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Abstract 

 Angus and Brahman cattle represent two economically important subspecies 

of cattle with contrasting phenotypes. The Angus cattle breed is representative of the 

taurine subspecies and has been bred for excellent meat production traits, and the 

Brahman cattle breed is representative of the indicine subspecies and has been bred 

for its ability to thrive in harsh conditions. Knowledge of genetic regulation is 

fundamental to our understanding of what causes these contrasting phenotypes in 

cattle breeds. Gene regulatory differences can arise because of genetic and epigenetic 

differences among the breeds, which can shed light on what contributes to the different 

phenotypes. Despite this knowledge being crucial to understanding how complex traits 

are controlled, relatively little is known about genetic and epigenetic regulatory 

differences between the cattle subspecies. This thesis investigated genetic and 

epigenetic differences between cattle subspecies by using Angus to represent taurine 

cattle and Brahman to represent indicine cattle in an effort to elucidate factors 

responsible for their distinct phenotypes. 

Enhancers are a key genetic regulatory element, but relatively little is known 

about this DNA element in the cattle genome. The performance of nine machine 

learning (ML) models and four DNA representations was evaluated to determine the 

best combination to predict enhancers across species to cattle using models trained on 

high-quality enhancers in human and mouse. To evaluate the usefulness of cross-

species prediction in general, the ML models were also applied to find pig and dog 

enhancers. For identifying enhancers in cattle, pig and dog, the combination of 

convolutional neural networks and one-hot encoding to represent the DNA sequence 

performed the best. They predicted a similar proportion of enhancers in these genomes 

as what has been estimated to be the proportion of enhancers in the human genome.  
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Whole genome bisulfite sequencing (WGBS) data was generated from 

Brahman, Angus and reciprocally crossed progeny using fetal liver samples to 

investigate differential methylation between the Brahman and Angus breeds. The 

reciprocal crosses were used to investigate the parent-of-origin effects on DNA 

methylation to determine what role dam and sire genetics had on the progeny's 

methylome. As breed-specific reference genomes are available for Brahman and 

Angus, the impact of reference genome choice was investigated to determine how this 

affects downstream analyses. The methylation analysis identified tens of thousands of 

differentially methylated regions (DMRs) that were breed-specific and parent-of-

origin-specific. One of the DMRs may be controlling the expression of Dgat1 in a 

breed and sire-of-origin manner. Genome comparison revealed around 75% of CpGs 

were shared between Brahman and Angus, with around 5% (~one million CpGs) being 

breed-specific. Moreover, single nucleotide polymorphisms (SNPs) and structural 

variants (SVs) between Brahman and Angus were 8-fold (p-value < 0.05) and 1.13-

fold (p-value < 0.05) higher in CpGs, respectively, and a quantification bias of 2% 

was observed when the incorrect reference genome was used for analysis.  

MicroRNA (miRNA) expression data was generated from the same samples 

that were used to generate WGBS data. This expression data was used to identify 

differentially expressed, breed-specific and parent-of-origin-specific miRNAs. 

Fourteen differentially expressed miRNAs (DEMs) were observed between the 

breeds, with the dam-of-origin and sire-of-origin comparisons identifying one and five 

DEMs, respectively. Genes that were predicted to be targets of the DEMs were 

significantly (p-value <0.05) more likely to be differentially expressed than genes not 

predicted to be targets of the DEMs. The expression of these miRNAs was then 
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correlated with mRNA expression from the same samples and used to identify gene 

regulatory pathways that may be under microRNA control. MiRNAs that may be 

involved in regulating heat tolerance in Brahman and fat gain in Angus were 

identified, as well as a series of signalling pathways that, through differential gene 

regulation, may contribute to phenotypic differences between Brahman and Angus 

cattle. 

 Overall, this thesis identified genetic and epigenetic regions of interest 

between Brahman and Angus that can help shed light on the causes of the contrasting 

phenotypes observed between Brahman and Angus cattle. This information will 

benefit future functional studies that look to pinpoint causative elements controlling 

these traits. 
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Thesis Introduction 

Australian beef is regarded as some of the best in the world, which is partly 

thanks to years of research conducted in breed improvement. The Australian beef herd 

comprises several different breeds, with Brahman and Angus cattle making up a 

substantial proportion of the total herd. Brahman is a beef breed and a member of the 

Bos taurus indicus subspecies of cattle that is known for its heat and disease tolerance 

and its ability to maintain productivity in harsh conditions with low-quality feed. 

Angus is another beef breed that is a member of the B. taurus taurus subspecies and 

is known for its high-quality beef, good intramuscular fat content, fertility, and quick 

maturity. Brahman and Angus cattle have opposing phenotypes; Brahman cattle thrive 

in hot climates, whereas Angus cattle struggle to maintain productivity in the same 

conditions. Angus cattle mature quickly, while Brahman cattle mature much more 

slowly. Angus cattle produce tender, high-value beef; conversely, Brahman cattle tend 

to produce tougher, lower-quality beef. Despite being separate subspecies, Brahman 

and Angus cattle remain sexually compatible and can produce fertile offspring. Many 

composite breeds have been established based on different combinations of Brahman 

and Angus genetics. However, the exact genetic and epigenetic mechanisms 

underpinning their contrasting phenotypes have yet to be fully understood. Therefore, 

this project aimed to investigate and identify the genetic and epigenetic differences 

between Brahman and Angus cattle that may contribute to their contrasting 

phenotypes. 

 

Changes in gene expression drive phenotypic differences between cattle 

breeds. One key regulator of gene expression are enhancers but very little is known 

about this important class of cis-regulatory element. Substantial volumes of data have 
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been generated to identify and validate enhancers throughout the human and mouse 

genomes. The increased interest in machine learning for enhancer prediction, 

particularly across species, coupled with high-quality data sets describing these 

genetic elements, means there is an opportunity to leverage these tools and data to 

improve our understanding of where enhancers are within the cattle genome and how 

these elements may be controlling gene expression. Additionally, given the ability of 

Brahman and Angus to produce hybrid offspring, there is an opportunity to investigate 

not only the effect that breed has on the gene expression of the progeny but also how 

the genetics of the sire and dam individually influences gene regulation in the progeny.  

 

This thesis first evaluates enhancer prediction models and then uses the best 

one to identify enhancers genome-wide in the cattle reference genome. This evaluation 

was performed to provide an improved genome annotation for cattle. It then compares 

DNA methylation differences between Brahman and Angus around a variety of 

genomic features including the predicted enhancers, to identify associations between 

DNA methylation and regions of interest associated with breed and parent-of-origin 

differences. Finally, this thesis examines miRNA expression differences between the 

breeds and parent-of-origin groups to determine whether any associations between 

miRNA expression and breed differences exist. By comparing these genetic and 

epigenetic differences between Brahman, Angus and reciprocally crossed progeny 

liver samples, there is an opportunity to identify regions of interest that may contribute 

to the contrasting phenotypes of these two breeds. 
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Thesis Structure 

 This thesis contains six chapters comprised of a general thesis introduction 

(Chapter 1), a review of the literature (Chapter 2), three research chapters in 

publication format (Chapters 3-5), one of which has been published (Chapter 3) and 

another one (Chapter 4) is currently under review with a journal. Lastly, it concludes 

with a general discussion (Chapter 6). An overview of the thesis is presented in Figure 

1.1. 

 

 The literature review chapter, Chapter 2, aims to introduce the reader to the 

main themes of the thesis; the evolutionary history of Brahman and Angus cattle, the 

role of enhancers, DNA methylation and microRNAs in gene regulation and what is 

known about them in cattle. It also introduces the reader to the concept of the “genetics 

of epigenetics” and the potential applications of the thesis to the beef industry in 

Australia. 

 

 In Chapter 3, a published research paper (MacPhillamy et al. 2022, Genomics) 

evaluated the performance of machine learning models in cross-species enhancer 

prediction was evaluated. This chapter involved testing several different machine-

learning models and DNA representations first on human and mouse enhancer data 

and then applying them to predict enhancers in three less well-studied mammalian 

species, specifically cattle, pig and dog. The results of this chapter suggest that 

machine learning models can identify enhancers in these species better than random 

chance. Furthermore, machine learning models predicted a similar proportion of 

enhancers within the genome of these three species as what has been predicted by 

ENCODE for the human genome. 
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 The reduction in sequencing costs has led to a substantial increase in breed-

specific genomes. However, the impact this has on downstream analyses, particularly 

of DNA methylation, which is susceptible to mutations between breeds, has not been 

well characterised. In Chapter 4 (currently under review with BMC Biology), whole 

genome bisulfite sequencing (WGBS) data generated from Brahman, Angus and 

reciprocally crossed progeny liver samples was used to investigate DNA methylation 

differences between the two breeds, including at enhancer sites identified in Chapter 

3. WGBS reads were mapped to the reference genomes of Angus and Brahman to 

determine what impact the incorrect reference genome had on methylome analysis, as 

well as determine regions of differential methylation between the two breeds. 

Additionally, including reciprocal crosses enabled the elucidation of parent-of-origin-

specific effects on DNA methylation. This chapter identified a small but significant 

quantitative bias introduced when mapping WGBS data to the incorrect reference 

genome and identified DMR that may be regulating Dgat1, a gene important for fat 

metabolism, in a breed and sire-of-origin-specific manner. 

 

 Following on from Chapter 4, the microRNA expression differences between 

Brahman, Angus and reciprocally crossed progeny were investigated to determine 

biological pathways that may be regulated by differentially expressed and breed-

specific microRNAs (Chapter 5). MicroRNA expression correlated with mRNA 

expression and identified several microRNAs that may regulate genes involved in heat 

tolerance in Brahman cattle and fat gain in Angus cattle. 
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 The final chapter presents a summary of the thesis and offers directions for 

future research. Specifically, it discusses how Chapters 3,4 and 5 could be used in 

genomic prediction now and what further research would be needed to improve their 

utility in genomic prediction tasks. 

 

 

Figure 1.1 – Overview of thesis structure. 
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Chapter 2: Literature Review 
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Introduction 

 The taurine and indicine cattle subspecies possess contrasting phenotypes, with 

Angus and Brahman cattle being two economically important cattle breeds that are 

representative of these distinct subspecies, respectively. Understanding the gene 

regulatory differences between these two cattle breeds is crucial to understanding what 

might be driving these distinct phenotypes. The first step in understanding what might 

be causing phenotypic differences between the two breeds is to investigate their gene 

expression differences. While this will provide insight into what genes might be 

responsible for breed differences, it is also necessary to gain an understanding of what 

is driving those gene expression differences. Both genetic and epigenetic differences 

can alter gene expression between Angus and Brahman cattle. Genetic elements 

known to regulate gene expression are enhancers and microRNAs (miRNAs), and 

DNA methylation is a well-known epigenetic modifier of gene expression. 

 

 This literature review introduces the central theme of this thesis – investigating 

the genetic and epigenetic differences between Brahman and Angus cattle to shed light 

on possible causes of phenotypic differences in important traits like heat tolerance and 

meat quality. This thesis builds on recent work that has investigated gene expression 

differences between Brahman and Angus cattle (Liu et al. 2021). Specifically, this 

thesis details the use of machine learning techniques and enhancer data from well-

studied species like human and mouse to identify enhancers in cattle. Additionally, 

whole-genome bisulfite sequencing (WGBS) and miRNA sequencing were performed 

to investigate DNA methylation and miRNA expression differences between Brahman 

and Angus cattle. This literature review provides an overview of the evolutionary 

history of taurine and indicine cattle, the role of enhancers in gene regulation, machine 
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learning techniques used in genomics for enhancer prediction, the role of DNA 

methylation in gene regulation, and finally, the role of miRNAs in modulating gene 

expression patterns. 

 

The evolutionary history of taurine and indicine cattle  

It is widely believed that the two main lineages of modern cattle breeds arose 

from two separate domestication events of the wild auroch (Bos primigenius) 

(McTavish et al. 2013). The first domestication event occurred in the Fertile Crescent 

approximately 10,000 years ago and gave rise to Bos taurus taurus from the wild 

auroch, B. p. primigenius (Bruford et al. 2003; Ajmone-Marsan et al. 2010; MacHugh 

et al. 2017). A more recent, subsequent domestication event occurred in the Indus 

Valley approximately 1,500 years later and involved B. p. nomadicus, which itself 

separated from the B. p. primigenius around 250-330,000 years ago (Loftus et al. 

1994). This second domestication event gave rise to Bos taurus indicus. The 

subspecies are herein referred to as taurine and indicine cattle, respectively, where the 

Angus breed is representative of taurine cattle, and Brahman is representative of 

indicine cattle.  

 

Angus and Brahman have contrasting phenotypes. Angus cattle have been bred 

for meat production and growth traits (Elzo et al. 2012; Low et al. 2020), shorter 

gestation length and lower calving difficulty (Casas et al. 2011). In contrast, Brahman 

cattle have superior heat and disease tolerance traits and can subsist on low-quality 

feed but mature more slowly (Dikmen et al. 2018; Goszczynski et al. 2018). Despite 

these phenotypic differences, the Angus and Brahman genomes differ by ~1% when 

measured by single nucleotide polymorphisms (SNPs) (Koren et al. 2018). This 
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relatively high genetic similarity but divergent traits suggests the possibility that a 

combination of genetic and epigenetic differences between the two breeds contribute 

to their distinct phenotypes. 

 

The role of enhancers in gene regulation 

Enhancers are short (100-1000bp) sequences of non-coding DNA that activate 

the expression of target genes by recruiting transcription factors (TFs) (Claringbould 

& Zaugg 2021), RNA polymerase II and forming a loop with the target promoter 

(Panigrahi & O’Malley 2021). The role of enhancers in gene regulation is well-

characterised in species like human and mouse, especially in the context of disease. 

