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A B S T R A C T

We consider the uniaxial growth of a tissue or colony of cells, where a nutrient (or some other chemical)
required for cell proliferation is supplied at one end, and is consumed by the cells. An example would be the
growth of a cylindrical yeast colony in the experiments described by Vulin et al. (2014). We develop a reaction–
diffusion model of this scenario which couples nutrient concentration and cell density on a growing domain.
A novel element of our model is that the tissue is assumed to be compressible. We define replicative regions,
where cells have sufficient nutrient to proliferate, and quiescent regions, where the nutrient level is insufficient
for this to occur. We also define pathlines, which allow us to track individual cell paths within the tissue. We
begin our investigation of the model by considering an incompressible tissue where cell density is constant
before exploring the solution space of the full compressible model. In a large part of the parameter space, the
incompressible and compressible models give qualitatively similar results for both the nutrient concentration
and cell pathlines, with the key distinction being the variation in density in the compressible case. In particular,
the replicative region is located at the base of the tissue, where nutrient is supplied, and nutrient concentration
decreases monotonically with distance from the nutrient source. However, for a highly-compressible tissue with
small nutrient consumption rate, we observe a counter-intuitive scenario where the nutrient concentration is
not necessarily monotonically decreasing, and there can be two replicative regions. For parameter values given
in the paper by Vulin et al. (2014), the incompressible model slightly overestimates the colony length compared
to experimental observations; this suggests the colony may be somewhat compressible. Both incompressible
and compressible models predict that, for these parameter values, cell proliferation is ultimately confined to
a small region close to the colony base.
1. Introduction

The study of one-dimensional models of growing tissues has a long
history in mathematical biology, with applications including tumour
growth, wound healing and pattern formation e.g., Maini et al. (2004),
Crampin et al. (1999), Breward et al. (2002), Neville et al. (2006),
Baker et al. (2010). Such simplification of the geometry of the tissue
permits a focus on the fundamental mechanisms and key variables
influencing tissue development, renders the models more tractable to
mathematical analysis, and improves computational efficiency. In some
cases, this simplification comes at the expense of realism, since tissue
growth is generally a three-dimensional process. However, there are
biological examples where growth is confined to one direction, making
the one-dimensional approximation more reasonable. One example
would be the work of Vulin et al. (2014), where cylindrical yeast
colonies are grown in such a way that their expansion is confined to
the axial direction.
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Like all organisms, yeast requires a nutrient source such as glucose
to grow and proliferate. In the experiments by Vulin et al. (2014), yeast
was restricted to grow in the direction perpendicular to the surface of
the Petri dish, with a fixed radius by controlling the nutrient supply at
the base of the colony. By regulating the glucose delivery, Vulin et al.
(2014) hypothesised that the colony experiences a monotonically de-
creasing nutrient gradient within the colony. It was then hypothesised
that it is this non-constant nutrient gradient which causes the colony
to have two regions of growth. A nutrient rich replicative region where
cells are able to proliferate and a nutrient poor quiescent region where
cells cannot proliferate (Fig. 1(a)).

Through their experimental design Vulin et al. (2014) observed a
linear increase in the height of the cylindrical yeast colony over time
(Fig. 1(b)). It was proposed by Vulin et al. (2014) that the linear growth
of the colony length is the result of a limited nutrient supply that
can only reach a certain point within the colony. We wish to validate
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Fig. 1. (a) Schematic of uniaxial growth. Glucose is supplied at a constant rate at the base of the colony. However, the nutrient concentration, 𝐶 can only travel a certain distance,
𝐻 up the colony. The region below 𝐻 is a replicative region where cells can proliferate and above 𝐻 is a quiescent region where cells cannot proliferate. (b) Experimental image
of cylindrical yeast colony showing the height or length, 𝐿(𝑡) to grow linearly over time.
Source: Modified images taken with permission from Vulin et al. (2014).
this hypothesis using a continuous partial differential equation (PDE)
approach (Deroulers et al., 2009; Baker et al., 2010; Yates et al., 2012).

Previously, Gallo et al. (2021) proposed a discrete agent-based
model coupled with a continuum approximation to predict the growth
of uniaxial yeast colony. In their model, the nutrient was prescribed
and fixed for all time. In addition, Vulin et al. (2014) used a simple
PDE model to predict the evolution of the nutrient concentration (the
resulting curve can be found in Fig. 1(a)). However, in both models
there were limiting assumptions such as the nutrient concentration was
not coupled with cell proliferation or assumed to be constant and the
cells were also assumed to be incompressible. We wish to extend these
previous works to model cell proliferation and nutrient transport as a
coupled system. Additionally, we also relax the assumption that the
tissue is incompressible.

In this paper, we present a PDE model for tissue growth consisting
of reaction–advection–diffusion equations for the nutrient concentra-
tion and cell density, coupled with an constitutive equation relating
the velocity field to the pressure gradient, and an equation of state
relating the pressure to the cell density. The system is formulated as
a free boundary problem, where the length of the growing tissue is
determined as part of the solution process. Similar models for tissue
growth have been developed previously, often motivated by application
to tumour growth (Byrne and Chaplain, 1995; Chaplain, 1996; Painter,
2009; Hecht and Vauchelet, 2017). Note, as this work is motivated by
uniaxial growth with application to cylindrical yeast colonies, we use
the terms tissue, colony and domain interchangeably throughout this
paper.

By linking nutrient concentration with cell density and colony
length, we find that the length of the tissue or colony increases in
proportion to time when there is a region of fixed length in which the
cells have sufficient nutrient to proliferate, while all other cells remain
inactive. This finding is consistent with experimental observations
reported by Vulin et al. (2014). Furthermore, in the compressible
model, we observe a counter-intuitive phenomenon. When the rate of
nutrient consumption is small, the nutrient concentration is not always
monotonically decreasing throughout the domain. This effect results
from a combination of the compressibility of the tissue, and nutrient
advection.

In addition to Vulin et al. (2014)’s cylindrical colony experiment,
the system of coupled PDEs developed in this work can be readily
applied to other biological systems exhibiting uniaxial growth. Binder
et al. (2008), for example, showed that avian gut tissue growth can
be modelled in one dimension. In their work, the authors used a
piece-wise incompressible domain to model non-uniform proliferation.
However, this is not entirely satisfactory as non-uniformity is likely to
vary smoothly across the domain rather than suddenly or rapidly across
the piece-wise regions of tissue. Modelling avian gut growth with the
full PDE model described in our work would therefore allow for an
investigation into non-uniform tissue proliferation with and without
2

the effect of tissue compressibility. Other examples of uniaxial growth
include bone growth (Czarnecki et al., 2014). In this example, cells
would most likely experience compression, hence making our model
highly applicable in this physical scenario.

The rest of this article is organised as follows. In Section 2, we
present the mathematical model of the reaction–advection–diffusion
system. In Section 3, we introduce pathlines and the distinction be-
tween replicative and quiescent regions. Furthermore, we devise a
systematic method to differentiate between uniform, non-uniform, and
no proliferation using pathlines, all while preserving our understanding
of the global growth characteristics of the domain. In Section 4, we
explore the simplified incompressible model and present the results
from the numerical simulation. In Section 5, we examine the full
compressible model and present additional results from the numerical
simulation. Our model is then applied to the yeast experiments of Vulin
et al. (2014) in Section 6. Lastly, we provide a summary and discussion
of the main findings in Section 7.

