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Abstract

Introduction. Multiple reports have attempted to describe the tumour microbiota in head and neck cancer (HNSC).

Gap statement. However, these have failed to produce a consistent microbiota signature, which may undermine understanding 
the importance of bacterial- mediated effects in HNSC.

Aim. The aim of this study is to consolidate these datasets and identify a consensus microbiota signature in HNSC.

Methodology. We analysed 12 published HNSC 16S rRNA microbial datasets collected from cancer, cancer- adjacent and non- 
cancer tissues to generate a consensus microbiota signature. These signatures were then validated using The Cancer Micro-
biome Atlas (TCMA) database and correlated with the tumour microenvironment phenotypes and patient’s clinical outcome.

Results. We identified a consensus microbial signature at the genus level to differentiate between HNSC sample types, with 
cancer and cancer- adjacent tissues sharing more similarity than non- cancer tissues. Univariate analysis on 16S rRNA datasets 
identified significant differences in the abundance of 34 bacterial genera among the tissue types. Paired cancer and cancer- 
adjacent tissue analyses in 16S rRNA and TCMA datasets identified increased abundance in Fusobacterium in cancer tissues 
and decreased abundance of Atopobium, Rothia and Actinomyces in cancer- adjacent tissues. Furthermore, these bacteria were 
associated with different tumour microenvironment phenotypes. Notably, high Fusobacterium signature was associated with 
high neutrophil (r=0.37, P<0.0001), angiogenesis (r=0.38, P<0.0001) and granulocyte signatures (r=0.38, P<0.0001) and better 
overall patient survival [continuous: HR 0.8482, 95 % confidence interval (CI) 0.7758–0.9273, P=0.0003].

Conclusion. Our meta- analysis demonstrates a consensus microbiota signature for HNSC, highlighting its potential importance 
in this disease.

INTRODUCTION
Recent studies have revealed that cancers previously thought to be sterile can contain unique microbial communities. The extent 
of microbial infiltration varies across different cancer types, with head and neck cancers (HNSCs) containing one of the highest 
level of intratumoral microbial infiltrates, while glioblastomas having the least amount of microbes [1, 2]. This ‘intratumoral 
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microbiota’ can refer to bacterial infiltrates found in the extracellular matrix or within the cellular components of the tumour 
such as cancer, immune and stromal cells [2]. It is now widely appreciated that intratumoral bacteria can have direct and indirect 
effects on tumours or the tumour microenvironment (TME) [3, 4]. The presence of specific intratumoral bacteria has been 
reported to influence multiple features of tumour biology, including treatment efficacy, local immune composition and activity 
and promoting tumour metastasis [5, 6].

Direct interaction between specific bacterial species and the tumour and the TME can induce chemoresistance, promote tumour 
progression, enhance therapeutic responses and modulate anti- tumour immunity through various mechanisms [7–9]. Bacteria 
can metabolize an active drug into its inactive form or induce autophagy in cancer cells, which can promote chemoresistance 
[9]. Moreover, specific bacterial species can mount or suppress anti- tumour responses [10, 11]. Most notably, Fusobacterium 
nucleatum colocalizes with cancer and immune cells by binding to cell surface receptors such as Toll- like receptor 4 (TLR- 4), 
T- cell immunoreceptor with Ig and ITIM domains and carcinoembryonic antigen- related cell adhesion molecule 1 receptors or 
sugar groups (e.g. tumour- expressed galactose- N- acetylgalactosamine), which may then promote chemoresistance and suppress 
anti- tumour immunity [8, 12–15]. Alternatively, Bifidobacterium species enhance anti- tumour immunity and the efficacy of PD- 1 
immunotherapy responses [6, 16, 17].

The release of bacterial metabolites such as short- chain fatty acids (SCFAs), amino acids, vitamins and bile acids can indirectly 
affect the tumour and the TME [18, 19]. Butyrate, a SCFA released by anaerobic bacteria through fermentation of carbohydrates, 
can decrease tumour cell growth and invasion, while increasing CD8+ T cell- mediated anti- tumour responses [20, 21]. However, 
butyrate has also been shown to have pro- tumorigenic effects by inducing senescence- associated inflammatory phenotypes and 
inhibiting natural killer cell functions [22, 23]. Bacteria- derived indole and its derivatives (e.g. indole- 3- acetic acid) have been 
shown to suppress anti- tumour immunity by activating immunosuppressive tumour- associated macrophages in treatment- 
naïve pancreatic cancer, while improving chemotherapeutic and immune- checkpoint inhibitor efficacy in pancreatic cancer and 
melanoma [24, 25]. Together, these studies demonstrate that the tumour microbiota can influence cancer clinical outcomes in 
a context- dependent manner.

There are multiple reports describing the microbiota in HNSC [26–28]. Most of these studies compared the microbiota diversity 
and bacterial relative abundance between cancer and healthy samples using 16S ribosomal RNA (rRNA) sequencing [26–28], 
while two studies additionally correlated the impact of the microbiota with matched transcriptome analysis [29, 30]. Samples 
studied include tissues, swabs and oral fluids (saliva or oral rinse) from cancer and healthy patients. Specifically for HNSC tissue 
microbiota analysis, samples included cancer, cancer- adjacent (approximately >5 mm away from the tumour), contralateral 
and healthy donor tissue samples [26–28]. Most bacteria identified in HNSC are oral commensal bacteria from the genera 
Streptococcus, Rothia, Fusobacterium, Haemophilus and Prevotella [31–33]. However, changes in microbial composition have 
been identified when cancer samples are compared to healthy controls. In general, there was an enrichment in Fusobacterium 
within cancer tissue samples that correlated with an inflammatory phenotype [34]. However, inconsistencies are observed for 
microbes such as Streptococcus, Actinomyces and Prevotella, meaning that it is necessary to identify a consensus microbiota 
signature for HNSC [27, 31, 32, 35, 36]. Previous systematic reviews have tried to identify and describe the dysbiosis in HNSC 
using processed [37–43] or re- analysed [44] data from studies containing heterogeneous HNSC sample types such as saliva, swab, 
oral rinse and tissues. Differences in sequencing techniques, data processing and sample types among the original studies were 
mostly unaccounted for in these reviews and may limit interpretation of the overall findings.