For example, a study of limb development in mice observed limb malformations 

caused by the Epha4 enhancer when a topologically associating domain boundary was 

removed, allowing Epha4 to target genes in both domains leading to ectopic 

expression (Lupiáñez et al. 2015). Another example is seen where mutations within 

the Ptf1a enhancer have been observed to cause isolated pancreatic agenesis, where 

the pancreas fails to develop in utero (Weedon et al. 2014). There are further examples 

in cattle, with an investigation of the genetic causes of cholesterol deficiency in dairy 

cattle revealing possible enhancer activity introduced by a long-terminal repeat 

(Becker et al. 2022). Another study observed a putative enhancer contained within a 

12kb copy number variant (CNV) associated with clinical mastitis resistance, milk 

yield and fertility in dairy cattle (Lee et al. 2021). These examples highlight the vital 

role enhancers play in orchestrating complex gene expression patterns, such as those 

required during limb development. Furthermore, the examples in cattle highlight the 

need to understand the locations of enhancers within the cattle genome. For example, 

by identifying a possible enhancer associated with mastitis resistance and milk yield, 
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Lee et al. (2021) have provided a possible causative region for contrasting phenotypes 

within a dairy herd. This example and that of Becker et al. (2022) highlight why it is 

important to identify these regions within the cattle genome, as they can shed light on 

how different phenotypes are controlled. 

 

Challenges in identifying enhancers 

While it is clear enhancers have a critical role in maintaining the correct gene 

regulatory framework of an organism, they remain a challenging genomic element to 

identify. Unlike promoters which exist immediately upstream of their target gene 

(Khambata-Ford et al. 2003), the genomic position of an enhancer is not indicative of 

the gene it targets. Enhancers have been found to target genes in any orientation, up 

or downstream of their location (Banerji et al. 1981), up to one million base pairs away 

(Lettice et al. 2003), and even on different chromosomes (Geyer et al. 1990; 

Lomvardas et al. 2006). Moreover, enhancers can act in a tissue- and time-point-

specific manner (Lupiáñez et al. 2015; De Vas et al. 2023), further complicating their 

identification. Despite their elusive nature, enhancers are often associated with open 

chromatin, and so assays like assay of transposase accessible chromatin and 

sequencing (ATAC-seq), DNase I hypersensitivity sequencing (DNase-seq), 

micrococcal nuclease sequencing (MNase-seq), and formaldehyde-assisted isolation 

of regulatory elements sequencing (FAIRE-seq) can be used to identify putative 

locations of enhancers (Cao et al. 2021). Furthermore, assays like chromatin 

immunoprecipitation and sequencing (ChIP-seq), targeting H3K27ac and H3K4me1, 

can also be used to identify active enhancers (Heintzman et al. 2007; Heintzman & 

Ren 2009; Creyghton et al. 2010; Rada-Iglesias et al. 2011). 
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Enhancers in cattle 

Relatively little is known about enhancers in cattle compared to human and 

mouse and there are several enhancer databases available for human and mouse (Visel 

et al. 2007; Andersson et al. 2014; Fishilevich et al. 2017; Wang et al. 2018; Gao & 

Qian 2019; Consortium et al. 2020). However, none currently exist for cattle, despite 

more and more studies being completed aimed at identifying these regions (Alexandre 

et al. 2021; Cao et al. 2021; Forutan et al. 2021; Kern et al. 2021; Prowse-Wilkins et 

al. 2021; Prowse-Wilkins et al. 2022). While the increasing number of studies 

investigating enhancers in cattle is valuable to the community, some breeds such as 

those of indicine origin lack information on enhancers. As more breed-specific cattle 

genomes become available, there is an increasing need for tools that can identify 

enhancers within all cattle breeds as well as other livestock species. 

 

Machine learning for enhancer prediction 

 Several methods have emerged to leverage the plethora of data available in 

model organisms like human and mouse to try and accelerate our understanding of 

where enhancers might be within the cattle genome. Recently, machine learning has 

emerged as a powerful tool for predicting enhancers from the DNA sequence alone 

(Firpi et al. 2010; Fletez-Brant et al. 2013; Ghandi et al. 2016; Liu et al. 2016; Liu et 

al. 2018; Nguyen et al. 2019; Kelley 2020; Cai et al. 2021; Inayat et al. 2021; Yang 

et al. 2021b; Zeng et al. 2021; Butt et al. 2022). Unfortunately, many of these studies 

have focused on predicting enhancers within the human genome, with few examining 

their performance in predicting enhancers from human or mouse to less well-studied 

species (Chen et al. 2018; Minnoye et al. 2020; Hong et al. 2021). Furthermore, none 

have evaluated models and different DNA representations in identifying enhancers 
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within the cattle genome. Given their important role in regulating gene expression, the 

volume of enhancer data available in human and mouse, and the multitude of machine 

learning methods developed for enhancer prediction, there is an opportunity to 

evaluate which machine learning method is best suited to identify these essential 

regulatory regions within the cattle genome. 

 

DNA methylation and its role in gene regulation 

Epigenetic modifications like DNA methylation are heritable components that 

alter the accessibility of the genome to transcriptional machinery without changing the 

underlying sequence (Handy et al. 2011). DNA methylation is perhaps the most 

studied epigenetic modification, with vital roles in regulating gene expression, 

repression of transposable elements, and parental chromosome-specific regulation 

through genomic imprinting and X-chromosome inactivation (Li & Zhang 2014; Jansz 

2019). DNA methylation within the mammalian genome typically refers to the 

methylation of a cytosine-phosphate-guanine (CpG) dinucleotide (Ramsahoye et al. 

2000; Ziller et al. 2011). DNA methylation in the CpG context is by far the most 

common in mammals (Ramsahoye et al. 2000; Ziller et al. 2011), though it should be 

noted that other methylation contexts (CH and CHH, where H = A, C, T) are being 

increasingly examined for their role in neuronal development (Xie et al. 2012; Guo et 

al. 2014). DNA methylation involves the transfer of a methyl group to the C5 position 

of the cytosine to form 5-methylcytosine (Moore et al. 2013). Regardless of the 

methylation context, DNA methylation is known mainly as a repressive epigenetic 

modification, with regions showing a high degree of methylation (hypermethylation) 

being transcriptionally inactive and those with lower methylation (hypomethylation) 

being active (Razin & Cedar 1991; Bird 2002; Bommarito & Fry 2019). DNA 



 14 

methylation can inhibit gene expression through indirect and direct mechanisms. 

Indirect inhibition occurs when methylated DNA is preferentially bound by proteins 

that contain a methylated DNA binding domain which then physically blocks the 

binding of TFs (Hendrich & Bird 1998; Bird & Wolffe 1999). The direct mechanism 

with which DNA methylation induces gene silencing is by altering the TF binding site, 

whereby the addition of the methyl group to the cytosine directly blocks the binding 

of TFs leading to gene silencing (Bird 2002). Hence, DNA methylation can lead to 

phenotypic differences among individuals through the differential repression of 

transcription. 

 

DNA methylation in cattle 

Given that DNA methylation has a role in silencing gene expression, 

differential methylation between Brahman and Angus may shed light on epigenomic 

changes responsible for the contrasting phenotypes observed between these two 

breeds, with DNA methylation implicated in several cattle traits. For example, a study 

comparing DNA methylation levels between tender and tough meat from indicine 

cattle revealed higher levels of DNA methylation around the GNAS complex locus 

(GNAS) and EBF transcription factor 3 (Ebf3) gene in the tender group (de Souza et 

al. 2022). The authors posit that differences in methylation between the tough and 

tender groups affecting the G protein signalling pathway and Ebf3 gene, both of which 

are involved in muscle homeostasis, may be contributing to the differences in meat 

tenderness. Similarly, a comparison of heat stress response between Angus (taurine) 

and Nellore (indicine) revealed that genes and pathways involved in stress response 

and cellular defence were more often hypomethylated and, thus, active, in Nellore 

cattle compared to Angus cattle (Del Corvo et al. 2021). Together, these examples 
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highlight how investigating DNA methylation differences between contrasting 

phenotypes can be used to identify regions of interest that may be contributing to the 

trait of interest. 

 

Breed and parent-of-origin effects 

 Breed effects, as the name suggests, are those associated with a particular 

breed, and for offspring to have those effects, both parents must be from the same 

breed or genetic background. Parent-of-origin effects (POEs), on the other hand, are 

those associated with the genetics of either the mother or the father and the phenotype 

observed in the offspring depends on which parent contributed the allele (Lawson et 

al. 2013). An example of POEs would be if the progeny of an Angus dam and Brahman 

sire had the same muscle amount at birth as offspring born to an Angus dam and bull. 

It has been reported that maternally inherited genes disproportionately contribute to 

myofiber development in reciprocally crossed Angus and Brahman cattle (Xiang et al. 

2013), suggesting that the breed of the dam is an important determinant of myofiber 

development, regardless of the breed of the sire. Similarly, a recent study of the effect 

of sire breed on meat quality found that sire breed significantly impacts meat quality 

(Cafferky et al. 2019), suggesting sire genetics are important for meat traits, regardless 

of the dam’s genetics. These examples illustrate the importance of considering not 

only how the breed's genetics affects traits but also how the genetics of a particular 

parent can affect traits. 

 

Genetics of epigenetics 

 As DNA methylation often occurs in the CpG context, a single nucleotide 

variant (SNV) can completely erase a methylation site. Moreover, the spontaneous 
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deamination of a methylated CpG to a TpG is the most common dinucleotide mutation 

in the mammalian genome (Żemojtel et al. 2011; Yang et al. 2021a), and has even 

been suggested to produce novel transcription factor binding sites with high-efficiency 

(Żemojtel et al. 2011). This spontaneous deamination is significant when trying to 

evaluate genome-wide methylation levels of an individual due to the possibility that 

an individual loses CpG sites relative to the reference. This results in a locus being 

classified as unmethylated when it has no ability to be methylated. Structural variants 

(SVs) can also add or remove CpG sites, further impacting DNA methylation. These 

sequence variants can complicate epigenomic analyses, as sequencing reads may not 

map unambiguously, leading to spurious estimates of DNA methylation. Additionally, 

the loss of CpG in Brahman compared to Angus may be erroneously reported as a 

differentially methylated site when no shared methylation site exists between the two 

breeds. Lastly, in cases where individuals possess an insertion SV that introduces CpG 

sites, sequencing reads originating from this region may not be correctly mapped to 

the reference, leading to inaccurate estimates of DNA methylation. These examples 

are used to demonstrate how the changing, addition or removal of sequence (genetics) 

can impact the methylation (epigenetics) status of that region and thus illustrates the 

“genetics of epigenetics”. 

 

MicroRNAs and their role in gene regulation 

 MiRNAs are a class of small (~22bp) non-coding RNA that can have major 

impacts on gene expression via post-transcriptional gene silencing (Kim et al. 2008; 

Ha & Kim 2014; O'Brien et al. 2018). MiRNAs are strongly implicated in a diverse 

array of biological processes, such as metabolism (Rottiers & Näär 2012) and 

responding to the external environment (Vrijens et al. 2015; Liu et al. 2020). It is 
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generally accepted that miRNAs are conserved across species (Macfarlane & Murphy 

2010), though there are also species- and tissue-specific miRNA expression patterns 

(Jopling 2012; Sun et al. 2014). MiRNAs control gene expression via Watson-Crick 

base pairing between the miRNA-induced silencing complex (miRISC) and the three 

prime untranslated region (3’UTR) of the mRNA target (Eulalio et al. 2008; Bartel 

2009; Fabian et al. 2010). The degree of complementarity between the miRNA and 

mRNA determines what silencing mechanism will be used, i.e., complete 

complementarity leads to mRNA cleavage, and partial complementarity leads to 

translational repression (Jo et al. 2015). This tolerance for incomplete base pairing 

gives a single miRNA the ability to target multiple mRNAs and thus also means a 

single mRNA can be targeted by numerous miRNAs (Peterson et al. 2014). 

Furthermore, SNVs have been demonstrated to alter miRNA-mRNA target specificity 

(Sun et al. 2009). The role of miRNAs in modulating a diverse array of biological 

processes, the ability of a single miRNA to target multiple mRNAs and the potential 

for SNVs to alter miRNA-mRNA target specificity highlights the importance of 

understanding miRNA expression differences between contrasting phenotypes, like 

those exhibited by Brahman and Angus cattle. 

 

MicroRNAs in cattle 

 Many studies have investigated the role of miRNAs in gene regulation in cattle 

(Huang et al. 2011; Muroya et al. 2013; Li et al. 2014; Sun et al. 2014; Sengar et al. 

2018; Gao et al. 2020; Kumar et al. 2021; Pacífico et al. 2022). Some examples 

include a recent study that compared rumen epithelial response to dietary changes and 

observed eight differentially expressed miRNAs between forage diet and high-grain 

diet, with an enrichment of genes associated with tricarboxylic acid and short-chain 
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fatty acid metabolism (Pacífico et al. 2022). Another study identified circulating 

plasma miRNAs that were correlated with health, welfare and production performance 

traits like fertility and telomere length (Ioannidis et al. 2018). However, few have 

examined them in the context of differences between B. taurus and B. indicus. Deb 

and Sengar (2021) investigated miRNA expression differences between an indicine 

breed (Sahiwal) and an indicine-taurine hybrid (Frieswal) in response to heat 

tolerance. Similarly, Dong et al. (2023) investigated differential miRNA expression 

between Mongolian (taurine) and Hainan (indicine) cattle testes. While this was a 

comparison of taurine and indicine cattle, the tissue used is only likely to reflect 

fertility differences between the two subspecies. Despite miRNAs being relatively 

well studied in cattle, a comparison between taurine and indicine cattle using an 

essential metabolic organ like the liver is yet to be made. Given the role of the liver in 

many production traits, an investigation into the miRNA expression profiles of this 

organ can shed light on the causes of gene regulatory differences driving the 

contrasting phenotypes of Brahman and Angus cattle. 

