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Abstract

Weakly-supervised learning is a fundamental problem in computer vision and medical
imaging, aiming to learn from imperfect supervision signals. Deep neural networks have
been the dominant model behind current solutions, achieving great success in various
application domains. Weakly-supervised learning can be formulated as: 1) incomplete
supervision, where only a small subset of training samples are annotated, 2) inaccurate
supervision, where some training samples are annotated with incorrect supervision,
and 3) inexact supervision, where training samples are given ambiguous or indirect
supervision signals. Despite the remarkable achievements of current approaches, there
are still many challenges worth exploring to advance the field, particularly in real-world
datasets containing non-ideal scenarios.

State-of-the-art incomplete supervision methods such as semi-supervised learning
focus on consistency regularization and explore various data augmentation strategies.
However, in real-world scenarios such as Medical Image Analysis (MIA), these meth-
ods fail with severe class imbalance. Moreover, few methods have been tested under
a multi-label setup, which is common in MIA. Therefore, we argue that SSL methods
in MIA need to be flexible enough to handle both multi-class and multi-label, as well
as imbalanced learning. To address this problem, we propose two approaches that uti-
lize self-supervised learning and pseudo-labelling to address the aforementioned issues
and consequently improve semi-supervised learning performance on MIA tasks. For
inaccurate supervision such as noisy label learning, the focus is mainly on balanced
multi-class classification with sample selection methods. To solve noisy label learning
in MIA, we propose to use a new regularization loss that considers both noisy labels
and imbalanced learning for MIA. Furthermore, we utilize multi-modality information
to better re-label multi-label images in MIA. Our results on MIA benchmarks show our
state-of-the-art performance and effectiveness. We also understand noisy label learning
from an inexact supervision perspective by learning from label sets instead of single
label supervision for multi-class classification. We analyze the advantage of multi-label
learning and partial label learning in noisy label learning and demonstrate the unique
property of learning with label sets.
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Chapter 1

Introduction

Image classification is a fundamental problem in computer vision and medical imag-
ing, which aims to assign predefined classes to images. This task is essential for other
computer vision tasks, such as object detection [53] and semantic segmentation [66],
but it is challenging for automated systems. Traditional methods for supervised classi-
fication use a multi-stage approach, where they first extract handcrafted features from
images using descriptors like Scale-Invariant Feature Transform (SIFT) [139] and then
feed them to a trainable classifier, such as Support Vector Machine (SVM) [169]. How-
ever, these methods depend heavily on the prior knowledge of feature extraction, which
limits their performance on different domain tasks [101].

In recent years, deep learning methods have emerged as a powerful tool for image
classification. These methods utilize the backpropagation algorithm [100] to adjust
model parameters, such as weights and biases, based on the gradient of an objective
function. They employ multiple non-linear layers to automatically learn features and
patterns from images. The Convolutional Neural Network (CNN) has become the main-
stream architecture for deep learning [102]. A CNN consists of multiple layers with
convolutional kernels that extract useful features from locally correlated data points.
The output of these convolutional operations is processed by a non-linear activation
function, which aids in learning semantic differences in images. This is followed by
a down-sampling operation that ensures the input is invariant to geometrical distor-
tions [102]. The introduction of the residual network (ResNet) [67], which addresses the
issue of gradient vanishing through skip connections and enables the training of very
deep CNNs, has significantly advanced the architectural design of CNNs. The win-
ning entry of the ImageNet Large Scale Visual Recognition Challenge (ILSVRC) 2017,
Squeeze-and-Excitation Networks (SENet) [71], achieved a Top-5 error rate of 2.251%,
surpassing the human-level error rate of 5.1% [158]. This achievement demonstrates
that deep learning methods can perform image classification in an end-to-end frame-
work, eliminating the need for handcrafted features and significantly outperforming
traditional methods.
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However, supervised deep learning methods require a large number of well-annotated
training samples to function effectively [40, 109], which are often costly and time-
consuming to obtain. Some non-expert data sources, such as Amazon’s Mechanical
Turk and text captions of collected data, have been used to automatically obtain la-
bels. However, these sources often produce incorrect labels [202]. Furthermore, in
expert domains such as medical image analysis (MIA), the labeling budget often only
supports the annotation of a small number of samples, leaving a large number of sam-
ples unlabeled. Moreover, the annotations may be inconsistent or ambiguous due to
the expertise or preference of different human labelers [45]. Therefore, in real-world
scenarios, we often encounter problems where the available supervision information
is incorrect, incomplete, or imprecise. This has motivated the development of meth-
ods beyond the supervised learning setup that can learn under imperfect annotation
conditions. These methods are referred to as weakly-supervised learning in this thesis.

Weakly-supervised learning has emerged as an active research area [240]. Tradi-
tional approaches employ Support Vector Machines (SVMs) [10, 138, 140, 160, 169, 231]
to learn a discriminative hyperplane and use various techniques to assign pseudo labels
to weakly-labeled samples. However, these methods often exhibit poor generalization
performance on high-dimensional real-world images obtained from natural and medical
imaging processes.With the advancement of deep learning, deep learning methods have
become the mainstream approach for recent weakly-supervised research [240], leading
to significant performance improvements on real-world computer vision and medical
image analysis (MIA) datasets compared with traditional approaches. In this thesis,
the primary focus is on deep learning-based weakly-supervised learning.

1.1 Weakly-supervised Setups

With the development of weakly-supervised learning, various forms of weak supervision
can be categorized as: incomplete supervision, inaccurate supervision, and inexact
supervision [240], as shown in Fig. 1.1.

Incomplete supervision. Incomplete supervision refers to the scenario where only
a small subset of training samples are annotated, while the rest are unlabelled. Training
models on the labelled subset alone is insufficient for good generalization. The key chal-
lenge is how to leverage the abundant unlabelled samples. Two major techniques are
semi-supervised learning and active learning. Semi-supervised learning assigns pseudo
labels to unlabelled samples using various techniques, such as pseudo-labelling [103,
153, 155, 177] or consistency learning on unlabelled samples [11, 12, 170], aiming to
improve model performance with all available samples. Active learning queries human
experts to obtain ground truth labels for selected unlabelled instances [47, 94, 166, 222],
aiming to improve model performance with a fixed budget of queries.

Inaccurate supervision. Ideally, supervised learning learns a mapping function
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Figure 1.1: Taxonomy of different types of weakly supervision and particular methods
we focused in this thesis.

between the input space and the label space. However, in practice, inaccurate labels
are often encountered due to human errors or unreliable labelling sources [109, 211].
Such noisy labels can degrade the learning of the mapping function, reducing model
confidence and generalization [107]. Moreover, DNNs can overfit to noisy labelled
samples due to their high capacity, leading to inaccurate results on clean labelled test
samples [119]. The main technique explored for this problem is noisy-label learning.
Most noisy-label learning approaches focus on selecting clean labelled samples from a
noisy training set [1, 20, 60, 81, 106, 134, 162, 198], developing novel loss functions that
are robust to label noise [50, 132, 196, 235], or estimating class/instance-dependent
label transition matrices [26, 148, 148, 209, 210]. The goal of noisy-label learning
is to train a model under label noise and produce accurate model performance on
uncorrupted test samples.

Inexact supervision. In some situations, the supervision information is not as
precise as desired. A typical scenario is when each image has multiple labels, where
the true label is either within or likely within the label sets. The main techniques for
this problem are partial label learning and multi-label learning, depending on whether
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Figure 1.2: Weakly-supervised image classification problems explored in this thesis:
natural images, chest x-ray images and dermatosis images.

a single-label constraint is enforced. Partial label learning extracts latent labels from
label sets by either learning from all labels simultaneously [55, 56, 151, 173, 230, 239]
or identifying pseudo labels for conventional multi-class classifiers [141, 186, 187, 190].
Multi-label learning removes the single-label constraint and learns each label indepen-
dently [121, 154]. The goal of both tasks is to improve model performance under these
inexact supervision signals.

Despite the progress of previous approaches in weakly-supervised learning, there
are still significant challenges that need further investigation from both empirical and
theoretical perspectives in real-world scenarios. In this thesis, we present our work
under the aforementioned weakly-supervised settings: semi-supervised learning, noisy-
label learning, and partial label learning. Our goal is to explore the field of saving
annotation costs in dermatosis data, Chest X-ray (CXR) data, natural images data,
and natural language data.

1.2 Motivation

Collecting a large number of samples with accurate and fine-grained annotations is
challenging for supervised learning tasks. In real-world scenarios, weak labels are often
easier to obtain. There are various forms for representing weak labels, such as a small
number of labelled samples and a large number of unlabelled samples, incorrect labels
extracted from search engines, or ambiguous labels with coarse supervision. There-
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fore, the main motivation of weakly-supervised learning is to explore techniques for
improving model performance under weak label supervision.

1.2.1 Incomplete Supervision

Semi-supervised learning (SSL) is a common approach for incomplete supervision,
which deals with a large number of unlabelled samples and a small number of la-
belled samples. Recent SSL approaches focus on standard computer vision bench-
marks with multi-class classification and class-balanced distribution. This ideal sce-
nario enables state-of-the-art (SOTA) SSL methods to use consistency-based learning
of unlabelled data [11, 12, 170] and explore strong/weak data augmentation strate-
gies. These methods achieve outstanding performance on synthetic datasets such as
CIFAR10/CIFAR100 [96]. However, in MIA real-world datasets, these methods often
fail. Unlike computer vision problems, MIA has both multi-class and multi-label prob-
lems, where both have severe class imbalance issues due to the rarity of diseases. The
imbalanced distribution causes pseudo labels produced by consistency learning to be
biased towards majority classes and negatively affect the performance on a balanced
test set. Moreover, computer vision and MIA have different domains, which makes
it difficult to transfer the best augmentation strategy from computer vision to MIA.
Therefore, we argue that SSL methods for real-world scenarios such as MIA need to
be flexible enough to handle both multi-class and multi-label problems, as well as
imbalanced learning.

To address these issues, we propose two approaches for MIA SSL. The first ap-
proach is inspired by the recent development of self-supervised learning [21, 65]. We
use self-supervised pre-training in SSL to improve model performance with better rep-
resentation ability. Previous MIA approaches train models from either randomly ini-
tialized weights or ImageNet [40] pre-trained weights. However, these weights are
derived from natural images, which are different from MIA tasks. In our work, we use
self-supervised techniques to train on massive unlabelled MIA samples and fine-tune
with a small percentage of labelled samples using the mean-teacher framework [177].
Our approach with self-supervised representation and mean-teacher framework works
with both multi-class (skin lesion images) and multi-label (chest x-ray images) tasks.
Furthermore, the learned representation is closely related to our MIA tasks and robust
under imbalanced distribution [117].

Another approach we focus on is pseudo-labeling methods. Unlike consistency-
based learning, pseudo-labeling is a traditional method widely explored in semi-supervised
learning [103]. It iteratively assigns high-confidence pseudo labels to unlabelled sam-
ples and trains the model jointly with labelled and pseudo-labelled samples. The model
should improve its performance during this iterative training process. Pseudo-labeling
methods can generalize well for both multi-class and multi-label tasks [155]. However,
the main challenges for this approach are confirmation bias and threshold selection to
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pseudo label an unlabelled sample. Confirmation bias causes pseudo label errors made
by early model predictions to accumulate on unlabelled samples, leading to sub-optimal
performance. The imbalanced distribution also affects threshold selection. Previous
methods use a fixed value threshold for all classes, which encourages more pseudo la-
bel bias towards majority classes and deteriorates classification accuracy of minority
classes. Inspired by the development of curriculum learning [205], we focus on selecting
unlabelled samples to be pseudo-labelled instead of selecting a threshold. By compar-
ing the distance between unlabelled and labelled samples as informativeness, we use a
Gaussian Mixture Model (GMM) to automatically select unlabelled samples with the
least similarity from labelled samples to be pseudo-labelled. This naturally boosts mi-
nority pseudo label selection under imbalanced distribution. Furthermore, we address
confirmation bias by replacing the generation of pseudo-labels solely from the model
with a more robust approach that combines a K-nearest neighbor (KNN) classifier and
a conventional linear classifier for generating pseudo-labels.

1.2.2 Inaccurate Supervision

For inaccurate supervision, datasets are fully annotated but contain noisy labels.
Learning with noisy labels (LNL) is a practical solution for training models on noisy
training sets and maintaining performance on uncorrupted test sets. Recent LNL meth-
ods [172] use various approaches, including sample selection, noise transition matrix
estimation and robust loss function design. However, these methods mostly work for
balanced multi-class classification and become problematic for imbalanced multi-label
classification, which is common in real-world datasets and MIA. Sample selection aims
to select noisy labelled samples with early-learning phenomenon [119]. However, se-
lecting samples with multiple annotations in LNL is not ideal since only a subset of
the annotations may be wrong. Thus, sample selection in multi-label classification
becomes a complicated noisy partial label learning problem that is difficult to solve.
Noise transition matrix estimation provides an ideal framework for training statisti-
cally consistent classifiers [51, 210]. However, multi-label classification also needs to
consider class correlation matrix, which is hard to capture without prior knowledge.
Therefore, estimating noise transition matrix with class correlation matrix entangled
becomes a challenging task. Robust loss function design proves that Mean Absolute
Error (MAE) is a robust loss for LNL but often suffers from under-fitting issue. How-
ever, such robust loss functions only have been tested on synthetic datasets and do not
achieve comparable performance on real-world datasets.

We propose two approaches for this learning with imbalanced noisy multi-label
problem. Inspired by previous noisy-label learning methods and imbalanced learn-
ing [135], we propose a new robust loss function that considers both multi-label classi-
fication with imbalanced distribution and LNL. We construct a new memory module
that stores non-volatile running average of model prediction logits from early-learning
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stages. Furthermore, we perform logit adjustment [135] in memory storage to take into
account the class prior distribution for debiasing the classification prediction estimated
from the imbalanced training set. The memory module is used by a new regulariza-
tion loss to penalize differences between current and early-learning model logits and
regularize the training. For clean labelled samples, the new regularization loss ensures
a relatively large gradient throughout the training procedure, even after fitting those
samples. For noisy labelled samples, the new regularization loss reduces the gradient
magnitude of supervised loss. In both scenarios, the new regularization loss removes
the imbalanced class distribution impact in memory updating.

The second approach proposed for multi-label LNL is based on the exploration
of multi-modality information to identify noisy labelled samples. Inspired by recent
progress in multi-modal learning and large language models [41], we argue that the de-
tection and correction of noisy multi-labelled samples can be leveraged by the semantic
information present in the training labels. We propose to learn multi-label descriptors
based on the projection of images into a semantic space using a set of visual descriptors.
The projection process is trained by promoting the similarity between the set of visual
descriptors and the semantic descriptors computed from the image’s multiple labels
using pre-trained language models [104]. This will help the visual descriptors become
closer to clean labels in semantic space by ranking the top similarity visual descrip-
tor of each image, we build KNN graphs for detecting noisy multi-label for training
samples. The KNN graph is further used for smoothly relabel noisy training samples
and re-train the model. This alleviates the aforementioned issue of sample selection in
noisy multi-label learning and enables fine-grained analysis of each label in the images.

1.2.3 Noisy Label with Inexact Supervision

The process of sample selection in Label Noise Learning (LNL) primarily involves the
detection and relabelling of samples labelled with noise. When a deep learning model
is trained under label noise, it initially fits clean samples and subsequently overfits to
noisy samples in the later stages of training. This pattern is evident in the dynamics of
training loss, where the loss associated with clean samples is typically small, while that
of noisy samples is significantly larger. Several sample selection methods, such as those
described by Li et al. [107], leverage this phenomenon to segregate training samples into
clean and noisy categories, which are then treated differently. However, these meth-
ods do not provide any assurance regarding the duration of the early-learning period.
Moreover, the relabelling of noisy samples often relies on model predictions as pseudo
labels, necessitating the design of complex threshold mechanisms and cross-selection
processes between two independent models. We propose a simpler solution for LNL
that has often been overlooked: learning from a set of labels (label-set supervision)
rather than a single label. With multiple labels contained in the label-set, the model
can receive supervision signals from various labels, thereby increasing the probability
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of identifying latent clean labels. Furthermore, label-set supervision is less prone to
confirmation bias as labels can be randomly sampled from a uniform distribution with-
out requiring model prediction. Our argument for learning from multiple labels aligns
with the concept of inexact supervision and offers a fresh perspective on this issue. The
primary techniques for inexact supervision include multi-label classification and partial
label classification. Unlike traditional multi-class classification, multi-label classifica-
tion does not impose a single-label constraint on images and assumes that labels are
independent of each other. This allows the model to learn both positive and negative
labels for each image. In contrast, partial-label classification maintains a single-label
constraint but only within specific label sets rather than all labels. Our focus is on
understanding how these two techniques for inexact supervision can be incorporated
into noisy label learning and validating our argument for learning multiple labels in
multi-class LNL.

We propose two approaches augmented with inexact supervision in LNL. First,
we consider multi-label learning with no single-label constraint considered. Previous
methods tackle LNL on prediction disagreement [60, 224], which rely on jointly training
two models to update their parameters when they disagree on the predictions of the
same training samples. However, these two models are generally trained under the same
strategy, which will quickly converge to select similar clean samples during training. We
propose to train two models with different strategies: one trained with conventional
multi-class learning with a single-label constraint and one trained with multi-label
learning without a single-label constraint. Furthermore, the top-ranked prediction from
multi-label learning represents potentially clean candidate labels. With predictions
from multi-class classification and noisy labels, the formulation of three label views
of each training sample allows us to formulate multi-view consensus for fine-grained
sample selection. We show in a noisy label computer vision benchmark that our method
provides substantial improvements over previous SOTA methods.

We also consider partial label learning with a single-label constraint within certain
label sets under generative modeling of LNL. Previous noise transition matrix meth-
ods in LNL require estimating class/instance-dependent transition matrices. However,
such estimation requires additional regularization [27] or anchor points [51]. Genera-
tive modeling provides a natural solution for regularizing the transition matrix term by
optimizing the conditional generation of images P (X|Y ) [220]. However, due to the in-
tractability of P (X|Y ), generative modeling requires a latent variable Z for controlling
image generation and building P (X|Y, Z). By introducing Z, an auxiliary genera-
tive module (Variational Autoencoder or Generative Adversarial model) is used, which
greatly increases the training cost. Furthermore, related works [36, 159, 183] suggest
that image generation does not help improve discriminative task performance. This
motivates us to rethink generative modeling in LNL by restricting the power of image
generation within finite training sets and bypassing the need for estimating Z. The
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resulting framework allows our framework to have a similar structure to a discrimina-
tive approach but optimized for a generative goal. Furthermore, the new formulation
allows us to connect with partial label learning by putting a non-uniform prior on
each sample. We prove that our method achieves comparable performance in noisy
label computer vision benchmarks and significantly outperforms previous generative
modeling methods both in performance and efficiency.

1.3 Contributions and Thesis Outline

We propose different deep learning methods for various weakly supervised learning tasks
with semi-supervised learning and noisy label learning. This thesis aims to propose
new methodologies to be applied in computer vision and MIA tasks.

The contributions of this thesis can be outlined as:

• Chapter 2 provides details of related literature. We introduce previously pub-
lished weakly supervised learning methods, including consistency-based semi-
supervised learning, pseudo-label-based semi-supervised learning, and self-supervised
pre-training. We also review related works in noisy label learning, including sam-
ple selection-based methods, noise transition matrix methods, and robust loss
functions. Furthermore, we present research fields closely related to MIA, includ-
ing multi-label classification and imbalanced learning.

• Chapter 3 describes our proposed self-supervised mean teacher framework for
semi-supervised learning on medical image classification. Our framework is a two-
stage framework that first pre-trains on massive unlabelled samples to obtain an
effective feature representation. In the second stage, we use the mean-teacher
framework and fine-tuning using self-supervised feature representation for semi-
supervised model training. We show that our framework is more effective than
previous consistency-based semi-supervised approaches on MIA datasets.

• Chapter 4 focuses on revisiting the pseudo-labeling approach for the semi-
supervised medical image classification task. We analyze the requirements and
burdens of pseudo-label methods for medical image classification tasks. We pro-
pose to select the most informative unlabelled samples and generate pseudo labels
by mixing up different classifier outputs. We show that our framework is flexible
for different medical image classification tasks and that it significantly outper-
forms previous pseudo-labeling methods.

• Chapter 5 presents a new regularization loss for noisy label learning with imbal-
anced multi-label medical image classification tasks. We analyze the gradient of
clean/noisy samples during training and propose to store a non-volatile memory
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of model prediction logits to regularize noisy label training. Furthermore, we
adjust stored memory by calculating the class prior of imbalanced datasets. We
show that our framework is capable of handling this challenging setup on multiple
real-world datasets and outperforms previous noisy label approaches.

• Chapter 6 proposes a multi-modality approach to noisy multi-label learning. We
utilize semantic embedding from language models and project visual descriptors
into the semantic space for clean label clustering. Furthermore, we propose to
build a KNN graph on multiple visual descriptors of each image and smoothly
re-label multi-label samples based on neighbouring visual descriptors. We test
our method on synthetic and real-world medical datasets and results show that
our ptroposed approach outperforms previous methods.

• Chapter 7 investigates training multi-class noisy label classification without
the single-label constraint. We analyze how the training of a noisy-label model
with the single-label constraint in a multi-class task accelerates overfitting and
propose to train each label independently as multi-label learning. Furthermore,
we formulate a multi-view consensus sample selection using predictions and noisy
labels, which enables fine-grained selection that traditional small-loss selection
cannot achieve. We show in experiments that our new formulation outperforms
previous co-teaching-based approaches in multiple computer vision benchmarks.

• Chapter 8 argues how to formulate generative modeling efficiently in noisy la-
bel learning. We show that previous generative noisy label methods focus on
improving image generation with expensive generative modules. However, image
generation does not help improve discriminative task performances. We pro-
pose a simple framework with an assumption to estimate the generative term
using only discriminative structures. Furthermore, our formulation allows us to
place a non-uniform clean label prior for each instance derived from partial label
learning. We show in multiple computer vision benchmarks that we achieve com-
parable performance and significantly improve upon previous generative noisy
label methods both in performance and efficiency.

• Chapter 9 summarizes this thesis contribution to weakly-supervised learning
and also discuss potential new directions based on our progress.
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Chapter 2

Literature Review

In this chapter, we review the weakly-supervised methods we focus on, including semi-
supervised learning, noisy label learning, multi/partial label learning and imbalanced
learning, together with their application on medical image analysis (MIA) tasks.

2.1 Semi-supervised Learning

Consistency regularization is a pivotal approach in semi-supervised learning, which
emphasizes enforcing consistent model outputs under perturbations in the input or
model space. Consistency is quantified as the discrepancy between the original model
output and the perturbed output. A broad range of strategies propose generating dif-
ferent perturbations under input variations. Standard data augmentation is commonly
employed by injecting noise or applying transformations such as cropping or flipping on
image data. The Π Model [99] creates random augmentations of a sample and passes
these randomly augmented samples multiple times to obtain different predictions. The
consistency regularization in the Π model expects predictions from randomly aug-
mented samples to be as consistent as possible. Temporal Ensembling [99] improves
upon the Π Model by leveraging the Exponential Moving Average (EMA) of model
prediction from past epochs, which reduces the computation cost for consistency reg-
ularization. Adversarial perturbation augments input samples with adversarial noise
that reduces prediction confidence or changes prediction from the correct label. An
example of a method that relies on adversarial perturbation is the Virtual Adversarial
Training (VAT) [136] that aims to first generate an adversarial transformation of a sam-
ple which changes the model prediction. Then, consistency regularization is applied
between the original model output and perturbed output. Mixup [229] performs lin-
ear interpolations of two inputs and their corresponding labels. This simple technique
imposes consistency regularization to guide the learning of a mapping between the in-
terpolated input and interpolated output to learn from unlabelled data. State-Of-The-
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Art (SOTA) consistency-based regularization methods focus on learning automated
augmentation strategies from data to produce relevant training samples. Such idea
can be realised by enforcing consistency between a weakly-augmented sample and a
strongly-augmented version of the same sample. ReMixMatch [11] introduces CTAug-
ment [11] to learn automated augmentation policy. Unsupervised Data Augmentation
(UDA) [213] adopts RandAugment [34] to sample transformation from Python Im-
age Library. FixMatch [170] combines aforementioned CTAugment and RandAugment
for boosting performance. Although consistency-based approaches achieve remarkable
performance in computer vision semi-supervised learning tasks, their improvements
rely on advanced domain-specific augmentation strategies and Mixup usage. For other
domains such as MIA, it is still unknown which is the best strategy for data augmen-
tation. Furthermore, for real-world datasets containing multi-labelled images, Mixup
is known to be problematic [90, 189].

Pseudo-labelling is a semi-supervised learning approach that utilizes confident
model predictions to generate pseudo labels for unlabelled samples. Initial attempts at
pseudo-labelling encompassed Entropy Minimization (EntMin) [57] and Pseudo-label
(PL) [103]. EntMin, which uses lower entropy as an indicator of higher model prediction
confidence, was introduced as a regularization term to prompt the model to make low-
entropy predictions for unlabelled samples. PL, on the other hand, generates pseudo
labels by training the model on labelled samples and selecting the highest confidence
prediction from unlabelled samples as the pseudo label. However, the use of one-hot
vectors as pseudo labels could lead to the propagation of confirmation bias due to pos-
sible incorrect label assignments. To address this confirmation issue, MixMatch [12]
proposed the employment of predictions across various input augmentations and the
management of soft pseudo labels with a temperature hyperparameter. FixMatch [170]
also addresses the same issue by assigning one-hot labels only when the model predic-
tion’s confidence scores exceed a predefined threshold. Other methods include knowl-
edge distillation [69], where a teacher model imparts knowledge to a student model by
using the soft targets from the teacher model to effectively train the student. Typically,
the teacher model is either a pre-trained model or an ensemble of models. Noisy Stu-
dent [214] is an iterative self-training process that initially trains the teacher model on
labelled samples and assigns labels to unlabelled samples for training the student. The
student is then reused as a teacher in the subsequent iteration with enhanced augmen-
tation to improve generalization ability. Recent advancements in Uncertainty-aware
Pseudo-label Selection (UPS) [155] demonstrate that the pseudo-labelling approach
outperforms consistency regularization in multi-label scenarios. However, generating
pseudo labels for each sample necessitates a class-wise threshold, which requires prior
knowledge about the correlation, difficulties, and frequency of the dataset classes.

Self-supervised learning stands apart from consistency regularization or pseudo-
labelling algorithms, as it can be trained without any label information. Initially
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proposed for task-agnostic unsupervised learning, it has also been explored in the
context of Semi-Supervised Learning (SSL). In SSL with self-supervised learning, all
training samples, whether labelled or unlabelled, are utilized in the optimisation of an
unsupervised learning problem. This is subsequently followed by supervised or semi-
supervised fine-tuning with the supervision of labelled samples as a downstream task.
For instance, pretext tasks create a supervision signal by classifying the geometric
transformation applied to the image, such as rotations, scaling, and tiling [52, 225].
Other approaches segment each image into multiple patches and predict the order of a
given cut-out patch to learn the content of images [43, 142, 197]. Recent advancements
in self-supervised learning have focused on instance discrimination through contrastive
learning [21, 23, 65]. The state-of-the-art in self-supervised learning optimizes the
network by enforcing the positive pairs (feature embeddings of the same instance) to
become closer while pushing apart the negative pairs (feature embeddings of different
instances).

Semi-supervised in MIA has been extensively studied. In the consistency regu-
larization approach, SRC-MT [118] improved upon the Mean-Teacher [177] framework
by enforcing consistency on the Gram Matrix for both teacher and student models.
NoTeacher [184] extended the Exponential Moving Average (EMA) process with two
networks combined with a probabilistic graph model. GraphXNet [4] constructs a
graph from dataset samples and assigns pseudo labels to unlabelled samples through
label propagation.Compared with computer vision benchmarks, semi-supervised learn-
ing in MIA is usually multi-labelled and severely imbalanced. Therefore, it is crucial
to study new approaches for handling real-world semi-supervised scenarios.

2.2 Noisy Label Learning

Sample selection is a key approach in noisy label learning, aiming to automatically
classify training samples into clean or noisy categories and treat them differently during
the training process. Previous studies [119, 226] have demonstrated that when training
with a noisy label, Deep Neural Networks (DNNs) first fit the samples with clean la-
bels and gradually overfit the samples with noisy labels. This characteristic of training
loss has led researchers to assume that samples with clean labels have small losses,
especially at early training stages – this is known as the small-loss assumption. For
instance, M-correction [1] automatically selects clean samples by modeling the training
loss distribution with a Beta Mixture Model (BMM). Sample selection has been com-
bined with prediction disagreement in several works, such as Co-teaching [60] and Co-
teaching+ [224], which train two networks simultaneously. In each mini-batch, they se-
lect small-loss samples for the training of the other model. JoCoR [198] improves upon
Co-teaching+ by using a contrastive loss to jointly train both models. DivideMix [106]
has advanced the field by combining sample selection and prediction disagreement us-
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ing semi-supervised learning, co-teaching, and small-loss detection with a Gaussian
Mixture Model (GMM). InstanceGM [48] combines a graphical model with DivideMix
to achieve promising results. Other approaches select clean samples based on the K
nearest neighbor classification in intermediate deep learning feature spaces [145, 195],
distance to the class-specific eigenvector from the gram matrix eigen-decomposition
using intermediate deep learning feature spaces [91], uncertainty measures [95], or pre-
diction consistency between teacher and student models [87]. However, the drawback
of sample selection is its lack of adaptation to real-world datasets such as multi-labelled
samples or imbalanced distribution. When applying the small-loss approach to these
datasets, the small loss could also represent samples from minority classes and cannot
effectively select noisy samples.

Noise-robust methods utilize robust loss functions to counteract the overfitting
effects induced by label noise during the training process. Early studies, such as [196],
investigated the symmetric property of cross-entropy (CE) loss for noise-robust learn-
ing. Zhang et al. [235] observed that Mean-Absolute-Error (MAE) is robust to noisy
labels and can be combined with conventional CE loss to strike a balance between con-
vergence and generalization. Ma et al. [132] demonstrated that any loss function can
be robust to label noise by applying a simple normalization term. Recently, [44] pro-
posed a noise-robust Jensen-Shannon divergence (JSD) loss based on a soft transition
between MAE and CE losses. Although these methods can reduce overfitting effects,
they also tend to under-fit the training data. This issue has been partially addressed
by the early learning regularization (ELR) [119], which proposes a regularization term
that restricts the gradient from samples with corrupt labels. Despite ELR showing
promising results, it faces challenges in multi-label scenarios, where different early con-
vergence patterns of multiple labels can lead to poor performance under specific label
noise conditions, as shown in the experiments.

Transition matrix methods aim to estimate the transition matrix between clean
and noisy labels, to be used in the training of a clean label predictor using the noisy-
label training samples. Theoretically, these methods can guarantee that the learned
classifier is as optimal as training with clean labels if they meet the identifiability
condition to estimate the transition matrix, which essentially states that under cer-
tain conditions about the annotators, one needs three labels per training sample [123].
Goldberger et al. [54] proposed a noise adaptation layer to estimate label transition
using a few clean samples. Yao et al. [221] estimated the transition matrix using an
intermediate class and a factorised matrix. Xia et al. [209] estimated a part-dependent
transition matrix for complex noise conditions. Bae et al. [5] proposed a noisy predic-
tion calibration method, which uses a transition matrix to reduce the gap between noisy
prediction and clean label based on a KNN prediction. kMEDITM [220] applies mani-
fold regularization for training an instance-dependent transition matrix. VolMin [110]
regularizes the volume for the transition matrix simplex and improves the identifia-
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bility of estimation. CausalNl [220] proposes a generative approach for estimating an
instance-dependent transition matrix which does not require additional regularization
or anchor points. All transition matrix methods presented above were designed to han-
dle moisy multi-class problems, but for noisy multi-label learning, the transition matrix
needs to be estimated together with a label correlation matrix estimation, which is a
challenging task that still needs further investigation.

Noisy label in MIA has not been extensively studied. Given the high cost of
acquiring and annotating large-scale MIA datasets, the field is considering more af-
fordable automatic annotation processes by Natural Language Processing (NLP) ap-
proaches that extract multiple labels (each label representing a disease) from radiology
reports [76, 192]. However, mistakes made by NLP combined with uncertain radiolog-
ical findings can introduce label noise [143, 144], as can be found in NLP-annotated
CXR datasets [76, 192] whose noisy multi-labels and class-imbalanced training samples
can mislead supervised training processes. In this thesis, we make attempts to solve
this challenging problem.

