With equal use of the ResNet152 feature,
our approach outperforms HAMT in both val seen split (↑ 8% in SPL) and val unseen
split (↑ 3% in SPL). Compared to our previous method HOP, our new method with a
memory network outperforms them by 4% in val unseen split according to the main
metric SPL, which indicates that our agent with an external memory network can
effectively improve the navigation ability of the agent.
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Table 3.3. Comparison with the state-of-the-art methods on
REVERIE. SPL is the main metric for its navigation sub-task, and

RGSPL is the main metric for the object grounding sub-task.

Methods
REVERIE Validation Seen REVERIE Validation Unseen REVERIE Test Unseen

Navigation RGS↑ RGSPL↑ Navigation RGS↑ RGSPL↑ Navigation RGS↑ RGSPL↑SR↑ OSR↑ SPL↑ TL SR↑ OSR↑ SPL↑ TL SR↑ OSR↑ SPL↑ TL

Human – – – – – – – – – – – – 81.51 86.83 53.66 21.18 77.84 51.44

RCM [122] 23.33 29.44 21.82 10.70 16.23 15.36 9.29 14.23 6.97 11.98 4.89 3.89 7.84 11.68 6.67 10.60 3.67 3.14
SMNA [76] 41.25 43.29 39.61 7.54 30.07 28.98 8.15 11.28 6.44 9.07 4.54 3.61 5.80 8.39 4.53 9.23 3.10 2.39
FAST-Short [49] 45.12 49.68 40.18 13.22 31.41 28.11 10.08 20.48 6.17 29.70 6.24 3.97 14.18 23.36 8.74 30.69 7.07 4.52
FAST-MATTN [95] 50.53 55.17 45.50 16.35 31.97 29.66 14.40 28.20 7.19 45.28 7.84 4.67 19.88 30.63 11.61 39.05 11.28 6.08
ORIST [93] 45.19 49.12 42.21 10.73 29.87 27.77 16.84 25.02 15.14 10.90 8.52 7.58 22.19 29.20 18.97 11.38 10.68 9.28
RecBERT [39] 51.79 53.90 47.96 13.44 38.23 35.61 30.67 35.02 24.90 16.78 18.77 15.27 29.61 32.91 23.99 15.86 16.50 13.51
AirBERT [29] 47.01 48.98 42.34 15.16 32.75 30.01 27.89 34.51 21.88 18.71 18.23 14.18 30.28 34.20 23.61 17.91 16.83 13.28
HAMT-ViT [15] - - - - - - 32.95 36.84 30.20 14.08 18.92 17.28 30.40 33.41 26.67 13.62 14.88 12.08

HOP [96] 53.76 54.88 47.19 13.80 38.65 33.85 31.78 36.24 26.11 16.46 18.85 15.73 30.17 33.06 24.34 16.38 17.69 14.34
HOP+ 55.87 56.43 49.55 10.59 40.76 36.22 36.07 40.04 31.13 14.57 22.49 19.33 33.82 35.81 28.24 15.17 20.20 16.86

REVERIE

Evaluation Metrics REVERIE adopts five metrics: Success Rate (SR), Success
weighted by Path Length (SPL), Oracle Success Rate (OSR), Remote Grounding
Success rate (RGS), and RGS weighted by Path Length (RGSPL).

OSR Oracle Success Rate measures the ratio of tasks of which one of its trajectory
viewpoints can observe the target object within 3 meters.

RGS Remote Grounding Success rate measures the ratio of tasks that success-
fully locate the target object.

RGSPL RGS weighted by Path Length is RGS weighted by Path Length, which
is the main metric for this task.

Comparison with SoTA As shown in Table 3.3, our method outperforms previ-
ous approaches in both navigation performance (SR and SPL) and object grounding
performance (RGS and RGSPL). Particularly, in the Test Unseen split, our method
(HOP+) achieves 20.20% in RGS and 16.86% in RGSPL, which are significantly bet-
ter than HAMT (↑ 5.32 in RGS and ↑ 4.78 in RGSPL). Considering our method
just needs one-quarter of the resources of HAMT, our method is much more effective
and efficient. We attribute this improvement to both the pre-training and the newly
devised memory module as our previous HOP is already slightly better than HAMT
and the memory module enlarges the superiority.

Room-Across-Room (RxR)

Evaluation Metrics The following four metrics are used for evaluation on the RxR
dataset: Success Rate (SR), Success weighted by Path Length (SPL), normalized
Dynamic Time Warping (nDTW) [45], and success rate weighted by Dynamic Time
Warping (sDTW).

nDTW Normalized Dynamic Time Warping penalizes deviations from the refer-
ence path.

sDTW Success weighted by normalized Dynamic TimeWarping constrains nDTW
to only successful episodes and effectively captures both success and fidelity.
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Table 3.4. Comparison with state-of-the-art methods on RxR using
English instructions.

Methods RxR Validation Seen RxR Validation Unseen
SR↑ SPL ↑ nDTW ↑ sDTW ↑ SR↑ SPL ↑ nDTW ↑ sDTW↑

Baseline [54] 28.6 - 0.45 0.23 26.1 - 0.42 0.21
EnvDrop [116] 48.1 44.0 0.57 0.40 38.5 34.0 0.51 0.32
EnvDrop+Syntax [60] 48.1 44.0 0.58 0.40 39.2 35.0 0.52 0.32

HOP [96] 49.4 45.3 0.58 0.40 42.3 36.3 0.52 0.33
HOP+ 53.6 47.9 0.59 0.43 45.7 38.4 0.52 0.36

Table 3.5. Comparison with state-of-the-art methods on NDH mea-
sured by the Goal Progress in meters.

Methods NDH Validation Unseen NDH Test Unseen
Oracle Navigator Mixed Oracle Navigator Mixed

Seq2Seq [117] 1.23 1.98 2.10 1.25 2.11 2.35
CMN [139] 2.68 2.28 2.97 2.69 2.26 2.95
PREVALENT [30] 2.58 2.99 3.15 1.67 2.39 2.44
ORIST [93] 3.30 3.29 3.55 2.78 3.17 3.15
DR-Attacker [66] 3.27 4.00 4.18 2.77 2.95 3.26

HOP [96] 4.07 4.05 4.41 2.99 3.18 3.24
HOP+ 4.32 4.21 4.59 3.25 3.60 3.90

As shown in Table 3.4, our model achieves better performance than other SoTA
methods on val seen and unseen sets. In particular, our model outperforms the previ-
ous SoTA method Syntax [60] on the unseen split (6.5% improvement in SR). Com-
pared to our previous method HOP, the newly proposed method also improves almost
all metrics, especially the success rate (3.4% improvement) in the unseen split. These
results demonstrate the effectiveness of both the pre-training and the memory network
for fine-tuning.

Navigation from Dialog History (NDH)

Evaluation Metric NDH uses Goal Progress (GP) in meters as the primary evalu-
ation metric.

GP Goal Progress measures the average progress of the agent towards the target.

Comparison with SoTA Table 3.5 shows navigation results on the NDH task.
Compared to the SoTA method DR-Attacker [66], HOP+ achieves much better results
on both validation and test unseen environments in all settings. Specifically, on the
validation unseen split under the mixed setting, our HOP+ model achieves up to
0.64 meter gains over DR-Attacker. In addition, HOP+ significantly outperforms
PREVALENT (by 1.46 meter) on the Test split under the Oracle setting, which is
the pre-training method. Compared to our previous method HOP, our new method
also achieves better results on all splits under all settings (with 0.16∼0.66 meters
improvements), which indicates the effectiveness of the memory module.
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Table 3.6. Ablation study of the pre-training tasks on validation
unseen splits of three VLN tasks: R2R, REVERIE, and NDH.

Pre-training Tasks R2R REVERIE NDH
MLM TIM TOM GOM APH AP SR↑ SPL↑ SR↑ OSR↑ SPL↑ RGS↑ RGSPL↑ Goal Progress↑

1 55.90 50.55 25.11 28.71 20.46 15.42 12.70 3.42
2 ✓ 61.45 55.42 25.90 28.96 21.70 16.47 13.85 3.82
3 ✓ ✓ 61.77 55.95 27.92 32.12 22.27 17.98 14.37 3.89
4 ✓ ✓ 62.74 56.36 28.88 32.01 23.89 19.20 15.93 3.92
5 ✓ ✓ 63.25 56.89 29.34 32.72 24.82 18.46 15.80 3.94
6 ✓ ✓ 64.82 58.91 33.79 35.90 28.28 20.73 17.68 4.19
7 ✓ ✓ 64.11 57.37 33.03 36.98 28.16 20.13 16.85 4.06
8 ✓ ✓ ✓ ✓ 65.86 58.48 33.43 37.26 28.62 20.99 17.98 4.31
9 ✓ ✓ ✓ ✓ ✓ 66.41 60.20 34.14 37.52 29.37 21.61 18.56 4.45

3.4.3 Ablation Study

The Effect of proxy tasks We analyze the advantage of different pre-training tasks
through ablation studies over R2R, REVERIE, and NDH downstream tasks. As
shown in Table 3.6, the first row trains HOP+ from scratch with a memory network
on the selected VLN tasks. Row 2 shows the results from pre-training with MLM
task, where we can see a gain with large margins on all VLN tasks, especially with
approximately +6 SR and +5 SPL on the R2R task. While Row 3∼Row 9 show the
result of incorporating MLM task with other proxy tasks of TIM, TOM, GOM, APH,
and AP. The result shows combining APH with MLM brings the largest improvement
compared to other single proxy tasks, which illustrates the superiority of our proposed
Action Prediction with the History proxy task. Furthermore, it surpasses AP task
which directly predicts actions without history trajectory by non-trivial margins. In
other words, both action prediction and history knowledge play vital roles in pre-
training for VLN downstream tasks. While either combing the order modeling proxy
task of TOM or GOM with MLM can outperform combing TIM with MLM, showing
both these two tasks can learn a better visiolinguistic representation than the widely
used trajectory-instruction matching task. When assembling these proxy tasks, the
performances are further improved as shown in Row 8 and Row 9. Compared to the
baseline model without pre-training, a great performance improvement of 10.5% SR
on R2R, 9% SR on REVERIE, and 1 meter on NDH is achieved.

From the view of downstream tasks, on the most complicated REVERIE task
that not only measures the agent’s ability in navigation but also in object grounding,
HOP+ achieves the most obvious improvement with a relative 43.5% on SPL and
46.1% on RGSPL compared to the baseline model. While on another comprehensive
NDH task where the instructions are ambiguous and implied in historical dialogues and
historical visual trajectories, HOP+ improves the performance with a relative gain of
30.1%. In fact, our proposed proxy tasks and the memory network are exactly suitable
for handling such two tasks, which significantly boosts navigation performance. All
these promising results show the effectiveness of our proposed HOP+.



3.4. Experiments 37

Table 3.7. Ablation study results of pre-training data on the valida-
tion unseen splits of R2R, REVERIE, and RxR tasks. BnB* denotes

our processed data from AirBERT [29].

Pre-training Data R2R REVERIE RxR
SR↑ SPL↑ SR↑ SPL↑ SR↑ SPL↑

None 55.90 50.55 25.11 20.46 37.8 32.5
PREVALENT 66.41 60.20 34.14 29.37 45.0 37.9
PREVALENT + BnB* 66.84 60.94 36.07 31.13 45.7 38.4

The Effect of Pre-training Data

To evaluate the effect of different pre-training data, we conduct an ablation study on
R2R, REVERIE, and RxR validation unseen split. As shown in Table 3.7, when pre-
trained with data from PREVALENT, our model significantly improves performance
on all these tasks (8%∼11%). And the performance is still able be improved when
adding data processed from AirBERT (denoted as BnB* in the table). In addition, we
observe that the BnB* data benefits the REVERIE task the most. This may be due to
the BnB’s captions mainly describing rooms and objects, which matches REVERIE’s
object grounding mission. Our results also indicate that more data is usually helpful
but the marginal utility will also become obvious.