2. Mathematical model

We consider a tissue or cell colony, the growth of which is restricted
to one spatial dimension. We assume it occupies the region 0 ≤ 𝑥 ≤ 𝐿(𝑡),
where 𝑡 denotes time. The base of the tissue is assumed to be at 𝑥 = 0,
and 𝑥 = 𝐿(𝑡) denotes the top of it. The tissue is assumed to contain live
cells which are capable of proliferation. However, this process requires
a nutrient, which is transported by a combination of advection and
diffusion. The velocity field within the tissue arises as a result of cell
proliferation, and leads to domain growth (Neville et al., 2006). We
denote the cell density by 𝜌(𝑥, 𝑡), and nutrient concentration by 𝐶(𝑥, 𝑡).

We assume that the cells move by a combination of advection,
with velocity 𝑢(𝑥, 𝑡), and diffusion, with coefficient 𝐷𝜌. The rate of cell
proliferation is assumed to depend on the cell density, 𝜌, and nutrient
concentration 𝐶 within the colony. Hence, by conservation of mass we
have:
𝜕𝜌
𝜕𝑡

+ 𝜕
𝜕𝑥

(𝑢𝜌) = 𝐷𝜌
𝜕2𝜌
𝜕𝑥2

+ 𝑘𝜌𝐶, (1)

where 𝑘 a constant and 𝑘𝜌𝐶 is the rate of cell proliferation. Similarly,
the nutrient is assumed to be transported by a combination of advec-
tion and diffusion (with coefficient 𝐷𝐶 ). We set the rate of nutrient
consumption to be 𝜆𝜌𝐶, where 𝜆 is a constant nutrient consumption
rate. We thus obtain the following equation for 𝐶:

𝜕𝐶
𝜕𝑡

+ 𝜕
𝜕𝑥

(𝑢𝐶) = 𝐷𝐶
𝜕2𝐶
𝜕𝑥2

− 𝜆𝜌𝐶. (2)

In order to obtain an equation for the velocity 𝑢, we require a consti-
tutive relation which specifies the mechanical properties of the system.
We follow Byrne and Chaplain (1997) by using Darcy’s Law which
relates the velocity to the pressure, 𝑃 , by:

𝑢 = −𝛼 𝜕𝑃 , (3)

𝜕𝑥
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where 𝛼 is a constant. We also require an equation of state that relates
he pressure to the cell density, 𝜌(𝑥, 𝑡). For simplicity, we choose the

linear relationship

𝑃 =
𝜌 − 𝜌0

𝛽
, (4)

where 𝜌0 is the cell density when the cells are not compressed and
𝛽 is a compressibility constant. The system is incompressible in the
limit 𝛽 → 0. Hence, we note that the pressure law is singular in the
incompressible limit. We consider this limit further in Section 4.

Finally, we require an equation for 𝐿(𝑡). Following Neville et al.
(2006), we assume that the material at the top of the tissue moves with
the local cell velocity, which we denote by 𝑣(𝑥, 𝑡). This velocity is, in
turn, related to the cell flux, 𝐽𝜌 by

𝐽𝜌 = 𝜌𝑢 −𝐷𝜌
𝜕𝜌
𝜕𝑥

= 𝜌𝑣,

o

𝑑𝐿
𝑑𝑡

= 𝑣|𝑥=𝐿(𝑡) =
[

𝑢 −
𝐷𝜌

𝜌
𝜕𝜌
𝜕𝑥

]

|

|

|

|𝑥=𝐿(𝑡)
. (5)

To track the position of cells within the domain we employ pathlines
which are given by

𝑑𝑋
𝑑𝑡

= 𝑣|𝑥=𝑋(𝑡) =
[

𝑢 −
𝐷𝜌

𝜌
𝜕𝜌
𝜕𝑥

]

|

|

|

|𝑥=𝑋(𝑡)
. (6)

To close our system of model equations, we now specify the necessary
boundary and initial conditions. Firstly, the velocity at the base of the
tissue is zero and thus

𝑢|𝑥=0 = 0. (7)

hen, from Eq. (3) we see that this implies:

𝜕𝑃
𝜕𝑥

|

|

|

|𝑥=0
= 0. (8)

We assume continuity of pressure across the tissue boundary, so at the
top of the tissue, the pressure will be atmospheric pressure. However,
since pressure is only unique up to an additive constant, we set the zero
of the pressure scale to be atmosphere pressure, so that

𝑃 |𝑥=𝐿(𝑡) = 0. (9)

Eq. (9) can be generalised in varies ways e.g., by including the effects of
surface tension. For simplicity, we neglect such additional effects here
and just impose continuity of pressure. We assume also that nutrient is
supplied at the base of the tissue at a constant concentration, 𝐶|𝑥=0 =
0, and that there is no flux of nutrient out of the tissue at the top, so

𝜕𝐶
𝜕𝑥

|

|

|

|𝑥=𝐿(𝑡)
= 0. (10)

We assume the initial tissue length is 𝐿(0) = 𝐿0. At 𝑡 = 0, the nutrient
is assumed to be present only at the base of the tissue, and hence we
impose the initial condition

𝐶|𝑡=0 = 𝐶𝐼 (𝑥) =

{

𝐶0 if 𝑥 = 0,
0 0 < 𝑥 ≤ 𝐿0.

Thus, in summary, our system of model equations is:

𝜕𝐶
𝜕𝑡

+ 𝜕
𝜕𝑥

(𝑢𝐶) = 𝐷𝐶
𝜕2𝐶
𝜕𝑥2

− 𝜆𝜌𝐶, (11a)

𝜕𝜌
𝜕𝑡

+ 𝜕
𝜕𝑥

(𝑢𝜌) = 𝐷𝜌
𝜕2𝜌
𝜕𝑥2

+ 𝑘𝜌𝐶, (11b)

𝑑𝐿
𝑑𝑡

=
[

𝑢 −
𝐷𝜌

𝜌
𝜕𝜌
𝜕𝑥

]

|

|

|

|

|𝑥=𝐿(𝑡)
, (11c)

𝑢 = −𝛼 𝜕𝑃
𝜕𝑥

, (11d)

= 𝜌0 + 𝛽𝑃 , (11e)
3

which is to be solved subject to the following boundary and initial
conditions:

𝐶|𝑥=0 = 𝐶0,
𝜕𝐶
𝜕𝑥

|

|

|

|𝑥=𝐿(𝑡)
= 0, (11f)

𝐶|𝑡=0 = 𝐶𝐼 (𝑥) =

{

𝐶0 if 𝑥 = 0,
0 0 < 𝑥 ≤ 𝐿0,

(11g)

𝜌|𝑡=0 = 𝜌𝐼 (𝑥), (11h)

𝐿|𝑡=0 = 𝐿0, (11i)
𝜕𝑃
𝜕𝑥

|

|

|

|𝑥=0
= 0, 𝑃 |𝑥=𝐿(𝑡) = 0. (11j)

.1. Transformation to a fixed domain and nondimensionalisation

In order to compute numerical solutions of model (11), we first
ransform it from a free boundary problem to one on the fixed spatial
omain 𝜉 ∈ [0, 1] (Crank, 1987) using the coordinate change

(𝑥, 𝑡) → (𝜉, 𝑇 ) =
(

𝑥
𝐿(𝑡)

, 𝑡
)

. (12)

We then nondimensionalise the equations. As the spatial variable
is mapped to the nondimensional domain [0, 1] by the transformation
above, we require no rescaling for 𝜉. The other variables are scaled as
follows:
𝑇 = �̂�adv�̃� , 𝐶 = 𝐶0�̃�, 𝐿 = 𝐿0�̃�, 𝑋 = 𝐿0�̃�,

𝜌 = 𝜌0�̃�, 𝑢 =
𝐿0

�̂�adv
�̃�, 𝑃 = �̂�𝑃 .