2.3 Weakly-supervised Datasets

In this thesis, we conducted experiments using several publicly available datasets. For
computer vision datasets, we tested our methods on widely used benchmarks such as
CIFAR10/100 [96], Red Mini-ImageNet [79], Clothing1M [211], and Animal10N [171].
We followed the same experimental protocol as a previous paper [107]. CIFAR10/100
contains 60,000 images with 10/100 classes, respectively. We followed the common split
with 50,000 images for training and 10,000 for testing. We injected symmetric, asym-
metric, and instance-dependent noise [209] for comparison with baselines. Symmetric
noise randomly flips a given percentage of samples to a random label. Asymmetric
noise defines prior knowledge about class correlation and flips a given percentage of
samples to a correlated class. Instance-dependent noise [209] leverages sample-specific
classification error for flipping labels into misclassified classes. We also studied CI-
FAR10N/CIFAR100N [202] to study real-world multi-rater noisy annotations for the
original CIFAR10/100 images and we tested our framework on aggre, random1, ran-
dom2, random3, worse types of noise on CIFAR10N and noisy on CIFAR100N. Red
Mini-ImageNet is a real-world dataset [81] with images annotated with the Google
Cloud Data Labelling Service. This dataset has 100 classes, each containing 600 im-
ages from ImageNet, where images are resized to 32 × 32 pixels from the original 84 ×
84 to enable a fair comparison with other baselines [216]. Clothing1M is a real-world
dataset with 100K images and 14 classes. The labels are automatically generated from
surrounding text with an estimated noise ratio of 38.5%. The dataset also contains
clean training, clean validation, and clean test sets with 50K, 14K, and 10K images,
respectively, but we did not use the clean training and validation sets. The clean test-
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ing is only used for measuring model performance. Animal10N [171] is a real-world
dataset containing 10 animal species with five pairs of similar appearances (wolf and
coyote, hamster and guinea pig, etc.). The training set size is 50K and testing size is
10K, where we followed the same setup as [25].

For medical datasets, we conduct experiments on NIH Chest X-ray14 [192], CheX-
pert [76], OpenI [37], PadChest [15], and ISIC2018 [29, 182]. NIH Chest X-ray14
contains 112,120 frontal-view Chest X-ray (CXR) images from 30,805 patients, with
each image having between 0 and 14 annotated pathologies. The labels of NIH Chest
X-ray14 are obtained from an NLP algorithm. The training set contains 86,524 images
with a maximum of 9 labels per image. The dataset contains severe class imbalance,
with the maximum/minimum images for each class being more than 50,000+ and less
than 100. We follow the official train/test split and use the area under the ROC curve
(AUC) as a metric. For the semi-supervised task, we report the classification result on
the test set (26K samples) and different proportions of labelled samples. CheXpert has
224,316 frontal-view CXR images from 65,240 patients labelled with 14 common chest
radiographic observations. The training set contains 170,958 images with a maximum
of 8 labels per image. The labels are obtained from an NLP algorithm by extracting
findings from radiology reports. We follow a commonly used setup and split the training
set into 70% training, 20% validation, and 10% testing. OpenI dataset contains 3,999
radiology reports and 7,470 frontal/lateral-view CXR images from Indiana Network for
Patient Care. We use all frontal-views images for evaluation, resulting in 3,818 images
and 19 manually annotated diseases. PadChest contains 160,861 images with 27 chest
radiographic observations. PadChest has a mixture of manually labelled frontal-view
images (about 15.25% of the images). We use OpenI and PadChest manual label part
images as a test set for noisy multi-label classification. For MIA multi-class datasets,
ISIC2018 is a skin lesion dataset that contains 10,015 images with seven labels. Each
image is associated with one of the labels, forming a multi-class classification problem.
We follow the train/test split from SRC-MT [118] for a fair comparison, where the
training set contains 20% labelled samples and 80% unlabelled samples. We report the
AUC, Sensitivity, and F1 score results.
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Chapter 3

Self-supervised Mean-teacher for
Semi-supervised Chest X-ray
Classification

Abstract

The training of deep learning models generally requires a large amount of annotated
data for effective convergence and generalisation. However, obtaining high-quality
annotations is a laboursome and expensive process due to the need of expert ra-
diologists for the labelling task. The study of semi-supervised learning in medical
image analysis is then of crucial importance given that it is much less expensive to
obtain unlabelled images than to acquire images labelled by expert radiologists. Es-
sentially, semi-supervised methods leverage large sets of unlabelled data to enable
better training convergence and generalisation than using only the small set of la-
belled images. In this paper, we propose Self-supervised Mean Teacher for Semi-
supervised (S2MTS2) learning that combines self-supervised mean-teacher pre-training
with semi-supervised fine-tuning. The main innovation of S2MTS2 is the self-supervised
mean-teacher pre-training based on the joint contrastive learning, which uses an infi-
nite number of pairs of positive query and key features to improve the mean-teacher
representation. The model is then fine-tuned using the exponential moving average
teacher framework trained with semi-supervised learning. We validate S2MTS2 on the
multi-label classification problems from Chest X-ray14 and CheXpert, and the multi-
class classification from ISIC2018, where we show that it outperforms the previous
SOTA semi-supervised learning methods by a large margin. Our code is available at
https://github.com/FBLADL/semi-chest.
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3.1 Introduction

Deep learning has shown outstanding results in medical image analysis problems [86,
105, 112, 115, 178, 180]. However, this performance usually depends on the availability
of labelled datasets, which is expensive to obtain given that the labelling process re-
quires expert doctors. This limitation motivates the study of semi-supervised learning
(SSL) methods that train models with a small set of labelled data and a large set of
unlabelled data.

The current state-of-the-art (SOTA) SSL is based on pseudo-labelling methods [103,
155], consistency-enforcing approaches [11, 99, 177], self-supervised and semi-supervised
learning (S4L) [23, 225], and graph-based label propagation [4]. Pseudo-labelling is
an intuitive SSL technique, where confident predictions from the model are trans-
formed into pseudo-labels for the unlabelled data, which are then used to re-train the
model [103]. Consistency-enforcing regularisation is based on training for a consistent
output given model [118, 177] or input data [11, 99] perturbations. S4L methods are
based on self-supervised pre-training [22, 64], followed by supervised fine-tuning us-
ing few labelled samples [23, 225]. Graph-based methods rely on label propagation
on graphs [4]. Recently, Yang et al. [219] suggested that self-supervision pre-training
provides better feature representations than consistency-enforcing approaches in SSL.
However, previous S4L approaches use only the labelled data in the fine-tuning stage,
missing useful training information present in the unlabelled data. Furthermore, self-
supervised pre-training [22, 64] tends to use limited amount of samples to represent
each class, but recently, Cai et al. [17] showed that better representation can be ob-
tained with an infinite amount of samples. Also, recent research [155] suggests that
the student-teacher framework, such as the mean-teacher [177], works better in multi-
label semi-supervised tasks than other SSL methods. We speculate that this is because
other methods are usually designed to work with softmax activation that only works in
multi-class problems, while mean-teacher [177] does not have this constraint and can
work in multi-label problems.

In this paper, we propose a self-supervised mean-teacher for semi-supervised (S2MTS2)
learning approach that combines S4L [23, 225] with consistency-enforcing learning
based on the mean-teacher algorithm [177]. The main contribution of our method is
the self-supervised mean-teacher pre-training with the joint contrastive learning [17].
To the best of our knowledge, this is the first approach, in our field, to train the
mean teacher model with self-supervised learning. This model is then fine-tuned
with semi-supervised learning using the exponential moving average teacher frame-
work [177]. We evaluate our proposed method on the thorax disease multi-label
datasets ChestX-ray 14 [192] and CheXpert [76], and on the multi-class skin condi-
tion dataset ISIC2018 [29, 182]. We show that our method outperforms the SOTA on
semi-supervised learning [4, 59, 118, 184]. Moreover, we investigate each component of
our framework for their contribution to the overall model in the ablation study.
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Figure 3.1: Description of the proposed self-supervised mean-teacher for semi-
supervised (S2MTS2) learning. The main contribution of the paper resides in the top
part of the figure, with the self-supervised mean-teacher pre-training based on joint
contrastive learning, which uses an infinite number of pairs of positive query and key
features sampled from the unlabelled images to minimise ℓp(.) in (3.1). This model
is then fine-tuned with the exponential moving average teacher in a semi-supervised
learning framework that uses both labelled and unlabelled sets to minimise ℓcls(.) and
ℓcon(.) in (3.2).
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3.2 Related Works
SSL is a research topic that is gaining attention from the medical image analysis com-
munity due to the expensive image annotation process [28] and the growing number
of large-scale datasets available in the field [192]. The current SOTA SSL methods are
based on consistency-enforcing approaches that leverage the unlabelled data to reg-
ularise the model prediction consistency [99, 177]. Other related papers [35] extend
the mean teacher [177] to encourage consistency between the prediction by the student
and teacher models for atrium and brain lesion segmentation. The SOTA SSL method
on Chest X-ray images [118] exploits the consistency in the relations between labelled
and unlabelled data. None of these methods explores a self-supervised consistency-
enforcing method to pre-train an SSL model, as we propose. Self-supervised learning
methods [22, 64] are also being widely investigated in SSL because they can provide
good representations [23, 225]. However, these methods ignore the large amount of
unlabelled data to be used during SSL, which may lead to unsatisfactory generali-
sation process. An important point in self-supervised learning is on how to define
the classes to be learned. In general, each class is composed of a single pair of aug-
mented images from the same image, and many pairs of augmentations from different
images [17, 22, 23, 64]. The use of a single pair of images to form a class has been
criticised by Cai et al. [17], who propose the joint contrastive learning (JCL), which is
an efficient way to form a class with an infinite number of augmented images from the
same image to leverage the statistical dependency between different augmentations.

3.3 Method
In this section, we introduce our two-stage learning framework in detail (see Fig. 3.1).
We assume that we have a small labelled dataset, denoted by DL = {(xi,yi)}|DL|

i=1 ,
where the image is represented by x ∈ X ⊂ RH×W×C , and class y ∈ {0, 1}|Y|, where
Y represents the label set. We consider a multi-label problem and thus

∑|Y|
c=1 yi(c) ∈

[0, |Y|]. The unlabelled dataset is defined by DU = {xi}|DU |
i=1 with |DL| << |DU |.

Our model consists of a student and a teacher model [177], denoted by parameters
θ, θ′ ∈ Θ, respectively, which parameterize the classifier fθ : X → [0, 1]|Y|. This
classifier can be decomposed as fθ = hθ1 ◦gθ2 , with gθ2 : X → Z and hθ1 : Z → [0, 1]|Y|.
The first stage (top of Fig. 3.1) of the training consists of a self-supervised learning
that uses the images from DL and DU , denoted by DX = {xi|xi ∈ DX

L

⋃
DU}|DX |

i=1 ,
with DX

L representing the images from the set DL, where our method minimises the
joint contrastive learning loss [17], defined in (3.1). This means that during this first
stage, we only learn the parameters for gθ2 . The second stage (bottom of Fig. 3.1) fine-
tunes this pre-trained student-teacher model using the semi supervised consistency loss
defined in (3.2). Below we provide details on the losses and training.
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3.3.1 Joint Contrastive Learning to Self-supervise the Mean-
teacher Pre-training

The self-supervised pre-training of the mean-teacher using joint contrastive learning
(JCL) [17], presented in this section, is the main technical contribution of this paper.
The teacher and student process an input image to return the keys k ∈ Z and the
queries q ∈ Z with k = gθ′2(x) and q = gθ2(x). We also assume that we have a set
of augmentation functions, i.e., random crop and resize, rotation and Gaussian blur,
denoted by A = {al : X → X}|A|

l=1. Then JCL minimises the following loss [17]:

ℓp(DX , θ2, θ
′
2) = −

1

|DX |
1

M

|DX |∑
i=1

M∑
m=1

[
log

exp
[
1
τ
q⊤
i k

+
i,m

]
exp

[
1
τ
q⊤
i k

+
i,m

]
+
∑K

j=1 exp
[
1
τ
q⊤
i k

−
i,j

]] , (3.1)

where τ is the temperature hyper-parameter, the query qi = gθ2(a(xi)), with a ∈ A.
the positive key k+

i,m ∼ p(k+
i ), with p(k+

i ) = N (µki
,Σki

) and ki = gθ′2(a(xi)) (i.e., a
sample from the data augmentation distribution for x), and the negative keys k−

i,j ∈
{µkj
}i,j∈{1,..,|DX |},i ̸=j represents a negative key for query qi. In (3.1), M denotes the

number of positive keys, and Cai et al. [17] describe a loss that minimises a bound
to (3.1) for M → ∞ – below, the minimisation of ℓp(.) in (3.1) is realised by the
minimisation of this bound. As defined above, the generative model p(k+

i ) is denoted
by the Gaussian N (µki

,Σki
), where the mean µki

and covariance Σki
are estimated

from a set of keys {k+
i,l = gθ′2(al(xi))}al∈A formed by different views of xi. The set of

negative keys {µkj
}i,j∈{1,..,|DX |},i ̸=j is stored in a memory queue [64] that is updated in a

first-in-first-out way, where the mean of the keys in {µki
}|D

X |
i=1 are inserted to the memory

queue to replace the oldest key means from previous training iterations. The memory
queue has been designed to increase the number of negative samples without sacrificing
computation efficiency. The training of the student-teacher model [64, 177, 237] is
achieved by updating the student parameter using the loss in (3.1), as in θ2(t) = θ2(t−
1)−∇θ2ℓp(DX , θ2, θ

′
2), where t is the training iteration. The teacher model parameter is

updated with exponential moving average (EMA) with θ′2(t) = αθ′2(t−1)+(1−α)θ2(t),
with α ∈ [0, 1]. For this pre-training stage, we notice that training for more epochs
always improve the model regularisation given that it is difficult to overfit the training
set with the loss in (3.1). Hence, we select the last epoch student model gθ2(.) to
initialise the fine-tuning stage, defined below in Sec. 3.3.2.

3.3.2 Fine-tuning the Mean Teacher

To fine tune the mean teacher, we follow the approach in [64, 177] using the following
loss to train the student model:

ℓt(DL,DU , θ, θ
′) =

1

|DL|
∑

(xi,yi)∈DL

ℓcls(yi, fθ(xi)) +
1

|D|
∑
xi∈D

ℓcon(fθ(xi), fθ′(xi)), (3.2)
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where ℓcls(yi, fθ(xi)) = −y⊤
i log(fθ(xi)), ℓcon(fθ(xi), fθ′(xi)) = ∥fθ(xi)− fθ′(xi)∥2, and

D = DU

⋃
DX

L . The training of the student-teacher model [64, 177, 237] is achieved
by updating the student parameter using the loss in (3.2), as in θ(t) = θ(t − 1) −
∇θℓt(DL,DU , θ, θ

′), where t is the training iteration. The teacher model parameter is
updated with exponential moving average (EMA) with θ′(t) = αθ′(t− 1)+ (1−α)θ(t),
with α ∈ [0, 1]. After finishing the fine-tuning stage, we select the teacher model fθ′(.)
to estimate the multi-label classification for test images.

3.4 Experiment

3.4.1 Dataset Setup

We use Chest X-ray14 [192], CheXpert [76] and ISIC2018 [29, 182] datasets to evaluate
our method.
Chest X-ray14 contains 112,120 chest x-ray images from 30,805 different patients.
There are 14 different labels (each label represents a disease) in the dataset, where
each patient can have multiple diseases at the same time, forming a multi-label clas-
sification problem. To compare with previous papers [4, 118], we adopt the official
train/test data split. For the self-supervised pre-training of the mean teacher, we used
all the unlabelled images (86k samples) from the training set. For the semi-supervised
fine-tuning of the mean teacher, we follow the papers [4, 118] and experiment with
training sets containing different proportions of labelled data (2%,5%,10%,15%,20%).
We report the classification result on the official test set (26,000 samples) using area
under the ROC curve (AUC).
CheXpert contains around 220,000 images with 14 different diseases, and similarly
to Chest X-ray14, each patient can have multiple diseases at the same time. For
pre-processing, we remove all lateral view images and treat uncertain label as neg-
ative labels. We follow the semi-supervised setup from [59], and experiment with
100/200/300/ 400/500 labelled samples per class. We report results on the official test
set using AUC.
ISIC2018 is a multi-class skin condition dataset that contains 10,015 images with
seven different labels. Each image is associated with one of the seven labels, forming
a multi-class classification problem. We follow [118] train/test split for fair compari-
son, where the training contains 20% of the samples labelled, and the remaining 80%
unlabelled. We report the AUC, Sensitivity, and F1 score results to compare with
baselines.
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3.4.2 Implementation Details

For all datasets, we use DenseNet121 [72] as our backbone model. For self-supervised
pre-training, we follow [23] and replace the two-layer multi-layer perceptron (MLP)
projection head by a three-layer MLP. For dataset pre-processing, we resized Chest X-
ray14 images to 512 × 512 for faster processing and CheXpert and ISIC2018 to 224 ×
224 for fair comparison with baselines. We use the data augmentation proposed in [22],
consisting of random resize and crop, random rotation, random horizonntal flipping,
except for random grayscale because X-ray images are originally in grayscale. The
batch size is 128 for Chest X-ray14 and 256 for CheXpert and ISIC2018, and learning
rate is 0.05. For the fine-tuning stage, we use batch size 32 with 16 labelled and 16
unlabelled. The fine-tuning takes 30 epochs with learning rate decayed by 0.1 at 15
and 25 epochs for all datasets. We use the SGD optimiser with 0.9 momentum for the
pre-training stage, and Adam optimiser in fine-tuning stage. The code is written in
Pytorch [147]. We use 4 Nvidia Volta-100 for the self-supervised stage and 1 Nvidia
RTX 2080ti for fine-tuning.

3.4.3 Experimental Results

We evaluate our approach on the official test set of ChestX-ray14 using different per-
centage of labelled training data (i.e., 2%, 5%, 10%, 15%, 20%), as shown in Table 3.1.
The set of labelled data used for each percentage above follows the same strategy of
previous works [4, 118]. Our S4L achieves the SOTA AUC results on all different
percentages of labels. Our model surpasses the previous SOTA SRC-MT [118] by a
large margin of 8.7% and 6.8% AUC for the 2% and 5% labelled set cases, respec-
tively, where we use a backbone architecture of lower complexity (Densenet121 instead
of the DenseNet169 of [118]). Using the same Densenet121 backbone, GraphXnet [4]
fails to classify precisely for the 2% and 5% labelled set cases. Our method surpasses
GraphXnet by more than 20% AUC in both cases. Furthermore, we achieve the SOTA
results of the field for the 10%, 15% and 20% labelled set cases, outperforming all pre-
vious semi-supervised methods [4, 118]. It is worth noting that our model trained with
5% of the labelled set achieves better results than SRC-MT with 15% of labelled.We
also compare with a recently proposed self-supervised pre-training methods, MoCo
V2 [24], adapted to our semi-supervised task, followed by the fine-tuning stage using
different percentages of labelled data. Our method outperforms MoCo V2 by almost
10% AUC when using 2% of labelled set, and almost 3% AUC for 10% of labelled
set. Our result for 20% labelled set achieves comparable 81.06% AUC performance
as the supervised learning approaches – 81.20% from MoCo V2 (Densenet 121) and
81.75% from SRC-MT (Densenet 169) using 100% of the labelled samples. Such result
indicates the effectiveness of our proposed S2MTS2 in SSL benchmark problems.

We also show the class-level performance using 20% of the labelled data and com-
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Label Percentage 2% 5% 10% 15% 20% 100%
Graph XNet* [4] 53.00 58.00 63.00 68.00 78.00 N/A
SRC-MT* [118] 66.95 72.29 75.28 77.76 79.23 81.75
NoTeacher [184] 72.60 77.04 77.61 N/A 79.49 N/A
MOCO V2 [24] 65.97 73.84 77.07 79.37 80.17 81.20

Ours 74.69 78.96 79.90 80.31 81.06 82.51

Table 3.1: Mean AUC result over the 14 disease classes of Chest X-Ray14 for different
label set training percentages. * indicates the methods that use Densenet169 as back-
bone architecture.

pare with other SOTA methods in Tab. 3.2. We compare with the previous baselines,
namely original mean teacher (MT) with Densenet169, SRC-MT with Densenet169,
MoCo V2, and GraphXNet with Densenet121. We also train a baseline Densenet121
model with 20% labelled data using Imagenet pre-trained model. Our method achieves
the best results on nine classes, surpassing the original MT [177] and its extension SRC-
MT [118] by a large margin, demonstrating the effectiveness of our self-supervised
learning.

Furthermore, we compare our approach on the fully-supervised Chest X-ray14
benchmark in Tab. 3.3. To the best of our knowledge, Hermoza et al. [68] has the
SOTA supervised classification method containing a complex structure (relying on the
weakly-supervised localisation of lesions) with a mean AUC of 82.1% (over the 14
classes), while ours reports a mean AUC of 82.5%. Hence, our model, using the whole
labelled set, achieves the SOTA performance on 8 classes and an average that sur-
passes the previous supervised methods by a minimum of 0.4% and a maximum of 8%
AUC. The results on CheXpert and ISIC2018 datasets are shown in Tables 3.4 and 3.5,
respectively. In particular, for CheXpert in Table 3.4, we compare our method with
LatentMixing [59] and our result is better in all cases. For ISIC2018 on Table 3.5, us-
ing the test set from SRC-MT [118], our method outperforms all baselines (Supervised,
MT, and SRC-MT) for all measures.

3.4.4 Ablation Study

We study the impact of different components of our proposed S2MTS2 in Tab. 3.6
using Chest X-Ray14. Using the proposed self-supervised learning with just the student
model, our model achieves at least 71.95% mean AUC on various percentages of labelled
training data. Adding the JCL component improves the baseline by around 1% mean
AUC on each training percentage. Adding the mean teacher boosts the result by 1.5%
to 2% mean AUC on each training percentage. The combination of all our proposed
three components achieves SOTA performance on semi-supervised task.
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Method Densenet-121 GraphXNet [4] MOCO V2 [24] MT [118] * SRC-MT [118] * Ours
Atelectasis 75.75 71.89 77.21 75.12 75.38 78.57

Cardiomegaly 80.71 87.99 85.84 87.37 87.7 88.08
Effusion 79.87 79.2 81.62 80.81 81.58 82.87

Infiltration 69.16 72.05 70.91 70.67 70.4 70.68
Mass 78.40 80.9 81.71 77.72 78.03 82.57

Nodule 74.49 71.13 76.72 73.27 73.64 76.60
Pneumonia 69.55 76.64 71.08 69.17 69.27 72.25

Pneumothorax 84.70 83.7 85.92 85.63 86.12 86.55
Consolidation 71.85 73.36 74.47 72.51 73.11 75.47

Edema 81.61 80.2 83.57 82.72 82.94 84.83
Emphysema 89.75 84.07 91.10 88.16 88.98 91.88

Fibrosis 79.30 80.34 80.96 78.24 79.22 81.73
Pleural Thicken 73.46 75.7 75.65 74.43 75.63 76.86

Hernia 86.05 87.22 85.62 87.74 87.27 85.98
Mean 78.19 78.88 80.17 78.83 79.23 81.06

Table 3.2: Class-level AUC comparison between our S2MTS2 and other semi-supervised
SOTA approaches trained with 20% of labelled data on Chest X-Ray14. * denotes
the methods that use Densenet-169 as backbone.

Method Wang et al. [192] Li et al. [112] CheXNet [152] CRAL [58] Ma et al. [131] Hermoza et al. [68] Ours
Atelectasis 70 72.9 75.5 78.1 77.7 77.5 78.7

Cardiomegaly 81 84.6 86.7 88.3 89.4 88.1 87.4
Effusion 75.9 78.1 81.5 83.1 82.9 83.1 83.8

Infiltration 66.1 67.3 69.4 69.7 69.6 69.5 70.9
Mass 69.3 74.3 80.2 83 83.8 82.6 83.3

Nodule 66.9 75.8 73.5 76.4 77.1 78.9 79.9
Pneumonia 65.8 63.3 69.8 72.5 72.2 74.1 73.9

Pneumothorax 79.9 79.3 82.8 86.6 86.2 87.9 87.1
Consolidation 70.3 72 72.2 75.8 75 74.7 75.9

Edema 80.5 71 83.5 85.3 84.6 84.6 84.5
Emphysema 83.3 75.1 85.6 91.1 90.8 93.6 93.7

Fibrosis 78.6 76.1 80.3 82.6 82.7 83.3 83.4
Pleural Thicken 68.4 73 74.9 78 77.9 79.3 79.3

Hernia 87.2 66.8 89.4 91.8 93.4 91.7 93.3
Mean 74.5 73.9 78.9 81.6 81.7 82.1 82.5

Table 3.3: Class-level AUC comparison between our S2MTS2 and other supervised
SOTA approaches trained with 100% of labelled data on Chest X-Ray14.

3.5 Conclusion

In this paper, we presented a novel semi-supervised framework, the Self-supervised
Mean Teacher for Semi-supervised (S2MTS2) learning. The main contribution of
S2MTS2 is the self-supervised mean teacher pre-trained based on joint contrastive
learning [17], using an infinite number of pairs of positive query and key features.
This model is then fine-tuned with the exponential moving average teacher framework.
S2MTS2 is validated on the thorax disease multi-label classification problem from the
datasets Chest X-ray14 [192] and CheXpert [76], and the multi-class classification from
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Labelled 100 200 300 400 500

LatentMixing [59] 65.12 66.41 67.39 67.96 68.47
Ours 66.15 67.85 70.83 71.37 71.58

Table 3.4: Mean AUC result (over the 14
disease classes) on CheXpert for different
number of training samples per class.

Method AUC Sensitivity F1

Supervised 90.15 65.50 52.03
MT 92.96 69.75 59.10

SRC-MT [118] 93.58 71.47 60.68
Ours 94.71 72.14 62.67

Table 3.5: AUC, Sensitivity and F1 result
on ISIC2018 using 20% of labelled training
samples.

Self-supervised JCL MT AUC (2%) AUC (5%) AUC (10%) AUC (15%) AUC (20%)
✓ 71.95 76.82 78.54 79.28 80.14
✓ ✓ 72.60 77.46 79.18 79.83 80.62
✓ ✓ 73.80 77.66 79.08 79.70 80.57
✓ ✓ ✓ 74.69 78.96 79.90 80.31 81.06

Table 3.6: Ablation studies of our method with different components on Chest X-
Ray14. "Self-supervised" indicates the traditional self-supervised learning with con-
trastive loss [64]. "JCL" replaces contrastive loss with (3.1), "MT" stands for fine-
tuned with student-teacher learning instead only fine-tuned on only labelled samples.

the skin condition dataset ISIC2018 [29, 182]. The experiments show that our method
outperforms the previous SOTA semi-supervised learning methods by a large margin in
all benchmarks containing a varying percentage of labelled data. We also show that the
method holds the SOTA results on Chest X-ray14 [192] even for the fully-supervised
problem. The ablation study shows the importance of three main components of the
method, namely self-supervised learning, JCL, and the mean-teacher model. We will
investigate the performance of our method on other semi-supervised medical imaging
benchmarks in the future.
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Chapter 4

ACPL: Anti-curriculum
Pseudo-labelling for Semi-supervised
Medical Image Classification

Abstract

Effective semi-supervised learning (SSL) in medical image analysis (MIA) must ad-
dress two challenges: 1) work effectively on both multi-class (e.g., lesion classification)
and multi-label (e.g., multiple-disease diagnosis) problems, and 2) handle imbalanced
learning (because of the high variance in disease prevalence). One strategy to explore
in SSL MIA is based on the pseudo labelling strategy, but it has a few shortcom-
ings. Pseudo-labelling has in general lower accuracy than consistency learning, it is
not specifically design for both multi-class and multi-label problems, and it can be
challenged by imbalanced learning. In this paper, unlike traditional methods that
select confident pseudo label by threshold, we propose a new SSL algorithm, called
anti-curriculum pseudo-labelling (ACPL), which introduces novel techniques to select
informative unlabelled samples, improving training balance and allowing the model to
work for both multi-label and multi-class problems, and to estimate pseudo labels by an
accurate ensemble of classifiers (improving pseudo label accuracy). We run extensive
experiments to evaluate ACPL on two public medical image classification benchmarks:
Chest X-Ray14 for thorax disease multi-label classification and ISIC2018 for skin lesion
multi-class classification. Our method outperforms previous SOTA SSL methods on
both datasets12.

1Supported by Australian Research Council through grants DP180103232 and FT190100525.
2Code is available at https://github.com/FBLADL/ACPL
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(a) Diagram of our ACPL (top) and tradi-
tional pseudo-label SSL (bottom)

(b) Imbalanced distribution on multi-label
Chest X-ray14 [192] (left) and multi-class
ISIC2018 [182] (right)

Figure 4.1: In (a), we show diagrams of the proposed ACPL (top) and the traditional
pseudo-label SSL (bottom) methods, and (b) displays histograms of images per label
for the multi-label Chest X-ray14 [192] (left) and multi-class ISIC2018 [182] (right).

4.1 Introduction

Deep learning has shown outstanding results in medical image analysis (MIA) [113,
178, 179]. Compared to computer vision, the labelling of MIA training sets by medical
experts is significantly more expensive, resulting in low availability of labelled images,
but the high availability of unlabelled images from clinics and hospitals databases
can be explored in the modelling of deep learning classifiers. Furthermore, differently
from computer vision problems that tend to be mostly multi-class and balanced, MIA
has a number of multi-class (e.g., a lesion image of a single class) and multi-label
(e.g., an image from a patient can contain multiple diseases) problems, where both
problems usually contain severe class imbalances because of the variable prevalence of
diseases (see Fig. 4.1-(b)). Hence, MIA semi-supervised learning (SSL) methods need
to be flexible enough to work with multi-label and multi-class problems, in addition to
handle imbalanced learning.

State-of-the-art (SOTA) SSL approaches are usually based on the consistency learn-
ing of unlabelled data [11, 12, 170] and self-supervised pre-training [117]. Even though
consistency-based methods show SOTA results on multi-class SSL problems, pseudo-
labelling methods have shown better results for multi-label SSL problems [156]. Pseudo-
labelling methods provide labels to confidently classified unlabelled samples that are
used to re-train the model [103]. One issue with pseudo-labelling SSL methods is that
the confidently classified unlabelled samples represent the least informative ones [161]
that, for imbalanced problems, are likely to belong to the majority classes. Hence, this
will bias the classification toward the majority classes and most likely deteriorate the
classification accuracy of the minority classes. Also, selecting confident pseudo-labelled
samples is challenging in multi-class, but even more so in multi-label problems. Previ-
ous papers [4, 156] use a fixed threshold for all classes, but a class-wise threshold that
addresses imbalanced learning and correlations between classes in multi-label problems
would enable more accurate pseudo-label predictions. However, such class-wise thresh-
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old is hard to estimate without knowing the class distributions or if we are dealing
with a multi-class or multi-label problem. Furthermore, using the model output for
the pseudo-labelling process can also cause confirmation bias [2], whereby the assign-
ment of incorrect pseudo-labels will increase the model confidence in those incorrect
predictions, and consequently decrease the model accuracy.

In this paper, we propose the anti-curriculum pseudo-labelling (ACPL), which
addresses multi-class and multi-label imbalanced learning SSL MIA problems. First,
we introduce a new approach to select the most informative unlabelled images to be
pseudo-labelled. This is motivated by our argument that there exists a distribution
shift between unlabelled and labelled samples for SSL. An effective learning curriculum
must focus on informative unlabelled samples that are located as far as possible from
the distribution of labelled samples. As a result, these informative samples are likely to
belong to the minority classes in MIA imbalanced learning problems. Selecting these
informative samples will naturally balance the training process and, given that they
are selected before the pseudo-labelling process, we eliminate the need for estimating a
class-wise classification threshold, facilitating our model to work well on multi-class and
multi-label problems. The information content measure of an unlabelled sample is com-
puted with our proposed cross-distribution sample informativeness that outputs how
close an unlabelled sample is from the set of labelled anchor samples (anchor samples
are highly informative labelled samples). Second, we introduce a new pseudo-labelling
mechanism, called informative mixup, which combines the model classification with a
K-nearest neighbor (KNN) classification guided by sample informativeness to improve
prediction accuracy and mitigate confirmation bias. Third, we propose the anchor set
purification method that selects the most informative pseudo-labelled samples to be
included in the labelled anchor set to improve the pseudo-labelling accuracy of the
KNN classifier in later training stages.

To summarise, our ACPL approach selects highly informative samples for pseudo-
labelling (addressing MIA imbalanced classification problems and allowing multi-label
multi-class modelling) and uses an ensemble of classifiers to produce accurate pseudo
labels (tackling confirmation bias to improve classification accuracy), where the main
technical contributions are:

• A novel information content measure to select informative unlabelled samples
named cross-distribution sample informativeness;

• A new pseudo-labelling mechanism, called informative mixup, which generates
pseudo labels from an ensemble of deep learning and KNN classifiers; and

• A novel method, called anchor set purification (ASP), to select informative
pseudo-labelled samples to be included in the labelled anchor set to improve the
pseudo-labelling accuracy of the KNN classifier.
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We evaluate ACPL on two publicly available medical image classification datasets,
namely the Chest X-Ray14 for thorax disease multi-label classification [192] and the
ISIC2018 for skin lesion multi-class classification [29, 182]. Our method outperforms
the current SOTA methods in both datasets.