History Information in Pre-training

Figure 3.11 presents the result of the Action Prediction task whether using histor-
ical information in pre-training. It shows that the validation curves of our Action
Prediction with History(APH) converges faster and with better accuracy than Ac-
tion Prediction (AP) task during pre-training. Moreover, the results illustrated in
Table 3.6 (Model 6 and Model 7) also show that APH achieves higher performance
for all metrics and on three downstream tasks. This evaluation demonstrates the ad-
vantage of our Action Prediction with History tasks compared to the normal Action
Prediction task.

APH vs APM in Fine-tuning

Here we compare two kinds of approaches that handle history information: 1) Action
Prediction with history (APH): we consider historical visual observations the same
as the pre-training task APH to aid action prediction. 2) Action Prediction with
memory (APM): our proposed external memory network that learns to select useful
information from the historical trajectory. We use HOP [96] as a baseline, which
does not utilize history information as APH or APM. We conduct experiments on the
validation split of the R2R task. As shown in Figure 3.12, when introducing historical
information, the agent’s navigation performance improves on both seen and unseen
splits. When we additionally utilize an external memory network, the performance is
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Figure 3.11. APH v.s. AP regarding action prediction accuracy.

(a) SR(%) (b) SPL(%)

Figure 3.12. Effect of memory network in fine-tuning.

further significantly improved, especially on the unseen split (↑ 2.22% in SR, ↑ 2.81%
in SPL). This suggests that the introduction of an additional attention mechanism
can indeed help the agent in action decision-making.

Computational Efficiency

To assess the computational efficiency of the way of utilizing historical information, we
compare the inference time of AP, APM, and APH, where AP represents the original
HOP which does not handle history information in fine-tuning and inference. We run
each model on the R2R val unseen split (2349 instructions) using a single 1080Ti GPU.
We run each model three times and calculate the average inference time. As shown
in Table 3.8, we can see that the inference time using APM increases 9.3% compared
to AP. While APH increases much more inference time, with a large margin of 28.7%
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Table 3.8. Inference time on R2R validation unseen split.

Methods AP APH APM

Inference time (s) 43.58 56.08 47.65

compared to AP. The increased inference time of APH is about 3 times to that of
APM.

3.4.4 Qualitative results

Figure 3.13 and Figure 3.14 respectively visualize trajectories predicated by our method
HOP+ compared to our preliminary version HOP [96] and RecBERT [39]. As shown
in Figure 3.13, we can see that HOP could follow the instruction in the first few steps,
and as the number of steps increases, it fails to reach the target location. By contrast,
our HOP+ enables the model to recognize the scene such as the kitchen, living room,
and dining room, then well follow the instruction to stop on the porch. As shown in
Figure 3.14, RecBERT fails from the first step, where it cannot find the vase men-
tioned in the instruction. Although it later finds a bed, it is found in the wrong room.
By contrast, our HOP+ recognises the vase and then well follow the instruction to
stop at the right bathroom. We also provide a fail case of our method in Figure 3.15.
When going through the hall, there are two doorways. HOP+ chooses the wrong
direction when crossing the hall (it does not choose the doorway directly opposite).
This indicates that HOP+ fails to understand orientation words such as “opposite”
and that the learning ability of language representation which has not received much
attention should be enhanced in future work.

3.5 Conclusion

In this work, we introduce a history-enhanced and order-aware pre-training with
the complementing fine-tuning paradigm for Vision-and-Language Navigation tasks.
We design three tailored pre-training tasks for VLN: Action Prediction with His-
tory (APH), Trajectory Order Modeling (TOM), and Group Order Modeling (GOM).
These tasks equip the agent to be aware of history information and temporal or-
der within instructions. In addition, to bridge the gap between the pre-training and
fine-tuning stages, we propose an external memory network in finetuning stage to ef-
fectively utilize the historical knowledge learned during pre-training and enhance the
agent’s ability in decision-making. We conduct extensive experiments on four main-
stream downstream VLN tasks, including R2R, REVERIE, RxR, and NDH, and the
results demonstrate the effectiveness of our proposed HOP+.
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…

(a) Predicted trajectory by HOP [96] (failed).

(b) Predicted trajectory by HOP+ (succeed).

Figure 3.13. Comparisons of predicted trajectory with our previous
work HOP [96]. The navigation steps inside the red box are incorrect.
Instruction:" leave sitting room and head towards the kitchen, turn
right at living room and enter. walk through living room to dinning
room and enter. Turn left and head to front door. Exit the house and

stop on porch."
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(a) Predicted trajectory by RecBERT [39]
(failed).

(b) Predicted trajectory by HOP+ (succeed)

Figure 3.14. Comparisons of predicted trajectory with state-of-the-
art method RecBERT [22]. Navigation steps inside red box are incor-
rect. Instruction: “Walk down the hallway past the vases, enter the
bedroom, walk to the foot of the bed, walk toward the bathroom on

the left, wait in the doorway to the bathroom.”

(a) Ground-truth trajectory.

(b) Predicted trajectory by HOP+ (failed)

Figure 3.15. Fail case of HOP+ in R2R val unseen split. Instruction:
“Move forward to the doorway on the opposite side of the hall. Stop

in the archway.”
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Chapter 4

Parameter-Efficient Transfer
Learning

Though Chapter 3 addressed a History-enhanced and Order-Aware Pre-training with
the complementing fine-tuning paradigm to solve the current lack of lacking a pre-
trained model that emphasizes temporal and historical information in VLN tasks,
there still exists a challenge that the inefficient problem of tuning large pre-trained
models for VLN tasks. Thus, in this chapter, we present the first study of applying
Parameter-Efficient Transfer Learning (PETL) techniques to VLN tasks and propose
a VLN-specific PETL method named VLN-PETL.

4.1 Introduction

Large-scale pre-trained models have shown remarkable success in both computer vision
(CV) and natural language processing (NLP) domains, and have largely improved the
performance of a variety of visio-linguistic tasks [57, 87, 129]. These models follow
a standard pretrain-and-finetune paradigm, which first pretrains the model on large-
scale unlabeled data and then finetunes it on each downstream task. Since the size
of such models is growing rapidly [97], even fully finetuning and storing a copy of the
entire pretrained model for each downstream becomes costly.

To alleviate this problem, Parameter-Efficient Transfer Learning (PETL) has been
proposed as an alternative training strategy [7, 34, 40, 41, 78, 79] and initially achieved
great progress in NLP community. These methods aim to exploit the representation
knowledge in the large pretrained models by freezing most parameters of the model
and only tuning a small set of parameters, which can achieve comparable or even better
performance to full fine-tuning. Several approaches have attempted to apply PETL
techniques to CV and V&L domains [35, 88, 112, 127] and achieved promising results
on various downstream tasks. Recent works [31, 81, 132] find that different PETL
methods have different characteristics and performance on the same downstream task
and thus combining multiple PETL techniques may be more effective in improving
the performance.



48 Chapter 4. Parameter-Efficient Transfer Learning

Updated Frozen

“Go straight past the bed and

the fireplace. Exit the room

using the door on the left of the

fireplace. Wait there. ”
VLN agent

Full fine-tuning
Instruction

Next action?
Success Rate (R2R): 

64.2%

Updated Param: 

100%

PETL training (Ours)

Success Rate (R2R): 

65.5%

Updated Param: 

2.82%

VLN agent

VLN-PETL

VLN-PETL

Figure 4.1. Comparison of full fine-tuning and our proposed PETL
training for VLN tasks. By updating only a small subset of parame-
ters, our proposed VLN-PETL can achieve a comparative performance

compared to full fine-tuning.)

Vision-and-Language Navigation (VLN), which deals with visual, linguistic, and
robotic action inputs simultaneously, could benefit from the pre-trained large models
while suffering from the considerable model size during the downstream tasks fine-
tuning. Considering downstream VLN agents are complex enough, full finetuning
them with the large pre-trained models for each downstream VLN task becomes ex-
pensive, in which case the technique of PETL shows great potential. Unlike most
NLP, CV, and V&L tasks, VLN is a dynamic action decision-making task relying on
the current environment and previous history knowledge of the chosen actions. Specif-
ically, given the instruction in natural language, the VLN agent perceives a new visual
observation according to the chosen action at the previous timestep and should choose
the next action to perform at the current timestep. Thus, how to effectively learn his-
tory knowledge is crucial to adapting PETL methods for VLN tasks. Moreover, the
cross-modal interaction which plays a vital role in action prediction should be also
enhanced during the process of efficient tuning. Besides, our experiments show that
directly applying some existing PETL methods to VLN tasks may bring non-trivial
performance degeneration.

Considering these reasons, we propose a VLN-specific PETL method named VLN-
PETL. Specifically, we design two tailored PETL modules for VLN: Historical Inter-
action Booster (HIB) and Cross-modal Interaction Booster (CIB). Both these two
modules mainly consist of bottleneck layers and multi-head cross-attention layers.
HIB enhances the interaction between the observation and the previous historical
knowledge in a recurrent pattern. While CIB adopts a two-stream structure to focus
on the interaction of cross-modal knowledge. Similar to adapters that inject bottle-
neck layers into transformer blocks for efficient tuning, we insert HIB and CIB into
the visual encoder and cross-modal encoder separately in the pre-trained model for
VLN. During the training process, the original weights of the large pre-trained model
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are frozen and only weights of these newly injected modules are trained and updated
for different downstream VLN tasks.

In addition to HIB and CIB, VLN-PETL also adopts vanilla adapters to efficiently
tune the language encoder and the LoRA to further improve the parameter-efficient
tuning’s performance as previous work declared [31, 81, 132] for downstream VLN
tasks.

We conduct extensive experiments on four mainstream VLN tasks: R2R [5],
REVERIE [95], NDH [117], and RxR [54]. The results show that VLN-PETL not
only surpasses other PETL methods with promising margins but also achieves com-
parable or even better performance compared to full fine-tuning, especially on R2R
(↑ 1.3% SR on validation unseen set, updating only 2.82% params, see Figure 4.3)
and on NDH (↑ 1.08 GP on test unseen set which achieves the top position in the
leaderboard). We also conduct ablation studies to evaluate the contribution of each
component of VLN-PETL and validate the superiority of HIB and CIB to counterpart
PETL methods.

In summary, our contributions are as follows: (1) We present the first study that
explores Parameter-Efficient Transfer Learning (PETL) techniques for Vision-and-
Language Navigation (VLN) tasks; (2) We propose a VLN-specific PETL method
named VLN-PETL, which incorporates existing PETL methods with two tailored
PETL modules for VLN tasks: Historical Interaction Booster (HIB) and Cross-modal
Interaction Booster (CIB); (3) Extensive experiments on four VLN downstream tasks
demonstrate the effectiveness of our proposed VLN-PETL, which outperforms other
PETL methods and keep competitive to full fine-tuning with much fewer trainable
parameters.

4.2 Background

Parameter-Efficient Transfer Learning Methods

Recently, with the rapid increase of pre-trained models’ size, how to efficiently tune the
large pre-trained models has received great attention and Parameter-Efficient Trans-
fer Learning (PETL) has become a popular research area. One category of PETL
methods adds new parameters into the pretrained model and only trains these param-
eters. For example, Adapter [40] introduces bottleneck layers after attention layers
and feed-forward layers in the transformer block. LoRA [41] injects trainable low-
rank decomposition matrices into linear projection layers to approximate the update
of large amount of parameters. Prompt Tuning [58] prepends trainable prompts to
the model’s input. Another kind of PETL method does not add new parameters and
selects a subset of the pretrained model’s parameters to update, such as BitFit [7],
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which only trains the bias term in the model. Recent works [31, 81, 132] find that in-
corporating different PETL methods as sub-modules may help improve the integrated
performance for different downstream tasks in NLP and CV.