In this study, we systematically reviewed the literature and performed a meta- analysis to consolidate the currently heterogeneous 
HNSC- associated microbiota data. The selected 16S rRNA sequencing datasets were analysed consistently to minimize variability 
between different sample cohorts and adjusted for batch effects [45]. These consensus HNSC- associated microbial signatures 
were then validated using whole- genome sequencing (WGS) data from The Cancer Microbiome Atlas (TCMA) [1]. Finally, we 
correlated the presence of different microbiota signatures with the HNSC TME and clinical outcomes.

METHODS
This study was performed according to the Preferred Reporting Items for Systematic Reviews and Meta- Analyses (PRISMA) 
Statement. A PRISMA checklist for the abstract and review is available in the Supplementary Material.

Search and study selection
The following criteria were used to select datasets: (1) tissue samples, (2) presence of metadata to distinguish sample types and 
(3) Illumina short- read amplicon sequencing of 16S rRNA V3 to V5 primers (Fig. 1, Table 1). The exclusion criteria were (1) non- 
tissue samples (i.e. saliva, swabs and oral wash), (2) samples without metadata and sequencing data access and (3) sequencing data 
obtained from techniques other than Illumina short- read amplicon sequencing of 16S rRNA V3 to V5 primers. National Center 
for Biotechnology Information (NCBI) PubMed, Scopus and NCBI Sequence Read Archive (SRA) database search was performed 
on 16 August 2022 by two independent reviewers and datasets after this date were not included (Table S1, available in the online 
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version of this article). Risk of bias (RoB) assessment was performed using RoB2 assessment spreadsheet (ROB2_IRPG_beta_v9), 
and search terms are provided in Table S1 [46].

Download, pre-processing and analysis of 16S rRNA datasets
Previously published raw sequences were retrieved from the NCBI SRA using pysradb (Fig. S1) [47]. Samples were divided into 
three main groups – cancer, cancer- adjacent and non- cancer tissues. Cancer tissues are defined as tissues obtained directly from 
the tumour, while cancer- adjacent tissues are cancer- free regions obtained >5 mm away from cancer tissues. Non- cancer tissues 
are defined as tissues that were either obtained from healthy patients or contralateral tissues obtained from cancer patients. 
fastq sequences files were obtained from SRA using sratoolkit [48]. These sequences were processed using QIIME2 DADA2 
denoise- paired and reads truncated using the same parameters (trim_left_f=30, trim_left_r=30, trunc_q=15). Sequences from 
different studies were merged before bacterial operational taxonomic unit (OTU) classification using QIIME2 and silva reference 
database (version silva- 138–99- nb- classifier) [49].

Raw microbial reads were filtered, central log ratio (CLR)- transformed and batch- adjusted using Phyloseq and mixOmics as 
described previously [50, 51]. Batch adjustments have been assessed and PLSDA- batch correction values were used for subsequent 
16S rRNA data analysis (Figs S2–S5). As microbiome datasets are inherently compositional [52], CLR transformation addresses 
generate scale- invariant values, which allows datasets to remain unaffected by variations in library sizes among samples. Briefly, 
low abundances of OTUs were filtered through proportional counts of all samples (<1 %) and minimum counts per sample (<10). 
Bacterial OTUs were agglomerated at the genus level before transforming into CLR for their compositional nature [50]. The CLR 
abundance was used for subsequent statistical and discriminant analyses. A total of 1032 SRA samples from 13 SRA projects were 
downloaded. After filtering, 938 SRA samples remained from 12 SRA projects (Tables 1 and S2).

Fig. 1. Study selection flow chart.
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Discriminant analysis of 16S rRNA dataset
To discriminate the microbial signatures between sample types, we employed both multivariate and univariate discriminant 
analyses. For β-diversity analysis, the CLR abundance of all genera was ordinated using Euclidean distance and plotted on a prin-
cipal component analysis (PCA) plot using the mixOmics R package. The β-diversity for each sample was calculated as distance to 
centroid for each tissue group using betadisper (vegan v2.6–4). Group and pairwise permutest (vegan v2.6–4, permutations=9999) 
was performed to determine if dispersions differed between sample types, while group and pairwise permutational multivariate 
analysis of variance (PERMANOVA) was performed using adonis2 (vegan v2.6–4, method = ‘euclidean’, permutation=9999) and 
pairwise.adonis2 (pairwiseAdonis, method = ‘euclidean’, permutation=9999) to determine statistical differences in β-diversity 
between groups. Other statistical tests such as analysis of similarities (ANOSIM) (vegan v2.6–4, distance = ‘euclidean’, permuta-
tion=9999) and fifty–fifty multivariate analysis of variance (FFMANOVA) (nSim=9999) were also applied as supplementary 
means to distinguish between sample types.

Multivariate sparse partial least squares discriminant analysis (sPLS- DA) was applied on batch- adjusted datasets to identify 
discriminating genera within each sample type [50]. The area under curve (AUC) of the receiver operating characteristics (ROC) 
curve was calculated using mixOmics in R v4.1.3 [50, 53]. The AUC value served as a quantification of the discriminatory potential 
between sample types. A higher AUC value, closer to 1, signified a test approaching perfection in its ability to distinguish between 
the samples. A heatmap of all representative bacteria in each sPLS- DA was presented with sample type clustered according to 
Euclidean distance and Ward’s linkage.

A univariate Kruskal–Wallis test with Bonferroni multiple comparison test was also performed to determine microbial genera 
differences between sample types using microbiomeMarker in RStudio, followed by a post- hoc Wilcoxon test (Mann–Whitney 
test) with a Bonferroni–Dunn multiple comparison test to determine differences between groups (cancer–cancer- adjacent, 
cancer–non- cancer and non- cancer–cancer- adjacent). Additionally, a Wilcoxon matched pairs signed rank test with a Bonfer-
roni–Dunn multiple comparison test was also performed on paired cancer and cancer- adjacent samples.

