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Abstract 

Thin-walled structural components are common in engineering design across many industries 

and applications. These components are often subjected to cyclic loading, which can lead to 

fatigue damage accumulation, nucleation and propagation of defects and, finally, to structural 

failures. The use of damage detection techniques as a part of safety inspections allows to 

monitor defects and prevent structural failures. However, damage evaluation in thin-walled 

structures can be challenging with the traditional non-destructive evaluation (NDE) techniques. 

Therefore, development of new NDE techniques is important to maintain structural integrity 

and safe operation of infrastructure. 

The overall aim of this thesis is to develop new NDE techniques, specifically for thin-walled 

structures and non-ideal geometries, for the detection and evaluation of early-stage fatigue 

damage. These new techniques are based on fundamental modes of Lamb and edge waves, 

which are the most suitable for thin-walled structural components, as these modes disperse 

rapidly over propagation distance in thick structures. 

In Chapter 2, the accumulation of low-cycle fatigue damage is investigated using the low-

frequency Lamb wave mixing method combined with phase-reversal approach. Chapter 3 

proposes a new approach for the frequency selection and a time-shifting technique to improve 

the efficiency of wave mixing method for the fatigue damage evaluation. 

Detection and evaluation techniques for fatigue edge cracks in realistic structures are developed 

in Chapters 4, 5 and 6. Chapter 4 investigates the propagation of edge waves along corners of 

thin-walled structures for the detection of edge cracks. Chapter 5 explores the propagation of 

the fundamental quasi-edge wave modes in thin-walled structures with non-ideal (curved) 

edges and the use of these modes for defect evaluation. In Chapter 6, the edge crack length is 

evaluated using the fundamental mode of edge waves. Moreover, a new Finite Element (FE) 

model is proposed to simulate the interactions of elastic waves with fatigue cracks, which also 

accounts for the plasticity-induced closure phenomena.  

The main outcomes of the thesis are briefly summarised below,  

(1) Development of a new technique for the evaluation of early-stage fatigue damage using the 

fundamental mode of Lamb waves and wave mixing method;  

(2) Development of a new approach for the frequency selection and a time-shifting method, 

which can improve the efficiency of wave mixing method for damage evaluation;  



II 

 

(3) Investigation of the propagation of edge waves in plates with sharp and rounded corners, 

which supports the further development of a NDE technique to evaluate damage in inaccessible 

locations;  

(4) Investigation of the quasi-edge wave modes and the development of a Semi-Analytical 

Finite Element (SAFE) model to characterise the wave propagation properties;  

(5) Development of a new technique for the evaluation of the edge crack length based on the 

fundamental mode of edge waves, and  

(6) Development of an advanced FE model to simulate the interaction of elastic waves with 

cracks considering the plasticity-induced closure phenomena.  

Overall, the findings of this thesis provide knowledge and deeper understanding of fatigue 

damage evaluation using guided waves. The outcomes will help apply guided wave based NDE 

techniques to real structures. 
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Chapter 1: Introduction 

The thesis represents a compendium of a published and submitted research articles, which 

united by the same topic and methodology. Each article has been published in a leading 

international journal related to the broader research area of guided waves and NDE. Every 

article has a proper literature review section. In order to avoid the repetition, this current 

Introductory Section provide a brief summary of the most significant developments in the area, 

states the aims and objectives of this thesis.   

 

1.1.  Background  

The thin-walled structures are widely used in the civil and mechanical engineering, some 

examples including plate, frames of ship and aircraft structures, I-beam, and angle stiffeners. 

Integrity of these common structural components are of critical importance in engineering 

design. Almost all these components, to some extent, are subjected to cyclic loading. This 

loading can often first result in fatigue damage at micro-scale level (so called, early fatigue 

damage), which is difficult to detect and evaluate.  

  

Figure 1.1. Microscope image of a fatigue crack in an aluminium plate 
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Early fatigue damage, which is associated with microstructural changes of the material, can 

accumulate and progress rapidly to the next stage – fatigue cracks, see Figure 1.1, and, finally, 

result in a structural failure. Therefore, non-destructive evaluation (NDE) and Structural Health 

Monitoring (SHM) for the purpose of fatigue damage evaluation have attracted significant 

attention during the recent decade. 

With advance of manufacturing techniques over the past twenty years the early-stage fatigue 

damage, or damage accumulated before formation of macro- crack, can now dominate the total 

fatigue life of structural components. Therefore, the evaluation of both stages of the damage 

progression is critical in order to maintain safe and efficient operation of high-values assets 

and infrastructure.   

 

1.2.  NDE with guide waves 

Different techniques have been developed in the past to detect fatigue damage, including 

digital image correlation [1], high-density electro-pulsing [2], ultrasonic modulation [3, 4]. 

These techniques have their own advantages and limitations. Among the aforementioned 

techniques, techniques based on ultrasonic guided waves, are considered as one of the most 

promising for non-destructive defect inspections and future SHM systems [5-8].  

 

Table 1.1. NDE with nonlinear guided waves 

Damage type Thin-walled structures Pipes Composite plates 

Material 

nonlinearity 

Material imperfection [9-12] 

Cyclic fatigue damage [13-15] 

Thermal damage [16-18] 

Corrosion and pitting [19, 20] 

Fatigue damage 

[21-23] 

 

 

Material imperfection 

[24, 25] 

Thermal and impact 

damage [26-28] 

CAN 
Fatigue crack  

[29-34] 

Fatigue crack 

[35, 36] 

Delamination 

[37, 38] 

 

The effects of micro-structural damage (or early fatigue damage) on wave propagation are 

mainly considered within two aspects: changes of material nonlinearity and generation of 
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contact acoustic nonlinearity (CAN). The change of material nonlinearity can be associated 

with accumulation of micro-structural defects or localised plastic deformations. The generation 

of CAN is typically due to the interaction between the guided waves and the micro-cracks (i.e., 

fatigue crack or delamination). In the previous studies, the guided waves have shown a good 

sensitivity to different types of micro-scaled damage in different types of structures made of 

different materials, and the details of some of the past studies are summarised in Table. 1.1. 

 

1.3.  Fundamental modes of guided waves 

The past studies have also demonstrated that the nonlinear guided waves are sensitive to 

the microstructural damage, and some of the examples have been summarized in Table 1.1 in 

the previous sub-section. The existing nonlinear guided wave NDE techniques rely on the 

generation of second harmonic. The generation process requires meeting the synchronism 

condition (i.e., the phase velocity matching of the fa and 2fa), as well as the non-zero power 

flux condition [7, 39, 40]. The common approach to achieve the synchronism is the use of 

cross-modes or the higher-order Lamb wave mode pairs (S1-S2). However, the higher-order 

Lamb waves are normally highly dispersive and energy decaying, which limits the propagation 

as well as detection and analysis of the generated second harmonic. In addition, there are 

limited wave mode pairs, which can be selected to achieve the aforementioned conditions 

required for the second harmonic generation. Another constraint of the cross-mode method is 

the multi-mode generation, which can make the signal analysis difficult. These constraints limit 

the practical application of cross-modes in NDE techniques. 

Recently, the fundamental modes of guided waves have attracted a lot of attention for the 

purpose of the evaluation of the distributed damage, namely, the fundamental symmetric mode 

of Lamb waves (S0), and the fundamental symmetric mode of edge waves (ES0). The S0 mode 

is a dispersive and can propagate for a long distance without energy decay in plate-like 

structures guided by the free surfaces. The propagation of ES0 mode is concentrated and 

localized near the free edge of plate and shell structures. This feature-guided wave mode has 

also zero energy decay and, in addition, it is only slightly dispersive. The latter property is very 

attractive for NDE applications. In Figure 1.2, illustrates the propagation of these two wave 

modes. The propagation characteristics of these two wave modes are complementary for the 

fatigue damage and defect evaluation, specifically, Lamb wave modes can be applied to 
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evaluate material degradation due to early fatigue damage while the edge wave mode can target 

fatigue cracks, which normally initiate from free surface. 

 

Figure 1.2. Schematic illustration of the propagation of S0 and ES0 modes in an ideal thin-

walled structure 

 

With the S0 and ES0 wave modes it is possible to the achieve quasi-synchronism in order 

to generate high-order harmonics, and the theoretical framework of the quasi-phase velocity 

matching for the purpose of the second harmonic generation has been developed by Muller et 

al. [41]. Several previous studies have investigated the propagation of these modes 

experimentally [15, 42, 43] and numerically [44-46]. These studies have demonstrated that the 

second harmonic increases with the accumulation of the material nonlinearity. In addition, the 

S0 mode have been employed to detect the CAN generation due to fatigue crack in a metallic 

plate [34, 47, 48] and due to the loosening of bolted joint [49]. Therefore, the nonlinear 

fundamental guided waves have demonstrated a good sensitive to the micro-scaled damage.  

In general, the fundamental modes of guided waves have a number of advantages compared 

with the higher-order modes of guided waves. These advantages include (1) long wave 

propagation distance and long accumulative distance of second harmonic; (2) avoidance of 

multi-modes generation; (3) flexibility of frequency selection; and (4) less demanding on 

instrumentation.  

The fundamental modes of guided waves are in low-frequency range below the cut-off 

frequency, and these wave modes are only weakly dispersive across the entire low-frequency 

range. There are only very limited wave modes coupling in the low frequency range, and the 

generation of these fundamental wave modes can be relatively simple. The fundamental wave 

modes can be generated by using a piezoelectric transducer (PZT), which can be bonded on the 

engineering structures and is more suitable for the practical application. Therefore, the 
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fundamental wave modes are also very promising for the long distant inspection of fatigue 

damage across a wide range of practical situations. 

 

1.4.   Wave mixing method 

Many recent studies focused on the utilization of the combinational harmonic generation 

to evaluate microstructural damage. The generation of the combinational harmonics using the 

wave mixing method is similar with the generation of the second harmonic, which requires the 

synchronism/quasi-synchronism condition, and the non-zero power flux condition. In addition, 

the second harmonics (at 2fa and 2fb) and the combinational harmonics (at fa+fb and fb -fa) can 

be generated simultaneously using the wave mixing method. The main reason of the utilization 

of the wave mixing method is that the combinational harmonic generation can avoid the 

nonlinearity due to the instrumentation [13, 50]. The latter was reported as the main challenge 

for the development of nonlinear wave approaches for NDE application.  

From the literature, the wave mixing can be achieved with (1) codirectional collinear waves, 

(2) contour-propagating collinear waves, and (3) non-collinear waves. A secondary wave can 

be generated in the wave mixing zone in addition to the two excited waves. In the codirectional 

collinear wave mixing method, two incident waves propagate in the same direction, and the 

wave mixing area is directly associated with the dispersion properties between the two emitting 

waves. Generally, the wave mixing zone of this method is rather large, which enables the 

evaluation of the distributed nonlinearity cumulation [10, 11, 51, 52].  In contrast, the contour-

propagating collinear wave mixing and non-collinear wave mixing have a confined wave 

mixing zone. Two waves are excited in the opposite direction or in certain angles to generate a 

secondary wave, and these wave mixing methods are suitable for locating the localized damage 

(i.e., fatigue crack) [53, 54], and the characterization of the localised material damage [17, 50]. 

It should be noted that the codirectional collinear wave mixing has less restrictions than the 

other two methods (i.e., excitation frequencies or wave propagation angle), which makes this 

method particularly suitable for the practical application. As aforementioned, the 

combinational harmonic generation is similar to the second harmonic generation. However, the 

wave mode pairs are limited to a few combinations only [17, 55, 56].  In contrast, the collinear 

wave mixing based on the quasi-synchronism has a significant flexibility with the frequency 

selection. Therefore, the present research mainly focuses on the codirectional collinear wave 

mixing method. 
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1.5. Feature guided waves 

Over the past few years, many research efforts have been directed to the investigation of 

guided wave propagation in realistic engineering structures, instead of ideal geometries such 

as plate with ideal sharp edges or a circular pipe. The interior geometry of the realistic 

engineering structures can be complex, which leads to significant dispersion and multi-mode 

generation during inspections with guided waves. However, these complex geometry features 

of structural components can also serve as a waveguide, which permit propagation of specific 

wave modes at certain frequencies. These waves are, so called, feature guided waves. In the 

literature, various feature guided wave modes have been investigated, including in rail web [57, 

58], bonded stiffeners [59, 60], fastener hole [61], transverse bends [62-64], and fuel weep hole 

[65, 66]. Other investigations focused on defect detection using these feature guided waves, 

some examples including defects in steel rebar [67-69], L-joints [70], T-joint stiffeners [71], I-

beams [72-74], square tubes [75], and pipe bend and supports [76-78].  

One of the main challenges of the utilisation of the feature guided waves for development 

of practical NDE techniques is the evaluation of wave dispersive characteristics. Semi-

analytical finite element (SAFE) method is considered as one of the most promising method to 

calculate the dispersion properties [79, 80]. This method is applicable to arbitrary wave guide 

cross-sections. It allows to analyse the wave properties by considering the propagation of 

harmonic waves. This method has been proven to be a powerful tool for investigating the 

feature guided waves, especially for structural elements with complex shapes [59, 63, 81]. 

SAFE-PML is the modification of the SAFE method, using the perfectly matched layer (PML), 

which serves as an absorbing layer and the leaking waves propagating far away the waveguide 

can be absorbed [68, 82]. The complex-valued eigenvalues can be obtained after solving the 

eigen-value problem modelled by the SAFE-PML method. Infinite number of eigenvalues can 

be obtained for a certain frequency, however, the wave modes unable to be determined directly. 

Hence, a wave mode filtering algorithm is needed to link the eigenvalues and the wave modes 

[68, 82]. The real part of the eigenvalue represents the wavenumber, while the complex part 

can be used to calculate the attenuation of the corresponding wave mode.  

Edge waves can also be considered as a type of feature guided wave, which propagate along 

the free edges of thin-walled structures. The wave properties of the fundamental edge waves 

converge to the wedge wave in the high frequency range, and this wave mode approaches to 

the Rayleigh wave in the long-wavelength limit (in the very low frequency, f << 50 kHz). In 
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addition, the fundamental edge waves are weakly dispersive, while the higher order edge waves 

are strongly dispersive. Generally, the fundamental edge waves are coupled with different wave 

modes across the entire frequency, in specific, SH0 in the low frequency range, and S0 and 

higher order Lamb wave in the high frequency range.  

Structural elements with free edges are widely used in the engineering application, and 

fatigue cracks often initiate from these edges. As aforementioned, the conventional Lamb and 

shear waves are strongly dispersive considering a complex interior structure. However, the 

fundamental edge waves have shown small decay over long wave propagation distance [83], 

which makes this wave mode a promising candidate for the long distant inspection. This wave 

mode showed a good sensitive to the corrosion damage [84] and material imperfection [43].  

In the literature, the analytical/semi-analytical approaches were generally utilised for the 

calculation of the dispersion properties of edge waves, by enforcing the boundary conditions 

and applying the boundary collocation method [85, 86] or reciprocity theorem [87]. However, 

the mode decomposition of edge waves requires solving 3D equilibrium equations, instead of 

the 2D framework for the plane theory of elasticity [86, 88]. Therefore, the calculation of the 

dispersion properties of edge waves is complex, especially for the edge wave properties in non-

ideal edges. This leads to the need of further development of a method, which can calculate the 

wave properties of edge waves in the realistic geometries, instead of the sharp edge.  

 

1.6.  Aim and objectives 

The overall aim of the present research is to advance and develop NDE techniques for the 

purpose of fatigue damage evaluation in thin-walled structures, using the fundamental modes 

of guided waves including feature guided waves. In particular, this thesis is focused on the 

development of wave mixing method for the material degradation evaluation, and the fatigue 

crack evaluation using edge waves. In addition, the new developments are aimed to be 

applicable to practical applications, which can be of non-ideal geometries. Therefore, this 

overall aim of the present research can be achieved by addressing the following objectives: 

i. To evaluate the combinational harmonic generation due to the progressive fatigue 

damage, using wave mixing of fundamental mode of Lamb waves with the incorporation 

of the phase-reversal approach; 
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ii. To develop a method which can be utilised for the frequency pair selection and 

performance optimization of the wave mixing method, using the fundamental modes of 

guided waves; 

iii. To investigate the fundamental mode of edge waves propagating through the corners of 

thin-walled structures, and to locate fatigue cracks in hidden or inaccessible locations; 

iv. To investigate the defect evaluation in non-ideal edges of thin-walled structures using 

the fundamental modes of edge waves, and to provide a comprehensive method for the 

calculation of wave properties of edge waves in non-ideal edges. 

v. To evaluate the length of fatigue cracks using the fundamental mode of edge waves, and 

to develop an advanced FE model to simulate the closure behaviour of the fatigue crack; 

 

1.7. Outlines of thesis 

This thesis comprises of five journal articles closely related to the proposed objectives, four 

of which are published in the leading international journals, and one manuscript has been 

submitted for the publication. The thesis consists of seven chapters, which are 

Chapter 1 provides a general introduction to the NDE and guided waves for the purpose of 

fatigue damage and defect evaluation. It discusses the advantages of fundamental modes of 

guided waves and wave mixing method, and provides overview of feature guided waves.  

Chapter 2 investigates the generation of the combinational harmonic due to material 

imperfections and low-cycle fatigue damage, using the wave mixing method for the 

fundamental mode of Lamb waves. The experimental and numerical studies demonstrate that 

the combinational harmonics show a good sensitivity to the accumulation and progression of 

fatigue damage fatigue. Different effects of the incident wave on wave mixing properties are 

investigated. It is also found that the implementation of the phase-reversal approach in the wave 

mixing can improve considerably the quality of experimental results related to the fatigue 

damage evaluation. 

Chapter 3 proposes a new technique for the frequency pair selection of the wave mixing 

using fundamental modes of guided waves. The quasi-synchronised wave modes have a 

significant flexibility for the frequency pair selection. The trial-and-error method was generally 

used for the frequency pair selection in the past. The developed technique provides an improved 

understanding on the frequency pair selection for the quasi-synchronised wave modes. 
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Moreover, a new time shifting method is suggested to enhance and facilitate the generation of 

the second and combinational harmonic generation due to the collinear wave mixing. In 

addition, this method can be very useful when various limitations exist on the frequency 

selection, which can avoid the overlapping and optimize the performance of the generated 

harmonics. 

Chapter 4 investigates the propagation of the fundamental mode of edge waves (ES0) along 

sharp and curved corners of thin-walled structures. The experimental studies demonstrate the 

ability of the ES0 propagating through multiple sharp corners. Further numerical studies show 

that the rounded corners, with radius-to-wavelength above 3, have no significant impact on the 

displacement amplitude of edge waves. The numerical simulations also show that the second 

harmonic generated due to the interaction between fatigue crack and the edge waves can 

propagate through corners as well. This finding is used in a feasibility study focusing on 

detection and localisation of fatigue cracks in the inaccessible locations.  

Chapter 5 further explores the fundamental mode of edge wave propagation in the non-

ideal (curved) edges of thin-walled structures. The SAFE method is implemented, and the 

comparison between the calculated wave properties and the theoretical results shows an 

excellent agreement. This agreement provides the confidence to investigate the wave properties 

of edge waves by the application of the SAFE method. Previously, the wave properties of edge 

waves were obtained largely based on the derived theoretical solutions. In addition, the quasi-

fundamental antisymmetric mode of edge wave (QEA0), which is an analogue of the 

fundamental mode of edge wave for non-ideal geometries, demonstrates a low energy decay 

and can propagate for long distances, while its symmetric counterpart (QES0) exhibits strong 

dispersion. The QEA0 is further studied for the purpose of defect inspections. The conducted 

studies indicate a good sensitive to crack-like defects with the characteristic length of more 

than 0.1 wavelength.  

Chapter 6 focuses on the evaluation of the length of high-cycle fatigue crack, which is 

partially closed due to the plasticity-induced crack closure phenomenon. The experimental 

studies have demonstrated that the reflected and transmitted signals at different frequencies of 

the incident ES0 waves correlate very well with the length of the opened region of fatigue 

cracks. An advanced FE model has been developed to simulate the wave interactions associated 

with plasticity-induced closure of fatigue cracks. In addition, the numerical results show that 
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the increase of tensile pre-stress levels leads to the reduction of crack closure near the crack 

tip, which allows the fatigue crack length to be evaluated more accurately.  

Chapter 7 summarizes findings of the present research and outlines the recommendations 

for the future studies. 
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Abstract 

Fatigue damage is difficult to detect and evaluate non-destructively, specifically at its early 

stages (before the macro-crack formation). In this study, fatigue damage is evaluated based on 

the growth rate of the combinational harmonics generated by mixing of two fundamental 

symmetric mode (S0) of Lamb waves in the low frequency range. The incorporation of the 

phase reversal approach to the wave mixing method could potentially improve the evaluation 

of the combinational and second harmonics and avoid the influence of other undesirable 

harmonics. A series of parametric case studies are carried out using the three-dimensional (3D) 

finite element (FE) method to investigate the effects of the excitation frequencies and time 

delay of the incident waves in wave mixing on the transient response of a weakly-nonlinear 

material. The numerical results and experimental results show that the sum combinational 

harmonic and second harmonics are sensitive to weak material nonlinearities. Further 

experiments on damaged samples by cyclic loading demonstrate that the sum combinational 

harmonic has much better sensitivity to the progressive fatigue damage than the the second 

harmonics. In general, the outcomes of this study indicate that the damage evaluation of early 

stage fatigue damage is feasible and effective with the wave mixing method using the S0 waves 

generated at low frequency, and the phase-reversal approach improves considerably the quality 

of experimental results in the fatigue damage evaluation.  

 

Keywords: Nonlinear Lamb wave mixing, phase-reversal approach, material nonlinearity, 

fatigue damage, structural health monitoring 
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2.1. Introduction 

Non-destructive evaluation (NDE) and structural health monitoring (SHM) are 

undisputedly important for maintaining structural integrity, specifically for structures working 

under cyclic loading. It is well recognized that progressive material degradation due to fatigue 

can lead to structural failures. Fatigue damage is difficult to evaluate at the early stage (before 

the formation of the macro crack) using the traditional NDE, which have been developed for 

evaluation of isolated material defects, discontinuities and inhomogeneities [1]. Relatively 

recently, nonlinear guided waves have attracted significant attention. In particular, these waves 

exhibit a good sensitivity to contact acoustic nonlinearities (CAN) [2-4] as well as to material 

nonlinearities [5-7]. The conventional approach relies on the second harmonic generation by 

using the cross-mode method, from the first order symmetric mode to the second order 

symmetric mode (S1-S2) [8, 9]. However, the cross-mode method requires a certain wave mode 

pair to achieve the synchronism and non-zero power flux conditions [10, 11], which are limited 

to few pairs in the high frequency range only [12]. Moreover, the main constraints of the cross-

mode method are the influence of multi-modal and highly dispersive waves in the high 

frequency range (in the frequency range of MHz) on the accuracy of the experimental results. 

Hence, the detected signal can be severely distorted due to the coupling of the multiple modes 

[13]. In addition, the wave propagation distance, which is suitable for experimental 

measurements can be quite short due to the wave dispersion. 

 

2.1.1. Combinational harmonic generation  

The theoretical framework for describing the generation and propagation of the second 

harmonic using fundamental symmetric mode (S0) of guided wave at low frequency have been 

provided by Muller et al. [14]. In this work, the conditions of the internal resonance for S0 wave 

were derived. Wan et al. [15] suggested that S0 wave is suitable for characterising weak 

material nonlinearities using the second harmonic. The maximum cumulative propagation 

distance of S0 wave was examined numerically [15, 16], and these studies showed that S0 wave 

in the lower frequency range can have a rather long propagation distance where the 

accumulation rate of the second harmonics is linear.  

The utilisation of combinational harmonics can provide more information of the damage if 

compared with the conventional second harmonic [17, 18]. The wave mixing method can be 

used to generate second harmonics at the double of the fundamental frequencies at 2fa and 2fb, 
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as well as combinational harmonics at fa + fb and fb - fa, simultaneously. Ishii et al. [19] and 

Hasanian and Lissenden [20] conducted a study on the selection of wave mode pairs in wave 

mixing. Several studies demonstrated that the combinational harmonics may be more sensitive 

to micro-scale damage or defects than the second harmonics in the low frequency range [21-

23]. However, this conclusion still requires further studies. The third order harmonics can also 

be generated using the wave mixing method. Li et al. [24] assessed the generation of the third 

order harmonics using the cross-mode method. It is also generally agreed that one of the main 

advantages of the wave mixing method is the minimisation of  the nonlinearities associated 

with the instrumentation [25, 26]. The quasi-synchronised wave provides a better flexibility in 

the selection of the excitation frequency. It was demonstrated that quasi-synchronised waves 

can be used for the collinear wave mixing [26-28], which is the focus of the current study. 

Meanwhile, the noncollinear wave mixing and counter-propagating wave mixing methods are 

more suitable for the localised defect evaluation [29-31].  

 

2.1.2. Extraction of harmonics using phase reversal approach 

The phase reversal approach can be applied to enhance the characterisation of weak 

material nonlinearities. Kim et al. [32] showed that the phase reversal approach can be used to 

extract and characterise the second harmonic, while the fundamental harmonics and the third 

order harmonic can be supressed. Some studies focusing on metallic structures applied this 

approach for bulk waves [33, 34]. Li et al. [35] applied the phase reversal approach to extract 

the second harmonic using cross-mode method for the evaluation of low-velocity impact 

damage in composite plates, and the phase velocity matching and group velocity matching 

conditions should be satisfied [36]. Shan et al. [37] investigated the adhesive nonlinearity of a 

bonding layer using the low-frequency Lamb wave. The second harmonic due to the adhesive 

nonlinearity was extracted using the phase reversal approach. Their study suggested that the 

phase reversal approach may have an excellent performance if applied to the evaluation of the 

weak material nonlinearity. In this case the magnitudes of the amplitudes of the generated 

harmonics are usually much smaller than the corresponding harmonic amplitudes due to CAN 

[38, 39]. The second harmonic due to the CAN in a pipe was extracted using phase-reversal 

approach [40], and the envelop of the extracted signal in the time-domain was used for the 

quantitative evaluation of damage.  
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The studies focused on investigating the wave mixing of S0 Lamb waves were limited, 

especially for the low frequency range. In the low frequency range, the synchronism and non-

power flux conditions are achieved approximately, as the phase velocities of the fundamental 

frequency and the sum of the fundamental frequencies, and the mode shapes in the thickness 

direction are almost identical. In addition, the group velocities of S0 waves are also very close 

at low frequency, the latter has been identified as an additional condition for wave mixing [17, 

41], specifically for the co-directional collinear wave mixing [20]. The time delay of the 

incident wave may be applied if the two incident waves have matched group velocities, which 

allows that the incident waves to be generated by different excitation sources [42]. 

In this study, the phase reversal approach is incorporated into the wave mixing method. 