However, VLN is a dynamic task of action prediction relying on both the current
observations and previous action decisions, which is more challenging than other static
NLP, CV and V&L tasks. In other words, the previous decision of action will influence
the current environment observed by the agent as well as the choice of the next action
to perform. Thus, it is important to effectively utilize the historical knowledge of the
previous trajectory when applying PETL methods to VLN. Furthermore, the cross-
modal interactions of the language and vision also have a great impact on action
predictions, which should be enhanced especially when most parameters of the pre-
trained model are frozen for efficient tuning. Therefore, we specifically design two
PETL modules for VLN tasks to enhance the history knowledge interactions and
cross-modal knowledge interactions, namely Historical Interaction Booster (HIB) and
Cross-modal Interaction Booster (CIB). In addition, VLN-PETL also incorporates
vanilla adapters to efficiently tune the language encoder and LoRA to further improve
the performance.

Here we give descriptions about PETL methods:
Adapter inserts trainable bottleneck layers after the multi-head attention layers or
feed-forward layers in the transformer blocks. The bottleneck layer of an adapter con-
sists of a linear down-projection with Wdown ∈ RDhidden×Dmid , a non-linear activation
function σ(·) and a linear up-projection Wup ∈ RDmid×Dhidden . Given the input fea-
ture fin, the adapter first projects fin into the Dmid bottleneck dimension and then
recovers it back into Dhidden dimension as:

fout = W ⊺
upσ(W

⊺
downfin). (4.1)

Bias terms are omitted for brevity. The parameters of layer normalization are usually
tuned together with the adapter. Besides, the adapter can be inserted into the trans-
former layers in a sequential manner or in a parallel manner, while the latter one is
proved superior to the former one as in [31].
LoRA injects trainable low-rank decomposition matrices to represent the weight up-
dates of the frozen parameters in the transformer’s linear projection layers. Specifi-
cally, for a weight matrix W ∈ RDhidden×Dhidden in the pre-trained model, the weight
update ∆W ∈ RDhidden×Dhidden is approximated by two low-rank matrices Wdown ∈
RDhidden×Dmid and Wup ∈ RDmid×Dhidden as follow:

W +∆W = W +WdownWup, (4.2)

and the forward pass of LoRA can be formulated as:

fout = (W ⊺ + γW ⊺
upW

⊺
down)fin. (4.3)
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where γ is a fixed scalar hyperparameter for scaling.
Prompt Tuning prepends a sequence of randomly initialized continuous prompts
fprompt into the input feature fin. During training, only these prompts are optimized
by updating a learnable projection matrix Wprompt ∈ R1×Dhidden . The forward pass
can be formulated as:

fprompt = W ⊺
promptX, (4.4)

fout = TRM([fprompt,fin]). (4.5)

where X represents discrete prompt tokens, [·] represents concatenation, TRM(·)
represents the transformer block.
BitFit does not introduce new parameters or inputs for tuning. It only tunes the
bias terms in the pretrained models, which shows promising performance in some
NLP tasks.

4.3 Method

We use a large pre-trained model of HAMT as our baseline, which is pre-trained
on plentiful text-image pairs of instructions and the corresponding trajectories. As
illustrated in Figure 4.2, HAMT adopts a two-stream architecture, which consists
of a language encoder and a vision encoder to extract single-modal features and a
cross-modal encoder to fuse multi-modal features for action prediction.

4.3.1 Baseline model

Language Encoder

Following the practice of BERT, the language encoder first embeds the instruction I
into language embedding Ex by summing the word embedding, position embedding,
and type embedding of each word xi in the instruction. Then, Ex is passed through NL

transformer blocks which consist of a multi-head self-attention layer and feed-forward
layer to generate the language feature fx.

Vision Encoder

The vision encoder mainly consists of observation encoding and history encoding. At
time step t, the panoramic image feature and the corresponding angle feature aot are
projected into Eo

v and Eo
a followed by the layer normalization. Then, Eo

v and Eo
a are

summed up as the current observation feature ot. Meanwhile, the panoramic image
feature vht−1 and the corresponding turned angle feature aht−1 of the previous time
step are taken as the input for history encoding. Similarly, vht−1 and aht−1 are first
projected into Eh

v and Eh
a . Then, Eh

v and Eh
a are summed up and passed through

NH transformer blocks to generate ht, which is appended into the tail of ⟨h1, ..., ht−1⟩
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Figure 4.2. Illustration of the framework of our proposed VLN-
PETL. The pre-trained model of HAMT mainly consists of a language
encoder, a vision encoder, and a cross-modal encoder. The blue color
denotes the frozen parameters in the pre-trained model and the green

color denotes the trainable parameters of injected PETL modules.

as the current time step’s history feature ht. Indeed, the history encoding only re-
encodes the previous time step’s observation statically without any other interactions.
Thus, this manner of history feature’s generation and update may neglect the temporal
knowledge embodied in the navigation trajectory.

Cross-modal Encoder

At the time step t, the observation feature ot and the history feature ht are first
concatenated as the visual feature fv. Then, fx and fv are passed through NC cross-
modal transformer blocks that consist of two-stream multi-head cross-attention layers,
multi-head self-attention layers, and feed-forward layers to generate cross-modal fea-
tures for action prediction.

4.3.2 VLN-PETL

Not all the aforementioned PETL methods perform well in the complicated VLN tasks,
such as BitFit and Prompt Tuning, which bring performance degeneration to VLN
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(c) Cross-modal Interaction Booster(CIB).

Figure 4.3. Detailed components of VLN-PETL. TRM represents
the transformer block, MHA represents the multi-head attention layer,
σ represents the activation layer and G represents the learnable gate.

tasks (see Sec. 4.5 for evaluation and explanation). Thus, as shown in Figure 4.2, we
only incorporate the adapter and LoRA as the PETL components of our integrated
VLN-PETL. Furthermore, two block-level PETL modules are specially designed for
VLN tasks considering the unique characteristics of VLN tasks and parameter ef-
ficiency, namely Historical Interaction Booster (HIB) and Cross-modal Interaction
Booster (CIB). Based on the bottleneck structure of the adapter, these two mod-
ules respectively strengthen the historical interaction and cross-modal interaction by
incorporating the multi-head cross-attention mechanism and gating mechanism.

Language Encoder Adapter

As shown in Figure 4.3a, the Language Encoder Adapter (LEA) is inserted into the
multi-head self-attention layers and feed-forward layers in parallel. Concretely, for
the l-th transformer block in the language encoder, the input feature f l−1

x is first
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passed through the adapter and summed with the output feature of the multi-head
self-attention layer as fatt:

fatt = LN
(
MSA(f l−1

x ) + ADAPTER(f l−1
x )

)
, (4.6)

where MSA(·) represents the multi-head self-attention layer, ADAPTER(·) represents
the adapter block shown in Eq.4.1 and LN(·) represents the layer normalization. Simi-
larly, another adapter is inserted into the feed-forward layer which takes fatt as input:

fffn = LN
(
FFN(fatt) + ADAPTER(fatt)

)
, (4.7)

where FFN(·) represents the feed-forward layer. fffn is used as the final output feature
f l
x of the l-th transformer block:

f l
x = fffn. (4.8)

Historical Interaction Booster

As shown in Figure 4.3b, the Historical Interaction Booster (HIB) adopts the multi-
head cross-attention mechanism to enhance the historical interaction between the
observation feature and the history feature at each timestep t in a recurrent pattern.
Specifically, for the l-th transformer block in the vision encoder, the input observation
feature f l−1

h and the previous history feature ht−1 are first downsampled into fdown

and hdown with Dmid dimension by projection matrices Wdown_f and Wdown_h:

fdown = W ⊺
down_ff

l−1
h , (4.9)

hdown = W ⊺
down_hht−1, (4.10)

Then, the history knowledge is encoded into the observation feature by the multi-head
cross-attention between fdown and hdown followed by a learnable gate α:

f ′
down = ReLU(fdown), (4.11)

fcross = MHA(fdown,hdown), (4.12)

α = Sigmoid(
θ

T
), (4.13)

fv_h = α ∗ f ′
down + (1− α) ∗ fcross, (4.14)

where MHA(·) represents the multi-head cross-attention layer of which the query is
fdown while the key and value are hdown, θ is a learnable scalar initialized by zero and
T is fixed as 0.1 representing the temperature hyperparameter. Next, the attended
visual-and-historical feature fv_h is upsampled into Dhidden dimension and summed
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with the original output feature f̂ l
t of the l-th transformer block:

f̂ l
h = TRM(f l−1

h ), (4.15)

f l
h = LN(f̂ l

h +W ⊺
upfv_h), (4.16)

where TRM(·) represents the transformer block in the vision encoder. The final output
history feature ht at the current timestep t is obtained as follow:

ht = fL
h , (4.17)

where L represents the number of transformer blocks.

Cross-modal Interaction Booster

As shown in Figure 4.3c, to enhance the interaction between language and visual
modalities, Cross-modal Interaction Booster (CIB) adopts a two-stream multi-head
cross-attention mechanism. To be specific, for the l-th transformer block in the cross-
modal encoder, the input language feature f l−1

x and the visual feature f l−1
v are first

downsampled into fdown_x and fdown_v with Dmid dimension by projection matrices
Wdown_x and Wdown_v as Eq.4.9 and Eq.4.10. Then, a two-stream multi-head cross-
attention is implemented by exchanging the query for the key and value as follows:

fcross_x = MHA(fdown_x,fdown_v), (4.18)

fcross_v = MHA(fdown_v,fdown_x), (4.19)
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Two learnable gates αx and αv are used to obtain cross-attended language feature
fx_v and visual feature fv_x:

fx_v = αx ∗ f ′
down_x + (1− αx) ∗ fcross_x, (4.20)

fv_x = αv ∗ f ′
down_v + (1− αv) ∗ fcross_v, (4.21)

where f ′
down_x and f ′

down_v are obtained by passing fdown_x and fdown_v through
ReLU layer as Eq.4.11. At last, fx_v and fv_x are respectively upsampled into Dhidden

dimension and summed with the original output language feature f̂ l
x and visual feature

f̂ l
v as the final output feature f l

x and f l
v of the l-th transformer block:

f̂ l
x, f̂

l
v = TRM(f l−1

x ,f l−1
v ), (4.22)

f l
x = LN(f̂ l

x +W ⊺
up_xfx_v), (4.23)

f l
v = LN(f̂ l

v +W ⊺
up_vfv_x). (4.24)

where TRM(·) represents the transformer block in the cross-modal encoder.

Incorporating LoRA in VLN-PETL

As shown in Figure 4.4, VLN-PETL incorporates LoRA as an independent PETL
component in addition to LEA, HIB and CIB to further improve the performance
on downstream VLN tasks. Specifically, we globally inject LoRA layers into query
matrices WQ and value matrices WV of all multi-head attention layers in the pre-
trained model. Given the input feature fin_q and fin_v for linear projection in the
multi-head attention layer, the output feature Q and V can be computed as follow:

Q = (W ⊺
Q + γW ⊺

up_qW
⊺
down_q)fin_q, (4.25)

V = (W ⊺
V + γW ⊺

up_vW
⊺
down_v)fin_v. (4.26)

Details of Language Encoder Adapter

Concretely, for the l-th transformer block in the language encoder, the input feature
f l−1
x is first passed through an adapter with Dmid bottleneck dimension to generate

a new feature fad_att. Then, fad_att is summed with the original output feature f̂att

of the multi-head self-attention layer in the transformer block as:

fad_att = W ⊺
up_attReLU(W ⊺

down_attf
l−1
x ), (4.27)

f̂att = MSA(f l−1
x ), (4.28)

fatt = LN(f̂att + fad_att), (4.29)
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Figure 4.5. Variant of VLN baseline for RxR.
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Figure 4.6. Variant of Cross-modal Interaction Booster for RxR.

where Wup_att and Wdown_att represent projection matrices of the adapter, MSA(·)
represents multi-head self-attention layer and LN(·) represents layer normalization.
Note that we omit the feed-forward layer following multi-head self-attention layer for
brevity.

