
Discovery of Graphene Growth Alloy Catalysts Using High-
Throughput Machine Learning
Xinyu Li, Javen Qinfeng Shi, and Alister J. Page*

Cite This: Nano Lett. 2023, 23, 9796−9802 Read Online

ACCESS Metrics & More Article Recommendations *sı Supporting Information

ABSTRACT: Despite today’s commercial-scale graphene produc-
tion using chemical vapor deposition (CVD), the growth of high-
quality single-layer graphene with controlled morphology and
crystallinity remains challenging. Considerable effort is still spent
on designing improved CVD catalysts for producing high-quality
graphene. Conventionally, however, catalyst design has been
pursued using empirical intuition or trial-and-error approaches.
Here, we combine high-throughput density functional theory and
machine learning to identify new prospective transition metal alloy
catalysts that exhibit performance comparable to that of
established graphene catalysts, such as Ni(111) and Cu(111).
The alloys identified through this process generally consist of
combinations of early- and late-transition metals, and a majority
are alloys of Ni or Cu. Nevertheless, in many cases, these conventional catalyst metals are combined with unconventional partners,
such as Zr, Hf, and Nb. The approach presented here therefore highlights an important new approach for identifying novel catalyst
materials for the CVD growth of low-dimensional nanomaterials.
KEYWORDS: graphene, catalyst, alloy, chemical vapor deposition, machine learning

Over the past several decades, there has been significant
interest in graphene due to its exceptional electronic,

mechanical, and thermal properties,1,2 as well as its diverse
range of emerging applications. Today, chemical vapor
deposition (CVD) is the principal method for producing
single-layer graphene. In this process, carbon source feedstock
(mostly methane, but acetylene,3 ethanol,4 and benzene5−7

have also been used) is decomposed on a catalyst, typically a
transition metal, at a high temperature. Despite the now-
commercial scale of CVD graphene production, this technique
still faces challenges, such as control over the morphology and
crystallinity of single-layer graphene, control over the multi-
layer graphene thickness and stacking (“twist”) angle, and the
optimization of low-temperature conditions and semiconduct-
ing growth catalysts. These challenges mean there is still
considerable focus on the improvement of CVD catalyst
materials, as recently reviewed by Liu et al.8

This so-called “catalyst design” has led to the investigation of
a wide range of catalysts that support graphene growth,
including metals (e.g., Cu,9,10 Ni,10 and Co11), metalloids,12

alloys (e.g., CuNi,13,14 AuNi,15 and NiMo16), doped metals,17

and silicides (e.g., SiC,18 SiN,19 NiC,20 and GeSi21). However,
as with material discovery more generally, the traditional
design of new CVD graphene growth catalysts has proceeded
largely via empirical intuition or trial and error. For instance,
CuNi alloy catalysts were gradually optimized via systemati-
cally altering the Cu:Ni alloy ratio and assessing the resultant

impact on graphene morphology and quality.13,22−24 Such
endeavors have been assisted by mechanistic insights gained
from theoretical studies.17,20,25,26 The influence of fragment
structure,27,28 methane decomposition,29 and catalyst phase,30

for example, has been established using density functional
theory (DFT). Notably, on typical graphene growth catalysts
such as Ni(111) and Cu(111), these studies indicate that the
critical fragment size whereupon sp2 carbon fragments first
form is approximately C10−C12, depending on the catalyst
used. Similarly, Mitchell and Page26 used DFT to investigate
the influence of hydrogen present during graphene nucleation,
concluding that hydrogen stabilizes smaller ring structures.26

While computational approaches can deliver important
mechanistic insights regarding graphene growth, computa-
tional design of altogether-new CVD graphene growth catalysts
remains impractical due to the size of the graphene growth
“parameter space”20 and the computational cost of DFT itself.
In recent years, machine learning (ML) and data-driven
methods have emerged as a new “fourth paradigm” for
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scientific research and exploration.31 Such approaches have
achieved notable recent success regarding the prediction of the
molecular, crystalline, and catalytic properties in particu-
lar32−34 and have led to the development of new catalysts
for fundamental reactions such as hydrogen evolution,35 CO2
reforming,36 and biomass reforming.37 Despite these successes,
the use of high-throughput and machine learning approaches
for studying the chemical reactions and systems relevant to
nanoscale self-assembly processes, such as graphene growth,
remains largely unexplored. Presumably, this is a result of their
inherent data dependency and the cost associated with
generating sufficiently large training sets using DFT (a cost
that is less onerous when studying smaller molecular systems).
One notable exception is the ARES (autonomous research
system) approach pioneered by Maruyama et al.,38 which is
capable of guiding high-throughput experimental studies of
single-walled carbon nanotube growth.39

