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Abstract: Detecting inclusions in materials at small scales is of high importance to ensure the quality,
structural integrity and performance efficiency of microelectromechanical machines and products.
Ultrasound waves are commonly used as a non-destructive method to find inclusions or structural
flaws in a material. Mathematical continuum models can be used to enable ultrasound techniques to
provide quantitative information about the change in the mechanical properties due to the presence
of inclusions. In this paper, a nonlocal size-dependent poroelasticity model integrated with machine
learning is developed for the description of the mechanical behaviour of spherical inclusions under
uniform radial compression. The scale effects on fluid pressure and radial displacement are captured
using Eringen’s theory of nonlocality. The conservation of mass law is utilised for both the solid
matrix and fluid content of the poroelastic material to derive the storage equation. The governing
differential equations are derived by decoupling the equilibrium equation and effective stress–strain
relations in the spherical coordinate system. An accurate numerical solution is obtained using the
Galerkin discretisation technique and a precise integration method. A Dormand–Prince solution
is also developed for comparison purposes. A light gradient boosting machine learning model in
conjunction with the nonlocal model is used to extract the pattern of changes in the mechanical
response of the poroelastic inclusion. The optimised hyperparameters are calculated by a grid search
cross validation. The modelling estimation power is enhanced by considering nonlocal effects and
applying machine learning processes, facilitating the detection of ultrasmall inclusions within a
poroelastic medium at micro/nanoscales.

Keywords: nonlocal continuum mechanics; scale effects; inclusions; light gradient boosting
machine; poroelasticity

1. Introduction

Accurate theoretical models of background–inclusion media are essential in the quan-
titative determination of mechanical properties of poroelastic materials such as biological
tissues, hydrogels, micro-fibrous scaffolds and micro-porous polymers, in which inclusions
such as tumours and structural anomalies are common [1]. These theoretical models al-
low us to precisely evaluate mechanical features and compare them on an elastography
image (elastogram) in imaging techniques like ultrasound elastography [2]. A number of
mathematical models have been developed for the mechanical behaviour of poroelastic
materials with inclusions in recent years. Shin et al. [3] used Eshelby’s model of elasticity,
an analytical method of estimating the elastic properties of inclusion–matrix media, in
order to determine strain and stress components inside breast tissues with ellipsoidal
lesions as inclusions. In another study, Goswami and his co-workers [4] developed a
theoretical platform using the Caley–Hamilton theorem and classical elasticity to analyse
the shear induced nonlinear mechanics in phantoms with undesirable inclusions under
finite deformations. A poroelastic model was also presented by Islam and Righetti [5]
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using the conventional poroelasticity theory for investigating the mechanics of biological
tissues containing spherical tumours. Moreover, a numerical mathematical approach was
proposed to study large-scale elastic bodies with thin inclusions based on a scale-free elas-
ticity theory and finite element technique [6]. Costa and Gentile [7] developed a discrete
doublet model of mechanics to simulate ultrasound wave propagation within biological
tissues as the poroelastic material, excluding any potential inclusions. In a recent study
conducted by Favata et al. [8], it has been shown that the mechanical behaviour of biological
inclusions at microscale levels is different from those at large scales. The development
of microscale premalignant inclusions leads to stiffness softening, while the presence of
large-scale inclusions is associated with a hardening behaviour, known as the soft-cell solid
tumour paradox [9]. More recently, mathematical models of poroelasticity [10] and an
artificial neural network technique [11] have been developed to capture Poisson’s ratio in
abnormalities and estimate mechanical stiffness in inhomogeneous materials.

However, at nano and microscales, the dimensionless mechanical characteristics of
a substance are highly sensitive to its size [12–15]. This widely reported phenomenon is
known as scale (size) dependency [16,17] and is associated with several underlying factors
including molecular interactions [18] and stiffness alteration [19]. As classical local elasticity
and poroelasticity models are formulated on the basis of scale-free theories of continuum
mechanics, they lack the ability to capture size effects and, thus, fail to accurately estimate
the mechanical response at nano and microscales. Peddieson et al. [20] applied a version of
nonlocal elasticity, which was first introduced by Eringen [21], to develop scale-dependent
beam models suitable for describing the mechanics of nanoscale devices such as small-
scale actuators with nanocantilevers as building blocks. Following this pioneering work,
several researchers across the world have extended the application of nonlocal theories to
other small-scale structures and devices such as nanobeams [22], nanoscale sensors [23],
nanoplates [24–26] and fluid-conveying microtubes [27,28].

In addition to fundamental small-scale solid structures, modified nonlocal models
have been utilised to assess and predict the mechanical behaviour of poroelastic, viscoelastic
and biological materials of small sizes [29–31]. These structures include, but are not limited
to, microtubules [32,33], nanoporous materials with surface effects [34] and lipid micro-
tubules [35]. In all of these valuable studies, it has been demonstrated that scale effects
have a vital role to play in mechanical deformation. Stress nonlocality described by the
Eringen nonlocal elasticity (nonlocal scale effect) is associated with small-scale interactions,
leading to substantial stiffness reduction in the structure. Furthermore, it has been recently
demonstrated that nonlocal models hold great promise as highly accurate mathematical
tools for the description and design of microscale systems and phenomena, especially in
biology such as microscale migration of cells [36], microelectromechanical response [37]
and wave propagation in biological tissues [38].

To the best of our knowledge, to date, no nonlocal scale-dependent poroelastic model
has been developed for the mechanical deformation of materials with small-scale inclu-
sions. In imaging technologies such as ultrasound and optical elastography that utilise the
mechanical properties of a given poroelastic material to detect abnormalities, mathematical
models play a crucial role in the accurate visualisation of mechanical characteristics [5,39].
However, conventional mathematical models are formed based on classical elasticity theo-
ries that fail to capture size effects and thus cannot be employed at ultrasmall levels [13]. In
this paper, stress nonlocality-based size effects on the mechanical response of poroelastic
materials with small-scale inclusions are studied for the first time. Furthermore, this re-
search represents the first integration of nonlocal elasticity and a light gradient boosting
machine for addressing inclusion problems. The proposed nonlocal scale-dependent model
of poroelasticity developed in this paper could be used in elastography imaging techniques
to accurately detect inclusions of ultrasmall sizes.

A case study of a potential application of this model is investigated. The detection of
small-scale tumours in breast tissue (poroelastic medium) is considered as the undesirable
microscale inclusion. To include size dependency, nonlocal elasticity theory is utilised. The
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influences of tissue fluid content, hydraulic conductivity and microfiltration are captured by
using a modified version of poroelasticity theory. The governing differential equations are
derived by decoupling the scale-dependent constitutive relations and equilibrium equation
in the spherical coordinate system. To discretise the decoupled differential equations,
Galerkin method is employed. An accurate solution is presented with the use of the
precise integration method and Dormand–Prince technique. A light gradient boosting
machine learning model is also presented to extract and learn the underlying patterns in
the mechanical behaviour of spherical poroelastic inclusions. To optimise the model, a grid
search cross validation approach is implemented. A detailed examination of the effects
of nonlocal scale coefficient and inclusion size on the time-dependent fluid pressure and
radial displacement is presented.

2. Nonlocal Poroelasticity Modelling

In this section, a nonlocal scale-dependent model is developed for poroelastic mate-
rials including small-scale spherical inclusions. In biomedical applications, small-scale
inclusions of interest to be detected by ultrasound imaging or other imaging techniques are
usually a clump of cancer cells with a stiffness lower than healthy cells [8,9]. This softening
behaviour can be effectively incorporated using nonlocal continuum mechanics as stress
nonlocality is associated with structural stiffness softening. An appropriate model for this
case is a refined combination of Eringen’s nonlocal theory and poroelasticity to account for
both stiffness softening and fluid effects.