Further, the sensitivity of the combinational harmonics to weak material nonlinearities is 

investigated experimentally and numerically for the case of the wave mixing of two low-

frequency S0 waves. We also address the feasibility of the implementation of the phase-reversal 

approach using the collinear wave mixing to evaluate the second and combinational harmonics. 

The outcomes of this study provide basic knowledge and preliminary results, which can be 

implemented in the development of new damage detection techniques.   

This paper is organised as follow. Section 2.2 introduces the phase reversal approach 

and wave mixing method. It also provides the theoretical background for mathematical 

modelling of the effects of material nonlinearities on wave generation. Section 2.3 presents a 

three-dimensional (3D) finite element (FE) model for simulating the nonlinear wave mixing. 

Parametric studies are performed to investigate the performance of different excitation 

frequency pairs in response to the weak material nonlinearities. It also investigates the effect 

of time delay of the incident waves on the harmonic wave generation. Then, Section 2.4 

presents experimental results on wave mixing obtained using one-dimensional (1D) laser 

vibrometer. The effect of fatigue damage on wave generation is investigated using the wave 

mixing method and phase reversal approach. The experimental results also support the 

outcomes of the FE modelling provided in the previous section. Finally, the conclusions from 

the present study are drawn in Section 2.5.    
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2.2. Theoretical background 

2.2.1. Nonlinear response of wave mixing 

Assuming the nonlinearity is considerably small compared with the linear wave 

components, and therefore the perturbation method can be applied [43, 44]. Using the 

superposition of the homogeneous solution and the nonhomogeneous solution, and this leads 

to the final solution which represents the original displacement field of mixing wave,  

𝑢 (𝑥, 𝑡)(0°) = 𝐴𝑎 𝑠𝑖𝑛(𝑘𝑎𝑥 − 𝜔𝑎𝑡) + 𝐴𝑏 𝑠𝑖𝑛(𝑘𝑏𝑥 − 𝜔𝑏𝑡)

−
𝛽𝑥

8𝑐2
{𝐴𝑎

2𝜔𝑎
2 𝑐𝑜𝑠2(𝑘𝑎𝑥 − 𝜔𝑎𝑡) + 𝐴𝑏

2𝜔𝑏
2 𝑐𝑜𝑠2(𝑘𝑏𝑥 − 𝜔𝑏𝑡)

+2𝐴𝑎𝐴𝑏𝜔𝑎𝜔𝑏 𝑐𝑜𝑠[(𝑘𝑎 + 𝑘𝑏)𝑥 − (𝜔𝑎 + 𝜔𝑏)𝑡]

+2𝐴𝑎𝐴𝑏𝜔𝑎𝜔𝑏 𝑐𝑜𝑠[(𝑘𝑏 − 𝑘𝑎)𝑥 − (𝜔𝑏 − 𝜔𝑎)𝑡]}

 (2.1) 

where 𝐴𝑎 ,  𝐴𝑏 ,  𝜔𝑎 ,  𝜔𝑏, 𝑘𝑎  and 𝑘𝑏  are amplitude, angular frequencies, and wavenumber of 

waves a and b. c is the wave velocity. 𝛽 is the relative nonlinear parameters. Based on the 

Equation (2.1), the phase-reversed displacement field (with 180° phase shift) of the wave 

mixing can be determined. The phase reversal approach is carried out through superposition of 

the original displacement field and phase-reversed displacement field as shown in Equation 

(2.2). 

𝑢 (𝑥, 𝑡)(0°+180°) = −
𝛽𝑥

8𝑐2
{2𝐴𝑎

2𝜔𝑎
2 𝑐𝑜𝑠2(𝑘𝑎𝑥 − 𝜔𝑎𝑡) + 2𝐴𝑏

2𝜔𝑏
2 𝑐𝑜𝑠2(𝑘𝑏𝑥 − 𝜔𝑏𝑡)

+4𝐴𝑎𝐴𝑏𝜔𝑎𝜔𝑏 𝑐𝑜𝑠[(𝑘𝑎 + 𝑘𝑏)𝑥 − (𝜔𝑎 + 𝜔𝑏)𝑡]

  +4𝐴𝑎𝐴𝑏𝜔𝑎𝜔𝑏cos [(𝑘𝑏 − 𝑘𝑎)𝑥 − (𝜔𝑏 − 𝜔𝑎)𝑡]}

 (2.2) 

The relative nonlinear parameters of second harmonic (𝛽′) and combinational harmonics (𝛽±
′
) 

are defined in Equations (2.3a) and (2.3b), respectively. 

𝛽′ =
𝐴2

𝐴1
2  (2.3𝑎) 

𝛽±
′ =

𝐴𝑏±𝑎
𝐴𝑎𝐴𝑏

 (2.3𝑏) 

where 𝐴1 is the amplitude of the linear wave response, 𝐴2 is the amplitude of second harmonic, 

and 𝐴𝑏±𝑎 represent the amplitude of combinational harmonics.  

The amplitudes of the displacements in the nonlinear wave components in Equation 

(2.2) are doubled in comparison with the classical solution, Equation (2.1), due to the 

application of the phase-reversed approach. The corresponding frequency spectrum can be 
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obtained using the Fourier transform, and it is schematically illustrated in Figure 2.1, where fa 

and fb are the frequencies of waves a and b, respectively.  

 

  

Figure 2.1. Schematic diagram of phase-reversal approach incorporated into wave mixing 

method in frequency spectrum 

 

As shown in  Figure 2.1, the generation of the linear response corresponding to the 

fundamental frequencies is supressed with the phase reversal approach, and only the second 

harmonics and combinational harmonics remained.  In addition to the elimination of the 

fundamental harmonics, the phase reversal approach also supresses the third order harmonics 

[38]. All these features can be considered as a significant advantage of the present approach.  

It can be noted that the phase reversal approach can also be applied for enhancing the 

evaluation of the third order harmonics by subtracting the original and phased-reversed 

displacement fields. However, the enhancement of the third order harmonic results in the 

cancellation of the second order harmonics. The present study focuses on the sum 

combinational harmonic (fa + fb), and therefore, the fundamental harmonics at excitation 

frequencies and the third order harmonics are minimized after the superposition of the original 
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and phased-reversed displacement fields. In the present study, a circular PZT is utilised to 

generate the incident waves, which may be considered as a source of circular-crested waves. 

The phase reversal approach is still applicable in this case, and the circular-crested waves 

asymptotically approach the straight-crested waves, which can be considered as the plane 

waves at long propagation distances, from the transient FE studies, say longer than three 

wavelengths.  

 

2.2.2. Modelling of material nonlinearity 

The material nonlinearities and field equations can be incorporated into the FE 

modelling. Below we briefly overview the basic equations and procedure. The classical 

infinitesimal theory only considers the second order terms, and therefore the theory is limited 

to linear materials. The third order terms of the Murnaghan’s strain energy function can also 

be incorporated into FE for the simulation of material nonlinearities as demonstrated in the 

previous studies [45, 46]. 

Using the reference configuration 𝑿 to describe the current configuration of material 𝒙 

[11], the displacement vector 𝒖 and displacement gradient tensor 𝑭 are expressed as  

𝒖 = 𝒙 − 𝑿 (2.7𝑎) 

𝑭 =
𝜕𝒙

𝜕𝑿
= 𝑰 + 𝑯 (2.7𝑏) 

where  𝑰 denotes identity tensor, and 𝑯 denotes the displacement gradient, which can be further 

expressed as 𝑯 = 𝜕𝒖/𝜕𝑿. The second Piola-Kirchhoff stress for an isotropic medium can be 

expressed in terms of Murnaghn’s strain energy function 𝑊 in respect of the Green-Lagrange 

strain tensor 𝑬 [47]. 

𝑻𝒑𝒌𝟐 =
𝜕𝑊(𝑬)

𝜕𝑬
(2.8𝑎) 

𝑬 =
1

2
(𝑯 + 𝑯𝑇 +𝑯𝑇𝑯) (2.8𝑏) 

The Murnaghn’s strain energy function [48] can be expressed using principal invariants 𝑖1, 𝑖2 

and 𝑖3, 

𝑊(𝑬) =
1

2
(𝜆 + 2𝜇)𝑖1

2 +
1

3
(𝑙 + 2𝑚)𝑖1

3 − 2𝜇𝑖2 − 2𝑚𝑖1𝑖2 + 𝑛𝑖3 (2.9) 
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where 𝜆 and 𝜇 are Lame’s elastic constants. 𝑙, 𝑚 and 𝑛 are third order elastic constants. The 

principal invariants can be expressed as 𝑖1 = 𝑡𝑟(𝑬), 𝑖2 =
1

2
[𝑖1
2 − 𝑡𝑟(𝑬)2], 𝑖3 = 𝑑𝑒𝑡(𝑬). 

Hence, the Cauchy stress can be obtained in terms of the second Piola-Kirchhoff stress 𝑻𝒑𝒌𝟐 

and deformation gradient 𝑭 as 

𝜎 = 𝑱−1𝑭
𝜕𝑊(𝑬)

𝜕𝑬
𝑭𝑇 (2.10) 

where 𝑱−1 is the Jacobian determinant of deformation gradient 𝑭, and the Equation (2.10) is 

applicable for the formulation of the constitutive behaviour of material in the VUMAT 

subroutine [16], which can be implemented in ABAQUS/Explicit for modelling the weak 

material nonlinearity.   

 

2.3. Numerical case studies 

2.3.1. 3D finite element model 

The wave propagation behaviour was simulated in ABAQUS/Explicit using a 3D FE 

model. The material properties of 6061-T651 aluminium plate are listed in Table 2.1 [49], 

which are consistent with the material properties utilised in the experimental study (in the 

experimental studies section).  

 

Table 2.1. Material properties of 6061-T651 aluminium at intact conditions [49] 

𝜌 (kg∙m-3) λ (GPa) μ (GPa) l (GPa)  m (GPa) n (GPa) 

2704 54.3 27.2 -281.5 -339.0 -416.0 

 

The thickness of the plate is 1.6 mm and the reduced dimension of plate was modelled 

to reduce the computational cost. Hence, the symmetric boundary conditions were applied, and 

the width of the plate is 400 mm with the length of 800 mm as shown in Figure 2.2.  The highest 

excitation frequency was 200 kHz because of the quasi-synchronism and group velocity 

matching based on the dispersion curve (Figure 2.8a shown in the experimental validation of 

3D FE model section). Therefore the element size of 0.4 mm was selected in the FE simulation 

to ensure more than 20 elements per wavelength [50]. Eight layers of element are applied in 
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the thickness direction, and eight-node linear brick element with reduced integration (C3D8R) 

was used in the FE model.  

 

  

Figure 2.2. 3D FE model 

 

A quarter of circular PZT was simulated using the problem symmetry, and the 

fundamental Lamb wave mode was excited by applying vertical nodal displacement with 7 µm 

amplitude on the nodes of the quarter of circular PZT. A cyclindrical coordinate was used for 

the PZT to simulate the generation of circular-crested waves. The symmetric boundary 

conditions can also prevent the generation of edge waves and ensure the measured waves are 

Lamb waves. The first measurement point is set at 400 mm from the centre of the PZT and the 

remaining measurement points were calculated with an interval of 10 mm, which ensure the S0 

wave and A0 wave are completely separated since the S0 wave propagates much faster than the 

A0 wave mode in the low frequency range. Therefore, the undisturbed S0 wave can be measured 

at the selected points. The vertical nodal displacement was calculated at the top surface of the 

plate (in the x3 direction), which is cosnsistent with the experimental measurements in the next 

section. A small value of damping was added in the FE model to ensure the computational 

stability. The Hann window was employed on the carrier frequencies, and two fundamental 

waves were pre-mixed to generate the excitation signal. The sensitivity of varying frequency 

pairs for wave mixing in response to weak material nonlinearites and the effect of time delay 

on the incident waves are studied using numerical parametric studies as discussed in the 

following sections. 
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2.3.2. Effect of varying excitation frequencies on wave mixing  

In Table 2.2, four cases of frequency pairs for wave mixing are considered to investigate 

the sensitivity of varying excitation frequencies on weak material nonlinearity. The frequency 

pairs of wave mixing are selected based of quasi-synchronous phase velocity in the low 

frequency range from 100 kHz to 200 kHz as shown in the dispersion curve (Figure 2.8a in the 

experimental studies section). Different numbers of cycles are used for the higher frequency 

wave b, to pair with the time duration of the lower frequency wave a. 

 

Table 2.2. Different cases of wave mixing frequency pairs with varying excitation 

frequencies 

Case Fundamental 

frequency (𝑓𝑎) 

Number of 

cycles (𝑁𝑎) 

Fundamental 

frequency (𝑓𝑏) 

Number of 

cycles (𝑁𝑏) 

1 125 kHz 8 cycles 175 kHz 8 cycles 

2 130 kHz 8 cycles 170 kHz 9 cycles 

3 135 kHz 8 cycles 185 kHz 10 cycles 

4 145 kHz 8 cycles 185 kHz 9 cycles 

 

 

Figure 2.3. FE simulated relative nonlinear parameter of (a) sum combinational harmonic of 

different excitation frequencies in wave mixing and (b) comparison with second harmonics 

and combinational harmonics in Case 4 
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The second harmonics and combinational harmonics are extracted by the superposition 

of the original signal and the phase-reversed signal in the time-domain, and the measured time-

domain signals are analysed using fast Fourier transform (FFT). The amplitude of the 

fundamental harmonics and second order harmonics of original signal in frequency spectrum 

is nearly identical to the amplitude of the phase-reversed signal. The relative nonlinear 

parameter of superposed signal showed approximately doubled amplitude compared with that 

of the original signal. The phenomenon agrees well with the Equation (9a). Figure 2.3a shows 

the relative nonlinear parameters of sum combinational harmonic of varying excitation 

frequencies after using phase reversal approach. The linearly proportional increase of relative 

nonlinear parameters with propagation distance is observed in all four cases, which indicates 

the cumulative effect due to the weak material nonlinearities. In particular, Case 4 shows higher 

amplitude of sum combinational harmonic generation, which can be considered as better 

performance to weak material nonlinearities than other frequency pairs of wave mixing. The 

second and combinational harmonics of Case 4 are compared in Figure 2.3b, and the relative 

nonlinear parameters are normalized about the value of sum combinational harmonic at the 

first measurement point since one of the main focus of this study is on the performance of sum 

combinational harmonic. The results suggest that the sum combinational harmonic (fa + fb) has 

better performance compared with the second harmonics (2fa and 2fb). The difference 

combinational harmonic (fb - fa) in Figure 2.3b shows negligible harmonic cumulation, which 

is likely due to the normal excitability of the low-frequency S0 wave [51]. The out-of-plane 

displacement is received, and the sensing sensitivity of S0 wave is lower at the low frequency 

(fb - fa) compared with the high frequency (fa + fb). Hence, the second harmonics (2fa and 2fb) 

and sum combinational harmonic (fa + fb) are the focus of the experimental studies.  

 

2.3.3. Effect of time delay on the incident waves 

The time delay can be applied for S0 wave mixing in the low frequency range. In this 

section, the effect of the time delay on the generation of combinational harmonic is investigated, 

and due to space limitations only the results of Case 4 are shown in Figure 2.4. The varying 

time delays were applied on the higher frequency wave b, from 0 µs to 6.6 µs, and the peaks 

of two fundamental waves in time domain are matched when the time delay is 3.3 µs.  

Figure 2.4 shows the frequency spectrum of the original signal with varying time delay 

in wave mixing. In Figure 2.4a, the second harmonics (2fa and 2fb) are coupled with the sum 
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combinational harmonic (fa + fb), which is very difficult for the harmonic analysis of 

combinational harmonics and second harmonics. The second harmonics and the sum 

combinational harmonic are separated asymptotically with the increase of the time delay from 

0 µs to 3.3 µs, and reached the minimum overlapping at time delay of  3.3 µs (as shown in 

Figures 2.4b and 2.4c). The overlapping between second harmonics and sum combinational 

harmonic increased from time delay of 3.3 µs to 6.6 µs (in Figure 2.4d). Hence, the time delay 

of 3.3 µs is used for wave mixing of Case 4, considering that the second harmonics and the 

sum combinational harmonic need to be analysed for comparison. 

 

 

Figure 2.4. FE simulated effect of time delay on the incident waves (a) 0 µs; (b) 1.65 µs; (c) 

3.3 µs and (d) 6.6 µs in Case 4 

 

2.4. Experimental Studies  

2.4.1. Experimental setup 
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The experimental setup for guided wave testing is shown in Figure 2.5. The pre-mixing 

tone-burst pulse was generated using a NI PXIE-5122 signal generation module, which was 

amplified by the Ciprian high-voltage power amplifier using peak-to-peak voltage of 160V. 

The amplified excitation signal was passed through a 10mm diameter and 0.5mm thickness of 

circular PZT, and was then applied to an intact plate specimen (length=1100 mm, width=508 

mm, thickness=1.6 mm). The PZT was bonded on the specimen using thin layer of conductive 

epoxy, and the nonlinearity of which is trivial [37], and therefore, it is neglected in this study. 

The specimen was fixed on a frame, and placed perpendicular to the 1D laser head. Reflective 

painting was applied over the scanning area to enhance the signal reflection for 1D laser 

vibrometer. The same four cases (see Table 2.2) as in the numerical case studies were 

reproduced in the present experiments. 

  

 

Figure 2.5. Experimental setup for guided wave testing using 1D laser vibrometer 

 

The first measurement point is located 400 mm from the excitation source, and the 

interval between remaining measurement points is 10 mm, which is identical to the numerical 

case studies described in the numerical case studies section. The out-of-plane displacement 
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field was measured using by 1D laser vibrometer [52], and the data was acquired by the PSV-

400 acquisition system, which was connected to the computer. The acquisition system was also 

connected to the NI PXIE-5122 signal generation module to synchronize the excitation signal. 

The sampling frequency was set at 25.6 MHz with 39.06 nanosecond sampling resolution. Each 

measurement was obtained by averaging of 1200 signal acquisition to improve the signal-to-

noise ratio. Low pass filter form 0 kHz to 800 kHz was applied as the low frequency range is 

the focus of this study. The measurement for each frequency pair was repeated four times with 

room temperature of approximately 20 °C, and the time interval between each group of 

measurement was around 4 hours with all instruments reconnected and calibrated. 

 

2.4.2. Weak material nonlinearity 

The S0 waves are extracted from the obtained time-domain displacement signals (see 

Figure 2.8b). The phase-reversal approach is then applied by superposition of the original 

signals and the phase-reversed signals in the time-domain. Figure 2.6b indicates that the phase-

reversal approach provides an excellent improvement to the quality of experimental data. In 

particular, it minimises the fundamental harmonics, and hence, the second harmonics and 

combinational harmonics can be evaluated more efficiently. The third order harmonics are also 

suppressed, which also reduces the overlapping of harmonics and improves the overall quality 

of the signal processing. It can be noted that the original signal and the phase-reversed signal 

have a small discrepancy as shown in Figure 2.6a, which are identical in the FE simulations. 

The small discrepancy in the frequency-domain may be caused by a minor amplitude difference 

between the original signal and the phase-reversed signal in the time-domain. The asymptotic 

expression of the zeroth order Bessel function of the first kind is related to the phase lag, in the 

case when the circular-crested waves are generated using circular PZT [53]. The vertical 

displacement field of the circular-crested waves are directly associated with the zeroth order 

Bessel function of the first kind. Hence, the amplitude difference in displacement field may be 

associated with the phase difference between the original signal and the phase-reversed signal, 

which introduces additional phase shift of 𝜋 . In addition, there are measurement noise in 

experiment [54], and the displacement amplitude is relatively small in out-of-plane direction. 

Since the small discrepancy of second and combinational harmonics in original signal and the 

phase-reversed signal, the second and combinational harmonics of superposed signal are 
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considered as the superposition of that of the original signal and that of the phase-reversed 

signal, which agrees well with the results shown in Figure 2.6b. 

 

 

Figure 2.6. Experimentally measured weak material nonlinearity using phase reversal 

approach in frequency spectrum at the first measurement point of Case 4. (a) Original signal 

and phase-reversed signal, and (b) signal obtained after superposition 

 

In Figure 2.7, the sum combinational harmonic (fa + fb) for varying wave mixing 

frequency pairs is plotted against the wave propagation distance. The relative nonlinear 

parameters of the original signal, phase-reversed signal and the superposed signal are analysed 

for each frequency pair of wave mixing. The results of Figure 2.7 show that the relative 

nonlinear parameter is linearly proportional with the propagation distance for all four 

considered cases. The best fit functions are shown with the error bars, and the results show 

linear increasing trend. The R-square value indicates the level of difference between the 

observed data and the fitted function. The higher value of R-square indicates a better 

performance on the accumulation of material nonlinearity. The sum combinational harmonic 

shows better performance with improved R-square value after the phase-reversal approach was 

applied compared with that of the original signal and the phased-reversed signal. This 

phenomenon is observed in all four cases of wave mixing frequency pairs, and this could be 

considered as the improved quality of experiments due to the extraction of sum combinational 

harmonic. 
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Figure 2.7. Experimentally measured relative nonlinear parameters of sum combinational 

harmonic generation on weak material nonlinearity, (a) Case 1, (b) Case 2, (c) Case 3, and (d) 

Case 4 

 

The second order harmonics and third order harmonics show overlapping in the 

frequency spectrum of Case 1 and Case 3 before phase-reversal approach is applied. This could 

be one of the reasons of the relative nonlinear parameter discrepancy in Case 1 and Case 3 (see 

Figures 2.7a and 2.7c). The second harmonics and combinational harmonics are extracted 

efficiently using phase-reversal approach, which reduces the overlapping significantly, and 

therefore the phase-reversal approach could provide additional advantage on wave mixing in 

the low frequency range. In Figure 2.7d, Case 4 has a better performance with respect to the 

harmonic accumulation with a higher value of R-square, and the error bars are typically smaller, 

which are consistent with the results in the numerical case studies. The frequency pair of wave 

mixing corresponding to Case 4 is also applied to fatigue samples, the outcomes will be 

discussed in the progressive fatigue damage section. 
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2.4.3. Experimental validation of 3D finite element model  

The linear features of guided waves include the group velocity, phase velocity, and the 

waveform of mixing waves in time-domain. The group velocity and phase velocity of S0 waves 

are measured in numerical simulations and experiments. The frequency is measured from 100 

kHz to 200 kHz with 10 kHz interval. In the numerical simulations, the group velocity and 

phase velocity are measured up to 400 kHz to ensure that the FE model can accurately capture 

the second harmonic of the highest fundamental frequency. DISPERSE software is a 

commercial package, which utilises global matrix to calculate the phase velocity and the group 

velocity [55].  

 

 

Figure 2.8. Linear features of guided wave validation (a) dispersion curve and (b) time-

domain displacement signals of mixing wave at the first measurement point in Case 4 

 

Figure 2.8a shows a very good agreement between the DISPERSE results, FE 

simulation and experimental data. Staszewski et al. [52] argued that the peak amplitude of 1D 

laser-based measurement could be compared with the numerical simulation after normalization. 

The time domain signals of numerical simulations also matches well with the experimental 

data for all measurement points, when the numerical results are normalized by the peak 

displacement amplitude in experiment at the first measurement point for all the measurement 

points in numerical simulation. The comparison of time-domain displacement signals at the 



35 

 

first measurement point is shown in Figure 2.8b. The well-matched linear features of the S0 

waves suggest that the FE model provides a good prediction of linear guided wave propagation. 

 

Figure 2.9. Validation of relative nonlinear parameters of sum combinational harmonic 

against wave propagation distance in (a) Case 1, (b) Case 2, (c) Case 3 and (d) Case 4 

 

There are four wave mixing frequency pairs, which were simulated numerically and 

reproduced experimentally. The nonlinear response of wave mixing obtained numerically is 

validated experimentally after the normalization of the relative nonlinear parameters. The 

numerical results and the experimental results are normalized by the relative nonlinear 

parameter value at the first measurement point. The results show linear increasing trend due to 

the accumulation of material nonlinearity response over the propagation distance. The sum 

combinational harmonics of superposed signals are compared in Figure 2.9, and the results 

show very good agreement between numerical simulation and experimental results. In Figure 

2.9b,  the last two points are considered as the outliers of the best fitted line for Case 2. The 
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relatively large error bar at these two points may be caused by the small out-of-plane 

displacements after a long propagation distance [52]. However, the good prediction of the 

accumulation effect can be observed in this case since the increasing trends of the numerical 

simulations and experimental results are approximately identical. 

 

2.4.4. Progressive fatigue damage 

The aluminium specimen had length of 850 mm and width of 508 mm to meet the size 

constraints of the testing machine (INSTRON 1242). The specimen was connected with the 

testing machine with steel grips and 26 bolts, which were evenly distributed at the two sides of 

the specimen to improve the connection with the testing machine and distribute the cyclic 

loading evenly. The fatigue damage is introduced by applying the maximum tensile loading of 

90 kN (at R = 0.1) with loading frequency of 1.5 Hz to prevent the buckling of a slender 

specimen during the cyclic testing. The measurement is carried out with 5,000 fatigue cycles 

interval, and the specimen finally fails after 12,417 fatigue cycles in the bolting region, where 

material strength is weakened by the stress concentration due to the holes. The guided wave 

testing uses identical setup as shown in the experimental setup section, and the position of laser 

vibrometer and supporting frame of specimen remains unchanged to ensure the cumulative 

effect is measured consistently. However, the measurement points are moved forward to avoid 

boundary reflection of incident waves, and the first measurement point is at 190 mm from the 

excitation location, which is more than five wavelengths of the wave with lower excitation 

frequency. 

The results in Figure 2.10a show excellent sensitivity of the sum combinational 

harmonic (fa + fb) to the fatigue damage. The slope of linear trend obviously increases with the 

cumulation of fatigue damage. The results agree well with the previous study [32]. The R-

square value increases with the level of the fatigue damage. The reduced R-square value in 

intact plate compared with the same case in Figure 2.7d may be due to the reduced propagation 

distance. In Figure 2.10b, the sum combinational harmonic at the first measurement point 

rapidly increases from intact condition to the fatigue damage of 5000 cycles, and has slower 

increase from 5000 cycles to 10000 cycles. The results show that the sum combinational 

harmonic generation has a good sensitivity to the progressive fatigue damage, and the phase 

reversal approach is effective to extract and evaluate the  sum combinational harmonic.  
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Figure 2.10. (a) Experimentally measured relative nonlinear parameters of sum 

combinational harmonic using phase-reversal approach with different fatigue cycles against 

propagation distance, and (b) normalized relative nonlinear parameter at the first 

measurement point 

 

 

Figure 2.11. Comparison of sum combinational harmonic and second harmonics using 

phase-reversal approach with different fatigue cycles 

 

The sum combinational harmonic (fa + fb) and the second harmonics (2fa and 2fb) are 

compared in Figure 2.11, and the relative nonlinear parameter of fatigue cycles of 0 cycles, 

5000 cycles and 10000 cycles are shown for comparing the rate of accumulation of progressive 

fatigue damage. The slopes of second harmonics (2fa and 2fb) have increasing trend with the 

number of fatigue cycles. This shows the sensitivity of second harmonics of S0 waves at low 

frequency to the progressive fatigue damage, and it is consistent with the previous studies [15, 

56, 57]. The sum combinational harmonic (fa + fb) exhibits a better sensitivity to fatigue damage 

than the second harmonics (2fa and 2fb), and shows better consistency of linear increasing trend 

with propagation distance. The results suggest that the S0 wave mixing using phase-reversal 
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approach has an excellent performance, and it is effective for the evaluation of progressive 

fatigue damage in low cycle fatigue regime. 