 

Contrasting phenotypes first appear in utero 

Fetal development is a complex process that relies on the careful orchestration 

of gene expression. This orchestra is conducted via genetics and epigenetics like 

enhancers, DNA methylation and non-coding RNAs, such as miRNAs (Zhu et al. 

2021). Extensive epigenetic reprogramming occurs in the transition from 

differentiated gametes to a totipotent embryo (Zhu et al. 2021). Once the pregnancy 

has been established, the growth rate is generally linear until around day 153 (~5 

months), when it takes on a log form (Reynolds et al. 1990; Krog et al. 2018); this is 

comparable to humans (Kiserud et al. 2017), which share a similar gestation period to 
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cattle. It is at this time point that phenotypic differences between breeds first appear 

(Xiang et al. 2013). Furthermore, several developmental processes important to beef 

cattle are underway at this time point, specifically, secondary myogenesis and 

adipogenesis.  

 

Myogenesis is the formation of muscle cells which begins during the 

embryonic stage of life and is crucial to meat breeds like Brahman and Angus as there 

is no increase in the number of muscle fibres after birth (Stickland 1978; Zhu et al. 

2006). Secondary myogenesis is underway at day 153 (Du et al. 2010), and this is 

where the bulk of skeletal muscle fibres are created (Beermann et al. 1978). 

Additionally, adipogenesis begins around this developmental stage (Du et al. 2010). 

Adipogenesis is the formation of adipocytes, is crucial to the palatability and value of 

the meat, and it differs from myogenesis in that while it starts in utero, the number of 

adipocytes continues to grow until around 250 days post birth (Du et al. 2015). As 

these critical processes begin in utero and phenotypic differences are observable at 

this time point (Xiang et al. 2013), investigating genetic and epigenetic differences 

between Brahman and Angus at day 153 has the potential to illuminate what gene 

regulatory differences may be occurring between these two breeds. 

 

Potential applications for the beef industry 

The beef cattle industry in Australia contributes ~$23.1 billion to the national 

economy (MLA 2022). Forecasts suggest that domestic utilisation of beef products 

will increase from 597,000 tonnes in 2023 to 633,000 tonnes by 2025, with beef 

consumption per capita in Australia expected to increase over the same period (MLA 

2023). The national beef herd is broadly split into two regions, the Northern and 
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Southern herds. The Northern herd is predominantly made up of tropically adapted 

cattle like Brahman, where they are favoured for their hardiness, heat tolerance and 

ability to thrive on low-quality feed but produce low-value meat as a result (PwC 

2011). Also present in the Northern herd are indicus-taurine crosses and composite 

breeds. Conversely, the Southern herd comprises European breeds like Angus, where 

the higher quality feed and more moderate climates allow the cattle to gain weight 

quickly and produce high-value beef (PwC 2011). The inability of these European 

breeds to maintain production in adverse conditions is a substantial concern to the beef 

industry, as high-quality beef is required to maintain the economic value of the 

industry. As a result, there is a need to understand how traits like heat tolerance, fat, 

and muscle gain are differentially regulated in these breeds. Improving our 

understanding of how these traits are controlled in the pure-bred animals will benefit 

efforts to create efficient hybrid animals. This understanding of the underlying biology 

will potentially help the industry maintains and improve productivity in increasingly 

unstable markets and climates. 

 

Scope and aims of this thesis 

This thesis presented an opportunity to investigate possible genetic and 

epigenetic differences between Brahman and Angus cattle at a critical developmental 

time point that could shed light on the gene expression differences that give rise to the 

distinct phenotypes. Questions raised and discussed in this thesis included: 

 

1. Can human and mouse enhancer data be used to develop a machine-learning 

model to predict enhancers in cattle? 
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There is an opportunity to evaluate and compare numerous machine-learning 

models and DNA representations to determine the best combination for accurate 

cross-species enhancer prediction. In this thesis, I compared nine machine-

learning models and four DNA representations. I evaluated their cross-species 

enhancer prediction performance using a highly curated enhancer dataset from 

human and mouse and publicly available ChIP-seq data for cattle, pig, and dog 

(Chapter 2). Pig and dog were selected to assess the models’ performance on a 

variety of mammalian genomes, as well as to provide a least three replicates to 

ensure performance on the cattle genome was not an anomaly. This chapter aimed 

to determine how well enhancers could be predicted from one species to another 

to help elucidate the genomic location of possible regulatory elements. 

 

2. Do DNA methylation differences between the breeds and parent-of-origin 

comparisons during a critical developmental time point reveal regulatory 

regions that may relate to phenotypic differences between Brahman and 

Angus? 

 

Key developmental pathways like myogenesis and adipogenesis are underway at 

day 153 in Brahman and Angus. These pathways are responsible for many of the 

desirable carcass traits in these breeds. Understanding what DNA methylation 

differences exist between Brahman and Angus at this developmental timepoint can 

shed light on possible causes of phenotypic differences that are observed between 

Brahman and Angus adults. Furthermore, investigating parent-of-origin effects 

and their role in contributing to differential methylation of important regulatory 
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regions can shed light on the importance of parental genetics in contributing to the 

progeny’s phenotype (Chapter 3). 

 

3. Does differential miRNA expression between breeds and parent-of-origin 

group comparisons during a critical developmental time point reveal 

candidate miRNAs that could contribute to phenotypic differences? 

 

MiRNAs are known to play a critical role in fine-tuning the expression of genes 

related to important developmental pathways during fetal development. 

Understanding what miRNAs are differentially expressed between breeds can shed 

light on post-transcriptional gene regulation that may influence breed differences 

between Brahman and Angus. Moreover, investigating parent-of-origin effects and 

whether this contributes to differential miRNA expression may shed light on the 

importance of parental genetics in contributing to the phenotype of the offspring 

(Chapter 4). 
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Contextual Statement 

 

Many machine learning tools have been developed to identify enhancers within 

the genome from DNA sequence alone. A subset of these have then been applied to 

the task of predicting enhancers across species. However, these comparisons have 

often focused on well-studied species like human and mouse. Few studies have 

investigated the performance of machine learning techniques in predicting enhancers 

across less well-studied species. Similarly, no previous study has evaluated different 

ways of representing the DNA sequence for machine-learning models in this context. 

Thus, this study aimed to evaluate both machine-learning models and DNA sequence 

representations for machine learning in the context of predicting enhancers in three 

relatively understudied species. This study compared nine machine learning models 

and four DNA representations for machine learning to determine which combination 

offered the best performance in predicting enhancers across species. The ultimate goal 

of this study was to determine which model would be best for predicting enhancers in 

the cattle genome. This chapter has been published in the journal Genomics and is 

available at: https://doi.org/10.1016/j.ygeno.2022.110454  
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Abstract 

Cis-regulatory elements (CREs) are non-coding parts of the genome that play 

a critical role in gene expression regulation. Enhancers, as an important example of 

CREs, interact with genes to influence complex traits like disease, heat tolerance and 

growth rate. Much of what is known about enhancers come from studies of humans 

and a few model organisms like mouse, with little known about other mammalian 

species. Previous studies have attempted to identify enhancers in less studied 

mammals using comparative genomics but with limited success. Recently, Machine 

Learning (ML) techniques have shown promising results to predict enhancer regions. 

Here, we investigated the ability of ML methods to identify enhancers in three non-

model mammalian species (cattle, pig and dog) using human and mouse enhancer data 

from VISTA and publicly available ChIP-seq. We tested nine models, using four 

different representations of the DNA sequences in cross-species prediction using both 

the VISTA dataset and species-specific ChIP-seq data. We identified between 809,399 

and 877,278 enhancer-like regions (ELRs) in the study species (11.6-13.7% of each 

genome). These predictions were close to the ~8% proportion of ELRs that covered 

the human genome. We propose that our ML methods have predictive ability for 

identifying enhancers in non-model mammalian species. We have provided a list of 

high confidence enhancers at https://github.com/DaviesCentreInformatics/Cross-

species-enhancer-prediction and believe these enhancers will be of great use to the 

community. 

 

 

https://github.com/DaviesCentreInformatics/Cross-species-enhancer-prediction
https://github.com/DaviesCentreInformatics/Cross-species-enhancer-prediction
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Introduction 

The genome is approximately 98% non-coding. These regions contain cis-

regulatory elements (CREs) including enhancers, promoters, silencers, and insulators, 

which play crucial roles in gene expression and regulation. These effects occur through 

increasing the likelihood of transcription starting (enhancer), aiding the binding of 

transcription factors (promoter), the binding of repressors to suppress or stop gene 

transcription (silencer) and blocking of enhancers and acting as a barrier (insulators).  

 

Complex interactions between enhancers and gene promoters have been shown 

to play a critical role in limb disorders like polydactyly (Lettice 2003; Lupiáñez et al. 

2015), various cancers (Northcott et al. 2014; Weischenfeldt et al. 2017; Helmsauer 

et al. 2020), diabetes (Onengut-Gumuscu et al. 2015) and many other diseases, 

reviewed in 2021 (Claringbould & Zaugg 2021). There are many ways enhancers 

influence disease traits and at least three different scenarios can occur. A deletion in 

the boundary between two topologically associating domains (TADs) allows an 

enhancer to interact with developmental genes aberrantly, leading to polydactyly 

(Lupiáñez et al. 2015). Enhancer hijacking has been implicated in disease 

development (Ooi et al. 2020; Wang et al. 2021b). These enhancer hijacking events 

occur when a structural variation (SV) juxtaposes an enhancer next to cancer-

associated genes, contributing to the abnormal expression of those genes (Wang et al. 

2021b). Finally, single nucleotide polymorphisms (SNPs) associated with a complex 

disease trait like Type 1 diabetes have been found to be enriched in enhancer regions 

that are active in thymus, CD4+, CD8+, CD34+, B and T cells (Onengut-Gumuscu et 

al. 2015), suggesting enhancers play a crucial role in this autoimmune disease. These 

examples highlight some of the diverse functions enhancers have in complex traits. 
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Given this, it is likely that enhancers also have an essential role in complex production 

and fitness traits such as weight gain, milk yield, heat tolerance and disease in 

mammals.  

 

Despite the importance of enhancers, relatively little is known about their 

identities and locations within mammalian genomes outside of human and model 

rodents. Mammalian livestock species like cattle and pig are important factors in both 

developing and developed nation economies for food security and international trade. 

As such, there is a need to know more about enhancers in mammalian livestock to 

better understand the genetic regulatory changes that are associated with productivity 

traits. Several studies have identified histone modifications often associated with 

enhancers in livestock species, such as cattle (Villar et al. 2015; Fang et al. 2019; Kern 

et al. 2021; Prowse-Wilkins et al. 2021) and pig (Kern et al. 2021; Pan et al. 2021; 

Zhao et al. 2021). These studies have used ChIP-seq to target H3K27ac and 

H3K4me1, two well-documented histone modifications associated with enhancers 

(Heintzman et al. 2007; Heintzman & Ren 2009; Creyghton et al. 2010; Rada-Iglesias 

et al. 2011). While these studies provide valuable insight into the possible location of 

enhancers in livestock, they are costly to perform and still require considerable effort 

and capital to determine whether those regions have actual enhancer function, i.e. 

proven to have a regulatory effect as assessed in transgenic mice (Visel et al. 2007). 

Identifying such enhancer regions would be immensely valuable to the livestock 

community as linking enhancers to genes, SNPs, SVs, or other regions of interest 

would provide valuable insight into how complex production and fitness traits are 

controlled. As no mammalian livestock species currently has a highly curated set of 

enhancers, there is an opportunity to leverage the high-quality data from human and 
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mouse to develop tools for cross-species prediction. Success has been seen in adopting 

this approach to predict enhancers genome-wide in the human genome (Ghandi et al. 

2014; Min et al. 2017; Li et al. 2018). Some human and mouse enhancer data, such as 

that available in VISTA (Visel et al. 2007), have been curated to the level that 

transgenic mice were used to evaluate the enhancer regulatory effect on gene 

expression. The use of human and mouse enhancers for cross-species prediction of the 

same feature should improve our understanding of this important regulatory element 

in livestock species.  

  

There are three main ways to identify enhancers across species; comparative 

genomics, motif searching and examining the statistical features of the sequence. A 

straightforward method that uses a comparative genomics approach is to take a 

sequence known to be an enhancer in one genome and align it to the genome of interest 

(Erives & Levine 2004; Hare et al. 2008). While this approach would likely work for 

highly conserved enhancers, it is unlikely to be sensitive enough to capture those that 

are less conserved. Motif searching is another method that can be used when the 

sequence has conserved motifs (reviewed in Boeva (2016)), such as promoters that 

often have the highly conserved ‘TATA’ box.  While this will likely work for 

identifying gene promoters, enhancers are more divergent between species (Villar et 

al. 2015; Yang et al. 2015), and so this method is unlikely to capture many of these 

regions.  

  

Examining the statistical features of the sequence and applying machine 

learning (ML) techniques to the problem has shown great promise in identifying 

previously unknown CREs within a species, with numerous models being developed 
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in pursuit of reliable CRE prediction (Firpi et al. 2010; Fletez-Brant et al. 2013; 

Ghandi et al. 2016; Liu et al. 2016; Liu et al. 2018; Nguyen et al. 2019; Cai et al. 