Similarly, another adapter is inserted into the feed-forward layer which takes fatt

as input:

fad_ffn = W ⊺
up_ffnReLU(W ⊺

down_ffnfatt), (4.30)

f̂ffn = FFN(fatt), (4.31)

fffn = LN(f̂ffn + fad_ffn), (4.32)
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where FFN(·) represents feed-forward layer. Finally, fffn is used as the output feature
f l
x of the l-th transformer block:

f l
x = fffn. (4.33)

Variant of VLN-PETL for RxR

To improve the efficiency of HAMT for VLN tasks with much longer instructions such
as RxR, [15] adopts a structure variant for cross-modal encoder as shown in Figure 4.5.
We follow this practice for our VLN baseline in the RxR task and correspondingly
our proposed cross-modal Interaction Booster (CIB) also has a modification for the
language sub-branch as shown in Figure 4.6. Specifically, for the language input
feature f l−1

x , only a bottleneck layer with an activation layer works as a block-level
adapter, excluding the multi-head cross-attention mechanism and gating mechanism.
The forward pass of this variant can be formulated as follows:

f l
x = LN

(
TRM(f l−1

x ) + ADAPTER(f l−1
x )

)
. (4.34)

4.4 Experiments

4.4.1 Downstream tasks

To comprehensively evaluate PETL methods for VLN, we conduct experiments on
four downstream tasks: Room-to-Room (R2R) [5], REVERIE [95], NDH [117] and
Room-across-Room (RxR) [54]. These downstream tasks evaluate the agent from dif-
ferent views: (1) R2R and RxR require the agents to follow detailed instructions to
navigate from one room to another; (2) REVERIE gives a concise, high-level instruc-
tion referring to a remote object, which focuses on grounding remote target objects;
(3) NDH requires an agent to reach target regions based on the dialog history, which
contains multiple question-and-answer interactions between the agent and an oracle.

4.4.2 Evaluation metrics

We follow previous work and adopt the most commonly used metrics for evaluating
VLN agents as follows:

TL (Trajectory Length) measures the average length of all the predicted navigation
trajectories in meters. NE (Navigation Error) is the mean the average distance in
meters between the agent’s final location and the target location. SR (Success Rate)
measures the ratio of successful tasks, of which the agent’s stop location is less than
3 meters away from the target location. SPL (Success weighted by Path Length [3])
trades-off SR (Success Rate) against TL (Trajectory Length), which measures both
the accuracy and efficiency of navigation. OSR (Oracle Success Rate) measures the
ratio of tasks of which one of its trajectory viewpoints can observe the target object
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Table 4.1. Performance of PETL methods on R2R

Methods Updated Validation Seen Validation Unseen Test Unseen
Params(%) TL NE ↓ SR ↑ SPL ↑ TL NE ↓ SR ↑ SPL↑ TL NE ↓ SR ↑ SPL ↑

Fine-Tuning 100 11.48 2.94 72.67 69.17 11.62 3.64 64.24 59.25 12.20 4.09 63.20 58.55

BitFit [7] 0.46 11.61 3.78 63.47 60.35 12.22 4.18 59.17 54.67 12.96 4.63 57.15 53.03
Prompt Tuning [58] 0.37 10.67 4.24 61.02 58.59 11.14 4.63 56.49 52.32 11.60 4.88 54.47 50.91
LoRA [41] 3.02 11.73 3.14 70.13 66.00 12.25 3.84 63.60 57.59 12.99 4.15 61.44 55.96
Adapter [40] 3.08 11.70 3.34 67.38 64.42 12.66 4.00 63.01 57.42 13.19 4.27 60.69 55.88

VLN-PETL(ours) 2.82 11.39 2.93 72.28 68.50 11.52 3.53 65.47 60.01 12.30 4.10 63.22 58.25

Table 4.2. Performance of PETL methods on REVERIE. SPL is the
main metric for its navigation task, and RGSPL is the main metric for

the object grounding task.

Methods
Updated REVERIE Validation Seen REVERIE Validation Unseen REVERIE Test Unseen

Navigation RGS↑ RGSPL↑ Navigation RGS↑ RGSPL↑ Navigation RGS↑ RGSPL↑Params(%) SR↑ OSR↑ SPL↑ TL SR↑ OSR↑ SPL↑ TL SR↑ OSR↑ SPL↑ TL

Fine-Tuning 100 46.73 52.35 42.75 13.37 30.64 27.91 32.63 37.82 28.92 15.66 18.66 16.06 33.09 37.82 27.02 12.83 15.04 13.32

BitFit [7] 0.80 33.52 37.81 31.84 11.45 19.96 18.93 24.65 27.46 21.34 12.36 10.85 9.43 21.50 24.95 18.85 12.53 9.87 8.62
Prompt Tuning [58] 0.71 25.86 33.17 23.21 12.15 8.29 7.44 19.94 25.08 17.75 12.43 5.82 5.07 19.95 24.24 17.94 11.61 5.51 4.88
LoRA [41] 3.33 42.30 46.24 38.63 12.89 29.87 27.45 29.42 34.28 26.17 15.96 15.25 13.45 32.12 37.00 26.86 14.93 14.94 12.76
Adapter [40] 3.39 40.76 45.05 37.43 13.75 27.13 24.62 29.48 32.83 26.62 14.59 16.05 14.21 29.20 32.31 24.78 14.96 14.51 12.48

VLN-PETL(ours) 2.81 45.96 51.23 42.60 12.86 29.94 27.61 31.81 37.03 27.67 14.47 18.26 15.96 30.83 36.06 26.73 14.00 15.13 13.03

within 3 meters. RGS (Remote Grounding Success rate) measures the ratio of tasks
that successfully locate the target object. RGSPL (RGS weighted by Path Length) is
RGS weighted by Path Length. GP (Goal Progress) measures the average progress of
the agent towards the target. nDTW (Normalized Dynamic Time Warping) penalizes
deviations from the reference path. sDTW (Success weighted by normalized Dynamic
TimeWarping) constrains nDTW to only successful episodes and effectively captures
both success and fidelity.

4.4.3 Implementation details

We choose existing PETL methods of BitFit, Prompt Tuning, Adapter and LoRA for
comparison with our integrated VLN-PETL. We use the same learning rate of 1e− 4,
and AdamW [73] optimizer for all PETL methods. The batch size is set as 4 for
REVERIE and 8 for the other three VLN tasks. For Prompt Tuning, we respectively
add 20 prompt tokens in front of the inputs of the language encoder and vision encoder.
For the setting of both Adapter and LoRA, the bottleneck dimension Ddim is set as 64,
which brings comparative parameters for a fair comparison with VLN-PETL. While
for VLN-PETL, the bottleneck dimensions Ddim of the Language Encoder Adapter
(LEA), History Interaction Booster (HIB), and Cross-modal Interaction Booster (CIB)
is set as 64 while the bottleneck dimension of the incorporated LoRA is set as 8 for
REVERIE while 16 for other VLN tasks. The attention heads number of both HIB
and CIB is set as 4. For all PETL methods, the prediction heads of the pre-trained
model are also trained.
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Table 4.3. Performance on NDH measured by Goal Progress (m).

Methods Updated Val Seen Val Unseen Test UnseenParams(%)

Fine-Tuning 100 7.69 5.16 5.05

BitFit [7] 0.46 6.68 3.77 4.03
Prompt Tuning [58] 0.37 4.71 3.26 2.86
LoRA [41] 3.02 6.83 5.16 5.91
Adapter [40] 3.08 5.29 5.30 4.72

VLN-PETL(ours) 2.82 7.76 5.69 6.13

4.5 Experimental Results

4.5.1 Comparison of PETL methods for VLN

As shown in Table 4.1-4.4, we compare our proposed VLN-PETL with finetuning, Bit-
fit [7], Prompt Tuning [58], LoRA [41], and Adapter [40] in performance and trainable
parameter amounts on different VLN tasks.

We can see that Prompt Tuning with the least updated parameters works poorly
for all VLN downstream tasks. One possible reason may be the limited trainable
parameters. More importantly, the training instability of Prompt Tuning as previous
work declared should also be responsible for the poor performance. In fact, training
VLN agents itself is not always stable and easy, where reinforcement learning plays a
vital role. BitFit surpasses Prompt Tuning with a non-trivial margin on all tasks with
comparable amounts of trainable parameters. However, the performance of BitFit
still falls far from finetuning, LoRA and Adapter on all VLN tasks especially on RxR
in high demand for language understanding with much longer instructions. Only
tuning bias terms may have difficulties in handling these complex VLN tasks. Thus,
we believe that Prompt Tuning and BitFit are not applicable for efficiently tuning
large pre-trained models for challenging VLN tasks. While LoRA and Adapter not
only have comparative amounts of trainable parameters but also have comparable
performances on all VLN tasks. These two methods further shrink the performance
gap with finetuning, which are potential to effectively tune VLN pretrained models.

As for VLN-PETL, though it has fewer parameters than LoRA and Adapter,
VLN-PETL still surpasses LoRA and Adapter on most evaluation metrics in all four
downstream VLN tasks. Furthermore, only VLN-PETL maintains competitive per-
formances compared to fine-tuning and even outperforms fine-tuning on several eval-
uation metrics. As shown in Table 4.3, it is worth mentioning that VLN-PETL out-
performs full fine-tuning on all dataset splits in the NDH task, and achieves the top
position on the public leaderboard. These promising results demonstrate the effec-
tiveness of our proposed VLN-PETL for efficiently tuning large pre-trained models
for VLN tasks.
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Table 4.4. Performance on RxR using English instructions. nDTW
is the main metric for the RxR task.

Methods Updated RxR Validation Seen RxR Validation Unseen
Params(%) SR↑ SPL ↑ nDTW ↑ sDTW ↑ SR↑ SPL ↑ nDTW ↑ sDTW↑

Fine-Tuning 100 64.93 61.28 69.26 55.92 57.88 54.18 64.52 49.44

BitFit [7] 0.28 35.69 33.58 49.37 29.81 36.63 34.34 50.47 30.49
Prompt Tuning [58] 0.23 27.92 25.98 42.93 22.97 29.95 27.72 44.94 24.67
LoRA [41] 1.86 55.66 52.41 63.20 47.31 54.53 51.14 63.23 46.94
Adapter [40] 1.90 58.52 54.96 65.14 50.23 55.19 51.44 63.56 47.32

VLN-PETL(ours) 1.67 60.48 56.77 65.74 51.67 57.95 54.16 64.94 49.70

Table 4.5. Ablation of different components in VLN-PETL on
REVERIE Unseen set and RxR Unseen set.

Components REVERIE Val Unseen RxR Val Unseen
LEA HIB CIB SPL↑ RGSPL↑ SR↑ SPL↑

× × × 15.19 4.53 28.66 26.72
✓ × × 18.21 9.73 43.45 40.68
× ✓ × 18.49 9.32 41.04 38.46
× × ✓ 21.62 12.86 52.01 48.82
✓ ✓ × 21.86 11.75 45.08 42.11
✓ × ✓ 25.00 14.34 52.26 49.26
× ✓ ✓ 25.55 14.89 54.26 50.71
✓ ✓ ✓ 26.51 15.29 56.04 52.79

Table 4.6. Performance comparison of HIB and CIB with their coun-
terparts of Adapter on REVERIE val set.