The conservation of mass for the fluid content of a given poroelastic material can be
written as [40]

∇ ·
(

ρ f nV f

)
+

∂

∂t

(
ρ f n

)
= 0, (1)

where ρ f , V f and n are the fluid density, fluid velocity and porosity, respectively. Moreover,
∇ , “.” and t indicate the gradient operator, dot product and time, respectively. Similarly,
the mass balance equation for the solid matrix is obtained as

∇ · {ρs(1− n)Vs}+
∂

∂t
{ρs(1− n)} = 0. (2)

Here ρs and Vs are the solid matrix density and velocity, respectively. Assuming that
the fluid part and solid components (particles) are not compressible, and combining the
mass balance Equations (1) and (2), one obtains

∇ · dsp +∇ · Vs = 0, (3)

where dsp is the specific discharge that is associated with the relative velocity (Vrel) as

dsp = nVrel , (4)

where
Vrel = V f − Vs. (5)

It is assumed that the fundamental solid particles and fluid part of the poroelastic
material are individually incompressible [40]. However, the relative sliding, rotating and
movement between these components allow for the overall material and the solid phase as
a whole to exhibit compressibility [5]. The volumetric strain of the whole solid part (ε) is
related to the displacement vector (us) by

ε = ∇ · us. (6)

Using Equations (3) and (6), the following relation is obtained

∇ · dsp +
∂ε

∂t
= 0. (7)
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According to Darcy’s law, the specific discharge of a porous material is proportionally
dependent on the fluid pressure gradient (∇p) and the gravity vector (g) as [40]

dsp = −
ηpm

µ f

(
∇p− ρ f g

)
, (8)

in which ηpm, µ f and p represent the material permeability, fluid viscosity and fluid
pressure, respectively. Substituting Equation (8) into Equation (7) and considering the effect
of potential microfiltration [41], the final version of the mass balance equation (storage
equation) is obtained as

∂ε

∂t
+ χtot p =

λhc
γvw
∇2 p, (9)

where λhc and γvw denote the hydraulic conductivity and volumetric weight of the fluid,
which are defined by λhc = ηpmγvw/µ f and γvw = gρ f , respectively. ∇2 is the Laplace
operator. In the case of biological inclusions such as solid tumours, χtot is the total microfil-
tration coefficient, which is expressed by [5,41]

χtot = χvas + χlym, (10)

where
χvas =

kvasSvas
Vvas

,

χlym =
klymSlym

Vlym
,

(11)

in which χlym and χvas indicate the tumour lymphatic and vascular microfiltration coeffi-
cients, respectively. kvas, Svas and Vvas stand for the vascular permeability, surface area and
volume, respectively. Similarly, klym, Slym and Vlym are the lymphatic permeability, surface
area and volume, respectively. Equation (9) represents the storage equation of poroelastic
materials from biological tissues to porous micro-polymers. For applications in which there
is no microfiltration effect, χtot is set to zero.

For spherical poroelastic inclusions, the components of the total stress tensor (σij) are
related to the effective stress (σ′ ij) and fluid pressure (p) as

σrr = σ′rr + p,
σθθ = σ′θθ + p,
σφφ = σ′φφ + p,
σrθ = σ′rθ ,
σrφ = σ′rφ,
σθφ = σ′θφ.

(12)

Effective stress components can be interpreted as the parts of the total stress tensor
that are responsible for porous material deformation. To detect an inclusion in a given
poroelastic medium, in many practical cases, it is assumed that the average size of the
inclusion is very small compared to the medium size as the whole size [5,42]. Figure 1 shows
the schematic representation of a poroelastic medium including a small-scale inclusion of a
spherical shape. A slight compressive load is applied on the top surface of the medium. A
compressor plate is used to make sure that the compressive load is uniformly distributed
on the medium surface. In practical applications, the compressive force is commonly
applied by utilising an ultrasound transducer, and a number of force sensors can be used
to measure the magnitude of the loading. Since the inclusion size is very small compared
to the distance from the inclusion centre to the loading location, it is reasonable to assume
that the spherical inclusion is subject to a symmetric uniform radial load, as indicated in
Figure 1. Therefore, the normal stress along the θ direction is the same as that of the φ
direction (σθθ = σφφ). The equilibrium differential equation is given by

∂σrr

∂r
+

2(σrr − σθθ)

r
= 0, (13)
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where r denotes the radial distance from the inclusion centre. Substituting Equation (12)
into the above equilibrium equation leads to

∂σ′rr

∂r
+

2(σ′rr − σ′θθ)

r
+

∂p
∂r

= 0, (14)

Figure 1. (a) Schematic representation of a poroelastic material with a spherical inclusion under
compressive loading. (b) A microscopic image of an early human breast tumour in the form of
carcinoma in situ as a small-scale biological inclusion (haematoxylin and eosin stains of tissue
sections [43]). The internal length-scale parameter could be related to the average distance between
individual cells (dc). Within the inclusion, the average distance between individual cells is much less
than that of the healthy background tissue [43].

The average size of the inclusion is very small compared to the background medium,
and thus we can assume that the loading condition is spherically symmetric on the inclusion
surface [5]; this assumption is made as this study deals with the scale-dependent mechanics
of ultrasmall inclusions. Furthermore, it is assumed that the deflection caused by external
loading is small, leading to geometrical linearity assumption for strain-displacement rela-
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tions. In practical applications, especially in biomedical scenarios, gentle mechanical forces
are applied using devices such as an ultrasound transducer or a mechanical probe. These
loading systems are designed to be comfortable and painless and induce only slight loads
on patients’ bodies, consequently resulting in small displacements and geometric linearity.

To capture the scale effects that are related to the effective stress nonlocality, Eringen’s
theory is used [44]. According to this theory, the effective stress at a particular point
depends not only on the strain components at that point but also on the strain components
at all other points of the porous material. The stress nonlocality assumption made in
Eringen’s theory allows us to take into account small-scale interactions from a mechanical
point of view. Based on the nonlocal theory of poroelasticity, the effective stresses are
expressed in terms of strain components as[

1− (e0ac)
2∇2

]
σ′rr = −(2µεrr + λε) = −

[
2Gεrr +

(
K− 2

3
G
)

ε

]
, (15)

[
1− (e0ac)

2∇2
]
σ′θθ = −(2µεθθ + λε) = −

[
2Gεθθ +

(
K− 2

3
G
)

ε

]
, (16)

where

∇2(•) = ∂2

∂r2 (•) +
2
r

∂

∂r
(•) = 1

r
∂2(r(•))

∂r2 . (17)

Here µ and λ are Lamé coefficients, and G and K represent the shear and bulk moduli
of the spherical inclusion, respectively. e0 and ac are a calibration parameter and an internal
characteristics size, respectively. The product of these two features is widely known as
the nonlocal parameter (e0ac). In addition, εij and ε are the strain component and volu-
metric strain, respectively. This internal length-scale parameter could be associated with
the average distance between fundamental components within the inclusion. Figure 1b
gives an example of a biomedical inclusion in the form of early breast tumours. In the
tumour, individual cells have developed in closer proximity to each other compared to the
surrounding healthy tissue. The conditions of the above nonlocal constitutive equations are
stress–strain linearity and material homogeneity. Furthermore, reduced partial differential
equations of nonlocal elasticity, which were introduced by Eringen [44] for a group of phys-
ically admissible kernels, have been utilised. These constitutive equations were obtained
from the integral form of nonlocal elasticity by assuming that the nonlocal modulus is
Green’s function of a linear differential operator [44].

For spherical inclusions, strain components can be written as

εrr =
∂ur

∂r
, εθθ = εφφ =

ur

r
, εrθ = εθφ = εrφ = 0, (18)

ε = εrr + εθθ + εφφ =
∂ur

∂r
+

2ur

r
=

1
r2

∂

∂r

(
r2ur

)
. (19)

In Equations (18) and (19), ur is the displacement along the radial direction. The
effective stress–strain Equations (15) and (16), together with the equilibrium Equation (14),
form three coupled partial differential equations that govern the deformation behaviour of
the inclusion. To calculate the displacement, strain and fluid pressure, these differential
equations need to be decoupled first. For the sake of brevity, the procedure of decoupling is
not mentioned here. Substituting Equations (17)–(19) into the resultant decoupled equation
leads to
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λ
(

∂2ur
∂r2 + 2

r
∂ur
∂r −

2
r2 ur

)
+ 2µ ∂2ur

∂r2

+ 4µ
r

(
∂ur
∂r −

ur
r

)
−
[

∂p
∂r − (e0ac)

2
(

∂3 p
∂r3 + 2

r
∂2 p
∂r2

)]
− 1

r2 (e0ac)
2
{

2(λ + 2µ)r
(

∂3ur
∂r3 + 4

r
∂2ur
∂r2

)
+(λ + 2µ)r2

(
∂4ur
∂r4 + 4

r
∂3ur
∂r3 − 4

r2
∂2ur
∂r2

)
−2
[

∂p
∂r − (e0ac)

2
(

∂3 p
∂r3 + 2

r
∂2 p
∂r2

)]
−4r

[
∂2 p
∂r2 − (e0ac)

2
(

∂4 p
∂r4 + 2

r
∂3 p
∂r3 − 2

r2
∂2 p
∂r2

)]
−r2

[
∂3 p
∂r3 − (e0ac)

2
(

∂5 p
∂r5 + 2

r
∂4 p
∂r4 − 4

r2
∂3 p
∂r3 + 4

r3
∂2 p
∂r2

)]}
− 2

r3 (e0ac)
2
{
(λ + 2µ)r2

(
∂3ur
∂r3 + 4

r
∂2ur
∂r2

)
−2r

[
∂p
∂r − (e0ac)

2
(

∂3 p
∂r3 + 2

r
∂2 p
∂r2

)]
−r2

[
∂2 p
∂r2 − (e0ac)

2
(

∂4 p
∂r4 + 2

r
∂3 p
∂r3 − 2

r2
∂2 p
∂r2

)]}
+ 2

r2 (e0ac)
2
{

4µ ∂2ur
∂r2 −

[
∂p
∂r − (e0ac)

2
(

∂3 p
∂r3 + 2

r
∂2 p
∂r2

)]}
= 0.