Herein, we report a machine learning-aided high-throughput
approach (Figure 1) for the discovery of new binary transition

metal alloys (TMAs) for CVD graphene growth. Initially, 1499
suitable transition and post-transition metal alloys available in
Materials Project40 were used to generate 12 671 low-index
candidate catalyst surfaces. These initial surfaces were then
screened using geometrical constraints and used to construct
data sets of carbon and benzene adsorption complexes to train

machine learning models. The final recommendation for
prospective alloy catalysts is based on multiple catalytic
descriptors, including the adsorption energies of relevant
carbonaceous precursor species and graphene itself. To
circumvent the DFT efficiency bottleneck here, adsorption
energies of carbon and benzene were first predicted using
machine learning (ML), with DFT being used to verify only a
handful of optimal catalysts. Ultimately, we propose 10 new
prospective alloy surfaces that, to the best of our knowledge,
have never been considered as CVD graphene growth catalysts.
The carbon and benzene adsorption energy data sets cover a
wide range of catalyst materials without geometric constraints,
which provide a useful foundation for expediting the discovery
of catalysts for various carbon material growth applications.
We begin our discussion by detailing the search space for

discovering new alloy catalysts. TMAs have emerged as a
potential solution for overcoming the limitations of pure metal
graphene growth catalysts such as the low catalytic activity of
Cu and the high carbon solubility of Ni. Notable examples
include NiCu,13,14 AuNi,15 and NiMo.16 However, a vast
number of transition metal alloys remain unexplored due to
their extensive design space and the low efficiency of
conventional experimental and computational methods. There-
fore, our search space includes all transition metals except for
Tc (as it is rare and radioactive) and Hg (as it has a low
melting point), see Figure S1. Four post-transition metals with
melting points of >573 K (Al, Zn, Tl, and Cd) are included
because graphene growth on post-transition metal catalysts
remains relatively unexplored. Moreover, post-transition metals
typically exhibit a weak adsorption energy, which is favorable
for graphene growth. The primary concern with post-transition
metals lies in their instability under oxygen conditions.
Nevertheless, creating a reducing environment for graphene
growth is feasible. We limit this study to metal alloys only and
do not consider metal carbide, oxide, or silicide phases. Bulk
alloy structures were extracted from both Materials Project40

and the data set of Mamun et al.34 The latter includes L10 and
L12 type alloys that potentially possess crystal lattice
dimensions commensurate to those of graphene but are absent
from Materials Project. To restrict our search space to stable
materials, only bulk crystals with negative formation energies
and ΔEhull values of ≤0.2 eV/atom were included. Ultimately,
this restriction led to a search space consisting of 1499
prospective alloys, and 12 671 low-Miller index surfaces were
constructed for these alloys.
An optimal CVD graphene growth catalyst should have a

degree of structural epitaxy with the growing graphene
structure.41 While perfect epitaxy can lead to difficulty in
postgrowth separation due to overly strong adsorption, large
degrees of lattice mismatch between graphene and the growth
catalyst yield even greater challenges for producing high-
quality single-layer graphene during CVD. Therefore, we
applied three geometrical criteria to narrow down the number
of candidate catalysts: the degree of epitaxy (angle), the lattice
vector match (length), and surface smoothness. The first
geometric criterion, the degree of epitaxy between the
graphene primitive lattice and each metal surface, is shown
in Figure 2a. Specifically, we have restricted our search space to
metal surfaces with lattice angles γ such that mod(γ, 60) ≤ ±1°
[or mod(γ, 120) ≤ ±1°]. For surfaces within the search space
with reduced cells corresponding to γ ≈ 90°, six additional
catalyst superlattices were also generated, as shown in Figure
2b. Ultimately, these criteria yielded 2451 catalyst surfaces. Of