(13)

Since the cell velocity is created by cell proliferation, the timescale of
advection is likewise based on the rate of cell proliferation. That is,
�̂�adv = 1

𝐶0𝑘
. The system then becomes (on dropping tildes for brevity):

𝜕𝐶
𝜕𝑇

+
[

𝑢
𝐿

−
𝜉
𝐿

𝑑𝐿
𝑑𝑇

]

𝜕𝐶
𝜕𝜉

= 1
𝑃𝑒

1
𝐿2

𝜕2𝐶
𝜕𝜉2

− �̂�
𝑃 𝑒

𝜌𝐶 − 1
𝐿

𝜕𝑢
𝜕𝜉

𝐶, (14a)

𝜕𝜌
𝜕𝑇

+
[

𝑢
𝐿

−
𝜉
𝐿

𝑑𝐿
𝑑𝑇

]

𝜕𝜌
𝜕𝜉

= 𝐷
𝑃𝑒

1
𝐿2

𝜕2𝜌
𝜕𝜉2

+ 𝜌𝐶 − 1
𝐿

𝜕𝑢
𝜕𝜉

𝜌, (14b)

𝑑𝐿
𝑑𝑇

=
[

𝑢 − 𝐷
𝑃𝑒

1
𝜌𝐿

𝜕𝜌
𝜕𝜉

]

|

|

|

|

|𝜉=1
, (14c)

𝑢 = − 1
𝐿

𝜕𝑃
𝜕𝜉

, (14d)

= 1 + 𝛽𝑃 , (14e)

ith boundary and initial conditions

𝑢|𝜉=0 = 0, (14f)

𝐶|𝜉=0 = 𝐶0,
𝜕𝐶
𝜕𝜉

|

|

|

|𝜉=1
= 0, (14g)

𝐶|𝑇=0 = 𝐶𝐼 (𝜉) =

{

1 if 𝜉 = 0,
0 else,

(14h)

𝐿|𝑇=0 = 1, (14i)

𝜌|𝑇=0 = 𝜌𝐼 (𝜉) = 1 + 𝜖 cos (𝜋
2
𝜉), (14j)

𝜕𝑃
𝜕𝜉

|

|

|

|𝜉=0
= 0, 𝑃 |𝜉=1 = 0. (14k)

where we have introduced the following dimensionless parameters:

�̂� =
𝜆𝜌0𝐿2

0
𝐷𝐶

, 𝐷 =
𝐷𝜌

𝐷𝐶
, 𝛽 =

𝛽𝐿2
0

𝛼𝐶0𝑘𝜌0
𝑃𝑒 =

�̂�diff

�̂�adv
=

𝐶0𝑘𝐿2
0

𝐷𝐶
.

e note all the dimensionless parameters are non-negative. Here �̂�
represents the rate of nutrient consumption, 𝐷 is the ratio between cell
and nutrient diffusivity, 𝛽 is the compressibility constant, and 𝑃𝑒 is the
Péclet number.
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3. Quantification of growth

3.1. Replicative and quiescent regions

We now introduce the concept of a replicative region where cells
can proliferate and a quiescent region where they cannot. We assume
that proliferation requires nutrient. Therefore, a replicative region is
the part of the tissue where there is sufficient nutrient for proliferation
to occur, whilst a quiescent region is the part where there is insufficient
nutrient. This translates to tissue growth in the replicative region and
no growth in the quiescent region. In the cylindrical yeast colonies
experimentally grown by Vulin et al. (2014), nutrient was provided
at the base, and it was suggested that the nutrient did not diffuse the
whole way through the colony. In that case, we would expect that the
quiescent region is near the top of the colony, and the replicative region
starts from the base of the colony to where the quiescent region begins
(see Fig. 1(a)).

In our model, we will assume that quiescence occurs when the local
nutrient concentration, 𝐶, is below a certain value, 𝜃. We set 𝜃 = 10−3

or all calculations in this paper. We then define the replicative region
o be where the concentration, 𝐶 is above the threshold 𝜃. We use this
efinition because, in practice, we expect that proliferation will cease
hen the nutrient level is low, but non-zero.

.2. Pathlines

We consider tracking points within the growing tissue to be roughly
quivalent to tracking the positions of marked cells as the colony grows.
herefore, we employ pathlines of individual cells, 𝑥 = 𝑋(𝑡) (starting
rom the initial position 𝑋(0) = 𝑋0) to explore regions of proliferating
nd quiescent cells within the tissue by tracking cell position. In our
ull compressible model, the dimensionless equation for the pathlines
s given by:

𝑑𝑋
𝑑𝑇

=
[

𝑢 − 𝐷
𝑃𝑒

1
𝜌𝐿

𝜕𝜌
𝜕𝜉

]

|

|

|

|

|𝜉=𝛯
, (15)

where 𝛯 = 𝑋∕𝐿(𝑡). These pathlines can be used to identify a re-
ion of replicative cells that can experience uniform or non-uniform
roliferation and a quiescent region where no proliferation occurs.

In addition, we introduce relative pathlines that are defined over the
omain 𝛯 = 𝑋(𝑡)∕𝐿(𝑡) ∈ [0, 1], where 𝑋(𝑡) represents the pathlines in
hysical space, and 𝐿(𝑡) corresponds to the length of the colony. These
pace–time diagrams give us a tool to distinguish between uniform and
on-uniform proliferation easily. That is, for uniform proliferation over
he whole domain, the relative pathlines will be vertical because the
elative positions of tagged cells do not change over time. Note this
ertical property builds on the assumption that the tissue is incompress-
ble. For instance, if a cell begins halfway up the colony, it will remain
t the same relative position as the colony grows longer. If the paths do
ot satisfy this property, then the proliferation is termed non-uniform.
It is worth noting that if there is no growth in the domain, both the
elative pathlines and pathlines in physical space will remain vertical
or all times.)

.3. Examples of simple growth scenarios

To better understand and classify pathlines and the three types
f proliferation, we explore four of the scenarios of uniaxial growth
rom Gallo et al. (2021) that are most relevant to this study. These
re presented in Fig. 2. In this section, rather than solving Eq. (14a)
or the nutrient, we simply prescribe different nutrient concentration
rofiles within the colony (Figs. 2(a) to 2(d)). We can then observe
he three different types of proliferation: uniform, non-uniform, and
o proliferation. The qualitative behaviour resulting from these three
ypes of proliferation are captured in the pathlines of ten initially
qually-spaced cells within the colony in Figs. 2(i) to 2(l). Note that,
4

by definition, uniform and non-uniform proliferation can only occur in
the replicative region (highlighted in green) with no proliferation in
the quiescent region (highlighted in red).

We begin by analysing Case I, where there is a prescribed constant
nutrient concentration throughout the colony (see Figs. 2(a)), leading
to a constant rate of cell proliferation. This results in the whole domain
exhibiting uniform proliferation leading to the relative pathlines being
vertical as shown in Fig. 2(e). The corresponding pathlines remain
equally spaced since all parts of the colony proliferate at the same rate
(see Fig. 2(i)). Examining the length, 𝐿(𝑡), we observe the colony is
growing at an exponential rate.

By contrast, in Case II the nutrient concentration is linearly decreas-
ing in 𝑥 (and independent of time) as seen in Fig. 2(b), but still present
throughout the entire colony — so all cells proliferate. However, the
cells at the base of the colony can proliferate faster than those at the
top resulting in non-uniform proliferation. This is shown by the relative
pathlines in Fig. 2(f) being non-vertical. As a consequence, the pathlines
(Fig. 2(j)) of initially equidistant points are not equidistant at times
𝑡 > 0. The corresponding length still grows at an exponential rate but
slower than in the case of uniform concentration (Case I).