2021; Inayat et al. 2021; Yang et al. 2021; Zeng et al. 2021). For example, Zeng et al. 

(2021) identified experimentally validated human (~8800) and mouse (~24000) 

silencer sequences from ~2300 published research articles. They then used these 

sequences with ML models to predict ~3.5 million and ~1.5 million silencers in human 

and mouse, respectively. These models used a combination of the sequence itself as a 

one-hot encoded matrix (discussed below) and the gapped and ungapped k-mer 

composition of the sequence as input (Zeng et al. 2021). Parallel to this, several tools 

have been developed to better extract meaningful features from the sequence (Chen et 

al. 2018b; Dong et al. 2018; Muhammod et al. 2019; Chen et al. 2020; Bonidia et al. 

2022), which can then be used in more easily interpreted models like logistic 

regression to provide better insight into what sequence features are predictive of 

enhancer function. Deep learning (DL) is a branch of ML that uses “deep” (multiple 

hidden layers) neural networks to learn features associated with a label. DL models 

will extract their own features from the data and so can identify patterns not easily 

detected by a human. This automatic feature extraction is of great interest for enhancer 

prediction as patterns in the DNA sequence that may indicate enhancer activity are not 

often readily observable by humans. Recent studies have shown promising results 

regarding DL methods applied to enhancer prediction (Min et al. 2017; Nguyen et al. 

2019; Oubounyt et al. 2019; Amin et al. 2020; Shujaat et al. 2020; Yang et al. 2021). 

Despite this progress, few papers have thoroughly examined the challenge of 

predicting enhancers across species using human and mouse data. Chen et al. (2018a) 

used a Convolutional Neural Network (CNN) and a Support Vector Machine (SVM) 

for cross-species enhancer prediction and reported high levels of accuracy for both 
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methods. However, their definition of enhancer was less stringent as it included any 

region that had an H3K27ac ChIP-seq peak. Huh et al. (2018) found that sequence 

determinants from one species could reliably predict promoters in another species with 

high accuracy, with an area under the receiver operating curve (auROC) ~90%. 

However, model performance diminished when predicting enhancers across species 

(auROC ~65%). Hong et al. (2021) reported greater accuracy than Chen et al. (2018a) 

when predicting across species with a model based on the hierarchical attention 

network (HAN) (Yang et al. 2016) used in document classification. However, their 

cross-species prediction performance was still considerably lower than within-species 

performance.  

 

While these studies provide good information on different approaches we may 

use to tackle the cross-species enhancer prediction challenge, they often focus on the 

computer science aspects of cross-species enhancer prediction. Less consideration 

appears to have been given to how the community may use the predictions and models, 

such as creating and sharing CRE annotations in newly assembled genomes. 

 

There have been attempts to identify enhancers in livestock using the above-

mentioned approaches with human and mouse data. For example, Wang et al. (2017) 

used a combination of cattle candidate enhancer regions identified by ChIP-seq and 

sequence homology of human and mouse enhancers to try and identify functional 

variants associated with milk production traits. However, they found that species-

specific ChIP-seq data was the best option for identifying potential enhancers. This 

result is expected as they used sequence homology (least flexible method) as the 

primary search method for identifying cattle enhancers using human and mouse data.  
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Nguyen et al. (2018) developed a complex pipeline that first mapped human 

regulatory elements (e.g., enhancers) to the genome of a species of interest. It then 

used several species-specific data and gkmSVM (Ghandi et al. 2014; Ghandi et al. 

2016) as part of a filtering process to identify high confidence regulatory elements in 

the species of interest, e.g., cattle. However, it is unclear from their results how well 

they were able to identify CREs in these species. Given that this pipeline also requires 

numerous genetic data to be available as input for the species of interest, it may prove 

unfeasible to use in newly assembled genomes, i.e., species that have never had their 

genome assembled before. The authors also acknowledge that confidence in the 

predictions is difficult to determine, given that H3K27ac peaks, while associated with 

enhancers, do not always guarantee a true enhancer. It is also worth noting that, like 

Wang et al. (2017), the identification of enhancers was reliant on sequence homology 

rather than learning any of the statistical features of the sequence (except for the 

gkmSVM step). 

 

Motivated by these results and a desire to address the shortcomings of how the 

community can use these tools, we sought to evaluate a range of ML models designed 

to predict enhancers and validate their performance in cross-species prediction. We 

aimed to develop a model that had robust generalisation ability in predicting enhancers 

across different species. To achieve this, we trained several ML models across human, 

mouse and a combination of both datasets, using four different DNA representations. 

Finally, in order to evaluate how well the models identify potential enhancers in 

livestock species, we re-processed H3K27ac and H3K4me1 ChIP-seq data for cattle 

(Villar et al. 2015; Fang et al. 2019; Kern et al. 2021; Prowse-Wilkins et al. 2021), 

pig (Kern et al. 2021; Pan et al. 2021; Zhao et al. 2021) and dog (Villar et al. 2015) 
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with the latest reference genomes ARS-UCD1.2 (GCF_002263795.1), Sscrofa11.1 

(GCF_000003025.6), and Dog10K_Boxer_Tasha (GCF_000002285.5), respectively. 

While dog is not generally considered as a livestock species, it is a representative of 

another mammalian order different from those that contain human, mouse, cattle or 

pig. We then performed permutations to assess how well each model identified 

potential enhancers, or enhancer-like regions (ELRs). Once that was determined, we 

used the best performing model to predict ELRs genome-wide among the cattle, pig 

and dog genomes. We anticipate this will become a valuable resource to the research 

community working on mammals, especially livestock species, and expect model 

performance to improve as highly curated enhancers become available.  

 

Methods 

Data preparation 

The sequence and genomic locations of human and mouse samples were retrieved 

from VISTA (Visel et al. 2007) (Figure 1A), which were all tissue samples. While 

enhancers are cell-type specific, our goal was to identify general enhancer signatures. 

This approach has been used in the CrepHAN model to predict enhancers across 

species (Hong et al. 2021). We first removed enhancers that were found on sex 

chromosomes. This gave us a total of 985 human and 653 mouse enhancer sequences 

(S. Table 1). The reference genomes used for human and mouse were hg19 and mm9, 

respectively. We then extracted 200 bp, 1 kb and 2 kb windows around the enhancer. 

If an enhancer region was smaller than the desired window size (k), we extracted a 

region equal to the window size centred around the midpoint of the original enhancer 

(Figure 1B). If the desired window size was smaller than the enhancer region (L), we 

took a sliding window equal to the window size with a step of one between the start 
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and end of the enhancer region (L – k + 1), Figure 2B); this is similar to the data 

augmentation step used in Min et al. (2017). We chose 200 bp as this is a common 

window size used by several enhancer prediction methods (Liu et al. 2016; Liu et al. 

2018; Nguyen et al. 2019; Cai et al. 2021; Inayat et al. 2021; Yang et al. 2021) that 

reported accuracy scores >70% when predicting enhancers within a single species. We 

also used 1 kb and 2 kb window sizes to assess the impact of the surrounding sequence 

had on model performance.  

 

Next, we created the negative examples, non-enhancers, using a similar 

strategy as described in (Min et al. 2017; Hong et al. 2021). We created three bed 

formatted files (one for each input window size). These were a concatenation of our 

enhancer windows (either 200 bp, 1 kb or 2 kb), the annotation (e.g. genes, long non-

coding RNAs) for the genome (hg19, mm9), the promoter regions (defined as a 2 kb 

region centred around the start site of gene transcription for protein-coding genes) and 

the blacklisted regions defined by ENCODE (Amemiya et al. 2019). The genomic 

coordinate complement of these concatenated regions was extracted using bedtools 

complement from BedTools (Quinlan & Hall 2010) v2.30.0 with parameter “-L" to 

create the non-enhancer regions. We then generated three new bed files using the non-

enhancer regions as input and extracted 200 bp, 1 kb and 2 kb windows. If the non-

enhancer region was smaller than our desired window size, it was ignored to ensure 

no overlap between positive and negative examples (Figure 1C). We then used 

bedtools getfasta with default parameters to extract the non-enhancer sequences. We 

filtered the resulting fasta records to ensure all negative examples contained no 

ambiguous bases and had a similar GC content distribution (mean  std dev) as the 

original enhancers.  



 45 

 

DNA representations  

To give us the best chance of identifying a model that has a robust ability to 

generalise between species, we sought to test four different representations of DNA 

for machine learning. Our first representation was simply the proportional k-mer 

counts for the sequence. Here, we used k = 1, 2 and 3, counting all occurrences of A, 

C, G, T, AA, AC, …, TT and AAA, …, TTT in the sequence (Figure 1D). This allowed 

each sequence to be represented as a vector with a length of 84. Each value was the 

proportion that the given k-mer contributed to the sequence. E.g., a 200 bp sequence 

that contains 50 A’s will have the value 50  200 = 0.25 for the explanatory variable 

A; a 200 bp sequence with 20 AAA’s will have the value 20  198  0.10 for the 

explanatory variable AAA. We only used this representation in the logistic regression 

and SVM as these models can only take 1D vectors as input. 

 

Our second method was one-hot encoding. Here, the sequence can be thought 

of as a rank three tensor with a shape N,1,4, where N is equal to the length of the 

sequence, 1 is the width of the matrix, and 4 is the number of channels which are equal 

to the number of nucleotides (Figure 1E).  

 

Our third representation was an image. We used the Hilbert Curve to transform 

a 1D DNA sequence into a 2D image. We first created a mapping dictionary to map 

each k-mer to a value. We chose k = 4 as our experiments (S. table 12) and work by 

Yin et al. (2018) found this to be the best value for model performance in identifying 

histone modifications. As four nucleotides make up DNA and we are using k = 4, each 

4-mer can be represented by a value between 1 and 256 (44 = 256), e.g., ‘AAAA’ = 1 
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… ‘TTTT’ = 256. We then mapped each 4-mer to the Hilbert Curve to generate an 

image where each point on the curve can be thought of as a pixel, and the value of the 

pixel is equal to the 4-mer’s mapping dictionary value, e.g., if the first 4-mer is 

‘AAAA’ then ‘pixel’ (0, 0) on the curve will have the value 1 (Figure 1F). We chose 

the order of the Hilbert Curve such that it was the smallest possible order to contain 

the entire DNA sequence. For example, a sequence 200 bp long contains 200 – 4 + 1 

= 197 windows of 4mers that need to be mapped to the curve. Therefore, we chose p 

= 4 as (24)2 = 256 points on the Hilbert Curve as 197  256. We used the formula (24)2 

to determine the smallest order (p) Hilbert Curve to contain the sequence. We used the 

HilbertCurve python package (v2.0.5) to generate the curves 

(https://github.com/galtay/hilbertcurve). 

 

Our final representation was the word-vector; we used FastText (v0.9.2) 

(Bojanowski et al. 2017) to generate word vectors. We first split the genome into 

chunks at every ‘N’ and removed the ambiguous bases. We then split the genome into 

ten bases ‘words’ using a sliding window with a step = 1; this became our corpus 

(Hong et al. 2021). Next, we followed the word representation steps for FastText using 

default parameters, except for “-dim”, which we set to 30 

(https://fasttext.cc/docs/en/unsupervised-tutorial.html). We chose FastText as it can 

generate vector representations for words not found in the original corpus. Once we 

had our vector representations for each ‘word’, we split the DNA sequence into non-

overlapping ten base words and stacked their corresponding vector representation 

together (Figure 1G). As we set “-dim 30”, each word is represented by a 30 length 

vector, and a DNA sequence of L length can be represented as a matrix of shape 

30,L10, e.g., an L = 200bp sequence will become a 30,20 matrix. 

https://github.com/galtay/hilbertcurve
https://fasttext.cc/docs/en/unsupervised-tutorial.html
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Model Evaluation 

Our primary goal was to identify the best model and sequence representation 

for cross-species enhancer prediction. With this in mind, we tested nine different 

models, specifically, logistic regression, SVM, our modified CNN based on (Min et 

al. 2017), SplitCNN (SCNN), our small implementation of the VGG model developed 

by Simonyan and Zisserman (2014), two recurrent neural network (RNN) with an 

attention (Att) layer and CNN (RNN+Att+CNN) models based on work by Yu et al. 

(2020) (RNN+Att+CNN one-hot and RNN+Att+CNN word-vector) and two 

implementations of CrepHAN (Hong et al. 2021), modified for smaller input window 

sizes (CrepHAN one-hot, CrepHAN word-vector). The train and test datasets for 

logistic regression and SVM models were k-mer counts (Figure 1A,D). The train, 

validation and test datasets for CNN, SCNN, RNN+Att+CNN (one-hot) and 

CrepHAN (one-hot) were one-hot encoded data (Figure 1A,E). VGG was trained on 

DNA as an image data (Figure 1A,F), and RNN+Att+CNN (word-vector) and 

CrepHAN (word-vector) were trained independently on word-vector data (Figure 

1A,G). We generated balanced, i.e., 1:1 positive and negative example datasets and 

trained and evaluated each model on the VISTA human and mouse datasets using a 

train-validation-test split of 70-20-10. We used four metrics to evaluate the models: 

Accuracy, equation 1, where TP is the true positive (an enhancer), TN is the true 

negative (not an enhancer), FP is false positive, non-enhancers classified as enhancers 

and FN is false negative, enhancers classified as not enhancers.  F1-score, equation 2, 

where precision is equation 3 and recall is equation 4. The area under the receiver 

operating characteristic curve (auROC) and the area under the precision-recall curve 

(auPRC). We then chose the best performing model to continue through for cross-
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species prediction of enhancers. While we evaluated the models across three different 

input window sizes (S. Table 2), we chose 200 bp for the remainder of the analysis as 

this would give the greatest resolution for predictions among the three input sizes. 