4.2 Related Work

We first review consistency-based and pseudo-labelling SSL methods. Then, we discuss
the curriculum and anti-curriculum learning literature for fully and semi-supervised
learning and present relevant SSL MIA methods.

Consistency-based SSL optimises the classification prediction of labelled im-
ages and minimises the prediction outputs of different views of unlabelled images,
where these views are obtained from different types of image perturbations, such
as spatial/temporal [99, 177], adversarial [136], or data augmentation [11, 12, 170].
The performance of the consistency-based methods can be further improved with self-
supervised pre-training [117]. Even though consistency-based SSL methods show SOTA
results in many benchmarks [170], they depend on a careful design of perturbation func-
tions that requires domain knowledge and would need to be adapted to each new type
of medical imaging. Furthermore, Rizve et al. [156] show that pseudo-labelling SSL
methods are more accurate for multi-label problems.

Pseudo-labelling SSL methods [19, 156, 163, 214] train a model with the avail-
able labelled data, estimate the pseudo labels of unlabelled samples classified with
high confidence [103], then take these pseudo-labelled samples to re-train the model.
As mentioned above in Sec. 4.1 pseudo-label SSL approaches can bias classification
toward the majority classes in imbalanced problems, is not seamlessly adaptable to
multi-class and multi-label problems, and can also lead to confirmation bias. We argue
that the improvement of pseudo-labelling SSL methods depends on the selection of
informative unlabelled samples to address the majority class bias and the adaptation
to multi-class and multi-label problems, and an accurate pseudo-labelling mechanism
to handle confirmation bias, which are two points that we target with this paper. The
selection of training samples based on their information content has been studied by
fully supervised curriculum and anti-curriculum learning methods [206]. Cur-
riculum learning focuses on the easy samples in the early training stages and gradually
includes the hard samples in the later training stages, where easy samples [9, 80, 98]
are usually defined as samples that have small losses during training, and hard sam-
ples tend to have large losses. On the other hand, anti-curriculum focuses of the hard
samples first and transitions to the easy samples later in the training [78, 89]. The
methods above have been designed to work in fully supervised learning.

Since we target accurate SSL of imbalanced multi-class and multi-label methods,
we follow anti-curriculum learning that pseudo-labels the most informative samples
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which are likely to belong to the minority classes (consequently, helping to balance
the training) and enable the selection of samples without requiring the estimation of
a class-wise classification threshold (enabling a seamless adaptation to multi-class and
multi-label problems).

The main benchmarks for SSL in MIA study the multi-label classification of chest
X-ray (CXR) images [76, 192] and multi-class classification of skin lesions [29, 182].
For CXR SSL classification, pseudo-labelling methods have been explored [4], but
SOTA results are achieved with consistency learning approaches [35, 111, 117, 118, 184].
For skin lesion SSL classification, the current SOTA is also based on consistency
learning [118], with pseudo-labelling approaches [7] not being competitive. We show
that our proposed pseudo-labelling method ACPL can surpass the consistency-based
SOTA on both benchmarks, demonstrating the value of selecting highly informative
samples for pseudo labelling and of the accurate pseudo labels from the ensemble
of classifiers. We also show that our ACPL improves the current computer vision
SOTA [156] applied to MIA, demonstrating the limitation of computer vision methods
in MIA and also the potential of our approach to be applied in more general SSL
problems.

4.3 Methods

To introduce our SSL method ACPL, assume that we have a small labelled training
set DL = {(xi,yi)}|DL|

i=1 , where xi ∈ X ⊂ RH×W×C is the input image of size H ×W
with C colour channels, and yi ∈ {0, 1}|Y| is the label with the set of classes denoted
by Y = {1, ..., |Y|} (note that yi is a one-hot vector for multi-class problems and a
binary vector in multi-label problems). A large unlabelled training set DU = {xi}|DU |

i=1

is also provided, with |DL| << |DU |. We assume the samples from both datasets are
drawn from the same (latent) distribution. Our algorithm also relies on the pseudo-
labelled set DS that is composed of pseudo-labelled samples classified as informative
unlabelled samples, and an anchor set DA that contains informative pseudo-labelled
samples. The goal of ACPL is to learn a model pθ : X → [0, 1]|Y| parameterised by θ
using the labelled, unlabelled, pseudo-labelled, and anchor datasets.

Below, in Sec. 4.3.1, we introduce our ACPL optimisation that produces accurate
pseudo labels to unlabelled samples following an anti-curriculum strategy, where highly
informative unlabelled samples are selected to be pseudo-labelled at each training stage.
In Sec. 4.3.2, we present the information criterion of an unlabelled sample, referred to as
cross distribution sample informativeness (CDSI), based on the dissimilarity between
the unlabelled sample and samples in the anchor set DA. The pseudo labels for the
informative unlabelled samples are generated using the proposed informative mixup
(IM) method (Sec. 4.3.3) that mixes up the results from the model pθ(.) and a K nearest
neighbor (KNN) classifier using the anchor set. At the end of each training stage, the
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Algorithm 1 Anti-curriculum Pseudo-labelling Algorithm
1: require: Labelled set DL, unlabelled set DU , and number of training stages T
2: initialise DA = DL, and t = 0
3: warm-up train pθt(x) with

θt = argminθ
1

|DL|
∑

(xi,yi)∈DL
ℓ(yi, pθ(xi))

4: while t < T or |DU | ≠ 0 do
5: build pseudo-labelled dataset using CDSI from (4.2) and IM from (4.6):

DS = {(x, ỹ)|x ∈ DU , h(fθt(x),DA) = 1,

ỹ = g(fθt(x),DA)}

6: update anchor set with ASP from (4.7):

DA =DA

⋃
(x, ỹ), where

(x, ỹ) ∈ DS, and a(fθt(x),DU ,DA) = 1

7: t← t+ 1
8: optimise (4.1) using DL,DS to obtain pθt(x)
9: update labelled and unlabelled sets:

DL ← DL

⋃
DS,DU ← DU \ DS

10: end while
11: return pθt(x)
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Figure 4.2: Anti-curriculum pseudo-labelling (ACPL) algorithm. The algorithm is
divided into the following iterative steps: 1) train the model with DS and DL; 2)
extract the features from the anchor and unlabelled samples; 3) estimate information
content of unlabelled samples with CDSI from (4.4) with anchor set DA; 4) partition the
unlabelled samples into high, medium and low information content using (4.2); 5) assign
a pseudo label to high information content unlabelled samples with IM from (4.6); 6)
update DS with new pseudo-labelled samples; and 7) update DA with ASP in (4.7).

anchor set is updated with the anchor set purification (ASP) method (Sec. 4.3.4) that
only keeps the most informative subset of pseudo-labelled samples, according to the
CDSI criterion.

4.3.1 ACPL Optimisation

Our ACPL optimisation, described in Alg. 1 and depicted by Fig. 4.2, starts with
a warm-up supervised training of the parameters of the model pθ(.) using only the
labelled set DL. For the rest of the training, we use the sets of labelled and unlabelled
samples, DL and DU , and update the pseudo-labelled set DS and the anchor set DA

containing the informative unlabelled and pseudo-labelled samples, where DS start as
an empty set and DA starts with the samples in DL. The optimisation iteratively
minimises the following cost function:

ℓACPL(θ,DL,DS) =
1

|DL|
∑

(xi,yi)∈DL

ℓ(yi, pθ(xi))

+
1

|DS|
∑

(xi,ỹi)∈DS

ℓ(ỹi, pθ(xi)),
(4.1)

where ℓ(.) denotes a classification loss (e.g., cross-entropy), θ is the model parame-
ter, yi is the ground truth, and ỹi is the estimated pseudo label. After optimising (4.1),
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the labelled and unlabelled sets are updated as DL = DL

⋃
DS and DU = DU \ DS,

and a new iteration of optimisation takes place.

4.3.2 Cross Distribution Sample Informativeness (CDSI)

The function that estimates if an unlabelled sample has high information content is
defined by

h(fθ(x),DA) =

{
1, pγ(ζ = high|x,DA) > τ,
0, otherwise, (4.2)

where ζ ∈ Z = {low,medium, high} represents the information content random
variable, γ = {µζ ,Σζ , πζ}ζ∈Z denotes the parameters of the Gaussian Mixture Model
(GMM) pγ(.), and τ = max {pγ(ζ = low|x,DA), pγ(ζ = medium|x,DA)}. The function
pγ(ζ|x,DA) can be decomposed into pγ(x|ζ,DA)pγ(ζ|DA)/pγ(x|DA), where

pγ(x|ζ,DA) = n(d(fθ(x),DA)|µζ ,Σζ), (4.3)

with n(.;µζ ,Σζ) denoting a Gaussian function with mean µζ and covariance Σζ , pγ(ζ|DA) =
πζ representing the ownership probability of ζ (i.e., the weight of mixture ζ), and
pγ(x|DA) being a normalisation factor. The probability in (4.3) is computed with the
density of the unlabelled sample x with respect to the anchor set DA, as follows:

d(fθ(x),DA) =
1

K

∑
(fθ(xA),yA)∈
N (fθ(x),DA)

fθ(x)
⊤fθ(xA)

∥fθ(x)∥2∥fθ(xA)∥2
, (4.4)

where N (fθ(x),DA) represents the set of K-nearest neighbors (KNN) from the
anchor set DA to the input image feature fθ(x), with each element in the set DA

denoted by (fθ(xA),yA). The F−dimensional input image feature is extracted with
fθ : X → RF from the model pθ(.) with pθ(x) = σ(fθ(x)), where σ(.) is the final
activation function to produce an output in [0, 1]|Y|. The parameters γ in (4.2) are
estimated with the expectation-maximisation (EM) algorithm [39], every time after
the anchor set is updated.

4.3.3 Informative Mixup (IM)

After selecting informative unlabelled samples with (4.2), we aim to produce reliable
pseudo labels for them. We can provide two pseudo labels for each unlabelled sam-
ple x ∈ DU : the model prediction from pθ(x), and the K-nearest neighbor (KNN)
prediction using the anchor set, as follows:

ỹmodel(x) = pθ(x),

ỹKNN(x) =
1

K

∑
(fθ(xA),yA)∈N (fθ(x),DA)

yA.
(4.5)
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yA is the label of anchor set samples. However, using any of the pseudo labels from (4.5)
can be problematic for model training. The pseudo label in ỹmodel(x) can cause confir-
mation bias, and the reliability of ỹKNN(x) depends on the size and representativeness
of the initial labelled set to produce accurate classification. Inspired by MixUp [229],
we propose the informative mixup method that constructs the pseudo-labelling func-
tion g(.) in (4.1) with a linear combination of ỹmodel(x) and ỹKNN(x) weighted by the
density score from (4.4), as follows:

ỹ = g(fθ(x),DA) = d(fθ(x),DA)× ỹmodel(x)

+ (1− d(fθ(x),DA))× ỹKNN(x).
(4.6)

The informative mixup in (4.6) is different from MixUp [229] because it combines
the classification results of the same image from two models instead of the classification
from the same model of two images. Furthermore, our informative mixup weights the
the classifiers with the density score to reflect the trade-off between ỹmodel(x) and
ỹKNN(x). Since informative samples are selected from a region of the anchor set with
low feature density, the KNN prediction ỹKNN(x) is less reliable than ỹmodel(x), so by
default, we should trust more the model classification. The weighting between the two
predictions in (4.6) reflects this observation, where ỹmodel(x) will tend have a larger
weight given that d(fθ(x),DA) is usually larger than 0.5, as displayed in Fig. 4.2 (see
the informativeness score histogram at the bottom-right corner). When the sample is
located in a high-density region, we place most of the weight on the model prediction
given that in such case, the model is highly reliable. On the other hand, when the
sample is in a low-density region, we try to balance a bit more the contribution of both
the model and KNN predictions, given the low reliability of the model.

4.3.4 Anchor Set Purification (ASP)

After estimating the pseudo label for informative unlabelled samples, we aim to up-
date the anchor set with informative pseudo-labelled samples to maintain density score
from (4.4) accurate in later training stages. However, adding all pseudo-labelled sam-
ples will cause anchor set over-sized and increase hyper-parameter sensitivity. Thus,
we propose the Anchor Set Purification (ASP) module to select the least connected
pseudo-labelled samples to be inserted in the anchor set, as in (see Fig. 4.3):

a(fθ(x),DU ,DA) =

{
1, c(fθ(x),DU ,DA) ≤ α,
0, otherwise, (4.7)

where the pseudo-labelled samples with a(fθ(x),DU ,DA) = 1 and ỹ = g(fθ(x),DA)
from (4.6) are inserted into the anchor set. The information content c(fθ(x),DU ,DA)
of a pseudo-labelled sample fθ(x) in (4.7) is computed in three steps (see Fig. 4.3):
1) find the KNN samples N (fθ(x),DA) from fθ(x) to the anchor set DA; 2) for each
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set DU ; and 3) calculate the number of surviving nearest neighbours. Samples with
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Table 4.1: Mean AUC testing set results over the 14 disease classes of Chest X-Ray14 for
different labelled set training percentages. * indicates the methods that use DenseNet-
169 as backbone architecture. Bold number means the best result per label percentage
and underline shows previous best results.

Method Type Label Percentage 2% 5% 10% 15% 20%

Consistency based
SRC-MT* [118] 66.95 72.29 75.28 77.76 79.23
NoTeacher [184] 72.60 77.04 77.61 N/A 79.49
S2MTS2 [117] 74.69 78.96 79.90 80.31 81.06

Pseudo Label Graph XNet* [4] 53.00 58.00 63.00 68.00 78.00
UPS [156] 65.51 73.18 76.84 78.90 79.92
Ours 74.82 79.20 80.40 81.06 81.77

of the K elements (xA,yA) ∈ N (fθ(x),DA), find the KNN set N (fθ(xA),DU) from
fθ(xA) to the unlabelled set DU ; and 3) c(fθ(x),DU ,DA) is calculated to be the number
of times that the pseudo-labelled sample x appears in the KNN sets N (fθ(xA),DU)
for the K elements of set N (fθ(x),DA). The threshold α in (4.7) is computed with
α = minx∈DS

c(fθ(x),DU ,DA).

4.4 Experiments
For the experiments below, we use the Chest X-Ray14 [192] and ISIC2018 [29, 182]
datasets.
Chest X-Ray14 contains 112,120 CXR images from 30,805 different patients. There
are 14 labels (each label is a disease) and No Finding class, where each patient can
have multiple labels, forming a multi-label classification problem. To compare with
previous papers [4, 118], we adopt the official train/test data split [192]. We report
the classification result on the test set (26K samples) using area under the ROC curve
(AUC), and the learning process uses training sets containing different proportions of
the labelled data in {2%, 5%, 10%, 15%, 20%}.
ISIC2018 is a skin lesion dataset that contains 10,015 images with seven labels. Each
image is associated with one of the labels, forming a multi-class classification problem.
We follow the train/test split from [118] for fair comparison, where the training set
contains 20% of labelled samples and 80% of unlabelled samples. We report the AUC,
Sensitivity, and F1 score results.

4.4.1 Implementation Details

For both datasets, we use DenseNet-121 [72] as our backbone model. For Chest X-
Ray14, the dataset pre-processing consists of resizing the images to 512 × 512 for
faster processing. For the optimisation, we use Adam optimizer [93], batch size 16 and
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Table 4.2: Class-level AUC testing set results comparison between our approach and
other semi-supervised SOTA approaches trained with 20% of labelled data on Chest
Xray-14. * denotes the models use DenseNet-169 as backbone. Bold number means
the best result per class and underlined shows second best results.

Method Type Supervised Consistency based Pseudo-labelling
Method Densenet-121 MT [177] * SRC-MT [118] * S2MTS2 [117] GraphXNet [4] UPS [156] Ours

Atelectasis 75.75 75.12 75.38 78.57 71.89 77.09 79.53
Cardiomegaly 80.71 87.37 87.7 88.08 87.99 85.73 89.03

Effusion 79.87 80.81 81.58 82.87 79.2 81.35 83.56
Infiltration 69.16 70.67 70.4 70.68 72.05 70.82 71.40

Mass 78.40 77.72 78.03 82.57 80.9 81.82 82.49
Nodule 74.49 73.27 73.64 76.60 71.13 76.34 77.73

Pneumonia 69.55 69.17 69.27 72.25 76.64 70.96 73.86
Pneumothorax 84.70 85.63 86.12 86.55 83.7 85.86 86.95
Consolidation 71.85 72.51 73.11 75.47 73.36 74.35 75.50

Edema 81.61 82.72 82.94 84.83 80.2 83.56 84.95
Emphysema 89.75 88.16 88.98 91.88 84.07 91.00 93.36

Fibrosis 79.30 78.24 79.22 81.73 80.34 80.87 81.86
Pleural Thicken 73.46 74.43 75.63 76.86 75.7 75.55 77.60

Hernia 86.05 87.74 87.27 85.98 87.22 85.62 85.89
Mean 78.19 78.83 79.23 81.06 78.00 79.92 81.77

learning rate 0.05. During training, we use data augmentation based on random crop
and resize, and random horizontal flip. We first train 20 epochs on the initial labelled
subset to warm-up the model for feature extraction. Then we train for 50 epochs,
where in every 10 epochs we update the anchor set with ASP from Sec. 4.3.4. For the
KNN classifier in (4.2), we set K to be 200 for 2% and 5% (of labelled data) and 50
for remaining label proportions. These values are set based on validation results, but
our approach is robust to a large range K values – we show an ablation study that
compares the performance of our method for different values of K. For ISIC2018, we
resize the image to 224 × 224 for fair comparison with baselines. For the optimisation,
we use Adam optimizer [93], batch size 32 and learning rate 0.001. During training,
data augmentation is also based on random crop and resize, and random horizontal
flip. We warm-up the model for 40 epochs and then we train for 100 epochs, where in
every 20 epochs, we update the anchor set with ASP. For the KNN classifier, K is set
to 100 based on validation set. The code is written in Pytorch [146] and we use two
RTX 2080ti Gpus for all experiments. KNN computation takes 5 sec for Chest X-ray14
unlabelled samples with Faiss [85] library for faster processing. We follow [117, 118, 177]
to maintain an exponential moving average (EMA) version of the trained model, which
is only used for evaluation not for training.
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4.4.2 Thorax Disease Classification Result

For the results on Chest X-Ray14 in Table 4.1, our method, NoTeacher [184], UPS [156],
and S2MTS2 [117] use the DenseNet-121 backbone, while SRC-MT [118] and GraphXNet [4]
use DenseNet-169 [72]. SRC-MT [118] is a consistency-based SSL; NoTeacher [184]
extends MT by replacing the EMA process with two networks combined with a prob-
abilistic graph model; S2MTS2 [117] combines self-supervised pre-training with MT
fine-tuning; and GraphXNet [4] constructs a graph from dataset samples and assigns
pseudo labels to unlabelled samples through label propagation; and UPS [156] applies
probability and uncertainty thresholds to enable the pseudo labelling of unlabelled
samples. All methods use the official test set [192]. Our approach achieves the SOTA
results for all percentages of training labels. Compared to the pseudo-labelling ap-
proaches UPS and GraphXNet, our approach outperforms them by a margin between
3% to 20%. Compared to the consistency-based approaches SRC-MT and NoTeacher,
our method consistently achieves 2% improvement for all cases, even though we use a
backbone architecture of lower capacity (i.e., DenseNet-121 instead of DenseNet-169).
Compared with the previous SOTA, our method outperforms S2MTS2 [117] by 1% AUC
in all cases, which is remarkable because our method is initialised with an ImageNet
pre-trained model instead of an expensive self-supervised pre-training approach.

The class-level performances using 20% of the labelled data of SSL methods are
shown in Table 4.2, which demonstrates that our method achieves the best result in
10 out of the 14 classes. Our method surpasses the previous pseudo-labelling method
GraphXNet by 3.7% and threshold based pseudo-labelling method [156] by 1.8%. Our
method also outperforms consistency-based methods MT [177] and SRC-MT [118] by
more than 2%. For method S2MTS2 [117] with self-supervised learning, our method
can outperform it using an ImageNet pre-trained model, alleviating the need of a
computationally expensive self-supervised pre-training.

4.4.3 Skin Lesion Classification Result

We show the results on ISIC2018 in Table 4.3, where competing methods are based on
self-training [7], generative adversarial network (GAN) to augment the labelled set [42],
temporal ensembling [99], MT [177] and its extension [118], and a DenseNet-121 [72]
baseline trained with 20% of the training set. Compared with consistency-based ap-
proaches [111, 118, 177], our method improves between 0.7% and 3% in AUC and
around 1% in F1 score. Our method also outperforms previous self-training approach [7]
by a large margin in all measures.
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Table 4.3: AUC, Sensitivity and F1 testing results on ISIC2018, where 20% of the
training set is labelled. Bold shows the best result per measure, and underline shows
second best results.

Method AUC Sensitivity F1
Supervised 90.15 65.50 52.03

SS-DCGAN [42] 91.28 67.72 54.10
TCSE [111] 92.24 68.17 58.44

TE [99] 92.70 69.81 59.33
MT [177] 92.96 69.75 59.10

SRC-MT [118] 93.58 71.47 60.68
Self-training [7] 90.58 67.63 54.51

Ours 94.36 72.14 62.23
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Figure 4.4: (Left) Mean AUC testing results for different values for K in the KNN (for
CDSI in (4.4) and pseudo-labelling in (4.5)), where the green region uses ASP and blue
region does not use ASP. (Right) Mean size of DL at every training stage when adding
unlabelled samples of high, medium and low information content according to (4.2).
Model is trained on Chest X-Ray14, where 2% of the training is labelled.

4.4.4 Ablation Study

For the ablation study, we test each of our three contributions and visualize the data
distribution of selected subset with high and low informative samples on the Chest
X-Ray14 [192] with 2% labelled training set, where for CDSI and ASP, due to time
and computation resources limited, we run each experiment three times and show the
mean and standard deviation of the AUC results.
Cross-distribution Sample Informativeness (CDSI). We first study in Table 4.4
how performance is affected by pseudo-labelling unlabelled samples with different de-
grees of informativeness (low, medium and high) using our CDSI. Starting from the
baseline classifier DenseNet-121 that reaches an AUC of 65%, we observe that pseudo-
labelling low-information content unlabelled samples yields the worst result (around
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Table 4.4: Ablation study on Chest X-ray14 (2% labelled). Starting with a baseline
classifier (DenseNet-121), we test the selection of unlabelled samples (to be provided
with a pseudo-label) with different information content, according to (4.2) (i.e., low,
medium, high), and the use of the anchor set purification (ASP) module.

Information Content ASP AUC ± std
Baseline 65.84 ± 0.14

Low % 67.18 ± 2.40
! 67.76 ± 1.05

Medium % 70.83 ± 1.49
! 71.16 ± 0.51

High % 73.81 ± 0.75
! 74.44 ± 0.38

67% AUC) and selecting high-information content unlabelled samples produces the
best result (around 73% AUC). Figure 4.4 (right) plots how the size of the labelled
set DL during training depends on the degree of informativeness of the unlabelled
samples to be pseudo-labelled. These results show that: 1) unlabelled samples of high-
information content enables the construction of a smaller labelled set (compared with
unlabelled samples of low- or medium-information content), allowing a more efficient
training process that produces a more accurate KNN classifier; and 2) the standard
deviation of the results in Table 4.4 are smaller when selecting the unlabelled samples
of high-information content, compared with the low- or medium-information content.
This second point can be explained by the class imbalance issue in Chest X-Ray14,
where the selection of low-information content samples will enable the training of ma-
jority classes, possibly producing an ineffective training for the minority classes that
can increase the variance in the results.

Anchor Set Purification (ASP). Also in Table 4.4, we compare ASP with an alter-
native method that selects all pseudo-labelled samples to be included into the anchor
set for the low-, medium- and high-information content unlabelled samples. Results
show that the ASP module improves AUC between 0.3% and 1.0% and reduces stan-
dard deviation between 0.4% and 1.4%. This demonstrates empirically that the ASP
module enables the formation of a more informative anchor set that improves the
pseudo-labelling accuracy, and consequently the final AUC results. Furthermore, in
Figure 4.4 (left), ASP is shown to stabilise the performance of the method with re-
spect to K ∈ {50, 100, 150, 200, 250, 300} for the KNN classifier of (4.4). In particular,
with ASP, the difference between the best and worst AUC results is around 1%, while
without ASP, the difference grows to 2%. This can be explained by the fact that with-
out ASP, the anchor set grows quickly with relatively less informative pseudo-labelled
samples, which reduces the stability of the method.

45



Table 4.5: AUC testing set results on Chest X-ray14 (2% labelled) for different pseudo
labelling strategies (α denotes the linear coefficient combining the model and KNN
predictions).

Pseudo-label Strategies Methods AUC
Baseline - 65.84

Single Prediction Model prediction 72.63
KNN prediction 72.45

Mixup random sampled α 73.23
MixUp [229] 69.28

Ours Informative Mixup 74.44

Informative Mixup (IM) In Table 4.5, we show that our proposed IM in (4.6)
produces a more accurate pseudo-label, where we compare it with alternative pseudo-
label methods, such as with only the model prediction, only the KNN prediction,
random sample α from beta distribution to replace the density score in (4.6), and
regular MixUp [229]. It is clear that the use of model or KNN predictions alone
as pseudo labels has performance gap. This most likely because of confirmation bias
(former case) or the inaccuracy of the KNN classifier (latter case). MixUp [229] does not
show good accuracy either, as also observed in [189] and [90], when MixUp is performed
in multi-label images or multiple single-object images. The random sampling of α for
replacing density score shows a better result than MixUp, but the lack of an image-
based weight to balance the two predictions, like in (4.6), damages performance. Our
proposed IM shows a result that is at least 1% better than any of the other pseudo-
labelling approaches, showing the importance of using the density of the unlabelled
sample in the anchor set to weight the contribution of the model and KNN classifiers.

The imbalanced learning mitigation is studied in Figure 4.5, which shows the
histogram of label distribution in percentage (for a subset of four disease minority
classes and the No Finding majority class) by selecting unlabelled samples of high (blue)
and low (yellow) information content. We also show the original label distribution in
green for reference.

Notice that the selection of highly informative samples significantly increases the
percentage of disease minority classes (from between 5% and 10% to almost 30%) and
decreases the percentage of the No Finding majority class (from 60% to 30%), creating
a more balanced distribution of these five classes. This indicates that our informative
sample selection can help to mitigate the issue of imbalanced learning. We include the
full 14-classes histograms in the Appendix A.
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Figure 4.5: The selection of highly informative unlabelled samples (blue) promote a
more balanced learning process, where the difference in the number of samples belong-
ing to the minority or majority classes is smaller than if we selected unlabelled samples
with low informativeness (yellow). Green shows the original data distribution]. Full
14-class distributions are shown in the Appendix A.

4.5 Discussion and Conclusion
In this work, we introduced the anti-curriculum pseudo-labelling (ACPL) SSL method.
Unlike traditional pseudo-labelling methods that use a threshold to select confidently
classified samples, ACPL uses a new mechanism to select highly informative unlabelled
samples for pseudo-labelling and an ensemble of classifiers to produce accurate pseudo-
labels. This enables ACPL to address MIA multi-class and multi-label imbalanced
classification problems. We show in the experiments that ACPL outperforms previous
consistency-based, pseudo-label based and self-supervised SSL methods in multi-label
Chest X-ray14 and multi-class ISIC2018 benchmarks. We demonstrate in the ablation
study the influence of each of our contributions and we also show how our new selection
of informative samples addresses MIA imbalanced classification problems. For future
work, it is conceivable that ACPL can be applied to more general computer vision
problems, so we plan to test ACPL in traditional computer vision benchmarks. We
would also explore semi-supervised classification with out-of-distribution (OOD) data
in the initial labelled and unlabelled sets as our method currently assume all samples
are in-distribution.
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Chapter 5

NVUM: Non-volatile Unbiased
Memory for Robust Medical Image
Classification

Abstract

Real-world large-scale medical image analysis (MIA) datasets have three challenges:
1) they contain noisy-labelled samples that affect training convergence and generali-
sation, 2) they usually have an imbalanced distribution of samples per class, and 3)
they normally comprise a multi-label problem, where samples can have multiple diag-
noses. Current approaches are commonly trained to solve a subset of those problems,
but we are unaware of methods that address the three problems simultaneously. In
this paper, we propose a new training module called Non-Volatile Unbiased Mem-
ory (NVUM), which non-volatility stores running average of model logits for a new
regularization loss on noisy multi-label problem. We further unbias the classification
prediction in NVUM update for imbalanced learning problem. We run extensive exper-
iments to evaluate NVUM on new benchmarks proposed by this paper, where training
is performed on noisy multi-label imbalanced chest X-ray (CXR) training sets, formed
by Chest-Xray14 and CheXpert, and the testing is performed on the clean multi-label
CXR datasets OpenI and PadChest. Our method outperforms previous state-of-the-art
CXR classifiers and previous methods that can deal with noisy labels on all evaluations.
Our code is available at https://github.com/FBLADL/NVUM. 1

1This work was supported by the Australian Research Council through grants DP180103232 and
FT190100525.
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Figure 5.1: NVUM training algorithm: 1) sample input image x from training set S
and calculate label distribution prior π; 2) train model fθ and get sample logits z and
prediction p; 3) update memory t with (5.3); and 4) minimise the loss that comprises
ℓBCE(.) in (5.1) and ℓREG(.) in (5.2).

5.1 Introduction and Background

The outstanding results shown by deep learning models in medical image analysis
(MIA) [113, 116] depend on the availability of large-scale manually-labelled training
sets, which is expensive to obtain. As a affordable alternative, these manually-labelled
training sets can be replaced by datasets that are automatically labelled by natural lan-
guage processing (NLP) tools that extract labels from the radiologists’ reports [76, 192].
However, the use of these alternative labelling processes often produces unreliably la-
belled datasets because NLP-extracted disease labels, without verification by doctors,
may contain incorrect labels, which are called noisy labels [143, 144]. Furthermore,
differently from computer vision problems that tend to be multi-class with a balanced
distribution of samples per class, MIA problems are usually multi-label (e.g, a disease
sample can contain multiple diagnosis), with severe class imbalances because of the vari-
able prevalence of diseases. Hence, robust MIA methods need to be flexible enough to
work with noisy multi-label and imbalanced problems. State-of-the-art (SOTA) noisy-
label learning approaches are usually based on noise-cleaning methods [60, 106, 119].
Han et al. [60] propose to use two DNNs and use their disagreements to reject noisy
samples from the training process. Li et al. [106] rely on semi-supervised learning that
treats samples classified as noisy as unlabelled samples. Other approaches estimate
the label transition matrix [54, 210] to correct model prediction. Even though these
methods show state-of-the-art (SOTA) results in noisy-label problems, they have is-
sues with imbalanced and multi-label problems. First, noise-cleaning methods usually
rely on detecting noisy samples by selecting large training loss samples, which are ei-
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ther removed or re-labelled. However, in imbalanced learning problems, such training
loss for clean-label training samples, belonging to minority classes, can be larger than
the loss for noisy-label training samples belonging to majority classes, so these SOTA
noisy-label learning approaches may inadvertently remove or re-label samples belong-
ing to minority classes. Furthermore, in multi-label problems, the same sample can
have a mix of clean and noisy labels, so it is hard to adapt SOTA noisy-label learning
approaches to remove or re-label particular labels of each sample. Another issue in
multi-label problems faced by transition matrix methods is that they are designed to
work for multi-class problems, so their adaptation to multi-label problems will need
to account for the correlation between the multiple labels. Hence, current noisy-label
learning approaches have not been designed to solve all issues present in noisy multi-
label imbalanced real-world datasets. Current imbalanced learning approaches are usu-
ally based on decoupling classifier and representation learning [88, 176]. For instance,
Kang et al. [88] notice that learning with an imbalanced training set does not affect
the representation learning, so they only adjust for imbalanced learning when training
the classifier. Tang et al. [176] identify causal effect in stochastic gradient descent
(SGD) momentum update on imbalanced datasets and propose a de-confounded train-
ing scheme. Another type of imbalanced learning is based on loss weighting [18, 175]
that up-weights the minority classes [18] or down-weights the majority classes [175].
Furthermore, Menon et al. [135] discover that decoupling approach that based on corre-
lation between classifier weight norm and data distribution is only applicable for SGD
optimizer, which is problematic for MIA methods that tend to rely on other optimizers,
such as Adam, that show better training convergence. Even though the papers above
are effective for imbalanced learning problems, they do not consider the combination of
imbalanced and noisy multi-label learning. To address the noisy multi-label imbalanced
learning problems present in real-world MIA datasets, we introduce the Non-volatile
Unbiased Memory (NVUM) training module, which is described in Fig. 5.1. Our
contributions are:

• NVUM that stores a non-volatile running average of model logits to explore the
multi-label noise robustness of the early learning stages. This memory module
is used by a new regularisation loss to penalise differences between current and
early-learning model logits;

• The NVUM update takes into account the class prior distribution to unbias the
classification predictions estimated from the imbalanced training set;

• Two new noisy multi-label imbalanced evaluation benchmarks, where training is
performed on chest X-ray (CXR) training sets from Chest Xray14 [192] and CheX-
pert [76], and testing is done on the clean multi-label CXR datasets OpenI [37]
and PadChest [15].
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5.2 Method
We assume the availability of a noisy-labelled training set S = {(xi, ỹi)}|S|i=1, where
xi ∈ X ⊂ RH×W×R is the input image of size H × W with R colour channels, and
ỹi ∈ {0, 1}|C| is the noisy label with the set of classes denoted by C = {1, ..., |C|} (note
that ỹi represents a binary vector in multi-label problems, with each label representing
one disease).