Now turning to Gallo et al. (2021)’s Case III, where we have a
replicative region of constant length 𝐻 < 𝐿(0) (which is less than the
length of the colony) with constant concentration within that region
as shown in Fig. 2(c). The pathlines shown in Fig. 2(k) reveal a green
replicative region proliferating uniformly and a red quiescent region
with no proliferation. This leads to non-uniform proliferation over
the whole domain because only a part of the domain is capable of
proliferation. The non-uniform proliferation is evident from the fact
that the relative pathlines are non-vertical in Fig. 2(g). Furthermore, as
both the nutrient concentration and the size of the replicative region
are fixed, we observe the colony grows at a linear rate (see Fig. 2(k) at
𝑥 = 𝐿0).

Finally, we analyse Case IV where we also have a fixed replicative
region, but with a linearly decreasing nutrient concentration as shown
in Fig. 2(d). Similar to Case III, we observe the relative pathlines
are non-vertical meaning the whole domain experiences non-uniform
proliferation and the global grow remains linear (see Figs. 2(h) and
2(l) respectively). However, the key distinction compared to Case III
is the replicative region experiences non-uniform proliferation instead
of uniform. A summary of the comparison between the four cases is
provided in Table 1.

In our PDE model, the classification of uniform and non-uniform
proliferation in the replicative region and no proliferation in the qui-
escent region is the same as described above. That is, for uniform
proliferation, we require constant access to nutrient throughout the
colony. However, in our model, the nutrient consumption rate is given
by �̂�𝜌𝐶∕𝑃𝑒 in Eq. (14a) meaning that the nutrient will always be
non-constant, similar to Cases II and IV. Hence, we conclude that our
model can only experience non-uniform proliferation in the replicative
region and no proliferation in the quiescent region with the overall
proliferation across the domain being non-uniform. In physical space,
this leads to curved paths in the (green) replicative region and straight
lines in the (red) quiescent region.

We can derive the pathlines using our continuum model in all four
cases by assuming that the tissue is incompressible (i.e., taking the limit
𝛽 → 0 in Eq. (14e)) and prescribing the nutrient concentration 𝐶(𝜉, 𝑇 )
instead of solving Eq. (14a) (for instance, in Case I, we set 𝐶(𝜉, 𝑇 ) = 1
for all space and time). We can then solve Eq. (19) for 𝑢 which allows
us to then solve for the pathlines.

4. Incompressible system

We will first consider the model in the case where the cells are
incompressible, which corresponds to the limit 𝛽 → 0. Eq. (14e), then

tells us that the cell density is constant, so 𝜌 = 1. This coincides with
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Fig. 2. Four different types of modelling scenario for uniaxial growth from Gallo et al. (2021). Top row: Nutrient concentration prescribed within the domain independent of time.
The nutrient can either be present throughout the domain 0 ≤ 𝑥 ≤ 𝐿(𝑡) or only in part of it 0 ≤ 𝑥 ≤ 𝐻 (where 𝐻 is a constant); 𝐶𝑚𝑎𝑥 denotes the maximum nutrient concentration.
Middle row: Relative pathlines (𝛯 = 𝑋(𝑡)∕𝐿(𝑡)) provides a tool to distinguish between uniform and non-uniform proliferation in the replicative region. Green regions represent
the replicative part of the colony while red depicts quiescent. Bottom row: Corresponding pathlines, 𝑋(𝑡) showing the local and global growth behaviour of the colony with the
length 𝐿(𝑡) starting at 𝑥 = 𝐿0. (a, e, i) Case I has only a replicative region and a constant nutrient concentration. (b, f, j) Case II only has a replicative region but with a linearly
decreasing nutrient concentration. (c, g, k) Case III has a fixed replicative region with a constant nutrient concentration. (d, h, l) Case IV has a fixed replicative region with a
linearly decreasing nutrient concentration.
Table 1
Summary of the possible types of domain proliferation and growth. We assume here the nutrient concentration is continuous in the parts of
the domain where nutrient is available. Furthermore, we assume the nutrient availability of each case is fixed for all time.

Nutrient
availability

Proliferation in
replicative region

Global
proliferation

Growth
globally

Relative
pathlines
behaviour

Case I Whole domain:
constant

Uniform Uniform Exponential Vertical

Case II Whole domain:
non-constant

Non-uniform Non-uniform Exponential Non-vertical

Case III Part of domain:
constant

Uniform Non-uniform Linear Non-vertical

Case IV Part of domain:
non-constant

Non-uniform Non-uniform Linear Non-vertical

No nutrient available
(Degenerate case)

NA No proliferation No growth Vertical
5
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the constitutive assumption made by Neville et al. (2006). Eq. (14b)
then becomes:
𝜕𝑢
𝜕𝜉

= 𝐿𝐶. (16)

whilst (14c) simplifies to:
𝑑𝐿
𝑑𝑇

= 𝑢|𝜉=1 . (17)

This implies that the top of the colony travels with the advective
cell velocity, and the advective cell velocity is equal to the local cell
velocity. We also note that Eq. (15) for the pathlines 𝑋(𝑡) simplifies to
𝑑𝑋
𝑑𝑇

= 𝑢|𝜉=𝛯(𝑡) , (18)

where 𝛯 = 𝑋∕𝐿(𝑡). Using the boundary condition (14f), we can rewrite
Eq. (16) as:

𝑢(𝜉, 𝑇 ) = ∫

𝜉

0
𝐿(𝑇 )𝐶(𝜉⋆, 𝑇 ) 𝑑𝜉⋆. (19)

We now have only four unknown dependent variables. This is
because the cell density is known to be constant. We note that it is
redundant to calculate the pressure in the incompressible model since
it appears in only one equation and is not used to calculate the other
three dependent variables. We thus drop Eq. (14d) from the model. In
addition, we substitute Eq. (16) into Eq. (14a) simplifying the last term
in Eq. (14a) to 𝐶2. The incompressible model is therefore:

𝜕𝐶
𝜕𝑇

+
[

𝑢
𝐿

−
𝜉
𝐿

𝑑𝐿
𝑑𝑇

]

𝜕𝐶
𝜕𝜉

= 1
𝑃𝑒

1
𝐿2

𝜕2𝐶
𝜕𝜉2

− �̂�
𝑃 𝑒

𝐶 − 𝐶2, (20a)

𝑢 = 𝐿∫

𝜉

0
𝐶(𝜉⋆, 𝑇 ) 𝑑𝜉⋆, (20b)

𝑑𝐿
𝑑𝑇

= 𝑢|𝜉=1 , (20c)

with boundary and initial conditions

𝑢|𝜉=0 = 0, (20d)

𝐶|𝜉=0 = 1, 𝜕𝐶
𝜕𝜉

|

|

|

|𝜉=1
= 0, (20e)

𝐶|𝑇=0 = 𝐶𝐼 (𝜉) =

{

1 if 𝜉 = 0,
0 else,

(20f)

𝐿|𝑇=0 = 1. (20g)

Notice now that the incompressible model contains only two param-
eters, 𝑃𝑒 and �̂�. Furthermore, note that the 1

𝐿
𝜕𝑢
𝜕𝜉𝐶 = 𝐶2 ≥ 0 term

in Eq. (20a) always acts as a sink in the incompressible system. (How-
ever, as we will see Section 5.2, in the compressible system the 1

𝐿
𝜕𝑢
𝜕𝜉𝐶

term can change sign, and thus act as a local source or sink.)