Figure 1. High-throughput framework used to discover new alloy
catalysts for graphene growth.
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these, only 528 surfaces possess lattice vectors within 6% of the
graphene lattice vector (2.46 Å). We note that this tolerance
exceeds the mismatch of established graphene growth catalysts
[e.g., Cu(111), ∼4.07%; Ni(111), ∼1.22%42] so that
prospective catalysts are not inadvertently excluded. Finally,
by restricting our search space to those flat and smooth
surfaces [e.g., the close-packed (111) surface for fcc crystals],

we are left with 137 prospective alloy catalyst surfaces, as
summarized in Table S1, which yield 1333 (carbon) and 2666
(benzene) distinct adsorption sites. Machine learning is then
employed to accelerate the calculation of these adsorption
energies, with full DFT calculations used for only the most
stable sites for each catalyst. The best 10 catalysts found using
this algorithm are detailed in Table 1. Table 1 also lists the
descriptors of established graphene growth catalysts [(111)
facets of Cu, Ni, Cu3Ni, Ni2Cu2, and Ni3Cu] for comparison.
Full details of all prospective catalysts are provided in the
Supporting Information. Figure 1 provides full details of the
screening algorithm employed here.
Theoretical studies of CVD catalysts commonly assess

catalyst performance via their affinity for graphene itself, for
instance, in terms of graphene’s adsorption energy. Never-
theless, the optimal graphene adsorption energy is a necessary
but not sufficient condition for a substrate to be an effective
graphene growth catalyst. Hydrocarbon activation and carbon
dissolution are both critical processes during graphene growth
and can be described by carbon adsorption energies according
to the descriptor-based microkinetic modeling43 and
Brønsted−Evans−Polanyi relations.44 It also has been shown
that carbon atoms are more dominant than other carbon
radicals (CHi, where i = 1, 2, 3, or 4) on Cu(111), Ni(111),
Ir(111), and Rh(111) surfaces29 and drive the formation and
growth of sp carbon chains that ultimately oligomerize and
aggregate into sp2 “islands” and subsequently larger graphene
structures.45 The latter can be adsorbed directly on the catalyst
surface or reside within it via a “sunken” growth mode.46

We therefore sought to assess the utility of the prospective
137 alloy catalysts with respect to each individual step of this
mechanism. That is, we consider the adsorption energy of
graphene itself, as well as those of activated carbon atoms and
fragments on the catalyst surface for each of these alloys (here,
our proxy for small sp2 islands is benzene, which is an
established precursor for CVD graphene growth itself5−7). We
consider in greater detail the reliability of using adsorption
energies of individual species for predicting catalyst perform-
ance in the Supporting Information and demonstrate that

Figure 2. (a) Alloy lattices are commensurate with the adsorbed
graphene lattice when the metal lattice has γ ≈ 60°. For cubic lattices
(γ ≈ 90°), six additional alloy superlattices were generated, shown in
panel b, to ensure compatible alloy surfaces were included in the
search space. (c) γ values (degrees) and (d) degrees of lattice
mismatch in length (with respect to graphene, percent) for the 1499
bulk alloy lattices; 2451 low-index alloy surfaces have γ = 60 ± 1°, and
137 surfaces have lattice vectors within 6% of the graphene value of
2.46 Å.

Table 1. Compositions, Materials Project IDs, Miller Indices, Terminations, Graphene Adsorption Energies (ΔEgr,
electronvolts per C atom), Graphene Adsorption Distances (dgr, angstroms), Carbon Adsorption Energies (ΔEC,
electronvolts), and Benzene Adsorption Energies (ΔECd6Hd6

, electronvolts) of Optimal Prospective Alloys for Graphene Growtha

alloy Materials Project ID facet termination % mismatch ΔEgr dgr ΔECd6Hd6
ΔEC

ZrPd2 mp-1018102 110 Pd−Zr 0.77 −0.10 2.24 −1.52 0.13
YCu5 mp-2797 001 Y−Cu 1.04 −0.05 3.04 −1.26 0.13
ZnNi3 mp-971758 111 Ni−Zn 1.07 −0.06 2.19 −1.21 −1.16
Sc2Ni4 mp-850 111 Ni −2.02 −0.07 2.19 −1.47 −0.61
Hf2Ni4 mp-30708 111 Ni −2.28 −0.07 2.34 −1.76 −0.37
ZrCu5 mp-30603 111 Cu −2.44 −0.06 3.12 −1.01 0.57
ZrCu5 mp-30603 111 Zr−Cu −2.44 −0.05 3.10 −1.33 0.21
Ni3Pt mp-12798 111 Ni−Pt 3.14 −0.07 2.20 −2.03 −0.76
Nb2Ni4 mp-1077429 111 Nb−Ni −3.26 −0.07 2.35 −1.73 −0.76
MoPd2 mp-1206704 110 Pd−Mo −3.66 −0.06 3.26 −1.21 −0.20
Ni3Cu cif-Ni3Cu 111 Cu−Ni 0.08 −0.05 2.22 −1.97 −0.99
Ni2Cu2 cif-NiCu 101 Cu−Ni −0.93 −0.04 2.22 −1.65 −0.50
Cu3Ni cif-Cu3Ni 111 Cu−Ni 1.46 −0.07 3.28 −1.32 0.29
Cu mp-30 111 Cu 2.32 −0.06 3.28 −1.08 1.15
Ni mp-23 111 Ni −0.53 −0.07 2.19 −2.28 −0.94