Functional profiling analysis of 16S rRNA datasets in different sample types
To predict the microbial functions of genera detected from 16S rRNA sequencing between each tissue sample type, Phylogenetic 
Investigation of Communities by Reconstruction of Unobserved States 2 (PICRUST2) from QIIME2 was applied on raw 16S 
rRNA reads using MetaCyc database [54]. Functional abundance was processed and analysed similarly as described for raw 
microbial reads. The univariate Kruskal–Wallis test and the post- hoc Wilcoxon test were performed as previously described to 
compare differences between groups.

Reanalysis of tissue microbiome data from TCMA
Decontaminated microbial read counts derived from The Cancer Genome Atlas (TCGA) HNSC whole- genome sequences were 
obtained from TCMA repository [1]. Data from a total of 177 cancer (TCGA annotation: primary tumour) and 22 cancer- adjacent 

Table 1. Study accession and sample size post- filtering

Accession no. Sample size Primers

Cancer Cancer- adjacent Non- cancer

PRJNA412445 16 0 0 V4–V5

PRJNA555458 0 0 5 V3–V4

PRJNA596113 102 53 0 V3–V4

PRJNA597251 19 18 0 V3–V4

PRJNA666746 50 50 0 V3–V4

PRJNA666891 6 0 9 V4

PRJNA685226 13 13 0 V3–V4

PRJNA699728 37 0 200 V4

PRJNA736864 19 20 0 V3–V4

PRJNA803155 40 0 0 V4–V5

PRJNA822685 75 79 0 V3–V4

PRJNA866676 37 36 41 V3–V4
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(TCGA annotation: solid tumour normal) tissues were obtained from the TCMA repository (n=22 paired cancer and cancer- 
adjacent samples). Similar to 16S rRNA pre- processing, read counts were agglomerated to the genus before CLR transformation 
as described above. As samples were already pre- processed in the TCMA dataset, no further filtering or batch adjustment was 
required. Microbiome statistical analysis was performed similarly to that for 16S sequencing datasets. Metadata were obtained 
from cBioPortal for Cancer Genomics [55]. The β-diversity of tissue samples from different sites was compared to determine 
whether samples from different sites contained different bacterial communities (Fig. S7). Furthermore, β-diversity analysis was 
compared between cancer and cancer- adjacent tissues for paired tissues, similar to 16S rRNA analysis (Fig. S8).

Microbiome correlation analysis with TME and survival analysis
The TME immune subtype and 29 functional gene expression signature (FGES) scores were previously described by Bagaev et al. 
using transcriptomic datasets from TCGA [56]. The 29 FGESs represent the major functional components and immune, stromal 
and other cellular populations of the tumour [56]. Pearson’s correlation test was applied to determine the correlation between 
FGES scores and selected bacterial genera. The four TME immune subtypes were – desert (D), fibrotic (F), immune- enriched (IE) 
and immune- enriched/fibrotic (IE/F) (described in Table S2) [56]. Specifically, tissues with IE and IE/F phenotypes contain high 
T- cell infiltration, while D and F phenotypes have low T- cell infiltration (Table S2) [56]. Using a cut- off of high (top 35th percentile) 
and low (bottom 35th percentile) CLR abundances, the proportion of each patient within each of the four TME subtypes was 
determined, and survival analysis was performed. Since there were 153 TCGA- HNSC samples with both FGES/TME subtypes 
and microbiome datasets, these samples were used for subsequent correlation and survival analyses. The chi- squared (χ2) test 
was performed in Prism 9 to determine the association between high/low bacterial genera CLR abundance and the proportion 
of patients within each tumour subtype.

Statistical analysis
The Kruskal–Wallis test with Bonferroni’s multiple comparison test was used for comparisons made between all tissue groups 
unless stated otherwise. The post- hoc Wilcoxon matched pairs signed rank test with Bonferroni’s multiple comparison test was 
used to compare differences between unpaired tissue samples. For all paired cancer and cancer- adjacent samples, the Wilcoxon 
matched pairs signed rank test was performed. The univariate and multivariate Cox proportional hazard model analysis was 
performed using survminer in R. Statistical analysis was performed using R and Prism 9.

RESULTS
Study characteristics and dataset
Using our search strategy, a total of 9 SRA project accessions, 104 PubMed and 201 Scopus articles were retrieved. After removing 
duplicates and following our exclusion criteria (see Methods), 12 published articles were identified with a SRA project accession. 
We also found and included one additional SRA project accession (unpublished but uploaded dataset) (Fig. 1). In total, 13 SRA 
project accessions containing a total of 1032 head and neck tissue samples were collected [31, 32, 35, 57–63]. After data pre- 
processing, a total of 938 samples remained, consisting of 414 cancer, 269 cancer- adjacent and 255 non- cancer tissues (Table S2). 
These tissue samples comprised 508 male, 205 females and 225 unknown donor tissue samples (Table S2). The RoB2 assessment 
on studies showed the overall low risk of bias (Table S1) [46].

Multivariate analysis identifies homogeneous microbial abundance and functions between cancer and 
cancer-adjacent samples in contrast to non-cancer samples
After sample processing and aggregation of 16S rRNA data at the genus level, a total of 179 distinct bacterial genera were identi-
fied (Fig. S1). Differences in the microbiota and β-diversity between tissue types were assessed using PCA and PERMANOVA 
test (Fig. 2a, b). The β-diversity index was calculated for cancer [mean=14.3, 95 % confidence interval (CI)=13.7–15.0] and 
cancer- adjacent (mean=15.1, 95 % CI=14.4–15.8) tissues, revealing similar levels of β-diversity. In contrast, non- cancer tissues 
(mean=9.3, 95 % CI=8.63–9.97) exhibited lower β-diversity (PERMANOVA – overall R2=0.050, P=0.0001) (Fig. 2b). A post- hoc 
pairwise test identified significant differences in β-diversity between cancer and non- cancer (R2=0.048, P=0.001), cancer and 
cancer- adjacent (R2=0.013, P=0.001), and non- cancer and cancer- adjacent samples (R2=0.071, P=0.001) (Fig. 2b). These findings 
were consistent with additional multivariate and univariate statistical analyses, ANOSIM (R=0.016, P=0.036) and FFMANOVA 
(P<0.0001) (Table S5).