Logistic regression and SVM were implemented with Scikit-Learn (Pedregosa et al. 

2011) (v1.0). Deep learning models were implemented with Keras (v2.6) and 

Tensorflow (v2.6), with hyperparamter tuning being performed with KerasTuner 

(v1.0.4). 

 

 

equation 1: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
(𝑇𝑃 + 𝑇𝑁)

(𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁)
 

equation 2: 

𝐹1 𝑠𝑐𝑜𝑟𝑒 = 2 ×
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙
 

equation 3: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

(𝑇𝑃 + 𝐹𝑃)
 

equation 4: 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

(𝑇𝑃 + 𝐹𝑁)
 

 

Validation with ChIP-seq, permutations and final predictions 

In order to assess how well the model predicts across species, we re-processed 

ChIP-seq data from (Villar et al. 2015; Fang et al. 2019; Kern et al. 2021; Pan et al. 

2021; Prowse-Wilkins et al. 2021; Zhao et al. 2021) using the nf-core (Ewels et al. 

2020) ChIP-seq pipeline (v1.2.2) with default parameters (https://github.com/nf-

https://github.com/nf-core/chipseq
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core/chipseq) and aligned all reads to the latest cattle reference (ARS-UCD1.2) (Rosen 

et al. 2020), pig reference (Sscrofa11.1) (Warr et al. 2020), and dog reference 

(Dog10K_Boxer_Tasha) (Jagannathan et al. 2021). The species’ repeat masked 

regions were used in the “–blacklist” option. Effective genome size was calculated 

using the unique-kmers.py script from khmer (v.3.0.0a3) (Crusoe et al. 2015) with the 

length of the sequencing reads being the value for the “-k” argument. Once H3K27ac 

and H3K4me1 ChIP-seq mapping was completed, we performed two filtering steps to 

identify consensus ChIP-seq peaks. First, we determined which peaks had ≥ 50% 

reciprocal overlap among replicates within a single dataset for a given tissue and 

histone marker (Villar et al. 2015; Zhao et al. 2021). For example, if a set of H3K27ac 

ChIP-seq peaks reciprocally overlap by at least 50% between two or more biological 

replicates from a given dataset, we considered all those peaks to be true. We repeated 

this for all ChIP-seq datasets. Next, we concatenated all the peak files from the 

previous step into one file and then used bedtools merge with default parameters. We 

chose H3K27ac and H3K4me1 as they are both known to markers of enhancers 

(Creyghton et al. 2010; Rada-Iglesias et al. 2011; Zentner et al. 2011). We then 

identified candidate regions by subtracting the positions of exons, repetitive elements, 

and gaps from each genome with bedtools subtract. We repeated this step and included 

the ChIP-seq peaks for each species to generate a negative candidate region bed file 

for the permutation test. We took all regions that were ≥ 200 bp and extracted 200 bp 

windows with a step of 20 bp using a sliding window so that each 200 bp window 

overlapped the previous window by 180 bp. This step was similar to what was 

described in Figure 1B. We also filtered each 200 bp sequence at this point so that any 

sequences with ambiguous bases were removed. This step was repeated for the 

https://github.com/nf-core/chipseq
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candidate regions, and the consensus ChIP peaks as these would be the negative and 

positive examples for the permutation tests, respectively. 

 

 Once we had our positive and negative examples, we performed permutations 

to determine 1) how the models compared against a naïve classifier. We defined a 

naïve classifier as one that randomly allocated a label to a given input, and 2) which 

model predicted enhancers with the most agreement to the H3K27ac and H3K4me1 

ChIP-seq peaks. We took 500 random samples from the candidate regions (minus 

ChIP-seq peak regions) and 500 random samples from the consensus ChIP-seq peaks 

and obtained the prediction for this region for all models. We randomly sampled 1000 

times for each model. We treated each region that overlapped a ChIP-seq peak by at 

least 50% as a true positive and each region that did not overlap with a ChIP-seq peak 

as a true negative. These regions would then form the ground truth, 𝑦. We then 

recorded each prediction the model made, �̂�, and computed the accuracy and F1 score. 

We then determined the best model based on its average accuracy and F1 score for the 

1000 permutations. Once we had identified the best cross-species prediction method, 

we performed predictions genome-wide across all candidate regions in cattle, pig, and 

dog. As we trained and evaluated all models using balanced data but enhancer 

distribution across the genome is not balanced i.e., do not occupy 50% of the genome, 

we chose to filter our predictions so that only the high confidence (probability  0.99) 

were included in the final list of predicted enhancers. 

 

Results 

Shallow learning outperformed deep learning 
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While much of the recent literature has been dominated by the merits of deep 

learning for within species enhancer prediction, our results showed that the SVM was 

a reliable and performant method for cross-species enhancer prediction. Despite 

performing relatively poorly in within species prediction tasks (Figure 2A; Table 1; S. 

Table 11), we found that the SVM had a more robust performance when predicting on 

a new, unseen species (Figure 2B; Table 1; S. Table 11). The superior performance of 

the SVM in this dataset across species was surprising as the deep learning methods 

performed far better during within species enhancer prediction (Figure 2A; Table 1; 

S. Table 11).  

 

Input sequence length influenced enhancer prediction 

Next, we wanted to determine whether input size influenced the performance 

of deep learning models. Increasing the input size from 200 bp to 1000 bp generally 

resulted in better performing models except for the RNN+Att+CNN with one-hot 

encoded data (Figure 2A; S. Table 2). We also observed this increased performance 

carried over into the cross-species prediction tasks. However, these increases were far 

more modest than the within-species improvements. Interestingly, increasing the input 

window size from 200 bp to 1000 bp generally resulted in better model performance 

in within and cross-species prediction tasks. This trend appeared much more variable 

when increasing from 1000 bp to 2000 bp, with the most substantial of these 

fluctuations seen in the CNN model, which had an accuracy of ~97% at 1000 bp but 

only ~57% at 2000 bp (Figure 2A; S. Table 2). Similarly, in the cross-species 

performance, we observed a more variable impact on performance when increasing 

from 1000 bp to 2000 bp (Figure 2B; S. Table 2); however, the magnitude of these 

fluctuations was lesser than the within species performance. Despite the trend of model 
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performance increasing as input window size increased, we chose the 200 bp input 

window size for the permutation tests and final whole-genome prediction as this would 

give the finest resolution for the enhancer predictions across the three input window 

sizes.  

 

Training on one species was better than two 

As we reviewed the literature (Chen et al. 2018a; Hong et al. 2021; Kamran et 

al. 2022) on enhancer prediction, we noticed a trend among relevant papers that they 

would only train on one species. We hypothesised that by using more than one species 

to train the models, they would learn a better function to identify enhancers than a 

model trained on a single species. As VISTA only has human and mouse data and 

given our primary goal was cross-species prediction in mammalian species, we used 

ChIP-seq data as the truth set for the permutations, i.e., we assumed all ChIP peaks 

were enhancers. We found that models trained exclusively on human data had 

significantly greater accuracy than those trained on human and mouse data for all 

target species i.e., cattle, pig, and dog (Figure 3; S. Table 3-6). This observation held 

for all models when comparing F1 scores, except for CrepHAN trained on one-hot 

encoded data in pig and dog (S. Table 3,5-6). 

 

Despite only using one dataset for dog, which covered ~2.3% of the genome 

(see below), we still observed all models performed significantly better than a naïve 

classifier in identifying ELRs regardless of whether trained on human or human and 

mouse (Figure 3, S. Table 3-6). 

 

Deep learning performed best when predicting enhancers genome-wide 
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It was clear that the SVM was the best model for cross-species prediction when 

using the highly curated dataset from VISTA (Visel et al. 2007). However, when 

performing the permutation tests, some deep learning models, specifically the CNN 

and SCNN models had significantly greater accuracy than the SVM (Figure 3; S. Table 

3); this trend was also observed in pig and dog but did not hold for the F1 scores (S. 

Table 3-6). As CNN performed the best among the permutations, we included it in the 

final genome-wide prediction step so that we had SVM, and CNN models to make 

predictions on all three species.  

 

Machine learning identified new ELRs not captured by ChIP-seq 

We used consensus (see methods) H3K27ac and H3K4me1 ChIP-seq peaks as 

they are both markers of enhancers (Heintzman et al. 2007; Heintzman & Ren 2009; 

Creyghton et al. 2010; Rada-Iglesias et al. 2011; Kang et al. 2021). We identified 

288,526, 155,671 and 38,578 consensus H3K27ac and H3K4me1 ChIP-peaks within 

the cattle, pig, and dog genomes, respectively (Figure 4A, S. Table 7). These 

accounted for 20.5%, 8.78% and 2.36% of the total genome lengths of our respective 

study species.  

 

After filtering predicted enhancers for high confidence regions (see Methods), 

we identified 858,156, 841,617 and 835,403 ELRs in the cattle, pig and dog genomes 

using the SVM model, respectively (Figure 4A, S. Table 8). The CNN model predicted 

more ELRs in cattle and pig, with 877,278 and 856,105, respectively. However, in 

dog, we predicted only 809,399 ELRs with CNN (Figure 4A, S. Table 8). Despite 

identifying more ELRs than ChIP-seq, the combined length of each of the ML 

methods’ predictions is reasonably close to the combined length of ELRs identified 
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by ENCODE (Consortium et al. 2020) (S. Table 9). Both models predicted ELRs to 

occupy around ~11.50 – 13.71% of our study species’ genomes (S. Table 8). 

Looking more closely at the predicted ELRs, 364,885 SVM predictions and 

394,416 CNN predictions completely overlapped with the consensus ChIP peaks in 

cattle (Figure 4B, S. Table 10). There were 493,271 SVM predictions and 482,862 

CNN predictions not completely overlapping, i.e., were not completely inside a ChIP-

seq peak region, in cattle. As the percentage of overlap required to score concordance 

(stringency) between ML models and ChIP peaks were decreased, we observed a 

general increase in the number of predicted ELRs overlapping with ChIP-seq. This 

was observed across all three study species. Additionally, the predictions of overlaps 

between the two ML models (i.e. CNN and SVM) were 76.3%, 76.8% and 73.4% 

concordant for cattle, pig and dog, respectively (Figure 4C). Interestingly, despite 

having fewer positive predictions made on dog, the CNN model had more predictions 

that overlap with ChIP-seq peaks than the SVM (Figure 4B, S. Table 10). 

  

Finally, many of the ELRs predicted by both ML methods have no ChIP-seq 

support suggesting these may be enhancers missed by ChIP-seq; however, these would 

need experimental validation. The results of ELR annotations and the two best 

machine learning models used for their prediction are made publicly available here 

https://github.com/DaviesCentreInformatics/Cross-species-enhancer-prediction. We 

have provided a BED file of these high-confidence ELRs in the three study species 

presented here. 

 

https://github.com/DaviesCentreInformatics/Cross-species-enhancer-prediction
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Discussion 

This work set out to provide a high confidence list of enhancer-like regions 

(ELRs) to aid in analysing and interpreting various experiments, such as linking 

Genome-Wide Association Study (GWAS) SNPs to possible regulatory elements. We 

evaluated a variety of ML methods, from a shallow, linear model (logistic regression) 

to highly non-linear models like CNNs, as well as multiple ways to use DNA as inputs 

for ML (e.g., one-hot encoding, k-mer counts and word vector). To our surprise, the 

best performing model on the VISTA dataset when predicting across species was the 

SVM using the 1-, 2- and 3-mer counts of the sequence, regardless of input window 

size. This result was unexpected as SVMs require some prior knowledge from the user 

as to what features may be useful in the classification task, a term known as feature 

engineering. Additionally, much of the literature has focused on the merits of DL 

methods for DNA function prediction (Kelley et al. 2016; Liu et al. 2016; Min et al. 

2017; Kelley et al. 2018; Liu et al. 2018; Nguyen et al. 2019; Kelley 2020; Hong et 

al. 2021; Inayat et al. 2021; Yang et al. 2021; Kamran et al. 2022). One possible reason 

we observed superior performance by the SVM is that there is some underlying bias 

within the VISTA dataset that the DL methods captured to a higher degree during their 

training than the SVM. DL methods rely on data that is high quality and voluminous. 

If biases exist within the dataset, the highly non-linear nature of many DL models will 

learn these biases, which in turn can negatively impact performance (Kim et al. 2019; 

Wich et al. 2020; Howard et al. 2021). There is precedent for SVMs outperforming 

CNNs in tasks typically believed to be ones that CNNs excel in. Wang et al. (2021a) 

investigated the performance differences between a representative CNN model and 

SVM for image classification. They observed superior performance from the SVM 

when small datasets were used and greater performance from the CNN when large 



 56 

datasets were used. What constitutes a small and large dataset for enhancer prediction 

is likely to remain debatable for some time. However, given that the SVM consistently 

performed well in cross-species prediction across multiple window sizes within the 

VISTA dataset, it is reasonable to infer that the VISTA dataset contained too few 

enhancer sequences to make full use of DL for cross-species prediction. This problem 

was only exacerbated when input window size was increased as it reduced the number 

of training examples. Similarly, it is possible that the DL methods were too flexible 

for the data available and essentially began to memorise the data (and biases) rather 

than learning a robust function for enhancer prediction resulting in poor cross-species 

accuracy. Again, this would be made worse by increasing input window size as the 

number of training examples consequently decreases. 