aCarbon and benzene adsorption energies were calculated by using RPBE-D3, while graphene was calculated by using SCAN-rVV10. Values for
Cu3Ni(111), Ni2Cu2(101), and Ni3Cu(111) alloys and Cu(111) and Ni(111) are included for comparison.
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better performance is obtained when they are considered
collectively. Note that here we have not investigated subsurface
dissolution, as it has shown that the production of single-layer
graphene on Cu(111) and Ni(111) is driven by a surface-
mediated mechanism.29 Ultimately, the recommendations
made below are based upon consideration of these adsorption
energies (or adsorption distance) and the physical structure of
the catalyst itself and are most relevant to surface-mediated
growth of single-layer graphene. We note that the use of
machine learning here to predict distinct carbon and benzene
adsorption energies effectively enables the use of multiple
descriptors for each prospective catalyst; this would otherwise
not be practical due to the number of DFT adsorption energy
calculations involved with the data sets employed here.
Panels a and b of Figure 3 validate ML-predicted carbon and

benzene adsorption energies, respectively, against DFT values

using the generated data sets, which are later used as the
training set to predict optimal catalysts. Illustrative examples of
carbon, benzene, and graphene adsorption complexes are
provided in Figure 5. Note that we expect the carbon and
benzene data set generated in this study can be used for other
carbon materials in the future, so the catalyst surfaces are not

limited to the 137 geometry-filtered surfaces (see Methods for
details on this data set). For carbon and benzene adsorption
(Figure 3a,b), the comparison is based on individual
adsorption complexes; Figure 3 shows that the ML algorithm
GemNet-OC performs comparably in describing both carbon
and benzene adsorption. For graphene adsorption, we find that
utilizing GemNet-OC for prediction is appropriate, as
indicated in Figure S7. However, we refrained from using
the machine learning-predicted graphene adsorption energy in
our investigation because it is practical to use DFT to calculate
graphene adsorption energies on all 137 catalysts directly. All
graphene adsorption-related values in the remainder of our
discussion are DFT values. Figure 4a compares the ML-
predicted carbon and benzene adsorption energies for the most
favorable adsorption sites on the 137 surfaces listed in Table
S1. A validation of these predicted values is shown in Figure
S2, which shows that the ML-predicted and DFT-calculated
adsorption energies are well correlated. Li et al.37 showed that,
to predict accurate adsorption energies on a given metal, the
training set needs to include only a relatively small number of
adsorption energies (e.g., 20%) on that metal, provided that it
includes a sufficiently diverse range of metal surfaces. Thus,
while the training set here is only approximately twice that of
the test set, the reliability of our ML-predicted adsorption
energies is ensured by the use of a greedy sampling approach,
which guarantees inclusion of at least one sample from each
alloy surface. Figure 4a compares ML-predicted carbon and

Figure 3. (a) Comparison of ML-predicted carbon adsorption
energies (ΔEC, electronvolts) and DFT values for 7726 adsorption
complexes (5269 alloy surfaces). (b) Comparison of ML-predicted
benzene adsorption energies (ΔECd6Hd6

, electronvolts) and DFT values
for 1326 adsorption complexes (206 alloy surfaces). The insets show
the adsorption structures of C and C6H6 on a binary transition metal
(111) surface facet.

Figure 4. (a) ML-predicted benzene adsorption energies vs ML-
predicted carbon adsorption energies. (b) Comparison of DFT
adsorption energies of graphene (electronvolts per C atom) and
adsorption distances (angstroms) on 137 prospective alloy catalyst
surfaces. The blue highlighted region indicates optimal catalysts;
established Co, Ni, and Cu pure metals and NiCu alloys are
highlighted. The insets show the adsorption structures of graphene on
a binary transition metal (111) surface facet.