Multivariate sparse partial least squares discriminant analysis (sPLS- DA) identified 126 representative bacterial genera in sPLS- DA 
components 1 and 2, which were discriminant between tissue types (Fig. 2c–e). The AUC values were computed for different 
sample comparisons: cancer versus others (AUC=0.76, P<0.05), non- cancer versus others (AUC=0.93, P<0.05) and cancer- 
adjacent versus others (AUC=0.84, P<0.05). These results demonstrate that sPLS- DA components 1 and 2 (Fig. 2d) can effectively 
differentiate between tissue types. Lastly, the majority of cancer and cancer- adjacent samples clustered together and were distinct 
from non- cancer samples, as determined by the Euclidean distance metric (Fig. 2e).
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Fig. 2. Multivariate discriminant analysis (sPLS- DA and PERMANOVA) of tissue 16S rRNA microbiota to discriminate between cancer, cancer- adjacent 
and non- cancer tissues. (a) PCA plot of tissue CLR abundance microbiota based on Euclidean distance. (b) Dispersion of β-diversity (top- right panel) for 
each sample type, with error bar representing 95% CI. PERMANOVA test was performed with bacterial genera as variable for sample types. (c) sPLS- 
DA sample plot of 16S rRNA tissue microbiota. Ellipse displays 95% CI for each sample group. The batch- adjusted normalized abundance of tissue 
microbiota from 16S amplicon sequencing was compared between cancer, cancer- adjacent and non- cancer tissue samples. sPLS- DA identified 126 
bacterial genera on components 1 and 2. (d) ROC curve and AUC values determined from sPLS- DA analysis were used to access the discriminatory 
potential of sPLS- DA components 1 and 2. (e) Heatmap representing 126 bacterial genera after sPLS- DA discriminant analysis. Each column and row 
represent a unique sample and bacterial genera, respectively, with OTUs clustered based on Euclidean distance and Ward linkage method.
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Univariate analysis identifies differences in microbial abundance and functions between sample types
Next, unpaired univariate analysis was applied to determine the differences between tissue types. Out of the 179 bacterial 
genera, 34 were identified as significantly different among tissue types using the Kruskal–Wallis test (Padjust<0.05) (Table S6). 
Notably, 31 of these were also identified as representative bacterial genera in sPLS- DA discriminant analysis (Table S6). These 
34 genera are denoted as bacterial genera of interest (Table S6). The top 20 differentially abundant genera, based on the effect 
size (η2), are presented in Fig. 3. The post- hoc unpaired Wilcoxon test with Bonferroni–Dunn’s multiple comparison test was 
performed on these genera to determine the mean differences in the CLR abundance between tissue types (Fig. 3a, Table S7). 
Since most published studies compared cancer to non- cancer or cancer to cancer- adjacent tissues, we performed the post- hoc 
test for these comparisons (Fig. 3b). We identified 29 out of 34 genera as significantly different [Padjust (#) <0.05] between cancer 
and non- cancer tissues (Fig. 3a, b, Table S7). Non- cancer tissues contained more Fretibacterium (CLR abundance diff.=1.41, 
SE=0.12), Stenotrophomonas (CLR abundance diff.=0.79, SE=0.12), Fusobacterium (CLR abundance diff.=0.87, SE=0.15) 
and Tannerella (CLR abundance diff.=0.72, SE=0.10), while cancer tissues had a greater CLR abundance of Neisseria (CLR 
abundance diff.=2.31, SE=0.16), Capnocytophaga (CLR abundance diff.=1.98, SE=0.15) and Streptococcus (CLR abundance 
diff.=1.86, SE=0.18) (Fig. 3a, b). Capnocytophaga abundance in cancer tissues was consistent with previous findings [36, 64, 65], 
while contradictory findings were identified for the abundance for Streptococcus [32, 36, 61, 64, 66] and Fusobacterium 
[32, 60, 61, 64, 66, 67].

For cancer and cancer- adjacent tissues, 11 out of 34 bacterial genera were significantly different [post- hoc unpaired Wilcoxon 
test Padjust (*) <0.05] (Fig. 3a, c, Table S7). Similar to many studies, Fusobacterium (CLR abundance diff.=1.14, SE=0.20) displayed 
significantly higher CLR abundance in cancer tissues than cancer- adjacent tissues, while Rothia (CLR abundance diff.=0.98, 
SE=0.17), Stenotrophomonas (CLR abundance diff.=1.25, SE=0.14) and Serratia (CLR abundance diff.=0.62, SE=0.12) had higher 
CLR abundances in cancer- adjacent tissues than cancer tissues (Fig. 3a) [31, 33, 35, 59, 66–69]. Additionally, we found that Prevo-
tella (CLR abundance diff.=0.86, SE=0.19) was elevated in cancer tissues as compared to cancer- adjacent tissues [35, 59, 66, 67, 69]. 
Unlike previous studies, we did not observe any significant differences in Streptococcus abundance between cancer and cancer- 
adjacent tissues [31, 33, 59, 66, 68–70].

Lastly, 29 of the 34 top bacterial genera were significantly different (post- hoc unpaired Wilcoxon test Padjust <0.05) when comparing 
non- cancer to cancer- adjacent tissue samples (Fig. 3a, Table S7). Genera Neisseria (CLR abundance diff.=3.05, SE=0.19), Rothia 
(CLR abundance diff.=1.98, SE=0.15) and Streptococcus (CLR abundance diff.=1.71, SE=0.20) were higher in CLR abundance in 
cancer- adjacent tissues, while Fusobacterium (CLR abundance diff.=2.01, SE=0.16) and Prevotella (CLR abundance diff.=1.18, 
SE=0.20) were greater in CLR abundance in non- cancer tissues (Fig. 3a).

To provide functional insights into microbial abundance between cancer tissues and other tissue types, we applied PICRUSt2 
to predict possible differences in MetaCyc pathway functional CLR abundance [54]. After filtering low- abundance functional 
pathways, we identified a total of 365 MetaCyc pathways. Using the Kruskal–Wallis test, 181 MetaCyc pathways were identified as 
significantly different among sample types (Padjust<0.05) (Table S8). Post- hoc analysis identified 130/181 and 121/181 pathways that 
were significantly different between cancer–non- cancer and cancer–cancer- adjacent tissue comparisons, respectively (Table S9).