 

2.5. Conclusion 

The wave mixing of two S0 waves show good sensitivity on the accumulation of fatigue 

damage. The results of the harmonic generation and accumulation show a better performance 

for the sum combinational harmonic (fa + fb)  compared with second harmonics (at 2fa and 2fb). 

The progressive fatigue damage can be explicitly determined by the extraction and evaluation 

of the accumulation rate of the second order harmonics. Overall, the phase-reversal approach 

combined with the wave mixing method for S0 waves at low-frequency exhibits a great 

potential, especially for challenging situations, e.g. when the generation of combinational 

harmonics is small and overlapped with third order harmonics. The findings of this study can 

be useful to practical application and development of SHM for continuous evaluation of 

damage, using the wave mixing method. 
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Abstract 

Evaluation of fatigue damage using nonlinear guided wave mixing has been studied extensively 

over the past decade. It was found that the combinational harmonics as a result of wave mixing 

of quasi-synchronized wave modes show attractive features and are sensitive to fatigue damage. 

However, there were very limited studies on the frequency pair selection and time shifting of 

the wave mixing signals. In this study, a method is developed and theoretical equations are 

implemented, which provides a guide on the selection of the wave mixing frequency pair. The 

proposed frequency pair selection method can advance the trial-and-error method that was 

generally used for low-frequency wave mixing, which has a large number of possible frequency 

pairs, and deliberate selection is needed to avoid the overlapping of the generated harmonics. 

A new time shifting technique is also proposed to enhance the generation of second and 

combinational harmonics due to the collinear wave mixing. This technique can be very useful 

when there are various limitations exist on the selection of the excitation frequencies. The 

efficiency of the proposed method is validated by a series of numerical and experimental 

studies. Overall, the new findings can be utilized to further advance the development of new 

damage detection methods using the guided wave mixing method.  

 

Keywords: combinational harmonics generation, frequency selection, fatigue damage, 

nonlinear guided waves, time shifting, wave mixing method. 
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3.1. Introduction 

Non-destructive evaluation (NDE) is important for maintaining the integrity and 

structural safety of potentially hazardous engineering structures. Fatigue damage is one of the 

main concerns as the conventional inspection methods are insensitive to early stage fatigue 

damage (i.e. before formation of macro-cracks). The latter stage can occupy up to 90% of the 

total fatigue life. The nonlinear features of guided waves, such as higher order harmonics and 

combinational harmonics, have been applied to evaluate early stage fatigue damage [1, 2]. In 

contrast to the linear features of guided waves, the nonlinear features of guided waves have 

been demonstrated to be more sensitive to the accumulation of fatigue damage [3-5], and are 

less affected by the change of the environmental and loading conditions [6-8]. Therefore, 

nonlinear guided waves have attracted significant interest over the past decade [8-11]. 

 

3.1.1. Second harmonic and combinational harmonic generation 

The previous studies have demonstrated that the second harmonics are sensitive to the 

presence of fatigue damage. The generation of these harmonics requires to meet two conditions, 

the synchronism [12, 13] and non-zero power flux [14, 15]. The second harmonics are typically 

generated using the cross-mode method, in which the generated second harmonic is at a higher 

order wave mode than the excited wave mode, e.g., from first-order symmetric mode (S1) to 

second-order symmetric mode (S2) of Lamb wave, S1-S2 [16-18]. However, the application of 

the cross-mode method is possible only for specific pairs of frequencies, which satisfy the 

synchronism conditions (i.e., matching of the phase and group velocities) [19]. These 

conditions are possible to meet exactly only in the high-frequency excitation in megahertz 

range. However, the wave excitation in this frequency range generally requires specifically 

designed angle transducer, and the waves at this frequency range are highly dispersive. These 

constraints make the signal processing and extraction of nonlinear features become very 

challenging. They significantly limit practical applications of the cross-mode method. 

The quasi-synchronism conditions were proposed by Muller et al. [20]. They 

demonstrated the possibility of the generation of the cumulative second harmonics using quasi-

synchronized wave modes, such as from the fundamental symmetric mode (S0) to S0 of Lamb 

waves, S0-S0. Yang et al. [21] investigated the second harmonic generation of S0 wave in the 

low frequency range due to the interaction of the incident wave with a contact acoustic 
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nonlinearity (CAN). Wan et al. [22] and Zuo et al. [23] investigated the second harmonic 

generation of the S0 wave in the low frequency range due to material nonlinearities. These 

studies indicated that the S0 wave is sensitive to the weakly material nonlinearity, and the 

amplitude of the second harmonic increases linearly with the propagation distance. The 

fundamental edge mode (ES0) waves can also be considered as quasi-synchronized [24], and 

the generation of second harmonic of ES0 wave was also investigated [25]. 

In the wave mixing method, second harmonics and combinational harmonics can be 

generated simultaneously. This method has attracted significant focus in recent investigations. 

In particular, it was found that the combinational harmonic at the sum frequency (fa + fb) and 

the difference frequency (fb – fa) are sensitive to both material nonlinearity and the CAN. The 

utilization of the combinational harmonics for damage characterisation has many advantages 

compared to the conventional second harmonic generation, especially for avoiding the 

instrumentation nonlinearity [26, 27]. The latter was one of the challenges reported for the 

nonlinear guided wave approaches in the literature. There were several studies showed that the 

combinational harmonic has better performance compared with the second harmonic, 

especially for the third-order combinational harmonics using three-wave mixing [28, 29]. The 

phenomena of the third-order harmonic generation due to wave mixing method were also 

studied theoretically in the literature [13, 30]. However, the current study focuses on the second 

harmonics and second-order combinational harmonics. 

In wave mixing method, there are three approaches were used for the wave excitation 

in the literature. The wave mixing can be (i) codirectional collinear waves, (ii) counter-

propagating collinear waves, and (iii) noncollinear waves. The codirectional collinear wave 

mixing is analogous to the bulk wave mixing [31], and two incident waves propagate in the 

same direction. The advantage of this approach is a relatively large wave mixing zone, and the 

weakly material nonlinearity can be accumulated [5, 32], which is important for the distributed 

material nonlinearity evaluation. The counter-propagating collinear wave mixing and 

noncollinear wave mixing have a smaller mixing zone compared to the codirectional collinear 

wave mixing. A secondary wave can be generated in the wave interaction zone. The 

noncollinear wave mixing requires a specific wave propagation angle, at which the two incident 

waves are mixed [33]. The codirectional collinear wave mixing was applied for characterizing 

the distributed fatigue damage [5, 34, 35], and the fatigue cracks [29, 36, 37]. The counter-

propagating collinear wave mixing and noncollinear wave mixing are generally applied to the 

evaluation of localized damage or defects (e.g. CAN) [38-40]. The collinear wave mixing has 
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less restrictions than the noncollinear wave mixing [31], and it is more suitable for practical 

applications. For example, the noncollinear wave mixing requires specific excitation 

frequencies and wave propagation angle, which are difficult to achieve in practical environment. 

Therefore, the current study focuses on the collinear wave mixing. 

 

3.1.2. Wave mixing mode pair in the low frequency range 

As mentioned above, the nonlinear guided wave mixing method in the low frequency 

range has many attractive features; e.g. avoidance of the generation of multiple wave modes 

and less wave dispersion, which can simplify the signal processing [3, 22]. The low frequency 

excitation can be achieved by using a piezoelectric transducer (PZT) [41]. PZTs are more 

suitable for in-situ applications and structural health monitoring (SHM) compared to wave 

generation by wedge transducers, which are normally used for wave excitation in the high-

frequency range. 

The combinational harmonic generation of S0 wave in the low frequency range was 

studied using plate-like structures, and several studies demonstrated that S0 wave is a viable 

alternative to the cross-mode method using high-frequency wave mode pairs, e.g. S1-S2 pair 

[36, 42]. Several recent studies investigated the fundamental shear-horizontal mode (SH0) wave 

mixing [43] and the longitudinal wave mixing in pipes [44, 45]. As mentioned above, only a 

limited number of wave mode pairs can meet the synchronism conditions [19, 31]. On the 

contrary, in the entire low frequency range of quasi-synchronized waves, such as S0 waves, can 

be used for the wave mixing. Therefore, there are infinity numbers of quasi-phase matching 

frequencies can be selected in the low frequency range. However, no systematic studies have 

been carried out to provide a guide on the selection of the appropriate frequency pair of quasi-

synchronized waves for nonlinear guided wave mixing.  

If the selection of frequency pair for the wave mixing in the low frequency range is 

arbitrary, the generation of the sum combinational harmonic (fa + fb) can overlap with the 

second harmonics (2fa and 2fb), and the third order harmonics may also interact with both 

combinational and second harmonics. The coherent coupling and overlapping of the 

combinational and second harmonics may result in a dramatic increase of the complexity of 

harmonic analysis and signal processing. The conventional approach for the frequency pair 

selection for the low frequency wave mixing method has been based on the trial-and-error 

method [42, 46]. A number of parameters can affect the selection of frequencies for the wave 
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mixing, such as the dimensions and material properties of the specimen, the wave modes, and 

the capability of instrumentation. Hence, a significant amount of effort is required for 

determining a suitable frequency pair in the wave mixing. It is essential to predict the optimal 

frequency pair selection in wave mixing before numerous of trials. This paper provides a guide 

for the frequency selection of wave mixing method. The efficiency of this proposed method is 

validated by a series of numerical and experimental studies. 

 

3.1.3. Time shifting effect on the wave mixing 

The time shifting technique has no effect on the fundamental harmonic (at fa) and 

second harmonic (at 2fa), and therefore, it was rarely studied in the literature. However, the 

time shifting technique can be very useful for the wave mixing method. In particular, this 

technique was applied to adjust the wave mixing zone [31, 45, 47]. In the literature, there were 

only few unsystematic attempts carried out to enhance the performance of wave mixing method 

using the time shifting [42, 44]. However, these studies were based on the trial-and-error 

approach, and have not been supported by theoretical equations and were largely focused on a 

specific pair of frequencies.  

In this study, frequency pair selection method in wave mixing has been proposed based 

on the implemented theoretical equations. In addition, this study presents a new method to 

maximize the performance of the harmonic generation in wave mixing using the time shifting 

technique. It enhances the collinear wave mixing of quasi-synchronized waves by minimizing 

the level of overlap between the second harmonics and the combinational harmonics. The 

efficiency of the proposed method is investigated by a series of numerical simulations and 

experimental studies.  

This paper is organized as follow. Section 3.2 introduces the theoretical background of 

frequency pair selection in wave mixing, and then it proposes the time shifting optimization 

technique for wave mixing. Section 3.3 presents a three-dimensional (3D) finite element (FE) 

model, which is utilized to simulate the nonlinear wave mixing in a weakly nonlinear material. 

A series of parametric studies are carried out to illustrate the procedure of the proposed method 

and demonstrate the effect of frequency pair selection and time shifting on performance of 

wave mixing. Section 3.4 presents experimental studies, which validates the FE simulations in 

Section 3.3, and the proposed frequency selection and time shifting method. Finally, 

conclusions are drawn in Section 3.5. 
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3.2. Theoretical background 

3.2.1. Frequency selection in wave mixing method 

In this section, a wave mixing separation index (𝑆) is proposed to characterize the 

performance of the wave mixing based on the spectral separation of the two harmonics and the 

level of overlap between the harmonics. It determines the degree of interference that a harmonic 

suffers due to other harmonics sharing the frequency band. The frequency selection in wave 

mixing is essential for the generation of combinational harmonics, which may be overlapped 

with the second harmonics at the adjacent kernels. The sufficient spectral separation between 

the fundamental harmonics is critical to reduce the overlapping of combinational and second 

harmonics, and reduce the challenge of extracting the combinational and second harmonics. 

The overlapping of the combinational and second harmonics significantly increases the 

complexity of the harmonic analysis and signal processing. As an example, Figure 3.1a shows 

the overlapping of the sum combinational harmonic and second harmonics, which make the 

signal processing and extraction of harmonics become very challenging. The spectral 

separation between the fundamental harmonics is associated with the frequency difference 

between the fundamental frequencies, and the frequency bandwidth of the incident waves in 

the frequency spectrum. The frequency bandwidth of a single pulse has an inverse relationship 

with time duration of the pulse, which is known as Heisenberg uncertainty [48] and defined as 

𝑇𝑑 ∙ 𝐵𝑊 = 𝑐𝑜𝑛𝑠𝑡 (3.1) 

where 𝑇𝑑  represents the time duration of the pulse, and 𝐵𝑊 is the bandwidth in frequency 

spectrum. The time duration of the single pulse can be further related to the fundamental 

frequency and number of cycles. 

The Hann window is the function most frequently utilized in guided wave studies, and 

therefore, it is the focus of this study. The minimum separation between two Hann window 

tone-burst pulses in the frequency spectrum can be determined based on the Hann windowing 

features since the bandwidth of the pulse is equal to the bandwidth of the windowing function 

[49]. The Hann windowing features along with other types of windowing functions have been 

studied in detail by Harris [50]. The 6-dB bandwidth point was considered as critical level, 

which enables the determination of minimum separation point between two fundamental 

harmonics [50]. In particular, it was suggested that the crossover point of two kernels needs to 

achieve the sum of 6-dB bandwidth of two harmonics, and the concept of which is 

schematically illustrated in Figure 3.1b. 
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Figure 3.1. Schematic illustration of the crossover point and wave mixing separation index 

(𝑆) in (a) 𝑆 < 0; (b) 𝑆 ≥ 0. 

 

The crossover point is defined as the half-way point between two adjacent kernels (i.e., 

fundamental harmonics of wave a and wave b), 

𝑘𝑐𝑟 =
𝐵𝑊𝑓𝑎 + 𝐵𝑊𝑓𝑏

2
(3.2𝑎) 

where 𝑘𝑐𝑟 is the crossover point of fundamental harmonics of wave a and wave b. 𝐵𝑊𝑓𝑎 and 

𝐵𝑊𝑓𝑏 are the bandwidth of the two fundamental frequencies in frequency spectrum. The 6-dB 

reduction bandwidth of Hann window is determined as two bins of fundamental frequency Δ𝑘 

[50]. The Equation 3.2a therefore becomes  

𝑘𝑐𝑟
𝐻 =

𝐵𝑊𝑓𝑎
6𝑑𝐵 + 𝐵𝑊𝑓𝑏

6𝑑𝐵

2
= Δ𝑘𝑓𝑎 + Δ𝑘𝑓𝑏 (3.2𝑏) 

where Δ𝑘𝑓𝑎and Δ𝑘𝑓𝑏are the frequency bins of wave a and wave b, which can be determined by 

the corresponding sampling frequency 𝐹𝑠 and sampling number 𝑛𝑠, respectively.  

Δ𝑘 =
𝐹𝑠
𝑛𝑠

(3.3𝑎) 

𝐹𝑠 =
1

𝑑𝑡
(3.3𝑏) 
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where 𝑑𝑡 is the time interval. The time duration of the signal pulse can be expressed using the 

sampling number and time interval 

𝑇𝑑 = (𝑛𝑠 − 1)𝑑𝑡 (3.4𝑎) 

In addition to the Equation 3.4a, the time duration of Hann window pulse can also be expressed 

using the number of cycles and fundamental frequency of the incident wave. 

𝑇𝑑 =
𝑁

𝑓
(3.4𝑏) 

where 𝑁 is the number of cycles and 𝑓 is the fundamental frequency. Hence, the frequency bin 

Δ𝑘 in Equation 3.3a can be expressed in terms of fundamental frequency and number of cycles 

using Equations 3.4a and 3.4b. As mentioned earlier in this section, the spectral separation 

between two kernels is correlated with the frequency difference and bandwidth of two 

fundamental harmonics simultaneously. A wave mixing separation index (𝑆) , which can 

indicate the separation between fundamental harmonics in frequency domain, can be derived 

using the concept of crossover point of Hann window shown in Equation 2b as 

𝑆 = (𝑓𝑏 − 𝑓𝑎) − (
𝑓𝑎

𝑁𝑎 + 𝑓𝑎𝑑𝑡
+

𝑓𝑏
𝑁𝑏+𝑓𝑏𝑑𝑡

) (3.5𝑎) 

𝑆 can be used to characterize the separation of the two adjacent kernels of Hann window in 

arbitrary spectral location. The first term on the right-hand side of Equation 3.5 is the frequency 

difference (𝑓𝑏  > 𝑓𝑎), and the second term in brackets is the bandwidth of two fundamental 

harmonics. Equation 3.5a can be further simplified by considering that the term of subtraction 

in the bracket of Equation 3.4a is sufficiently small compared with the large sampling number 

𝑛𝑠, and hence, it is negligible for the approximate prediction and the 𝑆 parameter is simplified 

as 

𝑆 = (𝑓𝑏 − 𝑓𝑎) − (
𝑓𝑎
𝑁𝑎
+
𝑓𝑏
𝑁𝑏
) (3.5𝑏) 

The Equation 3.5b determines the spectral separation between the fundamental harmonics of 

wave mixing using Hann window, and therefore predicting the level of overlap of fundamental 

harmonics and the performance of wave mixing. The fundamental harmonics can be 

significantly overlapped in frequency domain, and become unresolvable in harmonic analysis 

when wave mixing separation index (𝑆) is a negative value (see Figure 3.1a). In Figure 3.1b, 

the increased value of wave mixing separation index (𝑆) indicates the increase of the spectral 
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separation between two kernels of fundamental harmonics, and therefore reducing the 

overlapping between the sum combinational harmonic (fa + fb)  and the second harmonics (2fa 

and 2fb). It should be noted that the proposed wave mixing separation index (𝑆) can be used 

for other types of window, and only slight modification is needed for 6-dB reduction bandwidth 

in Equation 2b.  

Theoretically, the greater value of the wave mixing separation index (𝑆) indicates a 

better performance of the wave mixing method in terms of the clarity and consistency of the 

generation of combinational harmonics. The good performance of the wave mixing method can 

be achieved by increasing the number of cycles of the waves or increasing the frequency 

difference between two fundamental frequencies. However, in experiments and practical 

applications, the boundary reflection may occur if too many cycles of the waves are used, 

especially when the specimen is not sufficiently large. On the other hand, the increase of 

frequency difference between two fundamental frequencies can also enhance the performance 

of wave mixing method. However, the frequency selection range of quasi-synchronized waves 

can be limited by the dispersion relation, generation of multiple wave modes and capability of 

instrumentation. Hence, it is required to consider the number of cycles and the fundamental 

frequencies simultaneously. It should be noted that the effect of time shifting between the two 

incident waves is not taken into the account in the Equation 3.5b, which will be further 

discussed in Section 3.2.2.  

 In addition to the overlapping of the combinational and second harmonics, the highest 

sidelobes generation due to the incident waves may affect the second harmonic of wave a (2fa) 

and the difference combinational harmonic (fb - fa). The central locations of the highest 

sidelobes are [51] 

𝑓𝐿𝑎 = 𝑓𝑎 − 2.36Δ𝑘𝑓𝑎 (3.6𝑎) 

𝑓𝐿𝑏 = 𝑓𝑏 + 2.36Δ𝑘𝑓𝑏 (3.6𝑏) 

where 𝑓𝐿 indicates the spectral location of highest sidelobe generation due to the incident waves. 

The Equations 3.6a and 3.6b can provide an improved insight into the influence of sidelobe 

generation due to the incident waves on the difference combinational harmonic generation, and 

the second harmonic generation, respectively. Therefore, additional consideration on frequency 

selection of wave mixing is needed when the difference combinational harmonic and second 

harmonic are important for harmonic analysis. 
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3.2.2. Time shifting in wave mixing method 

The wave mixing can be considered as the superposition of two Hann windowed waves 

with different fundamental frequencies and number of cycles in time-displacement domain. 

Time shifting of incident waves can be used to optimize the performance of wave mixing 

provided that the group velocities of two waves are matching. The Hann window tone-burst 

pulse of a single frequency wave with the consideration of time shifting can be expressed as 

Equation 7a. 

𝑢(𝑡) = {

0 ,                                                                            0 ≤ 𝑡 ≤ 𝑡0 

cos(2𝜋𝑓𝑡) [
1

2
−
1

2
𝑐𝑜𝑠 (

2𝜋

𝑇𝑑
(𝑡 − 𝑡0))] ,    𝑡0 ≤ 𝑡 ≤ 𝑇𝑑 + 𝑡0

(3.7𝑎) 

𝑡 = 0, 𝑑𝑡,∙∙∙, 𝑡0,∙∙∙, 𝑇𝑑 ,∙∙∙, 𝑇𝑡𝑜𝑡 (3.7𝑏) 

where 𝑡0 is the time shifting, and 𝑇𝑡𝑜𝑡 = 𝑇𝑑 + 𝑡0, which is the total time duration of Hann 

windowing pulse, and the expression of 𝑇𝑑 was shown in Equation 3.4b. Equations 3.7a and 

3.7b show that effect of time shifting can influence the carrier frequency and the Hann window 

in frequency spectrum simultaneously. Hence, the effect of time shifting on mixing wave and 

its generated harmonics are investigated in this section. The mixing wave in displacement field 

𝑢𝑚 can be considered as the superposition of two incident waves [52] as   

𝑢𝑚(𝑡) = 𝑢𝑎(𝑡) + 𝑢𝑏(𝑡) = 𝑥𝑎(𝑡)ℎ𝑎(𝑡) + 𝑥𝑏(𝑡)ℎ𝑏(𝑡) (3.7𝑐) 

where 𝑥𝑎  and 𝑥𝑏  represent the carrier frequencies. ℎ𝑎  and ℎ𝑏  represent the corresponding 

Hann window. The effect of time shifting on the frequency spectrum of carrier frequency and 

Hann window can be analysed using discrete Fourier transform (DFT) [50] as  

𝐹(𝑘) = ∑ 𝑢(𝑡) exp(−𝑗2𝜋𝑘𝑛𝑑𝑡) 

𝑛𝑠/2

𝑛=−𝑛𝑠/2

(3.8𝑎) 

𝑘 = −
𝑛𝑠
2
Δ𝑘,∙∙∙ ,0,∙∙∙, (

𝑛𝑠
2
− 1)Δ𝑘 (3.8𝑏) 

where 𝑘 is the frequency spectrum as shown in Equation 3.8b with interval of frequency bin 

Δ𝑘  as introduced in Equations 3.3a and 3.3b. The linear phase shift term is introduced 

regardless of the time shifting since the phase of mixing wave in the frequency spectrum is 

considered, which can be determined as [49] 
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𝜙(𝑘) = [cos(𝜋𝑘𝑇𝑑) − 𝑗 sin(𝜋𝑘𝑇𝑑)] (3.9𝑎) 

The time shifting term could result in the linearly phase shift [49] and can be expressed as 

𝑡𝜙(𝑘) = [cos(2𝜋𝑘𝑡0) − 𝑗 sin(2𝜋𝑘𝑡0)] (3.9𝑏) 

The magnitude of a pulse with finite number of samplings can be determined using Dirichlet 

kernel [53] provided that the sampling number 𝑛𝑠 is sufficiently large 

𝐷𝑁(𝑘) =
1

2
+ ∑ cos(𝜋𝑘n)

𝑛𝑠/2−1

𝑛=−𝑛𝑠/2

=
sin(𝜋𝑘𝑇𝑑)

𝑛𝑠 sin (
𝜋𝑘𝑇𝑑
𝑛𝑠

)
 (3.10) 

The effect of time shifting on carrier frequency and Hann window can be investigated 

separately using convolution [52]. Complexity of harmonic analysis can be reduced by using 

the windowing theorem. The frequency spectrum of the carrier frequency can be determined 

using modulation property with the implementation of time shifting term as 

𝑋(𝑘) = 𝑡𝜙(𝑘)
1

2
[𝜙(𝑘 − 𝑓)𝐷𝑁(𝑘 − 𝑓) + 𝜙(𝑘 + 𝑓)𝐷𝑁(𝑘 + 𝑓)] (3.11𝑎) 

The Hann window in frequency can be expressed in terms of Dirichlet kernel [50], and the 

linear phase term and the time shifting term are considered simultaneously as 

𝑊𝐻(𝑘) = 𝑡𝜙(𝑘) 𝜙(𝑘)[
1

2
𝐷𝑁(𝑘) +

1

4
𝐷𝑁(𝑘 − 𝛥𝑘) +

1

4
𝐷𝑁(𝑘 + 𝛥𝑘)] (3.11𝑏) 

The explicit expressions of Equations 3.11a and 3.11b are shown in Equations A1 and A2 of 

Appendix. Finally, the convolution of carrier frequency in frequency 𝑋(𝑘) and Hann window 

in frequency 𝑊𝐻(𝑘) is  

𝐹𝑊(𝑘) = 𝑋(𝑘)⊛𝑊𝐻(𝑘) (3.12𝑎) 

which can predict the behaviour of a single frequency wave in frequency spectrum with the 

implementation of time shifting. The mixing waves follows the linearity property of DFT, 

which allows the superposition of two kernels in the frequency spectrum. In addition, the 

mixing wave in time domain can be transformed due to the frequency convolution property as 

𝐹𝑊𝑚(𝑘) = 𝑋𝑎(𝑘)⊛𝑊𝑎(𝑘) + 𝑋𝑏(𝑘)⊛𝑊𝑏(𝑘)  
𝐷𝐹𝑇
↔  𝑥𝑎(𝑡)ℎ𝑎(𝑡) + 𝑥𝑏(𝑡)ℎ𝑏(𝑡) (3.12𝑏) 
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As shown in Equation 3.12b, it agrees well with the Equation 3.7c, and the equation can provide 

improved theoretical understanding on the effect of time shifting on wave mixing in the 

frequency spectrum. 

 

 

Figure 3.2. Effect of time shifting in frequency spectrum on (a) single frequency waves using 

Equation 3.12a and (b) the mixing wave using Equation 3.12b 

 

The concept of the time shifting is schematically illustrated in Figure 3.2, and the effect 

on a single frequency wave and wave mixing are shown separately. In the figure, the wave a 

remains unchanged, and the time shifting is only applied on the wave b to provide a better 

illustration for the effect of time shifting on a single frequency wave. The sidelobes of the 

incident waves are partially or completely cancelled in frequency domain when the time 

shifting is applied (see Figure 3.2a). This effect can be used to generate a mixing wave that 

comprise two closely adjacent fundamental harmonics with an excellent spectral separation, 

and hence, the performance of the wave mixing in terms the quality and resolution of the 

harmonic generation can be maximized.  