5.2.1 Non-volatile Unbiased Memory (NVUM) Training

To describe the NVUM training, we first need to define the model, parameterised by θ
and represetned as a deep neural network, with p = σ(fθ(x)) , where p ∈ [0, 1]|C|, σ(.)
denotes the sigmoid activation function and z = fθ(x), with z ∈ Z ∈ R|C| representing
a logit. The training of the model fθ(x) is achieved by minimising the following loss
function:

ℓtotal(S, t, θ) =
1

|S|
∑

(xi,ỹi)∈S

ℓBCE(ỹ
i,pi) + ℓREG(t

i,pi), (5.1)

where ℓBCE denotes the binary cross-entropy loss for handling multi-label classification
and ℓREG is a regularization term defined by:

ℓREG(t
i,pi) = log(1− σ((ti)⊤pi)). (5.2)

here t ∈ R|S|×|C| is our proposed memory module designed to store an unbiased multi-
label running average of the predicted logits for all training samples and t uses the class
prior distribution π for updating, denoted by π(c) = 1

|S|
∑|S|

i=1 ỹ(c) for c ∈ {1, ..., |C|}.
The memory module t is initialised with zeros, as in t0 = 0|S|×|C|, and is updated in
every epoch k > 0 with:

tik = βtik−1 + (1− β)(zik − log π), (5.3)

where β ∈ [0, 1] is a hyper-parameter controlling the volatility of the memory storage,
with β set to larger value representing a non-volatile memory and β ≈ 0 denoting a
volatile memory that is used in [63] for contrastive learning. To explore the early
learning phenomenon, we set β = 0.9 so the regularization can enforce the consistency
between the current model logits and the logits produced at the beginning of the
training, when the model is robust to noisy label. Furthermore, to make the training
robust to imbalanced problems, we subtract the log prior of the class distributions,
which has the effect of increasing the logits with larger values for the classes with
smaller prior. This counterbalances the issue faced by imbalanced learning problems,
where the logits for the majority classes can overwhelm those from the minority classes,
to the point that logit inconsistencies found by the regularization from noisy labels of
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the majority classes may become indistinguishable from the clean labels from minority
classes.
The effect of Eq. (5.2) can be interpreted by inspecting the loss gradient, which is
proved in the Appendix B. The gradient of (5.1) is:

∇θℓtotal(S, θ) =
1

|S|
∑
i∈S

Jxi(θ)(pi − ỹi + gi),

where gi
c = −σ((ti)⊤(pi))pi

c(1− pi
c)tc

(5.4)

where Jxi(θ) is the Jacobian matrix w.r.t. θ for the ith sample. Assume yc is the hidden
true label of the sample xi, then the entry tic > 0 if yc = 1, and tic < 0 if yc = 0 at the
early stages of training. During training, we consider four conditions explained below,
where we assume that σ((ti)⊤(pi))pi

c(1−pi
c) > 0. When the training sample has clean

label:

• if ỹc = yc = 1, the gradient of the BCE term, pi
c− ỹi

c ≈ 0 given that the model is
likely to fit clean samples. With tic > 0, the sign of gi

c is negative, and the model
keeps training for these positive labels even after the early-training stages.

• if ỹc = yc = 0, the gradient of the BCE term, pi
c − ỹi

c ≈ 0 given that the model
is likely to fit clean samples. Given that tic < 0, we have gi

c > 0, and the model
keeps training for these negative labels even after the early-training stages.

Therefore, adding gi
c in total loss ensures that clean samples gradient magnitudes

remains relatively high, encouraging a continuing optimisation using the clean label
samples. For a noisy-label sample, we have:

• if ỹc = 0 and yc = 1, the gradient of the BCE loss is pi
c − ỹi

c ≈ 1 because the
model will not fit noisy label during early training stages. With tic > 0, we have
gi
c < 0, which reduces the gradient magnitude from the BCE loss.

• if ỹc = 1 and yc = 0, pi
c − ỹi

c ≈ −1. Given that tic < 0, we have gi
c > 0, which

also reduces the gradient magnitude from the BCE loss.

Therefore, for noisy-label samples, gi
c will counter balance the gradient from the BCE

loss and diminish the effect of noisy-labelled samples in the training.

5.3 Experiment
Datasets. For the experiments below, we use the NIH Chest X-ray14 [192] and CheX-
pert [76] as noisy multi-label imbalanced datasets for training and Indiana OpenI [37]
and PadChest [15] datasets for clean multi-label testing sets.
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For the noisy sets, NIH Chest X-ray14 (NIH) contains 112,120 CXR images
from 30,805 patients. There are 14 labels (each label is a disease), where each patient
can have multiple diseases, forming a multi-label classification problem. For a fair com-
parison with previous papers [68, 152], we adopt the official train/test data split [192].
CheXpert (CXP) contains 220k images with 14 different diseases, and similarly to
NIH, each patient can have multiple diseases. For pre-processing, we remove all lateral
view images and treat uncertain and empty labels as negative labels. Given that the
clean test set from CXP is not available and the clean validation set is too small for
a fair comparison, we further split the training images into 90% training set and 10%
noisy validation set with no patient overlapping. For the clean sets, Indiana OpenI
(OPI) contains 7,470 frontal/lateral images with manual annotations. In our experi-
ments, we only use 3,643 frontal view of images for evaluation. PadChest (PDC) is a
large-scale dataset containing 158,626 images with 37.5% of images manually labelled.
In our experiment, we only use the manually labelled samples as the clean test set. To
keep the number of classes consistent between different datasets, we trim the training
and testing sets based on the shared classes between these datasets 2.
Implementation Details. We use the ImageNet [158] pre-trained DenseNet121 [72]
as the backbone model for fθ(.) on NIH and CXP. We use Adam [93] optimizer with
batch size 16 for NIH and 64 for CXP. For NIH, we train for 30 epochs with a learning
rate of 0.05 and decay with 0.1 at 70% and 90% of the total of training epochs. Images
are resized from 1024×1024 to 512×512 pixels. For data augmentation, we employ
random resized crop and random horizontal flipping. For CXP, we train for 40 epochs
with a learning rate of 1e−4 and follow the learning rate decay policy as on NIH. Images
are resized to 224×224. For data augmentation, we employ random resized crop, 10
degree random rotation and random horizontal flipping. For both datasets, we use
β = 0.9 and normalized by ImageNet mean and standard deviation.

All classification results are reported using area under the ROC curve (AUC). To
report performance on clean test sets OPI and PDC, we adopt a common noisy label
setup [60, 106] that selects the best performance checkpoint on noisy validation, which
is the noisy test set of NIH and the noisy validation set of CXP. All experiments are
implemented with Pytorch [147] and conducted on an NVIDIA RTX 2080ti GPU. The
training takes 15 hours on NIH and 14 hours on CXP.

5.3.1 Experiments and Results

Baselines. We compared NVUM with several methods, including the CheXNet base-
line [152], Ma et al.’s approach [131] based on a cross-attention network, the current
SOTA for NIH on the official test set is the model by Hermoza et al. [68] that is a weakly
supervised disease classifier that combines region proposal and saliency detection. We

2We include a detailed description based on [30] in the Appendix B.
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Table 5.1: Class-level and mean testing AUC on OPI [37] and PDC [15] for the
experiment based on training on NIH [192]. Best results for OPI/PDC are in
bold/underlined.

Models ChestXNet [152] Hermoza et al. [68] Ma et al. [131] DivideMix [106] Ours
Datasets OPI PDC OPI PDC OPI PDC OPI PDC OPI PDC
Atelectasis 86.97 84.99 86.85 83.59 84.83 79.88 70.98 73.48 88.16 85.66
Cardiomegaly 89.89 92.50 89.49 91.25 90.87 91.72 74.74 81.63 92.57 92.94
Effusion 94.38 96.38 95.05 96.27 94.37 96.29 84.49 97.75 95.64 96.56
Infiltration 76.72 70.18 77.48 64.61 71.88 73.78 84.03 81.61 72.48 72.51
Mass 53.65 75.21 95.72 86.93 87.47 85.81 71.31 77.41 97.06 85.93
Nodule 86.34 75.39 82.68 75.99 69.71 68.14 57.45 63.89 88.79 75.56
Pneumonia 91.44 76.20 88.15 75.73 84.79 76.49 64.65 72.32 90.90 82.22
Pneumothorax 80.48 79.63 75.34 74.55 82.21 79.73 71.56 75.46 85.78 79.50
Edema 83.73 98.07 85.31 97.78 82.75 96.41 80.71 91.81 86.56 95.70
Emphysema 82.37 79.10 83.26 79.81 79.38 75.11 54.81 59.91 83.70 79.38
Fibrosis 90.53 96.13 86.26 96.46 83.17 93.20 76.98 84.71 91.67 98.40
Pleural Thickening 81.58 72.29 77.99 69.95 77.59 67.87 63.98 58.25 84.82 74.80
Hernia 89.82 86.72 93.90 89.29 87.37 86.87 66.34 72.11 94.28 93.02
Mean AUC 83.69 83.29 86.01 83.25 82.80 82.41 70.92 76.18 88.65 85.55

also show results from DivideMix [106], which uses a noisy-label learning algorithm
based on small loss sample selection and semi-supervised learning. DivideMix has the
SOTA results in many noisy-label learning benchmarks. All methods are implemented
using the same DenseNet121 [72] backbone.
Quantitative Comparison Table 5.1 shows the class-level AUC result for training
on NIH and testing on OPI and PDC. Our approach achieves the SOTA results on
both clean test sets, consistently outperforming the baselines [68, 131, 152], achieving
2% mean AUC improvement on both test sets. Compared with the current SOTA
noisy-label learning DivideMix [106], our method outperforms it by 18% on OPI and
9% on PDC. This shows that for noisy multi-label imbalanced MIA datasets, noisy
multi-class balanced approaches based on small-loss selection is insufficient because
they do not take into account the multi-label and imbalanced characteristics of the
datasets. Table 5.2 shows class-level AUC results for training on CXP and testing on
OPI and PDC. Similarly to the NIH results on Table 5.1, our approach achieves the
best AUC results on both test sets with at least 3% improvement on OPI and 3% on
PDC. In addition, DivideMix [106] shows similar results compared with NIH. Hence,
SOTA performance on both noisy training sets suggests that our method is robust to
different noisy multi-label imbalanced training sets.
Additional benchmark. Using the recently proposed noisy label benchmark by Xue
et al. [217], we further test our approach against the SOTA in the field. The bench-
mark uses a subset of the official NIH test set [133], with 1,962 CXR images manually
re-labelled by at least three radiologists per image. For the results, we follow [217]
and consider the AUC results only for Pneumothorax (Pneu) and average of Mass and
Nodule (M/N). We use the same hyperparameters as above. The results in Tab. 5.3
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Table 5.2: Class-level and mean testing AUC on OPI [37] and PDC [15] for the experi-
ment based on training on CXP [76].Best results for OPI/PDC are in bold/underlined.

Methods CheXNet [152] Hermoza et al. [68] Ma et al. [131] DivideMix[106] Ours
Datasets OPI PDC OPI PDC OPI PDC OPI PDC OPI PDC
Cardiomegaly 84.00 80.00 87.01 87.20 82.83 85.89 71.14 66.51 88.86 88.48
Edema 88.16 98.80 87.92 98.72 86.46 97.47 75.36 95.51 88.63 99.60
Pneumonia 65.82 58.96 65.56 53.42 61.88 54.83 57.65 40.53 64.90 67.89
Atelectasis 77.70 72.23 78.40 75.33 80.13 72.87 73.65 64.12 80.81 75.03
Pneumothorax 77.35 84.75 62.09 78.65 51.08 71.57 68.75 54.05 82.18 83.32
Effusion 85.81 91.84 87.00 93.44 88.43 92.92 78.60 79.89 83.54 89.74
Fracture 57.64 60.26 57.47 53.77 59.92 60.44 60.35 59.43 57.02 62.67
Mean AUC 76.64 78.12 75.06 77.29 72.96 76.57 69.36 65.72 77.99 80.96

Table 5.3: Pneumothorax and Mass/Nodule AUC using the manually labelled clean
test from [133]. Baseline results obtained from [217]. Best results are in bold.

BCE F-correction [148] MentorNet [82] Decoupling [134] Co-teaching [60] ELR [119] Xue et al. [217] Ours
Pneu 87.0 80.8 86.6 80.1 87.3 87.1 89.1 88.9
M/N 84.3 84.8 83.7 84.3 82.0 83.2 84.6 85.5

shows that our method outperforms most noisy label methods and achieves compa-
rable performance to [217] on Pneumothorax (88.9 vs 89.1) and better performance
on Mass/Nodule (85.5 vs 84.6). However, it is important to mention that differently
from [217] that uses two models, we use only one model, so our method requires signif-
icantly less training time and computation resources. Furthermore, the clean test set
from [133] is much smaller than OPI and PDC with only two classes available, so we
consider results in Tab. 5.1 and 5.2 more reliable than Tab. 5.3

5.3.2 Ablation Study

Different components of NVUM with π. We first study in Fig. 5.2 (left) how
results are affected by the prior added on different components of NVUM. We run
each experiment three times and show mean and standard deviation of AUC results.
By adding the class prior π to ℓBCE [135], we replace the BCE term in (5.1) with
ℓBCE(ỹ

i, σ(fθ(x
i + log π))). We can also add the class prior π to ℓREG by replacing

the regularization term in (5.1) with ℓREG(t
i, σ(fθ(x + log π))). We observe a 2%

improvement for OPI and PDC for both modifications compared to ℓBCE baseline,
demonstrating that it is important to handle imbalanced learning in MIA problems.
Furthermore, we combine two modifications together and achieve additional 1% im-
provement. However, instead of directly working on the loss functions, as suggested
in [135], we work on the memory module given that it also enforces the early learning
phenomenon, addressing the combined noisy multi-label imbalanced learning problem.
Different β. We also study different values for β in (5.3). First, we test a volatile
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ℓBCE π ℓREG π OPI PDC
✓ 82.91±0.78 82.27±1.02
✓ ✓ 85.80±0.04 84.35±0.35
✓ ✓ 85.24±0.70 84.39±0.21
✓ ✓ ✓ 85.36±0.11 83.04±0.79
✓ ✓ ✓ ✓ 86.68±0.16 85.02±0.18

NVUM 88.17±0.48 85.49±0.06
80

82.25

84.5

86.75

89
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Figure 5.2: (Left) Mean AUC results of training on NIH using the class prior distri-
bution π applied to different components of NVUM. (Right) Mean AUC results on
OPI (blue) and PDC (green) of training on NIH with different β values for the NVUM
memory update in (5.3).

memory update with β = 0.1, which shows a significantly worse performance because
the model is overfitting the noisy multi-label of the training set. This indicates tradi-
tional volatile memory [63] cannot handle noisy label learning. Second, the non-volatile
memory update with β ∈ {0.5, ..., 0.9} shows a performance that improves consistently
with larger β. Hence, we use β = 0.9 as our default setup.

5.4 Conclusions and Future Work
In this work, we argue that the MIA problem is a problem of noisy multi-label and im-
balanced learning. We presented the Non-volatile Unbiased Memory (NVUM) training
module, which stores a non-volatile running average of model logits to make the learn-
ing robust to noisy multi-label datasets. Furthermore, The NVUM takes into account
the class prior distribution when updating the memory module to make the learning
robust to imbalanced learning. We conducted experiments on proposed new bench-
mark and recent benchmark [217] and achieved SOTA results. Ablation study shows
the importance of carefully accounting for imbalanced and noisy multi-label learning.
For the future work, we will explore an precise estimation of class prior π during the
training for accurate unbiasing.
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Chapter 6

BoMD: Bag of Multi-label Descriptors
for Noisy Chest X-ray Classification

Abstract

Deep learning methods have shown outstanding classification accuracy in medical imag-
ing problems, which is largely attributed to the availability of large-scale datasets
manually annotated with clean labels. However, given the high cost of such manual
annotation, new medical imaging classification problems may need to rely on machine-
generated noisy labels extracted from radiology reports. Indeed, many Chest X-Ray
(CXR) classifiers have been modelled from datasets with noisy labels, but their training
procedure is in general not robust to noisy-label samples, leading to sub-optimal mod-
els. Furthermore, CXR datasets are mostly multi-label, so current multi-class noisy-
label learning methods cannot be easily adapted. In this paper, we propose a new
method designed for noisy multi-label CXR learning, which detects and smoothly re-
labels noisy samples from the dataset to be used in the training of common multi-label
classifiers. The proposed method optimises a bag of multi-label descriptors (BoMD) to
promote their similarity with the semantic descriptors produced by language models
from multi-label image annotations. Our experiments on noisy multi-label training sets
and clean testing sets show that our model has state-of-the-art accuracy and robustness
in many CXR multi-label classification benchmarks, including a new benchmark that
we propose to systematically assess noisy multi-label methods. Code is available at
https://github.com/cyh-0/BoMD.

6.1 Introduction
The promising results produced by deep neural networks (DNN) in medical image anal-
ysis (MIA) problems [113] is attributed to the availability of large-scale datasets with
accurately annotated images. Given the high cost of acquiring such datasets, the field
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Figure 6.1: Comparison of multi-class LNL methods [5, 77, 106, 119] and our noisy
multi-label approach, BoMD, where the feature extractor returns a single descriptor
v per image, D is the noisy training set, C is the clean set, and D̃ is the re-labelled
training set. BoMD has two components: 1) learning of a bag of multi-label image
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MID descriptors.
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is considering more affordable automatic annotation processes by Natural Language
Processing (NLP) approaches that extract multiple labels (each label representing a
disease) from radiology reports [75, 193]. However, mistakes made by NLP combined
with uncertain radiological findings can introduce label noise [143, 144], as can be found
in NLP-annotated Chest X-ray (CXR) datasets [75, 193] whose noisy multi-labels can
mislead supervised training processes. Nevertheless, even without addressing this noisy
multi-label problem, current CXR multi-label classifiers [8, 68, 131, 152] show promising
results. Although these methods show encouraging multi-label classification accuracy,
there is still potential for improvement that can be realised by properly addressing the
noisy multi-label learning problem present in CXR datasets [75, 193].

Current learning with noisy label (LNL) approaches focus on leveraging the hid-
den clean-label information to assist the training of DNNs (see Fig. 6.1). This can
be achieved with techniques that clean the label noise [91, 106], robustify loss func-
tions [77, 114, 119], estimate label transition matrices [5, 54, 209, 221], smooth training
labels [128, 200, 227], and use graphs to explore the latent structure of data. [77, 204,
207]. These methods have been designed for noisy multi-class problems and do not
easily extend to noisy multi-label learning, which is challenging given the potential
multiple label mistakes for each training sample. In addition, a key characteristic of
multi-label classification is the inherent positive-negative imbalance [154] issue. Such
an issue may cause sample-selection based methods (e.g., DivideMix [106]) to select an
extremely imbalanced clean set, where the majority of identified clean samples belong
to the ’No Findings’ class. Additionally, it could impede the accurate estimation of
the posterior probabilities for the noisy or intermediate classes [108]." To the best of
our knowledge, the state-of-the-art (SOTA) approach that handles noisy multi-label
learning is NVUM [114], which is based on an extension of early learning regularisation
(ELR) [119]. NVUM shows promising results, but it is challenged by the different early
convergence patterns of multiple labels, which can lead to poor performance for partic-
ular label noise conditions, as shown in our experiments. Additionally, NVUM is only
evaluated on real-world CXR datasets [75, 193] without any systematic assessment of
robustness to varying label noise conditions, preventing a more complete understanding
of its functionality.

In this paper, we propose a new solution specifically designed for the noisy multi-
label problem by answering the following question: can the detection and correc-
tion of noisy multi-labelled samples be facilitated by leveraging the semantic
information of training labels? available from language models [74, 104, 149]? This
question is motivated by the successful exploration of language models in computer vi-
sion [8, 32, 70, 232], with methods that leverage semantic information to influence the
training of visual descriptors; an idea that has not been explored in noisy multi-label
classification. To answer this question, we introduce the 2-stage Bag of Multi-label De-
scriptors (BoMD) method (see Fig. 6.1) to smoothly re-label noisy multi-label image
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datasets that can then be used for training common multi-label classifiers. The first
stage trains a feature extractor to produce a bag of multi-label image descriptors by
promoting their similarity with the semantic embeddings from language models. For
the second stage, we introduce a novel graph structure, where each image is represented
by a sub-graph built from the multi-label image descriptors, learned in the first stage,
to smoothly re-label the noisy multi-label images. Compared with graphs built directly
from a single descriptor per image [77], our graph structure with the multi-label image
descriptors has the potential to capture more fine-grained image relationships, which
is crucial to deal with multi-label annotation. We also propose a new benchmark to
systematically assess noisy multi-label methods. In summary, our contributions are:

1. A novel 2-stage learning method to smoothly re-label noisy multi-label datasets
of CXR images that can then be used for training a common multi-label classifier;

2. A new bag of multi-label image descriptors learning method that leverages the
semantic information available from language models to represent multi-label
images and to detect noisy samples;

3. A new graph structure to smoothly re-label noisy multi-label images, with each
image being represented by a sub-graph of the learned multi-label image descrip-
tors that can capture fine-grained image relationships;

4. The first systematic evaluation of noisy multi-label methods that combine the
PadChest [16] and Chest X-ray 14 [193] datasets.

We show the effectiveness of our BoMD on a benchmark that consists of training
with two noisy multi-label CXR datasets and testing on three clean multi-label CXR
datasets [114]. Results show that our approach has more accurate classifications than
previous multi-label classifiers developed for CXR datasets and noisy-label classifiers.
Results on our proposed benchmark show that BoMD is generally more accurate and
robust than competing methods under our systematic evaluation.

6.2 Related Works

6.2.1 CXR multi-label classification

Recently, we have seen many CXR multi-label classifiers being proposed, such as the
CXR pneumonia detector [152]. Ma et al. [131] introduce a new cross-attention network
to extract meaningful representations. Hermoza et al. [68] propose a weakly-supervised
method to diagnose and localise diseases. Although these methods show promising
results, there is still potential for improvement that can be realised by addressing the
noisy multi-label learning of CXR datasets [75, 193].
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6.2.2 Learning with Noisy Labels

Noise-cleaning methods focus on detecting noisy samples. For instance, Han et
al. [60] rely on the small-loss trick (i.e., clean samples have small losses) to co-teach
two models. Huang et al. [73] detect noisy samples that have unstable prediction
by switching learning rates. Bahri et al. [6] discard samples whose labels disagree
with a KNN classifier prediction. Noise-cleaning methods can be combined with semi-
supervised learning [12] to perform both the detection and correction of corrupted
data. For example, DivideMix [106] removes the labels of samples classified as noisy
and runs a semi-supervised learning method [12, 125]. FINE [91] proposes a robust
method to detect noisy samples by verifying the alignment of image features and class-
representative eigenvectors. Noise-cleaning methods generally employ two divergent
networks to reduce confirmation bias [106, 124], which substantially increases com-
putational complexity. Additionally, it is unclear if these methods can handle noisy
multi-label problems since they do not in general capture fine-grained image relation-
ships.
Noise-robust methods rely on robust loss functions to balance the overfitting effects
caused by label noise in the training process. Early papers, such as [196], explore
the symmetric property of cross-entropy (CE) loss for noise-robust learning. Zhang et
al. [235] propose the combination of Mean-Absolute-Error (MAE) and cross-entropy
(CE) loss to achieve a good balance between convergence and generalisation. Ma et
al. [132] show that any loss function can be robust to label noise by applying a simple
normalization term. Recently, [44] proposes a noise-robust Jensen-Shannon divergence
(JSD) loss based on a soft transition between MAE and CE losses. Even though these
methods can reduce overfitting effects, they also tend to under-fit the training data.
This issue has been partially addressed by the early learning regularisation (ELR) [119]
that proposes a regularization term which restricts the gradient from samples with
corrupt labels. The non-volatile unbiased memory (NVUM) [114] extends ELR to
noisy multi-label problems. Although promising, ELR and NVUM are challenged by
the different early convergence patterns of multiple labels, which can lead to poor
performance for particular label noise conditions, as shown in the experiments.
Transition matrix methods estimate the transition probability between clean and
noisy labels. Goldberger et al. [54] propose a noise adaptation layer to estimate label
transition. Yao et al. [221] estimate the transition matrix using an intermediate class
and a factorised matrix. Xia et al. [209] estimate part-dependent transition matrix
for complex noise conditions. Bae et al. [5] proposed a noisy prediction calibration
method based on a transition matrix to reduce the gap between noisy prediction and
clean label based on a KNN prediction.
Label-smoothing methods rely on modifying [137, 174] the sample-wise label distri-
bution [128]. Zhang et al. [227] propose online label smoothing (OLS) which generates
soft labels by considering the relationships among multiple labels. Wei et al. [200] argue
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that the advantage of label smoothing vanishes under a high label noise regime since the
label smoothing tends to over-smooth the estimated label classification, so they pro-
pose the generalised label smoothing (GLS) [200] which uses negative smoothing values
for higher noise rates. In general, label smoothing methods can underfit the training
data since they tend to abandon the optimisation of hard clean-label samples [137].
Graph-based methods leverage the robustness of feature representations to discrim-
inate between clean and noisy samples and regularise the training process. Wu et
al. [204] explore the topological property of the data in the feature space to perform
noise-cleaning by assuming that clean data are clustered together in this feature space,
while the corrupted data are isolated. Wu et al. [207] investigate the geometric struc-
ture of the data to model predictive confidence and filter out noisy samples. Iscen et
al. [77] introduce a regularisation term that forces samples to have similar predictions
to their neighbors. These graph-based methods have been designed for single-label
classification, so they cannot be easily adapted to multi-label datasets. Also, building
a graph with multi-label data is also an issue for these methods.
Multi-label Noisy label methods have received increasing attention in recent years
due to the natural differences with respect to multi-class problems. Instead of the
sample-wise noise found in multi-class problems, each label per sample can be corrupted
in the multi-label scenario which can be problematic for selecting and correcting the
label noise. In addition, the class imbalance [114] and the semantic divergence may
also exacerbate the overfitting issue towards the majority classes. Zhao et al. [236]
leverage label dependencies to handle noisy labels and use word embeddings to perform
context-based regularization to avoid overfitting. Li et al. [108] consider the correlation
between labels (i.e., “fish” and “water” have a stronger correlation when comparing
with “fish” and “sky” ) to estimate the transition matrix. Xie et al. [212] mitigate the
negative impact of label noise by estimating the confidence for credible labels from
the candidate label set. Different from previous methods, we consider using the label
semantic information and label smoothing techniques to capture more fine-grained
image relationships and prevent the classifier from being overconfident on any of the
noisy labels.

6.2.3 Bag of Words

The Bag of Words (BoW) method [62, 167, 168] is a traditional information retrieval
technique, denoted by the representation of documents with a histogram of unordered
words. In computer vision, BoW [33, 167] represents images with a histogram of
unordered local visual descriptors, learned from the training images in an unsupervised
manner. We adopt the BoW concept, but instead of extracting local visual descriptors
(e.g., SIFT [127]), we train a DNN to represent each image with a bag of global visual
descriptors.
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mation provided by BERT [46, 83, 149]. BERT represents each class with a descriptor
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6.3 Method
We assume the availability of a noisy multi-label training set denoted byD = {xi,yi}|D|

i=1,
where xi ∈ X ⊂ RH×W×R represents an image of size H ×W and R colour channels1,
and yi ∈ Y = {0, 1}|Y| denotes the multi-label annotation. The testing set is similarly
defined.

6.3.1 Bag of Multi-label Descriptors (BoMD)

Our method, described in Alg. 2, is inspired by the observation that a noisy-labelled
sample tends to be an outlier surrounded by clean-labelled samples in the feature
space [204]. Hence, the label of each sample should be consistent with the labels
of the neighboring samples. This motivated us to develop an approach to re-label a
noisy multi-label image with the estimated label distribution from its neighbourhood.
The proposed BoMD has two stages (Fig. 6.1): 1) image description learning that
transforms a training image into a bag of visual descriptors that lie in the semantic
space Z ⊂ RZ populated by word embeddings computed from image labels [149] 2)
graph construction to smoothly re-label noisy multi-label images, where each image
is represented by a sub-graph built from the learned bag of visual descriptors, which
can capture fine-grained image relationships. This smoothly re-labelled dataset is then
used for training a multi-label classifier.

6.3.2 Multi-label Image Description (MID)

Motivated by BoW, our MID (Fig. 6.2) represents an image by associating its multiple
labels to a bag of global visual descriptors. MID projects the image into BERT’s
semantic space using a set of visual descriptors that are optimised to promote their
similarity with the semantic descriptors produced by BERT models from the multi-
label annotation of the image. The MID of image x are extracted with V = fθ(x),
where V = {v(m)}Mm=1 denotes the M2 visual descriptors in BERT’s semantic space,
i.e., v(m) ∈ Z. The BERT language models (e.g., BlueBERT [149], medical language
model pre-trained on PubMed abstracts [46] and clinical notes [83]) produce semantic
descriptors in the form of word embeddings with w(c) = fY

BERT (c) for c ∈ {1, ..., |Y|},
forming W = {w(c)}|Y|

c=1, where w(c) ∈ Z, with Z being the same space as for fθ(.).
More specifically, MID is trained with:

θ∗ = argmin
θ

1

|D|
∑

(xi,yi)∈D

ωiℓmid(xi,yi, θ) + βℓreg(xi, θ) (6.1)

1We consider each image to have 3 colour channels (R=3) and dimensions of H = W = 512 for
NIH, and H = W = 224 for CXP.

2We empirically set M = 3 according the ablation study of the hyper-parameters in Supp. Material.
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where ωi =
((∑|C|

c=1 I(yi(c) = 1)
)
÷
(∑|C|

c=1 I(yi(c) = 0)
))

is a normalisation that controls
the ranking weight based on the number of positive and negative labels (I(.) represents
an indicator function) [14, 232], and the hyper-parameter β weights the regulariser.
Also in (6.1) we have:

ℓmid(xi,yi, θ) =

|Y|∑
p=1,

yi(p)=1

|Y|∑
n=1,

yi(n)=0

log (1 + exp (ℓrank(Vi,W , p, n))), where

ℓrank(Vi,W , p, n) =

(
max
v∈Vi

(⟨v,w(n)⟩)−max
v∈Vi

(⟨v,w(p)⟩)
)
,

(6.2)

with ⟨., .⟩ representing the dot product operator, p, n ∈ {1, ..., |Y|} denoting the indices
to the positive (i.e., w(p) where yi(p) = 1) and negative word embeddings (i.e., w(n)
where yi(n) = 0), respectively, Vi = fθ(xi), and

ℓreg(xi, θ) =
∑

v(m)∈Vi

(v(m)− v̄(m))⊤(v(m)− v̄(m))

Z − 1
(6.3)

being a regulariser to reduce descriptor variance, where Z is the number of dimensions
of Z, and v̄(m) denoting the MID mean in Vi. The ℓmid(.) in (6.2), inspired by previ-
ous multi-label learning methods [232], forces the dot product ⟨v,w(p)⟩ to rank higher
than the ⟨v,w(n)⟩, which means that the visual descriptors will be more similar to
positive label embeddings than the negative label ones. Intuitively, this loss encour-
ages semantically similar image descriptors to cluster around their related semantic
descriptors, which will benefit our graph-based smooth re-labelling.