Cancer tissues, when compared to non- cancer tissues, were enriched in pathways involving the synthesis of l- methionine, 
inosine- 5′-phosphate and cysteine, while non- cancer tissues were enriched in the degradation of l- lysine, l- glutamine, 
N- acetylglucosamine (GlcNac), N- acetylmannosamine (ManNac) and N- acetylneuraminate (Neu5Ac) (Fig. 3c). Cancer tissues 
were more similar to cancer- adjacent tissues, albeit enrichment was identified in pathways involving biosynthesis of adenosyl-
cobalamin and cob(II)yrinate a,c- diamide, and enrichment in pathways involving degradation of l- glutamate, l- lysine, glucose 
and xylose when compared to cancer- adjacent tissues (Fig. 3c).

Paired cancer and cancer-adjacent tissues display similar bacterial abundance differences using multiple 
sequencing techniques
To understand microbial abundance differences between cancer tissues and cancer- adjacent tissues within the same patients, we 
performed the Wilcoxon matched pairs signed rank test to identify changes in microbial diversity and abundance within paired 
tissue samples in the 16S rRNA datasets. Similar to unpaired data analysis, no significant differences in microbial β-diversity 
were identified between the patient’s paired cancer and cancer- adjacent tissues (Fig. S8).

However, 76 bacterial genera were significantly different between paired tissue samples (Fig. 4a, Table S10). Bacterial genera with 
the greatest differences in CLR abundance were then identified by using a cut- off of >0.4 and <−0.4 (Fig. 3a). Using this cut- off, we 
found that Fusobacterium, Gemella, Prevotella, Bergeyella and Capnocytophaga were elevated in cancer tissues vs cancer- adjacent 
tissues, while Atopobium, Neisseria, Actinomyces, Granulicatella, Rothia and Stenotrophomonas were greater in cancer- adjacent 
tissues compared to cancer tissues (Fig. 4a, b). Similarly, five of these bacteria were also found to be significantly different in 
unpaired tissue analysis (Tables S7 and S10). Contrary to published studies on unpaired samples, Streptococcus, an abundant oral 
commensal, was not significantly different in our paired sample analysis [31, 33, 59, 66, 68–70].



8

Yeo et al., Journal of Medical Microbiology 2024;73:001799

Fig. 3. Comparison of bacterial CLR abundance and functional prediction between sample types. (a) Top 20 bacterial genera (based on effect size) in 
CLR- normalized abundances between sample groups using the Kruskal–Wallis test with Bonferroni’s multiple comparison test. Thirty- four out of 179 
genera were identified as significantly different (P

adjust
<0.05) using the Kruskal–Wallis test. The post- hoc Wilcoxon test with Bonferroni–Dunn’s multiple 

comparison test was performed to identify groupwise differences between cancer–non- cancer (#), cancer–cancer- adjacent (*) and non- cancer–
cancer- adjacent (^). Post- hoc unpaired Wilcoxon test with Bonferroni–Dunn’s multiple comparison test for (b) bacterial genera and (c) functional CLR 
abundance for cancer–non- cancer (top panel) and cancer–cancer- adjacent (bottom panel). *P<0.05, **P<0.01, ***P<0.001, ****P<0.0001.
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Fig. 4. Comparison of tissue microbiota in paired cancer and cancer- adjacent tissue samples using different sequencing datasets. (a) Paired Wilcoxon 
matched pairs signed rank test on paired 16S rRNA sequencing cancer and cancer- adjacent tissue samples. Seventy- six bacteria were significantly 
different in sample groups (P<0.05) using paired Wilcoxon matched pairs signed rank test and 13 bacterial genera were identified as top bacteria with 
differential CLR abundance (diff. CLR abundance >0.4 or <−0.4). Blue and red dot points represent bacteria that were higher in abundance in cancer 
and cancer- adjacent tissues, respectively. CLR abundance of paired cancer and cancer- adjacent samples from (b) 16S rRNA sequencing and (c) TCMA 
WGS sequencing datasets. Wilcoxon matched pairs signed rank test was performed for both 16S rRNA (n=287) and TCMA (n=22) datasets. *P<0.05, 
**P<0.01, ***P<0.001, ****P<0.0001.
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To validate this finding, we probed the publicly available TCMA dataset, a repository containing microbiota reads derived from 
WGS of tissue samples [1]. Similar to the 16S rRNA dataset, we observed that cancer tissues from TCMA displayed significantly 
(P<0.05) higher CLR abundance for genera Fusobacterium, while Rothia, Atopobium and Actinomyces were elevated (P<0.05) 
in cancer- adjacent tissues (Fig. 4d). In the TCMA dataset, Stenotrophomonas was not present due to pre- analysis filtering, while 
no significant differences in CLR abundance were observed for Gemella, Prevotella, Bergeyella, Capnocytophaga, Neisseria and 
Granulicatella (Fig. 4c). Notably, a similar trend in CLR abundance between cancer and cancer- adjacent samples was still observed 
for Prevotella, Capnocytophaga, Neisseria and Granulicatella in the TCMA dataset. Overall, the 16S rRNA and TCMA WGS 
datasets showed similar trends for most bacterial genera, regardless of sequencing techniques.

Tissue microbiota diversity correlates with cancer functional gene expression signatures
Since Fusobacterium, Atopobium, Actinomyces and Rothia displayed significant differences between paired cancer and cancer- 
adjacent tissues, we performed correlation analyses to investigate the possible relationship between these genera and the tumour 
transcriptional profile and patient clinical features found in matched TCGA patients (n=156) [56]. Here, TCGA transcriptomic 
data were classified into 29 FGESs, which represent major functional components and characteristics of cancer cell populations 
[56]. These 29 FGESs can then be used to further classify cancers into four major immune subtypes (desert, fibrotic, immune- 
enriched/non- fibrotic and immune- enriched/fibrotic) [56]. We correlated the CLR abundance of Fusobacterium, Atopobium, 
Actinomyces and Rothia from TCGA- HNSC patients with their respective FGES scores and immune subtype.