 

3.3. Numerical simulation and parametric study 

3.3.1. Modelling material nonlinearity  

The nonlinear governing equations of a structural material, which has weakly material 

nonlinearity, are briefly discussed in this section. These governing equations were implemented 
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in ABAQUS/Explicit by VUMAT subroutine for modelling the inherent material nonlinearity. 

The simulation of material nonlinearities in the finite element (FE) model is based on the 

infinitesimal theory [54], and the third order elastic constants are incorporated with 

Murnaghan’s strain energy function [55]. The displacement vector 𝒖 can be expressed in terms 

of current configuration of material 𝒙 and reference configuration 𝑿 as 

𝒖 = 𝒙 − 𝑿 (3.13𝑎) 

The displacement gradient 𝑯 and displacement gradient tensor 𝑭 are defined as Equations 13b 

and 13c. 

𝑯 =
𝜕𝒖

𝜕𝑿
 (3.13𝑏) 

𝑭 = 𝑰 + 𝑯 (3.13𝑐) 

where 𝑰 donates identity tensor. The Green-Lagrange strain tensor 𝑬 can be expressed using 

displacement gradient 𝑯. 

𝑬 =
1

2
(𝑯 + 𝑯𝑇 +𝑯𝑇𝑯) (3.14) 

The Murnaghn’s strain energy function is given by the Equation 3.15a using principal 

invariants 𝑖1, 𝑖2 and 𝑖3, 

𝑾(𝑬) =
1

2
(𝜆 + 2𝜇)𝑖1

2 +
1

3
(𝑙 + 2𝑚)𝑖1

3 − 2𝜇𝑖2 − 2𝑚𝑖1𝑖2 + 𝑛𝑖3 (3.15𝑎) 

where 𝜆 and 𝜇 are Lame’s elastic constants. 𝑙, 𝑚 and 𝑛 are third order elastic constants. The 

principal invariants can be expressed as 

𝑖1 = 𝑡𝑟(𝑬) , 𝑖2 =
1

2
[𝑖1
2 − 𝑡𝑟(𝑬)2] , 𝑖3 = 𝑑𝑒𝑡(𝑬) (3.15𝑏) 

The second Piola-Kirchhoff stress of an isotropic medium can be obtained as 

𝑻𝒑𝒌𝟐 =
𝜕𝑾(𝑬)

𝜕𝑬
(3.16) 

Hence, the Cauchy stress 𝜎 can be obtained in terms of the second Piola-Kirchhoff stress 𝑻𝒑𝒌𝟐, 

displacement gradient 𝑭 and its Jacobian determinant 𝑱−1, as shown in Equation 3.17. 

𝜎 = 𝑱−1𝑭𝑻𝒑𝒌𝟐𝑭
𝑇 (3.17) 

The generated second harmonic and combinational harmonic are analysed in frequency 

spectrum, using fast Fourier transform (FFT). The relative nonlinear parameters of second 
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harmonic (𝛽′) and combinational harmonics (𝛽±
′
) are defined in Equations 3.18a and 3.18b, 

respectively. 

𝛽′ =
𝐴2𝑎

𝐴𝑎
2  (3.18𝑎) 

𝛽±
′ =

𝐴𝑏±𝑎
𝐴𝑎𝐴𝑏

 (3.18𝑏) 

where 𝐴𝑎  and 𝐴𝑏  are the amplitude of the fundamental harmonics, 𝐴2𝑎  is the amplitude of 

second harmonics, and 𝐴𝑏±𝑎 represent the amplitude of combinational harmonics.  

 

3.3.2. Finite element model 

A 3D FE model was developed to simulate the nonlinear wave behaviour in a 6061-

T651 aluminium plate. The wave simulation was solved by ABAQUS/Explicit, and the 

VUMAT subroutine described in Section 3.3.1 was incorporated to include the weakly material 

nonlinearity in the simulations. The aluminium plate model as shown in Figure 3.3 is 400 mm 

× 750 mm and has symmetry boundary conditions at two boundaries. The model is a quarter 

of the plate used in the experiment. The selected plate dimension can ensure no wave reflection 

from plate boundaries, while the computational cost can be reduced. The material properties 

are listed in Table 3.1 [56], which is consistent with the material used in the experiment.  

 

Table 3.1. Material properties of 6061-T651 aluminium at intact condition [56] 

𝜌 (kg∙m-3) λ (GPa) μ (GPa) l (GPa)  m (GPa) n (GPa) 

2704 54.3 27.2 -281.5 -339.0 -416.0 

 

The thickness of the aluminium plate was 1.6 mm, and eight layers of elements were 

employed in the thickness direction to ensure the accuracy of phase velocity. In the study, the 

highest excitation frequency applied on the FE model is 200 kHz, considering the quasi-

synchronized phase velocities and group velocities of S0 waves in the low frequency range. 

The element size was determined as 0.4 mm, which ensures 20 elements per wavelength [57]. 

Eight-node linear brick element with reduced integration (C3D8R) was used in the FE model. 

The symmetrical boundary conditions were applied to the FE model as shown in Figure 3.3, 
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which can avoid the generation of edge waves, since the edge waves cannot be generated if the 

PZT is bonded in the centre of the plate. The wave excitation was generated using a circular 

PZT, and the in-plane displacement with 8.5 µm amplitude was applied on the edge of the 

quarter of circular PZT. The first measurement point was 400 mm away from the excitation, 

and normal displacements at 10 measurement points were measured with 10 mm interval of 

propagation distance. 

 

 

Figure 3.3. Schematic diagram of the 3D FE model 

 

 

3.3.3. Parametric study 

A parametric study is carried out numerically to demonstrate and validate the proposed 

method through FE simulations. The procedure of frequency pair selection and time shifting 

optimization for wave mixing method is shown in Figure 3.4. The first step is to determine the 

fundamental frequency range based on the dispersion curve (see Figure 3.8a in Section 3.4) to 

achieve the quasi-synchronism. The fundamental frequency 𝑓𝑎 can be determined based on the 

mode tuning curve [58] and the capability of instrumentation, which was carried out 

experimentally (see Figure 3.8b). After the fundamental frequency 𝑓𝑎 is determined, the second 

step is to apply Equation 3.5b to determine the frequency pair selection of the wave mixing and 

the selection of number of cycles of the incident waves. A positive value of the wave mixing 

separation index (𝑆 ≥ 0) needs to be achieved by adjusting the fundamental frequency 𝑓𝑏 and 

the number of cycles of the two incident waves. Finally, the third step is to use the time shifting 
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optimization to enhance the performance of the wave mixing. The optimization is performed 

in the frequency spectrum using the implemented theoretical equations, which shows the level 

of overlap at the crossover frequency of two fundamental harmonics against the time shifting. 

The expression of crossover frequency is shown in Equation 3.A4 of Appendix, which indicates 

the frequency of the crossover point of two fundamental harmonics based on the concept of 

Equation 3.2b. The crossover point is only associated with frequency bin and is not influenced 

by time shifting. It should be noted that in some special cases the time shifting may have a 

trivial effect on the selected frequency pair as good separation can already be achieved without 

optimization. However, it is difficult to find this type of special cases and numerous of trials 

are needed, which is very time consuming and tedious. On the contrary, a promising frequency 

pair of wave mixing can be determined using the procedure as shown in Figure 3.4, and the 

performance of the selected frequency pair can be predicted using the method developed in 

Section 3.2. The proposed method in the present study is also feasible to be expended for the 

three-wave mixing with the similar process (i.e., fa+fb, then fb+fc), and the higher-order 

combinational harmonics may be overlapped if the frequency selection in the low frequency 

range is not deliberately designed. Such overlapping of higher-order combinational harmonics 

is unable to be separated or extracted using the extraction method [35], and the proposed 

method can provide a guide for the frequency pair selection. In addition, the extraction method 

can be time-consuming for multiple points measurement of nonlinearities, which requires 

three-separated measurements for each measurement point. Therefore, the proposed method in 

the present study can be more efficient for multiple points measurement compared with the 

extraction method. 

 

  

Figure 3.4. Procedure of time shifting optimization  
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Table 3.2. Different cases of frequency pair for wave mixing 

Case Fundamental 

frequency 

(𝑓𝑎) 

Number 

of cycles 

(𝑁𝑎) 

Fundamental 

frequency 

(𝑓𝑏) 

Number 

of cycles 

(𝑁𝑏) 

Time 

shifting 

(𝑡0) 

Wave mixing 

separation index 

(𝑆) 

1a 140 kHz 5 cycles 160 kHz 6 cycles 0 s -35 

2a 140 kHz 7 cycles 185 kHz 8 cycles 0 s 0 

3a 140 kHz 9 cycles 185 kHz 10 cycles 0 s 10 

4a 140 kHz 9 cycles 195 kHz 10 cycles 0 s 20 

1b 140 kHz 5 cycles 160 kHz 6 cycles 0 s NA 

2b 140 kHz 7 cycles 185 kHz 8 cycles 3.4e-6 s NA 

3b 140 kHz 9 cycles 185 kHz 10 cycles 5.1e-6 s NA 

4b 140 kHz 9 cycles 195 kHz 10 cycles 5e-7 s NA 

 

The fundamental frequency range is limited between 100 kHz and 200 kHz to achieve 

the quasi-synchronism for the specimen used in this study, and 140 kHz has been determined 

as the fundamental frequency (𝑓𝑎) since it has the highest S0 wave to A0 wave ratio (as shown 

by the experimental data in Figure 3.8 of Section 3.4). In Table 3.2, four cases of wave mixing 

frequency pair are considered (Cases 1a to 4a) to study the effect of the wave mixing separation 

index (𝑆) on the performance of second harmonics and combinational harmonics generation. 

In Case 1a, the frequency difference between two fundamental frequencies is very small, and 

has wide bandwidth of two fundamental harmonics. This case has significant overlapping of 

two fundamental harmonics by the theoretical prediction. Case 2a can be considered as a 

baseline case which follows the procedure shown in Figure 3.4. In Case 3a, the fundamental 

frequencies remain unchanged compared with the Case 2a and the number of cycles are 

increased, and the reduced overlapping of two fundamental harmonics is predicted by the 

proposed method. In Case 4a, the frequency difference between two fundamental frequencies 

is increased compared with Case 3a. It is predicted that Case 4a has better performance than 

Case 3a.  
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Figure 3.5. Theoretical prediction results of time shifting for (a) Case 1, (b) Case 2, (c) Case 

3, and (d) Case 4 

 

The time shifting analysis is performed on the original four cases of wave mixing 

frequency pair to show the effect of time shifting on wave mixing. In Figure 3.5a, the 

theoretical prediction indicates that the time shifting is not useful for Case 1, and the 

overlapping amplitude shows minor change with the increase of time shifting. In addition, the 

minimum level of overlap is obtained at zero time shifting, and therefore Case 1b can be 

considered as the identical case as Case 1a. In Cases 2, 3 and 4, the optimized time shifting can 

be determined at the minimum level of overlap, and the results determined in Figure 3.5 are 

presented in Table 3.2 (i.e. Cases 2b to 4b). It should be noted that the minimum level of overlap 

in Case 4 results in boundary reflection, and the second-best point is used. In Figure 3.5, the 

overlapping amplitude at zero time shifting can be used to verify the prediction in the second 

step of the proposed approach, which is based on the wave mixing separation index (𝑆). The 
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results based on the 𝑆 parameter are consistent with the results of time shifting analysis, and 

the level of overlap at zero time shifting decreases with the increase of the 𝑆 parameter. 

 

 

Figure 3.6. Results of numerical simulations for (a) Cases 1a, (b) Cases 2a and 2b, (c) Cases 

3a and 3b, and (d) Cases 4a and 4b in frequency spectrum 

 

The outcomes of the numerical simulations are shown in Figure 3.6. The results 

regarding the overlapping between the two fundamental harmonics in the numerical 

simulations agree well with the proposed method. The overlapping between the generated 

second harmonics (at 2fa and 2fb) and sum combinational harmonic (fa + fb) are also consistent 

with the level of overlap of the fundamental harmonics. In the original cases, 𝑆 parameter can 

well predict the performance of wave mixing frequency pairs. In Cases 1a and 2a, the sum 

combinational harmonic and second harmonics show severe overlapping, and results in 

significant complexity of the harmonic analysis. In Cases 3a and 4a, good separation between 

the sum combinational and second harmonics can be achieved with the increase of 𝑆 parameter. 
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The time shifting cases can be compared with the original cases to show the effect of time 

shifting on wave mixing. Case 2b shows significant improvement of performance of wave 

mixing compared with the original case, and the harmonic analysis shows good separation of 

the generated second and combinational harmonics. A better performance of combinational 

harmonic generation can be achieved in Case 3b compared with Case 2b, which can be 

predicted with higher value of wave mixing separation index as determined in the original cases 

and the less overlapping as shown in Figure 3.5. It should be noted that little to no enhancement 

of performance on wave mixing is shown in Case 4b compared with the original case, which 

can be considered as the special case as motioned in Section 3.3.3, which can achieve good 

separation of harmonics without optimization. The difference combinational harmonic is not 

noticeable in all cases since the specimen only has weakly material nonlinearity [59, 60]. 

 

3.4. Experimental studies 

3.4.1. Experimental setup 

The same cases considered in the numerical simulations (see Table 2) were replicated 

in the experimental study. Each experimental case was measured four times to determine the 

uncertainty in the experimental results. The experimental setup is shown in Figure 3.7. The 

Hann windowing tone-burst was premixed using Equations 3.7a and 3.7c to generate the input 

signal. The generated signal was input into a NI PXIe-5122 signal generation module, and the 

input signal was amplified by a CIPRIAN HVA-800A high-voltage power amplifier with 160V 

peak-to-peak voltage. A circular PZT was used for the source of excitation, which has 0.5 mm 

thickness and 10 mm diameter. The PZT was bonded to the aluminium plate with conductive 

epoxy, and the nonlinearity of the bonded layer can be neglected since only a very thin layer 

of epoxy was used [61]. The specimen was in intact condition and has 1200 mm in both length 

and width directions with 1.6 mm in thickness direction.  

The first measurement point was 400 mm away from the excitation to ensure the full 

formation of the pure S0 wave. The vertical displacement measurements at 10 points with 10 

mm interval were recorded using 1D laser scanning vibrometer and the PSV-400 acquisition 

system. Reflective painting was applied on the scanning area to enhance the signal reflection 

level of 1D laser vibrometer. The recorded signal was averaged 1200 times to improve the 

signal-to-noise ratio. The acquisition system was connected with a computer to process the 

experimental data. The acquisition system was synchronized with NI PXIE-5122 signal 
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generation module. The sampling frequency of acquisition was set as 25.6 MHz with 39.06 

nanosecond sampling resolution, and a low-pass filter was applied with upper limit of 1000 

kHz. The measured time domain of the S0 wave signals were used in harmonic analysis.  

 

 

Figure 3.7. Experimental setup 

 

3.4.2. Dispersion curve and mode-tuning curve 

The dispersion curve (Figure 3.8a) was obtained using DISPERSE software [62], which 

is a commercial package using global matrix method to calculate the phase velocity and the 

group velocity. The Figure 3.8a shows that quasi-synchronism can be achieved in the low 

frequency range of S0 wave, and the group velocities of S0 wave are also quasi-matching in the 

low frequency range. The mode-tuning curve  was measured using the vertical displacement 

amplitude at the first measurement point. The excitation frequency of mode tuning curve is 

from 95 kHz to 205 kHz with 5 kHz interval as shown in Figure 3.8b. The results in Figure 

3.8b show that the dominance of the A0 waves over the low frequency range in the vertical 

displacement direction. The amplitude of S0 wave increases with the frequency and reaches the 

maximum amplitude at 185 kHz. The highest S0 wave to A0 wave ratio can be observed at 140 

kHz. 
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Figure 3.8. (a) Dispersion curve and (b) mode-tuning curve using experimentally measured 

vertical displacement 

 

3.4.3. Comparison of the finite element simulations 

The FE model developed in Section 3.3.1 is validated in this section, using experimental 

results. The linear features of guided waves are validated in Figure 3.8a in Section 3.4.2. In the 

experiment, the excitation frequency of dispersion curve is from 100 kHz to 200 kHz with 10 

kHz interval. In numerical study, the excitation frequency is validated up to 400 kHz to ensure 

that the FE model is valid to capture the second harmonic generation of the highest fundamental 

frequency. The phase velocity and group velocity of S0 wave of the numerical simulation and 

experiment have a good agreement, and are consistent with the results obtained from the 

DISPERSE software.  

The nonlinear features of guided waves are validated in Figure 3.9 using the 

experimental results obtained in the Section 3.4.4. Case 2b can be considered as the baseline 

case, and the numerical simulation results and experimental results of Case 2b are compared in 

the frequency spectrum (Figure 3.9a) and in terms of normalized relative nonlinear parameter 

(Figure 3.9b). The frequency spectrum results of numerical simulations and experiments are 

normalized about the highest amplitude (at fb) accordingly. In Figure 3.12a, good matching of 

second and sum combinational harmonics generation between the experimental result and the 

numerical simulation is achieved. The small discrepancy of sum combinational harmonic (fa + 

fb) and second harmonic of wave a (at 2fa) is due to the small amplitude difference of the 

fundamental harmonic (fa). The FE model is limited up to the second order harmonic generation, 

and therefore, the higher order harmonic generation, e.g. third order harmonics, are not 
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simulated by the FE model. The Gaussian additive noise in experiment can be observed in the 

very low frequency range, which is negligible for harmonic analysis because the difference 

harmonic is not focused in the current study. In Figure 3.9b, the experimental and numerical 

relative nonlinear parameters are normalized about the first measurement points, accordingly. 

The normalized relative nonlinear parameter represents the linear increasing trend over wave 

propagation distance due to the accumulation of material nonlinearity during the wave 

propagation. There is a good agreement between the numerical simulation and the experimental 

results. Hence, the linear and nonlinear features of guided waves in the FE model can be 

validated using the experimental results.  

 

 

Figure 3.9. FE validation of nonlinear features in Case 2b, (a) in frequency domain, and (b) 

normalized 𝛽′ of sum combinational harmonic against wave propagation distance 

 

3.4.4. Experimental results 

A relative performance of a frequency pair in the wave mixing method can be 

characterized based on the R-square value of relative nonlinear parameter of the best fit 

function. Theoretically, the relative nonlinear parameter of sum combinational harmonic 

increases linearly with wave propagation distance [20, 22, 25]. The best fit function is 

performed in the harmonic analysis, and higher value of R-square can indicate better linearity 

of increasing trend, which means better performance of wave mixing.  
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3.4.4.1. Effect of the wave mixing separation index on the quality of harmonic generation 

Figure 3.10 shows the results of all four cases. A good prediction of the performance 

can be achieved by using the wave mixing separation index (𝑆). This performance has a 

noticeable improvement with the increase of 𝑆 parameter. The fluctuation of relative nonlinear 

parameter and large error bar in Case 1a can reflect the significant overlapping of second 

harmonics (at 2fa and 2fb)  and sum combinational harmonic (fa + fb). A slight improvement 

can be observed in Case 2a compared with Case 1a, while the linear increasing trend of relative 

nonlinear parameter can be observed in Case 3a. In Case 4a, a very good performance of the 

accumulation of sum combinational harmonic can be achieved with the minimized error bar, 

and this concludes that the performance of wave mixing frequency pair can be well predicted 

by 𝑆 parameter. 

 

 

Figure 3.10. Experimental results of 𝛽′ of sum combinational harmonic (fa + fb) against 

propagation distance in (a) Case 1a, (b) Case 2a, (c) Case 3a and (d) Case 4a  
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3.4.4.2. Effect of the time shifting optimization on the quality of harmonic generation 

Figure 3.11 shows the results of cases considered time shifting. In Cases 2b, 3b and 4b, 

the second harmonics (at 2fa and 2fb) and sum combinational harmonic (fa + fb) have very good 

separation in frequency spectrum, which agrees well with the results of the numerical 

simulation in Section 3.3.2. Hence, the harmonic analysis of Cases 2b, 3b and 4b shows that 

the relative nonlinear parameter increases linearly over wave propagation distance. It should 

be noted that the generation of higher order harmonics (i.e. third order and fourth order 

harmonics) become visible in Case 4b. However, the generation of higher order harmonics is 

out of the scope of this study, and hence, it is not studied in this paper. Therefore, the enhanced 

performance of the accumulation of sum combinational harmonic can be concluded in 

comparison with the results of original cases. 

 

 

Figure 3.11. Experimental results of 𝛽′ of sum combinational harmonic (fa + fb) against 

propagation distance in (a) Case 2b, (b) Case 3b, and (c) Case 4b  
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Figure 3.12. R-square value of 𝛽′ of sum combinational harmonic against wave mixing 

separation index 𝑆  

 

The performance comparison between the original cases and the time shifting cases is 

shown in Figure 3.12 using the R-square values determined in Figures 3.10 and 3.11. In Case 

2b, a significant improvement on the performance of wave mixing can be achieved compared 

with the original case, and this case can show the efficiency of the time shifting optimization 

in the wave mixing. Case 3b only slightly enhances the wave mixing performance compared 

with Cases 3a and 2b since the overlapping of generated harmonics in these two cases are minor. 

Little to no difference between the original case and the time shifting case can be observed in 

Cases 4a and 4b. This suggests that the time shifting optimization is not efficient for the special 

case mentioned in Section 3.3.3, which can achieve good performance without the optimization. 

It should be noted that Case 4b is predicted to have slightly better performance compared with 

Case 4a using the proposed method (as shown in Figure 3.5d), and the results shown in Figure 

3.12 can be considered as small discrepancy. The small discrepancy is likely due to the 

Gaussian additive noise of instrumentation and experimental setup (i.e. signal reflection level 

of 1D laser vibrometer), and it is negligible.  

  

3.5. Conclusion 

The frequency pair selection method has been proposed to evaluate the performance of 

the generation of second and combinational harmonics due to the collinear wave mixing. The 
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proposed frequency pair selection method can advance the trial-and-error method that was 

generally used for low-frequency wave mixing, which has a large number of possible frequency 

pairs, and deliberate selection is needed to avoid the overlapping of the generated harmonics. 

The time shifting method can be applied to the selected frequency pair to enhance the 

performance of the wave mixing. The results suggest that the time shifting optimization is 

applicable to collinear wave mixing when the wave mixing separation index (S) has a positive 

value. The results also demonstrate the limitation of the time shifting, which is less efficient 

when the wave mixing separation index (S) is less than zero or when the index is very large. It 

has demonstrated that the proposed method can be used to enhance the performance of the 

wave mixing in terms of the clarity and consistency of the combinational and second harmonics 

generation. The efficiency of the proposed method has been validated by a series of numerical 

and experimental studies. There is a good agreement between theoretical predictions, numerical 

simulations and experimental results.  

The findings of this study are useful for the selection of frequency pair in collinear wave 

mixing using two quasi-synchronized waves, especially when the excitation frequencies are 

limited by various constraints. It should be noted that the findings of the present study are 

generic and can be applied to the wave mixing of different quasi-synchronized wave modes, 

such as Rayleigh waves [63], SH0 waves, longitudinal waves in pipes and so on. The findings 

of this study can help further advance the practical application of fatigue damage evaluation 

using the guided wave mixing method.  

 

Appendix 

Explicit expression of Equations 3.11a and 3.11b, 

      

𝑋(𝑘) = [𝑐𝑜𝑠(2𝜋𝑘𝑡0) − 𝑗 𝑠𝑖𝑛(2𝜋𝑘𝑡0)]

{[𝑐𝑜𝑠(𝜋(𝑘 − 𝑓𝑐)𝑇𝑑) − 𝑗 𝑠𝑖𝑛(𝜋(𝑘 − 𝑓𝑐)𝑇𝑑)]
𝑠𝑖𝑛(𝜋(𝑘 − 𝑓𝑐)𝑇𝑑)

2𝑁𝑠 sin (𝜋(𝑘 − 𝑓𝑐)
𝑇𝑑
𝑁𝑠
)

+ [𝑐𝑜𝑠(𝜋(𝑘 + 𝑓𝑐)𝑇𝑑) − 𝑗 𝑠𝑖𝑛(𝜋(𝑘 + 𝑓𝑐)𝑇𝑑)]
𝑠𝑖𝑛(𝜋(𝑘 + 𝑓𝑐)𝑇𝑑)

2𝑁𝑠 sin (𝜋(𝑘 + 𝑓𝑐)
𝑇𝑑
𝑁𝑠
)
} 

(3. 𝐴1) 

𝑊𝐻(𝑘) = [𝑐𝑜𝑠(2𝜋𝑘𝑡0) − 𝑗 𝑠𝑖𝑛(2𝜋𝑘𝑡0)] [𝑐𝑜𝑠(𝜋𝑘𝑇𝑑) − 𝑗 𝑠𝑖𝑛(𝜋𝑘𝑇𝑑)]

{
𝑠𝑖𝑛(𝜋𝑘𝑇𝑑)

2𝑁𝑠 sin (𝜋𝑘
𝑇𝑑
𝑁𝑠
)
+

𝑠𝑖𝑛(𝜋(𝑘 − 𝛥𝑘)𝑇𝑑)

4𝑁𝑠 sin (𝜋(𝑘 − 𝛥𝑘)
𝑇𝑑
𝑁𝑠
)
+

𝑠𝑖𝑛(𝜋(𝑘 + 𝛥𝑘)𝑇𝑑)

4𝑁𝑠 sin (𝜋(𝑘 + 𝛥𝑘)
𝑇𝑑
𝑁𝑠
)
} (3. 𝐴2) 
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Convolution in frequency spectrum,  

𝐹𝑊(𝑘) = 𝐹(𝑘)⊛𝑊(𝑘) = ∫ 𝑓(𝜏) ⋅ 𝑤(𝑘 − 𝜏) 𝑑𝜏
+∞

−∞

 (3. 𝐴3) 

Crossover frequency of fundamental harmonics with Hann window  

𝑓𝑐𝑟
𝐻 =

1

2
[(𝑓𝑎 + Δ𝑘𝑓𝑎) + (𝑓𝑏 − Δ𝑘𝑓𝑏)] (3. 𝐴4) 
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Abstract 

Non-destructive detection and evaluation of fatigue cracks is critical to maintain safety and 

effective operation of high-value assets working under cyclic loading. However, this can be 

difficult in the case of the corners of the structural elements, especially at inaccessible locations. 

In this article, the propagation of the fundamental symmetric mode of edge wave (ES0) along 

structural features such as sharp and rounded corners are investigated using experimental and 

numerical methods. The ultimate aim of this study is to demonstrate that the ES0 is a promising 

for defect detection in geometries with corners. The outcomes of this study show that ES0 wave 

is able to propagate through sharp and rounded corners and provides a way to inspect difficult-

to-reach locations. Further, the numerical simulations indicate that the radius-to-wavelength 

ratio above 3 has no significant impact on the wave amplitude when the ES0 propagates through 

the rounded corner. The results also demonstrate that the presence of fatigue crack leads to 

generation of the second harmonic of the ES0 wave mode, and this phenomenon can be utilised 

in the development of fatigue crack detection and characterization procedures. 