Methods Validation Seen Validation Unseen
SPL↑ RGSPL↑ SPL↑ RGSPL↑

HEA 25.74 12.51 18.98 8.39
HIB 28.55 16.95 18.49 9.32

CEA 31.44 17.55 20.77 10.14
CIB 38.99 25.46 21.62 12.86

4.5.2 Ablation Study

Contribution of VLN-PETL components

As shown in Table 4.5, to evaluate the contribution of LEA, HIB and CIB, we choose
REVERIE and RxR which are more challenging VLN tasks to conduct ablation stud-
ies. REVERIE not only measures the agent’s ability in navigation but also in locating
the target object, while RxR has much longer instructions requiring comprehensive
language understanding. We also report the results of only tuning the prediction head
for comparison. We find that LEA has a competitive performance compared to HIB,
and only tuning either LEA or HIB outperforms the head tuning with a nontrivial
margin. While CIB contributes much more inefficiently tuning the VLN model, which
improves the performance with a larger margin on both REVERIE and RxR. This
result indicates that language understanding and vision understanding with history
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Table 4.7. Ablation of LoRA’s effect on REVERIE val set.

Methods Validation Seen Validation Unseen
SPL↑ RGSPL↑ SPL↑ RGSPL↑

VLN-PETL 42.60 27.61 27.67 15.96
w/o LoRA 41.34 27.12 26.51 15.29

Table 4.8. Ablation of T and α in the gates of HIB and CIB on
REVERIE Val Unseen set.

T 0.01 0.1 1 10

SPL↑ 25.60 27.67 27.81 25.00
RGSPL↑ 14.41 15.96 15.36 14.06

α 0.5 learnable

SPL↑ 27.51 27.67
RGSPL↑ 14.50 15.96

knowledge contribute comparably to the action prediction for VLN agents, while the
cross-modal interaction plays more importantly in this process. By combining all these
three components, the VLN agent achieves a promising performance and outperforms
other PETL methods, especially on the RGSPL metric, which measures the agent’s
ability to locate the target object.

Superiority of HIB and CIB

As shown in Table 4.6, to validate the effectiveness of HIB and CIB, we compare
the performance of HIB and CIB with their counterparts of Adapter, by respectively
replacing HIB and CIB by History Encoder Adapter (HEA) and Cross-modal En-
coder Adapter (CEA) which are similar to Language Encoder Adapter. Due to the
enhancement of historical knowledge learning, HIB surpasses HEA on seen set by a
large margin. On the unseen set, HIB falls behind HEA with a trivial margin on
the SPL metric while outperforming HEA on the RGSPL metric with a large margin.
This is probably because the input for history encoding is a panoramic view image
rather than a single-view image of the front view, where HIB tends to learn more
knowledge about the fine-grained object rather than the trajectory. As for CIB and
CEA, CIB surpasses CEA on all metrics and all sets by a large margin, which shows
the superiority of CIB.

The Effect of LoRA

As shown in Table 4.7, we find that when removing LoRA, the performance of VLN-
PETL has a slight drop on all main metrics on both REVERIE seen and unseen
splits. Besides, the decrease on RGSPL metric is less than that on SPL metric, which
indicates LoRA’s effect on the VLN agent’s ability to locate objects is smaller than
that of navigation during efficient tuning.
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Hyper-parameters in Gates.

As shown in Table 4.8, we conduct ablation studies on T and α in the gates of HIB
and CIB. The performances are similarly high when T is set as 0.1 or 1. We set T

as 0.1 due to its higher score on RGSPL. We also compare the results of fixing α as
0.5 and using the learnable gate. We can see that the learnable gate α surpasses the
fixed α with a large margin on RGSPL.

4.6 Conclusion

In this paper, we present the first study of applying Parameter-Efficient Transfer
Learning (PETL) methods to VLN tasks and propose a VLN-specific PETL method
named VLN-PETL. Considering the characteristics of VLN, we specifically design
two PETL modules to efficiently tune the large pre-trained model for VLN down-
stream tasks, namely Historical Interaction Booster (HIB) and Cross-modal Inter-
action Booster (CIB). Both HIB and HIB mainly consist of bottleneck layers and
multi-head attention layers, which respectively enhance the vision encoder’s learning
of history knowledge and the cross-modal encoder’s interactions between the language
and vision features during the efficient tuning. In addition, we incorporate the vanilla
adapters to efficiently tune the language encoder and the LoRA to further improve
the integrated performance. Extensive experiments conducted on four mainstream
VLN tasks of R2R, REVERIE, NDH, and RxR show the effectiveness of our proposed
VLN-PETL. Furthermore, we conduct ablation studies to evaluate the contribution
of VLN-PETL components and validate the superiority of our specifically designed
HIB and CIB to their counterpart PETL methods.
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Chapter 5

Interactive Prompting for Remote
Embodied Referring Expression

In addition to the VLN pre-trained model in Chapter 3 and Parameter-Efficient Trans-
fer Learning (PETL) techniques for VLN in Chapter 4, another challenge remains in
effectively leveraging the knowledge embedded within Large Language Models (LLMs)
to enhance action prediction in VLN tasks. To tackle this challenge, in this chapter,
we introduce a model named March-in-Chat. This model enables the agent to engage
in interactive conversations with an LLM, facilitating the generation of fine-grained
plans that guide the agent’s navigation process.

5.1 Introduction

Vision-and-Language Navigation (VLN), which lies at the intersection of computer
vision, natural language processing, and robotics, has aroused great attention from
research communities in the past few years. Given instructions in natural language,
the VLN agent should navigate to the target location based on the dynamic observa-
tions in the 3D simulated environments. Since VLN has great potential in real-world
applications such as domestic assistant robots, a large amount of specific VLN tasks
have been proposed, including R2R [5] and RxR [54] that ask the agent to navigate
from one room to another in a photo-realistic environment according to the fine-
grained instruction, NDH [117] provides detailed dialogues which imply the instruc-
tion, TouchDown [12] extends the task into an outdoor environment, REVERIE [95]
and SOON [135] that additionally require the agent’s ability of remote object ground-
ing and ALFRED [107] that asks the agent to interact with the target object in a
single room of the synthetic environment.

Most of these VLN tasks provide detailed step-by-step instructions to the agent,
such as “Go up the stairs and then walk the length of the couch. Walk past the dining
area and into the kitchen. Stop in front of the refrigerator.” in R2R. Although detailed
instructions can help the agent better achieve the navigation goal in the simulated
environments, it has a big gap towards real applications where human beings tend
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A small picture

The target object is: ____

I am in hallway, I can see sofa,

table,…

What should I do?

Walk through the hallway

LLM

REVERIE Instruction: 

Clean the small picture in front of the large mirror.

LLM

Figure 5.1. Our March-in-Chat (MiC) model is talking to a Large
Language Model (LLM) to generate navigation plans on the fly, with
the REVERIE instruction and the dynamic room-and-object informa-

tion as inputs.

to give coarse-grained high-level instructions such as “Go to the refrigerator on the
second floor”. Contrary to other tasks, the Remote Embodied Referring Expression
(REVERIE) task is more likely to empower the real-world applications of VLN, of
which the instructions are closer to those in practice, such as “Empty the washing
machine on level one”. Such high-level instruction is more challenging for VLN agents
since it requires them to be more competent in perceiving the surrounding environment
and the navigation progress and correspondingly making reasonable plans for the next
steps.

Recently, Large Language Models (LLMs) that internalize a wealth of common-
sense knowledge show great potential in action planning for some embodied tasks
with the help of suitable in-context learning. However, previous works mainly utilize
LLMs to plan atomic actions of object manipulation in a very limited space with sim-
ple scenes. These predefined atomic actions can be easily planned well by the LLMs
planners with a unified template. Different from these embodied tasks, REVERIE
requires large-area exploration from one room to another, which is complex in the
layout of rooms and scenes with diverse objects.

In this work, to adapt LLMs as the planner for REVERIE with the ability of com-
prehensive scene perception, we propose a novel model named March in Chat (MiC),
which enables the LLM as an environment-aware instruction planner through on-the-
fly dialogues between the agent and the LLM as Fig. 5.1 shows. Specifically, the agent
is initially situated at the starting position given a high-level coarse-grained REVERIE
instruction. First, a Goal-Oriented Static Planning (GOSiP) module queries the LLM
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to point out the target object and reason out where the thing may be by arousing
the rich world knowledge internalized in the LLM. Secondly, the agent’s Room-and-
Object Aware Scene Perceiver (ROASeP) describes the current observation and asks
the LLM to generate step-by-step fine-grained planning for the next navigation steps.
Then, if the ROASeP finds the room has changed, the LLM is queried again by the
Scene-Oriented Dynamic Planning (SODiP) module to generate a new fine-grained
step-by-step planning, which will be concatenated with all previous responses from
the LLM. The agent will march through such multi-round dialogues until the task is
finished, under the guidance of interactive prompting.

To evaluate our proposed MiC, we conduct experiments on the REVERIE bench-
mark. Our MiC achieves a new state-of-the-art performance in all metrics on REVERIE
val unseen set and REVERIE test unseen set. Mainly, MiC obtains 41.97% on the
primary navigation metric of SPL and 26.17% on the major object grounding metric
of RGSPL on test split, which is at least 3.09% and 3.49% higher than the previous
SoTA results. We also conduct ablation studies to validate the contributions of differ-
ent components in MiC and the effect of scene-aware perception in dynamic planning
generation. These promising results demonstrate the effectiveness of our proposed
MiC.

In summary, we make the following contributions:

• We propose a novel March-in-Chat (MiC) model, which lets the REVERIE agent
talk with an LLM on the fly to make plans for the next few steps.

• Two planning modules, namely Goal-Oriented Static Planning (GOSiP) module,
and Scene-Oriented Dynamic Planning (SODiP) module, and one Room-and-
Object Aware Scene Perceiver (ROASeP) module, are proposed.

• Extensive quantitative and qualitative experiments are conducted on REVERIE
to validate the effectiveness of our method.

5.2 Background

5.2.1 Remote Embodied Reffering Expression

In the REVERIE task, given a concise and high-level instruction referring to a re-
mote object, the agent is expected to navigate to the goal location and identify the
target object in previously unseen environments. The environment is defined as an
undirected graph G = {V, E}, where V = {Vi}Ki=1 denotes K navigable nodes, and E
denotes connectivity edges. The agent is first placed in a starting node with the initial
state s0 and perceives a panorama Rt as the visual observation at each time step t.
The panorama Rt is split into n single view images as Rt = {ri}ni=1. Each single
view image ri is represented by an image feature vector and an orientation feature
vector. In addition, the object features Ot = {oi}mi=1 of m objects are extracted from
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the panorama view using the annotated object bounding boxes or object detectors.
Then, the agent makes a sequence of actions ⟨a0, ...aT ⟩ to reach the target location,
where each action is achieved by choosing a navigable node from the candidate list.
The agent navigates in the environment until the target object is grounded or the
agent reaches the pre-defined maximum trajectory length.

5.2.2 Agent

HM3D-DUET is a dual-scale graph transformer with topological maps, which con-
tains two modules: topological mapping and global action planning. The topological
mapping module builds a topological map during navigation. And the global action
planning module predicts the next location on the map or a stop action to end the
navigation.

Topological Mapping

To build the environment graph G which is unknown initially, the mapping module
updates node representations by adding the newly observed location gradually to the
map. Specifically, the map denote as Gt = {Vt, Et}. At time step t, the current node
Vt and its neighboring unvisited nodes N (Vt) are added to Vt−1.

The mapping module outputs the current panorama encoding with image features
{ri}ni=1 and object features {oi}mi=1 and a graph with K node features {vi}Ki=1.