(20)

Using the relation of the volumetric strain given by Equation (19), the mass balance
Equation (9) can be rewritten as

∂

∂t

(
∂ur

∂r
+

2ur

r

)
+ χtot p =

λhc
γvw

(
∂2 p
∂r2 +

2
r

∂p
∂r

)
. (21)

From the above equations, it is found that the equilibrium equation in terms of the
radial displacement and pressure is dependent on nonlocal influences, while the mass
balance equation is not affected by the stress nonlocality, as expected. When the scale effects
associated with the stress nonlocality are ignored (i.e., e0ac = 0), the governing differential
equations of the poroelastic material with an ultrasmall spherical inclusion need to be
reduced to those derived based on the classical poroelasticity theory. Setting the nonlocal
parameter equal to zero in Equation (20) yields

(λ + 2µ)

(
∂2ur

∂r2 +
2
r

∂ur

∂r
− 2

r2 ur

)
− ∂p

∂r
= 0. (22)

On the other hand, the first derivative of the volumetric strain with respect to the
radial distance is obtained from Equation (19) as

∂ε

∂r
=

∂

∂r
(
εrr + εθθ + εφφ

)
=

∂2ur

∂r2 +
2
r

∂ur

∂r
− 2

r2 ur. (23)

Substituting Equation (23) into Equation (22), one obtains

∂ε

∂r
=

1
(λ + 2µ)

∂p
∂r

. (24)

Equation (24), together with the mass balance Equation (21), are exactly the same as
those widely reported in the literature for large-scale porous spherical inclusions using the
classical poroelasticity [5].

3. Solution Procedure Using Galerkin Technique and PIM

To discretise the nonlocal scale-dependent governing equations using the Galerkin
method, the radial displacement and fluid pressure are required to be approximated
by a set of appropriate base functions that satisfy the boundary conditions. Consider a
spherical inclusion of radius R embedded in a poroelastic medium under a uniform radial
compression, as shown in Figure 1. From the symmetric condition, the radial displacement
is zero at the inclusion centre, while it reaches its maximum value at the surface. By
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contrast, the fluid pressure is at its maximum at the centre, whereas it is equal to that of the
background medium at the inclusion surface due to the continuity condition. Moreover,
since the inclusion and its loading are symmetric around the centre, there is no fluid flow
at the centre and, thus, the fluid pressure gradient is zero at that point. These boundary
conditions can be written as

r = 0 : ur = 0,
r = R : ur = umax,

(25)

r = 0 : p = pmax,
r = R : p = pb,
r = 0 : ∂p

∂r = 0,
(26)

in which umax, pmax and pb are the maximum radial displacement, maximum fluid pressure
and the background pressure, respectively. In general, the nonlocal boundary conditions
that are imposed on the displacement components of the inclusion, such as the radial
displacement boundary conditions given by Equation (25), are the same as those of the clas-
sical poroelasticity model. However, nonlocal boundary conditions associated with stress
components such as force resultants and moments deviate from their classical counterparts
because of the effects of the nonlocal constitutive equations [13]. In this analysis, only stress
nonlocality within the solid phase of the poroelastic medium is considered, and thus all
boundary conditions related to the fluid phase, such as those specified by Equation (26),
are the same as their corresponding classical boundary conditions.

Based on the boundary conditions given by Equations (25) and (26), the following
expressions are suggested for the radial displacement and the fluid pressure inside the
spherical inclusion

ur(r, t) =
M

∑
m=1

um(t)Ψm(r) =
M

∑
m=1

um(t) sin
[ r

R
(2m− 1)

π

2

]
, (27)

p(r, t) = pb(t) +
N

∑
k=1

Pk(t)Φk(r) = pb(t) +
N

∑
k=1

Pk(t) cos
[ r

R
(2k− 1)

π

2

]
, (28)

where Ψm and Φk are the base functions of the radial displacement and fluid pressure,
respectively. The number of base functions for the inclusion displacement and pressure are
denoted by M and N, respectively. The proposed solution for the displacement and fluid
pressure are not uniform, as can be seen from Equations (27) and (28). The second part of
the solution on the right-hand side of these equations describes how radial displacement
and fluid pressure change by the radial coordinate r. However, it is assumed that the
loading condition on the surface of the inclusion is uniform. This assumption is made since
the average size of the inclusion is very small compared to the background medium and,
thus, the load is applied at a far distance from the inclusion. This makes the remote-load
assumption valid and, hence, the loading condition on the inclusion surface is uniform
according to the Eshelby theory [5,42]. In general, there are two types of widely used
ultrasound elastography: (1) quasi-static and (2) dynamic. In the quasi-static technique,
an external mechanical force is applied by a gradual compressive load, while in dynamic
elastography, mechanical load is induced using vibrating probes or applying acoustic
radiation forces [45]. In this analysis, the ultrasound elastography mode is of a quasi-static
form, resulting in a static uniform load on the inclusion surface.

Substituting Equations (27) and (28) into Equations (20) and (21), multiplying both
sides of each governing equation by its appropriate base function, and integrating over the
whole volume of the spherical inclusion, the following discretised equations are obtained
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λ
M
∑

m=1
Um

[
R∫
0

r2Ψm

(
d2Ψm

dr2 + 2
r

dΨm
dr −

2
r2 Ψm

)
dr

]

+2µ
M
∑

m=1
Um

(
R∫
0

r2Ψm
d2Ψm

dr2 dr

)
+ 4µ

M
∑

m=1
Um

[
R∫
0

rΨm

(
dΨm

dr −
1
r Ψm

)
dr

]

−
N
∑

k=1
Pk

(
R∫
0

r2Ψm
dΦk
dr dr

)
+ (e0ac)

2 N
∑

k=1
Pk

[
R∫
0

r2Ψm

(
d3Φk
dr3 + 2

r
d2Φk
dr2

)
dr

]

−(e0ac)
2

{
2(λ + 2µ)

M
∑

m=1
Um

[
R∫
0

rΨm

(
d3Ψm

dr3 + 4
r

d2Ψm
dr2

)
dr

]

+(λ + 2µ)
M
∑

m=1
Um

[
R∫
0

r2Ψm

(
d4Ψm

dr4 + 4
r

d3Ψm
dr3 − 4

r2
d2Ψm

dr2

)
dr

]

−2
N
∑

k=1
Pk

(
R∫
0

Ψm
dΦk
dr dr

)
+ 2(e0ac)

2 N
∑

k=1
Pk

[
R∫
0

Ψm

(
d3Φk
dr3 + 2

r
d2Φk
dr2

)
dr

]

−4
N
∑

k=1
Pk

(
R∫
0

rΨm
d2Φk
dr2 dr

)
+ 4(e0ac)

2 N
∑

k=1
Pk

[
R∫
0

rΨm

(
d4Φk
dr4 + 2

r
d3Φk
dr3

)
dr

]

−
N
∑

k=1
Pk

(
R∫
0

r2Ψm
d3Φk
dr3 dr

)
− 4(e0ac)

2 N
∑

k=1
Pk

(
R∫
0

Ψm
2
r

d2Φk
dr2 dr

)

+(e0ac)
2 N

∑
k=1

Pk

[
R∫
0

r2Ψm

(
d5Φk
dr5 + 2

r
d4Φk
dr4

)
dr

]