Figure 5. Adsorption of graphene, benzene, and carbon on (a−c) the
YCu5 Cu-terminated surface, (d−f) the YCu5 Y−Cu-terminated
surface, (g−i) the ZrCu5 Cu-terminated surface, and (j−l) the ZrCu5
Zr−Cu-terminated surface.
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benzene adsorption energies on the 137 catalysts considered
here and shows a good correlation, as anticipated. For these
alloy surfaces, there is no example of a catalyst that binds
carbon weakly, while binding benzene strongly. On the
contrary, there are a small number of catalysts that yield the
opposite behavior. Figure S3 shows (for Zr4Ru8 as an example)
that this is a product of surface termination, enabling
intercalation, or subsurface adsorption, of carbon atoms.
Having validated the ML approach using carbon and benzene
adsorption energies, we now consider which of the 137
catalysts are potential graphene growth catalysts. The
adsorption behavior of the best-performing non-alloy graphene
catalysts, Ni(111) and Cu(111), defines the range of what we
consider “optimal” performance here. We gauge this behavior
via the adsorption energies of carbon (ΔEC-ML), benzene
(ΔECd6Hd6

-ML), and graphene (ΔEgr-DFT), as well as the
graphene−metal adsorption distance (dgr-DFT). These ranges
are highlighted in blue in panels a and b of Figure 4 (they are
also highlighted in Table S1). Graphene adsorption energies
on established growth catalysts, i.e., pristine Cu(111), Ni(111),
and Co(0001) facets, and (111) facets of Cu3Ni, Ni2Cu2, and
Ni3Cu alloys are also highlighted in panels a and b of Figure 4
as points of reference. We note that NiCu alloy catalysts,
established for graphene growth, fall within the highlighted
range in panels a and b of Figure 4, which provides confidence
in our approach.
Figure 4b shows that ΔEgr-DFT and dgr-DFT values for the

137 alloys considered here are grouped into two clusters. The
first comprises alloys yielding adsorption distances of 1.84−
2.42 Å, indicating a strong interaction with graphene, akin to
that observed for Co(0001) and Ni(111) metal catalysts (2.15
and 2.19 Å, respectively). The second consists of alloys that
adsorb graphene at longer distances of 3.04−3.60 Å, indicating
weaker interaction with graphene, akin to that observed for
Cu(111) and Cu3Ni (3.28 Å for both of them). Of these 137
alloys, 27 fall within the ΔEgr-DFT and dgr-DFT values of
Cu(111) and Ni(111) (see Table S1). Other prospective
catalysts for graphene growth include various combinations of
early- and late-transition metals. The top 10 are listed in Table
1; to the best of our knowledge, none of these alloys have been
investigated as graphene growth catalysts. We note that while
our threshold for graphene epitaxy is relatively loose (6%), the
prospective alloy catalysts listed in Table 1 have lattice
mismatches that fall well below this threshold (≤3.6%).
The prospective alloy catalysts identified in Table 1 indicate

that combining early- and late-transition metals yields high-
performing CVD graphene growth catalysts; this motif is
featured in eight of the ten catalysts discovered here.
Considering established descriptors for predicting heteroge-
neous catalysis such as d-band theory,47 this is perhaps
unsurprising, because the superposition of higher- and lower-
energy d-band energies (provided by the early- and late-
transition metal, respectively) affords a mix of states that can
interact optimally with adsorbing carbonaceous species and
graphene itself.48 Nevertheless, to the best of our knowledge,
this strategy has not been pursued widely in the CVD growth
of nanocarbon structures such as graphene and CNTs.
Exceptions to this alloy motif are ZnNi3 and Ni3Pt. Table 1
shows that the performance of the Ni−Zn-terminated (111)
surface of this alloy is comparable to that of NiCu alloys, at
least according to the four descriptors employed here. This
performance can be rationalized by the fact that Zn is a d10

post-transition metal with a generally weak adsorption
strength,49 so Zn here may in fact be mimicking the role
played by Cu in Ni−Cu alloy catalysts. The catalytic
descriptors for Ni3Pt indicate its potential as an alloy with its
catalytic activity falling between those of Ni and Ni3Cu, but
with a larger mismatch (3.14%).
Another persistent feature in the alloys identified in Table 1