We first correlated CLR abundance with the FGE signatures. The CLR abundance of Fusobacterium correlated (r>0.3, P<0.0001) 
with FGES related to angiogenesis, neutrophils and granulocyte traffic (Fig. 5a). Other FGESs such as matrix remodelling, 
protumour cytokines, MDSC traffic, M1 signature, antitumour cytokine, major histocompatibility complex class I (MHCI) and 
epithelial- mesenchymal transition (EMT) signatures were also positively correlated (P<0.05) with CLR abundance of Fusobacte-
rium (Fig. 5a). The CLR abundance of Atopobium showed a negative correlation (P<0.05) with endothelium and matrix signatures 
(Fig. 4a). Lastly, the CLR abundance of Rothia displayed a positive correlation (P<0.05) with T reg traffic, T reg, B cell, NK cell, 
effector cell and T cell signatures, while having a negative correlation with (P<0.05) angiogenesis signature (Fig. 5a).

Next, we investigated how CLR abundance was correlated with tissue immune subtyping. Cancer tissues classified as immune 
deserts (D) and fibrotic (F), which lack immune cell enrichment, were correlated with higher Fusobacterium CLR abundance. On 
the other hand, cancer tissues that are immune- enriched/non- fibrotic (IE) or immune- enriched/fibrotic (IE/F) were correlated 
with greater Rothia. No significant correlation with immune subtypes was observed for Actinomyces, while high CLR abundance 
of Atopobium was associated with the D phenotype (Fig. 5b). To identify the differences in immune subtypes between high and 
low CLR abundances of each bacterial genera, we further segregated patients based on the upper and lower 35 % CLR abundance 
quartiles. While not reaching statistical significance, more patients with IE and IE/F tumour subtypes have low CLR abundance of 
Fusobacterium (chi- squared test, P=0.19), opposite to the CLR abundance for Rothia (Fig. 5c). Conversely, patients with D and F 
subtypes had higher CLR abundance of Fusobacterium (Fig. 5c). Similar to Rothia, (chi- squared test, P=0.2), low CLR abundance 
of Atopobium is associated with reduced IE/F subtype (Fig. 5c). Lastly, the proportion of patients in each immune subtype was 
similar in high and low CLR abundance Actinomyces groups. Taken together, these show that Fusobacterium is associated with 
poor T- cell infiltration compared to Rothia, which may have implications for selecting patients suitable for immunotherapy.

Evaluation of microbiota abundance with clinical features and survival
Univariate and multivariate Cox proportional hazard models were used to investigate the association between the intratumoral 
microbiota and clinical features. The univariate Cox proportional hazard model identified that current smokers (HR 2.235, 95 % CI 
1.146–4.359, P=0.018), HPV- negative (HR 2.273, 95 % CI 1.158–4.459, P=0.017) and low CLR abundance of Fusobacterium 
(HR 0.8883, 95 % CI 0.8183–0.9642, P=0.005) were risk factors for reduced overall survival (Table 2). Further multivariate Cox 
proportional hazard models identified that HPV- negative (HR 2.853, 95 % CI 1.1991–6.7882, P=0.0178) and low CLR abundance 
of Fusobacterium (continuous: HR 0.8482, 95 % CI 0.7758–0.9273, P=0.0003; low: HR 2.579, 95 % CI 1.3687–4.860, P=0.0034) 
were independent hazards for overall survival, but not current smokers (Table 2).

DISCUSSION
Several studies have investigated the microbial signature in HNSC using different sequencing approaches and sample types, such 
as tissues, swabs and oral fluids. However, these studies have reported inconsistent findings regarding the presence of specific 
bacterial genera. Consequently, a consensus microbial signature for head and neck tissues has yet to be established. In this study, 
we aimed to address this gap by conducting a meta- analysis of 12 studies and presenting a consensus tissue microbiota signature 
for head and neck tissues. We analysed 16S rRNA sequencing datasets from 938 tissue samples, including 414 cancer tissues, 
269 cancer- adjacent tissues and 255 non- cancer tissues. Our analysis revealed significant differences in the abundance of 34 
bacterial genera among the various tissue types. Specifically, we observed that cancer tissues and cancer- adjacent tissues exhibited 
greater similarity to each other compared to non- cancer tissues. These findings suggest distinct microbial profiles in cancer and 



11

Yeo et al., Journal of Medical Microbiology 2024;73:001799

cancer- adjacent tissues compared to non- cancer tissues. Non- cancer tissues exhibited the lowest differences in β-diversity and 
contained elevated levels of bacterial genera such as Tannerella, Fretibacterium, Stenotrophomonas, Fusobacterium and Prevotella 
(Fig. 6a). While cancer and cancer- adjacent tissues displayed similar microbiota based on β-diversity indexes, further analysis 
using paired and unpaired univariate methods enabled differentiation of these tissues at the genera level (Fig. 6b). Importantly, 
these abundance signatures were validated using additional data from TCMA. Matching TCMA samples with transcriptomic 
data derived from TCGA and clinical features provided insights into the contributions of individual genera in HNSC. Notably, we 

Fig. 5. Correlation analysis of Fusobacterium, Atopobium, Rothia and Actinomyces to the tumour transcriptional profiles. (a) Twenty- nine FGES scores 
derived from Bagaev et al. [56] were used for correlation with the CLR abundance of genera Fusobacterium, Atopobium, Actinomyces and Rothia, 
using Pearson’s correlation method. Asterisks (*) represent significant correlation (P<0.05), and red and blue scales represent positive and negative 
correlations, respectively. (b)  The CLR abundance of each bacterial genera within each TME immune subtype (D, desert; F, fibrotic; IE, immune- 
enriched/non- fibrotic; IE/F, immune- enriched/fibrotic). Kruskal–Wallis test with uncorrected Dunn’s test was performed to compare CLR abundance 
in all immune groups. *P<0.05, **P<0.01. (c) The proportion of patients in each tumour immune subtype with high and low CLR abundances in each 
bacterial genera. High and low bacterial CLR abundance groups were determined by the upper and lower 35 % quartiles, respectively. Chi- squared test 
was performed to determine he association between high/low bacterial genera CLR abundance and the proportion of patients in each tumour subtype.
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found that a high abundance of Fusobacterium was associated with better overall survival in HNSC patients. Overall, our study 
contributes to the establishment of a consensus tissue microbiota signature for HNSC, shedding light on the distinct microbial 
profiles in different tissue types and their potential implications for clinical outcomes.