 

Keywords: Sharp corners; Rounded corners; Edge wave; Nonlinear guided wave; Fatigue 

crack location; NDE 
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4.1. Introduction 

Non-destructive defect evaluation is critical for safety, reliability and effective 

operation, including for structures subjected to cyclic loading. This type of loading can cause 

fatigue damage, lead to propagation of fatigue cracks and, finally, cause failures of load bearing 

structural components. The application of guided ultrasonic waves for fatigue crack detection 

and evaluation has been studied extensively over the past three decades, specifically, for thin-

walled structures [1-3]. The previous research has mainly focused on simple geometries such 

as the flat plates [4, 5] or circular pipes. Recently, feature guided waves have attracted 

significant attention of the research community. The propagation of these waves is facilitated 

by various geometric features such as edges and weld seams, which are commonly exist in 

most of engineering structures. These features result in wave scattering and reflections making 

difficult the application of conventional ultrasonic techniques for defect evaluation. However, 

these features can also serve as waveguides permitting the propagation of so-called feature 

guided wave modes; and these wave modes can also be utilised for defect detection and 

evaluation purposes.  

Various feature-guided wave modes have been investigated in the past, for example, 

the one propagating in rail web [6, 7], transverse bends [8-10], fastener hole [11], fuel weep 

hole [12, 13], and bonded stiffeners [14, 15]. Other studies have focused on defect detection in 

inaccessible locations such as pipe bend [16, 17], pipe supports [18], steel rebar [19-21], and 

L-joints [22]. One type of the feature-guided waves called the edge waves is able to propagate 

along plate edges has attracted a lot of attention over the past decade, and it has been studied 

both theoretically [23, 24]  and experimentally [25, 26]. The edge waves are generally multi-

modal and dispersive with exception of the fundamental mode, which is weakly dispersive.  

The propagation of edge waves is confined near the surface of the edge, so the internal structure 

has no influence on its behaviour. The dispersion curve of the fundamental symmetric mode of 

edge wave (ES0), which is the focus of the current study, was reported in several previous 

studies [27, 28] and is shown in Figure 4.1a. The results are expressed in terms of the 

dimensionless value, frequency-thickness value (FTV = 𝜔2ℎ/𝑐2), where 2ℎ is the thickness of 

specimen, 𝜔 is the angular frequency, and 𝑐2 is the shear wave speed (𝑐2 = 3177 𝑚/𝑠). It was 

also demonstrated theoretically and experimentally that the ES0 wave mode at low frequency-

thickness values (FTVs < 6, the definition of FTV is given in the caption to Figure 4.1) has a 

small amplitude decay and almost no dispersion [29]. At FTVs < 4.5 (the first cut-off frequency) 

the multi-modes generation can be avoided [26]. It was also demonstrated that the ES0 wave 
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mode has a good sensitivity to the corrosion damage and has a great potential for practical 

applications [30]. 

 

 

Figure 4.1. (a) Dispersion curve for ES0 wave against FTVs (𝑘 is wavenumber), and (b) 

Schematic diagram of the transverse web frame of ship structure 

 

The previous studies, which are based on traditional bulk and Rayleigh-Lamb wave 

modes, often utilise the echo-pulse method. However, this method has its own limitations, and 

its application can be very challenging due to environmental effects [31], wave scattering and 

multiple reflections, specifically, if the inspection locations are near the structural edges and 

geometric features [32]. The conventional way to address the aforementioned issues and 

improve the sensitivity of defect detection is to apply a 2D sensor array [33, 34], which requires 

multiple sensors and careful design of the sensor network. However, this can be quite difficult 

and costly to implement in real situations.  

As aforementioned most of the past studies have been focused on ideal geometries, 

which are rare in many practical situations. Real structural components, such as the one shown 

in Figure 4.1b, often have corners, which makes the defect inspections difficult. This study is 

aimed to address these shortcomings as well as investigate the characteristics of guided waves, 

which are associated with these geometries. This study is limited to detection of a certain type 

of mechanics damage – fatigue cracks, which are largely associated with cyclic loading. 

Investigation of detection and characterization of other types of damage will be subject of 

future studies. 



80 

 

Over the past decade, research efforts directed on the utilisation of various features of 

nonlinear guided waves have shown a great promise in damage detection. Methods based on 

the nonlinear features, such as the second-order harmonics generation, demonstrated a much 

better sensitivity to the presence of fatigue cracks [35, 36] compared with the linear guided 

waves. It was highlighted in many studies that the generation of second-order harmonics due 

to presence of a crack is associated with the contact acoustic nonlinearity (CAN). The 

mechanisms of CAN can be explained as follows. The compressive part of the ultrasonic wave 

totally transmits through the fatigue crack, while when the fatigue crack is opened as a result 

of the tensile part of the wave, and the tensile part of the ultrasonic wave is partially scattered 

and reflected [37, 38] causing nonlinearity and generation of high-order harmonics. Many past 

studies indicated that this phenomenon (generation of high-order harmonics) can be 

successfully utilised to detect and evaluate fatigue cracks. Various characteristics, e.g. the 

group velocity and the arrival time of the second harmonic wave, have been previously utilised 

for characterizing CFRP debonding [39] and concrete rebar debonding [19] with Rayleigh-

Lamb guided waves. 

In this study, we first explore the characteristics of ES0 wave mode in low FTV region 

propagating along sharp corners and rounded corners. The low FTV region (FTV < 4.5) is of 

particular interest for the purpose of non-destructive defect evaluation as this avoids energy 

decay and the generation of multiple edge wave modes. A parametric numerical study is carried 

out to investigate the effect of the radius-to-wavelength ratio on the ES0 wave propagation 

along the rounded corners.  The latter represents a typical structural feature as discussed earlier. 

The finite element (FE) study is verified with experimental results obtaining using Laser 

Vibrometry. Further, the second harmonic generation at different locations of fatigue cracks is 

investigated numerically to demonstrate the possibility of fatigue crack detection in thin-walled 

structures with corners and remote locations, which can be inaccessible with the traditional 

non-destructive defect detection methods. 

This paper is organised as follows. The next section, Section 4.2, briefly presents the 

theoretical preliminaries of edge waves. The simplified theoretical analysis indicates the 

possibility for edge waves to propagate through corners. Section 4.3 describes the experimental 

setups and the outcomes of the experimental study. The three-dimensional (3D) FE model is 

developed and validated using experimental results, and numerical parametric studies are 

discussed in detail in Section 4.4. Finally, main conclusions from the numerical and 
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experimental studies, which are important in practical utilisations of ES0 wave mode for distant 

defect detection, are drawn in Section 4.5. 

 

4.2. Theoretical preliminaries 

The problem of edge wave propagation along a straight edge of a finite thickness plate 

can be formulated mathematically using the governing equation of the 3D linear elasticity in 

terms of the displacement vector 𝒖 as below. The coordinate system with spatial variables 

𝑥1, 𝑥2 and 𝑥3 is shown in Figure 4.2 (in Section 4.3). 

(𝜆 + 𝜇) grad div 𝒖 + 𝜇∆𝒖 = 𝜌
𝜕2𝒖

𝜕𝑡2
 (4.1) 

where 𝒖 = {𝑢1, 𝑢2, 𝑢3}  represents the displacement components in the selected reference 

system, 𝑥1, 𝑥2 and 𝑥3 [23]. 𝜆 and 𝜇 are Lame’s constants, 𝜌 represents mass density, and ∆ is 

the three-dimensional Laplace operator. The edge waves can be assumed to propagate along 

𝑥1 direction, and the wavenumber in 𝑥1 direction is denoted as 𝜉. The propagation factor is 

𝑒−ⅈ(𝜔𝑡−𝜉𝑥1) and 𝜔 is the angular frequency. The free boundary is assumed at the plate faces, 

which is perpendicular to 𝑥2-direction, See Figure 4.2. 

The Laplace transform and Fourier transform can be applied to simplify the 3D linear elasticity 

problem with respect to time variable 𝑡 and spatial variable 𝑥1, respectively [28].    

𝑼(𝑥2, 𝑥3, 𝜔, 𝜉) = ∫ ∫ 𝒖(𝑥1, 𝑥2, 𝑥3, 𝑡)𝑒
−ⅈ(𝜔𝑡−𝜉𝑥1) 𝑑𝑡

∞

0

∞

−∞

𝑑𝑥1 (4.2) 

For symmetric wave modes the solution of Equation 4.2 can be decomposed as the 

superposition of Lamb waves and shear waves [27, 28]: 

𝑼(𝑥2, 𝑥3, 𝜔, 𝜉) =∑𝐶𝑛
𝐿𝑼𝑛

𝐿(𝑥2)𝑒
−ⅈ𝜉𝑛𝑥3

∞

0

+∑𝐶𝑛
𝐻𝑼𝑛

𝐻(𝑥2)𝑒
−ⅈ𝜉𝑛𝑥3

∞

0

 (4.3) 

where 𝐶𝑛
𝐿  and 𝐶𝑛

𝐻  are the coefficients of Lamb waves and shear waves depending on the 

boundary conditions at the edge. It should be noted that the displacement components of Lamb 

waves (𝑼𝑛
𝐿 ) and shear waves (𝑼𝑛

𝐻) are eigenfunctions and depend on 𝑥2 variable.  

The mechanism of edge wave mode propagation through a sharp corner is complex, 

since a part of the energy will be dissipated in the form of Lamb waves and scattered. The 
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reflected edge wave mode from a 90-degree sharp corner which propagate along the 𝑥1 

direction (in 𝑥1-𝑥2 plane) has the identical wavenumber component 𝜉 and wave mode as the 

incident wave mode [23]. At the same time, a new edge wave mode will be generated and 

propagated along the 𝑥3 direction (in 𝑥3-𝑥2 plane) with the same wavenumber component 𝜉 

and wave mode as the incident wave mode according to the Snell’s Law. However, analytical 

investigations of these wave modes are prohibitively difficult and cumbersome. Therefore, the 

mechanism of this new edge wave mode generation and propagation will be further analysed 

and discussed in this paper based on the outcomes of numerical simulations and analysis of 

numerical results. 

 

4.3. Experimental studies  

4.3.1. Experimental setup 

The experimental setup is shown in Figure 4.2. The 8-cycle Hann-windowed tone-burst 

was generated by a signal generation module (NI PXIe-5122), and then the signal was 

amplified by a high voltage amplifier (CIPRIAN HVA-800A) with 200V peak-to-peak voltage. 

The ULTRAN GC200 was used as the transducer for the wave excitation generation, and the 

wedge angle is approximately 52-degree with the wave speed of the wedge material is 2300 

m/s [29]. The designed wedge can be suitable for the ES0 wave generation within a range of 

FTVs, since the phase velocity and group velocity of ES0 waves are quasi-synchronous. The 

wedge transducer was coupled with the specimen and the transducer using high vacuum grease 

(DOW CORNING), and this coupling method enables stable transmission and generation of 

ES0 waves compared with the oil coupling method [29], which can become unsteady over time. 

The specimen with 700 mm in length, 500 mm in width, and 5mm in the thickness direction 

was under intact condition. The edges of the specimen were labelled as E1 to E4 based on the 

transmitting sequence of the wave. The wedge was coupled at edge E1 with an alignment 

device, and the wedge was 200 mm away from the corner to avoid the interference of reflected 

waves. 

The normal displacement (perpendicular to the 𝑥3 direction) at the midplane was 

measured using the 1D laser vibrometer and the PSV-400 acquisition system, and the 

acquisition system was synchronized with the signal generation module. Reflective coating 

was applied on the edges of the specimen to enhance the signal-to-noise ratio measured. The 

first measurement point (Point 1) was 100 mm away from the wedge, which is more than three 
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wavelengths of the excited wave mode, and the distance between two measurement points was 

50 mm. There were 39 measurement points in the experiment which are defined as Points 1 to 

39. It should be noted that it was infeasible to measure the normal displacement at the corner 

tips in the experiment, and therefore, only the measurement points at the flat edges were 

measured. The recorded signal was averaged 800 times, and the sampling acquisition was 25.6 

MHz with 39.06 nanosecond sampling resolution, which was sufficient to capture the ES0 wave 

propagation. A low-pass filter with upper limit of 1000 kHz was applied to reduce the high 

frequency noise. 

 

 

Figure 4.2. Experimental setup 

 

4.3.2. ES0 wave mode propagation through sharp corners 

The time-displacement domain at Point 5 in the first edge (E1) is shown in Figure 4.3, 

and the envelope of the displacement can be obtained using the Hilbert transform, which was 

briefly described previously. The result shows that the ES0 waves with low FTV (at FTV = 2) 

can propagate over a long distance, and the ES0 waves can propagate through the sharp corners. 

The first peak of the envelope (E1E) is the emitted ES0 wave from wedge and the amplitude is 

much higher compared with the fundamental symmetric mode (S0) of Lamb wave. Therefore, 

the influence of mode coupling of Lamb mode waves with edge mode waves is considered to 

be negligible. The second peak of envelope (E1R) is the reflected wave generated due to the 

sharp corner between the edges E1 and E2. The third peak of envelop (E4T) is the transmitted 
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wave from the edges E4 to E1 after propagating through all four plate edges and all four corners, 

and the waveform of which can still be distinguished from other scattered waves and wave 

modes.  

 

  

Figure 4.3. Time-displacement domain and the envelope of the measured signal at Point 5 

 

  

Figure 4.4. Group velocity of ES0 waves in low FTVs (FTV = 𝜔2ℎ/𝑐2) [28, 40] 
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The group velocities of ES0 waves were measured over the low FTV range, from 1.5 to 

3.5 with 0.5 intervals of FTV, and 0.5 FTVs corresponds to 50 kHz for the current specimen 

design. The group velocities were measured at the four edges (E1 to E4) for each FTV, Figure 

4.4 shows a small group velocity difference between four edges for each FTV used in the 

experimental study. This indicates that the transmitted waves (i.e., waves after passing corners) 

have the identical wavenumbers and wave mode as the incident wave, which agrees with the 

discussion presented in Section 4.2.1. In addition, the group velocities measured with 1D Laser 

Vibrometer match reasonably well with the theoretical results presented in the earlier study 

[28]. The minor discrepancy between the group velocities is likely due to the difference in  

material properties of the specimens, specifically in Poisson’s ratios, used in the present and 

previous studies [41]. As it is follows from the dispersion curve, see Figure 4.1, the phase 

velocities of ES0 waves are almost identical to the group velocities due to almost linear 

dependence of the wavenumber against the frequency of the wave [25].  

 

 

Figure 4.5. (a) Normalized envelope amplitude of transmitted waves from edges E1 to E4, 

(b) Normalized envelope amplitude of transmitted and reflected waves, (c) coefficients of 

transmitted and reflected waves against FTVs 
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Figures 4.5a and 4.5b show the envelope amplitude of the wave pulse, which is 

normalized by the amplitude of the signal measured at the first measurement point (Point 1) 

for each FTVs. Different FTVs were excited in the current experimental study to investigate 

the effect of FTVs on the wave propagation along the edges and corners. The emitted ES0 wave 

has negligible amplitude decay when propagating at edge E1, and show steady and consistent 

amplitude decay at the remaining flat edges (E2, E3 and E4). The transmitted ES0 wave 

amplitude shows some fluctuations at FTV = 1.5, which is likely due to the interference of 

scattering Lamb waves from edges. The mode interference decreases with the increase of FTVs 

and becomes negligible at FTV = 2.5. The amplitude of the ES0 wave decreases significantly 

after propagating through a sharp corner. The results in Figure 4.5a show that approximately 

62.5% of the incident ES0 waves can be transmitted when the wave propagated through edges 

E1 to E2. This result has a good agreement with the results obtained from the wave analysis 

related to edges E2 to E3 as well as through edges E3 to E4. This analysis indicates that 

approximately 62.5% of the transmitted ES0 wave amplitude remains after propagating through 

a sharp corner. In Figure 4.5b, the reflected waves are compared with the transmitted waves, 

and the results show that approximately 33% of emitted ES0 waves are reflected when 

interacting with the corner between edges E1 and E2. Similar results can be obtained when 

comparing the transmitted waves in edge E2 and the reflected waves from edge E3. Different 

FTVs show small discrepancy in normalized amplitude in Figure 4.5c, which is due to the ES0 

wave mode characteristics, and higher FTV results in higher amplitude decay over wave 

propagation distance. Therefore, higher FTV has less transmission and reflection of ES0 wave 

after interacting with sharp corners, and the transmission and reflection coefficients can be 

evaluated as approximately 62.5% and 33%, respectively for low FTVs. This means that the 

dissipated wave energy in the form of Lamb waves is almost negligible for ES0 wave mode. 

 

4.4. Numerical simulation 

4.4.1. Finite element model 

The ES0 wave propagation along the edges and corners was simulated in 

ABAQUS/Explicit using a three-dimensional (3D) finite element (FE) model. The 3D FE 

model allows a variety of geometries and different locations of fatigue cracks to be simulated, 

which can be costly in the experimental investigation. The FE model replicated the specimen 

and the experimental setup as shown in Figure 4.6. The global and local coordinates are 
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illustrated, and normal displacement was calculated from the numerical simulation. It should 

be noted that the plate with the rounded corner is studied in Section 4.4.3, normal direction 

(𝑥𝑁) , tangential direction (𝑥𝑇) , radius (R), and degree (𝜃 ) are defined using the local 

coordinate system, respectively.  

 

Table 4.1. Material properties 

Material 𝜌 (kg∙m-3) E (GPa) v  

AL5083-H116 [41] 2666 71.3 0.337 

Dotmar Polystone [29] 351.4 0.9 0.4 

 

 

Figure 4.6. 3D FE model with the global and local coordinate systems 

 

The elastic material properties of the specimen and the wedge are shown in Table 4.1. 

The element size of 0.6 mm was selected to ensure more than 12 elements per wavelength, and 

eight-node linear brick element with reduce integration (C3D8R) was used in the FE model. 

The 8-cycle Hann-windowed tone-burst with different FTVs were used as the excitation signal, 

and the excitation was applied on the inclined wedge surface using normal displacement with 

10 𝜇𝑚 displacement amplitude. The first measurement point was 100 mm away from the 

wedge, and the distance interval between the remaining 42 measurement points was 50 mm. A 

small Rayleigh damping value [42] was used in the FE model to match the amplitude decay of 

the ES0 wave over wave propagation distance, which was determined based on the 

experimental results.  
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In Figures 4.7a and 4.7b, the contour of displacement magnitude from FE simulation 

can provide an improved understanding on the edge waves propagation along the edges and 

the corner. In Figure 4.7c, the edge wave is able to remain confined near the edge without 

dissipation after interacting with the sharp corner.  In addition, the magnitude of scattering 

Lamb waves is small which should have negligible influence on the edge wave measurement, 

which has been demonstrated in the experiment (in Figures 4.3 and 4.5).  

 

 

Figure 4.7. Contour of displacement magnitude from FE simulation demonstrating the edge 

wave propagation (a) before interacting with the sharp corner, (b) interacting with the sharp 

corner, (c) after interacting with the sharp corner 

 

4.4.2. Finite element model validation 

The numerical simulations were carried out following the same conditions of the 

experimental study, and the envelope amplitudes of wave pulse at the edges and corners of the 
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specimen were calculated. The results in Figure 4.8a show that there is steady and small 

amplitude decay when the ES0 waves propagating along the flat edges. There is significant 

amplitude decay when the ES0 wave is transmitted to the adjacent edges. The numerical results 

have good agreement with the experimental results, and the comparison of results with FTV = 

2 is shown in Figure 4.8b. The amplitude of the measurement point that is 1.2 m away from 

the wedge can be considered as the outliner due to the similar arrival time of two transmitted 

waves from edges E2 and E4, therefore, it is not shown in numerical simulation and in 

experimental results. It should be noted that the envelope amplitude at the corners of the 

specimen can be calculated in the numerical simulations, and the spikes in Figure 4.8a indicate 

significant energy concentration of the ES0 wave at the corners. This phenomenon was reported 

as trapping effect in the literature [9], and the phenomenon is further investigated in Section 

4.4.3. 

 

Figure 4.8. (a) Envelop amplitude of transmitted waves from edges E1 to E4, and (b) the FE 

model validation 

 

4.4.3. Effect of rounded corners on the ES0 wave mode propagation 

The rounded corners are investigated in this section, and the global coordinates can be 

converted into local coordinates as shown in Figure 4.6. In Figure 4.9a, the corner was rounded 

with a radius of 2 mm (λ = 14.5 mm), and the results are normalized by the local normal 

displacement (𝑢𝑁) at 0-degree. The results show that the displacement that is perpendicular to 

the free edge (𝑢3) increases, while the global in-plane displacement (𝑢1) decreases with the 

angular coordinate. The local normal displacement (𝑢𝑁) has significant amplitude change 

which is symmetric about the 45-degree of the rounded corner, and the highest amplitude is 
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observed at 45-degree, which agrees well with the wave concentration at the corners as shown 

in Figure 4.8a. On the other hand, the amplitude of the local tangential displacement (𝑢𝑇) 

shows the opposite increasing trend with the angular coordinate compared with the normal 

displacement, and the amplitude decreases to zero at 45-degree of the rounded corner, which 

is consistent with the results for the normal displacement. 

 

  

Figure 4.9. (a) Normalized global and local envelope amplitudes at the rounded corner 

against degrees, and (b) the envelope amplitudes of normal displacement with different R/λ 

of the rounded corner 

 

A parametric study was carried out to further elucidate the effect of rounded corners on 

the ES0 wave propagation. The curvatures of the corner can be categorised as high curvatures 

(R=1 mm to R=5 mm), medium curvatures (R=8 mm to R=20 mm), and low curvatures (R=50 

mm to R=400 mm), according to the radius of corners. In Figure 4.9b, the results are shown 

with the dimensionless expression in terms of the radius-to-wavelength ratio (R/λ). The results 

show significant amplitude change in the normal displacement and obvious wave concentration 

in the corner with small radius-to-wavelength ratio, and the amplitude change is reduced with 

the increase of radius-to-wavelength ratio, which shows flat trend of amplitude change in the 

corner with large radius-to-wavelength ratio (i.e. radius of the corner is more than three 

wavelengths). The results also suggest that the ES0 waves can propagate on the rounded corner 

structures and show a great potential for applications to the fatigue crack detection for realistic 

structures. 
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4.4.4. Determination of the fatigue crack location 

The partially closed fatigue crack is the main focus of the present study, while the 

material nonlinearity and the micro-defects are not included, and their nonlinearities are 

relatively small compared with the contact nonlinearity, as demonstrated in the previous studies 

[43-45]. The length of the seam crack is 8 mm (l = 8 mm), and the width (i.e., interfacial gap) 

of the seam crack is sufficiently small, which is defined by the build-in function ‘seam crack’ 

in the ABAQUS/Explicit (see Figure 4.10a). The previous investigations have shown that the 

function can simulate the interaction between the Lamb waves and fatigue crack successfully 

[45-47]. In addition, the displacement amplitude of the edge wave (1.5 μm) is comparable with 

the interfacial gap (generally in the μm order magnitude) to ensure the generation of CAN [48-

50]. The hard contact of normal behaviour and frictional tangential contact with the stiffness 

coefficient of 1.5 were applied to the assigned seam crack using surface-to-surface contact 

between the interfaces, which can simulate clapping behaviour due to the interaction of guided 

waves with fatigue crack. The seam crack can be opened after interacting with the tensile part 

of edge waves, as demonstrated in Figure 4.10b. 

 

 

Figure 4.10. (a) Mesh illustration of an 8 mm seam crack at edge E2, and (b) Crack opened 

due to the tensile part of wave 
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Figure 4.11. (a) Frequency domain of an 8 mm fatigue crack at edge E2, and (b) the 

compensated time-displacement domain using phase-reversal approach and high-pass filter 

 

The scattering waves are used to determine the location of the fatigue crack using pulse-

echo setups [38]. The phase-reversal approach was employed to extract the second harmonic 

generation due to the interaction of ES0 mode waves with the fatigue crack [3]. The frequency 

domain in Figure 4.11a shows that the second harmonic and quasi-static displacement 

component (QSDC) generation due to the wave-crack interaction can be extracted. However, 

QSDC is not the focus of the current study, and QSDC can affect the accuracy of determining 

the fatigue crack location. Therefore, a high-pass filter of 30 kHz is applied on the time-

displacement domain to suppress the QSDC. The filtered time-displacement domain is shown 

in Figure 4.11b, and the half-length of tone-burst pulse was compensated. The envelope of the 

nonlinear ES0 wave was used to determine the location of the fatigue crack after the ES0 wave 

propagating through the corners. The result shows that the second harmonic generation due to 

interaction of ES0 wave with fatigue crack (at E2) is significantly higher than the scattering 

second harmonic generation of S0 wave. As shown in Figure 4.11b, the two highest peaks of 

envelope can be used to determine the location of the fatigue crack based on the second 

harmonic generation of nonlinear ES0 wave, one of which is generated by the transmitted ES0 

wave from edges E1 to E2 (WP1), and another is by the reflected ES0 wave from edges E1 to 

E4 and then transmitted to edge E2 (WP2). The wave path of the transmitted linear ES0 wave 

and the reflected nonlinear ES0 wave is shown in Table 4.2. 
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Table 4.2. Wave path of the reflected nonlinear ES0 wave 

Wave path (WP) 
Transmitted wave path 

(linear ES0 wave) 

Fatigue crack 

location 

Reflection wave path 

(nonlinear ES0 wave) 

WP1 
E1→E2 E2 E2→E1 

E1→E2→E3 E3 E3→E2→E1 

WP2 
E1→E4R→E1→E2 E2 E2→E1 

E1→E4R→E1→E2 E3 E3→E2→E1 

WP3 
E1→E4 E4 E4→E1 

E1→E4→E3 E3 E3→E4→E1 

 

A parametric study was carried out to investigate the proposed method for determining 

the fatigue crack location based on the Table 4.2 using MATLAB. The wedge transducer and 

measurement points (MP) are used for the pulse-echo setups, and the actual fatigue crack 

location is denoted as ‘Crack’ in Figure 4.12. In Figure 4.12a, an 8 mm fatigue crack is located 

perpendicular to edge E2, and the fatigue crack location determined by the proposed method 

can achieve very good agreement with the actual crack location. The proposed method is 

supposed to be useful when fatigue crack is located at edge E4, which is similar with the fatigue 

crack located at edge E2. In Figure 4.12b, the fatigue crack at edge E3 is near the sharp corner. 

The results of the proposed method show good accuracy compared with the actual crack 

location. A case considering the similar arrival time of the transmitted and reflected waves 

using the proposed method is shown in Figure 4.12c, after interacting with the fatigue crack. 