 

 One of the questions we set out to answer in this work was whether using 

enhancer data from multiple species could improve a models’ ability to identify 

enhancers across species. Contrary to our expectation that training on multiple species 

would be more predictive, we found that training exclusively on human data resulted 

in more accurate models than training on a combination. To our knowledge, no other 

papers have looked at this aspect of enhancer prediction specifically and so comparing 

how our results fit with the literature is difficult. However, it may simply be a case of 

the mouse enhancer dataset being inferior compared to human. It is possible that 

sequences that are similar between human and mouse have only been identified as an 

enhancer in human. Therefore, the similar sequence in mouse would be labelled as 

“non-enhancer” in our dataset. This conflict i.e. similarity in DNA sequence as input 

but difference in label would then likely reduce the models’ ability to learn features 

associated with a given label, i.e., “enhancer” or “non-enhancer”, thus leading to the 
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reduced performance compared to models trained on a single species. Alternatively, it 

may be that the ELRs in our study species are evolutionarily closer to human than to 

mouse. 

 

Recently, Ghorbani and Zou (2019) proposed a framework for identifying the 

predictive value of data points to a prediction task. It would be interesting to apply this 

to enhancer prediction to better identify what features of the sequence are useful for 

prediction and what features of the sequence are confounding the model. Regardless, 

both human and human plus mouse trained models all perform significantly better than 

a naïve classifier (Figure 3, S. Table 4-6), indicating that both have merit for enhancer 

prediction. However, performance is generally going to be better when trained with 

either human or mouse data. 

 

Given how well the SVM handled enhancer prediction across species, we 

expected the SVM to outperform the DL methods when testing in our study species. 

Interestingly, several DL models and specifically the CNN outperformed SVM when 

testing on our study species and using ChIP-seq as the ground truth. It may be that 

what appeared as overfitting or bias when testing within the VISTA enhancer dataset 

was the DL methods learning sequence features associated with the ChIP-seq signal. 

Recall that an enhancer must meet strict criteria in VISTA, one of which is strong 

ChIP-seq support. Given that the CNN model captured more ELRs than the SVM in 

cattle and pig and that it had greater ChIP-seq agreement in dog despite having fewer 

positive predictions, it is possible that the CNN learnt features about the sequence that 

are predictive of whether H3K27ac or H3K4me1 histone ChIP-seq is likely to map to 

that region. DL methods learning features associated with ChIP-seq signal is not 
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unlikely, as work by Yin et al. (2019) developed a deep learning model that predicted 

histone modifications based on a combination of DNA and DNase-seq signal. This 

model achieved an auROC of 0.869 and 0.883 when predicting H3K4me1 and 

H3K27ac histone modifications, respectively, from DNA sequence alone. These 

results suggest that while enhancer prediction from sequence alone may still be a 

challenge given our limited understanding of enhancers, predicting more conserved 

features like CTCF boundaries (Henderson et al. 2019) or histone modifications (Yin 

et al. 2019) is possible. 

 

The most recent effort to predict enhancers in cattle using human data used a 

HAN and word-vectors to learn the features associated with enhancers (Hong et al. 

2021). In this work, each enhancer was represented as an 8 kb sequence centred around 

the midpoint of the enhancer. This model showed excellent performance (auROC = 

0.960) within species (i.e., from human to human) but performance decreased 

considerably when predicting on cattle (auROC = 0.703) and dog (auROC = 0.695). 

Again, it is worth noting that the model was evaluated using cattle H3K27ac ChIP-seq 

data from one study (Villar et al. 2015), so not all peaks may be true enhancers, and 

not all true enhancers may have been captured by the ChIP-seq experiment. Despite 

the lack of validated livestock enhancers, the work by Hong et al. (2021) demonstrates 

exciting prospects for cross-species enhancer prediction as they were able to achieve 

predictive value using just the sequence.  

 

In this work, we have extended the work by Hong et al. (2021) to include more 

models and ChIP-seq datasets that have only been made available recently. We 

observed the greatest ChIP-seq agreement with our ML models when predicting ELRs 
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in cattle. The most likely reason for this is that we had the most diverse range of 

tissues, timepoints and histone markers available for cattle, unlike pig and dog that 

had more limited ChIP-seq datasets. This meant that the true enhancers would likely 

be better represented in cattle than in pig and dog, which also meant the chances of 

overlapping ChIP-seq positive example data with ML enhancer prediction were 

higher. We see the degree of ChIP overlap decrease in pig and again in dog. This 

decreased ChIP-seq agreement is likely a result of H3K4me1 ChIP-seq failing to pass 

QC, resulting in only one histone modification being available to identify candidate 

enhancers in pig. Additionally, the tissues and timepoints available in pig were less 

varied than those in cattle. Lastly, we used only one dataset (Villar et al. 2015) in dog, 

which only represented a single time point from a single tissue with a single histone 

modification. As a result, we would expect fewer predictions to overlap with the ChIP-

seq peaks. 

 

It is reasonable to infer that the predicted enhancers that overlap with ChIP-

seq peaks are likely to have enhancer function. In contrast, the predicted ELRs with 

no ChIP-seq agreement are potentially novel enhancers we uncovered or false 

positives. We know that not all H3K27ac and H3K4me1 ChIP-seq peaks are 

enhancers. Interestingly, the ML predicted ELRs cover 11.59-13.71% of the genome 

(S. Table 8), which is similar to the ~8% covered by candidate enhancers in the human 

genome (S. Table 9) (Consortium et al. 2020). This similarity leads us to believe that 

most of the ML predicted ELRs represent true enhancers, although there is the 

possibility of false positives. Unfortunately, previous papers have not reported how 

their models performed when predicting enhancers genome-wide. Therefore, we 

cannot compare how our predicted ELRs compare with other models’ predictions in 
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terms of what proportion of the genome they predict as an enhancer. Until we can 

generate an ENCODE style candidate enhancer list for livestock species, we will never 

be sure of the actual proportion of the genome that are enhancers in our most important 

livestock species. We believe the list provided in this work will be the first step toward 

creating an ENCODE style candidate enhancers list for livestock species. 

 

Conclusions 

In this work, we sought to evaluate whether ML could be utilised to improve 

our understanding of livestock genomes by enabling us to identify enhancers from the 

sequence alone using human and mouse data. We tested a variety of DNA 

representations and models and found they all provide predictive value above a naïve 

classifier. However, the SVM was the most robust in our evaluation using the VISTA 

data, and CNN was the most robust in the genome-wide prediction evaluation using 

ChIP-seq data. We found that while the DNA sequence could be predictive of whether 

an enhancer was present, it is still limited in its predictive value for cross-species 

prediction, this is likely in part, due to the propensity for enhancers to diverge at the 

sequence level but not function level among species (Yang et al. 2015). We propose 

that future work be aimed at integrating other data types into these two enhancer 

prediction models to assess their predictive value. For example, using a combination 

of the DNA sequence and ATAC-seq signal to identify enhancers; similar to work by 

Yin et al. (2019) in histone modification prediction. We also recommend the continued 

use of ChIP-seq and other epigenomic assays such as ATAC-seq, WGBS-seq, FAIRE-

seq, massively parallel reporter assay and Hi-ChIP to improve our understanding of 

where enhancers may be within the non-model organism. These epigenomic data will 

ultimately give us the best insight into where these features are. We believe this work 
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and the candidate enhancers list provided in this study will be of great interest to the 

livestock community and help bring our understanding of livestock genomes closer to 

the level of human. 
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Tables 

Table 1. Comparison of within and between species performance of nine ML models using 200 bp sequence input. 

 Human to Human Human to Mouse Mouse to Mouse Mouse to Human 

 Acc 1 F1 2 ROC 3 PR 4 Acc 1 F1 2 ROC 3 PR 4 Acc 1 F1 2 ROC 3 PR 4 Acc 1 

(%) 

F1 2 ROC 3 PR 4 

CNN 0.954  0.95 0.95 0.93 0.641 0.58 0.64 0.60 0.936 0.93  0.93 0.97 0.572 0.62 0.57 0.54 

Cr-

HAN 

0.877 0.88 0.88 0.83 0.642 0.62 0.64 0.59 0.859 0.86 0.86 0.80  0.572 0.64 0.57 0.54 

Cr-

HAN* 

0.754 0.75 0.75 0.69 0.623 0.64 0.62 0.58 0.747 0.74 0.75 0.69 0.595 0.66 0.59 0.55 

RNN 0.982 0.98 0.98 0.97 0.640 0.56 0.64 0.60 0.992 0.99 0.99 0.99 0.538 0.59 0.54 0.52 

RNN* 0.804 0.80 0.80 0.75 0.638 0.63 0.64 0.59 0.817 0.81 0.82 0.76 0.593 0.65 0.59 0.55 

SCNN 0.976 0.98 0.98 0.96 0.646 0.57 0.65 0.61 0.980 0.98 0.98 0.97 0.580 0.59 0.58 0.55 

VGG 0.730 0.70 0.73 0.68 0.630 0.61 0.63 0.58 0.735 0.64 0.74 0.70 0.571 0.63 0.57 0.54 

SVM 0.684 0.67 0.68 0.63 0.634 0.61 0.63 0.59 0.648 0.63 0.65 0.60 0.669 0.70 0.67 0.61 

LR 0.767 0.73 0.77 0.72 0.650 0.63 0.65 0.60 0.770 0.72 0.77 0.74 0.615 0.66 0.62 0.57 

The four columns on the first row identify that training and testing split that that group of metrics represents for each of the nine models. ‘Human 

to Human’ denotes the metrics for each of the models that were trained and tested on human data. ‘Human to Mouse’ denotes the metrics for each 

model trained on human and tested on mouse. The metrics presented here are for models trained on 200 bp input sequences. 

* denotes an identical model trained on word-vector data instead of one-hot encoded. 
1 represents the accuracy of the model as described in Methods 
2 represents the F1 of the model, as described in Methods 
3 represents the area under the Receiver Operating Characteristic curve. 
4 represents the area under the Precision-Recall curve. 

 

Figures 
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Figure 1. Overview of experimental methodology, models tested, and 

data inputs used. (A) Flowchart of the overall experimental design. We took 

all autosomal enhancer sequences for human and mouse from the VISTA 

enhancer database and used these to construct our training, validation, and 

testing datasets. We evaluated nine models with various training and testing 

splits, e.g., train on human, test on human and train on human, test on mouse. 

We then identified the best model based on the cross-species performance 

using the VISTA dataset. We tested all models again using species-specific 

ChIP-seq as the positive set and regions that did not have any ChIP-seq map 

to them as negative. We selected the best model based on the accuracy on 

the study species and used the best model from each evaluation step to 

predict enhancers genome-wide in each of our study species. (B) We 

generated positive training examples from the enhancers by taking a sliding 

window within the enhancer range if the enhancer region was larger than our 

window size and centred around the midpoint of the enhancer if our window 

size was larger. (C) We generated negative training examples by subtracting 

the regions generated in B, the genome annotation, inferred promoter regions 

and blacklisted regions from the genome. We then took a sliding window from 

all regions  to the length of our window. (D) graphical representation of k-mer 

count vector that represents a DNA sequence. (E) a simple example of a one-

hot encoded matrix used to represent the DNA sequence. (F) graphical 

representation of how the Hilbert Curve maps 4mers to points. (G) A simple 

example of how we represented the sequence using word-vectors. Each 

10mer was represented by a word-vector; we then took non-overlapping 
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windows from the sequence and stacked the corresponding word vectors 

together. 

 

 

Figure 2. Comparison of model performance across each three input 

window sizes and prediction scenarios. The left panel shows the human to 

human (train-test) accuracy, and the right panel shows the human to mouse 

(train-test) accuracy for each of the nine models. The y axis shows model 

accuracy on the test data, while the x-axis shows the model’s input size. Each 

model is colour-coded with blue representing the CNN; orange, SCNN; green, 

CrepHAN (one-hot); red, CrepHAN (word-vector); purple, VGG; brown, 

RNN+Att+CNN (one-hot); pink, RNN+Att+CNN (word-vector); grey, logistic 

regression and gold, SVM. 
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Figure 3. Comparison of model performance predicting enhancers-like 

regions within ARS-UCD1.2, Sscrofa_11.1 and Dog10K_Boxer_Tasha 

genomes. The top panel shows the accuracy of CNN, SVM, CrepHAN trained 

on word-vectors (CrepHAN_WV), and a naïve classifier, i.e., has not learnt 

any features. Blue highlights models trained exclusively on human VISTA 

enhancer data, and orange denotes models trained on both human and mouse 

VISTA enhancer data. Each dot represents the accuracy of enhancer 

prediction from a randomly chosen set of sequences. There are 1000 dots to 

represent using human sequence as the training input, and another 1000 dots 

to represent using human plus mouse sequence as the training input. Results 

are presented for each species in different panels * denotes a p-value <0.0001 

(Mann-Whitney U test).  
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Figure 4. Comparison of enhancer-like regions (ELRs) predicted by three 

different methods and degree of agreement between predicted ELRs and 

ChIP-seq. (A) shows a comparison between the number of ELRs predicted by 

CNN (blue), SVM (orange) and ChIP (green). These colours are used 

throughout the figure. (B) Each panel represents one of our study species. The 

Y-axis represents the percentage of the predicted ELRs that overlap with a 

ChIP peak region. The X-axis represents the three categories we used to 

determine a positive hit, strict, moderate and lenient. A positive hit in the ‘strict’ 

category had to have its complete length covered by a ChIP-seq peak, 

‘moderate’ needed 50% of its length covered by a peak and ‘lenient’ needed 

A 

B 

C 
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25% of its length covered. (C) Venn diagrams showing the intersection 

between ELRs predicted by CNN and ELRS predicted by SVM for each of our 

study species. 
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Supplementary materials for Chapter 3 can be in Appendix I. 
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Chapter 4: The genetics of epigenetics in the bovine pangenome era 
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Contextual Statement 