6.3.3 Graph Construction and Smooth Re-labelling

Considering that the learned visual descriptors are likely to be closer to clean labels
in the semantic space, we formulate the detection of noisy training samples by first
ranking (in descending order of similarity) the labels for image xi (according to the
inner product with the word embeddings from the labels), as follows:

ri = arg sortc∈{1,...,|Y|}

[
max
v∈Vi

(⟨v,w(c)⟩)
]
, (6.4)

where ri(1) ∈ {1, ..., |Y|} is the highest ranked label and ri(|Y|) ∈ {1, ..., |Y|} is the
lowest ranked label. Then, clean samples are the ones where ri(p) < ri(n) for all
positive labels p ∈ Pi and negative labels n ∈ Ni, with Pi = {c|yi(c) = 1} and
Ni = {c|yi(c) = 0}; otherwise, the sample is classified as noisy.
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The second stage of BoMD re-labels noisy samples using the sample graph built
with the MID visual descriptors. The graph is constructed by representing each training
image xi with M nodes {vi(m)}Mm=1 from Vi = fθ(xi), where the edge weight between
the mth descriptor of the ith image and the nth descriptor of the jth image is defined by
e(vi(m),vj(n)) = 1/∥vi(m)−vj(n)∥2. This means that the graph has the set of nodes
denoted by {vi(m)}|D|,M

i=1,m=1 and edges {e(vi(m),vj(n))}|D|,M
i,j=1,m,n=1. The re-labelling is

based on finding the K nearest neighbouring training images to image i by using the
graph nodes, with:

K(Vi) = topKj∈{1,...,|D|},m,n∈{1,...,M}(e(vi(m),vj(n))), (6.5)

where K(Vi) contains the unique image indices from the K nodes with the largest
edge weights. Next, for all samples identified as noisy, we update their labels with
ỹi = fSR(yi, ȳi), which is defined as

fSR(yi, ȳi) = (1− λ) · yi + λ ·
(
γ · 1|Y| + (1− γ) · ȳi

)
⊙m, (6.6)

where λ ∈ [0, 1], γ ∈ [0, 0.5], ȳi =
1
K

∑
j∈K(Vi)

yj, 1|Y| denotes a vector with ones of size
|Y| (uniform distribution) to prevent the re-labelling from being overconfident on any
of the labels, ⊙ is the element-wise vector multiplication, and m = I((yi + ȳi) > 0) is
a binary mask to filter out high confident negative labels (with I(.) being the indicator
function) to mitigate the over-smoothing issue.

6.3.4 Training and Testing

We build a new training set D̃ = {(xi, ỹi)|(xi,yi) ∈ D}|D|
i=1, where ỹi = yi if sample

(xi,yi) is clean from Eq. (6.4), or computed from Eq. (6.6) if sample is noisy}. Then,
we train a regular classifier fϕ : X → [0, 1]|Y| by minimizing a BCE loss on D̃. Testing
is based on applying the trained fϕ(.) to test images.

6.4 Experiments

Our experiments are based on the following datasets. Noisy Training Sets. The NIH
Chest X-ray14 (NIH) [193] contains 112,120 frontal-view CXR images from 30,805
patients, where each image has between 0 and 14 annotated pathologies and the training
set contains 86,524 images with a maximum of 9 labels per image. The CheXpert
(CXP) [75] has 224,316 frontal-view CXR images from 65,240 patients labelled with
14 common chest radiographic observations, where the training set contains 170,958
images with a maximum of 8 labels per image. The labels of these two datasets are
obtained from an NLP algorithm, which forms noisy multi-label annotations [143].
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Algorithm 2 BoMD

1: require: Training set D, and BERT model embeddings w(c) = fY
BERT (c) for

c ∈ {1, ..., |Y|}
2: # Build MID
3: Train fθ(.) with (6.1) using fY

BERT (.) and D
4: Create re-labeled set D̃ = ∅ and noisy set B = ∅
5: # Detect noisy samples
6: for (xi,yi) ∈ D do
7: Compute label rank ri from (6.4)
8: If ri(p) > ri(n) for all p ∈ Pi and all n ∈ Ni

9: Then D̃ ← D̃
⋃
(xi,yi)

10: Else B ← B
⋃
(xi,yi)

11: end for
12: Build graph with nodes {vi(m)}|D|,M

i=1,m=1 and edges {e(vi(m),vj(n))}|D|,M
i,j=1,m,n=1 using

fθ(.) and D
13: # Re-label noisy samples
14: for (xi,yi) ∈ B do
15: Re-label xi with ỹi from (6.6)
16: D̃ ← D̃

⋃
(xi, ỹi)

17: end for
18: # Train final classifier
19: Train fϕ : X → [0, 1]|Y| with BCE loss using D̃

73



Clean Testing Sets. The OpenI [38] dataset contains 3,999 radiology reports and
7,470 frontal/lateral-view CXR images from the Indiana Network for Patient Care. We
use all frontal-views images for evaluation, resulting in 3,818 images and 19 manually
annotated diseases. We also use PadChest [16], which contains 160,861 images with
27 chest radiographic observations. PadChest has a mixture of machine and manu-
ally labelled images, but we only use the manually labelled frontal-view images (about
15.25%3 of the images). Additionally, we follow previous works [114, 217] to evaluate
the model on a re-organised subset of the official NIH test set [193], referred to as
NIH-GOOGLE , with 1,962 CXR images that focuses on two findings (pneumotho-
rax and nodule/mass). Each image is manually re-labelled by at least three certified
radiologists [133] with final label pooled from an adjudication process.
Systematic Noisy-label Assessment. We introduce the first systematic noisy multi-
label assessment benchmark by combining the NIH [193] dataset and the clean test
samples from Padchest [16] as a new noisy-label training set with the OpenI [38] as
the clean testing set. We then apply symmetric label noise [5, 106] to the PadChest
training subset only, where we flip the labels from present to absent, and vice-versa,
based on two control variables, namely: 1) the proportion of noisy samples, and 2) the
probability of switching a label. This dataset is referred to as NIHxPDC .

6.4.1 Implementation Details

We resize the NIH [193] images to 512 × 512, and CXP [75] images to 224 × 224,
where images are normalised using ImageNet [158] mean and standard deviation. We
use random resize crop and random horizontal flipping as data augmentation. The
BlueBERT word embeddings in W are L2 normalised. For the MID model fθ(.), we
use the ImageNet [158] pre-trained DenseNet121 [72], which is trained with Adam
optimiser [93] using a learning rate of 0.0001 with cosine annealing decay [126], batch
size of 16 and 20 epochs. We set the number of descriptors M = 3 and weight of
regulariser β = 0.3. The descriptor graph is implemented with Faiss [84] for efficient
search (the search process in Eq. (6.5) takes 5 seconds for all training samples from
NIH). The classifier fϕ(.) uses another ImageNet pre-trained DenseNet121 [72], and
then it is trained with Adam optimiser [93] using a learning rate of 0.05, batch size of
16 and 30 epochs. We empirically set the mixup coefficient λ and γ in Eq. (6.6) to 0.6
and 0.25, and use K = 10 in Eq. (6.5). The classification results are assessed with the
mean of the class-wise area under the receiver operating characteristic curve (AUC) for
all disease classes [68, 75, 116]. All experiments are implemented with Pytorch [147]
and run on an NVIDIA RTX3090 GPU (24GB). Training takes 23h for NIH and 15h
for CheXpert, and testing for a single image takes 13.41ms for NIH and 12.24ms for
CheXpert.

3The 27% of PadChest’s annotated images include the lateral-view CXRs.
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Methods Models OpenI PadChest

General Hermoza et al [68] 85.54 ± 0.42 83.90 ± 0.57
CAN [131] 84.26 ± 0.35 83.10 ± 0.25

Noise-cleaning DivideMix [106] 72.76 ± 1.09 75.49 ± 0.21
FINE [91] 63.67 ± 1.78 70.91 ± 0.20

Noise-robust ELR [119] 86.62 ± 0.87 85.24 ± 0.11
NVUM [114] 88.17 ± 0.48 85.49 ± 0.06

Transition matrix NPC [5] 86.21 ± 0.07 83.88 ± 0.05

Graph-based NCR [77] 85.06 ± 0.96 83.79 ± 0.48

Label smoothing

LS [128] 83.72 ± 1.29 80.93 ± 0.82
OLS [227] 85.08 ± 0.31 83.51 ± 0.61
GLS [200] 83.80 ± 0.34 81.56 ± 0.24
BoMD 89.57 ± 0.22 86.45 ± 0.08

Table 6.1: Mean ± standard deviation AUC results for the testing sets from OpenI
and PadChest, using models trained on NIH [193]. Best and the second best results
are in red/blue.

6.4.2 Classification Results on Real-world Datasets

We first compare the performance of state-of-the-art (SOTA) methods with our BoMD
in Table 6.1 and Table 6.2. We run each experiment three times and show mean and
standard deviation of AUC results. Table 6.1 shows the testing AUC results of the train-
ing with NIH [193] and testing on OpenI [38] and PadChest [16]. Our model surpasses
the second best method [114] by 1.4% and 0.96% on the two test sets with p-values
0.0018 and 10−14, respectively (one-sided t-test). We also report testing performance
on OpenI [38] and PadChest [16] using training on CXP [75] in Table 6.2. Our model
surpasses the second best result [75] by 2.82% and 1.13% on the two test sets with
p-values 0.0002 and 10−14, respectively (one-sided t-test). We also notice that there is
a large gap between all models’ performance for certain classes. For example, in our
model, the AUC results for Pneumonia classification when training on NIH are much
better than when training on CXP, with a gap of 23.20% and 15.48% on OpenI [38] and
PadChest [16], respectively, which may be due to CXP’s smaller image size. The NIH-
GOOGLE [114, 217] evaluation on classes pneumothorax and nodule/mass (obtained
from the average classification scores for Mass and Nodule) is displayed in Table 6.3,
which shows that our method outperforms the SOTA methods on both Pneumothorax
(+0.6% compared to [217]) and Mass/Nodule (+2.4% compared [114]) classifications.
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Methods Models OpenI PadChest

General Hermoza et al [68] 74.94 ± 0.50 77.24 ± 0.04
CAN [131] 76.34 ± 0.49 78.92 ± 0.58

Noise-cleaning DivideMix [106] 73.23 ± 0.60 74.21 ± 0.55
FINE [91] 71.68 ± 0.54 73.83 ± 0.52

Noise-robust ELR [119] 77.16 ± 0.79 79.97 ± 0.71
NVUM [114] 77.21 ± 0.81 80.62 ± 0.10

Transition matrix NPC [5] 75.32 ± 0.40 77.30 ± 0.03

Graph-based NCR [77] 76.93 ± 0.38 79.36 ± 0.84

Label Smoothing

LS [128] 72.86 ± 0.23 75.34 ± 0.50
OLS [227] 76.52 ± 0.83 77.72 ± 0.70
GLS [200] 76.50 ± 0.26 78.80 ± 0.70
BoMD 80.03 ± 0.73 81.76 ± 0.40

Table 6.2: Mean ± standard deviation AUC results for the testing sets from OpenI
and PadChest, using models trained on CXP [75]. Best and the second best results
are in red/blue.

BCE F-correction [148] MentorNet [82] Decoupling [134] Co-teaching [60] ELR [119] Xue et al. [217] NVUM [114] BoMD
Pneu 87.0 80.8 86.6 80.1 87.3 87.1 89.1 88.9 89.7
M/N 84.3 84.8 83.7 84.3 82.0 83.2 84.6 85.5 87.9

Table 6.3: Pneumothorax and Mass/Nodule AUC of NIH-Google [133] for models
trained on NIH [193]. Best and the second best results for OpenI and PadChest are in
red/blue.

The per-finding results are reported in the Appendix C.

6.4.3 Systematic Noisy-label Benchmark

In our systematic noisy-label benchmark NIHxPDC, we compare our BoMD with the
SOTA method NVUM [114] and a baseline model trained with BCE loss. Recall that
this benchmark relies on two control variables: a) percentage of noisy samples ps, and
b) probability of switching a label pl, where ps, pl ∈ {0%, 20%, 40%, 60%}. We show
the mean AUC classification over the 14 classes on clean OpenI in Tab. 6.4. Notice that
our BoMD has better results than NVUM and BCE for the majority of the cases, with
a 3% to 5% improvement compared with NVUM and BCE when ps = 20%, 1% to 4%
improvement for ps = 40%, and 1% to 5% improvement for ps = 60%, pl = 20%, 40%,
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ps 0% 20% 40% 60%
pl 0% 20% 40% 60% 20% 40% 60% 20% 40% 60%

BCE 85.65 83.99 81.42 79.63 80.99 78.51 75.79 77.14 75.35 72.39
NVUM 87.89 85.34 82.83 81.35 82.52 80.64 78.66 78.49 77.19 76.91
BoMD 89.76 88.00 86.26 84.55 84.47 81.86 78.68 82.23 78.15 74.11

Table 6.4: Mean testing AUC results for the 13 OpenI classes with models trained on
NIHxPDC. Best results in red.

but for ps, pl = 60%, NVUM improves 2.8% over BoMD. Hence, BoMD provides a
consistently better classification result across many noise rates, but for large noise
rates, our re-labelling method may be injecting too much noise into the training set.
Another interesting point to note is that with 0% controlled noise, BoMD shows 89.76%
AUC, which means that the AUC drops an average of 3.8% for each addition of 20%
for ps with a fixed pl = 20%.
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Figure 6.3: Noisy-label sample detection performance on NIHxPDC. We compare our
proposed rank-based detection approach with DivideMix’s small loss method [106] for
a) recall, and b) precision. The horizontal axes show the values for [ps, pl].

We now study the effectiveness of the detection and re-labelling of noisy sam-
ples by BoMD. In Fig. 6.3, we compare the precision and recall of our detection of
noisy-label samples compared with the traditional small-loss approach used by Di-
videMix [106]. Notice that our noisy-label sample detection consistently outperforms
DivideMix’s small-loss method on both measures. An interesting note is that while
recall worsens, precision improves with increasing noise rates. This happens because of
the natural imbalance found in the distribution of classes in CXR datasets, where the
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(a) Clean (b) Noise (c) Re-labelled

Figure 6.4: Visualisation of the changes in the histogram of label distributions after
applying our re-labelling.Left: label distribution for the clean set OpenI. Middle:
label distribution after injecting symmetric noise ps = 0.4, pl = 0.2. Right: label
distribution after the re-labelling by BoMD.

class "No Findings" is dominant. A larger synthetic noise rate implies that this class
is more affected than the others, but at the same time easier to detect given that the
NIH dataset has relatively smaller noise rates.

We also visualise in Fig. 6.4 the label distribution change before and after applying
our re-labelling. Note that our method successfully corrects the noisy label distribu-
tion to be closer to the original clean label distribution. The mean AUC over the
labels in the re-labelled dataset before and after our re-labelling process is presented
in Fig. 6.5, where results show that our re-labelling process significantly improves the
label cleanliness of the training set for all benchmark noise rates. Recall that in multi-
class problems, such re-labelling is facilitated by the fact that each sample can only
have a single label. However, such constraint is dropped for multi-label problems, mak-
ing the re-labelling more complicated because the feature space will be populated with
multiple clusters containing different combinations of multi-labels. In the Appendix C,
we evaluate the amount of consistency the KNN neighboring samples need to have
for a clean re-labelling. This evaluation is based on the label-wise precision and re-
call results of our graph-based re-labelling method as a function of a threshold on the
minimum number of nearest neighbors containing the same label. Results suggest that
precision and recall increase until this threshold is between 4 and 6 nearest neighbours,
and plateaus afterwards. Hence, when 4 to 6 neighbours (depending on the noisy rate)
share a particular label, it is probable that the noisy training sample has this clean
label.

6.4.4 Ablation Study

Language models. Our ablation study starts with an investigation of the language
models for our BoMD, where we consider three types of models: 1) a randomly ini-
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Figure 6.5: Mean AUC over labels before (orange) and after (blue) our re-labelling
w.r.t PadChest’s clean labels. The horizontal axes show values for [ps, pl].

tialised model (without relying on language models); 2) a computer vision language
model (e.g., Common Crawl data 4); and 3) a medical language model (e.g., BioBERT5,
ClinicalBERT6, BlueBERT7). In Table 6.5, the BERTs box shows that BERT models
enable better performance than other models, with gains from 2.50% to 1.50% on
OpenI and PadChest. We argue that this is because the word embeddings from BERT
models contain relevant clinical semantic meaning (e.g., Atelectasis and Pneumonia
are both correlated to lung opacity, but uncorrelated with Enlarged Cardiomediasti-
nal [75]) that facilitates the multi-label descriptor learning of our method. Among the
models trained on BERT models, we observe small variations, which can be related
to: 1) the size of the training set, and 2) the relatedness of the medical dataset to our
CXR classification problem (BlueBERT is arguably more related than BioBERT).
Evaluation of MID. In Table 6.5 the Stage-one training box shows a study of the
effectiveness of MID for graph construction and downstream classification task, by
comparing it against the use of the descriptors from NVUM [114]. Given that NVUM
produces one descriptor per image, we set MID’s number of descriptors per image
at M = 1 for fairness. Results from the table show that MID descriptors allow an
improvement of between 2% and 3% compared to NVUM’s descriptors. In addition,
M = 1 represents a graph with one (instead of multiple) descriptor per image, where
we can observe a 1% to 2% drop, which indicates that our aggregating sub-graph is a
more suitable strategy for multi-label images.
Smoothly re-labelling. We show an ablation study of the mixup terms in Eq. (6.6)
in terms of the testing AUC results in Table 6.6. First, we mix up y and the uniform

4https://commoncrawl.org
5Biomedical language model, pretrained on PubMed [104].
6MIMIC corpus (FT on BioBERT) [74].
7Pretrained on PubMed abstract + MIMIC-III (clinical notes) [149].
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Ablation Study M Language Models Open-i PadChest

BERTs

3 Random Init. 87.02 84.99
3 Glove [150] 87.62 85.08
3 ClinicalBERT [74] 88.27 85.72
3 BioBERT [104] 89.11 86.27
3 BlueBERT [149] 89.52 86.50

Stage-one training
1 Self-supervised [238] 84.50 83.21
1 NVUM [114] 86.69 84.66
1 MID 88.34 86.02
3 MID 89.52 86.50

Table 6.5: Ablation study that compares the mean testing AUC results of our BoMD
with the use of different language models (BERTs) and descriptor training (Stage-one
training), M shows the number of descriptors per image.

distribution 1 (i.e., label smoothing) with a fixed mixup coefficient of λ = 0.6 (first
row of Table 6.6), then we introduce ȳ with another fixed mixup coefficient of γ = 0.25
(second row of Table 6.6) and observe improvements of over 4%. Next, we remove
1 and add the binary mask m (third row of Table 6.6) to filter out the confident
negative labels, which increases the performance by around 1%. The integration of
all re-labelling components further increases performance from 0.23% to 0.41%. These
results suggest that the mask m combined with the KNN average label ȳ mitigate the
over-smoothing promoted by the uniform distribution 1.

Pre-training with vision-language model [238]. CoOp [238] is an effective visual-
textual pre-training that can be considered for improving any of the general methods
in Tab. 6.1 and 6.2. Hence, we pre-trained with CoOp the method in [68] and noticed
a 1.04% and 0.69% performance drop in Tab. 6.1 and 6.2. This drop can be explained
by the fact that CoOP requires backpropagation for the context tokens of the labels
during training, where noisy labels may have caused the learned token to be inaccurate.

Additional results. In the Appendix C, we include a visualisation of different label
smoothing techniques using a t-SNE [185] graph for a toy problem, additional evalu-
ation for descriptors extracted by the MID module, and detailed sensitivity testing of
hyper-parameters.
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1 ȳ m OpenI PadChest

✓ 83.72 80.93
✓ ✓ 87.92 85.48

✓ ✓ 89.11 86.27
✓ ✓ ✓ 89.52 86.50

Table 6.6: Ablation study of the testing AUC results of the components of our re-
labelling in (6.6). ȳ indicates the KNN propagated label, 1 is the uniform distribution,
and m is the binary mask.

6.5 Discussion and Conclusion

In this work, we proposed BoMD, a new method to learn from noisy multi-label CXR
datasets. BoMD explores the clinical semantic information, represented by word em-
beddings from BlueBERT [149], to optimise the multi-label image descriptors which
are used to find noisy multi-label training samples. We then use the learned image
descriptors to build a graph for smoothly re-labelling the training data. BoMD out-
performs current SOTA methods on three real-world CXR benchmarks that consist of
training on two large-scale noisy multi-label CXR datasets and testing on three clean
multi-label CXR datasets. We additionally evaluate BoMD on our proposed systematic
benchmark to further show the effectiveness and robustness of our method.

Limitations and future work. We identify three limitations of BoMD. The first
issue is the longer training time (+8h compared with NVUM [114]) since it requires
multiple training stages. We plan to tackle this problem by better integrating the
training stages. The second issue is that BoMD decreases its performance under ex-
tremely noisy label setup (i.e., [0.6, 0.6] in Table 6.4), which is due to mistakes in
the smooth re-labelling. However, such a high noise rate may not be applicable in
real-world scenarios since the usual F1 score for text mining performance is between
80% to 94% [38, 143, 193], which suggests noise rates much smaller than 60%. An-
other drawback of BoMD is that it does not address imbalanced learning, which is an
important point when training with CXR datasets. The future work will study how
to combine first stage method with imbalanced learning approach such as logit adjust-
ment [135]. BoMD demonstrates the possibility of leveraging semantic information and
sample graphs to estimate the label distribution for training a better CXR classifier.
However, noisy-cleaning methods are still dominant in the LNL under multi-class sce-
narios. One potential future direction is to study a unified framework for addressing
both multi-class and multi-label tasks with minimum adaptation.
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Chapter 7

AsyCo: Asymmetric Co-teaching with
Multi-view Consensus for Noisy Label
Learning

Abstract

Learning with noisy-labels has become an important research topic in computer vision
where state-of-the-art (SOTA) methods explore: 1) prediction disagreement with co-
teaching strategy that updates two models when they disagree on the prediction of
training samples; and 2) sample selection to divide the training set into clean and
noisy sets based on small training loss. However, the quick convergence of co-teaching
models to select the same clean subsets combined with relatively fast overfitting of
noisy labels may induce the wrong selection of noisy label samples as clean, leading to
a confirmation bias that damages accuracy. In this paper, we introduce our noisy-label
learning approach, called Asymmetric Co-teaching (AsyCo), which introduces a new
prediction disagreement strategy that consistently produce divergent predictions for
noisy samples by co-teaching models, and a new sample selection approach that does
not require the small-loss assumption to enable better robustness to confirmation bias
than previous methods. More specifically, the new prediction disagreement is achieved
with the use of different training strategies, where one model is trained with multi-
class learning and the other with multi-label learning. Also, the new sample selection
is based on multi-view consensus, which uses the label views from training labels and
model predictions to divide the training set into clean and noisy for training the multi-
class model and to re-label the training samples with multiple top-ranked labels for
training the multi-label model. Extensive experiments on synthetic and real-world
noisy-label datasets show that AsyCo improves over current SOTA methods.
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Figure 7.1: Diagrams of the following noisy-label learning methods: Decoupling [134],
Co-teaching+ [224], JoCoR [198], and our AsyCo. AsyCo co-teaches the multi-class
model A and the multi-label model B with different training strategies (denoted by the
different colours of A&B). The training samples for A and B, represented by the green
and red arrows, are formed by our proposed multi-view consensus that uses label views
from the training set and model predictions to estimate the variables w and ŷ, which
selects clean/noisy samples for training A and iteratively re-labels samples for training
B, respectively.

7.1 Introduction

Deep neural network (DNN) has achieved remarkable success in many fields, including
computer vision [67, 97], natural language processing (NLP) [41, 223] and medical im-
age analysis [113, 192]. However, the methods from those fields often require massive
amount of high-quality annotated data for supervised training [40], which is challenging
and expensive to acquire. To alleviate such problem, some datasets have been anno-
tated via crowdsourcing [211], from search engines [171], or with NLP from radiology
reports [192]. Although these cheaper annotation processes enable the construction of
large-scale datasets, they inevitably introduce noisy labels for model training, result-
ing in DNN model performance degradation. Therefore, novel learning algorithms are
required to robustly train DNN models when training sets containing noisy labels.

Previous methods tackle noisy-label learning from different perspectives. For ex-
ample, some approaches focus on prediction disagreement [134, 198, 224], which rely
on jointly training two models to update their parameters when they disagree on the
predictions of the same training samples. These two models generally use the same
training strategy, so even though they are trained using samples with divergent predic-
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tions, both models will quickly converge to select similar clean samples during train-
ing, which neutralises the effectiveness of prediction disagreement. Other noisy-label
learning methods are based on sample selection [1, 60, 106] to find clean and noisy-
label samples that are treated differently in the training process. Sample-selection
approaches usually assume that samples with small training losses are associated with
clean labels, which is an assumption verified at early training stages [119, 226]. How-
ever, such assumption is unwarranted in later training stages because DNN models can
overfit any type of noisy label after a certain number of epochs, essentially reducing
the training loss for all training samples. State-of-the-art (SOTA) noisy-label learn-
ing approaches [106] have been designed to depend on both prediction disagreement
and sample selection methods to achieve better performance than either method alone.
Nevertheless, these SOTA methods are still affected by the fast convergence of both
models and label noise overfitting, which raises the following questions: 1) Are there
more effective ways to keep the training of both models divergent for noisy
samples, so they do not easily converge during the training procedure? 2)
Is there a sample selection approach that can be better integrated with
prediction disagreements than the small loss strategy?

Motivated by traditional multi-view learning [13, 165] and multi-label learning, we
propose a new noisy-label learning method that aims to answer the two questions
above. Our method, named Asymmetric Co-teaching (AsyCo) and depicted in
Fig. 7.1, is based on two models trained with different learning strategies to consistently
produce divergent predictions for noisy samples. One model, the classification net,
is trained with conventional multi-class learning by minimising a cross entropy loss
and provide single-class prediction, and the other, the reference net, is trained with
a binary cross entropy loss to enable multi-label learning that is used to estimate the
top-ranked labels that represent the potentially clean candidate labels for each training
sample. The original training labels and the predictions by the training and reference
nets enable the formation of three label views for each training sample, allowing us
to formulate the multi-view consensus that is tightly integrated with the prediction
disagreement to select clean and noisy samples for training the multi-class model and to
iteratively re-label samples with multiple top-ranked labels for training the multi-label
model. In summary, our main contributions are:

• The new noisy-label co-teaching method AsyCo designed to consistently produce
divergent predictions for noisy samples by applying different training strategies
for two models trained with noisy-label samples.

• The novel multi-view consensus that uses the disagreements between training
labels and model predictions to select clean and noisy samples for training the
multi-class model and to iteratively re-label samples with multiple top-ranked
labels for training the multi-label model.
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We conduct extensive experiments on both synthetic and real-world noisy datasets that
show that AsyCo provides substantial improvements over previous SOTA methods.

7.2 Related Work

Prediction disagreement approaches seek to maximise model performance by ex-
ploring the prediction disagreements between models trained from the same training
set. In general, these methods [82, 134, 198, 224] train two models using samples that
have different predictions from both models to mitigate the problem of confirmation
bias (i.e., a mistake being reinforced by further training from the same mistake) that
particularly affects single-model training. Furthermore, the cross teaching of two mod-
els can help escape local minima. Most of the prediction-disagreement methods also
rely on sample-selection techniques, as we explain below, but in general, they use the
same training strategy to train two models, which limits the ability of these approaches
to delay the convergence between the models.

Sample selection approaches aim to automatically classify training samples into
clean or noisy and treat them differently during the training process. Previous pa-
pers [119, 226] have shown that when training with noisy label, DNN fits the samples
with clean labels first and gradually overfits the samples with noisy labels later. Such
training loss characterisation allowed researchers to assume that samples with clean
labels have small losses, particularly at early training stages – this is known as the
small-loss assumption. For examples, M-correction [1] automatically selects clean sam-
ples by modelling the training loss distribution with a Beta Mixture model (BMM).
Sample selection has been combined with prediction disagreement in several works,
such as Co-teaching [60] and Co-teaching+ [224] that train two networks simultane-
ously, where in each mini-batch, it selects small-loss samples to be used in the training
of the other model. JoCoR [198] improves upon Co-teaching+ by using a contrastive
loss to jointly train both models. DivideMix [106] has advanced the area with a simi-
lar combination of sample selection and prediction disagreement using semi-supervised
learning, co-teaching and small-loss detection with a Gaussian Mixture Model (GMM).
InstanceGM [48] combines graphical model with DivideMix to achieve promising re-
sults. These methods show that sample selection based on the small-loss assumption
is one of the core components for achieving SOTA performance. However, the small
loss signal used to select samples is poorly integrated with prediction disagreement
since both models will quickly converge to produce similar loss values for all training
samples, resulting in little disagreement between models and increase confirmation bias
risk.

Multi-view learning (MVL) studies the integration of knowledge from different
views of the data to capture consensus and complementary information across different
views. Traditional MVL methods [13, 165] aimed to encourage the convergence of
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patterns from different views. For example, Co-training [13] uses two views of web-
pages (i.e., text and hyperlinks on web-pages) to allow the use of inexpensive unlabelled
data to augment a small labelled data. Recent methods [61] weight the contribution of
each view based on the estimated uncertainty. In our paper, we explore this multi-view
learning strategy to select clean and noisy samples and to iteratively re-label training
samples, where the views are represented by the training labels, and the predictions
by the two models with different learning strategies.

7.2.1 Problem Definition

We denote the noisy training set as D = {(xi, ỹi)}|D|
i=1, where xi ∈ X ⊂ RH×W×C is the

input image of size H×W with C colour channels, and ỹi ∈ Y ⊂ {0, 1}|Y| is the one-hot
(or multi-class) label representation. Our main goal is to learn the classification net
nθ : X → L, parameterised by θ ∈ Θ, that outputs the logits l ∈ L ⊂ R|Y| for an image
x ∈ X . Our prediction-disagreement strategy requires the definition of the reference
net denoted by rϕ : X → L, parameterised by ϕ ∈ Φ, to be jointly trained with nθ(.).

AsyCo1 is based on alternating the training of the multi-class model nθ(.) and
the multi-label model rϕ(.), which allows the formation of three label views for the
training samples xi in D, namely: 1) the original training label ỹi, 2) the classification
net multi-class prediction ỹ

(n)
i , and 3) the reference net multi-label prediction ỹ

(r)
i .

Using these views, we introduce new methods to estimate the sample-selection variable
w ∈ R|D| that classifies training samples into clean or noisy, and the re-labelling variable
ŷ ∈ [0, 1]|D|×|Y| that holds multiple top-ranked labels for training samples, where w is
used for training the multi-class model nθ(.), and ŷ for training the multi-label model
rϕ(.). Fig. 7.2 depicts AsyCo, in comparison with prediction disagreement methods
based on co-teaching and small-loss sample selection.

7.2.2 Asymmetric training

Our AsyCo optimisation starts with a warmup stage of supervised learning to train
each network with different losses:

θ = argmin
θ

∑
(xi,ỹi)∈D

ℓCE(ỹi, σsm(nθ(xi))),

ϕ = argmin
ϕ

∑
(xi,ỹi)∈D

ℓBCE(ỹi, σsg(rϕ(xi))),
(7.1)

where σsm(.) and σsg(.) are the softmax and sigmoid activation functions, respectively,
ℓCE(.) represents the CE loss for multi-class learning, and ℓBCE(.) denotes the BCE loss

1Algorithm in Appendix D.

89



A

B

Small-loss Clean

Noisy

A

B

Clean

Noisy

U

Relabel

Small-loss

Figure 7.2: Comparison between traditional small-loss sample selection (top) and our
AsyCo, consisting of prediction disagreement between the multi-class model A and
multi-label model B (bottom). Traditional methods utilise the small-loss assumption
for classifying samples as clean or noisy, while our multi-view sample selection uses pre-
diction disagreements to update the sample-selection variable w for classifying samples
as clean, noisy or unmatched (U) to train the classification net A. Our multi-view re-
labelling enforces model disagreement to update the re-labelling variable ŷ for selecting
ambiguous samples to be re-labelled for reference net B.
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for multi-label learning. The two models from (7.1) will provide predictions as follows:

ỹ
(n)
i = OneHot(nθ†(xi)),

ỹ
(r)
i = TopK(rϕ†(xi)),

(7.2)

where ỹ
(n)
i ∈ Y is the one-hot single-label prediction by nθ†(xi) (i.e., the largest value

from nθ†(.) will set ỹ(n)
i to 1 and the rest are set to 0), and ỹ

(r)
i ∈ {0, 1}|Y| is the top-K

multi-label prediction of rϕ†(xi) (i.e., the largest K values from rϕ†(.) will set ỹ(r)
i to 1

and the rest are set to 0).
Note that although both ℓCE(.) and ℓBCE(.) are optimised with ỹ, the supervisory

signal of the ℓBCE(.) is different from ℓCE(.) since it tries to optimise each label direc-
tion independently. This is helpful when ỹ is noisy as the network will still receive
correct supervisory signal from most of the negative labels, where the clean label may
not be top prediction but in the top-K prediction set. Nevertheless, this also removes
the single-label constraint for multi-class learning, which will weaken the training con-
vergence. Therefore, the multi-label network is not used for inference, but we aim
to extract useful information from its top-ranked labels to help with the training of
nθ(.) using the multi-view consensus2. As explained below, our training uses the label
views produced by the predictions from nθ(.) and rϕ(.) and the training labels, to select
samples for training nθ(.) and to re-label samples for training rϕ(.).