The transmitted nonlinear ES0 wave (WP3) is used in the case of Figure 4.12c, which is able 

to approximate the actual crack location with relatively good accuracy. In the practical 

application, this issue can be addressed by shifting the location of the actuator. The ES0 wave 

can propagate through the rounded corners as shown in Section 4.4.3, and a rounded corner 

with 3 mm radius is implemented, which is a more realistic case for practical application. The 

results in Figure 4.12d demonstrate good agreement between the determined location and the 

actual crack location. The results indicate that the proposed method is applicable for 

determining the fatigue crack location in practical applications, and the rounded corner of 

specimen has negligible influence on the proposed method. It should be noted that three 

measurement points were used as the sensors to verify the consistency of results, however, only 
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one of the measurement points is needed in the practical application, which makes the proposed 

method more applicable.  

 

 

Figure 4.12. Determination of the 8 mm fatigue crack located at (a) edge E2, (b) edge E3, (c) 

the blind zone of edge E3, and (d) edge E2 with a 3 mm radius of the rounded corner 

 

4.5. Conclusion 

The ES0 wave mode with low FTVs has been explored for fatigue crack detection in a 

thin-walled structure with corners, and its linear and nonlinear features have been investigated 

experimentally and numerically. The experimental results show that the ES0 waves with low 

FTVs (FTV < 4.5) can propagate along the straight edge without significant decay and is also 

able to propagate through sharp corners. However, the presence of sharp corners leads to 

energy loss in the form of scattering Lamb waves, and subsequently the transmission and 

reflection coefficients are found to be approximately 62.5% and 33%, respectively. These 

coefficients are almost independent of the FTVs over the considered region of wave excitation 

frequencies. In addition, the lower FTVs such as FTV = 2 seems to be more suitable for 

practical applications because the ES0 wave has the much lower amplitude decay and much 
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longer propagation distance. The experimental results also suggest that the transmitted ES0 

waves can be measured and distinguished after propagating through all four edges of the plate 

and all corners. Therefore, fatigue crack detection can still be achieved if only one edge is 

accessible for placing the excitation wedge and generation of ES0. 

The 3D FE model demonstrated a good agreement with the experimental results and 

allowed to investigate corners, which are difficult to measure and evaluate in the experimental 

study. For example, the numerical simulation involving sharp corners show a significant 

concentration of ES0 waves, which has been investigated using the validated FE model.  

However, the amplitude leap of ES0 wave is significant in the corners with a small radius-to-

wavelength ratio (less than 3) while the amplitude leap becomes small when the radius-to-

wavelength ratio increases.  

The nonlinear features of ES0 wave mode have been utilised to determine the location 

of the fatigue crack. Different fatigue crack locations have been considered to justify the 

proposed method of crack detection. The outcomes of this study have demonstrated that the 

fatigue crack location determined by the proposed method is in a good agreement with the 

actual location of the simulated fatigue crack. Further, the numerical results indicate that the 

proposed method can also be applied to realistic structures which have rounded corners, and 

the accuracy of determining the fatigue crack location is generally maintained at an acceptable 

level. 

Overall, the present study provided the fundamental understanding of the ES0 wave 

mode propagation in edges and the adjust corners. In general, this guided wave mode shows a 

great potential to be applied in practical environment and challenging applications, especially 

for the interior structures with complex geometries. The outcomes of this study can serve as a 

guide for the future developments of new defect detection techniques. Future research can 

focus on more complex structural features and situations, e.g., involving fluid-structure 

interfaces, which are typical in pipeline industry and marine applications.  
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Abstract 

Structural elements with edges are widely used across many industries and applications; examples 

include tapered flange beams and the footing of rail tracks. The distant defect inspection of these 

structures using the conventional guided wave techniques can be challenging because of multiple wave 

reflections, dispersion, and wave modes coupling. In this article, the quasi-fundamental antisymmetric 

mode of edge wave (QEA0) is proposed for evaluation of defects emanating from curved edges. In the 

beginning, the dispersion properties and the modal displacement profiles of QEA0 are studied using 

Semi-Analytical Finite Element (SAFE) method; and then the results are validated against outcomes of 

direct numerical simulations and an experimental study. The SAFE method demonstrated the feasibility 

of calculating the dispersion properties and the modal displacement profiles for the fundamental modes 

of edge waves propagating along ideal or non-ideal edges. The proposed QEA0 mode demonstrated 

several advantages compared with the conventional guided waves as well as its symmetric counterpart, 

i.e., the quasi-fundamental symmetric mode of edge wave (QES0). The latter was found to have a limited 

range of propagation distances along curved edges. In contrast, the QEA0 mode propagates for much 

longer distances without significant decay. In addition, the reflected waves due to defects are sensitive 

to small defects with the characteristic depth of more than 0.1 wavelength, and the defect reflection 

ratio showed a good correlation with the defect size. The reflected waves also allow to distinguish 

multiple defects and determine their locations. Overall, the QEA0 mode shows a great potential for the 

purpose of non-destructive evaluation (NDE) and structural health monitoring (SHM) of structural 

edges with complex cross-sectional areas. 

 

Keywords: Curved edges, edge waves, defect detection, SAFE, NDE   
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5.1. Introduction 

Non-destructive evaluation (NDE) and structural health monitoring (SHM) of 

engineering structures are critical for safe and efficient operation. The evaluation of various 

defects and damage with guided waves has been the focus of many studies over the past decade. 

These studies, in particular, demonstrated that guided waves can be utilised for different 

structures and materials [1-3], and showed a good sensitivity to various types of defects and 

mechanical damage [4-6]. The early works largely focused on the structures with relatively 

simple geometries such as plate [7-9] or circular pipe [10, 11]. Recent research efforts 

considered more realistic structures such as rail tracks [12-14], transverse bends [15, 16], T-

joint stiffeners [17, 18], pipe bends [19], I-beams [20-22], and square tubes [23].  

Many construction elements have common structural features – edges, which are of 

particular importance for NDE inspections. Indeed, damage and defects often initiate and/or 

propagate from free edges, which are prone to manufacturing defects and are often associated 

with higher stresses than the interior of the structure. However, the areas near edges are very 

challenging for defect inspections using traditional guided waves such as Lamb-Rayleigh 

waves due to multiple modes generation, wave reflections and modes coupling. In the same 

time, structural edges can also serve as waveguides,  which allow the propagation of local wave 

modes such as edge waves [24, 25]. In the limiting case of a sharp wedge, the local wave modes 

represent so-called wedge wave modes, which propagate near the wedge apex [26, 27]. The 

wedge waves are non-dispersive and non-decaying, however, are very sensitive to the 

sharpness of the apex [27]. The attenuation increases dramatically for non-ideal wedge 

geometries [28], which makes the practical applications of these waves doubtful. 

In a plate of finite thickness with ideal (rectangular) edges, two non-decaying local modes of 

guided waves can propagate, namely, the fundamental symmetric (ES0) and antisymmetric 

(EA0) modes of edge waves [29]. The analysis of edge waves is more difficult in comparison 

with traditional plane waves, i.e., Lamb-Rayleigh waves, as it needs solving 3D equilibrium 

equations instead of using the 2D framework of the plane theory of elasticity [30, 31]. Several 

analytical and semi-analytical approaches have been developed to analyse 3D edge waves [31, 

32], which provided dispersion equations for both fundamental modes of edge waves. It was 

also demonstrated theoretically that both fundamental modes have no decay [25, 33], however, 

in practice, the propagation of these modes can be affected by coupling with other modes of 
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guided waves. The latter is the main challenging in practical applications of these wave modes 

for NDE purposes.  

The edge waves have attracted much attention over the past few years for the purpose of the 

NDE, including the detection of pitting corrosion [34], hidden crack near the free edge [35] 

and the corner [36], and the impact damage of composite plates [37]. Recent feasibility studies 

showed that ES0 mode is particular suitable for distant detection of corrosion damage in flanges 

of I-beams [38]. However, several studies also reported that similar to the wedge wave mode, 

the ES0 mode may become energy decaying in the case of non-ideal geometries [16, 29], which 

largely restricts the utilisation of this wave mode for many practical applications, e.g. as shown 

in Fig. 5.1. Therefore, further investigations of the local guided waves are required in order to 

select the appropriate wave modes and frequency range, which could be utilised effectively for 

NDE inspections. 

 

 

Figure 5.1. Cross-sectional profiles of structural elements with curved edges 

 

Previous studies demonstrated that non-ideal geometries also allow the propagation of 

various feature guided wave (FGW) modes, which do not exist in ideal geometries. There have 

been reported at least four types of FGW in different structures: shear-horizontal type [15, 39], 

torsional type [40], and flexural and longitudinal type [16, 41]. The waveform of the first type 

is largely confined in an area near the top surface of the non-ideal (i.e., curved) edge or the 

welding area. The properties of the flexural and longitudinal type of FGWs depend 

significantly on the local geometry of the waveguide. The practical utilisation of these types of 

FGW modes could be restricted to specific local geometries, and the wave energy localisation 
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can be affected if the geometry of the waveguide is slightly changed. On the other hand, the 

torsional type of FGW has similar wave characteristics (i.e., modal solution and dispersion 

relation) with some higher order edge wave modes. 

The FGW, classical edge waves, quasi-edge waves (i.e., edge waves in non-ideal edge), 

wedge waves, Raleigh waves, and plate waves are discussed below to provide some physical 

insights as well as relations between different modes and geometries. The edge waves and other 

types of FGWs have many common features. In the certain frequency range, strong trapping 

effect may occur, which restricts the energy leakage to the adjacent material. The edge waves 

and quasi-edge waves can be considered as types of FGWs, which propagate along the traction-

free edge, and have some special wave propagation properties. These waves are guided by 

sharp and rounded edges (classic and quasi-edge waves), as well as weld seams/stiffeners (SH-

type FGW). As mentioned above, the wave energy of FGW can only be trapped in the 

waveguide within the certain frequency range, and a local maximum of the power flow can be 

calculated using approach developed in [40, 42]. The local maximum of the power flow 

corresponds to the minimum wave leakage into surrounding material. In contrast, the 

fundamental modes of classical edge waves can be confined in the waveguide (plate apex) in a 

very wide frequency range. In addition, the wave leakage of the fundamental modes of classical 

edge waves is generally much smaller than that of the FGWs. The propagation properties of 

the fundamental modes of edge waves at higher frequency thickness values (FTVs > 8) tend to 

converge to the corresponding properties of wedge waves, as explained in [32]. In the long-

wavelength limit (FTV << 1), the wave speeds of the fundamental edge waves asymptotic 

approach to the Rayleigh wave speed and the Rayleigh-type of flexural wave speed [31, 43]. 

The fundamental edge wave mode (EA0) at some frequencies has the similar dispersion 

relationships as the fundamental mode of Lamb waves (A0) and the wedge waves, see Fig. 5.2 

in Section 2 and the reference [32].  

In this study, we proposed to utilise the quasi-antisymmetric fundamental mode of edge 

wave (QEA0) for damage detection of the structural elements with non-ideal edges. In the 

beginning, the Semi-Analytical Finite Element (SAFE) method was applied to investigate the 

dispersion properties and modal displacement profiles of the edge wave modes for different 

local geometries of waveguides. The obtained dispersion curve and modal displacement profile 

of QEA0 modes were verified using an experimental study. It was demonstrated that the QEA0 

mode has a very low decay, which is specifically promising for distant and long-range NDE 

inspections. Further, a 3D numerical model was developed based on the geometry and 
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outcomes of the experimental studies to further investigate the feasibility of defect detections 

using the proposed QEA0 mode.  

This paper is organised as follow. Section 5.2 provides the theoretical background for 

analysis of the edge waves, and the methodology for the SAFE method has been briefly 

provided. Section 5.3 presents the outcomes of the parametric SAFE analysis including the 

wave velocities, modal displacement profiles and waveforms of QEA0 mode for non-ideal edge 

geometries. The transient 3D finite element (FE) model is outlined in Section 5.4, which is 

used to investigate the feasibility of defect detection with QEA0 mode. The outcomes of 

experimental study as well as comparison against SAFE and transient 3D FE results are 

presented in Section 5.5. Finally, the general conclusions from the present study along with 

directions for future work are briefly drawn in Section 5.6.  

 

5.2. Methodology 

5.2.1 Fundamentals of edge waves 

The governing equation for the problem of edge wave propagating along the ideal edge 

with finite thickness can be formulated mathematically by equation of the 3D linear elasticity 

[44], in the Cartesian coordinates 𝒙 = {𝑥1, 𝑥2, 𝑥3} as   

(𝜆 + 𝜇) grad div 𝒖 + 𝜇∆𝒖 = 𝜌
𝜕2𝒖

𝜕𝑡2
 (5.1) 

where 𝒖 = {𝑢1, 𝑢2, 𝑢3}
𝑇  is the displacement vector, which represents the displacement 

components in the Cartesian coordinates. ∆ is the three-dimensional Laplace operator. 𝜆 and 𝜇 

are Lame’s constants, and 𝜌 is mass density. The propagation factor is 𝑒−ⅈ(𝜔𝑡−𝜉𝑥3), which can 

be determined by the angular frequency 𝜔  and the complex wavenumber 𝜉  in the wave 

propagation direction (i.e., 𝑥3-direction). The thickness of the plate is 2ℎ. The plate faces 𝑆 =

{0 < 𝑥1 < ∞, 𝑥2 = ±ℎ, 𝑥3 < ∞}, which are perpendicular to 𝑥2-direction, are assumed to have 

stress-free boundaries.  

The displacement vector 𝒖 can be transformed by the Laplace transform and the Fourier 

transform to simplify the 3D linear elasticity problem with respect to time variable 𝑡 and spatial 

variable 𝑥3, respectively [25].    
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𝑼(𝑥1, 𝑥2) = ∫ ∫ 𝒖(𝑥1, 𝑥2, 𝑥3, 𝑡)𝑒
−ⅈ(𝜔𝑡−𝜉𝑥3) 𝑑𝑡

∞

0

∞

−∞

𝑑𝑥3 (5.2) 

The previous studies [25, 30] have demonstrated that the wave-field of edge wave can 

be decomposed as Lamb wave and shear-horizontal waves with the form 

𝑼(𝜔, 𝜉) = ∑𝐶𝑛
𝐿𝑼𝑛

𝐿(𝑥2)𝑒
−ⅈ𝜉𝑛𝑥1

∞

𝑛=0

+∑𝐶𝑛
𝐻𝑼𝑛

𝐻(𝑥2)𝑒
−ⅈ𝜉𝑛𝑥1

∞

𝑛=0

 (5.3) 

where 𝐶𝑛
𝐿  and 𝐶𝑛

𝐻  are the coefficients of Lamb waves and shear waves depending on the 

boundary conditions at the edge, and the displacement components of Lamb waves (𝑼𝑛
𝐿 ) and 

shear waves (𝑼𝑛
𝐻) are eigenfunctions.  

The dispersion curves [30, 31, 45] and the modal displacement profiles [25, 32] have 

been investigated based on the mode decomposition, Eq. 5.3, for fundamental as well as higher 

order modes of edge waves. It was found that the eigenvalues of the fundamental modes are 

real in the theoretical investigation [32], and these modes are slightly dispersive. In contrast, 

the higher order modes of edge waves are strongly dispersive and the attenuation of these wave 

modes is significantly affected by Poisson’s ratio, 𝜈; higher values of 𝜈 leads to a stronger 

attenuation [31]. However, the higher-order modes are beyond the scope of the current study. 

The frequency thickness values (FTV) are defined as FTV = ω2h/c2 for the dispersion 

curves and the calculation of wave properties, where ω is the angular frequency, 2h is the 

thickness, and c2 is the shear wave speed. From practical point of view, the generation of edge 

waves over the whole range of FTVs may be a challenging task because of the wave modes 

coupling and multi-modes generation, particularly, at the higher FTV range (i.e., FTV > 8), see 

Fig. 5.2. It was demonstrated that in the low (1 < FTV ≤ 4) and medium (4 < FTV < 8) FTV 

ranges, the edge waves can be reliably generated using the wedge excitation method [24]. Thus, 

the focus of current study is on the fundamental edge wave modes in the low and medium 

ranges of FTVs.  

 



107 

 

 

Figure 5.2. Dispersion curves of edge wave modes (ES0 and EA0)  [25, 30] along with other 

wave modes (i.e., Lamb wave modes Si, Ai, and shear-horizonal wave modes SHi, AHi, 

i=0,1,2…) as calculated using software package DISPERSE [46], k is angular wavenumber, 

2h is thickness 

 

5.2.2. SAFE method 

The analytical and semi-analytical approaches for analysis of edge waves were based 

on the mode decomposition (Eq. 5.3) as described in the previous section. The eigenvalues and 

corresponding wave modes are normally obtained from this equation by enforcing the 

boundary conditions and applying  the boundary collocation method [25, 30] or reciprocity 

theorem [32]. However, these analytical approaches are not very amendable to an non-ideal 

edge geometries [47]; and its application to non-symmetric cross-sections of waveguides can 

be particularly challenging.  

The alternative to the analytical approaches is the Semi-Analytical Finite Element 

(SAFE) method. The SAFE method has developed for decades, and it has been proven to be a 

powerful tool for analysis of guided waves propagating in waveguides with arbitrary geometry 

and cross-sectional area. The idea behind this method is to model the cross-sectional area using 

finite elements and apply harmonic waves in the form of  𝑒−ⅈ(𝜔𝑡−𝜉𝑥3)  along the wave 

propagation direction. This method has been successfully applied to calculate the modal 

properties of guided waves in a wide range of waveguides [48].  
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A modification of the SAFE method, so called the SAFE-PML (Semi-Analytical Finite 

Element with Perfectly Matched Layer) method, is utilised in this work to calculate the 

dispersion properties and the modal displacement profiles of edge waves propagating along 

waveguides with ideal and non-ideal cross-sectional geometries. The SAFE-PML allows to 

more efficiently determine the both real and imaginary parts of the eigenvalues as a function 

of the excitation frequency; and the PML essentially serves as an absorbing layer. The most 

detailed description of the method and the discussion on the PML length were presented in [49, 

50]. In a general case, the SAFE-PML provides infinite number of eigenvalues for a certain 

excitation frequency [48], however, the wave modes have to be filtered separately for each 

eigenvalue [49]. The identification of the dispersion curve for a specific wave mode can be 

very challenging, specifically, if the eigenvalues are complex. The latter implies analysis of a 

large number of eigenvalues and the corresponding wave modes for each excitation frequency. 

A wave mode filtering algorithm [50] is needed to determine the corresponding wave modes 

for the complex eigenvalues. However, in the case of the fundamental edge wave modes, which 

are not energy decaying in the low and medium FTV ranges [32, 51], the calculation of the 

dispersive relationship is much simpler as the imaginary part of the eigenvalues is very small, 

and it can be neglected in the calculation procedure.   

 

5.3. Parametric SAFE analysis 

5.3.1. Ideal Geometry of waveguide 

The purpose of this section is to investigate the effect of non-ideal edges on dispersions 

curves and modal displacement profiles (wave modes). In the beginning, the ideal geometry 

with rectangular edges is analysed using the SAFE-PML method and the results are compared 

with outcomes of past analytical studies. The ideal geometry and modelled finite element (FE) 

mesh are shown in Fig. 5.3. The analysis was conducted using SAFE-PML method 

implemented in COMSOL Multiphysics 5.6 software package. The thickness of the ideal edge 

was 5 mm (2h = 5 mm). The PML with a depth of 8h was added to the internal region that is 

sufficiently far away from the free edge surface. The interior region has a depth of 20h to ensure 

that the fundamental mode of edge waves is not affected by the finite geometry. The mesh size 

was selected to be 0.5 mm. The free-quadratic elements were used to model the ideal geometry 

(rectangular edges), while the free-triangular elements were utilised for non-ideal geometries 

(curved edges).  
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The stress-free boundaries were enforced on all faces of the waveguide (𝑆 = {0 < 𝑥1 <

∞, 𝑥2 = ±ℎ}). The initial conditions for the displacement and velocity components were set at 

zero. The model was solved for excitation frequencies from 100 kHz to 800 kHz 

(corresponding to the FTV from 1 to 8), with the 10 kHz frequency step (or ∆FTV = 0.1). For 

each frequency, a large number of eigenvalues, typically 1500, were calculated to make sure 

that the eigenvalues of the fundamental modes of edge waves are among the calculated values.  

 

 

Figure 5.3. Schematic illustration of the SAFE-PML model for edge waves propagation 

along a waveguide with ideal edges 

 

Typical results of calculations using SAFE-PML are shown in Fig. 5.4a (for the ideal 

edge). In this figure, the red and blue lines belong to the real plane and represent the 

fundamental modes of edge waves as explained earlier. Based on these calculations, the phase 

velocity as a function of FTVs is presented in Fig. 5.4b. In addition, the outcomes of SAFE-

PML calculations are identical, or indistinguishable, to the dispersion curves as shown in Fig. 

5.2.   

The present results are compared with the outcomes of theoretical studies [25, 30, 52, 

53]. In Fig. 5.4b, the calculated phase velocities of ES0 and EA0 modes are plotted along with 

the theoretical results [25, 30] demonstrating an excellent agreement. Figs. 5.5a and 5.5b show 

the in-plane displacement (𝑢1 , see Fig. 5.3 for the reference system) component of the 
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waveforms of symmetric and antisymmetric modes of edge waves, respectively. The arrow in 

the figures is the complex Poynting vector along the 𝑥3 -direction (i.e., wave propagation 

direction), which represents the axial power flow density. These figures present the 

displacement amplitude of the fundamental edge waves, which demonstrate that the waveform 

of edge wave modes is localised near the edge typically within roughly three wavelengths; and 

there is almost no energy leak to the interior of the waveguide. These outcomes are consistent 

with previous analytical studies [32].  

 

   

Figure 5.4. (a) Eigenvalues calculated by SAFE-PML method for the waveguide with ideal 

edge against FTVs and attenuation, and (b) phase velocity validation 
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Figure 5.5. The waveforms of (a) ES0 and (b) EA0 calculated by SAFE-PML method, with 

displacement contour (𝑢1) and complex Poynting vector (in 𝑥3-direction)  

 

 

Figure 5.6. Validation on the modal displacement profiles of the waveguide with ideal edges 

(a) ES0 mode in 𝑥1-direction, (b) ES0 mode in 𝑥2-direction, and (c) EA0 mode in 𝑥1-direction 

 

The comparison of the modal displacement profiles of the ES0 mode against analytical 

results presented in [25] are shown in Figs. 5.6a and 5.6b, along 𝑥1-direction, and 𝑥2-direction, 
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respectively. The small deviation in Fig 5.6a between the SAFE outcomes and the analytical 

findings is negligible.  Fig. 5.6c shows the calculation outcomes based on SAFE-PML method 

for the EA0 mode along with analytical results [53]. Overall, the present results show an 

excellent agreement with the theoretical results. Therefore, this agreement provides a 

confidence in the further results for non-ideal geometries obtained by the same method, which 

will be considered next. 

 

5.3.2.  Non-ideal geometries of waveguides 

The convergence of the classical edge waves to the quasi-edge waves in waveguides 

with rounded edges over the range of 0 ≤ R⁄h ≤ 2 is investigated in this Section with respect 

to the modal displacement profiles and wave speeds. The waveguides with rounded edges and 

different radius-to-thickness (R/h) ratios are analysed with the adopted method. The 

computational results demonstrate that a wave mode similar to the fundamental antisymmetric 

edge wave (EA0) mode, which is the quasi-fundamental antisymmetric edge wave (QEA0) 

mode, can propagate in this case. Figs. 5.7a – 5.7c present the normal displacement component 

of the waveforms corresponding to the QEA0 mode for different FTVs in the waveguide with 

rounded edge. The results indicate that the wave energy becomes more localised near the sharp 

edge region with the increase of FTV.  

 

Figure 5.7. SAFE contour of the normal displacement waveform of QEA0 in a waveguide 

with non-ideal edge (R/h =1) for (a) FTV=2, (b) FTV=4, and (c) FTV=6, with displacement 

contour (𝑢2) and complex Poynting vector (in 𝑥3-direction) 

The modal displacement profiles along the depth and thickness directions are shown in 

Figs. 5.8a-5.8d. Fig. 5.8a and Fig. 5.8b demonstrate the effect of different FTVs at the same 
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R/h ratio on the displacement profiles, in depth direction, and in thickness direction, 

respectively. In Fig. 5.8c and Fig. 5.8d, the FTV is kept the same and the R/h ratios varied from 

0 to 2. The ideal geometry of the edge corresponds to R/h = 0, which is the classical edge waves, 

while the edge is completely rounded when the R/h = 2. The results are consistent with the 

previous findings (Fig. 5.7). It can be concluded from Fig. 5.8 that the level of the wave energy 

localisation of the QEA0 mode depends on both FTV and R/h ratio.  

The confinement of the edge waves due to the increase of R/h ratio may be explained 

by the stronger trapping effect near the sharp edge compared with the flat edge surface and the 

rounded edges. This confinement in classical edge waves (i.e., with ideal edges and flat edge 

surface) as a function of the FTVs was investigated before, see [32, 52]; and the classical edge 

waves were found to be localised near the sharp edges and converges to the wedge waves at 

high FTVs (at FTVs > 8). In the case of the quasi-edge waves in the waveguide with rounded 

edges (see Fig. 5.7 and Figs. 5.8a-5.8b), the wave confinement also occurs with the increase of 

the FTVs and the displacement profiles are localised near the sharp edge. When increasing the 

R/h ratio, the quasi-edge waves become more confined at the opposite sharp edge, see Fig. 5.7. 

In addition, in the case of the wedge waves, the attenuation associated with the wave leakage 

increases significantly when the R/h ratio increases [28]. Similarly, the presence of the rounded 

edge may also increase the wave energy leakage for quasi-edge waves, and localises the edge 

wave energy near the sharp edge, specifically at high R/h ratios, see Fig. 5.8. 

The dispersion properties of the ES0 mode propagating along the non-ideal edges (the 

QES0 mode) are very sensitive to local geometry, i.e., the R/h ratios (see Fig. 5.9a). Moreover, 

this mode demonstrates a large attenuation, in particular, for high FTVs and/or large R/h ratios. 

The attenuation for completely rounded edge decreases at higher FTVs and converges to FGW 

at FTV = 7.8. This behaviour has many similarities with the shear-horizontal type of FGW, 

which was investigated in [15]. Overall, this mode is not very suitable for practical utilisations 

for the purposes of NDE due to large attenuation, especially if the geometry of the waveguide 

is far from the ideal.  
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Figure 5.8. SAFE calculation of the normal displacement profiles of QEA0 for the waveguide 

with non-ideal edges in the (a) 𝑥1-direction with different FTVs, (b) 𝑥2-direction with different 

FTVs, (c) 𝑥1-direction with different R/h ratios, and (d) 𝑥2-direction with different R/h ratios 

 

In contrast, the QEA0 mode demonstrates a very limited leakage and the attenuation 

(almost undetectable computationally) over all considered R/h ratios and within the 

investigated FTV range, which mathematically corresponds to a very small imaginary part of 

the corresponding eigenvalue. This wave characteristic simplifies the mode and frequency 

selection for practical applications, signal processing, and make this wave mode very attractive 

for distant inspections. However, the QEA0 mode is dispersive and Fig. 5.9b, shows the 

dependencies of the phase velocities of this mode as a function of FTVs at different R/h ratios. 