4.1. Numerical simulations

We use the method of lines (Sadiku and Obiozor, 2000; Driscoll and
Braun, 2017) to solve the above system of PDEs. This technique is a
finite difference method that can solve a large class of PDEs numerically
by discretising space while leaving time continuous. This allows us
to convert our PDE into a system of ordinary differential equations
and solve them using well-established numerical methods. Illustrative
results can be seen in Fig. 3.

We start by setting 𝑃𝑒 = 0.01, so nutrient transport is mainly by
diffusion, and assume a moderate rate of nutrient consumption, �̂� = 1.
Then, in Fig. 3(a) we see the nutrient decreases over time and with
distance up the colony, as nutrient is depleted by cell proliferation. A
significant feature of this incompressible model is that the minimum
nutrient concentration always occurs at the top of the colony (𝐶(𝜉 =
1, 𝑇 )) for all parameter values. However, we will see this is not always
the case in the compressible model.

As foreshadowed in Section 3.2, the replicative region experiences
non-uniform proliferation. (Note that the relative pathline starting from
6

Fig. 3. Numerical solutions of the incompressible case with Péclet number 𝑃𝑒 = 0.01
and nutrient consumption rate �̂� = 1. (a) Time-lapse image of monotonically decreasing
nutrient concentration. (b) Relative pathlines displaying non-uniform proliferation in
the replicative region (green) and no proliferation in the quiescent region (red). (c)
Pathlines showing non-linear growth in the green replicative region and no growth
in the red quiescent region resulting in overall length growing linearly. 𝐻𝐴 = 6.91 is
given in purple dotted line derived in Section 4.2. (d) Log length showing non-linear
property (green curve) with exponential growth for early times and linear property
(red curve) as we transition from replicative to quiescent region. The dashed line and
curve are artificially prescribed linear function (purple) and logarithmic function (blue)
respectively. The parameters used are 𝛼 = 0.6, 𝛽 = 0, 𝑎 = 1, and 𝑏 = 1.

𝑡 = 0 at 𝜉 = 1 is always vertical since our kinematic boundary condition
states that a cell starting at the top of the colony always remains there.)
We see that the relative pathlines differ from the base cases in Fig. 2 due
to the fact that the length of the replicative region does not corresponds
to either of the illustrative situations. Instead, colony growth is coupled
with the nutrient concentration in Fig. 3(a) which dictates regions of
proliferation by the threshold 𝜃 described in Section 3.1. At early times
the entire colony is capable of proliferation, however, once the colony
becomes sufficiently large, the replicative region becomes constant in
length. The results in Fig. 2 thus lead us to expect that the colony
length will grow exponentially at early times, and linearly at later
times. We hence examine the logarithm of the colony length, as shown
in Fig. 3(d) which we expect to be linear for exponential behaviour and
logarithmic for linear behaviour. Comparison with prescribed linear
and logarithmic functions, shown by the purple dashed line and blue
dashed curve, respectively, confirms our prediction. As expected, the
log length plot indicates exponential growth for early times (𝑡 <∼
5) when the replicative region (green curve) comprises the entire
colony, non-linearity in the transition phase, and linear growth once
a quiescent region (red curve) becomes clearly established (𝑡 ≥∼ 10).

We now consider the effects of varying the two nondimensional
parameters �̂� and 𝑃𝑒, the results of which are summarised in Fig. 4.
Firstly, we begin by analysing the impact of the rate nutrient con-
sumption by cells. Since �̂� represent the dimensionless rate of nutrient
consumption, if �̂� ≪ 1, the nutrient required for cells to proliferate is
small. We would then expect the nutrient concentration at the top of
the colony to be relatively high and the corresponding colony length
to be long (due to the high rate of proliferation). These behaviours are
exactly what we observe in the top row of Fig. 4. I.e. In Fig. 4(a) as �̂� →
0 we identify a large nutrient concentration at the top of the colony and
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Fig. 4. Incompressible solutions at three time intervals plotted against varying one
parameter (𝑃𝑒 or �̂�) whilst holding the other constant at one. (a) Time-lapse image
of nutrient level calculated at the top of the colony 𝐶(𝐿, 𝑇 ) showing a monotonically
decreasing trend over time. As the nutrient consumption rate �̂� increases from small
to large, the concentration is also reduced. (b) Colony length at three different periods
displaying an increase in length chronologically. The length monotonically decreases as
�̂� becomes large, mirroring the qualitative behaviour of the nutrient concentration in
(a). (c) Varying Péclet reveals the nutrient concentration is controlled by a balance of
advection and diffusion with nutrient consumption. An equal balance between the two
creates an optimal amount of nutrient spread throughout the colony. (d) Corresponding
ength mirroring the qualitatively shape to the nutrient concentration in (c). However,

the length increases over time.

as �̂� increases the concentration monotonically decreases. Furthermore,
we see a clear relationship between the nutrient concentration 𝐶,
nd colony length (Fig. 4(b)) as the proliferation is given by 𝑘𝜌𝐶.
ence, when the cells in the colony have plenty of access to nutrient
�̂� ≪ 1) we indeed observe the length of the colony is longer. This
elationship is a realistic reflection of the physical behaviour we expect
rom biological systems such as cylindrical yeast colonies. We also note
hat when �̂� ≪ 1 the colony will experience exponential growth across
he whole domain because the whole colony have access to nutrient as
hown in Fig. 4(b). This is analogous to Cases I and II in Fig. 2.

Secondly, we consider the effect of varying the Péclet number (𝑃𝑒)
hich is defined as the ratio between the time scale of diffusion over

he time scale of advection. For a small Péclet number, the distribution
f the nutrient is governed by diffusion and consumption. This can be
xplained by taking the limit as 𝑃𝑒 → 0 in Eq. (20a) which would result
n advection and time derivative terms to be negligible. On the other
and, if 𝑃𝑒 ≫ 1 we would expect the system to be heavily influenced
y advection. Hence, the evolving concentration and colony length are
ependent on a balance between diffusion with nutrient consumption
nd advection.

The variation in the Péclet numbers (𝑃𝑒) is captured in Figs. 4(c)
nd 4(d) and verifies our predictions in the previous paragraph. We
bserve the nutrient and length throughout the domain remain constant
or 𝑃𝑒 ≪ 1 due to nutrient and cells diffusing rapidly throughout the
omain. In addition, there is a clear relationship between nutrient con-
entration and colony growth. That is, as the Péclet number increases
e notice an optimal concentration and length are met as diffusion
nd advection are both equally acting over the domain. However, once
dvection takes over for 𝑃𝑒 ≫ 1 we see both the concentration and
7

length decrease because the nutrient is only getting transported through
cell velocity.