−4(e0ac)
2 N

∑
k=1

Pk

[
R∫
0

Ψm

(
d3Φk
dr3 − 1

r
d2Φk
dr2

)
dr

]}

−2(e0ac)
2

{
(λ + 2µ)

M
∑

m=1
Um

[
R∫
0

rΨm

(
d3Ψm

dr3 + 4
r

d2Ψm
dr2

)
dr

]

−2
N
∑

k=1
Pk

(
R∫
0

Ψm
dΦk
dr dr

)
−

N
∑

k=1
Pk

(
R∫
0

rΨm
d2Φk
dr2 dr

)

+2(e0ac)
2 N

∑
k=1

Pk

[
R∫
0

Ψm

(
d3Φk
dr3 + 2

r
d2Φk
dr2

)
dr

]

+(e0ac)
2 N

∑
k=1

Pk

[
R∫
0

rΨm

(
d4Φk
dr4 + 2

r
d3Φk
dr3 − 2

r2
d2Φk
dr2

)
dr

]}

+8(e0ac)
2µ

M
∑

m=1
Um

(
R∫
0

Ψm
d2Ψm

dr2 dr

)
− 2(e0ac)

2 N
∑

k=1
Pk

(
R∫
0

Ψm
dΦk
dr dr

)

+2(e0ac)
4 N

∑
k=1

Pk

[
R∫
0

Ψm

(
d3Φk
dr3 + 2

r
d2Φk
dr2

)
dr

]
= 0,

(29)

M
∑

m=1

dUm
dt

[
R∫
0

r2Φk

(
dΨm

dr + 2
r Ψm

)
dr

]

+χtot pb

R∫
0

r2Φkdr + χtot
N
∑

k=1
Pk

(
R∫
0

r2(Φk)
2dr

)

= λhc
γvw

N
∑

k=1
Pk

[
R∫
0

r2Φk

(
d2Φk
dr2 + 2

r
dΦk
dr

)
dr

]
.

(30)

In general, the volume element in the spherical coordinate system is dV = r2sinϕdrdθdϕ,
where ϕ and θ are the azimuthal and polar angles, respectively. Due to the symmetry of
the problem, the element volume used to perform the integration over the inclusion body in
the above discretised equations is dVsym = r2dr. The fluid pressure of the background at
the interface is assumed to be zero (pb = 0) [5]. To avoid any numerical error caused by
unscaled features and parameters, a set of dimensionless parameters is introduced by
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ζ = r
R , γnl =

γnl
R2 , γnl =

e0ac
R , G = G

HaG
, U j =

Uj
R ,

Pj =
Pj

Hag
, t = λhcG

γvwR2 t, χtot =
γvwR2

λhc
χtot, HaG = K + 4

3 G.
(31)

Here, Hag is the aggregate modulus of the spherical inclusion. The discretised Equa-
tions (29) and (30) can be written in a compact way, as follows

M

∑
m=1

C(1Ub)
i,m Um +

N

∑
k=1

C(1Pb)
i,k Pk = 0, (32)

M

∑
m=1

C(2Ud)
j,m

dUm

dt
+

N

∑
k=1

C(2Pb)
j,k Pk = 0, (33)

where C(1Ub)
i,m , C(1Pb)

i,k , C(2Ud)
j,m and C(2Pb)

j,k are calculated using Equations (29) and (30) by
performing all integrations over the inclusion body. For the sake of convenience, Equations
(32) and (33) can be expressed in a matrix form as

Ay1 + By2 = 0, (34)

C
dy1
dt

+ Fy2 = 0, (35)

where
y1 =

{
Um
}

, y2 =
{

Pk
}

, A =
[
C(1Ub)

i,m

]
,

B =
[
C(1Pb)

i,k

]
, C =

[
C(2Ud)

j,m

]
, F =

[
C(2Pb)

j,k

]
.

(36)

Equations (34) and (35) give a set of time-dependent ordinary differential equations in
a matrix form. From these two equations, one can obtain

y1 = −A−1B
[
exp

(
−H−1Ft

)]
y20, (37)

y2 =
[
exp

(
−H−1Ft

)]
y20, (38)

in which y20 is the initial value of the vector y2 at t = 0. Matrix H is defined by

H = −CA−1B. (39)

Based on the procedure used in the precise integration method (PIM), a time step
dimensionless parameter η is introduced by [46,47]

t0 = 0, t1 = η, t2 = 2η, t3 = 3η, · · · tk = kη. (40)

Using Equation (40), the vector of dimensionless pressure Pk is calculated as

(y2)1 = y2
(
t = t1

)
= [exp(−Wη)]y20 = Ty20,

(y2)2 = y2
(
t = t2

)
= [exp(−Wη)] exp(−Wη)y20 = T(y2)1,

...
(y2)k = y2

(
t = tk

)
= [exp(−Wη)] exp(−W(k− 1)η)y20 = T(y2)k−1,

(41)

where
W = H−1F, T = exp(−Wη) =

[
exp

(
−Wτp

)]mp , (42)

and
τp =

η

mp
, mp = 2Np , (43)
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The recommended value for the Np is twenty [47], which is commonly utilised in PIM.
From Equation (43) and by adopting such a big value for mp, it is found that the new time
interval τp is very small. Thus, the following approximation of the exponential function is
valid by employing the Taylor expansion

exp
(
−Wτp

)
≈ I + Λp, (44)

where

Λp = −Wτp +
1
2
(
Wτp

)2
[

I − 1
3
(
Wτp

)
+

1
12
(
Wτp

)2
]

. (45)

In Equation (44), I denotes the identity matrix. In view of Equations (44) and (42),
we have

Np = 1 : T =
(

I + Λp
)2

= I + T1, T1 = 2Λp +
(
Λp
)2,

Np = 2 : T =
(

I + Λp
)4

= (I + T1)
2 = I + T2, T2 = 2T1 + (T1)

2,
Np = 3 : T =

(
I + Λp

)8
= (I + T2)

2 = I + T3, T3 = 2T2 + (T2)
2,

...

Np = k : T =
(

I + Λp
)2k

= (I + Tk−1)
2 = I + Tk, Tk = 2Tk−1 + (Tk−1)

2.

(46)

The time-dependent part of the fluid pressure of the spherical inclusion is obtained
by substituting Equation (46) into Equation (41). The time-dependent part of the radial
displacement can be calculated by Equation (37). The resultant time-dependent parts are
then substituted into Equations (27) and (28) to obtain the final solution.

4. Analytical Solution for One Galerkin Term

An analytical solution can be calculated for the simplest case where one Galerkin term
is assumed for both the radial displacement and the fluid pressure of the inclusion. Using
Equations (27) and (28), we have

ur
(
ζ, t
)
= U

(
t
)
Ψ(ζ) = U

(
t
)

sin
(π

2
ζ
)

, (47)

p
(
ζ, t
)
= P

(
t
)
Φ(ζ) = P

(
t
)

cos
(π

2
ζ
)

. (48)

Substituting Equations (47) and (48) into the mass balance and equilibrium equations,
and using the Galerkin technique, the resultant time-dependent equations are

C̃1U
(
t
)
+ C̃2P

(
t
)
= 0, (49)

C̃3
dU(t)

dt
+ C̃4P(t) = 0, (50)

where

C̃1 =
[
2 + π2γnl

(
2G− 3

)] 1∫
0

Ψ2dζ − π
(
1 + π2γnl

) 1∫
0

ζΨΦdζ

+
(

π
2
)2
[
1 + γnl

(
π
2
)2
] 1∫

0
ζ2Ψ2dζ,

C̃2 = −
(

π
2
)[

1 + 2
(

π
2
)2

γnl +
(

π
2
)4

γ2
nl

] 1∫
0

ζ2Ψ2dζ

+2πγnl

[
1 + 3

(
π
2
)2

γnl

] 1∫
0

Ψ2dζ

+8γnl
(

π
2
)2
(

1 +
(

π
2
)2

γnl

) 1∫
0

ζΨΦdζ,
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C̃3 =
(

π
2
) 1∫

0
ζ2 cos2(π

2 ζ
)
dζ +

1∫
0

ζ sin(πζ)dζ,

C̃4 = 1
G

[(
χtot +

(
π
2
)2
) 1∫

0
ζ2 cos2(π

2 ζ
)
dζ +

(
π
2
) 1∫

0
ζ sin(πζ)dζ

]
.