Global Action Planning

The module uses dual-scale architecture transformers to capture cross-modal vision-
and-language relations from different scales: a fine-scale representation of the current
location and a coarse-scale representation of the map.

In the coarse-scale cross-modal encoder, the inputs are map node features {vi}Ki=1

and textual features T . The node features are embedded and combined with word
embeddings into a multi-layer graph-aware cross-modal transformer to get node em-
bedding v̂i. Then the node embedding v̂i is fed into a two-layer feed-forward network
(FFN) to predict a navigation score for each node sci .

In the fine-scale cross-modal encoder, the inputs are fine-grained visual repre-
sentations {Rt,Ot}, the textual features T , and a special stop token r0. Then the
concatenated visual tokens [r0;Rt;Ot] and textual features T are fed into a stan-
dard multi-layer cross-modal transformer to get [r̂0; R̂t; Ôt]. The navigation score for
local-level sfi and object are predicted via FFN, a similar way in the coarse-scale
cross-modal encoder.

5.2.3 LLMs as Embodied Planner

Benefiting from the rise of LLMs, recent works [43, 108] have explored the use of
LLMs in task planning for various embodied tasks. Huang et al. [43] propose to
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utilize the frozen LLMs (e.g., GPT-2 [98], GPT-3 [9] and Codex [14]) to plan actions
for the embodied agent with in-context learning [9]. SayCan [1] translates a high-
level instruction into a list of candidate low-level actions with a probability, which is
then multiplied by a value function for action prediction. These two LLM planners
are static, which only generate action plans at the beginning of a task. By contrast,
Huang et al. [44] propose to introduce the feedback of action progress, detected
objects and human assistance into the LLM planner to re-plan atomic actions. One
concurrent work by Song et al. [109] injects the detected objects to re-generate high-
level plans with a fixed program pattern for the ALFRED [107] task.

However, these above-mentioned methods mainly concentrate on planning atomic
actions for object manipulation in a very limited space with simple scenes. By con-
trast, REVERIE has plenty of much larger and more complicated environments: 90
multi-layer buildings of various styles (e.g., office, home, gym, to name a few). To
handle the complex scenarios of REVERIE, we propose a Room-and-Object Aware
Scene Perceiver module that helps the LLM planner dynamically interact with the
environment in the form of a natural language dialogue.

5.3 Method

As illustrated in Fig. 5.2, when initially situated at the starting position and given
a concise high-level instruction such as “Empty the washing machine on level one”,
the agent first queries an LLM with the GOSiP module (Sec. 5.3.1) to find out the
target object “washing machine” in the instruction and reason out the potential loca-
tion “laundry room” by arousing the world knowledge implied in an LLM. Then, the
ROASeP module (Sec. 5.3.2) obtains the environmental feedback, which extracts the
room type and visible objects from the current visual observation. With the descrip-
tion of the scene perception, the LLM is queried again by the SODiP (Sec. 5.3.1) to
generate the next step instruction, which is used to guide the agent to navigate to the
target object in the room. The process of MiC is described in Algorithm 1.

5.3.1 Planning with World Knowledge from LLMs

This section illustrates how we utilize in-context learning (ICL) [9] to acquire world
knowledge from the LLMs for planning. We first briefly introduce in-context learning.
Then, we elaborate the Goal-Oriented Static Planning (GOSiP) and Scene-Oriented
Dynamic Planning (SODiP). Last, we show the demonstration selection process.
Preliminary: In-context Learning for Planning.

In-context learning (ICL) is a paradigm that lets LLMs directly make predictions
based on a natural language context without gradient updates [9].

Specifically, under the setting of in-context learning, an LLM is fed a “prompt”
that usually contains a task description and several demonstrations, and then the



70 Chapter 5. Interactive Prompting for Remote Embodied Referring Expression

Algorithm 1 March in Chat
Notation Summary:
I: high-level instruction in REVERIE
Rt: visual observation at timestep t
D: demonstration set
P◦: prompt for LLM to generate planning
LLM: large language model
Template: templates to generate natural language description

t← 0 ▷ Initial timestep
WI ← I
ô← LLM(I, Po) ▷ Target object recognition
l̂← LLM(ô, Pl) ▷ Target location reasoning
WG ← Template(ô, l̂) ▷ GOSiP
WS ← ϕ
W ← Concat(WI ,WG,WS) ▷ Assembled instruction
Pdemon ← DynamicSelect(I,D) ▷ Dynamic demonstration
while t <max-step and ât ̸= “stop” do

ĉtroom, ĉtobj ← CLIP(Rt) ▷ ROASeP
if ĉtroom ̸= ĉt−1

room then
Pscene ← Template(ĉtroom, ĉtobj)
Pstep ← Template(I,WS)
PSODiP ← Concat(Pscene, Pdemon, Pstep)
Istep ← LLM(PSODiP) ▷ SODiP
WS .Append(Istep)
W.Update(WS) ▷ Instruction update

end if
ât ← Agent(W,Rt)
t← t+ 1

end while

LLM generates the required outputs. Both the prompt template and the choice of
demonstration examples have an impact on how well ICL performs. In this work, we
use two different ICL settings to generate different navigation plans, i.e. the GOSiP
and SODiP module.

The GOSiP aims to identify the target object and reason out the target location
by arousing the world knowledge implied in an LLM through appropriate prompts.
A fixed demonstration example is used for GOSiP. While the SODiP aims to gener-
ate step-by-step planning instructions after observing the dynamic scenes from the
environment, which is more complicated than the former. To better generate plan-
ning, we dynamically select the most suitable demonstration examples for SODiP and
incorporate the environmental feedback as prompts for interactive planning.

Goal-Oriented Static Planning (GOSiP)

Given a high-level concise instruction, such as “Empty the washing machine on level
one”, an LLM is first asked to generate a goal-oriented static planning instruction:
“Goal: The target object is a washing machine. It is usually in a laundry room”,
which emphasizes the target object and points out where the target object may lie. As
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REVERIE instruction: Empty the washing machine on level one.

The target object is: ___Q

Q Where can I find it?

washing machineA

A laundry room

Q I am in bedroom, I can

see bed, lamp ,…

What should I do ?

Exit the bedroomA … Q I am in hallway, I can

see faucet, washing

machine,…

What should I do ?

Go straight and enter

the laundry room.
A

𝒂𝟎 𝒂𝑻

…

time

Agent

LLM

… 𝒂𝒕

Q

Goal-Oriented 

Static Planning
Room-and-Object 

Aware Scene Perceiver

Scene-Oriented 

Dynamic Planning

Figure 5.2. Overview of our March-in-Chat model. The program
runs along the vertical arrows from left to right, progressing with the
time flow. Our model first performs Goal-Oriented Static Planning
(GOSiP, Sec. 5.3.1) to reason the target object and its possible lying
room; then the Room-and-Object Aware Scene Perceiver (SOASeP,
Sec. 5.3.2) perceives what room type the agent currently stands in
and what prominent objects can be seen; these information are used
by the Scene-Oriented Dynamic Planning module (SODiP, Sec. 5.3.1)
to generate a detailed instruction to execute. GOSiP just runs once,
and we repeat SOASeP and SODiP until the agent chooses to stop or

reaches the maximum steps.

shown in Fig. 5.3(a), the planning generation mainly consists of two sub-tasks: target
object recognition and target object localization, which can be achieved by providing
specifically designed prompts for the LLM. To this end, we design the prompts for
the former sub-task in the form: “Task: Empty the washing machine on level one.
Goal: The target object is: ”. Then the LLM will generate a corresponding an-
swer: “washing machine”. By contrast, the latter sub-task, reasoning out the target
location, is more complex because it requires more suitable prompts to arouse the
internalized world knowledge in the LLM. To address this problem, we utilize a fixed
demonstration example for the LLM, and design the prompts for the latter sub-task
in the form: “Example: Question: Where does a microwave can usually appear in
a house? Answer: kitchen. Question: Where does a washing machine can usually
appear in a house? Answer: ”. Given such prompts, the LLM will generate the
corresponding answer “laundry room”. With these answers, we can easily combine
them into the goal-oriented planning format: “Goal: The target object is a washing

machine. It is usually in a laundry room”.

Scene-Oriented Dynamic Planning (SODiP)

As is shown in Fig 5.3(b), the prompt for SODiP consists of three parts. The first
part is based on the scene perception of room type, such as “bedroom”, and visible ob-
jects, such as “bed, lamp, pillow”, obtained by the Room-and-Object Aware Scene
Perceiver (ROASeP, Sec. 5.3.2).



72 Chapter 5. Interactive Prompting for Remote Embodied Referring Expression

Target Object Recognition

Target Object Localization

Scene-Oriented Dynamic Plan

(a) Prompt template of Goal-Oriented Static Planning  (b) Prompt template of Scene-Oriented Dynamic Planning

At this step, I am in bedroom, I can see bed, 
lamp, pillow.

Example:
Step 1: go straight and out the room
Step 2: pass the white table
Step 3: move into the laundry room across the 
hall
Step 4: stop at the sink

Task: Empty the washing machine on level one.
Step 1: exit the bedroom

Task: 
Empty the washing machine on level one.

Goal: 
The target object is: washing machine

Example:
Question: Where does a microwave can usually 
appear in a house?
Answer: kitchen.
f

Question: Where does a washing machine can 
usually appear in a house?
Answer: laundry room

Figure 5.3. Examples of prompting templates for Goal-Oriented
Static Planning (a) and Scene-Oriented Dynamic Planning (b). Out-
puts are marked with green color. And the red denotes the predicted

object from Target Object Recognition.

These information are transformed into a natural language description of the cur-
rent scene in the format of “At this step, I am in bedroom, I can see bed, lamp,

pillow”. The second part is a demonstration of the fine-grained step-by-step instruc-
tion, which is selected according to the strategy detailed in the next section. The last
part is previous instructions, such as “Task: Empty the washing machine on level
one. Step 1: ”. All these three parts are concatenated together and then fed into an
LLM to generate the fine-grained planning instruction for the next step accordingly,
such as “Exit the bedroom”.

Dynamic Demonstration Selection

Recent works show that providing various demonstration examples to LLMs benefits
the in-context learning for different tasks [43, 70, 91]. In light of these findings, to
direct the LLMs in generating better fine-grained plannings, we dynamically select
the most suitable demonstration example for each specific task in REVERIE as the
prompt to generate the environment-aware instruction, contrary to using a single fixed
demonstration for all tasks.

Specifically, we choose the training set of the Fine-Grained R2R dataset (FGR2R) [37]
as the demonstration set D, of which each sample will be used as a demonstration
example Dstep. As shown in Fig. 5.4, FGR2R decomposes each low-level instruction
Ilow of R2R dataset [5] into step-by-step instructions Istep. Then, given a high-level
instruction Ihigh of REVERIE, a proper Ilow will be selected as the demonstration
example Dstep by a matching algorithm. In particular, we use Ihigh as query Q and
each low-level instruction Ilow as the key Ki, both of which are embedded by the
Sentence-BERT [101]. The semantic distance score between the two embeddings is
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R2R

Go up the stairs and then walk the length of the couch.  Walk past the dining 

area and into the kitchen.  Stop in front of the refrigerator.

FGR2R

Step 1: go up the stair

Step 2: and then walk the length of the couch 

Step 3: walk past the dining area and into the kitchen

Step 4: stop in front of the refrigerator

Figure 5.4. Example of instructions in R2R and FGR2R.

calculated by the cosine similarity:

s(Q,Ki) =
e(Q) · e(Ki)

∥e(Q)∥∥e(Ki)∥
, (5.1)

where e(·) is the embedding function. If Ki has the highest similarity score to the
given query Q, its corresponding step-by-step instruction Istep will be selected as the
demonstration example Dstep for the given high-level instruction Ihigh.