is the inclusion of Ni and Cu; all but three of the catalysts
discovered here incorporate Ni or Cu to some degree.
Considering the performance of Cu(111), Ni(111), and Ni−
Cu alloys for CVD graphene growth, this is anticipated. Of
these six Ni/Cu alloys, d0 (Y and Sc) and d1 (Zr and Hf)
metals feature in the majority, again highlighting the early/late-
transition metal motif mentioned above. Ni here is more
versatile than Cu in this respect. Of the seven Ni/Cu alloys,
five are Ni-based (ZnNi3, Sc2Ni4, Hf2Ni4, Ni3Pt, and Nb2Ni4)
while only two are Cu-based (YCu5 and ZrCu5, noting
however the latter affords two distinct surface terminations
that exhibit similar performance). We computed the density of
states (DOS) for YCu5 and ZrCu5, and the results are depicted
in Figure S11. The two Cu-terminated surfaces exhibit an
electronic structure akin to that of Cu(111). However, in the
case of Y−Cu- and Zr−Cu-terminated surfaces, there is
evidence of an increased DOS above the Fermi energy. This
similarity to Cu−Ni alloys is consistent with their comparable
catalytic performance (according to the adsorption energy
descriptors employed here). The two alloys that exclude Ni
and Cu, i.e., ZrPd2 and MoPd2, are alloys of Pd, which is a
metal also established as a graphene growth catalyst. In each
case, these alloys share a similar surface termination that
comprises both metals in the alloy. Nb is also found in the
alloy Nb2Ni4, which exhibits adsorption energy descriptors
comparable to those of the Ni−Cu catalysts listed in Table 1,
albeit with a significantly larger lattice mismatch (−3.26%).
We believe all alloys listed in Table 1 should be compatible

with typical graphene growth conditions, and all exhibit stable
phases at typical CVD temperatures.50 For instance, compared
to the melting point of bulk Ni (1455 °C), the Ni alloys in
Table 1 have generally marginally lower melting points
(Nb2Ni4, ∼1340 °C; Hf2Ni4, ∼1280 °C; Sc2Ni4, ∼1340 °C).
ZnNi3 is an outlier, which melts at ∼780 °C. The two Cu
alloys listed in Table 1 have phase stability comparable to that
of Cu itself (e.g., ZrCu5 melts at ∼1100 °C, and YCu5 at ∼950
°C51). Unsurprisingly, the Pd and Pt alloys in Table 1 have
high melting points (MoPd2, ∼1720 °C; ZrPd2, ∼1600 °C;52
Ni3Pt, ∼1510 °C50).
In conclusion, we have identified new prospective transition

metal alloy catalysts for graphene CVD growth via a high-
throughput machine learning approach. By screening 12 671
catalyst surfaces on purely geometrical considerations, we
revealed 137 surfaces with lattice structures commensurate
with graphene. By combining machine learning prediction and
DFT calculation, we obtained carbon, benzene, and graphene
adsorption simultaneously on these alloy surfaces. This led to
10 new prospective alloy catalysts that exhibit performance
comparable to those of established graphene catalysts, such as
Ni(111) and Cu(111). Despite the relatively “mindless”
approach taken here, the alloys that were identified here
have somewhat unsurprising characteristics. For example, all
except one are combinations of early- and late-transition
metals, as is the case for many high-performance heteroge-
neous catalysts. Similarly, a majority are alloys of Ni or Cu
(with the remainder being alloys of Pd, which is also capable of
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supporting the CVD growth of graphene). Nevertheless, in
many cases, these conventional metals are alloyed with
unexpected partners, for instance, Zr, Hf, and Nb. We believe
that these alloys have not previously been considered as
graphene growth catalysts. This investigation therefore high-
lights an important, yet underutilized, approach for novel CVD
catalyst discovery and catalyst optimization for graphene and
low-dimensional nanomaterial growth more generally. In
addition, the ML data set constructed here to predict the
adsorption energies of carbon-related species will be a useful
resource for gaining deeper insights into two-dimensional
material growth, for instance, by expediting development of
microkinetic models of hydrocarbon decomposition on alloy
catalysts. It could also serve future heterogeneous catalysis
research more widely, by leveraging its ∼9000 structures with
techniques like transfer learning53 and self-supervised learn-
ing.54
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