4.2. Analytical approximation for the length of the replicative region for
𝑃𝑒 ≪ 1

In our simulations in Fig. 4, we observe that, once the colony
becomes quite large, the size of the replicative region can remain fixed
despite domain growth, similar to Fig. 3(c). This explains the observed
linear growth of the colony. We now explore what determines the size
of the replicative region as 𝐿 → ∞ in the case where the Péclet number
is small (nutrient transport by advection is negligible) which we believe
is likely to pertain to biological growth. If we take the limit 𝑃𝑒 → 0,
and write the governing equation for nutrient concentration (20a) in
terms of the Eulerian spatial variable 𝑥, we find that

𝜕2𝐶
𝜕𝑥2

= �̂�𝐶 (21)

where 𝐶 = 1 at 𝑥 = 0, 𝐶𝑥 = 0 at 𝑥 = 𝐿(𝑡). Solving (21) subject to these
ixed boundary conditions yields

(𝑥, 𝑡) = 1

cosh (
√

�̂�𝐿)
cosh

[√

�̂�(𝐿 − 𝑥)
]

(22)

e observe that Eq. (22) is a monotonically decreasing function on
he domain 0 ≤ 𝑥 ≤ 𝐿(𝑡). Recall that we have imposed that cells are
eplicative when 𝐶 > 𝜃 and quiescent when 𝐶 < 𝜃. Hence, we set the
alue of 𝐻 to be the spatial position where the nutrient concentration

is equal to the tolerance 𝜃. Setting 𝐶(𝐻, 𝑡) = 𝜃 in Eq. (22) and
earranging gives:

= 𝐿 − 1
√

�̂�
cosh−1

(

𝜃 cosh
√

�̂�𝐿
)

. (23)

There is no explicit time dependence in Eq. (23). However, as we are
solving on a growing domain, the length is a monotonically increasing
function and thus 𝐿 → ∞ as 𝑡 → ∞. Hence, we take the limit 𝐿 → ∞ to
approximate the behaviour of 𝐻 as 𝑡 gets large. We define this quantity
o be 𝐻𝐴, which provides an analytic approximation for 𝐻 when the
olony is large. It is given by:

𝐴 = lim
𝐿→∞

𝐻 = −1
�̂�
ln 𝜃, (24)

As we have set 𝜃 = 10−3, we can re-write (24) as

𝐻𝐴(�̂�) = lim
𝐿→∞

𝐻 = 3
√

�̂�
ln 10. (25)

Evaluating Eq. (25) for �̂� = 1, we find that 𝐻𝐴 ≈ 6.91. Comparing this
approximation (purple dashed line) in Fig. 3(c) with 𝑃𝑒 = 0.01 and
�̂� = 1, we observe that the numerical solution tends to 6.92, in close
agreement with our analytical approximation.

5. Compressible system

The full compressible model Eq. (14) as derived in Section 2 has
four non-dimensional parameters, 𝛽,𝐷, 𝑃 𝑒, and �̂�. Compared to the
incompressible model, there are two additional parameters the com-
pressibility and diffusion coefficient, 𝛽 and 𝐷. As previously discussed,
the limit 𝛽 → 0 implies that the system is incompressible (𝜌 = 1),
otherwise the system is compressible with variable density, 𝜌 = 𝜌(𝜉, 𝑇 ).
The coefficient, 𝐷, is defined as the ratio of the cell diffusion to nutrient
diffusion. The smaller 𝐷 is, the slower cells diffuse relative to the
nutrient.

5.1. Numerical simulations

We now solve the full compressible model, using the method of

lines. We begin by setting all parameter values to one and present
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Fig. 5. Compressible solution with 𝑃𝑒 = 𝛽 = �̂� = 𝐷 = 1. (a) Monotonically decreasing
nutrient concentration. (b) Non-constant density over the entire domain. The initial
condition used for cells density is 𝜌𝐼 (𝜉) = 1 + 𝜖 cos ( 𝜋

2
𝜉) where 𝜖 = 0.01. (c) Pathlines

depicting a replicative region (green) and a quiescent region (red). (d) Non-negative
product between advective velocity gradient and nutrient concentration taken at 𝑇 =
7.5.

the results in Fig. 5. When compared to the incompressible results,
we see the nutrient concentration (Figs. 3(a) and 5(a)) and pathlines
(Figs. 3(c) and 5(c)) are qualitatively similar. In this case, we observe
the advective term acts as a local sink and thus we have qualitative
similar results as the incompressible case (Fig. 5(d)). However, in
contrast to the incompressible case, the cell density can now vary with
distance up the colony as shown in Fig. 5(b). As expected, for the same
value of 𝑃𝑒 and �̂�, we found the length of the colony is shorter than
in the incompressible case (incompressible result not shown). Note,
as we have established that the whole domain can either experience
non-uniform or no proliferation in Section 3.2. Hence, we will only
presented the pathlines as the relative pathlines will remain similar to
Fig. 3(b) for the compressible model.

We now consider the effect of varying each of the parameters in
turn, whilst holding the others fixed at one. We quantify their effect
by plotting cell density at the base of the colony, 𝜌(𝜉 = 0, 𝑇 ) (blue) and
colony length 𝐿(𝑇 ) (red) at a fixed time 𝑇 , with the results summarised
in Fig. 6. Note that 𝜌(𝜉 = 0, 𝑇 ) is the maximum cell density in the
colony.

First, we discuss the variation in the compressibility, 𝛽, as shown
in Fig. 6(a). We note that when 𝛽 ≪ 1, the results are qualitatively
similar to that found in the incompressible case. We observe that as 𝛽
increases, the maximum density, 𝜌(𝜉 = 0, 𝑇 ), increases and the length,
𝐿(𝑇 ), decreases, which makes sense because a denser colony will have
a shorter length due to compressed cells requiring less space.

Next, we shift our focus to the impact of varying the diffusion
coefficient 𝐷, as depicted in Fig. 6(b). Recall that 𝐷 is defined as
the ratio of cell diffusion coefficient to nutrient diffusion coefficient.
Therefore, for 𝐷 ≪ 1, nutrient diffuses rapidly throughout the colony,
leading to a near constant nutrient concentration and causing negligible
change to the cell density and colony length. On the other hand, when
𝐷 exceeds one, cell diffusion overtakes nutrient diffusion, making cells
more motile. When 𝐷 is less than one, the changes in cell density and
colony length is barely visible, as the system is dominated by nutrient
8

diffusion and cells move mainly by advection. As 𝐷 increases and the
random motion of the cells increases, we observe a decrease in cell
density and an increase in colony length since cells experience less
compression.

The impact of varying the Péclet number (𝑃𝑒), which represents
the ratio of the diffusion time scale to the advection time scale, on
the observed colony length and cell density is illustrated in Fig. 6(c).
Our findings show that, as 𝑃𝑒 increases, the colony length undergoes a
decrease, except for a minor increase when 𝑃𝑒 is around one. Moreover,
we observe that the cell density initially increases and then decreases,
peaking when 𝑃𝑒 reaches approximately ten. These results can be
attributed to the balance between diffusion and advection processes,
similar to that analysed in the incompressible case. Specifically, when
𝑃𝑒 is much smaller than one, the diffusion process dominates, leading
to the rapid dispersion of nutrient and cells throughout the colony.
This results in a longer colony length but a lower cell density. As
𝑃𝑒 gradually increases to around ten, the balance between diffusion
and advection is attained, allowing cells to actively move and be
transported along with the cell velocity, which leads to an optimal cell
density. As advection becomes the dominant process, the nutrient and
cells are mainly carried along with the cell velocity, causing the colony
length to decrease. Finally, at higher 𝑃𝑒 values, advection dominates
over diffusion, resulting in a decrease in both the cell density and
colony length, as cells and nutrient are primarily transported up the
colony by the cell velocity.

The effect of varying the nutrient consumption coefficient �̂� is
investigated in Fig. 6(d). For �̂� ≪ 1, we observe both the cell density
and colony length to be relatively large. This can be attributed to the
fact that cells require minimal nutrient to proliferate, leading to an
increased number of cells being produced and ultimately resulting in a
larger colony length and cell density. As �̂� increases, we observe a rapid
decrease in both the cell density and colony length. This is because cells
require a greater amount of nutrient to proliferate, resulting in a lower
number of cells in the colony.