5.3.2 Room-and-Object Aware Scene Perceiver

Though the world knowledge acquired from the static LLMs planner could benefit the
embodied task promisingly, the static LLMs planner may generate wrong or irrelevant
plannings, which misleads the agent. To address this issue, the LLM planner should
be aware of and interact with the dynamic observations. In [109], the names of
objects obtained from the ground truth or pre-trained detectors have been added
to in-context prompts. However, the agents of these works act in a very limited
space with simple scenes and monotonous objects. By contrast, REVERIE involves
large-area exploration between different floors and rooms, where the scenes are more
complex with more diverse objects. Considering these factors, we propose a room-and-
object aware scene perceiver (ROASeP) for the LLM planner, which predicts not only
the room type but also the visible objects of the current location. Rather than using
separate classifiers and detectors to individually predict each position’s room types
and visible object categories, we use CLIP [97] as the proposed room-and-object aware
scene perceiver. Thanks to CLIP’s strong ability of zero-shot image classification in
the open world, the ROASeP can well handle these two tasks.

Specifically, we first fetch the room type labels from the MatterPort [11] semantic
annotations and the object type labels are extracted from the REVERIE training
dataset. They are used to build the codebook for the room categories Croom and the
object categories Cobj, respectively. Then, at each timestep t, the agent perceives the
environment and obtains the panoramic visual observation Rt = {ri}ni=1. For each
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single-view observation ri in the panorama, the image feature fr is extracted by the
CLIP Image Encoder

fr = Ev
CLIP(ri), (5.2)

where Ev
CLIP(·) represents the CLIP Image Encoder. For each room category croom

and each object category cobj , we respectively construct a text phrase of room Troom

as “a photo of a {croom}” and a text phrase of object Tobj as “a photo of a {cobj}”.
Then the text feature is derived through the pretrained CLIP Text Encoder as:

froom = Et
CLIP(Troom), (5.3)

fobj = Et
CLIP(Tobj), (5.4)

where Et
CLIP(·) represents the CLIP Text Encoder. At last, the similarity score Sroom

between the image feature fr and the text feature froom as well as the similarity score
Sobj between the image feature fr and the text feature fobj are respectively computed
as:

Sroom = Softmax(froom · fT
r ), (5.5)

Sobj = Softmax(fobj · fT
r ). (5.6)

Considering that the current environment normally belongs to only one type of
room, though the panoramic images have multiple views, the room that the agent is
currently centered in should have the largest influence on each view. Thus, we average
the predicted room type scores Sroom from multiple views and choose the room type
with the greatest score as the room type prediction ĉroom. For object predictions,
if the object occupies more proportion in a view, the matching score Sobj should be
higher. Thus, we select k prominent objects with the top-k matching scores as the
auxiliary environment feedback in addition to the predicted room.

5.3.3 March with Interactive Prompting

When the generation of the goal-oriented planning and the scene-oriented planning
with perceptions from the environment is finished, the agent can march towards the
target object at each timestep t under the guidance of the interactive prompting.
In this section, we will give a detailed description of how the interactive prompting
works during the process of navigation, which mainly consists of two parts, i.e. the
assembled instruction and the instruction update.

Assembled Instruction

At each timestep t, the agent observes the environment and receives the assembled
instructions obtained from the above-mentioned modules, and chooses an action to
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HLI

GOSiP

SODiP

Empty the washing machine on level one.

Goal: The target object is washing machine. It is usually in 

laundry room.

Step 1: exit the bedroom

Step 2: go down the stairs

…

GOSiP

SODiP Scene-Oriented Dynamic Planning (SODiP)

Goal-Oriented Static Planning (GOSiP)

Room-and-Object Aware Scene Perceiver (ROASeP)

Figure 5.5. Text inputs contains three parts: High-level Instruc-
tion in REVERIE (HLI), Goal-Oriented Static Planning (GOSiP) and

Scene-Oriented Dynamic Planning (SODiP) returned instructions.

perform. Specifically, as shown in Fig. 5.5, the assembled instructions W of the inter-
active prompting mainly consist of three parts: the high-level instruction (HLI) WI in
REVERIE, the GOSiP instruction WG and the SODiP instruction WS . We concate-
nate these three parts of instructions as the assembled instruction W = [WI ,WG,WS ]

and use WordPieces [47] to tokenize all the words into a sequence of tokens as the
textual input for the agent. Then, the agent will act under the guidance of such as-
sembled instruction. Note that the use of the original high-level instruction WI can
improve the model’s tolerance on the noise of intermediate planning instructions.

Instruction Update

The GOSiP is only conducted once at the beginning of the task. While the SODiP is
conducted depending on the feedback of environments. Specifically, at each timestep
t, if the ROASeP finds the room has changed where the predicted room ĉtroom does
not equal to ĉt−1

room, the SODiP will be triggered again. Then, a new step-by-step
instruction such as “Step 2: go down the stairs” for the next few steps will be generated
by the LLM and added to the previous assembled instruction W after the last step-
by-step instruction of “Step 1: exit the bedroom”. Then, the agent will act under the
guidance of the updated instructions W ′.

5.4 Experiments

5.4.1 Evaluation Setup

Dataset

REVERIE [95] contains 10,567 panoramic images within 90 buildings (4,140 target
objects divided into 489 categories) and 21,702 instructions with 18 words on average.
Each target viewpoint has 7 distinct panoramic objects with 50 bounding boxes on
average. It consists of four splits: train, validation seen, validation unseen and test
unseen.
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Evaluation Metrics

The performance of agents is evaluated in two ways: navigation and object grounding.
For the navigation sub-task, the metrics are Success Rate (SR), Oracle Success
Rate (OSR), and Success weighted by Path Length [3] (SPL), where SPL is
the main metric. For the grounding sub-task, the metrics are Remote Grounding
Success rate (RGS) and RGS weighted by Path Length (RGSPL), where
RGSPL is the main metric for this sub-task. For all these metrics, higher is better.

TL Trajectory Length measures the average length of all the predicted naviga-
tion trajectories in meters.

SR Success Rate measures the ratio of successful tasks, of which the agent’s stop
location is less than 3 meters away from the target location.

OSR Oracle Success Rate measures the ratio of tasks of which one of its trajectory
viewpoints can observe the target object within 3 meters.

SPL Success weighted by Path Length trades-off SR (Success Rate) against
TL (Trajectory Length). It measures both the accuracy and efficiency of nav-
igation.

RGS Remote Grounding Success rate measures the ratio of tasks that success-
fully locate the target object.

RGSPL RGS weighted by Path Length is RGS.

Implementation Details

Our model is trained on a single 3090 GPU for 30,000 iterations. We set the batch
size to 4 and the learning rate to 1×10−5. The best model is selected according to
performance on the validation unseen split. We use the same pretrained model and
augmented data as [16] for a fair comparison. For the LLMs, we use the public GPT-
2 [98] model for in-context learning. For the scene preceptor, we keep the top 3 object
predictions for each position.

5.4.2 Comparison with State-of-The-Art Methods

As shown in Table 5.1, we compare MiC with the state-of-the-art methods on the
REVERIE benchmark. Our method outperforms previous methods in all metrics
on both validation unseen and test unseen splits. Particularly, compared with the
SoTA method HM3D-DUET [16], MiC outperforms HM3D-DUET by a large margin
of 3.09% in terms of the main navigation metric SPL and 3.49% of the main object
grounding metric RGSPL on the Test Unseen split. Note that MiC shares the same
pre-trained model with the HM3D-DUET, these promising result demonstrates that
our method can effectively improve the navigation and object grounding ability of
agents.
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Table 5.1. Comparison with the state-of-the-art methods on
REVERIE.

Methods
Val Unseen Test Unseen

Navigation Grounding Navigation Grounding
TL OSR↑ SR↑ SPL↑ RGS↑ RGSPL↑ TL OSR↑ SR↑ SPL↑ RGS↑ RGSPL↑

Human – – – – – – 21.18 86.83 81.51 53.66 77.84 51.44

Seq2Seq 11.07 8.07 4.20 2.84 2.16 1.63 10.89 6.88 3.99 3.09 2.00 1.58
RCM [122] 11.98 14.23 9.29 6.97 4.89 10.60 7.84 3.89 11.68 6.67 3.67 3.14
SMNA [76] 9.07 11.28 8.15 6.44 4.54 3.61 9.23 8.39 5.80 4.53 3.10 2.39
FAST-MATTN [95] 45.28 28.20 14.40 7.19 7.84 4.67 39.05 30.63 19.88 11.61 11.28 6.08
ORIST [93] 10.90 25.02 16.84 15.14 8.52 7.58 11.38 29.20 22.19 18.97 10.68 9.28
CKR [25] 26.26 31.44 19.14 11.84 11.45 - 22.46 30.40 22.00 14.25 11.60 -
RecBERT [39] 16.78 35.02 30.67 24.90 18.77 15.27 15.86 32.91 29.61 23.99 16.50 13.51
Airbert [29] 18.71 34.51 27.89 21.88 18.23 14.18 17.91 34.20 30.28 23.61 16.83 13.28
HAMT [15] 14.08 36.84 32.95 30.20 18.92 17.28 13.62 33.41 30.40 26.67 14.88 12.08
HOP [96] 16.46 36.24 31.78 26.11 18.85 15.73 16.38 33.06 30.17 24.34 17.69 14.34
TD-STP [133] - 39.48 34.88 27.32 21.16 16.56 - 40.26 35.89 27.51 19.88 15.40
DUET [17] 22.11 51.07 46.98 33.73 32.15 23.03 21.30 56.91 52.51 36.06 31.88 22.06
HM3D-DUET [16] - 62.14 55.89 40.85 36.58 26.76 - 62.30 55.17 38.88 32.23 22.68

MiC 20.64 62.37 56.97 43.60 37.52 28.72 18.11 62.40 55.74 41.97 35.25 26.17

Table 5.2. Ablation of different components in MiC.

Components Navigation Grounding
OSR↑ SR↑ SPL↑ RGS↑ RGSPL↑

HLI 58.02 52.71 40.49 34.93 26.82
HLI+GOSiP 59.92 55.28 42.46 37.13 28.24
HLI+SODiP 60.72 56.26 42.94 36.80 27.81
HLI+GOSiP+SODiP 62.37 56.97 43.60 37.52 28.72

5.4.3 Ablation Analysis

Contribution of different MiC Components

In Table 5.2, we evaluate the effect of different components in our proposed MiC. HLI
denotes only using the original high-level instruction (HLI) provided by REVERIE.

Compared to the baseline HLI, GOSiP improves the performance of both naviga-
tion (2.57%↑ on SR, 1.97%↑ on SPL) and object grounding (2.20%↑ on RGS, 1.42%↑
on RGSPL) with a non-trivial margin, showing the effectiveness of the proposed goal-
oriented static planning. SODiP further surpasses GOSiP in the navigation metric
(0.98%↑ on SR, 0.48%↑ on SPL) while falling a little behind in the grounding metrics
(0.33%↑ on RGS, 1.43%↑ on RGSPL). The reason may be that the detailed step-by-
step planning occupies a large proportion compared to the target object in the input
texts, which can bring noise for object grounding while improving the navigation per-
formance. When combining all these components, the final performance gets further
increased in all metrics, which surpasses the baseline with a large margin (4.26%↑ on
SR, 3.11%↑ on SPL, 2.59%↑ on RGS and 1.9%↑ on RGSPL). The promising results
here show that these components are complementary to each other.
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Table 5.3. Comparison of different plan generation settings.

Methods Navigation Grounding
OSR↑ SR↑ SPL↑ RGS↑ RGSPL↑

Baseline 58.02 52.71 40.49 34.93 26.82
Static 60.24 55.35 41.74 36.30 27.03
Dynamic 60.72 56.26 42.94 36.80 27.81

Table 5.4. Human study of the prompt setting for Scene-Oriented
Dynamic Planning.