(51)

Substituting Equation (49) into Equation (50), and then solving the resultant time-
dependent ordinary equation, one obtains

U
(
t
)
= U0 exp

(
−Θ̃trt

)
,

P
(
t
)
= P0 exp

(
−Θ̃trt

)
,

(52)

In which
∼
Θtr = −

∼
C1
∼
C4/

∼
C2
∼
C3. Using Equations (47), (48) and (52), together with the

definition of dimensionless parameters given by Equation (31), the radial displacement and
fluid pressure of the spherical inclusion are

Ur(r, t) = U0 sin
(π

2
r
R

)
exp

(
−Θ̃tr

λhcG
YvwR2 t

)
, (53)

p(r, t) = HaGPΦ = P0 cos
(π

2
r
R

)
exp

(
−Θ̃tr

λhcG
YvwR2 t

)
. (54)

5. Dormand–Prince Technique for Two Galerkin Terms

In this section, an approximate solution is given for the radial displacement and fluid
pressure inside the ultrasmall inclusion by assuming two Galerkin terms and using the
Dormand–Prince technique [48]. This method is a numerical embedded technique from
the Runge–Kutta family for solving differential equations of ordinary types. To accurately
extract the fourth- and fifth-order solutions, the Dormand–Prince method utilises a six-
function evaluation approach. Using Equations (27) and (28), the two Galerkin-term
approximation leads to

ur
(
ζ, t
)
= U1

(
t
)
Ψ1(ζ) + U2

(
t
)
Ψ2(ζ)

= U1
(
t
)

sin
(

π
2 ζ
)
+ U2

(
t
)

sin
( 3π

2 ζ
)
,

(55)

p
(
ζ, t
)
= P1

(
t
)
Φ1(ζ) + P2

(
t
)
Φ2(ζ)

= P1
(
t
)

cos
(

π
2 ζ
)
+ P2

(
t
)

cos
( 3π

2 ζ
)
.

(56)

Substituting Equations (55) and (56) into the governing equations of the spherical
inclusion, multiplying the resultant equations by their corresponding base functions and
integrating over the whole inclusion body, the time-dependent discretised equations are[

C(1Ub)
1,1 C(1Ub)

1,2

C(1Ub)
2,1 C(1Ub)

2,2

]{
U1
(
t
)

U2
(
t
)}+

[
C(1Pb)

1,1 C(1Pb)
1,2

C(1Pb)
2,1 C(1Pb)

2,2

]{
P1
(
t
)

P2
(
t
)}= 0, (57)

[
C(2Ud)

1,1 C(2Ud)
1,2

C(2Ud)
2,1 C(2Ud)

2,2

]
dU1(t)

dt
dU2(t)

dt

+

[
C(2Pb)

1,1 C(2Pb)
1,2

C(2Pb)
2,1 C(2Pb)

2,2

]{
P1
(
t
)

P2
(
t
)} = 0. (58)

Obtaining the dimensionless vector of time-dependent radial displacements and
substituting them into Equation (58) leads to

dP1(t)
dt

dP2(t)
dt

 =

[
C(4Pd)

1,1 C(4Pd)
1,2

C(4Pd)
2,1 C(4Pd)

2,2

]{
P1
P2

}
, (59)
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where [
C(4Pd)

1,1 C(4Pd)
1,2

C(4Pd)
2,1 C(4Pd)

2,2

]
= −

[
C(3Pd)

1,1 C(3Pd)
1,2

C(3Pd)
2,1 C(3Pd)

2,2

]−1[
C(2Pb)

1,1 C(2Pb)
1,2

C(2Pb)
2,1 C(2Pb)

2,2

]
, (60)

[
C(3Pd)

1,1 C(3Pd)
1,2

C(3Pd)
2,1 C(3Pd)

2,2

]
= −

[
C(2Ud)

1,1 C(2Ud)
1,2

C(2Ud)
2,1 C(2Ud)

2,2

][
C(1Ub)

1,1 C(1Ub)
1,2

C(1Ub)
2,1 C(1Ub)

2,2

]−1[
C(1Pb)

1,1 C(1Pb)
1,2

C(1Pb)
2,1 C(1Pb)

2,2

]
. (61)

The vector of dimensionless fluid pressure of the spherical inclusion is calculated by
writing a Matlab code using the Dormand–Prince technique. Similar numerical solutions
can also be developed for more than two Galerkin terms.

6. Analytical Solution for Local Large-Scale Spherical Inclusions

For the sake of comparison and validation, an analytical solution is obtained for
local large-scale spherical inclusions where there are no scale effects. Setting the nonlocal
parameter equal to zero (e0ac = 0), the governing equations of the inclusion are reduced to

∂ε

∂r
=

1
Hag

∂p
∂r

, (62)

∂ε

∂t
+ χtot p =

λhc
γvw
∇2 p. (63)

Integrating both sides of Equation (62) with respect to the radial coordinate parameter
r, the volumetric strain is obtained by

ε =
1

Hag

(
p + ceq

)
, (64)

where ceq denotes the integration constant that is generally related to the initial condition.
For simplification and ease of use, the subscripts “tot” and “ag” are dropped from the
microfiltration coefficient and aggregate modulus (i.e., χtot = χ and Hag = H), respectively.
The volumetric strain, fluid pressure and the integration constant are [5]

ε(r, t) = ε′(r, t)e−Hχt,
p(r, t) = p′(r, t)e−Hχt,
ceq(t) = c′eq(t)e−Hχt.

(65)

Substituting Equation (65) into Equation (64) leads to

ε′ =
1
H
(

p′ + c′eq
)
. (66)

The second and first derivatives of Equation (66) with respect to r are

H ∂ε′
∂r = ∂p′

∂r

H ∂2ε′

∂r2 = ∂2 p′

∂r2 .
(67)

Using Equations (63), (66) and (67), the following relation is obtained for the spheri-
cal inclusion

∂ε′

∂t
− χc′eq =

λhcH
γvw

(
∂2ε′

∂r2 +
2
r

∂ε′

∂r

)
. (68)

The integration constant is affected by the initial conditions, and they can be taken
in a way that this constant becomes zero (c′eq = 0) [5]. Let us define two dimensionless
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parameters as ζ = r/R and τ′ = λhc Ht/
(

R2γvw
)
. Using these definitions, Equation (68) is

expressed by
∂ε′

∂τ′
=

∂2ε′

∂ζ2 +
2
ζ

∂ε′

∂ζ
. (69)

Now, a new parameter is introduced for the sake of convenience as

ε′
(
ζ, τ′

)
=

1
ζ

Σ
(
ζ, τ′

)
. (70)

Equation (70) is used to change the variable in Equation (69) as

∂Σ
∂τ′

=
∂2Σ
∂ζ2 . (71)

Performing the Laplace transform on both sides of Equation (71) leads to the following
equation in the s− ζ domain

sΣ =
∂2Σ
∂ζ2 , (72)

where

Σ(s) = L
(
Σ(τ′)

)
=

∞∫
0

Σ(τ′)e−sτ′dτ′. (73)

It is observed that the Laplace transform in conjunction with the change in variables
results in a less complex differential equation that is easier to be solved analytically. The
solution of Equation (72) can be written as

Σ(s) = C1(s) cosh
(√

sζ
)
+ C2(s)sinh

(√
sζ
)
, (74)

where C1 and C2 depend only on s and are obtained by using the boundary conditions.
Substituting Equation (74) into Equation (70), we have

ε′(ζ, s) =
1
ζ

Σ(ζ, s) =
1
ζ

[
C1(s) cosh

(√
sζ
)
+ C2(s)sinh

(√
sζ
)]

. (75)

Using the first relation of Equation (65), together with the definition of dimensionless
time (τ′), the following relation is obtained between ε′ and ε

ε
(
ζ, τ′

)
= ε′

(
ζ, τ′

)
e−Qτ′ , Q =

R2γvwχ

λhc
. (76)

Taking the Laplace transform of Equation (76) leads to

ε = L(ε) =
∞∫

0

ε′
(
ζ, τ′

)
e−(Q+s)τ′dτ′ = ε′(ζ, s + Q). (77)

To calculate the coefficients of Σ(s), namely C1 and C2, the boundary conditions of the
spherical inclusion are used as follows [49]

ζ = 1 : ε(1, t) = ε′(1, t)e−Hχt,

ε(1, t)− 2(1−2v)
(1−v)

1∫
0

ζ2ε(ζ, t)dζ =− (1+v)(1−2v)
(1−v)

σbc
E ,

(78)

and
ζ = 0 : ε

(
0, τ′

)
= ε′(0, t)e−Hχt << ∞. (79)
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Here v, E and σbc are Poisson ratio, Young’s modulus and stress on the spherical
inclusion surface, respectively. Taking the Laplace transform of Equations (78) and (79),
and substituting Equations (75)–(77) into the resultant relations of the boundary conditions,
one can obtain

C2(s) = − 1
{[(1−v)s+2(1−2v)]sinh(

√
s)−2(1−2v)

√
s cosh(

√
s)}

× s(1+v)(1−2v)
(s−Q)

σbc
E , C1(s) = 0.