Both multivariate and univariate discriminant analyses were able to differentiate different tissue sample types based on microbial 
abundance. As previously reported, cancer and cancer- adjacent tissues were more similar in microbial diversity when compared to 
non- cancer tissues [31–33, 35, 36, 59, 60, 64, 66–71]. At the genus level, both paired and unpaired abundance analyses of cancer 
and cancer- adjacent tissues showed consistent enrichment for Fusobacterium and Rothia in cancer tissues [31, 33, 59, 66–69]. In 
contrast to previous studies, Prevotella and Atopobium were enriched within cancer tissues compared to cancer- adjacent tissues, 
and no differences were observed for Streptococcus [31–33, 35, 36, 59, 61, 64–70, 72].

Previous studies have reported conflicting results where Fusobacterium was increased in cancer tissues as compared to non- cancer 
and cancer- adjacent tissues [32, 60, 64, 66, 67]. However, we found that Fusobacterium was most abundant in non- cancer tissues. 
Fusobacterium is an abundant commensal bacteria found largely in the oral cavity (buccal, hard palate, gingiva, tonsils and tongue) 
and saliva of healthy individuals, suggesting a potential role within the healthy oral microbiota [73, 74]. In vitro experiments in 
HNSC cell lines showed that Fusobacterium nucleatum infection promotes cancer cell invasion, proliferation, autophagy and 
PD- L1 expression [75–77]. It is unknown whether there are strain- and species- level differences found in Fusobacterium isolated 

Table 2. Univariate and multivariate Cox proportional hazard models for overall survival

Univariate Multivariable

n HR (95 % CI) P- value HR (95 % CI) P- value

Age (years) <65 106

≥65 47 0.9832 (0.594–1.626) 0.947

Sex Female 41

Male 112 0.868 (0.525–1.436) 0.581

Staging I 4

II 30 2.331 (0.302–17.97) 0.417

III 31 2.275 (0.2950–17.54) 0.430

IV 87 3.275 (0.4492–23.87 0.242

HPV status Positive 37

Negative 107 2.273 (1.158–4.459) 0.017* 2.853 (1.1991–6.7882) 0.0178*

Smoking Non- smoker 37

Current 43 2.235 (1.146–4.359) 0.018* 1.3788 (0.5383–3.5317) 0.50329

Previous 71 1.488 (0.7804–2.838) 0.227 0.7821 (0.3130–1.9545) 0.59894

Fusobacterium Continuous 153 0.8883 (0.8183–0.9642) 0.005** 0.8482 (0.7758–0.9273) 0.0003**

High 53

Low 53 2.0592 (1.17–3.625) 0.0123* 2.579 (1.3687–4.860) 0.0034*

Atopobium Continuous 153 1.0359 (0.8889–1.208) 0.651

High 53

Low 53 1.2781 (0.7385–2.212) 0.3805

Rothia Continuous 153 1.029 (0.8936–1.184) 0.694

High 54

Low 54 0.6552 (0.3585–1.198) 0.17

Actinomyces Continuous 153 0.9652 (0.8512–1.094) 0.58

High 53

Low 52 1.006 (0.5679–1.783) 0.983
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in cancer and non- cancer tissues to explain such seemingly contradictory findings. Additionally, non- cancer tissues from cancer 
patients may also have different tissue microbiota profiles from healthy donor tissues, for which data are currently unavailable in 
this study. Furthermore, most of the experiments showing an oncogenic role for F. nucleatum were carried out in vitro and thus 
did not consider a potential mitigating role of the immune system. Moreover, the abundance of F. nucleatum both in absolute 
terms and relative to other bacteria present in the tumour microbiota might influence the oncogenic potential of F. nucleatum. 
Further experiments are required to evaluate the role of Fusobacterium in HNSC.

We observed that Streptococcus, another highly abundant oral commensal genera [73, 74], was increased specifically in cancer and 
cancer- adjacent tissues compared to non- cancer tissues. However, there was no significant difference in Streptococcus abundance 
between cancer and cancer- adjacent tissues. Within the oral cavity, certain Streptococcus species, such as S. mutans, can contribute 
to dental caries by acidifying the environment [78]. In oral cancer, S. mutans has been shown to promote tumour proliferation 
and invasion, potentially through upregulation of IL- 6 in infected cells [79]. On the other hand, Streptococcus species from the 
mitis (S. oralis, S parasanguinis and S.mitis) and sanguinis (S. sanguinis and S. gordonii) groups can break down lactic acid or 
pyruvate into hydrogen peroxide, thereby antagonizing pathogenic species such as S. mutans [78]. In oral cancer, S. mitis, S. 
salivarius and S. anginosus were found to display anti- tumour effects, including reducing cancer cell viability and promoting CD8+ 
cytotoxic T cell responses [80–83]. These findings indicate that the abundance of specific Streptococcus species may contribute 
to pathogenesis and disease severity or exert anti- tumour effects. It is important to note that these studies underscore the limita-
tions of identifying microbiota at the genus level using short- read 16S rRNA sequencing. To address these limitations, recent 
advances in sequencing technologies such as long- read 16S rRNA amplicon sequencing (e.g. PacBio and Nanopore) or shotgun 
metagenomics can be employed to reveal species- or strain- specific diversity within the microbiota [84, 85]. Such advancements 
can provide a more comprehensive understanding of the specific species and strains that play a role in oral cancer pathogenesis 
and anti- tumour effects.