5.2. Non-monotonically decreasing nutrient concentration

Recall that in the incompressible case and for moderately large
values of the parameters in the compressible case, the nutrient con-
centration is found to decrease monotonically, as shown in Figs. 3(a)
and 5(a). This is because the advection term in Eq. (14a), 1

𝐿
𝜕𝑢
𝜕𝜉𝐶 ≥ 0,

is a sink. Furthermore, in the incompressible case, using Eq. (16), it is
straightforward to show that 1

𝐿
𝜕𝑢
𝜕𝜉𝐶 = 𝐶2 ≥ 0.

However, under the presence of high compression (𝛽 ≥ 1) and
negligible nutrient consumption (�̂� ≪ 1), we found that the nutrient
concentration exhibits unexpected behaviour by not monotonically
decreasing, as observed in Fig. 7(a). This is because the advection
term, 1

𝐿
𝜕𝑢
𝜕𝜉𝐶, can be negative, thus acting as a local source as seen in

Fig. 7(d). This is in contrast to the results in Figs. 3(a) and 5(a) where
we observe that the nutrient concentration approaches zero at the end
of the domain.

Furthermore, the pathlines also exhibit unusual behaviour. Owing
to the non-monotonic nutrient concentration, the domain may exhibit
two replicative regions separated by a quiescent region in the middle,
as shown in Fig. 7(c). This is because the nutrient concentration near
the middle of the colony can drop below the threshold 𝜃, while the
concentration at the top and bottom of the colony remains above it (see
black dash curve Fig. 7(c), 𝑡 ≈ 15). This is different from the pathlines
shown in Figs. 3(c) and 5(c) where there is only one replicative region
and one quiescent region. Interestingly, however, we observe that the
plots of density are qualitatively similar in Figs. 5(b) and 7(b).

In addition, from the long-term behaviour we observe the second
proliferative region (the one nearest 𝑥 = 𝐿) eventually disappear
as the colony gets very long. This can be explained from a physical
perspective. That is, the nutrient in the second proliferative region will
be consumed and not replenished. This is because the only source of
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Fig. 6. Compressible solution of density 𝜌(𝜉, 𝑇 ) at the base of the colony (𝜉 = 0) and colony length, 𝐿(𝑇 ) for fixed time 𝑇 . One parameter is varied at a time whilst holding all
other parameters constant at one. (a) Varying the compressibility coefficient 𝛽. (b) Varying the diffusion coefficient (𝐷) which is the ratio of cell diffusivity to nutrient diffusivity.
(c) Varying the Péclet number 𝑃𝑒 which is the ratio of time scale of diffusion over time scale of advection. (d) Varying the nutrient consumption rate �̂�.
Fig. 7. Counter-intuitive case where the nutrient concentration exhibits a positive
gradient for �̂� ≪ 1. Here the parameters used are �̂� = 0.01, 𝑃 𝑒 = 1, 𝛽 = 100, 𝐷 =
. (a) Time-lapse images of nutrient concentration displaying an increase in the
oncentration within the domain. (b) Cell density plot showing the density increasing
t an exponential rate. (c) Pathlines containing two replicative regions (green) and
quiescent region (red). (d) Advective cell velocity changes sign within the domain

ausing the change in concentration gradient and creation of two replicative regions
aken at 𝑇 = 7.5.

utrient is on the left hand side of the colony. Therefore, nutrient in the
econd proliferative region can only be replenished from the left-hand
ide, and this requires the nutrient to travel across the quiescent region
ithout any cell proliferation which is physically impossible. We would
lso like to note that this type of behaviour is unlikely to occur in yeast
rowth, where we expect �̂� ≫ 1 (Vulin et al., 2014; Tam et al., 2019)
also see Section 6). Nonetheless, this scenario may occur in other types
f physical systems that experience uniaxial growth.

. Application to cylindrical yeast colonies

We now apply our model to the cylindrical yeast colony growth
cenario from Vulin et al. (2014). Given the lack of data on the
ompressibility of these colonies, we begin by using the incompressible
odel which requires the values of only two dimensionless parameters,
9

�̂� and 𝑃𝑒, where:

𝑃𝑒 =
𝐶0𝑘𝐿2

0
𝐷𝐶

, �̂� =
𝜆𝜌0𝐿2

0
𝐷𝐶

. (26)

From Vulin et al. (2014) it was reported the diffusion of nutrient,
𝐷𝐶 = 5.184×10−7 m2h−1, the growth rate of single cells 𝑘𝐶0 = 0.59 h−1

and using interpolation we found the initial colony height as 𝐿0 =
2×10−4 m. Therefore, we calculate that 𝑃𝑒 ≈ 0.05. Likewise, Vulin et al.
(2014) also reported the nutrient consumption rate 𝑞(𝜌0, 𝐶0) = 𝜆𝜌0𝐶0 =
19728 mol h−1m−3 and initial concentration 𝐶0 = 55mM. Hence, using
the reported values we get �̂� ≈ 30.

We simulate the model using these values and plot the pathlines
(using dimensional variables) in Fig. 8. We observe that the colony
experiences exponential growth for early times (𝑡 ∼< 3), later transi-
tioning to linear growth (as observed in experiments). Furthermore, at
dimensional time 𝑡 = 350 hours, Vulin et al. (2014) reported that in the
experiments the colony has dimensional length approximately 6.5 mm;
by comparison, our model predicts a value of 𝐿 ≈ 7.8 mm (see Fig. 8).
Thus, our model shows reasonable agreement with the data. This is
further supported by comparing the experimental result (purple dashed
line) to the simulation over the whole growth period.

Although it was not measured experimentally, our model can be
used to predict the length of the replicative region. From our simula-
tion, the numerical solution tends to 𝐻 ≈ 0.25 mm (indicated by the
dashed line in Fig. 8). Since, in this case 𝑃𝑒 ≪ 1, we can also use
the analytical approximation obtained in Section 4.2; from Eq. (25)
we get the dimensionless value 𝐻𝐴 ≈ 1.26 which corresponds to a
dimensional length of approximately 0.25 mm, in agreement with the
simulation. This suggests that the simple approximation formula (25)
may be of practical use in estimating the size of the proliferative region
in yeast. Our prediction indicates that, at later times, the replicative
region appears to form only a small proportion of the colony; this
echoes the observation in multicellular tumour spheroid growth that,
once the spheroid has become reasonably large, cell proliferation is
confined to a thin outer rim close to where nutrient is supplied (Byrne
and Chaplain, 1997).

Whilst the agreement between the model and experiment is pleasing
given that model contains only two parameters, and the values of both
were taken from published data rather than fitted, we note that the
model does appear to overestimate the colony length slightly. Based
on the results in Section 5, this suggests that the colony may, in fact,
be compressible to some extent. We hence simulate the compressible
model with 𝑃𝑒 = 0.05, �̂� = 30 as before, and fixing 𝐷 = 0.1 since,
although we do not have experimental data for this parameter, we
consider that the random motility coefficient for the cells is likely to be
much lower than that for the nutrient. We find that taking 𝛽 = 0.2 gives
a predicted length for the colony at of 6.7 mm (see Fig. 9(a)) — better
agreement than for the incompressible model. The predicted length of

the proliferative region is also smaller, at 0.19 mm. The corresponding
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Fig. 8. Dimensional incompressible pathlines to predict cylindrical yeast behaviour
(𝑃𝑒 = 0.05 and �̂� = 30) using estimated parameters values formulated from experimental
data. The length of the green replicative region is approximately 0.25 mm. The purple
dashed line is from the experimental measurements of Vulin et al. (2014).

prediction of the cell density profile after 350 h is shown in Fig. 9(b)
(where we have taken the value 𝜌0 = 1.1 g/mL from Vulin et al. (2014)),
and indicates a significant, and almost linear, decrease in density with
distance up the colony. Whilst we are not aware of any published
measurements of cell density variations in colonies, this is a prediction
of our model that could be verified in future experiments. Moreover,
comparing the growth of the whole colony over time, we observe that
the compressible simulations agrees more closely with the experimental
data (purple dashed line) as shown in Fig. 9(a).