(80)

Substituting Equation (80) into Equation (75) leads to the following relation

ε′(ζ, s) = − 1
{[(1−v)s+2(1−2v)]sinh(

√
s)−2(1−2v)

√
s cosh(

√
s)}

× σbc
E

(1+v)(1−2v)s
(s−Q)

1
ζ sinh

(√
sζ
)
.

(81)

Using the complex inversion integral [40], the Laplace transform inverse of Equation (81)
can be calculated as

Q = 0 : ε(r, t) = −ks0(1− 2v) σbc
E

{
1 + 4(1+v)(1−2v)

ks0( r
R )

×
∞
∑

n=1

1
[2(1+v)(1−2v)−(1−v)2xn]

sin(
√

xn
r
R )

sin(
√

xn)
exp

(
−xn

λhc H
R2γvw

t
)}

,
(82)

Q 6= 0 : ε(r, t) = − σbc(1+v)(1−2v)Qsinh(
√

Q r
R )

r
R E{[(1−v)Q+2(1−2v)]sinh(

√
Q)−2(1−2v)

√
Q cosh(

√
Q)}

−
∞
∑

n=1

4σbc(1−2v)2(1+v)xn

E[2(1+v)(1−2v)−(1−v)2xn](xn+Q)

sin(
√

xn
r
R )

r
R sin(

√
xn)

exp
[
−(xn + Q) λhc H

R2γvw
t
]
,

(83)

where xn is obtained from the following relation

tan(
√

xn) =
2(1− 2v)

√
xn

[2(1− 2v)− (1− v)xn]
. (84)

7. Integration of Nonlocal Poroelastic Model with Light Gradient Boosting Machine

The nonlocal poroelastic model has been developed based on some assumptions and
limitations including material linearity, spherical shapes for inclusions and small ratios
of inclusion radius to poroelastic medium length. However, in practical applications, a
violation of at least one of these assumptions could happen, which restricts the application
of the scale-dependent nonlocal poroelastic model. Overcoming all the limitations of the
above nonlocal model by the use of nonlinear nonlocal poroelasticity is either impossible or
comes with significant mathematical challenges and computational costs. Integration of the
nonlocal continuum model of poroelasticity with a light gradient boosting machine (LGBM)
enables greater flexibility for extracting patterns in experimental and computational data,
as well as for incorporating additional effects such as nonlinearity and geometrical im-
perfections. The LGBM is an open source, fast and efficient gradient boosting framework
developed by Microsoft [50] that has been recently used for many machine learning tasks
in various applications [51–53]. Its high speed, lower memory usage and efficient perfor-
mance, particularly when working on large-scale datasets, make this machine learning
algorithm an ideal candidate to be integrated with the nonlocal poroelastic model. Another
reason for suitability of the LGBM is the capability of handling both regression and classifi-
cation problems. Inclusion models are often used to detect imperfections and abnormalities
such as solid tumours, in which both classifications and regression tasks might be needed.

In the LGBM, a strong predictive model is created by the combination of several
weak estimators (decision trees). The estimators are developed sequentially, in which each
estimator tries to correct the errors caused by the previous ensembled decision trees. A
leaf-wise tree growth approach is used, in which only leaves with maximum reduction
in the loss function are chosen to expand the decision tree. Compared to level-wise tree
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growth, this approach generally leads to lower loss values and higher accuracies. However,
leaf-wise tree growth algorithms are more prone to overfitting, especially on small datasets.

In this analysis, three different types of boosting strategies are utilised for the LGBM
integrated with the nonlocal continuum model: (1) gradient-based one-side sampling
(GOSS), (2) dropouts meet multiple additive regression trees (DART) and (3) traditional
gradient boosting decision tree (GBDT). The GOSS utilises a subsampling procedure to
place more emphasis on subsamples with higher gradients. In fact, subsamples with high
gradients play a more significant role in building decision trees. In addition to the general
advantages of subsampling such as variety introduction, rapid training process and less
chance of overfitting, GOSS-based subsampling benefits from improved efficiency, less
memory usage and faster convergence. On the other hand, the DART boosting algorithm
addresses the problem of over-specialisation by employing the idea of dropouts from deep
learning. During each iteration, random dropouts are conducted to avoid over-reliance on
earlier trees and improve the generalisation of the model.

Figure 2 shows the required steps involved in the integration of the nonlocal poro-
elasticity model and the LGBM algorithm of machine learning. First, inclusion features such
as average radius, nonlocal scale coefficient, elastic modulus, Poisson’s ratio and hydraulic
conductivity, as well as the times of interest, are given to the nonlocal scale-dependent
model of poroelasticity, and the inclusion’s pressure and radial displacement are obtained.
The calculated fluid pressures and displacements are then employed to build a training
dataset for fitting the LGBM model. Depending on the availability of experimental tools
and measurements, empirical observations can also be supplied, leading to a more robust
and accurate hybrid model of poroelastic inclusions that would be capable of incorporating
additional effects such as nonlinearity and geometrical imperfections. Overall, nonlocal
poroelasticity results account for the underlying physics of the inclusion problem, while
the experimental data could help incorporate the violation of any assumption made in the
nonlocal continuum modelling.

Figure 2. Integration of the nonlocal poroelasticity model with the light gradient boosting machine
learning to predict the mechanical characteristics of small-scale spherical inclusions. First, the
material properties of the inclusion are given to the nonlocal poroelastic model to obtain the fluid
pressure and displacement field (theoretical data). If experimental observations are available, they
are recommended to be added to the training and test datasets to account for additional complexities
in the mechanics of poroelastic inclusions. At the next step, the collected dataset is divided into two
subsets for training and testing. A common approach is to use 70% of data for training (i.e., LGBM
model fitting) and the rest for an accuracy test. During the model fitting, parameter optimisation is
conducted to obtain the optimal LGBM model with minimum error.

In this study, the light gradient boosting machine learning model is developed using
open-source python libraries including scikit-learn 1.2.2, pandas version 1.5.3, lightGBM
3.3.5 and NumPy 1.24.3. The scaling process is performed on numerical features such as
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inclusion radius and nonlocal scale coefficient using the ‘StandardScaler’ function from
the scikit-learn preprocessing package [54]. This process is necessary to assure that all
numerical features are in the same standard scale, facilitating model convergence and
preventing certain features from being overshadowed by others. A dataset of 34,100 data
points obtained by the scale-dependent nonlocal poroelastic model of small-scale spherical
inclusions is used. The test size is set to 30%, making training and test datasets of 23,870 and
10,230 points, respectively. The ‘ColumnTransformer’ function from the scikit-learn com-
pose package is utilised for the fast and robust transformation operation on the columns
of the data frame with the inclusion’s features. A machine learning pipeline combined
with a grid search cross validation framework is developed for an efficient and smooth
hyperparameter tuning process. The scoring metrics for ranking machine learning models
and finding the best configuration of hyperparameters is set to the negative root mean
squared error. The number of estimators (decision tress) and leaves on each tree are taken
in the range of 1–200 and 1–51, respectively, for the hyperparameter tuning. In addition,
different values of learning rate between 0.01 and 0.2 and various maximum depths in the
range of −1 to 100 are considered. Here, negative values are used to indicate that there
is no restriction on the number of leaves. The machine learning pipeline includes three
different boosting algorithms as GOSS, DART and GBDT. The best LGBM estimator with
the minimum root mean squared error is obtained and applied for predicting the inclusion
fluid pressure or radial displacement on unseen test data.

8. Results and Discussion

In this section, the results of the nonlocal poroelastic model and LGBM are presented
and discussed on one of the most common applications of the inclusion–background
models, which is the mechanical behaviour of solid tumours. First, to verify the accuracy
of the nonlocal poroelasticity modelling, the volumetric strain of the present model is
plotted in Figure 3 and compared to the one reported in Ref. [5] for local large-scale
spherical tumours using the classical poroelasticity theory. The results are shown at various
radial distances from the centre of the solid tumour. The tumour radius, Young’s modulus,
Poisson’s ratio, hydraulic conductivity per volumetric weight and microfiltration coefficient
are, respectively, taken as R = 3 mm, E = 97.02 kPa, v = 0.45, λhc/γvw = 1.8 × 10−13 m4/Ns,
χtot = 5 × 10−9 1/Pa·s [5]. To make a reasonable comparison, scale effects related to the
stress nonlocality are neglected. It is found that the results of our modelling approach
closely match those reported in the literature.