Fig. 6. Summary of bacterial genera within cancer, cancer- adjacent and non- cancer tissue samples. (a) Elevated microbiota within non- cancer tissues 
compared to cancer and cancer- adjacent tissues. (b) Elevated bacterial genera between cancer and cancer- adjacent tissues.
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To compare the metabolic potential of different head and neck tissue types, a functional prediction analysis was performed 
using PICRUSt2 on the 16S rRNA sequencing data. Functional analysis predicted an enrichment of pathways that involve the 
production of several amino acids and metabolites, including l- methionine, acetate, butanoate and lactate, in cancer tissues 
compared to non- cancer and cancer- adjacent tissues. Methionine deprivation has been shown to sensitize numerous cancers 
such as breast and colorectal cancer cells [86, 87]. Moreover, competition between cancer and T cells for methionine can result in 
T cell impairment [87–89]. Butanoate and acetate can serve as energy sources for cells by converting into acetyl- CoA, which can 
then be utilized in the tricarboxylic acid (TCA) cycle to produce ATP [90, 91]. The role of butanoate in tumorigenesis depends 
on the specific tumour and the TME as it can exhibit tumour- promoting or suppressive properties [22, 92, 93]. Collectively, 
these findings suggest that bacteria infiltrating HNSC tissues possess functional capacities that may promote cancer progression. 
Further validation studies are warranted to better understand the role of these metabolic pathways in HNSC and the contribution 
of bacteria in shaping the TME.

We further explored the relationship between the abundance of the four bacterial genera associated with cancer and cancer- 
adjacent tissues, Fusobacterium, Atopobium, Actinomyces and Rothia, and the TME phenotype and clinical outcomes. Fuso-
bacterium was associated with a lack of T- cell immune infiltration in HNSC, similar to colorectal and oesophageal cancers 
[94, 95]. Furthermore, Fusobacterium can chemoattract neutrophils via release of SCFA and can also modulate neutrophils 
and endothelial cell functions in vitro [96–98]. Interestingly, we observed that patients with low levels of Fusobacterium 
within the tumour tissue had shorter overall survival, consistent with previous reports for HNSC [59, 99, 100]. In contrast, 
opposite findings have been reported for colorectal, gastric and oesophageal cancers, suggesting that Fusobacterium may 
have a different role in HNSC [101–104]. In our analysis, we also found that Rothia was correlated with an immune- enriched 
TME. Limited information is available regarding the role of Rothia in cancer; however, Rothia dentocariosa has been shown to 
induce Toll- like receptor 2 (TLR- 2)- mediated TNF- alpha inflammatory response in human embryonic kidney cells and THP- 1 
monocytes [105]. Atopobium, a oral and vagina commensal, was also found to be higher in tissues with an T- cell immune- 
deprived phenotype. While not studied extensively, specific Atopobium species such as Atopobium minutum cause apoptosis 
in colon cancer cell lines, while Atopobium parvula induces a pro- inflammatory response in cervical cells [106, 107]. Lastly, 
Actinomyces did not significantly correlate with TME subtypes in our analysis. However, Actinomyces has been associated 
with young- onset colorectal cancers, showing a preferential localization with cancer- associated fibroblasts in the TME [108]. 
These findings underscore the importance of validating and understanding the underlying mechanisms through which these 
bacteria can modulate the TME in HNSC.

This study represents the first comprehensive comparison of 16S rRNA (V3–V5) microbial sequencing across multiple studies 
to identify consensus HNSC- associated microbiota signatures in cancer, cancer- adjacent and non- cancer tissues. To ensure 
consistency, a uniform bioinformatics approach was employed. However, it is important to acknowledge the inherent limita-
tions of this study. Variations in sample collection, preparation and sequencing among different laboratories introduce batch 
effects that could contribute to the inconsistencies observed across different reports. To mitigate these effects, we applied 
PLSDA batch adjustment to the pooled datasets [45]. Another limitation of this study is the lack of controls to eliminate 
background or contaminants sequenced as most studies do not have negative controls or sequencing files uploaded to the SRA 
database. Despite its flaws, we removed low- abundance bacteria to try to ameliorate this issue. Additionally, cohort- specific 
taxa that are most likely to reflect background or contaminants will likely be accounted for in the batch correction steps of 
our analysis.

Conventional short- read 16S rRNA sequencing only provides information up to the genus level, which restricts our ability to 
identify specific bacterial species or strains that may be relevant to disease outcomes [84]. Overcoming this limitation would 
require advanced sequencing technologies such as long- read 16S rRNA amplicon sequencing or shotgun metagenomics to 
reveal species- or strain- level diversity within the microbiota. Additionally, 16S rRNA sequencing can only identify the pres-
ence of bacterial DNA and does not identify the presence of viable bacteria within the tumour. Hence, other methods, such as 
transmission electron microscopy, culturomics, single- cell RNA sequencing or spatial transcriptomics, may better show viable 
and functional bacteria within tissue samples [2, 109]. Another important consideration is that the clinical metadata associated 
with the published 16S rRNA sequencing datasets are limited, restricting our ability to make comprehensive clinical associations. 
Thus, our clinical associations were primarily based on TCMA/TCGA datasets. Since TCMA/TCGA datasets are cross- sectional, 
a future longitudinal study would be more informative to understand the relationship between the microbiome, patient prognosis 
and treatment outcomes.

Despite these limitations, this study confirms distinct differences in the microbiota composition among cancer, cancer- 
adjacent and non- cancer HNSC tissue samples. The strength of our study lies in the meta- analysis of a substantial number, 
totalling 938 samples. Additionally, our analysis indicates that a high load of Fusobacterium within HNSC tissues may 
be associated with a favourable survival outcome. The correlation analysis of the microbiota with functional predictions, 
functional gene enrichment signature and immune subtyping of the tumour and TME provides novel avenues for further 
exploration.
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In conclusion, our study establishes a consensus microbial signature for head and neck tissues, shedding light on the distinct 
microbial profiles present in head and neck cancer. These findings have the potential to serve as targets for future treatment 
approaches in HNSC. Nevertheless, it is crucial to acknowledge the limitations identified in our study and recognize the need 
for further research to address these limitations. Additional investigations are required to gain a deeper understanding of the 
functional implications of the identified microbiota differences in HNSC. By addressing these gaps, we can advance our knowledge 
and pave the way for more effective therapeutic interventions in HNSC.
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