7.2.3 Multi-view Consensus

One of the objectives of utilizing prediction disagreement between models is to improve
sample selection accuracy for co-teaching. We propose a new sample selection based
on multi-view consensus, where each sample xi has three label views, i.e., the training
label ỹi, the single-label one-hot prediction ỹ

(n)
i , and the multi-label top-K prediction

ỹ
(r)
i . These multiple views allow us to build training subsets given prediction disagree-

ments, as shown in Tab. 7.1 The training of the classification net nθ(.) has the
goals of producing the testing model and classifying training samples in terms of the
disagreement with rϕ(.) to divide the training set into clean and noisy label samples.
Unlike previous methods that rely on the small-loss assumption to classify training
samples into clean or noisy [1, 60, 106], we utilize the subsets created by prediction
disagreements from the multiple label views shown in Tab. 7.1. For training nθ(.),
we seek label agreements between the pair of views beyond its own prediction. More
specifically, for nθ(.), training samples are classified as clean when ỹ⊤ỹ(r) = 1, which
indicates that the training label matches one of the top-ranked predictions by rϕ(.).
Such agreement from label views ỹ and ỹ(r), established by the other pair of views,
can help reduce the confirmation bias from nθ(.)’s prediction, and at the same time

2Training strategy visualization in Appendix D.
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Table 7.1: The three possible label views are the training label ỹi, the single-label
one-hot prediction ỹ

(n)
i , and the multi-label top-K prediction ỹ

(r)
i . The combination

of these multiple views form the subsets listed in this table, where “1” means the two
views agree and “0” means the two views disagree.

Subsets ỹ⊤ỹ(n) ỹ(n)⊤ỹ(r) ỹ⊤ỹ(r)

Core (C) 1 1 1
Side-Core (SC) 0 1 1
(nθ, ỹ) (NY) 1 0 0
(nθ, rϕ) (NR) 0 1 0
(rϕ, ỹ) (RY) 0 0 1
Unmatched (U) 0 0 0

extract useful labelling information from rϕ(.) to improve nθ(.)’s performance. On the
other hand, the training samples, where ỹ⊤ỹ(r) = 0 but ỹ⊤

i ỹ
(n)
i + ỹ

(n)⊤
i ỹ

(r)
i = 1, are

classified as problematic because the label ỹ is not in the top-ranked predictions from
ỹ(r). We can further sub-divide this category of samples into noisy and unmatched,
with the former containing samples where ỹ(n) appears to be clean (for which we use
a robust loss function, e.g., MSE) and the latter has samples that none of the views
match with each other (these samples are discarded from training).

Therefore, based on the criterion described above and the subsets from Tab. 7.1,
the classification net nθ(.) is trained with {C, SC,RY} as clean, {NY,NR} as noisy
and discard {U}, defined by the following sample-selection variable:

wi =


+1, if ỹ⊤

i ỹ
(r)
i = 1,

0, if ỹ⊤
i ỹ

(r)
i = 0 and ỹ⊤

i ỹ
(n)
i + ỹ

(n)⊤
i ỹ

(r)
i = 1,

−1, if ỹ⊤
i ỹ

(r)
i = 0 and ỹ⊤

i ỹ
(n)
i + ỹ

(n)⊤
i ỹ

(r)
i = 0,

(7.3)

where wi ∈ {+1, 0,−1} denotes a clean, noisy, and unmatched training sample, re-
spectively.

The training of nθ(.) is performed by

θ∗ = argmin
θ

∑
(xi,ỹi)∈D
wi=+1

ℓCE(ỹi, σsm(nθ(xi)))

+ λ
∑

(xi,ỹi)∈D
wi=0

ℓMSE(υ(σsm(nθ(xi)), T ), σsm(nθ(xi))),
(7.4)

where υ(., T ) is a temperature sharpening function parameterised by T , and λ is the
weight to control the strength of the unsupervised learning with its own prediction, and
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ℓMSE(.) denotes the mean square error loss function. The training of the reference
net rϕ(.) focuses on enforcing prediction disagreement for both models. This opti-
misation goal focuses on designing new supervisory training signals that temporarily
re-label the samples where predictions by nθ(.) and rϕ(.) match (i.e., ỹ(n)⊤ỹ(r) = 1)
but where nθ(.) does not match the training label ỹ (i.e., ỹ⊤ỹ(n) = 0). The training
samples that meet this condition can be regarded as hard to fit by nθ(.), with the top-
ranked predictions by ỹ(r) being likely to contain the hidden clean label. The conditions
above indicate that we select samples from {SC,NR} from Table 7.1 for re-labelling.
For samples in SC, since nθ(.) is trained with supervised learning with ỹ in (7.4), we
re-label the sample to ỹ(n). For samples in NR, nθ(.) is trained with unsupervised
learning in (7.4), so we re-label the sample to ỹ + ỹ(n), forming a multi-label target.
We define the re-labelling variable ŷ to represent the new supervisory training signal,
as follows:

ŷi =


ỹ
(n)
i , if (xi, ỹi) ∈ SC,

ỹi + ỹ
(n)
i , if (xi, ỹi) ∈ NR,

ỹi, otherwise.
(7.5)

The training of rϕ(.) is achieved with:

ϕ∗ = argmin
ϕ

|D|∑
i=1

ℓBCE(ŷi, σsg(rϕ(xi))). (7.6)

Note that this re-labelling is iteratively done at every epoch. The testing procedure
depends exclusively on the classification net nθ(.).

7.3 Experiments
We show the results of extensive experiments on instance-dependent synthetic noise
benchmarks with datasets CIFAR10 and CIFAR100 [96] with various noise rates and
on three real-world datasets, namely: Animal-10N [171], Red Mini-ImageNet [79] and
Clothing1M [211].

7.3.1 Datasets

CIFAR10/100. For CIFAR10 and CIFAR100 [96], the training set contains 50K
images and testing set contains 10K images of size 32 × 32 × 3. CIFAR10 has 10 classes
and CIFAR100 has 100 classes. We follow previous work [209] for generating instance-
dependent noise (IDN) with rates in {0.2, 0.3, 0.4, 0.5}. Red Mini-ImageNet is
proposed by [79] based on Mini-ImageNet [40]. The images and their corresponding
labels are annotated by Google Cloud Data Labelling Service. This dataset is proposed
to study real-world web-based noisy label. Red Mini-ImageNet has 100 classes with
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each class containing 600 images from ImageNet. The images are resized to 32 × 32
from the original 84 × 84 pixels to allow a fair comparison with other baselines [79, 216].
We test our method on noise rates in {20%, 40%, 60%, 80%}. Animal 10N is a
real-world dataset proposed in [171], which contains 10 animal species with similar
appearances (wolf and coyote, hamster and guinea pig, etc.). The training set size is
50K and testing size is 10K, where we follow the same setup as [171]. Clothing 1M is
a real-world dataset with 100K images and 14 classes. The labels are generated from
surrounding text with an estimated noise ratio of 38.5%. The dataset also contains
clean training, clean validation and clean test sets with 50K, 14K and 10K images.
We do not use clean training and clean validation, only the clean testing is used for
measuring model performance.

7.3.2 Implementation

For the implementation, we use the baseline models that most papers use for each
dataset. For CIFAR10/10 and Red Mini-ImageNet we use Preact-ResNet18 [67] and
train it for 200 epochs with SGD with momentum=0.9, weight decay=5e-4 and batch
size=128. The initial learning rate is 0.02 and reduced by a factor of 10 after 150
epochs. The warmup period for all three datasets is 10 epochs. We set λ = 25 in (7.4)
for CIFAR10 and Red Mini-ImageNet, and λ = 100 for CIFAR100. In (7.2), we set
K = 1 for CIFAR10 and K = 3 for CIFAR100 and Red Mini-ImageNet. These values
are fixed for all noise rates. In Appendix D studies λ and K on CIFAR100, and results
show strong robustness to a range of values for these variables For data augmentations,
we use random cropping and random horizontal flipping for all three datasets.

For Animal 10N, we follow the setup used by previous methods with a VGG-
19BN [164] architecture, trained for 100 epochs with SGD with momentum=0.9, weight
decay=5e-4 and batch size=128. The initial learning rate is 0.02, and reduced by a fac-
tor of 10 after 50 epochs. The warmup period is 10 epochs. We set λ = 25 and K = 2.
For data augmentations, we use random cropping and random horizontal flipping.

For Clothing1M, we follow the common setup that uses the ImageNet [40] pre-
trained ResNet50 [67] and train it for 40 epochs with SGD with momentum=0.9,
weight decay=1e-3 and batch size=32. The warmup period is 1 epoch. The initial
learning rate is set to 0.002 and reduced by a factor of 10 after 20 epochs. Following
DivideMix [106], we also sample 1000 mini-batches from the training set to ensure the
training set is pseudo balanced. We set K = 4. For data augmentation, we first resize
the image to 256 × 256 pixels, then random crop to 224 × 224 and random horizontal
flipping.

For the semi-supervised training of nθ(.), we use MixMatch [12] from DivideMix [106].
We also extend our method to train two nθ(.) models and use ensemble prediction at
inference time, similarly to DivideMix [106]. We denoted this variant as 2 × nθ. Our
code is implemented in Pytorch [147] and all experiments are performed on an RTX
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Figure 7.3: (a) and (c) are sample loss histograms for the subsets in Tab. 7.1 for
CIFAR100 with 0.2 and 0.5 instance-dependent noise after warmup. Vertical dot line
is GMM threshold. (b) and (d) show the accuracy of the clean set selected by GMM
and our multi-view strategy. (b) and (d) also show the accuracy of whether the hidden
clean label is within rϕ(.)’s top-ranked prediction for multi-view re-labelling compared
with not using any re-labelling.

Model Ablation CIFAR10 CIFAR100
0.2 0.3 0.4 0.5 0.2 0.3 0.4 0.5

nθ

wi = 0 if (xi, ỹi) ∈ RY 93.28 93.85 92.54 82.60 73.58 71.51 65.51 56.65
wi = 0 if (xi, ỹi) ∈ U 95.71 94.88 94.34 91.60 75.10 72.64 67.42 57.55
wi = +1 if (xi, ỹi) ∈ U 95.20 95.14 94.72 90.27 75.34 73.21 66.09 55.95
Small-loss subsets 92.37 91.80 90.93 78.53 70.10 69.52 64.69 56.35

rϕ

CE 95.22 94.83 83.48 64.96 73.33 69.29 63.82 54.83
Frozen after warmup 91.19 88.97 84.72 67.57 68.73 65.36 58.88 48.13
ŷi = ỹi 95.42 94.69 90.53 84.95 74.43 71.75 62.25 53.69
ŷi = ỹ

(n)
i 94.29 94.23 94.13 93.67 74.55 73.71 68.21 57.84

AsyCo original result: 96.00 95.82 95.01 94.13 76.02 74.02 68.96 60.35

Table 7.2: Empircal analysis for the classification net nθ and reference net rϕ.

30903

7.3.3 Empirical Analysis

Before presenting comparative results with the SOTA, we show an analysis of our pro-
posed AsyCo. To understand the training dynamics of AsyCo, we visualise the training
losses of subsets from Table 7.1 that are used by our multi-view consensus approach. We
also provide a comparison between the small-loss sample selection and our multi-view
sample selection. Then we test alternative approaches for multi-view sample selection
and re-labelling. We perform all these experiments on the IDN CIFAR10/100 [209].
Loss histograms. Fig. 7.3a and Fig. 7.3c show the loss histograms after warmup for

3Time of Different sample selection comparison in Appendix D.
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each subset in Table 7.1. To compare with small-loss sample selection approaches, we
adopt the sample-selection approach by DivideMix [106] that is based on a Gaussian
Mixture Model (GMM) to divide the training set into clean and noisy subsets (the
vertical black dotted line is the threshold estimated by DivideMix). These graphs
show that the subsets’ loss histograms are relatively consistent for different noise rates.
Specifically, the subset C always has the smallest loss values among all subsets, which
shows that our multi-view sample selection is able to confidently extract clean samples.
We also observe that NY has small loss values in both graphs. However, using NY as
clean set does not produce promising performance, as shown in Table 7.2, row ’Small-
loss subsets’, which represents the use of almost all samples in C and NY as clean
samples (since they are on the left-hand side of the GMM threshold). This indicates
that the small-loss samples in NY are likely to contain overfitted noisy-label samples,
whereas our multi-view sample selection successfully avoids selecting these samples.

Accuracy of clean subset and re-labelling. In Fig. 7.3b and Fig. 7.3d, we show
the accuracy of the clean set selected by the GMM-based small-loss strategy and by our
multi-view consensus during the training stages. We observe that multi-view selection
performs consistently better than GMM in both high and low noise rates. We also
validate the accuracy of the hidden clean label produced by the top ranked predictions
of rϕ(.) by comparing the re-labelling produced by Eq. (7.5) versus no re-labelling (i.e.,
train rϕ(.) with the original training labels.) We observe that without re-labelling,
the accuracy of top-ranked predictions will drop due to over-fitting in later training
epochs. However, the re-labelling accuracy consistently improves, which suggests that
our multi-view re-labelling consistently improves the label accuracy over time.

Different nθ(.) training. Table 7.2 shows a study on the selection of different subsets
from Table 7.1 for the sample-selection when training the classification net nθ(.). First,
we test the importance of classifying the samples in RY as clean for training nθ(.) by,
instead, treating these samples as noisy in Eq. (7.4) (i.e., by setting wi = 0). This
new sample selection causes a large drop in performance for all cases, which suggests
that RY contains informative samples that are helpful for training nθ(.). Second, we
test whether using the unmatched samples in U can improve model training, where
we include them as clean or noisy samples by setting wi = +1 or 0, respectively.
Both studies lead to worse results compared to the original AsyCo that discards U
samples (see last row). Despite this result, we also notice that in low noise rates (0.2,
0.3), treating U as clean leads to slightly better accuracy than treating U as noisy.
These results suggest that the high uncertainty and lack of view agreements by the
samples in U lead to poor supervisory training signal, which means that discarding
these samples is currently the best option. Finally, the histograms of Fig. 7.3 indicate
that NY also contains small-loss samples. Therefore, we adapt traditional small-loss
assumption to train our AsyCo and use the subsets C and NY as clean and treat
the other subsets as noisy. As shown in the "Small-loss subset" row of Table 7.2, the
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Methods CIFAR10 CIFAR100
0.2 0.3 0.4 0.5 0.2 0.3 0.4 0.5

CE 75.81 69.15 62.45 39.42 30.42 24.15 21.34 14.42
Mixup [229] 73.17 70.02 61.56 48.95 32.92 29.76 25.92 21.31
Forward [148] 74.64 69.75 60.21 46.27 36.38 33.17 26.75 19.27
T-Revision [210] 76.15 70.36 64.09 49.02 37.24 36.54 27.23 22.54
Reweight [120] 76.23 70.12 62.58 45.46 36.73 31.91 28.39 20.23
PTD-R-V [209] 76.58 72.77 59.50 56.32 65.33 64.56 59.73 56.80
Decoupling [134] 78.71 75.17 61.73 50.43 36.53 30.93 27.85 19.59
Co-teaching [60] 80.96 78.56 73.41 45.92 37.96 33.43 28.04 23.97
MentorNet [82] 81.03 77.22 71.83 47.89 38.91 34.23 31.89 24.15
CausalNL [220] 81.79 80.75 77.98 78.63 41.47 40.98 34.02 32.13
JoCoR [198] 89.30 85.54 80.87 64.11 67.87 65.73 61.64 57.75
CAL [241] 92.01 - 84.96 - 69.11 - 63.17 -
kMEIDTM [26] 92.26 90.73 85.94 73.77 69.16 66.76 63.46 59.18
DivideMix [106] θ(1) test † 94.62 94.49 93.50 89.07 74.43 73.53 69.18 57.52
Ours 96.00 95.82 95.01 94.13 76.02 74.02 68.96 60.35
DivideMix [106] † 94.80 94.60 94.53 93.04 77.07 76.33 70.80 58.61
Ours 2×nθ test 96.56 96.11 95.53 94.86 78.50 77.32 73.32 65.96

Table 7.3: Test accuracy (%) of different methods on CIFAR10/100 with instance-
dependent noise [209]. Results reproduced from publicly available code are presented
with †. Best single/ensemble inference results are labelled with red/green.

accuracy is substantially lower, which suggests that the small-loss samples may contain
overfitted noisy samples.
Different rϕ(.) training. We analyse the training of rϕ(.) with different training

losses and re-labelling strategies in Table 7.2. We first study how the multi-label train-
ing loss provided by the BCE loss helps mitigate label noise by training our reference
net rϕ(.) with the CE loss ℓCE(.) in Eq. (7.1) and (7.6), while keeping the multi-view
sample selection and re-labelling strategies unchanged. We observed that by training
rθ(.) with ℓCE(.) leads to a significant drop in accuracy for most cases, where for CI-
FAR10 with low noise rate (20% and 30%), ℓCE(.) maintains the accuracy of ℓBCE(.),
but for larger noise rates, such as 40% and 50%, ℓCE(.) is not competitive with ℓBCE(.)
because it reduces the prediction disagreements between nθ(.) and rϕ(.), facilitating
the overfitting to the same noisy-label samples by both models. For CIFAR100, ℓCE(.)
leads to worse results than ℓBCE(.) for all cases. These results suggest that to effec-
tively co-teach two models with prediction disagreement, the use of different training
strategies is an important component. Next, we study a training, where rϕ(.) is frozen
after warmup, but we still train nθ(.). The result drops significantly which indicates
that rϕ(.) needs to be trained in conjunction with nθ(.) to achieve reasonable perfor-
mance. We study different re-labelling strategies by first setting ŷi = ỹ for training
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rϕ(.), which leads to comparable results for low noise rates, but worse results for high-
noise rates, suggesting that that only training with ỹ is not enough to achieve good
performance. Finally, by setting ŷi = ỹ(n), we notice slightly worse results than our
proposed re-labelling from Eq. (7.5).

7.3.4 Comparison with SOTA Methods

We compare our AsyCo with the following methods: 1) CE, which trains the classifica-
tion network with standard CE loss on the noisy dataset; 2) Mixup [229], which employs
mixup on the noisy dataset; 3) Forward [148], which estimates the noise transition ma-
trix in a two-stage training pattern; 4) T-Revision [210], which finds reliable samples
to replace anchor points for estimating transition matrix; 5) Reweight [120], which uti-
lizes a class-dependent transition matrix to correct the loss function; 6) PTD-R-V [209],
which proposes a part-dependent transition matrix for accurate estimation; 7) Decou-
pling [134], which trains two networks on samples whose predictions from the network
are different; 8) Co-teaching [60], which trains two networks and select small-loss sam-
ples as clean samples; 9) MentorNet [82], which utilizes a teacher network for selecting
noisy samples; 10) JoCoR [198], which trains two networks with joint regularization
loss; 11) CausalNL [220], which discovers a causal relationship in noisy dataset and
combines it with Co-Teaching; 12) CAL [241], which uses second-order statistics with
a new loss function; 12) kMEIDTM [26], which learns instance-dependent transition
matrix by applying manifold regularization during the training; 13) DivideMix [106],
which combines semi-supervised learning, sample selection and Co-Teaching to achieve
SOTA results; 14) FaMUS [216], which is a meta-learning method that learns the weight
of training samples to improve the meta-learning update process; 15) Nested [25], which
is a novel feature compression method that uses nested dropout to regularize features
when training with noisy label–this approach can be combined with existing techniques
such as Co-Teaching [60]; and 16) PLC [233], which is a method that produces soft
pseudo label when learning with label noise.
Synthetic Noise Benchmarks. The experimental results of our proposed AsyCo

with instance-dependent noise on CIFAR10/100 are shown in Tab. 7.3. We reproduce
DivideMix [106] in this setup with single model at inference time denoted by θ(1) and
also the original ensemble inference. Compared with the best baselines, our method
achieves large improvements for all noise rates. On CIFAR10, we achieve ≈ 1.5%
improvements for low noise rates and ≈ 1% to 5% improvements for high noise rates.
For CIFAR100, we improve between ≈ 1.5% and ≈ 7% for many noise rates. Note that
our result is achieved without using small-loss sample selection, which is a fundamental
technique for most noisy label learning methods [60, 82, 106]. The superior performance
of AsyCo indicates that our multi-view consensus for sample selection and top-rank re-
labelling are effective when learning with label noise.
Real-world Noisy-label Datasets. In Table 7.4, we present results on Red Mini-
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Method Noise rate
0.2 0.4 0.6 0.8

CE 47.36 42.70 37.30 29.76
Mixup [229] 49.10 46.40 40.58 33.58
DivideMix [106] 50.96 46.72 43.14 34.50
MentorMix [79] 51.02 47.14 43.80 33.46
FaMUS [216] 51.42 48.06 45.10 35.50
Ours 59.40 55.08 49.78 41.02
Ours w/ multi-label 52.48 42.76
Ours 2×nθ test 61.98 57.46 51.86 42.58

Table 7.4: Test accuracy (%) of different methods on Red Mini-ImageNet with different
noise rates. Baselines results are from FaMUS [216]. Best results with single/ensemble
inferences are labelled with red/green.

Single Methods CE Forward [148] PTD-R-V [209] ELR [119] kMEIDTM [26] Ours
Accuracy 68.94 69.84 71.67 72.87 73.34 73.60

Ensemble Methods Co-Teaching [60] Co-Teaching+ [224] JoCoR [198] CausalNL [220] DivideMix [106] Ours 2×nθ

Accuracy 69.21 59.3 70.3 72.24 74.60 74.43

Table 7.5: Test accuracy (%) of different methods on Clothing1M. Best single/ensemble
inference results are labelled with red/green.

Method Accuracy
CE 79.4
Nested [25] 81.3
Dropout + CE [25] 81.1
SELFIE [171] 81.8
JoCoR [198] 82.8
PLC [233] 83.4
Nested + Co-Teaching [25] 84.1
Ours 85.6
Ours 2×nθ 86.3

Table 7.6: Test accuracy (%) of different methods on Animal-10N. Baselines results
are presented with Nested Dropout [25]. Best single/ensemble inference results are
labelled with red/green.

ImageNet [79]. Our method achieves SOTA results for all noise rates with 4% to 8%
improvements in single model inference and 7% to 10% in ensemble inference. The
improvement is significant compared with FaMUS [216] with a gap of more than 6%.
Compared with DivideMix [106], our method achieves between 6% and 10% improve-
ments. In Table 7.6, we present the results for Animal 10N [171], where the previous
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SOTA method was Nested Dropout + Co-Teaching [25], which achieves 84.1% accu-
racy. Our method achieves 85.6% accuracy, which is 2.2% higher than previous SOTA.
Additionally, our ensemble version achieves 86.34% accuracy, which improves 1% more
compared to our single inference model, yielding a new SOTA result. In Table 7.5,
we show our result on Clothing1M [211]. In the single model setup, our model out-
performs all previous SOTA methods. In the ensemble inference setup, our model
shows comparable performance with the SOTA method DivideMix [106] and outper-
forms all other methods. Compared with other methods based on prediction disagree-
ment [60, 198, 224], our model improves by at least 3%. The performance on these
three real-world datasets indicates the superiority of our proposed AsyCo.

7.4 Conclusion
In this work, we introduced a new noisy label learning method called AsyCo. Unlike
previous SOTA noisy label learning methods that train two models with the same
strategy and select small-loss samples, AsyCo explores two different training strate-
gies and use multi-view consensus for sample selection. We show in experiments that
AsyCo outperforms previous methods in both synthetic and real-world benchmarks.
Our empirical analysis of AsyCo explores various subset selection strategies for sample
selection and re-labelling, which show the importance of our design decisions. For fu-
ture work, we will explore lighter models for the reference net as only rank prediction
is required. We will also explores our method with out-of distribution (OOD) noise.
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Chapter 8

Generative Noisy-label Learning by
Implicit Discriminative
Approximation with Partial Label
Prior

Abstract

The learning with noisy labels has been addressed with both discriminative and gen-
erative models. Although discriminative models have dominated the field due to their
simpler modeling and more efficient computational training processes, generative mod-
els offer a more effective means of disentangling clean and noisy labels and improving
the estimation of the label transition matrix. However, generative approaches maxi-
mize the joint likelihood of noisy labels and data using a complex formulation that only
indirectly optimizes the model of interest associating data and clean labels. Addition-
ally, these approaches rely on generative models that are challenging to train and tend
to use uninformative clean label priors. In this paper, we propose a new generative
noisy-label learning approach that addresses these three issues. First, we propose a
new model optimisation that directly associates data and clean labels. Second, the
generative model is implicitly estimated using a discriminative model, eliminating the
inefficient training of a generative model. Third, we propose a new informative label
prior inspired by partial label learning as supervision signal for noisy label learning.
Extensive experiments on several noisy-label benchmarks demonstrate that our gener-
ative model provides state-of-the-art results while maintaining a similar computational
complexity as discriminative models.
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8.1 Introduction
Deep neural network (DNN) has achieved remarkable success in computer vision [67,
97], natural language processing (NLP) [41, 223] and medical image analysis [113, 192].
However, DNNs often require massive amount of high-quality annotated data for su-
pervised training [40], which is challenging and expensive to acquire. To alleviate
such problem, some datasets have been annotated via crowdsourcing [211], from search
engines [171], or with NLP from radiology reports [192]. Although these cheaper an-
notation processes enable the construction of large-scale datasets, they also introduce
noisy labels for model training, resulting in performance degradation. Therefore, novel
learning algorithms are required to robustly train DNN models when training sets
contain noisy labels.

The main challenge in noisy-label learning is that we only observe the data, repre-
sented by random variable X, and respective noisy label, denoted by variable Ỹ , but we
want to estimate the model p(Y |X), where Y is the hidden clean label variable. Most
methods proposed in the field resort to two discriminative learning strategies: sam-
ple selection and noise transition matrix. Sample selection [1, 60, 106] optimises the
model pθ(Y |X), parameterised by θ, with maximum likelihood optimisation restricted
to pseudo-clean training samples, as follows

θ∗ = argmaxθ EP (X,Ỹ )

[
clean(X, Ỹ )× pθ(Ỹ |X)

]
, where clean(X = x, Ỹ = ỹ) =

{
1, if Y = ỹ

0, otherwise
,

(8.1)
and P (X, Ỹ ) is the distribution used to generate the noisy-label and data points for
the training set. Note that EP (X,Ỹ )

[
clean(X, Ỹ )× pθ(Ỹ |X)

]
≡ EP (X,Y ) [pθ(Y |X)] if the

function clean(.) successfully selects the clean-label training samples. Unfortunately,
clean(.) usually relies on the small-loss hypothesis [3] for selecting R% of the smallest
loss training samples, which offers little guarantees of successfully selecting clean-label
samples. Approaches based on noise transition matrix [26, 148, 209] aim to estimate a
clean-label classifier and a label transition, as follows:

θ∗ = argmaxθ EP (X,Ỹ )

[∑
Y p(Ỹ , Y |X)

]
= argmaxθ1,θ2 EP (X,Ỹ )

[∑
Y pθ1(Ỹ |Y,X)pθ2(Y |X)

]
,

(8.2)
where θ = [θ1, θ2], pθ1(Ỹ |Y,X) represents a label-transition matrix, often simplified to
be class-independent with pθ1(Ỹ |Y ) = pθ1(Ỹ |Y,X). Since we do not have access to the
label transition matrix, we need to estimate it from the noisy-label training set, which
is challenging because of identifiability issues [122], making necessary the use of anchor
point [148] and regularisations [26].

On the other hand, generative learning models [5, 49, 220] assume a generative pro-
cess for X and Y , as described in Fig. 8.1. These methods are trained to maximise the
data likelihood p(Ỹ , X) =

∫
Y,Z

p(X|Y, Z)p(Ỹ |Y,X)p(Y )p(Z)dY dZ, where Z denotes a

104



latent variable representing a low-dimensional representation of the image, and Y is
the latent clean label. Y and Z are independent of each other and jointly generate
X. This optimisation requires a variational distribution qϕ(Y, Z|X) to maximise the
evidence lower bound (ELBO): with

θ∗1, θ
∗
2, ϕ

∗ = argmaxθ1,θ2,ϕ Eqϕ(Y,Z|X)

[
log

(
pθ1(X|Y, Z)pθ2(Ỹ |X, Y )p(Y )p(Z)/qϕ(Y, Z|X)

)]
,

(8.3)
where pθ1(X|Y, Z) denotes an image generative model, pθ2(Ỹ |X, Y ) represents the label
transition model, p(Z) is the latent image representation prior (commonly assumed to
a standard normal distribution), and p(Y ) is the clean label prior (usually assumed to
be a non-informative prior based on a uniform distribution). Such generative strategy
is sensible because it disentangles the true and noisy labels and improves the estimation
of the label transition model [220]. A limitation of the generative strategy is that it
optimises p(Ỹ , X) instead of directly optimising p(X|Y ) or p(Y |X). Also, compared
with the discriminative strategy, the generative approach requires the generative model
pθ1(X|Y, Z) that is challenging to train. This motivates us to ask the following ques-
tion: Can we directly optimise the generative goal p(X|Y ), with a similar
computational cost as the discriminative strategy and accounting for an
informative prior for the latent clean label Y ?

In this paper, we propose a new generative noisy-label learning method to directly
optimise p(X|Y ) by maximising Eq(Y |X) [log p(X|Y )] using a variational posterior dis-
tribution q(Y |X). This objective function is decomposed into three terms: a label-
transition model Eq(y|x) [log p(ỹ|x,y)], an image generative model Eq(y|x)

[
log p(x|y)p(y)

q(y|x)

]
,

and a Kullback–Leibler (KL) divergence regularisation term. We implicitly estimate
the image generative term with the discriminative model q(Y |X), bypassing the need
to train a generative model [157]. Moreover, our formulation allows the introduction of
an instance-wise informative prior p(Y ) inspired by partial-label learning [181]. This
prior is re-estimated at each training epoch to cover a small number of label candi-
dates if the model is certain about the training label. Conversely, when the model is
uncertain about the training label, then the label prior will cover a large number of
label candidates, which also serve as a regularisation of noisy label training. Our for-
mulation only requires a discriminative model and a label transition model, making it
computationally less expensive than other generative approaches [5, 49, 220]. Overall,
our contributions can be summarized as follows:

• We introduce a new generative framework to handle noisy-label learning by di-
rectly optimising p(X|Y ).

• Our generative model is implicitly estimated with a discriminative model, making
it computationally more efficient than previous generative approaches [5, 49, 220].

105



• Our framework allows us to place an informative instance-wise prior p(Y ) for
latent clean label Y . Inspired by partial label learning [188], p(Y ) is constructed
to dynamically decrease uncertainty when the model has a large probability of
high coverage, and increase uncertainty if the model has a low probability of high
coverage.

We conduct extensive experiments on both synthetic and real-world noisy-label bench-
marks that show that our method provides state-of-the-art (SOTA) results and enjoy
a similar computational complexity as discriminative approaches.

8.2 Related Work
Sample selection. The discriminative learning strategy based on sample selection
from (8.1) needs to handle two problems: 1) the definition of clean(.), and 2) what to do
with the samples classified as noisy. Most definitions of clean(.) resort to classify small-
loss samples [3] as pseudo-clean [1, 20, 60, 81, 106, 134, 162, 198]. Other approaches
select clean samples based on the K nearest neighbor classification in an intermedi-
ate deep learning feature spaces [145, 195], distance to the class-specific eigenvector
from the gram matrix eigen-decomposition using intermediate deep learning feature
spaces [91], uncertainty measures [95], or prediction consistency between teacher and
student models [87]. After sample classification, some methods will discard the noisy-
label samples for training [20, 81, 134, 162], while others use them for semi-supervised
learning [106]. The main issue with this strategy is that it does not try to disentangle
the clean and noisy-label from the samples.

Label transition model. The discriminative learning strategy based on the label
transition model from (8.2) depends on a reliable estimation of p(Ỹ |Y,X) [26, 148, 209].
Forward-T [148] uses an additional classifier and anchor points from clean-label sam-
ples to learn a class-dependent transition matrix. Part-T [209] estimates an instance-
dependent model. MEDITM [26] uses manifold regularization for estimating the label-
transition matrix. In general, the estimation of this label transition matrix is under-
constrained, leading to the identifiability problem [122], which is addressed with the
formulation of strong assumptions [148], or the use of additional labels per training
sample [122].