Figure 3. A validation study for the volumetric strain of large-scale local spherical tumours using
classical poroelasticity; reported results are from Ref. [5]; the volumetric strain is defined as the sum
of all normal strain components; the tumour radius is 3 mm, and the results are calculated at the two
different locations r = 1 mm and 1.5 mm (r is measured from the tumour centre).
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To further prove the validity of the mathematical scale-dependent modelling, the fluid
pressure within the spherical tumour is plotted against time in Figure 4. The numerical
results are demonstrated for two different solution procedures: (1) PIM and (2) Dormand–
Prince method. Moreover, one and two Galerkin terms are assumed in Figure 4a,b, respec-
tively. The fluid pressure is calculated at r = 0.5 R. The initial value of the dimensionless
fluid pressure is set to 0.01. The Dormand–Prince solution procedure is implemented using
a Matlab program. An excellent match is found between the two numerical techniques for
the fluid pressure of spherical tumours using the scale-dependent nonlocal poroelasticity.

Figure 4. A validation study for the fluid pressure of small-scale spherical tumours for (a) one
Galerkin term and (b) two Galerkin terms; size effects are incorporated using the scale-dependent
nonlocal poroelasticity; the nonlocal scale coefficient is set to 0.2; the number of Galerkin terms refers
to the number of base functions used to approximate the fluid pressure.
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To show the convergence of the solution, the tissue fluid pressure is shown in Figure 5
versus the number of base functions. The calculations are performed for three different time
values. The tumour radius, Young’s modulus, Poisson’s ratio, hydraulic conductivity per
volumetric weight and microfiltration coefficient are the same as those mentioned above
for plotting Figure 3. The fluid pressure is numerically obtained at the midpoint between
the tumour centre and surface. It is found that after about ten base functions, the results are
converged in all cases. Figure 6 illustrates the fluid pressure of a spherical tumour against
time for four various Galerkin terms (base functions). This figure shows how important it
is to consider a sufficient number of Galerkin terms in calculating the fluid pressure of the
tumour. Neither one nor two Galerkin terms are sufficient to obtain a reliable numerical
solution. However, the cases of ten and fifteen base functions are very close to each other,
which indicates that the results converge.

Figure 5. A convergence study for the solution procedure presented; 200 time steps are considered in
numerical calculations using the PIM.

Figure 6. Fluid pressure of spherical tumours versus time for different Galerkin terms; the number of
base functions of the radial displacement is the same as that of the fluid pressure.

Figure 7 is plotted to discuss the influence of the nonlocal scale coefficient (NLSC) on
the fluid pressure of the spherical tumour. The NLSC is defined as the ratio of nonlocal pa-
rameter to the tumour radius as γnl = e0ac/R, leading to a dimensionless scale parameter
related to the stress nonlocality. Ten base functions are considered for both radial displace-
ment and fluid pressure of the spherical tumour. Three different biological samples are
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taken into account for the spherical tumour. The poroelastic properties of these samples are
listed in Table 1. The radius of the spherical tumour is set at R = 3× 103µm. For comparison
purposes, the case of classical local poroelasticity, in which scale effects are ignored, is also
considered. It is observed that as the NLSC is increased from 0 to 0.1, the fluid pressure
at r = 0.5 R increases. This can be interpreted as one consequence of stiffness reduction
due to the nonlocal effect. An increase in the NLSC leads to a considerable decrease in the
structural stiffness of the tissue solid matrix, and this means that the tissue becomes softer
and the pore fluid pressure is enhanced. From a clinical point of view, this finding is very
important as it would result in improving the resolution of elastography imaging.

Figure 7. Fluid pressure of spherical tumours versus time for different nonlocal scale coefficients
(NLSC): (a) sample A, (b) sample B and (c) sample C; the NLSC is defined as the ratio of the nonlocal
parameter to the tumour radius; the nonlocal parameter is the product of the calibration parameter
and the internal characteristics length; the average distance between two neighbouring cells inside
the malignant tissue can be taken as the internal characteristic length of spherical tumours.
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Table 1. Poroelastic properties of three different tumour samples [5]; these properties were experi-
mentally measured using mechanical testing. They were taken from the malignant lesions of human
breast tissues. All three samples have the same Young’s modulus (E) and Poisson’s ratio (v); however,
the hydraulic conductivity per volumetric weight and the microfiltration coefficient of the samples
are different.

Sample Name E (kPa) v λhc/γvw (m4/Ns) χtot (1/Pa·s)

A 97.02 0.45 1.80 × 10−13 5.00 × 10−9

B 97.02 0.45 5.103 × 10−13 5.67 × 10−8

C 97.02 0.45 2.04 × 10−14 5.67 × 10−8

Figure 8 depicts the effect of spherical tumour size and time on the fluid pressure at the
half space between the tumour centre and surface. The figure also compares the nonlocal
scale-dependent poroelasticity with the classical one for three different samples (samples A,
B and C). When the radius of the spherical tumour decreases, the fluid pressure decreases
as well. Furthermore, the fluid pressure gradually reduces over time. The only exception is
the very early moments of imposing the applied compressive loading. At a certain time
long enough after the loading, the fluid pressure vanishes inside the spherical tumour. For
smaller tumours, the specific time corresponding to the loss of fluid pressure is considerably
lower. Figure 8 demonstrates the promising capability of the nonlocal scale-dependent
poroelasticity compared to the classical poroelasticity in estimating the fluid pressure within
spherical tumours of ultrasmall sizes (less than 500 µm in radius). The clinical use of the
proposed nonlocal poroelasticity model could result in a substantial improvement in the
accuracy and sensitivity of the tissue mechanical property measurement using elastography
imaging, especially for tumours of small-scale sizes.

The variation in the radial displacement with time is plotted in Figure 9 for various
values of NLSCs for the three different biological samples. Young’s modulus, Poisson’s
ratio and the geometrical features of the three samples are the same. However, they differ
in terms of the hydraulic conductivity per volumetric weight and microfiltration coefficient,
as can be seen from Table 1. The radial displacement is calculated at r = 0.5 R. Ten base
functions (ten Galerkin terms) are supposed for both the radial displacement and fluid
pressure of the spherical tumour in all case studies. From Figure 9, it can be concluded
that the nonlocal scale coefficient has a vital role to play in the mechanical behaviour of
small-scale tumours. As the scale effect related to the solid stress nonlocality inside the
spherical tumour increases, larger radial displacements are observed. The validity of this
finding is backed up by the evidence that nonlocal effects lead to a reduction in stiffness,
making the tissue more prone to mechanical deformation. This finding is very important
from a clinical point of view as the sensitivity and accuracy of the elastography-based
cancer diagnosis could be significantly improved by taking into account these effects using
the nonlocal poroelasticity theory.
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Figure 8. Fluid pressure of spherical tumours versus time for different tumour sizes: (a) sample A,
(b) sample B and (c) sample C. Arrows indicate the improvement in the fluid pressure resolution by
incorporating nonlocal effects.
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Figure 9. Radial displacement of spherical tumours versus time for different nonlocal scale coefficients
(NLSC): (a) sample A, (b) sample B and (c) sample C. The classical poroelasticity model can be
obtained from the nonlocal scale-dependent one when the effect of the NLSC is ignored. Ten base
functions are considered for both the radial displacement and fluid pressure approximations. The
radial displacement is obtained at r = 0.5 R.
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A light gradient boosting machine (LGBM) algorithm is presented and integrated
with the scale-dependent nonlocal poroelastic model of small-scale spherical inclusions. To
show the accuracy and capability of the integrated model, the results of the nonlocal model
for sample A are used as an example to build the training and test datasets. The radius of
the inclusion, dimensionless nonlocal scale coefficient and time are used as the inputs of
the LGBM model, while the fluid pressure at the middle distance from the inclusion centre
to its surface is adopted as the label of the training and test datasets. Table 2 lists some
general statistical information including the mean, median, maximum, minimum, first and
third quartiles of the input features and fluid pressure as the target variable. The dataset
includes 34,100 records, with 30% of them as the test data and 70% as the training data. A
hyperparameter tuning procedure based on the grid search cross validation approach has
been conducted to obtain the optimised parameters of the LGBM model. The negative root
mean squared error is used to assess the performance of each configuration of the model
parameters. The number of estimators and leaves on each tree are taken in the range of
1–200 and 1–51, respectively. Different learning rates between 0.01 and 0.2 and various
maximum depths from −1 to 100 are also considered in the grid search cross validation.
A negative maximum depth means that there is no limitation in terms of the number of
leaves on the decision trees. Three different boosting types, GOSS, DART and GBDT, are
considered in this analysis. Table 3 lists the results of the hyperparameter tuning for six
different LGBM configurations. The mean test score is the negative root mean squared
error of the training data. The optimised parameters of the best LGBM model are obtained
as learning rate = 0.1, maximum depth = 100, number of decision trees = 200 and number of
leaves = 51 (boosting type = GOSS). The root mean squared errors of this model on training
and test data are 0.03389 and 0.03083, respectively. These values indicate the high accuracy
of the LGBM model and no sign of overfitting as the performance of the model is even
better on the unseen test data compared to the training data. In Table 4, the predicted fluid
pressure is compared with the actual test fluid pressure obtained by the nonlocal model at
the mid-distance from the centre to the surface of the spherical inclusion. Various values
of the inclusion radii and nonlocal coefficients are taken into consideration. It is found
that the results of the LGBM are in excellent agreement with those of the scale-dependent
nonlocal model of poroelasticity, indicating the promising capability of the light gradient
boosting frameworks to predict the mechanics of poroelastic inclusions.