Nevertheless, the effect of the R/h ratio on phase velocities is relatively small. 
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Figure 5.9. SAFE prediction of the fundamental mode of edge waves against FTVs in a 

waveguide with arbitrary curves (a) attenuation of QES0 mode, and (b) phase velocities of 

QEA0 mode 

 

5.4. Numerical simulations 

5.4.1. 3D Finite Element model 

A 3D FE model was developed in ABAQUS/Explicit to simulate the wave propagation 

behaviour. The material properties are listed in Table 5.1; and these properties and the 

geometry are the same as utilised in the experimental study, which will be described in the next 

section. The FE geometry represents a tapered flange beam (TFB) with R/h ratio of 1. The 

cross-section geometry of the beam is shown in Fig. 5.14b in Section 5.5 ahead. The edge 

waves can only propagate along the feature region (i.e., near the free edge), where the traction-

free condition could be applied [40]. Therefore, the internal structure of the waveguide has no 

influence on the propagation of the highly-localised edge wave modes; thus only half of the 

beam structure has been modelled to reduce the computational time. The excitation wedge was 

modelled with the same finite element type as the beam; and the perfect coupling between the 

wedge and beam was modelled using the tie constraint. It should be noted that the orientation 

of the excitation wedge was different for the generation of QEA0 and QES0 modes, which is 

similar to the experimental studies. The displacement boundary conditions were applied 

orthogonal to the inclined face of the wedge, with displacement amplitude of 8 µm. The 

maximum size of 0.5 mm was selected for all finite elements of the FE model to ensure more 

than 15 elements per wavelength in the considered FTV range. Eight-node linear brick element 

with reduced integration (C3D8R) was used in the FE model. The Rayleigh damping α was 

implemented [54] to simulate the wave amplitude attenuation due to the material damping [55]. 
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Table 5.1. Material properties 

Material 𝜌 (kg∙m-3) E (GPa) 𝜈  α damping 

125TFB (1018 steel) [20]  7870 205 0.29 90 

Excitation wedge (Dotmar Polystone) [24] 351.4 0.9 0.4 28783.3 

 

 

 

Figure 5.10. 3D FE model contour of in-plane displacement (𝑢1) wavefield with QES0 mode 

(FTV=2) at different time steps 

 

In Fig. 5.10, the waveform of the QES0 mode with low FTV shows significant 

dispersion after limited wave propagation distances, and the QES0 mode shows significant 

coupling with other propagating plate wave modes (i.e., Lamb and shear-horizontal wave 

modes). In contrast, in Fig. 5.11, the QEA0 mode shows negligible dispersion over long wave 

propagation distances, and the waveform can still be confined near the free surface region. It 

should be noted that Lamb waves can also be generated by the wedge as shown in Fig. 5.10a, 
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which disperses rapidly and shows negligible influence on the propagation of the QEA0 mode, 

since its displacement magnitude is significantly smaller compared with the QEA0 mode. The 

detailed numerical studies are presented and discussed in the next Session. 

 

 

Figure 5.11. 3D FE model contour of normal displacement (𝑢2) wavefield with QEA0 mode 

(FTV=2) at different time steps 

 

5.4.2. Effect of the curved edge on the QEA0 propagation 

The experimental measurement of the displacement profile of the QEA0 mode in the 

case of a curved edge surface can be challenging, since it is very difficult to perfectly align the 

1D laser vibrometer perpendicular to the curved surface. This is not the case for the 3D FE 

simulation, and any displacement components along the curved edge can be easily evaluated. 

The displacement amplitude along the curved flange was compared with that of the flat flange 

as illustrated in Fig. 5.12. The results show a relatively rapid decrease of the displacement 

amplitude along the curved edge with the measurement distance. The difference in the 

amplitudes along flat and curved edges was small, approximately 10%.     
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Figure 5.12. Numerical simulation of QEA0 mode displacement amplitude along the flat and 

curved flanges against the distance-to-wavelength ratio 

 

5.4.3. Sensitivity of QEA0 to partially through-thickness defects  

The 3D FE model allows different defects to be simulated and analysed, which can be 

costly if investigated experimentally. The focus of the present section is to analyse the 

sensitivity of the QEA0 mode to partially through-thickness edge defects, which represent a 

corner crack and a corrosion spot as illustrated in Fig. 5.13a. The defect depths for these defects 

(d) are defined as shown in Fig. 5.13a. All defects had 1 mm width. The defects were modelled 

by removing the mesh elements assigned to the considered defect geometries as detailed in Fig. 

5.13a. A low FTV (FTV = 3) was utilised for the simulation of the defect detection using the 

QEA0 mode. In Fig. 5.13b shows the defect reflection ratios which is the ratio of the 

displacement amplitude of the incident and reflected waves, due of the different type of defects 

and their depths. The outcomes of numerical studies demonstrate that QEA0 is sensitive to the 

considered types of edge defects. The noise level was determined based on the experimental 

results presented in Section 5.5.3; and the reflected waves due to the defects usually show a 

higher amplitude than the noise level. This indicates that the numerical results can also be 

reproduced experimentally.  
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Figure 5.13. (a) Schematic illustration of defects with FE mesh, and (b) defect reflection 

ratio against defect depth-to-wavelength ratio  

 

5.5. Experimental studies  

5.5.1. Experimental setup 

The experimental setup is shown in Fig. 5.14a. A specimen of 1000 mm in length and 

the cross-section as shown in Fig. 5.12b was initially free from defects. A signal generation 

module (NI PXIe-5122) was used to generate the 12-cycle Hann-windowed tone-burst. The 

generated input signal was amplified by 200V peak-to-peak voltage using a high voltage 

amplifier (CIPIAN HVA-800A), and then the input signal was transmitted to the transducer 

(ULTRAN-GC200) for the wave excitation. The transducer was glued to an excitation wedge, 

and the wedge angle was 31-degree, which is calculated based on the Snell’s law (the wave 

speed of the wedge material 𝑐𝑤=1336.37 m/s) to maximise the energy transfer to the QEA0  

[56]. The excitation wedge is suitable to generate the QEA0 mode within a range of FTVs as 

shown in Fig. 5.15a (i.e., FTV=2.5~6). The high vacuum grease (DOW CORNING) was used 

for bonding the transducer and the excitation wedge, and also the excitation wedge and the 

specimen to ensure the stable transmission of the generated edge waves. The excitation wedge 

was clamped to the specimen in 𝑥2-direction for the generation of QEA0 mode as shown in Fig. 

5.14c. The normal displacements near the free surface region adjacent to the flat edge were 

measured using the 1D laser vibrometer.  
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Figure 5.14. Experimental setup (a) Laser acquisition setup, (b) 125TFB cross-section 

profile, (c) details of QEA0 mode generation, and (d) details of QES0 mode generation 

 

The first measurement point was 200 mm away from the excitation wedge, and the 

remaining 12 measurement points were placed at 50 mm distance interval. The reflective 

coating was applied to the specimen to improve the signal-to-noise ratio. The absorbing clay 

was attached to the beam ends to reduce the boundary reflections. The generation of the QES0 

mode used the similar experimental setups as shown in Fig. 5.14d, with a different orientation 

of the excitation wedge, which was clamped to the specimen in 𝑥1-direction. The in-plane 

displacement was measured normal to the 𝑥1-direction to characterise the QES0 mode. The 
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wedge material for the generation of QES0 mode was different (𝑐𝑤=2300 m/s), and the wedge 

angle was selected at 52-degree, reflecting the different wave speed of this material [24].  

The PSV-400 acquisition system was synchronized with the signal generation module. 

The signal recording of the acquisition was averaged 600 times, with is sufficient to capture 

the linear features of edge waves with fundamental modes. The sampling rate of the acquisition 

was 25.6 MHz with the 39.06 nanoseconds time step, and a low-pass filter with 1000 kHz was 

applied to reduce the high-frequency noise.  

Displacement results obtained from the experiment were consistent and repeatable, and 

the fundamental modes of edge waves had significantly larger displacement amplitude 

compared with other wave modes. This can be considered as an advantage for the in-situ 

application, which indicates lower requirement on instrumentation compared with the 

generation of other wave modes (e.g., Lamb and shear-horizontal wave modes). In Fig. 5.15b, 

the group velocity of QEA0 mode was measured in the low and medium FTV ranges, from 2 

to 6, corresponding to 120 kHz and 360 kHz with a step of 30 kHz (i.e., 0.5 FTV). The 

experimental results show a good agreement with the SAFE results, with only exception of 

FTV = 2, which demonstrates a slight deviation compared with the SAFE calculations due to 

the mismatch of the designed wedge angle with the Snell’s condition (see Fig. 5.15a).  

 

 

Figure 5.15. (a) Wedge angle, and (b) wave velocity of the QEA0 mode  
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5.5.2. Comparison of the QEA0 and QES0 modes 

The generated QEA0 and QES0 modes are investigated in the low and medium FTV 

ranges to demonstrate the effects of FTVs on the wave propagation behaviour. In Figs. 5.16a 

and 5.16b, the QEA0 mode shows significantly long wave propagation distances with a 

negligible decrease of the displacement amplitude, especially in the low FTV range (see Fig. 

5.16a). It means this mode had almost no attenuation within the specimen length. Hence, the 

QEA0 mode in the low FTV range is suitable for most practical applications, in which the 

typical length of structures can reach 10 to 20 meters. It should be noted that the higher order 

modes can also be generated in the medium FTV range, which are observed in Fig. 5.16b, 

however, the amplitude of these modes disperse rapidly with the propagation distance. This 

indicates that the higher order modes are not suitable for the distant inspection of the non-ideal 

edges, and the interference with the QEA0 mode reduces significantly after approximately 500 

mm from the excitation wedge. Within this distance the higher order modes and the 

fundamental modes can interfere resulting in some amplitude decay of the QEA0 mode. 

However, this interference is very small in the medium FTV range (i.e., less than 5% deviation 

over 800 mm propagation distance). 

In contrast, the QES0 mode has a significant displacement amplitude decay over 

relatively short wave propagation distances, see Figs. 5.16c and 5.16d. In the low FTV range 

(Fig. 5.16c), the waveforms of QES0 reveals a clear distortion and dispersion, which are likely 

due to the wave mode coupling between the edge wave modes and the other propagating plate 

wave modes (i.e., Lamb and shear-horizontal wave modes). This phenomenon can be also 

observed from the direct numerical simulation results, Fig. 5.10 in Section 5.4. In general, the 

wave modes coupling between edge wave modes and other wave modes decreases with the 

increase of the FTVs, and the distortion of the waveforms becomes less severe. However, the 

higher order modes can be generated in the medium and high FTV range, and the attenuation 

increases significantly as presented in Fig. 5.16d. The trend presented in this figure agrees with 

the SAFE results presented in Fig. 5.9a in Section 5.3. In addition, the wave energy of the QES0 

mode in the higher FTVs is also largely localised near the sharp corner of non-ideal edges. 

Overall, based on general requirements to distant defect detection of non-ideal waveguides, the 

QEA0 mode is more advantageous if compared with the propagation behaviour of the QES0 

mode.  
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Figure 5.16. Comparison between the QEA0 and QES0 modes in time domain, (a) low FTV 

(FTV=2.5, 150 kHz) QEA0 mode, (b) medium FTV (FTV=6, 360 kHz)  QEA0 mode, (c) low 

FTV (FTV=2, 120 kHz)  QES0 mode, and (d) medium FTV (FTV=6, 360 kHz)  QES0 mode 

 

5.5.3. Further characterisation of the QEA0 mode  

The normal displacement amplitude of the QEA0 mode was also investigated in the 

depth direction (𝑥1-direction) at the flat flange, and the displacement profiles of the QEA0 mode 

are presented in Fig. 5.17a. The locations of the measurement points are 300 mm away from 

the wedge transducer. The results for each FTV are normalized against the first measurement 

point, 𝑥1 = 0, see Fig. 5.17a. The results indicate that the internal structure (i.e., the web) has 

no influence on the propagation of the QEA0 mode, and the edge waves only exist in the feature 

region (i.e., near the free edge) [40]. The normalised amplitude drops below approximately 6% 

the QEA0 mode becomes indistinguishable from the noise, which is largely associated with 

equipment and the scattering effects of Lamb and shear-horizontal wave modes. The 

waveforms are more localised near the edge surface with the increase of FTVs. The latter is 

consistent with the simplified SAFE-PML model discussed in Section 5.3. If the results are 
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normalised by the wavelength λ, as shown in Fig. 5.17b, the QEA0 mode is localised within 

three wavelengths for all considered FTVs. This result also provides a general guideline for 

NDE inspections using the QEA0 mode, i.e., the effective inspection depth is roughly 

corresponding to the wavelength.  

 

 

Figure 5.17. QEA0 displacement amplitude along the flat flange in the 𝑥1-direction (a) 

against the distance away from the edge, and (b) against the distance-to-wavelength ratio 

 

5.5.4. Defect evaluation with QEA0 mode 

Two through-thickness notches have been fabricated to investigate the sensitivity of 

QEA0 mode to crack-like defects. The dimensions of the first notch were 1.2 mm in depth (𝑥1-

direction) and 1.1 mm in width (𝑥3-direction). There was also a surface squat located near the 

beam end, which was used to investigate the possibility of a multiple defect evaluation with 

this fundamental mode. Another defect was located at another edge, which had 7.7 mm depth 

and 7.2 mm width. The eco-pulse method was utilised for defect detection and the Hilbert 

transform was applied to simplify the analysis by calculating the waveform envelopes. 

In Fig. 5.18a, a reflection from the first 1.2 mm depth notch is clearly observed, and the 

wave propagation distance were calculated based on the group velocity presented earlier in Fig. 

5.15b in Section 5.5.1. The calculated notch location (i.e. 265.8 mm) was in an excellent 

agreement with the actual notch location (i.e., 265.0 mm away from the measurement point) 

with a difference of less than 0.2%. In addition, the reflection due to the surface squat was also 

revealed despite multiple reflection signals from the beam end reflection or the notch. The 
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calculated squat location also agreed well with the actual location of the squat symmetry line 

resulting in only 2.9% difference.  

 

 

Figure 5.18. (a) 1.2 mm notch reflection with FTV=3 (180 kHz), and (b) defect reflection 

ratio against notch depth-to-wavelength ratio 

 

In Fig. 5.18b, the defect reflection ratio (the ratio of the displacement amplitude of the 

incident and reflected waves) is calculated for different notch depth-to-wavelength ratios. The 

two different notches were evaluated tuning the different FTVs (i.e., different frequencies). 

The small notch with 1.2 mm depth was used to investigate the small notch by wavelength ratio 

(depth/λ < 0.4), while the large notch with 7.7 mm depth was used to determine the large notch 

by wavelength ratio (depth/λ > 0.4). In the beginning, the defect reflection ratio increases with 
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an increase of the notch depth-to-wavelength ratio and reaches the maximum at 1. Then, this 

ratio decreases with further increase of the notch depth-to-wavelength ratio as shown in Fig. 

5.18b.  Therefore, the optimum wavelength for detection of crack-like defects would be 

roughly corresponding to the depth of the defect. This conclusion is also consistent with the 

outcomes of the SAFE calculation, which demonstrate that high FTVs can only provide a high 

amplitude of the reflected signal in the case of shallow surface defects. 

 

5.5.5. Experimental validation of FE model 

The 3D FE model has been validated using the experimental results described in the 

previous Section. This Section will be focused on the linear features of QEA0 mode, including 

the waveforms, displacement profiles, and the wave velocity of this mode. The waveform in 

the time domain (in Fig. 5.19a) shows a good agreement between the experimental and 

numerical results. A small discrepancy between the results is due to the boundary reflections 

in 3D FE model, which are associated with the inclusion of the absorbing layer in experimental 

studies and modelling of the excitation wedge. In Fig. 5.19b, the numerical displacement 

profile along the flat flange in the 𝑥1-direction matches well with the both, the SAFE and 

experimental results. The group velocity in the low FTV range has been compared with all 

other results (SAFE and experimental) earlier and this comparison is shown in Fig. 5.15b, 

Section 5.5.1. The numerical results were only calculated from FTV = 2 to FTV = 4, since the 

focus of the present study is only the low FTVs, and the simulation of edge waves with higher 

FTVs requires smaller element size. The well-matched numerical and experimental results 

suggest that the developed 3D FE model can provide a good prediction of the linear wave 

behaviour of QEA0 mode, and the validated 3D FE model can be applied for the further 

investigations of the QEA0 mode. 
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Figure 5.19. 3D FE model validation (a) waveform in time domain, and (b) displacement 

profile along the flat flange 

 

5.6. Conclusion 

In this work, the SAFE-PML method has been applied to the calculation of the 

dispersion properties and the modal displacement profiles of the fundamental modes of edge 

waves, which was previously studied using analytical methods. The propagation of QEA0 mode 

along ideal and non-ideal edges of structural elements has been investigated based using the 

SAFE-PML method, and the dispersion properties and modal displacement profiles have been 

determined. The result agrees very well with the theoretical findings in the classical edge waves 

problem with ideal edges. The QEA0 mode shows significant advantages for its utilisation for 

near edge defect evaluation compared with other guided wave modes, especially in the low 

FTV range. The QEA0 mode can propagate over very long distances along non-ideal edges; 

and it demonstrates a great potential for the distant defect evaluation. In contrast, other guided 

wave modes are very sensitive to the cross-sectional profile of the waveguide; and may non-

exist for certain shapes or disperse rapidly. In addition, the outcomes of this study have 

demonstrated that the modal displacement profile of the QEA0 mode is localised near the free 

edge surface; and it is confined within three wavelengths from the free edge surface. The 

interior structure has a negligible influence on the QEA0 mode propagation. The QEA0 mode 

has a larger displacement amplitude at the sharp edge (𝑥2 ≈ −ℎ) compared with the curved 

edge (𝑥2 ≈ ℎ). Nevertheless, the displacement amplitude at the curved edge is still comparable 

with the flat edge for all considered geometries. Therefore, the QEA0 mode in the low FTV 

range (1 < FTV ≤ 4) can be used for inspections of larger cross-sectional areas compared with 
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the higher FTV range. In contrast, the medium FTV range (4 < FTV < 8) can be used for the 

structures with smaller cross-sections. In this case, the boundary reflections from the interior 

of the structure are almost negligible for the propagation of the QEA0 mode. 

The experimental and numerical studies have demonstrated that the QEA0 mode is 

applicable to detection of small defects with the characteristic depth of more than 0.1 

wavelength. The defect size correlates well with the defect reflection ratio. The multiple defects 

can be used resolved and evaluated separately using the echo-pulse method and Hilbert 

transform. The conducted experimental studies indicated that the locations of multiple defects 

can be determined very accurately with error less than 3%. Using the validated 3D FE model, 

we also demonstrated that the QEA0 mode is very promising for detection of corner and surface 

defects, which are most common in practice.  

Overall, the present study provides a comprehensive and fundamental understanding 

on the evaluation and localisation of defects with the QEA0 mode near the free edges of 

structural elements, which have non-ideal edges. The findings of the present study show a great 

potential of this guided wave mode for the purpose of NDE and SHM of many structures, 

especially for the edges of structures with complex cross-sectional profiles. Future 

investigations can also focus on the nonlinear features of the QEA0 mode to advance the distant 

defect evaluation techniques for more challenging applications.  
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Abstract 

Fatigue cracks often initiate and propagate from edges of structural components. Detection and 

evaluation of edge fatigue cracks could be very challenging, specifically, due to the crack 

closure phenomenon, which makes fatigue cracks to be partially closed when the applied 

loading is removed. The latter condition usually corresponds to maintenance and defect 

inspections. Despite that fatigue crack closure is well investigated, past experimental and 

theoretical studies related to guided wave-based NDEs largely ignored this phenomenon. In 

this article, the fundamental symmetric mode of edge waves (ES0) is used to evaluate crack 

closure effects on the evaluation of fatigue cracks with ES0 wave mode. The experimental 

studies have demonstrated that the reflected and transmitted signals at different frequencies 

correlate very well with the length of the open region of fatigue cracks. However, an accurate 

evaluation of the total crack length can only be conducted under applied load, which fully 

separates the crack faces. Finally, a new FE model has been proposed to simulate the fatigue 

crack closure and its effects on propagation of guided waves. The outcomes of FE modelling 

and experimental study were found in a good agreement. 

 

Keywords: Edge waves, fatigue cracks, crack closure phenomenon, FE modelling, NDE 
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6.1. Introduction 

Non-destructive fatigue crack detection and evaluation is critical for the efficient and safe 

operation of hazard structures, in particular, the structures working under cyclic loading. Non-

destructive evaluation (NDE) of fatigue cracks may be very challenging due to many reasons. 

One of these reasons is the crack closure phenomenon, which results that only a part of the 

fatigue crack, say about fifty percent, is open and free from contact stress when the applied 

load is removed [1-6]. The latter condition usually corresponds to maintenance and non-

destructive inspection conditions across many structural components.   

Recently, nonlinear ultrasonic guided waves have attracted significant attention for non-

destructive defect evaluation (NDE) purposes due to their good sensitivity to small-scale 

fatigue damage [7-10]. The wave-crack interactions can lead to, so-called, contact acoustic 

nonlinearity (CAN) resulting in a nonlinear response to a harmonic excitation. Various non-

linear effects associated with the CAN have been utilised in order to develop baseline-free 

NDE techniques for different types of structures, including thin-walled plates or shells [11-13] 

and pipes [14]. The past studies showed that the interaction between fatigue cracks and 

different ultrasonic guided wave modes is very complex [15-17], and also indicated that fatigue 

cracks can generate both linear [18-20] and nonlinear [15, 16] characteristic response 

signatures for each of these guided wave modes. These signatures have been investigated for 

Lamb and shear waves (i.e., S0 and SH0 wave modes). In particular, it was found that the 

nonlinear signatures are much more sensitive to the presence and severity of fatigue cracks 

than the linear counterparts [17, 21, 22]. Two common parameters are often used in NDE based 

on nonlinear guided wave signatures, which are the relative nonlinear parameter and the 

nonlinear index. However, it was difficult to relate these parameters to the severity of fatigue 

cracks i.e., the fatigue crack length in the case of plate or shell components [21-24]. 

The nonlinear wave response of fatigue cracks due to the CAN is influenced by the 

amplitude of the excitation and crack orientation with respect to the incident wave. In addition 

to the above factors, the wave response can also be affected by the partial crack closure; this 

will be explained next. Due to the high stress concentration the propagating fatigue crack 

generates wake of plasticity behind its tip leading to the crack closure phenomenon. The 

formation of the plastic wake and the level of closure are both affected by the cyclic loading 

conditions, e.g., load ratio or amplitude of the cyclic loading, as well as material and fatigue 

properties. Crack closure, in particular, implies that a significant part of the fatigue crack 
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remains closed when the applied load is removed and a certain load needs to be applied to fully 

separate the crack faces or open the crack. This phenomenon was first discovered by Wolf 

Elber in 1970 during his PhD candidature at the University of New South Wales [1]. Since this 

discovery, it was extensively investigated over the past fifty years because of the very important 

role that this phenomenon plays in fatigue life of structural components [2, 3, 6]. However, the 

fact that fatigue cracks are partially closed during NDEs was largely ignored in non-liner 

guided wave research. Although, this phenomenon has been pointed as a main contributing 

factor to the failure to detect or correctly evaluate the severity of fatigue damage during 

traditional ultrasonic inspections [23, 25, 26]. Subsequently, the current paper is aimed to 

experimentally and numerically investigate the effects of the partial crack closure on the 

evaluation of fatigue cracks with nonlinear guide waves. 

Free edges and surfaces of engineering structures are of particular concern from the 

structural integrity point of view as fatigue failures often initiate from edges or manufacturing 

defects associated with the fabrication of these edges. Detection and evaluation of edge cracks 

are difficult with conventional guided wave modes e.g., Lamb and shear waves due to 

reflections and scattering from the edge. In particular, the reflections and wave scattering may 

result in the mode conversion, which can significantly complicate the interpretation of the 

acquired wave signals. However, free edges of the plate and shell structural components can 

also serve as waveguides, which permit the propagation of feature-guided waves, such as edge 

waves [13, 27-29]. The fundamental symmetric mode of edge waves (ES0) has demonstrated 

several advantages compared to the conventional Lamb and shear waves. These advantages 

include long propagation distances with almost no energy decay, and no or little influence of 

the interior structures on the wave propagation as the edge waves are largely concentrated near 

the free surface. In addition, the ES0 mode is non-dispersive, which significantly simplifies the 

signal processing as well as interpretation. These advantages make the ES0 mode promising for 

the purpose of NDEs, especially for structures with complex geometries and having 

inaccessible locations. The ES0 mode has been applied to detect corrosion damage in I-beams 

[30], cracks [31, 32], and early-fatigue damage [33]. These studies have demonstrated that the 

ES0 mode is quite sensitive to all considered types of structural damage. This guided wave 

mode will be utilised in the current study. 

Together with extensive experimental studies on the interactions of guided waves with 

fatigue cracks, Finite Element (FE) simulations of linear and nonlinear guided wave 

phenomena have been conducted by many researchers to assist with the development of 
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experimental methods and NDE techniques. The previous studies usually idealised a fatigue 

crack as a straight seam crack and its interaction with the incident waves by the clapping 

(breathing) behaviour.  The latter implies that the crack is fully opened in the tensile part of the 

incident wave and fully closed in the compressive part [34-36]. Meanwhile, several articles 

considered more realistic scenarios and fatigue crack behaviour, e.g., curved cracks [37], 3D 

cracks [16, 17], and cracks subjected to vibration excitations [38]. However, it seems there 

were no computational studies addressing one of the one of the most important features of 

actual fatigue cracks, which is its partial closure. The shortcomings of the previous studies and 

a limited progress so far in modelling this phenomenon warrant for further investigations of 

nonlinear wave phenomena associated with more realistic representations of fatigue cracks in 

numerical simulations.  

The present paper is organised as follows. Section 2 presents the overview of the 

fundamental mode of edge waves, or the ES0 mode, providing the dispersion curves, modal 

displacement profiles, as well as penetration depths as a function of the excitation frequency. 

The details and outcomes of the experimental studies are described in Section 3. In Section 4, 

a new FE model, which is the one of main outcomes of this article, is developed to simulate 

the behaviour of a partially closed fatigue crack. The new model is validated against the 

experimental studies. Finally, the conclusions are drawn in Section 5. 