The preceding chapter evaluated the cross-species enhancer prediction 

accuracy of several machine-learning models and DNA representations. The best 

model identified was then used to predict enhancers in the cattle genome. Chapter 4 

builds on Chapter 3 by investigating an epigenetic modification that influences gene 

expression, DNA methylation. No studies have investigated the DNA methylation 

between Brahman and Angus with the ability to disentangle breed and parent-of-origin 

effects. Furthermore, with the creation of bovine pangenomes, no previous studies 

have investigated the impact of reference genome choice in the analysis of DNA 

methylation data. To that end, this study investigated the breed and parent-of-origin 

effects of DNA methylation and what role the choice of reference genome plays in the 

analysis. Standard tools for DNA methylation analysis and conventional statistical 

methods were used to compare DNA methylation between breeds at genomic regions 

like enhancers (Chapter 3) and promoters and the impact of reference genome choice 

on the analysis. 
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Abstract 

Most DNA methylation studies have used a single reference genome with little 

attention paid to the bias introduced due to the reference chosen. Genetic variation, 

including single nucleotide polymorphism (SNPs) and structural variants (SVs), can 

lead to differences in methylation sites (CpGs) between individuals of the same 

species. We analysed whole genome bisulfite sequencing (WGBS) data from the fetal 

liver of Angus (Bos taurus taurus), Brahman (Bos taurus indicus) and reciprocally 

crossed samples. Using reference genomes for each breed from the Bovine Pangenome 

Consortium, we investigated the influence of reference genome choice on the breed- 

and parent-of-origin effects in methylome analyses. Our findings revealed that about 

75% of CpG sites were shared between Angus and Brahman, ~5% were breed-

specific, and ~20% were unresolved. We demonstrated up to 2% quantification bias 

in global methylation when an incorrect reference genome was used. Furthermore, we 

found that SNPs and SVs were 8-fold (p-value < 5 × 10−324) and 1.13-fold (p-value 

< 5 × 10−324) higher in CpGs, respectively, compared to the rest of the genome. We 

found only 0.8% of differentially methylated regions (DMRs) overlapped with 

differentially expressed genes (DEGs) and suggest that DMRs may be impacting 

enhancers that target these DEGs. DMRs overlapped with imprinted genes, of which 

one, Dgat1, which is important for fat metabolism and weight gain, was found in the 

breed-specific and sire-of-origin comparisons. This work demonstrates the need to 

consider reference genome effects to explore genetic and epigenetic differences 

accurately and identify DMRs involved in controlling certain genes. 
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Introduction 

DNA methylation is a key epigenetic modification that plays a vital role in 

regulating gene expression, repression of transposable elements, and parental 

chromosome specific regulation through genomic imprinting and X-chromosome 

inactivation (Li & Zhang 2014; Jansz 2019). In mammals, DNA methylation primarily 

occurs at C-phosphate-G dinucleotides (CpGs) (Ramsahoye et al. 2000; Ziller et al. 

2011). DNA methylation influences gene expression either by recruiting proteins 

involved in gene repression or by blocking transcription factor binding sites (TFBSs) 

within promoter regions (reviewed by Moore et al. 2013). Hypomethylation of a 

promoter has been associated with the increased expression of the corresponding gene 

(Kass et al. 1997). However, recent work has shown that promoter hypermethylation 

can also lead to gene expression (Smith et al. 2020). The relationship between DNA 

methylation and gene expression is complicated by the role of enhancer methylation 

in regulating gene expression (Spainhour et al. 2019; Cho et al. 2022). In the presence 

of high DNA methylation, enhancers have been observed to be associated with high 

levels of the histone modification H3K27ac  (Charlet et al. 2016), which is often 

associated with active gene transcription (Creyghton et al. 2010; Wang et al. 2017; 

Kang et al. 2021; Zhu et al. 2022).  

 

Most DNA methylation studies have used a single reference genome with little 

or no knowledge of the impact of reference genome choice on the interpretation of 

methylome differences. The choice of reference genome has been shown to have an 

impact on DNA methylation analyses, with up to a nine per cent bias reported when 

the incorrect reference is used (Wulfridge et al. 2019). Using a single reference 

genome has been shown to bias read mapping in favour of reads with high similarity 
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to the reference (Degner et al. 2009; Brandt et al. 2015; Salavati et al. 2019; Groza et 

al. 2020; Chen et al. 2021). This bias occurs because reads containing non-reference 

alleles or regions that are divergent from the reference either align poorly, align to the 

wrong genomic region, or fail to align. This reference bias has been shown to affect 

analyses of cattle breeds (Crysnanto & Pausch 2020; Lloret-Villas et al. 2021), 

humans (Degner et al. 2009; Günther & Nettelblad 2019), and sheep (Salavati et al. 

2019).  

 

The majority of mammalian methylation occurs in the CpG context. 

Consequently, a single nucleotide polymorphism (SNP) can remove a methylation 

site, thus introducing a reference bias if the individuals being studied do not possess 

the same SNPs as the individual used to generate the reference. In addition to SNPs, 

structural variations (SVs) among individuals may remove or introduce CpG sites. The 

disparity between CpG sites can confound analyses by identifying a methylated CpG 

in one individual when another individual has no CpG at that position. As a result, 

SNPs and SVs can both introduce bias, individuals with different SNPs or SVs relative 

to the reference will have a poorer alignment accuracy than those without. As a result, 

entire genomic regions may lose sufficient coverage for analysis, despite likely having 

important biological function. Moreover, if individuals have insertion SVs that carry 

CpG sites, reads that originate from the SV can only be mapped if the complete 

pangenome for the population is available, or at the very least, that SV is present within 

the reference genome. We consider SNPs and SVs that alter CpGs as genetic changes 

with potential effects on epigenetic regulation. We use the term ‘genetics of 

epigenetics’ to describe this phenomenon.  
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As more genomes for a given species become available, the research 

community is gradually shifting toward using pangenomes to account for genetic 

variation within a population more accurately. A pangenome is a collection of the 

genomes of multiple individuals, representing all genetic variation within that 

population and is thus a more accurate way to represent genetic diversity than a single 

reference genome (Wang et al. 2022). Current pangenome projects include human 

(Wang et al. 2022; Liao et al. 2023), cattle (Smith et al. 2023), and maize (Woodhouse 

et al. 2021). As genetic differences within a population can result in CpG differences, 

these pangenomes provide a valuable resource to study DNA methylation changes 

between diverse groups of individuals of the same species. However, where a 

pangenome is unavailable but breed-specific genomes exist, it is still possible to gain 

insight into DNA methylation changes and how they may contribute to phenotypic 

differences between individuals within the same species. 

 

The two main lineages of modern cattle breeds are generally accepted to have 

been derived from two separate domestication events of the wild auroch (Bos 

primigenius) (McTavish et al. 2013). The first domestication event occurred in the 

Fertile Crescent around 10,000 years ago and gave rise to Bos taurus taurus from the 

wild auroch, B. p. primigenius (Bruford et al. 2003; Ajmone-Marsan et al. 2010; 

MacHugh et al. 2017). A second domestication event occurred in the Indus Valley, 

~1,500 years later, from B. p. nomadicus, which separated from the B. p. primigenius 

around 250-330,000 years ago (Loftus et al. 1994) and gave rise to Bos taurus indicus. 

The subspecies are referred to here as taurine and indicine cattle, respectively 

(McTavish et al. 2013), where the Angus breed represents taurine cattle, and Brahman 

is representative of indicine cattle.  
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Angus and Brahman have contrasting phenotypes, e.g., Angus have been bred 

for meat production traits (Elzo et al. 2012), whereas Brahman have superior heat and 

disease tolerance traits (Dikmen et al. 2018; Goszczynski et al. 2018). DNA 

methylation differences may partly be responsible for the phenotypic differences 

between these two breeds. 

 

As expected from their domestication history, Angus and Brahman cattle 

represent genetically highly diverged subspecies (Decker et al. 2014; Koren et al. 

2018). However, as they produce fertile offspring when mated (Hiendleder et al. 

2008), they are an appropriate model to investigate the impact of using a single 

reference genome on methylome analysis of two genetically diverse populations.  We 

have previously produced high-quality haplotype-resolved reference genomes for 

Angus and Brahman (Low et al. 2020), enabling us to thoroughly evaluate the impact 

of reference genome choice in WGBS analysis. 

 

Breed-specific differences in CpGs may occur due to a SNP, such as those 

caused by spontaneous deamination (Żemojtel et al. 2011; Yang et al. 2021), or may 

result from SVs. A single SNP affecting a CpG site has been shown to drastically alter 

the methylation state of the Igf2 gene in pigs leading to changes in muscle 

development (Van Laere et al. 2003). SVs have been associated with decreased 

methylation in cancers (Zhang et al. 2019) and with changes in the methylation of the 

kappa opioid receptor (kor) promoter associated with KOR dysfunction and 

schizophrenia (Lutz et al. 2018).  
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Parent-of-origin effects (POEs) occur when only one allele is expressed, and 

the phenotype in the offspring may depend on which parent contributed the expressed 

allele (Lawson et al. 2013). Reciprocal crossing is necessary to elucidate how each 

parent contributes to a particular phenotype. POEs have been observed in hybrids of 

mice (Shi et al. 2005), cattle (Vaughn et al. 2022) and pigs (Pan et al. 2012), and there 

is increasing evidence that fetal development is influenced by POEs (Doria et al. 2010; 

Piedrahita 2011; Yuen et al. 2011; Moore et al. 2015; Eggermann et al. 2021).  

 

To investigate the potential impact of reference genome choice on methylome 

analyses and to improve our understanding of the genetic and epigenetic factors 

driving the phenotypic differences between cattle subspecies, we used WGBS data 

from 24 fetal liver samples of purebred Brahman and Angus cattle and their reciprocal-

crosses to perform a comprehensive assessment of the impact of reference genome 

choice on differential methylation and gene expression. This study serves as an 

example of how to investigate epigenetic differences between breeds, strains, and 

populations within species and informs about reference genome effects on the 

interpretation of methylome analyses. 

 

Methods 

Study Animals and Sample Collection 

All animal experiments and procedures described in this study complied with 

Australian guidelines, approved by the University of Adelaide Animal Ethics 

Committee and followed the ARRIVE Guidelines (https://arriveguidelines.org/) 

(Approval No. S-094-2005). Liver tissue samples from concepti were the same as 

those described in Liu et al. (2021). Briefly, the parents were purebred Angus (B. t. 
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taurus) and purebred Brahman (B. t. indicus), herein denoted as BT and BI. 

Primiparous females and their fetuses were ethically sacrificed at day 1531 of 

gestation. Concepti were dissected, and tissue samples snap-frozen in liquid nitrogen 

and stored at -80°C until further use. Liver samples from three female and three male 

individuals from each of the four genetic combinations: BT x BT, BT x BI, BI x BT, 

and BI x BI were used. 

 

DNA extraction and sequencing 

DNA was extracted from frozen fetal liver tissues using Qiagen® DNeasy® 

Blood & Tissue Kit following the manufacturer’s instruction and sent to BGI Hong 

Kong, China, for WGBS library preparation and sequencing. Bisulfite conversion was 

performed using the Zymo Research™ EZ DNA Methylation™ - Gold Kit (D5005). 

All samples were sequenced in a single batch, and each sample was sequenced to ~30X 

coverage using the BGI DNB-seq. 

 

RNA was extracted from frozen fetal liver tissues using Illumina® RiboZero 

Gold kits following the manufacturer’s instruction and prepared for Illumina RNA-

seq short-read sequencing. The RNA-seq protocol and data availability (GEO 

accession number: GSE148909) have been described in our previous work (Liu et al. 

2021). The same tissue samples were used in both the RNA-seq and WGBS. Individual 

sample names and their corresponding genetic group are given in Supplementary 

Table 11. 

 

WGBS mapping 
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WGBS reads were mapped using the MethylSeq Nextflow pipeline (v. 1.6.1) 

(Di Tommaso et al. 2017) with the ‘--zymo’ trimming parameter. The reads were first 

checked for quality with FastQC (v. 0.11.9) ( 

https://www.bioinformatics.babraham.ac.uk/projects/fastqc/), then adapters were 

trimmed using Trim Galore (v. 0.6.6) ( https://github.com/FelixKrueger/TrimGalore), 

and the reads were reassessed for quality post-trimming. Trimmed reads passing 

qvalue  20 were mapped to the Brahman (GCA_003369695.2) and 

Angus (GCA_003369685.2) genomes (Low et al. 2020) using BWA-Meth (0.2.2) 

(arXiv:1401.1129). The non-pseudo autosomal region of the Angus Y chromosome 

was added to the Brahman reference. This step enabled us to include the Y 

chromosome sequence whilst avoiding duplication of the pseudoautosomal region. 