Methods Relevancy Rationality

Scene-Oriented Dynamic Planning 2.06 1.93
- w/o Dynamic Demonstration 1.41 1.23
- w/o ROASeP 1.64 1.55

The Effect of the ROASeP

To evaluate the effectiveness of ROASeP used for the scene-oriented dynamic planning,
we conduct another ablation study via whether incorporating the feedback from the
ROASeP module on REVERIE validation unseen set. We report results in three set-
tings: (I) Baseline: The input assembled instruction only contains the given high-level
instruction in REVERIE. (II) Static: The input assembled instruction contains the
REVERIE and fine-grained static instructions. The difference between fine-grained
static instruction and scene-oriented dynamic instruction is that the static fine-grained
instruction is generated without ROASeP. More specifically, the query prompt for the
LLM to generate step-by-step planning is fixed at each timestep, which only consists
of the given high-level instruction and the selected demonstration. (III) Dynamic:
The input assembled instruction contains the high-level instruction in REVERIE and
scene-oriented dynamic planning instruction. As shown in Table 5.3, in the static
setting, the performance in all metrics is improved compared to the baseline, indicat-
ing the effectiveness of the LLM’s rich world knowledge in fine-grained planning. In
the dynamic setting, the performance is further improved with non-trivial margins,
showing the effectiveness of ROASeP.

Qualitative Analysis of Prompt Setting

To further evaluate the effect of dynamic demonstration and ROASeP in SODiP, we
perform a human evaluation of the generated plannings (see Table 5.4) and show
the planning results (see Fig. 5.6). For human evaluation, we randomly selected 100
REVERIE tasks and generate fine-grained step-by-step instructions in the setting of
SODiP, SODiP without dynamic demonstration, and SODiP without ROASeP. We
asked 10 volunteers to mark the generated step-by-step instructions in terms of their
relevancy and rationality. The relevancy score ranges from 0 (unrelated) to 3 (very
related), which takes into account whether the keywords in instructions are related
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to the REVERIE task. For example, regarding the REVERIE instruction “Go to
the kitchen and turn on the microwave”, whether there are keywords in instructions
related to the kitchen scene could be rated. Rationality is rated from 0 (bad) to 3
(perfect), considering whether the instruction conforms to the logic of navigation.

The results are presented in Table 5.4. It shows that our SODiP scored 2.06 on
Relevancy and 1.93 on Rationality, which could be considered acceptable since the
highest score is 3 and it is challenging to generate instructions that are consistent
with tasks and actual navigation logic. When removing the dynamic demonstration,
the score of generated instruction drops about 31.55% on Relevancy and 36.27% on
Rationality, which could also be observed in Fig. 5.6. Although the instruction gener-
ated without dynamic demonstration is related to the task to some extent (e.g., “put
the towel in the bottom drawer of the toilet” has the keyword “towel”, the instruction
lacks navigation information, such as how to reach the bathroom.) As shown in the
bottom example of Fig. 5.6, instruction without ROASeP successfully guided how to
go to the destination location kitchen, but it still caused confusion by going upstairs
and going downstairs several times, and thus reducing the rationality score, i.e. 1.64
on Relevancy and 1.55 on Rationality. More generation results can be found in the
supplementary.

5.5 Conclusion

In this work, we propose a novel model, March-in-Chat (MiC), for the REVEIRE
task, which only provides concise high-level instructions for the VLN agent. MiC
enables the REVERIE agent to talk with an LLM on the fly to generate plans for
the next few steps. It consists of three main modules, Goal-Oriented Static Planning
(GOSiP), Scene-Oriented Dynamic Planning (SODiP), and Room-and-Object Aware
Scene Perceiver (ROASeP) module. We conduct extensive quantitative and qualitative
experiments on REVERIE and the promising results show the effectiveness of our
method.
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w/o Dynamic Demonstration w/o ROASePScene-Oriented Dynamic Planning

REVERIE Instruction: Dust off the picture in the lobby

Step 1: go into the lobby
Step 2: find the target picture
Step 3: dry the back of the picture

Step 1: go to the lobby and click on the 
picture

Step 1 go to the stairs and up them
Step 2: go through the doorway on the right side
Step 3: go back to the staircase
Step 4: go through the doorway on the left side

w/o Dynamic Demonstration w/o ROASePScene-Oriented Dynamic Planning

Step 1: enter the bathroom through the open 
door
Step 2: walk straight
Step 3: stand next to the toilet

Step 1: go into the bathroom and open 
the door

Step 1: go inside the bathroom
Step 2: walk towards the mirror
Step 3: look at yourself in the mirror
Step 4: then close the door
Step 5: walk back outside

REVERIE Instruction: Go to the family room and clean the end table.

Step 1: walk to the family room
Step 2: walk to the end table
Step 3: wait right by table.

Step 1: clean the end table with a damp 
cloth
Step 2: wipe down the floor with a damp 
cloth

Step 1: walk towards the fireplace
Step 2: and then go straight into the room on 
the right
Step 3: wait near the table and chair
Step 4: go back to the kitchen
Step 5: then go to the dining room

w/o Dynamic Demonstration w/o ROASePScene-Oriented Dynamic Planning

REVERIE Instruction: Open the bathroom window.

REVERIE Instruction: Rearrange the sofa in the office.

Step 1: go down the stair in front of you
Step 2: once at the bottom enter the door
Step 3: stop once you enter the room
Step 4: rotate the sofa in the office

Step 1: select the object you want to 
rearrange.

Step 1: go up the stairs and into the office
Step 2: when you get there, turn left
Step 3: when you get back to the top of the 
stairs

w/o Dynamic Demonstration w/o ROASePScene-Oriented Dynamic Planning

w/o Dynamic Demonstration w/o ROASePScene-Oriented Dynamic Planning

REVERIE Instruction: Go to the kitchen on level 2 and open the drawer.

Step 1: go upstairs
Step 2: go straight pass the couch
Step 3: make a slight left towards the 
refrigerator
Step 4: wait near the kitchen drawer

Step 1: open the drawer with the key in it
Step 2: remove the lock from the door
Step 3: then turn on

REVERIE Instruction: Go to the bathroom with the two towels and empty the lower cabinet.

Step 1: exit the bedroom
Step 2: and walk into the next bedroom in the 
hall
Step 3: go stand in the bathroom

Step 1: put the towel in the bottom 
drawer of the toilet

Step 1: go up the stairs and into the office
Step 2: when you get there, turn left
Step 3: Step 1: exit the bathroom
Step 2: walk into the kitchen
Step 3: go stand in the kitchen doorway
Step 4: go back to the bedroom and take the towel
Step 5: exit the bedroom
Step 6: walk into the next bedroom in the hall

w/o Dynamic Demonstration w/o ROASePScene-Oriented Dynamic Planning

Step 1: go upstairs and turn left at the hall
Step 2: go back down the stairs
Step 3: go up the stairs again
Step 4: go back to the kitchen and open the fridge
Step 5: take out the fruit and put it in the juicer

Figure 5.6. Examples of generated instructions.
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Chapter 6

Conclusion

In this chapter, we provide a comprehensive summary of our key contributions and
propose potential research directions for future work in the field of Vision and Lan-
guage Navigation (VLN).

The integration of vision and language holds tremendous potential for real appli-
cations, particularly in the area of Vision-and-Language Navigation (VLN). The VLN
task involves enabling robots to understand navigation instructions expressed in nat-
ural language, perceive the environment, and execute corresponding actions, making
it applicable in various scenarios such as home assistants.

While significant progress has been made in advancing the development of the
VLN task, several challenges persist and require further attention. These challenges
encompass three primary aspects: 1) The absence of a pre-trained model that specif-
ically emphasizes temporal information for the VLN task. Existing models often
focus on spatial understanding but lack dedicated temporal modeling tailored to the
unique requirements of VLN; 2) The exploration of parameter-efficient transfer learn-
ing (PETL) for VLN tasks. Developing efficient transfer learning techniques that allow
for effective knowledge transfer and fine-tuning while minimizing computational costs
is an important area for future investigation; 3) The effective utilization of the rich
knowledge provided by Large Language Models (LLMs) in VLN tasks. Harnessing
the vast knowledge encapsulated within LLMs and integrating it effectively into VLN
models could greatly enhance their decision-making capabilities.

First, we carefully examine and compare previous VLN methods, it has been ob-
served that they often overlook the criticality of historical context in pre-training or
fail to adequately consider the importance of action order in VLN tasks. To address
this issue, a pre-training and fine-tuning paradigm with VLN-specific objectives was
introduced, leveraging past observations to support future action prediction. Specif-
ically, in addition to the commonly used Masked Language Modeling (MLM) and
Trajectory-Instruction Matching (TIM) tasks, we introduce three novel VLN-specific
proxy tasks: Action Prediction with History (APH) task, Trajectory Order Modeling
(TOM) task and Group Order Modeling (GOM) task. The APH task incorporates
the visual perception trajectory to enhance the learning of historical knowledge and
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improve action prediction. The TOM and GOM tasks focus on temporal visual-
textual alignment, enhancing the agent’s reasoning ability regarding the correct order
of actions. Furthermore, we address the challenge of representation inconsistency in
the historical context between the pre-training and fine-tuning stages by designing a
memory network. This memory network effectively selects and summarizes historical
information for action prediction during fine-tuning, mitigating the need for significant
additional computational resources in downstream VLN tasks.

Additionally, our research delved into the exploration of Parameter-Efficient Trans-
fer Learning (PETL) techniques, leading to the development of a VLN-specific PETL
method. Our approach involves the design of two PETL modules: Historical In-
teraction Booster (HIB) and Cross-modal Interaction Booster (CIB). These modules
are then combined with existing PETL methods to form the integrated VLN-PETL
framework. This investigation represents the first study to apply PETL techniques
specifically to VLN tasks, showcasing its efficacy in effectively tackling challenges
within the domain.

Finally, the thesis also investigated the integration of utilization of Large Lan-
guage Models (LLMs) and introduced the MiC model, which enables conversations
with LLMs and dynamic planning based on the Room-and-Object Aware Scene Per-
ceiver (ROASeP). The MiC model comprises three essential modules: Goal-Oriented
Static Planning (GOSiP) module, Scene-Oriented Dynamic Planning (SODiP) mod-
ule, and one Room-and-Object Aware Scene Perceiver (ROASeP) module. Through
this approach, the potential of LLMs in enhancing VLN capabilities is demonstrated,
as the MiC model effectively leverages LLMs to facilitate intelligent conversations and
adaptive planning, leading to improved performance in VLN tasks.

6.1 Future Work

Based on the aforementioned research and findings, future work in the field of VLN
has the following possibilities.

Parameter-Efficient Transfer Learning (PETL) techniques have shown great po-
tential in addressing the challenges of VLN tasks. Future research could delve deeper
into the design and optimization of PETL methods tailored for VLNs, aiming at a
more efficient knowledge transfer and fine-tuning process. Especially in addition to
reducing training parameters, it can also be studied from the perspective of reducing
memory.

In addition, the utilization of Large Language Models (LLMs) in VLN tasks opens
up new opportunities for research. Future work can focus on leveraging LLMs to fa-
cilitate more intelligent and interactive conversations with agents, enabling dynamic
planning and adaptive decision-making in real-time scenarios. Exploring different
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strategies for integrating LLMs into VLN models and investigating the impact of var-
ious LLM architectures on navigation performance are potential directions for future
exploration.

Finally, the application of VLN in real-world settings, such as smart homes or
assistive robotics, presents exciting opportunities for future research. Investigating
the deployment of VLN models in practical environments and addressing challenges
such as human-robot interaction, robustness to dynamic surroundings, and long-term
navigation are important areas to explore.
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