Table 2. General statistical information about the training dataset used to fit the LGBM model. The
first three columns include data about the average radius in micron, dimensionless nonlocal scale
coefficient and time, which are considered as the inputs in the analysis. The fluid pressure column is
considered as the target (label) column.

General
Statistics R (µm) e0ac/R t (s) Fluid Pressure (kPa)

Count 34,100 34,100 34,100 34,100
Mean value 350 0.05 1.07270 1.45417

Standard deviation 89.44 0.03162 0.86654 1.64699
Minimum value 200 0 0 0.05269

First quartile 270 0.02 0.40255 0.21183
Median value 350 0.05 0.83377 0.69186
Third quartile 430 0.08 1.55312 2.22216

Maximum value 500 0.1 4.10998 7.08649

Figure 10a shows the variation in the fluid pressure of the small-scale spherical in-
clusion predicted by the best model of the LGBM versus the reference test fluid pressure
obtained by the scale-dependent nonlocal poroelasticity model. To plot this figure, all
10,230 records of the test dataset are used to give an overview of the performance of the
machine learning model. In addition, the histogram of the residuals of the fluid pressure
within the spherical poroelastic inclusion is described in Figure 10b. The residuals are



Micromachines 2024, 15, 210 25 of 29

defined as the difference between the predicated and test fluid pressure. It can be concluded
that the predicted fluid pressures closely match those of the test data almost in all cases. In
addition, the majority of residuals are less than 0.075, providing an additional indicator of
the goodness of the optimised LGBM model.

Table 3. Mean test scores of different boosting algorithms used in the LGBM model. The mean test
score is used to rank the model in the hyperparameter tuning process. This scoring metric is set to
the negative root mean squared error.

Boosting
Type

Learning
Rate

Maximum
Depth

Number of
Estimators

Number of
Leaves

Mean Test
Score

GOSS 0.1 100 200 51 −0.03389
GBDT 0.1 100 200 51 −0.03482
DART 0.2 no limit (−1) 200 21 −0.0752
GOSS 0.2 50 200 51 −0.03595
GBDT 0.1 no limit (−1) 170 51 −0.03626
DART 0.2 10 200 51 −0.06499

Table 4. Predicted pressure using the LGBM versus those of the test dataset for various values
of inclusion radius, nonlocal scale coefficients and time. Percentage error is defined as “100 ×
abs(predicted pressure − test pressure)/test pressure” in which abs represents the absolute function.

R (µm) e0ac/R t (s) Predicted
Pressure (kPa)

Test
Pressure (kPa)

Percentage
Error (%)

210 0.09 0.2124 2.2592 2.3264 2.8886
300 0.08 0.7024 0.9083 0.9158 0.8190
350 0.09 1.5257 0.2832 0.2808 0.8547
470 0.07 1.9442 0.6444 0.6305 2.2046
270 0.02 0.2905 1.9325 1.9202 0.6406
440 0.04 3.1185 0.06314 0.0642 1.6511

In the machine learning model, the fluid pressure at the middle of the inclusion radius
is adopted to train the model and obtain optimised hyperparameters. The optimised
model is then used to make reasonable estimations on unseen new data, as evidenced by
our test data verification outlined above. In practice, there are two scenarios in which
the present model would be useful: (1) When the size of the inclusion is determined
by other imaging techniques such as magnetic resonance imaging (MRI) or computed
tomography (CT); in this case, the model can be used to determine the inclusion type. For
example, in biomedical applications, the model plays a crucial role in distinguishing benign
tumours from malignant ones by comparing estimated mechanical characteristics with
benchmark data. (2) A trial-and-error procedure for estimating the size of an inclusion
involves systematically adjusting the parameters of a model until a satisfactory match is
achieved between the predicted outcomes and observed data. In the context of this work’s
case study on tumours and interstitial fluid pressure, this could refer to the process of
iteratively refining the parameters related to the size of the tumour till the predictions align
with experimental or clinical measurements. The present model relates the interstitial fluid
pressure to the mechanical characteristics and size of the inclusion and could be useful in
the iterative process to minimise the difference between the observation and theoretical
estimation. In terms of proof of possibility, it is noteworthy that experimental studies have
demonstrated that the interstitial fluid pressure is an important biomarker in solid tumours,
significantly affecting the cancer microenvironment [55]. The clinical measurement of
fluid pressure can be achieved using direct (invasive) techniques such as servo-controlled
micropipette and wick-in-needle, as well as indirect (non-invasive) methods including
ultrasound elastography and dynamic contrast MRI [56].
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Figure 10. (a) Predicted pressure versus the actual test pressure in terms of kPa; the predicted
pressure is obtained by the best light gradient bosting machine learning algorithm with the GOSS
boosting type, learning rate = 0.1, maximum depth = 100, number of estimators = 200 and number of
leaves = 51. (b) Histogram of the residuals of the fluid pressure for all data points of the test dataset;
residuals are defined as the absolute value of “predicted pressure-test pressure”.

9. Conclusions

A nonlocal scale-dependent poroelasticity model has been developed for the mechani-
cal response of spherical inclusions under radial compression. Scale effects related to the
effective stress nonlocality were captured by using Eringen’s continuum mechanics. To
derive the scale-dependent governing equations of the spherical inclusion, effective stress
differential relations and the equilibrium equation were decoupled. The storage equation
was derived based on the conservation of mass law for both fluid content and solid matrix.
The Galerkin technique was employed to discretise the scale-dependent governing equation
and the storage equation of the spherical inclusion, and then the numerical results were
calculated using the PIM. For comparison and verification studies, a Dormand–Prince
solution procedure and an analytical solution were presented for nonlocal small-scale and
local large-scale inclusions, respectively. To obtain a reliable converged solution, ten base
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functions (Galerkin terms) were taken into consideration. The nonlocal model was inte-
grated with an LGBM model for the fast and robust prediction of the mechanical behaviour
of poroelastic inclusions in practical applications. The mechanical parameters calculated by
the LGBM were in an excellent agreement with those estimated by the nonlocal continuum
approach. It was found that nonlocal effects lead to a substantial increase in the fluid pres-
sure within the spherical inclusion. Moreover, the radial displacement is underestimated
using the classical local model of poroelasticity. These findings are rooted in the fact that
the stress nonlocality is linked with a reduction in structural stiffness. Application of the
proposed nonlocal scale-dependent poroelasticity model integrated with the LGBM results
in a significant enhancement in the accuracy of the fluid pressure and radial displacement
estimations within spherical inclusions subject to uniform radial loading. The specific
time corresponding to the fluid pressure loss in the inclusion is greatly affected by the
hydraulic conductivity per volumetric weight. The inclusions tend to consolidate much
faster when the hydraulic conductivity is increased, and thus the specific time related to
the fluid pressure loss is much lower. This leads to a constant radial displacement within
the spherical inclusion, which is not dependent on time anymore.

10. Patents
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