Generative modelling. Generative modeling for noisy-label learning [5, 49, 220]
explores different graphical models (see Fig. 8.1) to enable the estimation of clean la-
bels per image. Specifically, CausalNL [220] and InstanceGM [49] assume that the
latent clean label Y causes X, and the noisy label Ỹ is generated from X and Y .
Alternatively, NPC [5] assumes that X causes Y and proposes a post-processing cali-
bration for noisy label learning. One drawback of generative modeling is that instead
of directly optimising the models of interest p(X|Y ) or p(Y |X), it optimises the joint
distribution of visible variables p(X, Ỹ ). Even though maximising the likelihood of the
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Figure 8.1: Generative noisy-label learning models and their corresponding optimisa-
tion goal, where the red arrow indicates the different causal relationships between X
and Y . Left is CausalNL/InstanceGM [49, 220], middle is NPC [5] and right is ours.

visible data is sensible, it only produces the models of interest as a by-product of the
process. Furthermore, these methods require the computationally complex training of
a generative model, and usually rely on non-informative label priors.

Clean label prior. Our clean-label prior p(Y ) constrains the clean label to a
set of label candidates for a particular training sample. Such label candidates change
during training following two design principles: 1) increase clean label coverage, and
2) reduce the uncertainty of the label prior. The increase of coverage improves the
chances of including the correct clean label into the prior. Given that this decreases
the quality of the supervisory training signal, the second design principle regularises
the training by reducing the number of label candidates in p(Y ). Such dynamic prior
distribution may resemble Mixup [229], label smoothing [129] or re-labeling [106] tech-
niques that are commonly used in label noise learning. However, these approaches
do not simultaneously follow the two design principles mentioned above. Mixup [229]
and label smoothing [129] are effective approaches for designing soft labels for noisy
label learning, but both aim to increase coverage, disregarding label uncertainty. Re-
labeling switches the supervisory training signal to a more likely pseudo label, so it is
very efficient, but it has limited coverage.

Partial label learning In partial label learning (PLL), each image is associated
with a candidate label set defined as a partial label [181]. The goal of PLL is to predict
the single true label associated with each training sample, assuming that the ground
truth label is one of the labels in its candidate set. PICO [188] uses contrastive learning
in an EM optimisation to address PLL. CAV [228] proposes class activation mapping to
identify the true label within the candidate set. PRODEN [130] progressively identifies
the true labels from a candidate set and updates the model parameter. The design
of our informative clean label prior p(Y ) is inspired from PLL, but unlike PLL, there
is no guarantee that the multiple label candidates in our prior contain the true label.
Furthermore, the size of our candidate label set is determined by the probability that
the training sample label is clean, where a low probability induces a prior with a large
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number of candidates, while a high probability induces a prior with a small number of
label candidates.

8.3 Method

We denote the noisy training set as D = {(xi, ỹi)}|D|
i=1, where xi ∈ X ⊂ RH×W×C is the

input image of size H ×W with C colour channels, ỹi ∈ Y ⊂ {0, 1}|Y| is the observed
noisy label. We also have y as the unobserved clean label. We formulate our model with
generative model that starts with the sampling of a label y ∼ p(Y ). This is followed
by the clean-label conditioned generation of an image with x ∼ p(X|Y = y), which are
then used to produce the noisy label ỹ ∼ p(Ỹ |Y = y, X = x) (hereafter, we omit the
variable names to simplify the notation). Below, in Sec. 8.3.1, we introduce our model
and the optimisation goal. In Sec. 8.3.2 we describe how to construct informative prior,
and the overall training algorithm is presented in Sec. 8.3.3.

8.3.1 Model

We aim to optimize the generative model log p(x|y), which can be decomposed as
follows:

log p(x|y) = log
p(ỹ,y,x)

p(ỹ|x,y)p(y)
. (8.4)

In (8.4), p(y) represents the prior distribution of the latent clean label. The optimi-
sation of p(x|y) can be achieved by introducing a variational posterior distribution
q(y|x), with:

log p(x|y) = log
p(ỹ,y,x)

q(y|x)
+ log

q(y|x)
p(ỹ|x,y)p(y)

,

Eq(y|x) [log p(x|y)] = Eq(y|x)

[
log

p(ỹ,y,x)

q(y|x)

]
+ KL

[
q(y|x)||p(ỹ|x,y)p(y)

]
,

(8.5)

where KL[.] denotes the KL divergence, and

Eq(y|x)

[
log

p(ỹ,y,x)

q(y|x)

]
= Eq(y|x) [log p(ỹ|x,y)] + Eq(y|x)

[
log

p(x|y)p(y)
q(y|x)

]
. (8.6)

Based on Eq. (8.5) and (8.6), the expected log likelihood of p(x|y) is defined as

Eq(y|x) [log p(x|y)] = Eq(y|x) [log p(ỹ|x,y)]− KL [q(y|x)∥p(x|y)p(y)] + KL [q(y|x)∥p(ỹ|x,y)p(y)] .
(8.7)
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In Eq. (8.7), we parameterise q(y|x) and p(ỹ|x,y) with neural networks, as depicted
in Figure 8.2. the generative term p(x|y) remains challenging to estimate due to its
intractability. This is in part due to the infinite number of samples X that can be
generated from their clean labels Y . One solution to mitigate such intractability is the
use of a latent image representation Z to "anchor" the image generation process, as
what previous works does [49, 220]. However, note that such image generation ability
is in fact irrelevant for discriminative classification tasks that we aim to solve [5]. This
additional modeling Z becomes troublesome with large resolution input and leads to
sub-optimal reconstruction, which is a common issue for generative model (VAE). Fur-
thermore, Z and Y jointly generate X, which imply that they need to be disentangled
for classification task and such disentanglement is not the main goal of noisy label
classification.

we assume that Z is unnecessary and p(x|y) is defined only on the finite number of
training samples given by classification task. This assumption facilitate the direct op-
timisation of p(x|y) and alleviate the problematic training of an image generator [157].
This optimum is achieved by :

p(x|y) ∝ q(y|x)∑|D|
i=1 q(y|xi)

. (8.8)

Hence, the generative conditional p(x|y) is approximated only with finite number of
samples of x given the latet labels in y, making this term tractable. As mentioned
in [157], the probabilities p(x|y) are larger for the data samples x for which q(y|x) is
also large relative to the assignment to class y to all training samples.

8.3.2 Informative prior based on partial label learning

In Eq. (8.7), the clean label prior p(y) is required. As mentioned in Sec. 8.2, we
formulate p(y) inspired from PLL [130, 188, 228]. However, it is worth noting that
PLL has the partial label information available from the training set, while we have
to dynamically build it during training. Therefore, the clean label prior p(y) for each
training sample is designed so that the hidden clean label has a high probability of
being selected during most of the training. On one hand, we aim to have as many
label candidates as possible during the training to increase the chances that p(y) has a
non-zero probability for the latent clean label. On the other hand, including all labels
as candidates is a trivial solution that does not represent a meaningful clean label prior.
These two seemingly contradictory goals target the maximisation of label coverage and
minimisation of label uncertainty, defined by:

Coverage =
1

|D|

|D|∑
i=1

|Y|∑
j=1

1 (yi(j)× pi(j) > 0) , and Uncertainty =
1

|D|

|D|∑
i=1

|Y|∑
j=1

1 (pi(j) > 0) ,

(8.9)
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where 1(.) is the indicator function. In (8.9), coverage increases by approximating
p(Y ) to a uniform distribution, but uncertainty is minimised when the clean label yi

is assigned maximum probability. In general, training samples for which the model
is certain about the clean label, should have p(yi) = 1, while training samples for
which the model is uncertain about the clean label, should have p(yi) < 1 with other
candidate labels with probability > 0. Therefore, the clean label prior is defined by:

pi(j) =
ỹi(j) + ci(j) + ui(j)

Z
, (8.10)

where Z is a normalisation factor to make
∑|Y|

j=1 pi(j) = 1, ỹi is the noisy label in
the training set, ci denotes the label to increase coverage, and ui represents the label
to increase uncertainty, both defined below. Motivated by the early learning phe-
nomenon [119], where clean labels tend to be fit earlier in the training than the noisy
labels, we maximise coverage by sampling from a moving average of model prediction
for each training sample xi at iteration t with:

C(t)i = β × C(t−1)
i + (1− β)× ȳ

(t)
i , (8.11)

where β ∈ [0, 1] and ȳ(t) is the softmax output from the model that predicts the clean
label from the data input xi. For Eq. (8.11), C(t)i denotes the categorical distribution
of the most likely labels for the ith training sample, which can be used to sample the
one-hot label ci ∼ Cat(C(t)i ). The minimisation of uncertainty depends on our ability to
detect clean-label and noisy-label samples. For clean samples, p(yi) should converge to
a one-hot distribution, maintaining the label prior focused on few candidate labels. For
noisy samples, p(yi) should be close to a uniform distribution to keep a large coverage
of candidate labels. To compute the probability wi ∈ [0, 1] that a sample contains clean
label, we use the sample selection approaches based on the unsupervised classification
of loss values [106]. Then the label ui is obtained by sampling from a uniform distribu-
tion of all possible labels proportionally to its probability of representing a noisy-label
sample, with

ui ∼ U (Y , round(|Y| × (1− wi))) , (8.12)

where round(|Y| × (1 − wi)) represents the number of samples to be drawn from the
uniform distribution rounded up to the closest integer.

8.3.3 Training

We can now return to the optimisation of Eq. (8.7), where we define the neural networks
gθ : X → ∆|Y|−1 that outputs the categorical distribution for the clean label in the
probability simplex space ∆|Y|−1 given an image x ∈ X , and fϕ : X ×∆|Y|−1 → ∆|Y|−1

that outputs the categorical distribution for the noisy training label given an image
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Cross Entropy 
Eq. 13

= Coverage Uncertainty

Prior Loss  
Eq. 14

KL Div  
Eq. 15

Informative Prior Construction

Training

Inference

Figure 8.2: Training pipeline of our method. Shaded variables x and ỹ are visible,
and unshaded variable y is latent. We build p(y) to represent candidate labels to
approximate y.

and the clean label distribution from gθ(.). The first term in the right-hand side (RHS)
in Eq. (8.7) is optimised with the cross-entropy loss:

LCE(θ, ϕ,D) =
1

|D| ×K

∑
(xi,ỹi)∈D

K∑
j=1

ℓCE(ỹi, fϕ(xi, ŷi,j)). (8.13)

where {ŷi,j}Kj=1 ∼ Cat(gθ(xi)), with Cat(.) denoting a categorical distribution. The
second term in the RHS in Eq. (8.7) uses the estimation of p(x|y) from Eq. (8.8) to
optimise the KL divergence:

LPRI(θ,D) =
1

|D|
∑

(xi,ỹi)∈D

KL

[
gθ(xi)

∥∥∥ci × gθ(xi)∑
j gθ(xj)

⊙ pi

]
, (8.14)

where pi = [pi(j = 1), ..., pi(j = |Y|)] ∈ ∆|Y|−1 is the clean label prior defined in
Eq. (8.10), ci is a normalisation factor, and ⊙ is the element-wise multiplication. The
last term in the RHS of Eq. (8.7) is the KL divergence between q(y|x) and p(ỹ|x,y)p(y),
which represents the gap between Eq(y|x) [log p(x|y)] and Eq(y|x)

[
log p(ỹ,y,x)

q(y|x)

]
. According

to the expectation-maximisation (EM) derivation [39, 92], the smaller this gap, the
better q(y|x) approximates the true posterior p(y|x), so the loss function associated
with this third term is:

LKL(θ, ϕ,D) =
1

|D|
∑

(xi,ỹi)∈D

KL
[
gθ(xi)

∥∥∥fϕ(xi, gθ(xi))⊙ pi

]
. (8.15)

Our final loss to minimise is

L(θ, ϕ,D) = LCE(θ, ϕ,D) + LPRI(θ,D) + LKL(θ, ϕ,D). (8.16)

111



After training, a test image x is associated with a class with gθ(x). An interesting
point about this derivation is that the implicit approximation of p(x|y) enables the
minimisation of the loss in (8.16) using regular stochastic gradient descent instead the
computationally more complex expectation-maximisation (EM) algorithm [157].

8.4 Experiments

We show experimental results on instance-dependent synthetic and real-world label
noise benchmarks with datasets CIFAR10/100 [96]. We also test on three instance-
dependent real-world label noise datasets, namely: Animal-10N [171], Red Mini-ImageNet [81],
and Clothing1M [211].

8.4.1 Datasets

CIFAR10/100 [96] contain a training set with 50K images and a testing of 10K
images of size 32 × 32 × 3, where CIFAR10 has 10 classes and CIFAR100 has 100
classes. We follow previous works [209] and synthetically generate instance-dependent
noise (IDN) with rates in {0.2, 0.3, 0.4 ,0.5}. CIFAR10N/CIFAR100N is proposed
by [203] to study real-world annotations for the original CIFAR10/100 images and we
test our framework on {aggre, random1, random2, random3, worse} types of noise
on CIFAR10N and {noisy} on CIFAR100N. Red Mini-ImageNet is a real-world
dataset [81] with images annotated with the Google Cloud Data Labelling Service.
This dataset has 100 classes, each containing 600 images from ImageNet, where images
are resized to 32 × 32 pixels from the original 84 × 84 to enable a fair comparison with
other baselines [216]. Animal 10N [171] is a real-world dataset containing 10 animal
species with five pairs of similar appearances (wolf and coyote, hamster and guinea pig,
etc.). The training set size is 50K and testing size is 10K, where we follow the same
set up as [25]. Clothing1M is a real-world dataset with 100K images and 14 classes.
The labels are automatically generated from surrounding text with an estimated noise
ratio of 38.5%. The dataset also contains clean training, clean validation and clean test
sets with 50K, 14K and 10K images, respectively, but we do not use the clean training
and validation sets. The clean testing is only used for measuring model performance.

8.4.2 Practical considerations

We follow commonly used experiment setups, including network architecture, hyper-
parameter setups for all benchmarks and describe more details in Appendix E. For
the hyper-parameter setup, K in (8.13) is set to 1, and β in Eq. (8.11) is set to 0.9.
For w in Eq. (8.12), we follow the commonly used Gaussian Mixture Model (GMM)
unsupervised classification from [106]. For warmup epochs, w is randomly generated
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Method CIFAR10
20% 30% 40% 50%

CE 86.93±0.17 82.42±0.44 76.68±0.23 58.93± 1.54
DMI [215] 89.99± 0.15 86.87± 0.34 80.74± 0.44 63.92±3.92
Forward [148] 89.62±0.14 86.93±0.15 80.29±0.27 65.91±1.22
CoTeaching [60] 88.43±0.08 86.40±0.41 80.85±0.97 62.63± 1.51
TMDNN [218] 88.14± 0.66 84.55±0.48 79.71±0.95 63.33± 2.75
PartT [209] 89.33± 0.70 85.33±1.86 80.59±0.41 64.58± 2.86
kMEIDTM [26] 92.26± 0.25 90.73± 0.34 85.94± 0.92 73.77±0.82
CausalNL [220] 81.47± 0.32 80.38± 0.44 77.53± 0.45 67.39±1.24
Ours 92.65±0.13 91.96±0.20 91.02±0.44 89.94±0.45

Table 8.1: Accuracy (%) on the test set for IDN problems on CIFAR10. Most results
are from [26]. Experiments are repeated 3 times to compute mean±standard deviation.
Top part shows discriminative and bottom shows generative models. Best results are
highlighted.

from a uniform distribution. Note that the approximation of the generative model
from (8.8) is done within each batch, not the entire the dataset. Also, following the
discussion by Rolf et al. [157], the minimisation of LPRI(.) can be done with the
reversed KL using KL

[
ci × gθ(xi)∑

j gθ(xj)
⊙ pi

∥∥∥gθ(xi)
]
. This reversed KL divergence also

provides solutions where the model and implied posterior are close. In fact, the KL
and reversed KL losses are equivalent when

∑
j gθ(xj) has a uniform distribution over

the classes in Y and the prior pi is uniform in the negative labels. We tried the
optimisation using both versions of the KL divergence (i.e., the one in (8.14) and the
one above in this section), with the reversed one generally producing better results, as
shown in the ablation study in Sec. 8.4.4. For all experiments in Sec. 8.4.3, we rely
on the reversed KL loss. For the real-world datasets Animal-10N, Red Mini-ImageNet
and Clothing1M we also test our model with the training and testing of an ensemble
of two networks. Our code is implemented in Pytorch and experiments are performed
on RTX 3090.

8.4.3 Experimental Results

Synthetic benchmarks. The experimental results of our method with IDN problems
on CIFAR10/100 are shown in Tab.8.1 and Tab.8.2. Compared with the previous SOTA
kMEDITM [26], on CIFAR10, we achieve competitive performance on low noise rates
and up to 16% improvements for high noise rates. For CIFAR100, we consistently
improve 2% to 4% in all noise rates. Compared with the previous SOTA generative
model CausalNL [220], our improvement is significant for all noise rates. The superior
performance of our method indicates that our implicit generative modelling and clean
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Method CIFAR100
20% 30% 40% 50%

CE 63.94±0.51 61.97±1.16 58.70±0.56 56.63±0.69
DMI [215] 64.72±0.64 62.8±1.46 60.24±0.63 56.52±1.18
Forward [148] 67.23±0.29 65.42±0.63 62.18±0.26 58.61±0.44
CoTeaching [60] 67.40±0.44 64.13±0.43 59.98±0.28 57.48±0.74
TMDNN [218] 66.62±0.85 64.72±0.64 59.38±0.65 55.68±1.43
PartT [209] 65.33±0.59 64.56±1.55 59.73±0.76 56.80±1.32
kMEIDTM [26] 69.16±0.16 66.76±0.30 63.46±0.48 59.18±0.16
CausalNL [220] 41.47±0.43 40.98±0.62 34.02±0.95 32.13±2.23
Ours 71.24±0.43 69.64±0.78 67.48±0.85 63.60±0.17

Table 8.2: Accuracy (%) on the test set for IDN problems on CIFAR100. Most results
are from [26]. Experiments are repeated 3 times to compute mean±standard deviation.
Top part shows discriminative and bottom shows generative models. Best results are
highlighted.

Method CIFAR10N CIFAR100N
Aggregate Random 1 Random 2 Random 3 Worst Noisy

CE 87.77±0.38 85.02±0.65 86.46±1.79 85.16±0.61 77.69±1.55 55.50±0.66
Forward T [148] 88.24±0.22 86.88±0.50 86.14±0.24 87.04±0.35 79.79±0.46 57.01±1.03
T-Revision [210] 88.52±0.17 88.33±0.32 87.71±1.02 80.48±1.20 80.48±1.20 51.55±0.31
Positive-LS [129] 91.57±0.07 89.80±0.28 89.35±0.33 89.82±0.14 82.76±0.53 55.84±0.48
F-Div [201] 91.64±0.34 89.70±0.40 89.79±0.12 89.55±0.49 82.53±0.52 57.10±0.65
Negative-LS [199] 91.97±0.46 90.29±0.32 90.37±0.12 90.13±0.19 82.99±0.36 58.59±0.98
CORES2 [27] 91.23±0.11 89.66±0.32 89.91±0.45 89.79±0.50 83.60±0.53 61.15±0.73
VolMinNet [110] 89.70±0.21 88.30±0.12 88.27±0.09 88.19±0.41 80.53±0.20 57.80±0.31
CAL [241] 91.97±0.32 90.93±0.31 90.75±0.30 90.74±0.24 85.36±0.16 61.73±0.42
Ours 92.57±0.20 91.97±0.09 91.42±0.06 91.83±0.12 86.99±0.36 61.54±0.22

Table 8.3: Accuracy (%) on the test set for CIFAR10N/100N. Results are taken
from [203] using methods containing a single classifier with ResNet-34. Best results
are highlighted.

label prior construction is effective when learning with label noise.
Real-world benchmarks. In Tab.8.3, we show the performance of our method
on the CIFAR10N/100N benchmark. Compared with other single-model baselines,
our method achieves at least 1% improvement on all noise rates on CIFAR10N, and
it has a competitive performance on CIFAR100N. The Red Mini-ImageNet results in
Tab.8.4 (left) show that our method achieves SOTA results for all noise rates with 2%
improvements using a single model and 6% improvements using the ensemble of two
models. The improvement is substantial compared with previous SOTA FaMUS [216]
and DivideMix [106]. In Tab.8.4(right), our single-model result on Animal-10N achieves
1% improvement with respect to the single-model SELFIE [171]. Considering our
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Method Noise rate
0.2 0.4 0.6 0.8

CE 47.36 42.70 37.30 29.76
Mixup [229] 49.10 46.40 40.58 33.58
DivideMix [106] 50.96 46.72 43.14 34.50
MentorMix [79] 51.02 47.14 43.80 33.46
FaMUS [216] 51.42 48.06 45.10 35.50
Ours 53.34 49.56 44.08 36.70
Ours (ensemble) 57.56 52.68 47.12 39.54

Method Accuracy
CE 79.4
SELFIE [171] 81.8
JoCoR [198] 82.8
PLC [233] 83.4
Nested + Co-T [25] 84.1
InstanceGM [49] 84.6
Ours 82.7
Ours (ensemble) 85.7

Table 8.4: Test accuracy (%) on Red Mini-ImageNet (Left) with different noise rates
and baselines from FaMUS [216], and on Animal-10N (Right), with baselines from [25].
Best results are highlighted.

approach with an ensemble of two models, we achieve a 1% improvement over the
SOTA Nested+Co-teaching [25]. Our ensemble-model result on Clothing1M in Tab.8.5
shows a competitive performance of 74.4%, which is 2% better than the previous SOTA
generative model CausalNL [220].

8.4.4 Analysis

Ablation The ablation analysis of our method is shown in Tab.8.6 with the IDN
problems on CIFAR10. First row (LCE) shows the results of the training with a cross-
entropy loss using the training samples and labels in D. The second row (LCE +
LCE_PRI +LKL) shows the result of our method, replacing the KL divergence in LPRI

as defined in (8.14), by a cross entropy loss, as suggested in [157]. Next, the third row
(LCE + LPRI + LKL) shows our method with the loss defined in (8.16). As mentioned
in Sec. 8.4.2, following [157], we tested the reverse KL divergence in LPRI from (8.14),
first, in the fourth row (LCE + LPRI reversed) by optimising the lower bound to
Eq(y|x)[log p(x|y)], and then by optimising the whole objective function from (8.16) in
the last row (LCE + LPRI reversed + LKL (Ours)). In general, notice that the reversed
LPRI improves the results; the KL divergence in LPRI works better than the CE loss;
and the optimisation of the whole loss in (8.16) is better than optimising the lower
bound, which justifies the inclusion of LKL(.) in the loss.

Coverage and uncertainty visualisation We visualise coverage and uncertainty
from Eq. (8.9) at each training epoch for IDN CIFAR10/100 and CIFAR10N setups. In
all cases, label coverage increases as training progresses, indicating that our prior tends
to always cover the clean label. In fact, coverage reaches nearly 100% for CIFAR10
at 20% IDN and 97% for 50% IDN. Furthermore, for CIFAR100 at 50% IDN, we
achieve 82% coverage, and for CIFAR10N "worse", we reach 92% coverage. In terms
of uncertainty, we notice a steady reduction as training progresses for all problems,
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CE Forward [148] PTD-R-V [209] ELR [119] kMEIDTM [26] CausalNL [220] Ours (ensemble)
68.94 69.84 71.67 72.87 73.34 72.24 74.35

Table 8.5: Test accuracy (%) on the test set of Clothing1M. Results are obtained from
their respective papers. We only use the noisy training set for training. Best results
are highlighted.

Method CIFAR10
20% 30% 40% 50%

LCE 86.93 82.42 76.68 58.93
LCE + LCE_PRI +LKL 85.96 82.74 78.34 73.72
LCE + LPRI + LKL 91.36 90.88 90.25 88.47
LCE + LPRI reversed 92.40 90.23 87.75 80.46
LCE + LPRI reversed + LKL (Ours) 92.65 91.96 91.02 89.94

Table 8.6: Ablation analysis of our proposed method. Please see text for details.

CE DivideMix [106] CausalNL [220] InstanceGM [49] Ours
CIFAR 2.1h 7.1h 3.3h 30.5h 2.3h
Clothing1M 4h 14h 10h 43h 4.5h

Table 8.7: Running times of various methods on CIFAR100 with 50% IDN and Cloth-
ing1M using the hardware listed in Sec. 8.4.2.

where the uncertainty values tend to be slightly higher for the problems with higher
noise rates and more classes. For instance, uncertainty is between 2 and 3 for the for
CIFAR10’s IDN benchmarks, increasing to be between 2 and 4 for CIFAR10N. For
CIFAR100’s IDN benchmarks, uncertainty is between 20 and 30. These results suggest
that our prior clean label distribution is effective at selecting the correct clean label
while reducing the number of label candidates during training.

Training time comparison One of the advantages of our approach is its efficient
training algorithm, particularly when compared with other generative and discrimina-
tive methods. Tab. 8.7 shows the training time for competing approaches on CIFAR100
with 50% IDN and Clothing1M using the hardware specified in Sec. 8.4.2. In general,
our method has a smaller training time than competing approaches, being equivalent
to the training with CE loss, around 2× faster than CausalNL [220], 3× faster than
DivideMix [106], and 10× faster than InstanceGM [49].
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Figure 8.3: Coverage (Cov) and uncertainty (Unc) for (a) CIFAR10-IDN (20% and
50%), (b) CIFAR100-IDN (20% and 50%), and (c) CIFAR10N ("Worse" and "Aggre").
Y-axis shows coverage (left) and uncertainty (right). The dotted vertical line indicates
the end of warmup training.

8.5 Conclusion
In this paper, we presented a new learning algorithm to optimise a generative model
represented by p(X|Y ) that directly associates data and clean labels instead of max-
imising the joint data likelihood, denoted by p(X, Ỹ ). Our optimisation implicitly es-
timates p(X|Y ) with the discriminative model q(Y |X) [157] eliminating the inefficient
generative model training. Furthermore, we introduce an informative clean label prior,
inspired by partial-label learning [181], to cover a small number of label candidates
when the model is certain about the training label, and to cover a large number of la-
bel candidates, otherwise. Results on synthetic and real-world noisy-label benchmarks
show that our generative method has SOTA results, but with complexity comparable
to discriminative models.

A limitation of the proposed method that needs further exploration is a compre-
hensive study of the model for q(Y |X). In fact, the results shown in this paper are
surprisingly competitive given that we use fairly standard models for q(Y |X) without
exploring sophisticated noisy-label learning techniques. In the future, we will use more
powerful models for q(Y |X). Another issue of our model is the difficulty to estimate
p(X|Y ) in real-world datasets containing images of high resolution. We will study
more adequate ways to approximate p(X|Y ) in such scenario using data augmenta-
tion strategies to increase the size of the dataset and using a more effective method to
approximate the calculation of p(X|Y ) for the whole training set instead of only the
mini-batch dataset.
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Chapter 9

Conclusion and Discussion

In this thesis, we have devised efficient weakly-supervised methodologies for tasks re-
lated to computer vision and medical image analysis. Initially, we examined the chal-
lenges associated with current semi-supervised learning (SSL) techniques, such as severe
class imbalance and multi-label issues arising from the infrequency of diseases and the
complexities in determining the optimal augmentation strategy from computer vision
to medical image analysis.

Historically, methods have predominantly utilized ImageNet [40] pre-trained weights,
which are not entirely compatible with medical image analysis tasks. Motivated by re-
cent advancements in self-supervised learning, which focuses on learning task-relevant
feature representation, we introduced a novel SSL approach named Self-Supervised
Mean-Teacher for Semi-Supervised (S2MTS2) learning. This method combines self-
supervised pre-training and mean-teacher fine-tuning. The primary innovation of our
approach is the application of joint contrastive learning to pre-train a student-teacher
model using unlabeled data. This enhances the feature representation and ensures con-
sistency between the student and teacher models. We evaluated our method using three
datasets: ChestX-ray14 [192], CheXpert [75], and ISIC2018 [182], demonstrating that
it significantly outperforms existing state-of-the-art SSL methods. Additionally, we
conducted an ablation study to assess the impact of each component of our method.
The results underscore the effectiveness and robustness of our approach for medical
image classification under limited supervision.

We subsequently analyzed the pseudo-labelling approach for medical image analysis
in semi-supervised learning. The challenge with the pseudo-labelling approach lies in
designing an appropriate threshold for selecting high-confidence pseudo labels. This is
particularly complex in multi-label classification, where defining a class-wise threshold
without prior knowledge about class distribution or class correlation is difficult. To
address this, we proposed a novel semi-supervised learning method for medical image
analysis, termed Anti-Curriculum Pseudo-Labelling (ACPL). This method selects in-
formative unlabeled samples and assigns them pseudo-labels based on a combination
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of model prediction and K-Nearest Neighbors (KNN) voting. The primary innovation
of our approach is the use of an anti-curriculum strategy to select samples with high
uncertainty and diversity, and a label purification module to update the anchor set. We
evaluated our method using two datasets: Chest X-ray14 and ISIC2018, demonstrat-
ing that it significantly outperforms existing state-of-the-art semi-supervised learning
methods. Additionally, we conducted an ablation study to assess the impact of each
component of our method. The results underscore the effectiveness and robustness
of our approach for multi-label semi-supervised learning medical image classification
under class imbalance.

Our methods for tackling semi-supervised learning in medical imaging lead to two
different perspectives. S2MTS2 uses a large number of unlabelled samples to get
domain-specific feature representation and then fine-tunes it on a small amount of
labelled samples. On the other hand, ACPL picks a subset of unlabelled samples based
on their informativeness, which improves the data distribution of training subsets. In
terms of potential clinical practice, the feature representation from S2MTS2 could be
useful for various downstream tasks, and ACPL could result in better classification
performance.

Another significant challenge for weakly-supervised learning is the learning with
noisy labels. Mainstream methods for noisy label learning employ the small-loss hy-
pothesis, which empirically assumes that training samples with small losses are clean-
labelled samples in the early stages of training. However, this hypothesis is incom-
patible with class imbalance or multi-label scenarios in Medical Image Analysis (MIA)
because noisy-label samples from majority classes can have smaller losses than clean-
label samples from minority classes. Motivated by these challenges, we developed a
robust medical image classification method capable of handling the imbalanced learn-
ing problem caused by skewed class distribution and the noisy label problem result-
ing from unreliable annotations. We proposed a novel method named Non-Volatile
Unbiased Memory (NVUM). This method stores a running average of model logits to
regularize the training loss and adjusts the class prior distribution to address the imbal-
anced learning problem. The primary contribution of our method is the incorporation
of a non-volatile memory module that can adapt to changing data distribution and
label quality, and an unbiased loss function that can mitigate the influence of noisy
labels and enhance generalization performance. We evaluated our method using four
datasets: ChestX-ray14, CheXpert [75], OpenI [38], and PadChest [16]. Our method
outperformed state-of-the-art methods for both imbalanced learning and noisy label
learning. We also conducted an ablation study to analyze the impact of each compo-
nent of our method. The results underscored the effectiveness and robustness of our
method for medical image classification under challenging scenarios.

In response to the complex problem of noisy multi-label classification, we proposed
an innovative method known as the Bag of Multi-label Descriptors (BoMD). This
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method is specifically designed to address the shortcomings of existing techniques that
struggle with multi-label scenarios characterized by intricate label dependencies and
noise patterns. The BoMD method comprises two primary components: the learning
of a bag of multi-label image descriptors (MID) and the smooth re-labelling of images
based on a graph structure. The MID captures the nuanced semantic information of
each image, proving to be more robust and informative than single global descrip-
tors. The smooth re-labelling scheme employs a graph structure to disseminate label
information among similar images, guided by their MID descriptors. We conducted
comprehensive experiments on three real-world chest X-ray datasets, each exhibiting
different levels and types of label noise. The results demonstrated that the BoMD
method surpasses state-of-the-art methods for both noisy and clean labels, thereby
validating the effectiveness of each component of our method.

For noisy multi-label learning in medical imaging, NVUM addresses the problem by
understanding the negative impact of noisy label gradient and compensates with a spe-
cially designed memory module with imbalanced distribution prior. BoMD uses both
visual and semantic descriptors for detecting and labeling noisy multi-label images. In
terms of clinical practice, NVUM considers both imbalanced learning and noisy label
in a unified framework, while BoMD explores multi-modality information and achieves
better classification performance.

In traditional multi-class Learning with Noisy Labels (LNL), the relabelling of noisy
samples often depends on model predictions as pseudo labels and cross-selection be-
tween two independent models. We propose learning from a set of candidate pseudo
labels rather than a single , and possibly noisy label. To this end, we introduce a novel
method for noisy label learning based on multi-label learning, termed Asymmetric Co-
teaching (AsyCo). AsyCo comprises two models: a multi-class classification model nθ

and a multi-label ranking model rϕ, which are co-trained using different strategies. The
model nθ selects clean samples based on the prediction disagreement between nθ and
rϕ, while rϕ relabels noisy samples based on the top-ranked predictions of rϕ. We also
introduced a multi-view consensus framework that leverages the label views from the
training set and the model predictions to estimate the sample selection and relabelling
variables. Extensive experiments were conducted on several benchmark datasets with
different types of noise, demonstrating that AsyCo outperforms existing state-of-the-
art methods in terms of accuracy and robustness. We also provided empirical analysis
and ablation studies to validate the effectiveness of our method. Our work underscores
the potential of asymmetric co-teaching and multi-view consensus for learning from
noisy labels.