7. Discussion

In this paper, we have developed and investigated a system of
reaction–advection–diffusion equations to model nutrient-limited uni-
axial growth of a tissue. A novel feature of our model, compared to
previous works such as Neville et al. (2006), Gallo et al. (2021), is that
we have relaxed the assumption that the tissue is incompressible. We
began our analysis by classifying the different types of proliferation and
growth modes possible and deduced that our model can only undergo
non-uniform proliferation. We defined replicative and quiescent regions
within the tissue, where the nutrient levels are sufficient or insufficient,
respectively, for cell proliferation to occur. By introducing pathlines, we
were able to track the movement of cells as the tissue grows, providing
further information about cell proliferation.

On making the simplifying assumption that the tissue is incom-
pressible (so the cell density is constant, 𝜌 = 1) we observed that the
nutrient concentration monotonically decreases over time and space
due to the nutrient consumption by the cells. Initially, when the tissue
is small, cells have sufficient nutrient to proliferate throughout, and so
the tissue length grows exponentially in time. However, as the tissue
gets longer there eventually comes a point at which nutrient can only
penetrate a certain depth into the tissue before it is used up. Thus, at
later times, the length of the proliferative region tends to a constant,
and the length of the tissue grows linearly. This is consistent with the
experimental observation made by Vulin et al. (2014) and the results
from Gallo et al. (2021). For the incompressible system, in the limit of
small Péclet number, we derived an analytical approximation for this
eventual length of the replicative region, 𝐻 given in Eq. (25).

Turning to the full compressible model, we found the nutrient
concentration and pathlines were qualitatively similar to the incom-
pressible case for a wide range of the model parameters. However,
the cell density can vary quite considerably within the tissue in the
compressible model. In practice, this means knowing the nutrient con-
centration and pathlines from experiments would not be sufficient to
10
unambiguously identify all the parameters in the model. Instead, we
would require experimental data on cell density.

Interestingly, for a compressible system (𝛽 ≥ 1) with negligible
nutrient consumption rate (�̂� ≪ 1), we observed some counter-intuitive
behaviour. Specifically, the nutrient concentration curve can become
non-monotonic over the domain, resulting in the colony having two
replicative regions and a quiescent region. We found this behaviour
could be attributed to the advection term acting like a local nutrient
generating source instead of a typical sink under these conditions.
Whilst we are not aware of such behaviour having been observed in
a biological system to date, it is an interesting prediction of our model
that might be verified by future experiments.

One application of the model is the experimental system described
by Vulin et al. (2014), who showed that controlling the nutrient supply
at the base of yeast colonies can restrict the growth of the colonies
in an uniaxial direction with no lateral expansion (see Fig. 1). For
reasonably large colonies, they observed that the growth rate of the
colony length was linear in time. This was hypothesised to result from
a non-uniform distribution of nutrients within the colony, resulting
in a fixed-length replicative region. Mathematical modelling by Gallo
et al. (2021) showed that a fixed-length replicative region does indeed
result in linear growth, consistent with what was observed in experi-
ments, and showed how pathlines might be used to infer the nutrient
distribution within the colony.

However, the work of Gallo et al. (2021) used a simple cellular
automata model coupled with a prescribed nutrient concentration, with
the concentration profile assumed to be constant in time. This assump-
tion was a major limitation of their model, as in general, we expect
nutrient levels to vary in time as the colony expands. We overcame
this limitation in our work by coupling nutrient concentration with
domain growth so the nutrient concentration could vary in time and
space. In addition, their implementation and derivation of the cellular
automata model and continuum paths respectively assumed the cells
were incompressible. This can be directly linked to our continuum
incompressible model in Section 4 as we can derive the same pathlines
as Gallo et al. (2021) by prescribing the nutrient concentration in
the same way. But in addition to recapitulating the linear growth
observed for large colonies, our incompressible model reveals an initial
exponential phase of growth when the colony is small, and also allows
us to predict the length of the proliferating region.

Using parameter values from Vulin et al. (2014), the incompressible
model was able to make a prediction of the length of the colony
after 350 h which was in reasonable agreement with the experimental
measurements. However, by using the compressible model with the
experimentally-determined values of the Péclet number and nutrient
consumption rate, �̂�, and fixing 𝐷 = 0.1, we were able to obtain better
agreement between model and experiment by setting 𝛽 = 1. This is
consistent with the possibility that yeast colonies are, to some degree,
compressible (although, of course, other explanations are possible).
As our models generate predictions of the length of the replicative
region and, in the compressible case, the variations in cell density with
distance up the colony, future experimental measurements of these
quantities would allow our model to be validated (or falsified).

Like all models, we have made simplifying assumptions regarding
cell behaviour. Two mechanisms that we have neglected here might
also account for the over-estimation of the colony length by the incom-
pressible model: contact-inhibition of cell proliferation, and death and
necrosis of the cells in the quiescent zone. Contact inhibition would
tend to reduce the proliferation rate of cells when the pressure (or local
cell density) is high, and this could be incorporated in our model by
making the cell proliferation function decrease at high pressures (or cell
densities). Death and degradation of cells in the quiescent region would
cause a reduction in the biomass of the colony, and correspondingly, a
reduction in colony length. This could be incorporated into our model
by introducing an additional variable for the density of dead cells,
and introducing terms for cell death and decay of cell material into
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Fig. 9. Applying the compressible model to predict cylindrical yeast behaviour (𝑃𝑒 = 0.05, �̂� = 30, 𝐷 = 0.1 and 𝛽 = 0.2). (a) Dimensional pathlines, with the replicative region also
shown in green (width ≈ 0.19 mm at 𝑡 = 350 hrs). The purple dashed line is from the experimental measurements. (b) Dimensional cell density at 𝑡 = 350, where we have taken
𝜌0 = 1.1 g/mL from Vulin et al. (2014).
our equations, similar to the work of Ward and King (1997). Another
potential refinement would be to relax the simple assumption of a linear
pressure–density relationship, and explore the effect of other non-linear
functional forms. In particular, we might expect pressure to rise rapidly
as the cell density increases towards some maximum packing density.
All of these factors would tend to reduce the large variation in cell
density observed in our model results in Fig. 9(b).

From an experimental perspective, it would be interesting to repro-
duce the experiment by Vulin et al. (2014) and incorporate fluorescence
to track the position of tagged cells and trace the physical path-
lines (Charvin et al., 2008). We then can use the pathlines to classify the
quiescent and replicative region within the colony. This will provide a
good experimental check with our theoretical results. Moreover, using
fluorescence can also allow us to identify dead cells as shown in the
supplementary material provided by Vulin et al. (2014). This will again
be helpful in the validation of theoretical results if the model was
extended to incorporate cell death.

In addition, as stated in the introduction, our model can be appli-
cable to a range of other biological systems such as tissue and bone
growth (Binder et al., 2008; Czarnecki et al., 2014). We assume the
non-dimensional parameter values would be similar to the cylindrical
yeast colonies as the cells would be non-motile and require nutrient
to proliferate. However, we are unable to parameterise our model to
other biological systems due to limitations in data availability. Hence,
this could be a potential avenue for future research.
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