 

6.2. Fundamentals of edge waves 

The purpose of this section is to present the fundamentals and wave characteristics of ES0 

mode, the fundamental symmetric mode of edge waves. This wave mode is concentrated near 

the free edge, and therefore it can be utilised for the evaluation of the fatigue cracks near the 

free edge. The dispersion curve and the modal displacement profiles were investigated by the 

previous articles [27, 39, 40] using semi-analytical methods. The outcomes are normally 

presented in terms of the frequency thickness values (FTV = 𝜔2ℎ/𝑐2), where 𝜔 is the angular 

frequency, 2ℎ is the thickness of the plate, and 𝑐2 is the shear wave speed. The dispersion 

curves are shown in Fig. 6.1a. It can be noted that the ES0 mode is slightly dispersive over the 

entire FTV range, which indicates that the quasi-synchronism (phase velocity matching needed 

for the second harmonic generation) can be achieved [41]. The wave speed of the ES0 mode 

approaches the Rayleigh wave at the very low values of FTV (FTV << 1, e.g., for very thin 

plates), while the wave properties (wave speeds and displacement profiles) of the fundamental 
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edge wave approach to those of the wedge wave in the high FTV range (i.e., FTV > 8). 

Experimental studies  [13, 33] also indicate that the generation of the ES0 mode is always 

coupled with other wave modes, i.e., coupling with SH0 and S0 in the low FTV range (FTV < 

4), and coupling with higher order Lamb wave modes when FTV > 6. It was also found that 

the fundamental edge wave in the high FTV range has a large decay due to the coupling with 

the higher order Lamb wave modes and energy leak to these modes. These characteristics of 

the fundamental edge waves make the FTV selection quite critical for practical applications. 

Subsequently, based on the previous research, the FTV range in the present study was selected 

as follows: 1 < FTV < 4.  

In this work, a Semi-Analytical Finite Element (SAFE) model with a perfectly matched 

layer (PML) was developed to investigate the wave characteristics of the ES0 mode. The detail 

of the SAFE model is not presented here for the sake of brevity, and the details could be found 

in our previous article [32]. The SAFE calculations showed an excellent agreement with the 

semi-analytical results [27, 39] (see  Fig. 6.1b). The effect of FTV variations on the modal 

displacement profiles is further investigated based on the SAFE model. The coordinate system 

is shown in Fig. 6.4 in Section 3 ahead, where the x1-coordinate is along the depth direction of 

the plate and perpendicular to its free surface. 

 

 

Figure 6.1. (a) Dispersion curves of edge wave modes [27, 39] along with other wave modes 

as calculated using software package DISPERSE [42], and (b) modal displacement profile of 

ES0 mode, at FTV=1 
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In Fig. 6.2a, the wavelength of ES0 mode for a plate (2h = 3 mm) as a function of the FTV 

is plotted. The modal displacement profiles calculated using the SAFE model were normalized 

by the corresponding wavelengths (see Fig. 6.2b). Fig. 6.2b shows that the ES0 mode is 

concentrated near the free surface and decays within one wavelength in the depth direction (x1). 

It can be also noted that the FTV values have no effect on the wave decay. Because of this 

feature, the interior region has almost negligible influence on the propagation of the ES0 mode. 

 

 

Figure 6.2. ES0 mode wave properties (a) wavelength against FTVs and (b) modal 

displacement profiles in 𝑥1-direction with different FTVs 

 

6.3. Experimental studies 

In Section 3.1, the fabrication of the test specimen with a high-cycle fatigue crack is described. 

The details of the experimental setup for guided wave testing are provided in Section 3.2, and 

the experimental results are presented in Section 3.3. 

 

6.3.1.  Test specimens 

The fabrication of the sample weakened by high-cycle fatigue cracks is briefly presented 

in this sub-section. Two specimens were cut from an airspace grade aluminium alloy plate of 

3mm thickness for further testing. Specimen 1 has a 5 mm diameter circular hole, and two 

starter notches of 0.35 mm width and length, see Fig. 6.3. The sinusoidal cyclic tensile loading 

with 10 Hz frequency was applied to the specimen using INSTRON 1432 to initiate fatigue 

cracks from the starter notches. The maximum tensile stress was 50 MPa, which is 
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approximately 45% of the yield stress. The stress ratio, R (the ratio of the minimum to 

maximum stresses in the load cycle), was 0.1. The specimen was subjected to one million 

fatigue cycles. The final fatigue crack length (𝑙) was approximately 25 mm. The starter notch 

and the hole were removed after the cyclic loading to form the edge crack as shown in Fig. 6.3.  

 

 

Figure 6.3. Microscope images of the fatigue crack in Specimen 1 at different locations along 

the crack 

 

A micro-examination revealed two characteristic regions along the fatigue crack: one is 

near the free surface (free edge), which is open; and the second, which is closed spreading all 

way to the crack tip. As mentioned in the Introduction, this experimental observation is well-

known in fatigue area and associated with the plasticity-induced crack closure, the phenomenon 

first discovered by Elber [1]. The faces of the crack in the closed region are in contact and 

slightly separated due to the surface roughness; while the separation in the first region is much 

larger and the crack faces seem to be not in contact. Specimen 2 and its loading conditions 

were identical to Specimen 1. However, the cyclic loading was interrupted at 0.67 million 

fatigue cycles when the crack length reached 5 mm. 
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6.3.2.  Experimental setup for guided wave testing 

The experimental setup for the guided wave testing is shown in Fig. 6.4. A 12-cycle Hann-

windowed tone-burst was generated using a signal generation module (NI PXIe-5122), and the 

generated signal was amplified by an amplifier (CIPIAN HVA-800A) with 100V peak-to-peak 

voltage. The input was transmitted to the transducer (ULTRAN-GC500) to generate the wave 

excitation, and the transducer was coupled with a pixel wedge to maximize the generation of 

ES0 mode. The wedge angle was 52-degree considering the wave speed of the wedge material 

(cw = 2300 m/s) and Snell’s law. The acoustic coupling (high vacuum grease) was applied 

between the transducer and the specimen to ensure the stable excitation of the guided edge 

waves. The 3D-printed alignment device was used to apply a clamping force on the pixel wedge. 

The first measurement point (P1) was located 50 mm away from the excitation wedge, and the 

distance interval between the remaining measurement points was approximately 50 mm. The 

displacement (i.e., normal to the x2-x3 plane) was measured using a 1D laser vibrometer, which 

was synchronized with the acquisition system (PSV-400) and the signal generation module. 

The received signal was averaged 1000 times, and a low-pass filter with 1200 kHz was enforced 

to mitigate the high-frequency noise and improve the sign-to-noise ratio. The time step of the 

signal was 39.06 ns, and the sampling rate was 25.6 MHz. 

 

 

Figure 6.4. Experimental setup 
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6.3.3.  Experimental results 

A non-damaged plate with sharp edges was used to validate the experimental method of 

the generation of the fundamental edge waves. In Fig. 6.5, the group velocities of the ES0 mode 

with different FTV values were calculated, and these experimental values show a good 

agreement with the theoretical predictions [27, 28, 43] reported previously. This agreement 

provided confidence in the experimental method, which was used for further investigations. 

 

Figure 6.5. Wave velocity of the ES0 mode against FTVs 

 

In the case of Specimen 1, the length of the fatigue crack (l = 25 mm) was more than three 

wavelengths for the selected range of FTV values. Because of the localisation of the ES0 mode 

within one wavelength near the free edge, the fatigue crack blocks the direct transmission of 

the edge wave signal.  

Figs. 6.6a – 6.6c show the time domain of the reflected and transmitted signals at different 

measurement points as specified in Fig. 6.4 as well as the transmission and reflection wave 

ratios as a function of the FTVs shown in Fig. 6.6d. Fig. 6.6a also shows the non-linear 

component of the signal obtained using the phase reversal approach [10], where 𝑢0 and 𝑢180 

correspond to the phase signal shifted by 180 degrees. This approach has been widely utilised 

in past studies to enhance the characterisation of weak material nonlinearities using the second-

order harmonic, while the influence of the fundamental and the third-order harmonics is 

suppressed by the signal substruction.   
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Figure 6.6. Time domain signal for fatigue crack of 25 mm length, at points (a) - 1, (b) - 2, 

(c) - 3, see Fig. 6.4 for location of these points and (d) transmission and reflection wave ratios 

as a function of the FTVs. 

 

The results presented in Fig. 6.6 indicate that fatigue cracks have much stronger effects on 

the propagation of the ES0 mode than the conventional Rayleigh-Lamb waves [16, 44]. 

Therefore, fatigue cracks can be detected and evaluated using the linear wave features of the 

reflected and transmitted signals generated by the incident ES0 mode. For example, the distance 

between the measurement points and the fatigue crack location can be calculated using the 

reflection signal shown in Figs. 6.6a and 6.6b, which are 103.75 mm (between the crack and 

P1), and 52.3 mm (for P2), respectively. The evaluated distances match very well with the 

actual fatigue crack location. Results presented in Fig. 6.6c indicate that the edge waves can 

propagate through the fatigue crack. Different FTVs were applied in testing, and the results 

show a very limited difference in the reflection and transmission ratios as shown in Fig. 6.6d, 

with approximately 55% of the incident waves composes of the reflected signal. The possible 

explanation for the relatively large transmission ratio at small wavelengths is the ability of edge 
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waves to propagate through sharp edges and corners, which was demonstrated in our previous 

study [13]. 

The linear response of the ES0 mode was then utilised for the quantitative evaluation of the 

fatigue crack length. The edge of the plate with fatigue crack was gradually machined to change 

the crack length and further investigate the sensitivity of propagation of ES0 mode at different 

crack lengths. The ES0 mode depth penetration is related to the wavelength and for large cracks, 

the incident signal is fully blocked by the crack and the edge wave travels along the open crack 

faces to form the transmission signal. The reflection ratio decreases if the wavelength is more 

than the fatigue crack length. This is because the crack can reflect only a proportion of the 

incident waves and the rest of the wave can propagate further without being blocked by the 

crack. For non-dispersive waves, one would expect that the reflection ratio reaches the 

maximum when the wavelength approaches the crack length, and this maximum ratio should 

remain the same when the wavelength further decreases (see Fig. 6.6d). The experimental 

results indicate that the transmission ratio increases with the increase of the wavelength, when 

the wavelength is larger than the crack length. These phenomena can be explained by a slight 

dispersion of the ES0 mode at FTVs > 3.5. The dispersion can slightly influence the results of 

the transmission and reflection ratios evaluation in the higher range of FTV values.  

In Figs. 6.7a and 6.7b show results for Specimen 1, which was machined to reduce the 

length of the crack to 10 mm. The reflected waves reached the maximum ratio at FTV = 2.25, 

and this ratio was maintained the same with the further increase of the FTVs. The wavelength 

corresponding to the maximum reflection ratio (or FTV = 2.25) is 7.69 mm, which is very close 

to the actual fatigue crack length (10mm). Therefore, the crack length can be evaluated using 

FTVs at which the transmission ratio reaches maximum or at the point where the growth of the 

transmission ratio changes to plateau. 
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Figure 6.7. Transmission and reflection wave ratio (normalized by the incident wave) with 

different fatigue crack lengths, (a) and (c) against FTVs, and (b) and (d) against wavelengths 

 

Specimen 1 was further machined to further reduce the crack length to 7.7 mm. The results 

in Figs. 6.7c and 6.7d show that the maximum reflection ratio corresponds to FTV = 3.125, and 

the corresponding wavelength is 5.52 mm. These values are in agreement with the results 

shown in Fig. 6.7b, while the actual crack length is larger by 2.2 mm, very similar to the 

previous case of 10 mm crack. The presented results along with the previous studies [20, 21], 

which utilised a nonlinear approach, indicate that the length of the fatigue cracks are likely to 

be underestimated due to the crack closure phenomenon as described in the Introduction. 

 



146 

 

 

Figure 6.8. Transmitting wave displacement normalized by emitting wave displacement at 

different measurement points of Specimen 2, using FTV=2  

 

Specimen 2 was used to further investigate the effect of the opening and closure of the 

fatigue crack and its interaction with the edge waves. The out-of-plane displacement (𝑥2- 

direction, see Fig. 6.4) was measured on both sides of the fatigue crack as illustrated in Fig. 

6.8. The distance between the two measurement points on the opposite sides is approximately 

3.5 mm, which is smaller than the half of the wavelength (𝜆 = 8.65 mm) to ensure that the 

corresponding measurements are in the same phase of the incident wave. The vertical distance 

between points is approximately 1.6 mm. This represents the minimum distance that can be 

used due to the limitations associated with the radius of the laser beam of the Scanning Laser 

Vibrometer, which was utilised for experimental measurements. The results in Fig. 6.8 show 

that the opposite points display significant differences in the displacements near the free surface 

(or 𝑥1 < 3.2 mm); while quite consistent displacements below 3.2 mm in depth direction (or 

near the tip of the crack). This indicates that the fatigue crack near the tip is tightly closed, and 

the incident edge wave is unable to open the closed part of the crack. This finding agrees well 

with the results as presented in Fig. 6.7, which underestimate the length of fatigue crack due to 

the crack closure phenomenon. The fundamental outcome of these experimental study is a 

demonstration of the effect of the crack closure on the evaluation of the size of fatigue crack 
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using guided waves and the deficiency of the breathing crack assumption, which is often 

utilised in numerical studies on guided wave interactions with fatigue cracks.  

 

6.4. Finite Element simulation 

To support and validate the outcomes of the experimental studies a new FE model, which 

incorporates the partial crack closure effects, was developed and discussed in this Section. This 

Section also presents the outcomes of the simulations of more realistic crack behaviour, which 

takes into account the crack closure phenomenon as well as the outcomes of the conventional 

(or breathing crack) modelling [26, 36, 38]. The results are also obtained for different levels of 

pre-stresses, which change the crack opening.  

 

6.4.1.  FE model 

A 2D FE model was developed in ABAQUS/Explicit to simulate the wave interaction with 

the partially closed crack. The material properties are listed in Table 6.1. The plate model as 

shown in Fig. 6.9 has 300 mm length and 150 mm width. A seam crack with a length of 5 mm 

(𝑙 = 5 mm) is simulated with the build-in function ‘seam crack’, and the surface-to-surface 

contact between the interfaces is applied. The hard contact of normal behaviour and frictional 

tangential contact with a stiffness coefficient of 1.5 were assigned to the seam crack. The 

previous studies [26, 36, 38] have shown that the seam crack can successfully simulate the 

interaction between the Lamb waves and fatigue crack. The element size of 0.1 mm was 

selected to ensure more than 15 elements per wavelength, and the seam crack area is refined 

with the mesh size of 0.01 mm. Four-node bilinear plane strain quadrilateral with reduced 

integration (CPE4R) was used in the FE model.  

 

Table 6.1. Material properties 

Material 𝜌 (kg∙m-3) E (GPa) 𝜈 
Expansion 

Coefficient 

Al-6061 2704 72 0.333 2.34E-005 
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Figure 6.9. FE model with mesh and the temperature distribution profile. 

 

A fictitious temperature distribution, which results in a local thermal expansion, was 

applied to the adjacent area of the seam crack (0.01 mm distance interval as shown in Fig. 6.9). 

This temperature distribution is used to simulate the plastic wake and partial closure of fatigue 

cracks. The temperature distribution was prescribed in the predefined field at the initial stage 

of FE simulations before the next wave excitation stage. The analytical field of temperature 

distribution used for the proposed seam crack is shown in Fig. 6.9 with an amplitude of 1000 

Kelvins. The analytical field was determined using the trial-and-error method based on the 

experimental results and the quasi-static response of fatigue cracks to the applied loading. The 

displacement amplitude of the wave excitation is 10 µm in the 𝑥1-direction and 6 µm in the 𝑥2-

direction, which are based on the edge wave characteristics as shown in Fig. 6.1b. The pre-
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stress can be applied on the plate and will be further investigated in the next section, and the 

pre-stress is applied in the initial stage if needed.   

 

6.4.2.  Partially closed crack 

In Fig. 6.10, the numerical results are validated against the experimental results, which 

show a good agreement, and partially validate the proposed fatigue crack modelling approach. 

The comparison between the newly developed FE model and the conventional model is 

presented in Fig. 6.11. The fatigue crack is partially closed under the tensile part of the incident 

waves in the new model (see Fig. 6.11a), while the seam crack is fully opened in the 

conventional model (see Fig. 6.11c). In contrast, under the compressive part of waves, the 

fatigue crack is partially opened in the new model (see Fig. 6.11b), while the seam crack is 

fully closed in the conventional (breathing crack) model (see Fig. 6.11d). The developed FE 

model can better describe the realistic fatigue crack behaviour when interacting with the guided 

waves, which is consistent with the previous theoretical and experimental studies [20, 45]. 

 

Figure 6.10. FE model validation, with fatigue crack length of 5 mm, using FTV=2 
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Figure 6.11. Comparison of the crack profile under tensile/compressive part of incident 

waves between the new FE model and the conventional FE model, which disregards 

fatigue crack closure effects. 

 

 

Figure 6.12. Effect of pre-stress on the partially closed crack 
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The different tensile pre-stress levels are applied to the developed FE model, from 0 MPa 

to 100 MPa, to investigate the effect of tensile pre-stress on the opening and closure of the 

fatigue crack. The difference between the two groups of measurement points (1-P2/P1) defined 

in the previous Section, Fig. 6.8, is shown in Fig. 6.12, the pre-stress level significantly affects 

the crack opening and closure as well as the wave interactions. The increase of tensile pre-

stress leads to a larger opening area of the crack near the crack tip area (i.e., less crack closure 

length), and this result agrees well with the previous investigations [36, 45]. The results indicate 

that the applied loading is necessary for the accurate evaluation of the length of fatigue cracks. 

However, in practice it may be quite difficult to apply this loading during NDE inspections.  

 

6.5. Conclusion 

In conclusion, the developed experimental method, which is based on the 

maximum/minimum transmission/reflection ratios, is suitable for the quantitative evaluation of 

the fatigue crack length. The results show that the ES0 mode is very sensitive to the fatigue 

cracks, and the linear responses of ES0 mode due to the interaction between edge waves and 

the fatigue crack is significantly larger than the conventional Lamb and shear waves. The 

fatigue crack length can be estimated by sweeping the different FTVs, and the fatigue crack 

length is directly associated with the wavelengths. However, the present study also 

demonstrates that the fatigue crack length may be underestimated using the linear wave 

approach, similar to other published outcomes [20, 21], which utilised a nonlinear approach. 

Further investigation shows that the fatigue crack near the tip has negligible interaction with 

the ES0 mode. In contrast, the part of the fatigue crack near the free edge shows a significant 

influence on the both transmission and reflection ratios.  

It is also demonstrated that to accurately simulate the linear wave responses of fatigue 

cracks the modelling approaches must take into account the crack closure phenomenon. The 

clapping mechanism and breathing crack idealisations seem to be not appropriate assumptions 

for the simulation of the response of fatigue cracks to waves or vibrations. The developed FE 

model offers a simple method to simulate a crack closer using a thermal expansion, which has 

the same effect on the crack behaviour. The developed model demonstrated a good agreement 

with the experimental results, which support the significance of the crack closure phenomenon. 

In addition, the numerical results show that the increase of tensile pre-stress levels leads to a 

smaller closure length near the crack tip, which allows the fatigue crack length to be evaluated 
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more accurately. The finding of the present study can be considered as initial step to improved 

understanding of the wave-crack interaction involving crack closure effects, and can help 

further develop fatigue crack NDE procedures using guided wave modes. 
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Chapter 7: Conclusions 

7.1.  Summary 

This PhD thesis is concerned with the development of new techniques for fatigue damage 

evaluation in thin-walled structures using the fundamental modes of guided waves.  

The distributed fatigue damage (or material degradation) has been evaluated with the wave 

mixing, in the first part of the thesis (Chapters 2 and 3). The outcomes of these chapters show 

that the generation of combinational harmonics is sensitive to the material nonlinearity 

manifesting the material degradation due to progressive low-cycle fatigue damage. In addition, 

the generation of combinational harmonics has exhibited a higher sensitivity to the distributed 

fatigue damage than the second-order harmonics. The developed techniques based on wave 

mixing have improved the quality of the experiments and significantly enhanced the efficiency 

of the combinational harmonic generation.  

It is well known that fatigue cracks are often initiate and propagate from free edges in thin-

walled structures. In Chapters 4, 5, and 6, the fundamental modes of edge waves have been 

studied, which can propagate near the free edges, and wave properties of these wave modes 

have been investigated for the purpose of NDE of fatigue edge cracks. The outcomes of these 

chapters have demonstrated that the fundamental edge waves can propagate in different thin-

walled structural with different cross-sectional geometries, and the edge waves are very 

sensitive to crack-like defects, thus these feature guided waves are very promising candidates 

for the development of new NDE techniques. 

In Chapter 2, the phase-reversal approach has been incorporated into the wave mixing to 

evaluate the accumulated fatigue damage. The generated combinational harmonic using two S0 

mode waves has shown a good sensitivity to the accumulated fatigue damage and correlates 

well with the progressive fatigue damage. The phase-reversal approach combined with the 

wave mixing of the fundamental mode of Lamb waves has exhibited a great potential, 

especially for challenging situations, e.g., when the generation of combinational harmonics is 

small and overlapped with third order harmonics. In addition, the generation of the 

combinational harmonics has shown better performance compared with the second harmonics. 

The findings of this study can be critical for practical application and development of NDE, 

which utilise the wave mixing method. 
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Chapter 3 has focused on the effects of frequency pair and time shifting on the wave mixing 

using quasi-synchronized guided wave modes. Previously, the frequency pair selection of 

fundamental wave modes has generally been based on the trial-and-error method, however, 

avoiding overlapping of the generated harmonics requires the certainty in the selection of the 

frequency pairs. A new method based on theoretical modelling has been developed. This 

method provides a guide for the selection of the wave mixing frequency pair. Moreover, a time 

shifting method has been developed and applied to enhance the generation of the combinational 

harmonics using the collinear wave mixing. This method can be particularly useful when the 

frequency pair selection is constrained due to various limitations, which are very common in 

the practical applications. The efficiency of the proposed methods has been validated 

numerically and experimentally in several case studies. Overall, the developed methods can be 

utilised to further advance the application of fatigue damage evaluation techniques based on 

wave mixing method.  

The propagation of the fundamental mode of edge waves (ES0) along the corners of the 

thin-walled structures has been investigated in Chapter 4. It has been found that this wave mode 

can be utilised to inspect the fatigue crack at the plate structures with corners, and it can be 

particularly advantageous for NDE of damage and defects in inaccessible locations. The 

experimental studies have revealed that the ES0 can propagate through sharp corners, and a 

new edge wave can be generated after the interaction with the corner. This new wave has the 

identical wavenumber with the incident wave. The careful numerical studies have shown that 

a rounded corner has insignificant effect on the edge wave propagation when the radius-to-

wavelength ratio is above 3. In addition, the second harmonic generated due to presence of a 

fatigue crack can also propagate through the corners, and this finding is especially important 

for the development of NDE techniques to detect fatigue cracks in inaccessible locations.  

Chapter 5 is concerned with the propagation of the fundamental mode of edge waves in 

non-ideal geometries i.e., thin plates with curved edges. Analytical approaches developed over 

the past fifty years are very complex for the case of non-ideal edges of the waveguide. 

Therefore, a SAFE model has been developed for the purpose of the evaluation of wave 

properties. The comparison between the SAFE calculations and the analytical results for the 

ideal geometries has shown that the developed SAFE method can achieve an excellent 

agreement with the analytical results. This agreement provides the confidence in the developed 

SAFE method and obtained results for the case of non-ideal edges. Further investigation has 

shown that the quasi-fundamental antisymmetric mode of edge wave (QEA0) has almost no 
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decay and can propagate for long distances, while its symmetric counterpart has strong wave 

mode dispersion in the non-ideal edges. In addition, the QEA0 has demonstrated a good 

sensitive to the defect with the characteristic length less than the 0.1 wavelength. The outcomes 

of Chapter 5 have provided a new approach for detail investigations of edge waves, especially 

for the wave properties calculation for edges with complex shapes. The findings can be applied 

to many practical situations, which require fatigue damage evaluation with NDE techniques.  

Chapter 6 has investigated the evaluation of the fatigue crack length using ES0 mode. The 

experimental studies have demonstrated that the reflected and transmitted signals at different 

frequencies of ES0 waves correlate very well with the length of the opened region of fatigue 

cracks. A new advanced FE model has been developed to simulate the wave phenomena 

associated with plasticity-induced closure of fatigue cracks. The numerical and experimental 

results have been found in a good agreement. However, an accurate evaluation of the total 

crack length can be conducted under the applied tensile load, when the crack is fully opened. 

This conclusion is in-line with past studies, which concluded that the plasticity-induced closure 

phenomenon is one of the main reasons behind a possible underestimation of the severity of 

fatigue damage with different NDE techniques. 

In summary, this study has investigated the fatigue damage in thin-walled structures, and 

the methods developed in this study are applicable for practical applications. Early fatigue 

damage (or damage before formation of a micro-crack) in such structures can be evaluated 

using fundamental mode of Lamb waves, and the further progressive damage or fatigue cracks, 

which normally initiate at free edges, can be evaluated using the fundamental modes of edge 

waves. The findings of the present study can help to further develop fatigue damage/crack 

evaluation techniques using guided wave based NDE methods, and provide an improved 

understanding of the wave propagation phenomenon associated with the more realistic 

structural geometries and fatigue crack closure behaviour. 

 

7.2. Future work recommendations 

The current work has laid a foundation for many new developments in the area of NDE. 

For example, in the case of the damage evaluation in thin-walled structures, the present results 

could be extended as follow. 



159 

 

1. The further application of the developed wave mixing method in Chapters 2 and 3, 

using the fundamental wave modes, such as wave mixing of edge waves, and three-

wave mixing, for the purpose of early-stage evaluation of fatigue damage. 

2. The further investigation of the edge waves propagation along the non-ideal edges for 

the purpose of the fatigue crack evaluation, using the proposed SAFE mode in Chapter 

5. The edge fatigue crack with partially through thickness is of particular interest, and 

the local wave interaction using edge waves may be sensitive to this type of the early-

stage fatigue crack as well.  

3. The investigation of edge waves propagation in composite materials for the purpose of 

delamination damage inspections. The dispersion curves of edge wave can be 

calculated using the developed SAFE model, which provides a powerful tool for the 

dispersion curve calculation of anisotropic materials, e.g. fibre-reinforced composites.  

4. The influence of environmental conditions (i.e., soil and water) on the propagation of 

edge waves needs to be investigated, since there are many thin-walled infrastructure 

components are either buried underground or immersed in the water. This could be 

achieved based on further development and modifications of the aforementioned SAFE 

model. 

5. The feasibility of edge wave propagating on the free edges with thickness variation, for 

the purpose of damage evaluation in more realistic structures. The edge wave properties 

are directly associate with the frequency and thickness, and the gradual change of the 

thickness may also result in the phenomena so call ‘acoustic blackhole’. Therefore, the 

wave properties of edge waves may change accordingly considering the combined 

effects. 

6. The further development of a more realistic model considering the fatigue crack closure 

behaviour. Chapter 6 has demonstrated that the closure behaviour of fatigue crack can 

be simulated using the thermal expansion analogy with plastic wake behind the crack 

tip. The further investigations could be carried out based on the aforementioned FE 

model and incorporated with the nonlinear features of the guided waves.  

 

 