We further explored the concept of learning with a noisy label set through partial
label learning. We introduced a novel generative method for noisy label learning,
termed Generative Noisy-Label Learning by Implicit Discriminative Approximation
with Partial Label Prior (GNL). GNL utilizes the implicit discriminative approximation
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of the generative model to learn from noisy labels and incorporates a partial label
prior to guide the latent label distribution. Additionally, we proposed a coverage
and uncertainty measure to monitor the training process and adjust the partial label
generation. We conducted experiments on several benchmark datasets with different
types of noise, demonstrating that GNL outperforms existing state-of-the-art methods
in terms of accuracy and efficiency. We also provided empirical analysis and ablation
studies to validate the effectiveness of our method. Our work underscores the potential
of generative models and partial label information for learning from noisy labels.

For traditional multi-class noisy label learning in computer vision, both AsyCo
and GNL explore the construction of a label set instead of a single label. AsyCo
achieves this by training a multi-label ranking model and constructs a label set as
a multi-label target. It further proposes a new sample selection based on prediction
differences between the multi-label model and the multi-class model. GNL explores a
generative learning framework and constructs a label set with a partial label form. For
comparison, AsyCo achieves better performance but requires an ensemble of models,
while GNL, built with a theoretical guarantee, only requires one model to achieve
comparable performance.

9.1 Limitation and Future Work

In this thesis, we have developed novel methods for semi-supervised learning in Medical
Image Analysis (MIA). For self-supervised learning in MIA Semi-Supervised Learning
(SSL) (Chapter 2.3), the proposed method primarily follows the computer vision strat-
egy without exploring domain-specific strategies for MIA tasks. Moreover, the current
experiments do not explore 3D volume images, which are unique tasks for MIA. Future
work will involve exploring domain-specific MIA strategies for better self-supervised
learning, and better data augmentation. We will also extend our approach to work
with 3D volume images to further validate our approach. For Anti-Curriculum Pseudo-
Labelling (ACPL) in MIA SSL (Chapter 4), the current selection criterion of informa-
tive unlabeled samples does not work if the unlabeled set contains out-of-distribution
(OOD) samples. SSL with OOD samples is a practical scenario in real-world datasets,
and the future work of ACPL involves developing effective measurements under OOD
samples and testing in computer vision benchmarks. A similar idea of ACPL that
selects informative samples instead of confidence samples for training semi-supervised
learning models has been explored in [191] and we will explore our idea in computer
vision domain.

We also concentrated on developing new noisy label methods for real-world MIA
tasks and a new perspective from inexact supervision. Currently, Non-Volatile Unbi-
ased Memory (NVUM) (Chapter 5) considers class imbalance distribution when up-
dating the memory module to make the learning robust to imbalanced distribution.
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However, pseudo labels also contain class imbalances that should be addressed during
training [194]. Moreover, class correlation commonly exists in multi-label classification.
In future work of NVUM, we will explore a precise estimation of class prior during the
training and class correlation for accurate unbiasing. The limitation of Bag of Multi-
label Descriptors (BoMD) (Chapter 6) is the long training time due to multiple stages of
training. Another limitation is that class imbalance learning is not explicitly addressed
in the current framework. For future work, we will explore integrating the first stage
rank loss and relabelling as a joint framework and adapting BoMD to work seamlessly
for multi-class and multi-label tasks with minimal adaptation. We would also explore
our approach that combines visual descriptor and semantic descriptor for computer
vision multi-label noisy label problem, as current approach [208] only explores single
image modality.

For Asymmetric Co-teaching (AsyCo) (Chapter 7), the current framework requires
two models with different training strategies. We plan to explore lighter models for
the multi-label model, as only rank prediction is required. Additionally, Binary Cross-
Entropy (BCE) loss for multi-label learning can be solely used in noisy label learning,
as noisy samples can benefit from negative labels. Future work will explore better
usage of BCE loss to identify relevant label sets for multi-label learning. We will also
explore AsyCo under an imbalanced noisy label setup. As AsyCo does not rely on the
traditional small-loss assumption for selecting clean samples, this could pose a problem
under imbalanced data distribution with majority classes. For Generative Noisy-Label
Learning by Implicit Discriminative Approximation with Partial Label Prior (GNL)
(Chapter 8), the current approximation is calculated within each batch, and partial
label construction still takes a heuristic approach. In future work, we will explore
better ways for calculating the approximation for the whole training set and connect
partial label construction with conformal predictions, as it is a theoretically guaranteed
way for creating label sets with clean label coverage guarantee.
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Appendix A

ACPL (Chapter 4) Appendix

A.1 Additional Ablation study
The Number of Information Content Sets in Eq.2 is studied in Table A.1, which
shows the model training performance (in terms of mean AUC testing set results) and
number of training stages using 2% and 20% labelled set on Chest X-ray14 [192]. The
default setting used in the paper is to have three information content sets, namely
low, medium, high. As shown in Table A.1, the selection of only two sets produces the
worst results because the pseudo-labelled set becomes less informative and imbalanced.
The selection of four sets produces similar results as with three sets. However, with
this additional set, the number of new pseudo labelled samples are greatly reduced for
every training stage, forcing the number of training stages to grow. Hence, by selecting
three sets we reach a good balance between training time and accuracy.

A.2 Data Distribution
In Figure A.1, we show the data distribution of all classes of Chest X-ray14 (plus
the class ’No Findings’) [192]. Notice that the selection of high information content
samples (blue) creates a more balanced distribution compared with the selection of low
information content (yellow) or the original data distribution (green).

A.3 Visualization of Classification Results
Figure A.2 shows examples of pseudo-labels produced by our density mixup for both
Chest Xray-14 [192] (top) and ISIC2018 [182] (bottom) datasets.
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Figure A.1: Histogram of label distribution in percentage of all 14 classes from Chest
X-ray14 plus the class ’No Finding’. Blue for high information content subset and
yellow for low information content subset. Green is the original data distribution.

Atelectasis: 4.9e-2 
     Cardiomegaly: 1.7e-2 

Effusion: 0.392 
Infiltration: 0.847 

     Mass:2.7e-2 
     Nodule:7.0e-2 
     Pneumonia:8.6e-2 
     Pneumothorax: 1.2e-2 
     Consolidation: 1.0e-1 
     Edema: 6.8e-2 
     Emphysema: 1.4e-3 
     Fibrosis: 1.6e-3 
     Pleural Thickening: 1.2e-2 
     Hernia: 1.8e-4

Atelectasis: 3.9e-1 
     Cardiomegaly:1.8e-3 
     Effusion: 0.915 
     Infiltration:0.424 
     Mass:3.6e-2 
     Nodule:0.154 
     Pneumonia:6.3e-2 
     Pneumothorax: 3.2e-2 
     Consolidation: 3.2e-2 
     Edema: 1.8e-2 
     Emphysema: 4.3e-2 
     Fibrosis: 3.1e-2 
     Pleural Thickening: 0.741 
     Hernia: 8.9e-4

Atelectasis: 0.526 
     Cardiomegaly: 3.2e-4 
     Effusion: 0.925 
     Infiltration: 0.279 
     Mass:0.258 
     Nodule:0.128 
     Pneumonia:4.4e-2 
     Pneumothorax: 0.409 
     Consolidation: 0.257 
     Edema: 1.4e-2 
     Emphysema:7.5e-2 
     Fibrosis: 2.6e-2 
     Pleural Thickening: 0.225 
     Hernia: 4.2e-4

Melanoma: 1.5e-5 
     Melanocytic nevus: 0.995 
     Basal cell carcinoma: 4.3e-6 
     Actinic keratosis: 4.2e-6 
     Benign keratosis: 9.3e-6 
     Dermatofibroma: 7.2e-7 
     Vascular lesion: 7.3e-6 
  

Melanoma: 2.4e-7 
     Melanocytic nevus: 5.7e-7 
     Basal cell carcinoma: 5.5e-7 
     Actinic keratosis: 0.961 
     Benign keratosis: 8.7e-6 
     Dermatofibroma: 8.6e-6 
     Vascular lesion: 6.7e-7 
  

Melanoma: 6.1e-3 
     Melanocytic nevus: 0.638 
     Basal cell carcinoma: 4.1e-4 
     Actinic keratosis: 5.9e-3 
     Benign keratosis: 0.362 
     Dermatofibroma: 4.0e-5 
     Vascular lesion: 0.149 
  

Figure A.2: Pseudo-labelling of high-information content unlabelled samples estimated
with the density mixup prediction for Chest Xray-14 [192] (top) and ISIC2018 [182]
(bottom) datasets. Green border denotes accurate prediction and red border represents
inaccurate prediction. Classes with red color represent the ground truth.

126



Table A.1: Ablation study of the number of information content sets in Eq.2 (2, 3, 4
sets) with model training performance (in terms of mean AUC testing set results) and
number of training stages with 2% and 20% labelled set on Chest X-ray14 [192].

Number of Inform. Cont. Sets in Eq.2 2 3 4
Number of Training Stages 5 5 9

2% 71.28 74.44 74.37
20% 79.56 81.51 81.60
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Appendix B

NVUM (Chapter 5) Appendix

B.1 Gradient Proof

The gradient for ℓtotal(S, t, θ) = 1
|S|

∑
(xi,ỹi)∈S ℓBCE(ỹ

i,pi) + ℓREG(t
i,pi), is defined as

∇θℓtotal(S, θ) =
1

|S|
∑
i∈S

Jxi(θ)(pi − ỹi + gi),

where gi
c = −σ((ti)⊤(pi))pi

c(1− pi
c)tc,

(B.1)

where ∇θℓBCE(θ) =
1
|S|

∑
i∈S Jxi(θ)(pi − ỹi), and recalling that ℓREG(t

i,pi) = log(1−
σ((ti)⊤pi)) (with p = 1

1+e−fθ(x)
), we have

∇θℓREG(θ)
i
c = gi

c

=
1

1− σ((ti)⊤(pi))
∇θ(1− σ((ti)⊤(pi)))

=
−1

1− σ((ti)⊤(pi))
∇θ(σ((t

i)⊤(pi)))

=
−1

1− σ((ti)⊤(pi))
(σ((ti)⊤(pi)))(1− σ((ti)⊤(pi)))∇θ(t

i)⊤(pi)
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B.2 Dataset Description

Training Scheme NIH/CXP OPI PDC Number of Classes
NIH-OPI-PDC 83,672 2,971 14,714 14
CXP-OPI-PDC 170,958 2,823 12,885 8

Table B.1: Statistics of training/testing sets after trimming for consistency between
different datasets.

In order to keep the classes consistent between different datasets, we align training set
and testing set with the shared classes and exclude unique classes (see Tab. B.1). For
further detail, please check [30] for each class.

B.3 Synthetic Label Noise Result
We include results using the public noisy-label medical image benchmark from [234] to
test our method for different rates of symmetric noise. We tested our method on their
ResNet-18 benchmark, where their baseline accuracy result using the 100% clean set is
64.4%. With 20% symmetric noise, our method without our prior reaches 61.3% and
with our prior has 63.1% (best result in [234]: 59.37%). With 40% symmetric noise,
our method without our prior reaches 50.7% and with our prior has 53.4% (best result
in [234]: 49.65%).

B.4 Memory Footprint
We analysis the memory footprint of our method. In particular, our memory module
is a matrix with N x C dimension. We used debugging tools to analyse our memory
module and noted that we only required 4 MB of GPU memory, and at each iteration,
we only backpropagated through a small subset of the memory.
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Appendix C

BoMD (Chapter 6) Appendix

C.1 Dataset Statistics

Table C.1 shows the statistics of our training noisy training set (NIH [193] and ChestX-
pert (CXP) [75]) and clean testing sets (OpenI [38] and PadChest [16]). Due to incon-
sistencies in the number of labels for each dataset, we trim the original datasets and
only keep the samples that contain labels present in all datasets based on [31, 114].
After our data pre-processing, there are 83,672 frontal-view images with 14 common
chest radiographic observations for NIH [193] dataset where the corresponding testing
sets for OpenI [38] and PadChest [16] contain 2,917 and 14,714 frontal-view images
respectively. For CXP, we have 170,958 frontal-view images with 8 chest radiographic
observations where the corresponding testing set for OpenI [38] and PadChest [16]
contain 2,823 and 12,885 frontal-view images, respectively.

C.2 Further Ablation Studies

We evaluate the number of KNN neighboring samples that are required for a clean
re-labelling. We measure the precision and recall for the detection of noisy-labels of

Train Test

Datasets NIH [193] CXP [75] OpenI [38] PadChest [16]

Train on NIH 83,672 (14) - 2,971 (14) 14,714 (14)
Train on CXP - 170,958 (8) 2,823 (8) 12,885 (8)

Table C.1: Statistics for all datasets after data pre-processing, where the digit on the
left is the total number of samples and the digit inside brackets is the number of classes.
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Experiments Mixup Coefficient Number of Descriptors K-nearest neighbour

Settings λ OpenI PadChest γ OpenI PadChest M OpenI PadChest K OpenI PadChest

AUC

0.2 88.39 85.52 0.05 89.14 86.05 1 88.34 86.02 5 89.20 86.15
0.4 88.56 85.93 0.15 87.87 86.17 3 89.52 86.50 10 89.52 86.50
0.6 89.52 86.50 0.25 89.52 86.50 5 88.92 86.39 20 88.23 85.79
0.8 88.37 86.29 0.35 88.40 86.48 7 89.03 86.43 50 87.59 85.49
1.0 88.31 86.21 0.45 88.46 86.46 9 88.45 86.29 100 87.36 85.48

Table C.2: Ablation study of the hyper-parameters using mean AUC. Models are
trained on NIH [193] and tested on OpenI [38] and PadChest [16]. Note that for each
hyper-parameter, we fix the others to their best values (i.e., λ = 0.6, γ = 0.25, M = 3
and K = 10).
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(b) Precision

Figure C.1: Label-wise precision and recall of our KNN propagated label under ȳ w.r.t
the clean annotation from PadChest. The horizontal axis shows a threshold of the
minimum number of nearest neighbors containing each class.

our graph-based relabelling method in Fig. C.1 as a function of the threshold of the
minimum number of nearest neighbors containing each class. For example, if the KNN
threshold is 4, then a particular label of a sample is set to 1 only if there are at least
4 neighbors that share the same label. Note that the measures are computed in a
label-wise manner, and we consider the flipping rate pl at 20% and the percentage of
noisy samples ps ∈ {20%, 40%, 60%}. We observe a lower recall rate for lower values
of K because the KNN label propagation under the multi-label scenario tends to be
noisier for small values of K. We achieve the highest recall rate when this threshold is
between 4 and 6 nearest neighbours, which means that when we have at least 4 samples
in the K nearest neighbour that share the same label, it is most likely a true label.

C.3 Visualisation of Smoothing Techniques
To visualise the performance of different label smoothing techniques, we plot the t-
SNE [185] for a toy problem. More specifically, we first generate two isotropic Gaus-
sian clusters as the clean set (Fig. C.2a) and randomly inject 20% of symmetric noise
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Figure C.2: Visualisation of different label smoothing techniques. The color of each
data point indicates the confidence score. We start with two isotropic Gaussian clusters
in (a) as the clean set where red points indicate class 1 and blue points represent class 2.
We randomly inject 20% of symmetric noise to form the noisy set in (b). We compare
our method (in (d)) with two baseline methods, namely: label smoothing (LS) [128]
(in (c)) and generalised label smoothing (GLS) [200] (in (e)). We show that our
method alleviates the noisy label problem by modifying the confidence score based on
the nearest neighbors, while LS pushes the labels toward the uniform distribution and
GLS pushes the labels toward the sharp binary distribution. Note that GLS has a
different scale for confidence scale which is from -0.2 to +1.2, while the others have a
range from 0 to 1.

(Fig. C.2b) to form a noisy set. We show that our BoMD demonstrates a better tradeoff
when correcting the labels since it re-labels the noisy samples without being overconfi-
dent in the detection (like shown by GLS [200]) and without over-smoothing the labels
(like displayed by LS [128]). Note that we set the smoothing parameter r to 0.6 and
-0.4 respectively for LS [128] and GLS [200].

Table C.3: Disease-level testing AUC results for models trained on NIH.

Models Hermoza et al CAN DivideMix FINE ELR NVUM

Datasets OpenI PadChest OpenI PadChest OpenI PadChest OpenI PadChest OpenI PadChest OpenI PadChest

Atelectasis 86.85 83.59 84.83 79.88 70.98 73.48 77.51 67.70 86.21 85.69 88.16 85.66
Cardiomegaly 89.49 91.25 90.87 91.72 74.74 81.63 77.93 84.54 90.79 92.81 90.57 92.94
Effusion 94.05 96.27 94.37 96.29 84.49 97.75 74.39 86.76 94.74 96.67 93.64 96.56
Infiltration 77.48 70.61 77.88 73.78 84.03 81.61 73.41 67.28 78.92 73.82 74.30 72.51
Mass 95.72 86.93 87.47 85.81 71.31 74.41 57.45 69.54 81.90 84.51 93.06 85.93
Nodule 81.68 75.99 80.71 74.14 57.35 63.89 59.43 57.66 86.22 75.59 88.79 75.56
Pneumonia 87.15 75.73 84.79 76.49 71.65 72.32 56.22 60.46 88.99 80.28 90.90 82.22
Pneumothorax 75.34 74.55 82.21 79.73 75.56 75.46 59.88 64.46 78.65 78.47 85.78 79.50
Edema 84.31 97.78 82.80 96.41 80.71 85.81 58.18 95.20 85.57 97.58 86.56 95.70
Emphysema 83.26 79.81 81.26 78.06 64.81 59.91 43.31 50.72 82.79 79.87 83.70 79.38
Fibrosis 85.85 96.46 83.17 93.20 76.96 84.71 61.97 88.68 92.07 97.42 91.67 97.61
Pleural Thicken 77.99 71.85 77.59 67.87 62.98 58.25 63.17 54.33 83.45 72.01 84.82 74.80
Hernia 92.90 89.90 87.37 86.87 70.34 72.11 64.86 74.56 95.77 93.37 94.28 93.02
Mean AUC 85.54 83.90 84.26 83.10 72.76 75.49 63.67 70.91 86.62 85.24 88.17 85.49
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Table C.4: Disease-level testing AUC results for models trained on NIH.

Models NPC NCR LS OLS GLS BoMD

Datasets OpenI PadChest OpenI PadChest OpenI PadChest OpenI PadChest OpenI PadChest OpenI PadChest

Atelectasis 86.04 85.23 83.80 85.46 85.34 84.74 87.27 85.18 88.23 83.00 87.91 86.19
Cardiomegaly 91.42 92.12 89.42 91.45 88.08 89.17 84.59 89.83 89.12 91.40 91.37 92.17
Effusion 95.58 96.19 93.96 95.89 94.54 95.63 94.28 96.75 93.67 96.36 95.28 96.71
Infiltration 68.76 64.08 60.48 67.98 72.26 74.20 76.10 76.19 82.08 71.27 81.65 76.64
Mass 80.20 86.04 85.00 85.98 88.08 80.56 82.79 84.80 75.12 80.67 92.31 88.48
Nodule 87.60 75.68 85.12 75.60 86.44 74.82 83.42 75.27 82.10 74.34 84.05 75.28
Pneumonia 91.01 76.87 88.87 76.40 83.50 76.17 87.18 78.20 85.65 74.83 89.99 78.71
Pneumothorax 84.28 79.22 83.07 76.98 74.07 76.10 75.89 80.02 73.93 76.45 88.89 85.82
Edema 82.27 92.40 85.66 93.87 83.38 88.23 87.31 89.55 85.92 93.01 87.60 98.68
Emphysema 82.05 80.87 82.36 75.80 76.94 73.10 80.94 78.15 75.16 74.21 85.28 81.94
Fibrosis 87.53 91.50 90.67 94.57 92.09 96.43 90.19 95.35 91.06 95.29 94.56 97.44
Pleural Thicken 87.37 76.06 82.66 76.62 82.83 72.82 84.12 70.55 80.10 68.14 86.94 71.53
Hernia 96.60 94.17 94.69 92.74 80.85 70.11 91.95 85.84 87.29 81.38 98.57 94.22
Mean AUC 86.21 83.88 85.06 83.79 83.72 80.93 85.08 83.51 83.80 81.56 89.57 86.45

C.4 Additional Results

C.4.1 Per-finding results

We show per-finding results over all available findings for NIH [193] in Tables C.3
and C.4 and for CheXpert [75] in Tables C.5 and C.6 .

C.4.2 Hyper-parameter sensitivity

Table C.2 studies the four hyper-parameters (λ, γ, M and K) of BoMD. In general, for
λ, we note that relying too much on the pseudo-labels from the graph (λ = 0.2) or the
original noisy labels (λ = 1.0) worsens the performance, with the best result achieved
with a balanced λ = 0.6. We noticed that the method is robust to γ and M with little
variation in results. As for K, values larger than 10 over-smooth the decision boundary
of our classifier, causing under-fitting. The values λ = 0.6 and γ = 0.25, M = 3, and
K = 10 reach the best results.

C.4.3 Evaluation for Descriptors from MID

Visualisation of distance distribution. To verify the separation of positive de-
scriptors (labelled as 1) and negative descriptors (labelled as 0) based on their edge
weight, we performed an analysis on a dataset consisting of 12 classes. Each class
contained 4,000 samples, along with its corresponding semantic descriptors from the
NIH dataset [193]. For each class, we denote positive samples’ descriptors as “1”, and
negative samples’ descriptors as “0”. The analysis involved examining the distribution
of L2 distance, and the results are presented in Figure C.3. Our findings suggest that,
on average, positive descriptors are closer to their corresponding semantic descriptors
than negative descriptors, which proves the effectiveness of our MID module.
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Visualisation of latent space. To visualise the descriptors’ distribution in the latent
space, we plot the t-SNE [185] for 12 classes with 4,000 samples per class sampled from
NIH [193], as shown in Fig. C.4. For each class, we denote positive samples’ descriptors
as +, negative samples’ descriptors as ◦ and semantic descriptors as ×. We show that
the semantic descriptors are mostly surrounded by class-related descriptors (+), which
varied the clustering effect of our MID module. Such clustering effect will benefit our
graph-based smooth re-labelling as shown in Sec C.3

Table C.5: Disease-level testing AUC results for models that trained on CheXpert.

Models Hermoza et al CAN DivideMix FINE ELR NVUM

Datasets OpenI PadChest OpenI PadChest OpenI PadChest OpenI PadChest OpenI PadChest OpenI PadChest

Cardiomegaly 86.12 87.20 82.83 85.89 79.53 85.42 83.62 83.99 90.48 87.46 85.15 88.48
Edema 87.92 94.35 86.46 97.47 81.24 83.41 86.43 87.07 90.88 96.12 87.35 97.21
Pneumonia 65.56 57.15 61.88 63.38 55.98 51.20 55.58 55.58 61.59 64.13 64.42 67.89
Atelectasis 78.40 75.65 80.13 72.87 72.74 68.34 72.87 72.87 79.63 73.68 80.81 75.03
Pneumothorax 62.09 78.65 74.69 79.50 75.49 79.98 65.34 68.85 74.12 83.95 82.18 83.32
Effusion 87.00 93.94 88.43 92.92 83.75 88.91 85.92 85.92 86.65 92.42 83.54 89.74
Fracture 57.47 53.77 59.96 60.44 63.87 62.23 51.97 62.50 56.75 62.00 57.02 62.67
Mean AUC 74.94 77.24 76.34 78.92 73.23 74.21 71.68 73.83 77.16 79.97 77.21 80.62

Table C.6: Disease-level testing AUC results for models that trained on CheXpert.

Models NPC NCR LS OLS GLS BoMD

Datasets OpenI PadChest OpenI PadChest OpenI PadChest OpenI PadChest OpenI PadChest OpenI PadChest

Cardiomegaly 80.33 86.43 90.10 86.84 85.53 83.42 83.58 86.29 88.22 87.30 90.85 89.88
Edema 82.35 79.09 90.11 98.26 89.72 99.43 85.17 95.69 87.92 97.49 89.89 98.76
Pneumonia 62.31 64.52 58.80 59.87 49.64 50.41 64.18 56.48 59.49 63.64 65.35 66.10
Atelectasis 81.29 76.13 79.01 72.22 75.13 69.30 70.85 71.75 76.71 73.32 80.01 74.33
Pneumothorax 82.32 82.35 78.06 86.15 73.05 78.33 80.10 83.36 77.53 77.58 82.99 86.04
Effusion 78.71 86.65 85.62 91.57 84.70 90.97 84.64 91.83 85.19 91.94 87.37 93.07
Fracture 59.92 65.95 56.80 60.63 52.27 55.52 67.13 58.60 60.44 60.32 63.72 64.12
Mean AUC 75.32 77.30 76.93 79.36 72.86 75.34 76.52 77.72 76.50 78.80 80.03 81.76
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Figure C.3: L2 distance between positive/negative descriptors and semantic descriptor
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Figure C.4: Visualisation of descriptor distribution in latent space.
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Appendix D

AsyCo (Chapter 7) Appendix
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Figure D.1: Comparison of the accuracy between a model trained with CE loss and
another trained with BCE loss. The comparison is done for a training that lasts 100
epochs on CIFAR100 with 0.2/0.5 noise rates and Red Mini-ImageNet with 0.2/0.8
noise rates.

D.1 AsyCo Training Algorithm

Algorithm 3 shows the main steps of our proposed AsyCo training algorithm.

D.2 Training Strategy Visualization

In Fig. D.1, we show a visualisation of the testing accuracy differences for training two
models, one with with CE loss and another with BCE loss, for 100 epochs on instance-
dependent CIFAR100 with 0.2/0.5 noise rates and real-world Red Mini-ImageNet with
0.2/0.8 noise rates. We observe that CE and BCE show distinct training behaviours
on both datasets and noise rates. Training with CE converges faster than BCE, but it
also overfits more easily than BCE. Training with BCE takes longer to reach the same
performance as CE, but it also overfits more slowly. This suggests that differences in
training strategies can be explored for multi-view consensus selection.
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Algorithm 3 Asymmetric Joint Training Algorithm
1: require: Training net nθ(.), reference net rϕ(.), training dataset D and number

of training epochs T
2: Warm-up nθ(.) and rϕ(.) with Eq. 1
3: while t < T do
4: Compute ỹ

(n)
i and ỹ

(r)
i with Eq. 2

5: Categorize training samples from Tab. 1
6: Estimate sample selection latent variable w, from Eq. 4, which classifies samples

into clean or noisy
7: Train nθ∗(.) with Eq. 5 using w and D
8: Estimate latent variable ŷ, from Eq. 6, which re-labels the training samples with

multiple labels
9: Train rϕ∗(.) with Eq. 7 using ŷ and D

10: end while
11: return nθ∗

Methods GMM [106] FINE [91] Ours
Time 17.2s 34s 13s

Table D.1: Time differences for each sample selection strategy on CIFAR10.

D.3 Sample Selection Time Comparison
In Tab. D.1, we show the running times of the small-loss based selection (GMM from
DivideMix [106]), eigenvector-based selection (FINE [91]), and our multi-view consen-
sus selection. We observe that our approach is the most efficient, being 4s faster than
small-loss and 20s faster than FINE. The reason is that our approach utilizes bit-wise
AND operation for three views to partition the large training set into multiple sub-
sets, which avoids multiple EM estimations. FINE performs the slowest because of the
complexity involved in estimating the eigenvectors for each class.

D.4 Ablation Study of Hyper-parameters K and λ

Table D.2 shows accuracy (%) on CIFAR100 instance-dependent noise as a function of
K and λ. We observe that the model accuracy is relatively robust to a wide range of
values of K and λ, but in general, accuracy drops when K increases and is stable as a
function of λ.
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CIFAR100 (Inst. Depend. Noise) 0.2 0.3 0.4 0.5
Paper result (K =3,λ=100) 76.02 74.02 68.96 60.35

K =5 75.8 73.9 68.3 58.8
K =10 74.7 72.5 67.5 57.7
K =20 74.3 71.5 65.8 56.4
λ=25 75.8 73.4 67.4 59.3
λ=50 75.6 73.3 68.5 60.2
λ=150 76.0 73.9 68.7 60.1

Table D.2: Test accuracy (%) on CIFAR100 instance-dependent noise hyper-parameter
sensitivity test. K is the top-K prediction and λ is unsupervised loss weight.
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Appendix E

GNL (Chapter 8) Appendix

E.1 Implementation details
In Tab. E.1, we describe the implementation details of our method for each dataset,
including the main reference for the respective baseline. In addition, for the Cloth-
ing1M, we sample 1000 mini-batches from the training set, where in every mini batch
we ensure that the 14 classes are evenly sampled to form a pseudo-balanced learning
problem. Also for Clothing1M, we first resize the image to 256 × 256 and then random
crop to 224 × 224 with random horizontal flipping. The number of epochs for warmup
is 10 for datasets containing 10 classes, and 15 for datasets containing 100 classes. For
Clothing1M, we run 1 epoch of warmup.

IDN CIFAR10/100 CIFAR10/100 N Red Mini-ImageNet Animal-10N Clothing1M
Baseline reference kMEIDTM [26] Real-world [203] FaMUS [216] Nested [25] CausalNL [220]
Backbone ResNet-34 ResNet-34 Pre-act ResNet-18 VGG-19BN ResNet-50 *
# Training epochs 150 120 150 100 40
Batch size 128 128 128 128 64
Learning rate 0.02 0.02 0.02 0.02 0.002
Weight decay 5e-4 5e-4 5e-4 5e-4 1e-3
LR decay at epochs 0.1/100 0.1/80 0.1/100 0.1/50 0.1/20
Data augmentation Random Crop / Random horizontal flip
β 0.9
K 1

Table E.1: Implementation detail of our method in each dataset. *: Uses ImageNet
pre-trained model.

E.2 Additional ablation study
In Tab. E.2, we perform a hyper-parameter sensitivity test for our method on CIFAR10-
IDN, including coverage and uncertainty for prior label construction. To test label
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CIFAR10
20% 30% 40% 50%

β = 0.9, K = 1 92.65 91.96 91.02 89.94

Hyper-parameter

β = 0.8 92.49 91.88 90.83 88.81
β = 0.7 91.55 90.87 90.62 88.40
β = 0.5 89.13 87.98 87.48 85.73
K = 3 92.30 91.83 90.83 89.75

Coverage
β = 0 84.57 81.59 68.88 61.47
argmax 20.19 18.56 16.09 15.26
No Cov 85.57 81.00 72.42 66.61

Uncertainty Uniform w 90.10 89.66 86.25 84.28
No Unc 84.96 83.19 81.88 78.38

Table E.2: Ablation study on hyper-parameter sensitivity, including β, K, coverage
and uncertainty.

coverage, we first examine the model performance as function of β ∈ {0.5, 0.7, 0.8, 0.9}
in Eq. 11, where the default value for β = 0.9. We observe that performance does
not change much for β ∈ {0.7, 0.8, 0.9}, which indicates our model’s robustness with
respect to that hyper-parameter. For β = 0.5, the performance drops significantly,
indicating that using a moving average with a relatively high value for β is important
for estimating model prediction and avoiding overfitting. We test K ∈ {1, 3} in Eq. 13
by sampling multiple times {ŷi,j}Kj=1 ∼ Cat(gθ(xi)). We observe no significant changes
to model performance with this higher value of K. Therefore, we choose K = 1 for
simplicity.

We also test our model by shutting down the moving average, either by making
β = 0 or by completely relying on the model’s current prediction, which is an experi-
ment denoted by "argmax" in Tab. E.2. Note that the model shows a major perfor-
mance drop in both cases. This happens because the model overfits to the inaccurate
model predictions, biasing the training procedure. Furthermore, argmax performs the
worst because inaccurate model prediction in prior label in the early stage, causing con-
firmation bias and leading to wrong optimisation goal. We also test our model without
using the coverage term ci in Eq. 10 – this experiment is denoted as “No Cov”. In this
case, the performance of the model drops significantly for all noise rates, compared to
the default model in the first row, which indicates the importance of having a coverage
term in our prior label construction.

Furthermore, we study the uncertainty aspect for the prior label construction. We
first experiment by setting wi to a uniform value (“Uniform w” row) instead of a GMM
weight that represents the probability that the sample is carrying a clean label. The
result is not competitive with the one that uses the GMM weight, which indicates the
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importance of having w representing a clean-label sample probability. We also test our
model without the uncertainty component ui in Eq. 10 (see row “No Unc”). This case
shows a significant performance drop in all noise rates.
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