Both Brahman and Angus chromosome sequences were reorientated to match the 

orientation of ARS-UCD1.2 chromosomes (Rosen et al. 2020). After sorting the 

alignment files with SAMtools (v. 1.11) (Li et al. 2009), duplicates were marked with 

Picard (v. 2.25.4) ( https://broadinstitute.github.io/picard/). Bam file quality control 

was performed with the bamqc function from qualimap (v. 2.2.2d) (Okonechnikov et 

al. 2016) by setting the ‘-gd’ parameter to HUMAN. Methylation calls were extracted 

using MethylDackel (v. 0.5.2) (https://github.com/dpryan79/MethylDackel) extract 

with the parameter ‘—minDepth 10’ and output in MethylKit (Akalin et al. 2012) 

format (‘—methylKit’) and a more generic cytosine report (‘—cytosine_report’). In-

house scripts were used to convert the MethylDackel output for use with DNMTools 

https://dnmtools.readthedocs.io/en/latest/ (see 

https://github.com/DaviesCentreInformatics/Brahman_Angus_WGBS).  All samples 

had a bisulfite conversion efficiency of >99%. All downstream analyses only used 

CpGs from autosomes with  10X coverage. 

https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
https://github.com/FelixKrueger/TrimGalore
https://broadinstitute.github.io/picard/
https://github.com/dpryan79/MethylDackel
https://dnmtools.readthedocs.io/en/latest/
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Identification of shared and breed-specific CpG sites 

For a given autosome, we extracted 1000bp around all CpGs that were not in 

the first 500bp or last 500bp of the chromosome; this yielded sequences that were 

1002bp long. We then mapped the 1002bp CpG sequences from one subspecies to the 

reference of the other. We used minimap2 (v. 2.24) (Li 2018) with the ‘map-hifi’ 

preset to align CpGs from a given chromosome in one breed to the same chromosome 

in the other breed; alignments were sorted using SAMtools (v 1.11) (Li et al. 2009). 

Once the long sequences were aligned, we filtered the BAM file and considered all 

alignments where at least 900 bp were successfully aligned to the reference. We then 

used the Align package from BioPython (v 1.80) (Cock et al. 2009) to perform a local 

alignment between the 102bp sequences taken from the midpoint of the query and 

reference. We then recorded which CpG sites were shared between Brahman and 

Angus, which CpG sites differed, and which could not be aligned during the initial 

minimap2 alignment step (S. table 6). We performed subsequent analyses using all 

CpGs present on the autosomes for each reference and again using only the shared 

CpGs that passed the  10X coverage criteria. The CpG sites that could not be aligned 

in the initial alignment step with minimap2 (i.e. a genomic region that is present in 

one breed but missing in the other breed) or constituted a SNP were considered breed-

specific CpG sites. All steps described in this section were performed for both 

Brahman and Angus reference genomes. 

 

Identification of differentially methylated regions 

The methylKit package (v. 1.22.0) (Akalin et al. 2012) was used to identify 

DMRs between breed and POE groups. We investigated breed effects by comparing 
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BIBI samples with BTBT samples. The reference group was always the breed that 

matched the reference genome. i.e., BIBI samples were the reference group when 

reads were aligned to the Brahman reference. Any DMRs identified were either hypo- 

or hypermethylated with respect to this reference group. To study POEs, we 

investigated the maternal effects by comparing samples with BIBI dams (BIBI; BTBI) 

and those with BTBT dams (BTBT; BIBT). Similarly, to study the paternal effects, 

we compared those with BIBI sires (BIBI; BIBT) and those with BTBT sires (BTBT; 

BTBI). For each comparison, we removed all CpG sites with less than 10X coverage 

and more than the 99.9th percentile of coverage. Reads with too high coverage (e.g. 

from PCR duplication bias) can impair the accurate determination of the methylation 

percentage at that site (Akalin et al. 2012). We then normalized the coverage using the 

default methylKit normalization strategy. We merged the CpG counts per group using 

the ‘unite’ function with ‘destrand = T’ and ‘min.per.group = 5L’ so that a given CpG 

site had to be covered by at least ten reads in five out of six samples per group. For the 

parent of origin DMR analysis, we set ‘min.per.group = 10L’. 

 

We then identified differentially methylated cytosines between groups using 

the ‘calculateDiffMeth’ function, with sex as a covariate in the model. To determine 

differentially methylated regions, we used the ‘tileMethylCounts’ function with 

default parameters to divide the genome into regions for differential methylation 

analysis. This step allowed methylKit to divide the genome into non-overlapping 

regions based on the tiling windows. Briefly, methylKit models the methylation at a 

given cytosine or region by fitting a logistic regression:  

log (
𝑃𝑖

1 − 𝑃𝑖
) = 𝛽0 + 𝛽1 ∗ 𝑇𝑖 
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Pi denotes the methylation proportion for sample i in samples 1,…,n, where n is the 

number of samples across both groups in the comparison (Akalin et al. 2012). Ti 

represents the groups (0 for group 1, 1 for group 2). 𝛽0 denotes the log odds of group 

1 (fraction of reads reporting C / 1 – the fraction of reads reporting C). 𝛽1 denotes the 

log odds ratio between the groups. For further details, refer to Akalin et al. (2012). We 

retained all DMRs with a difference in methylation of  10% and a qvalue of  0.01 

for further analysis. An overview of the samples, reference genomes, types of CpGs 

and DMR analysis is given in Fig 1A-G. 

 

Identification of SNPs and SVs between Angus and Brahman genomes 

We used MUMmer (v. 4.0.0) (Marçais et al. 2018) to identify SNPs and 

generate input files for Assemblytics (v. 1.2.1) (Nattestad & Schatz 2016). Briefly, 

‘dnadiff’ from MUMmer with default parameters was used to align the Brahman and 

Angus autosomes. We extracted SNPs for all autosomes from the ‘.snps’ file generated 

by ‘dnadiff’. The delta file generated in this step was used as input to Assemblytics. 

The output from Assemblytics was then used to identify SVs. We considered SVs as 

variants greater than or equal to 50 bp in length. 

 

DMR coordinate conversion 

To determine if a given DMR changed methylation direction between 

genomes, we had to convert the coordinates of DMRs identified by alignment with the 

Angus genome to Brahman coordinates and vice versa. We considered a DMR as 

changing methylation direction if, for example, it is hypomethylated in BIBI samples 

compared to BTBT samples when using the Brahman reference but becomes 

hypermethylated in BIBI using the Angus reference genome. To investigate this, we 
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first converted the DMR bed files to GTF files and then used Liftoff (v.1.6.2) (Shumate 

& Salzberg 2021) to transfer coordinates from one reference genome to the other. We 

then identified DMRs reciprocally overlapping one another by at least 90% between 

the two genomes, with these DMRs being considered successfully lifted over. DMRs 

that did not overlap by 90% were not considered for the methylation direction change 

analysis. 

 

RNA-seq mapping and pre-processing 

RNA-seq reads were mapped to the Brahman and Angus genomes as in the 

WGBS mapping step. Briefly, reads were checked for quality using FastQC (v. 0.11.4) 

( https://www.bioinformatics.babraham.ac.uk/projects/fastqc/) before being trimmed 

with Trim Galore (v. 0.4.2) (https://github.com/FelixKrueger/TrimGalore) with the 

parameters ‘--quality 10’ and ‘--length 100’. Reads were mapped using HiSAT2 (v. 

2.1.0) to both the Brahman and Angus reference genomes (Low et al. 2020); alignment 

files were sorted using SAMtools (v. 1.10) (Li et al. 2009). FeatureCount from the 

Rsubread package (v. 2.10.5) (Liao et al. 2019) was used to count how many reads 

mapped to genes.  

 

Differential gene expression 

Differential gene expression analysis was performed using an in-house R script 

similar to previously published work (Liu et al. 2021), with the edgeR (v. 3.38.4)  

(Robinson et al. 2009) and limma (v. 3.52.4) (Ritchie et al. 2015) R packages. The 

genome annotation was based on Ensembl v.104 for Brahman and Angus. The 

orientation of the genes was reversed where necessary to correspond with the 

orientation of the chromosomes of ARS-UCD1.2. Briefly, genes that had fewer than 

https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
https://github.com/FelixKrueger/TrimGalore
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0.5 counts per million (CPM) in fewer than three samples were removed from the 

dataset. Reads were normalized using the trimmed mean of M-values and then 

weighted using ‘voomWithQualityWeights’. As two samples were sequenced in a 

separate batch, we added the batch as a term to the model to account for any variability 

introduced by the separate sequencing run. We then compared differential gene 

expression between purebred Angus and Brahman, Angus dams and Brahman dams, 

and Angus sires and Brahman sires. Genes with significant differences in gene 

expression at an adjusted p-value  0.05 were retained for further analysis.  

 

Identifying imprinted genes 

We downloaded a list of genes with evidence of imprinting in human, mouse 

and cattle from Morison et al. (2005) and https://www.geneimprint.org. We then used 

OrthoFinder to identify human orthologs of both Brahman and Angus genes (Emms 

& Kelly 2019), allowing us to assign Human Genome Organisation Gene 

Nomenclature Committee (HGNC) symbols to genes in each breed. To do this, we 

first identified which Brahman proteins had orthologs in human. We then identified 

the genes that encoded these proteins and used this information to assign human and 

Brahman genes as orthologs. We repeated the process for the Angus genes. We then 

identified all genes that could be assigned an HGNC symbol from the Brahman 

Ensembl annotation version 104 that were also present in the imprinted gene list (S. 

table 12). This filtering gave us 80 imprinted genes for Brahman autosomes. We 

repeated the process for Angus using the Angus Ensembl annotation version 104 and 

identified 79 imprinted genes. The discrepancy is due to one imprinted gene for Angus 

occurring on an unplaced scaffold. 

 

https://www.geneimprint.org/
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Linking DMRs to DEGs 

For each DEG, we considered five different regions in and around the gene 

where DMRs might have an influence. These regions included putative enhancer 

regions, 5kb outside the gene body, and the gene body itself (S. figure 11). The 

upstream putative enhancer region started 130kb upstream of the gene and then 

stopped 5kb upstream of the gene body for a total length of 125kb. We repeated this 

for the downstream putative enhancer region, starting 5kb downstream of the gene 

body and extending out 125kb. This putative enhancer region length was based on the 

median distance between enhancers and their gene targets (Jin et al. 2013). The 5kb 

region was from upstream of the start of the gene body to the start of the gene body. 

Again, this was repeated for the downstream 5kb region. The gene body was the region 

annotated as “gene” in the Ensembl annotation file. We then found all DMRs that 

overlapped these regions by at least 90% of their length using ‘bedtools intersect’ with 

the ‘-f’ and ‘-F’ arguments, both set at 0.9 and the ‘-e’ argument set to True. 

 

Results 

Mapping of WGBS data and calling CpG 

Each of the 24 samples representing the four genetic groups (Fig 1A; S. table 

1) was sequenced for WGBS analysis to at least 30X coverage and then mapped 

separately to the Brahman and Angus genomes (Fig 1B). An average mapping rate of 

~95% was achieved when reads were mapped from each sample to the Brahman 

reference genome (Table 1; S. table 1). All samples had at least 10X coverage for 93% 

of the Brahman sequence. Using the Angus reference, all samples had 10X coverage 

for at least 90% of the sequence (Table 1; S. table 1). 
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We performed all analyses twice for each reference genome, first using all 

CpGs with 10X in each reference genome and again where we retained only CpG 

sites with 10X that we could confidently assign as being shared between both breeds. 

Between 85% and 88% of autosomal CpG sites had coverage  10X when considering 

all CpG sites on both the Brahman and Angus reference and shared CpG sites (Table 

1; S. table 2). Median coverage of CpG sites across all samples ranged from 25-34X 

regardless of reference and CpG sites considered (i.e., shared or all) (Table 1; S. table 

3).  

 

Clustering of genetic groups  

Comparing the methylation patterns between the genetic groups, we found that 

samples within a genetic group were more similar to each other than with samples 

from other groups. For example, samples from the BTBT group had higher 

correlations with other BTBT samples than BIBI samples.  BTBT had the highest 

within-group Pearson correlations (r between 0.81 and 0.88) (S. figure 1). The samples 

that were least correlated with one another were those belonging to BTBT and BIBI, 

with correlations between 0.75 and 0.78. Samples from the reciprocal cross groups 

(BIBT; BTBI) had similar correlations with other samples within their own group (r 

between 0.81 and 0.83) as well as with samples from the alternative reciprocal cross 

(r between 0.80 and 0.83). Overall, correlations were high within each genetic group 

(r  0.8) (S. figure 1). 

 

We performed a principal component analysis of the 24 samples using CpG 

sites covered by at least 10 reads in all samples (Fig 2A). BTBT and BIBI formed 

distinct clusters distant from one another, with the two hybrid genetic groups 
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clustering much closer together and between the two parental genetic groups. 

Nevertheless, the hybrid groups were clearly separated on the PCA plot (Fig 2A). The 

separation of groups we observed from the methylation data was similar to that seen 

for the gene expression data (Fig 2B).  

 

Overview of DNA methylation patterns 

Samples had global mean CpG methylation of between 47-62%, with most 

samples ranging from 49-54% (Fig 3A; S. table 4). Mean exon CpG methylation was 

48-58% for all samples, with most samples ranging from 48-54% methylation (S. Fig 

2; S. table 5). The 5’ UTRs and promoter regions had the lowest mean CpG 

methylation percentage across all samples, between 9-14% and 14-19%, respectively 

(S. Fig 3-4; S. table 5). The intergenic regions displayed mean methylation levels that 

ranged from 47 – 65% (S. Fig 5; S. table 5), with most samples ranging from 49-57%, 

similar to the global mean. The introns exhibited slightly higher methylation levels, 

with means ranging from 51-66% (S. Fig 6; S. table 5), and most samples in the 53-

59% range. The 3’ UTRs revealed the highest overall CpG methylation levels, 57-69% 

(S. Fig 7; S. table 5). Lastly, the predicted enhancers, according to MacPhillamy et al. 

(2022), exhibited CpG methylation levels ranging from 42-53%, with most samples 

within 43-48% methylated (S. Fig 8; S. table 5). Similar methylation patterns were 

observed using only shared CpGs in exons, 5’UTRs, intergenic, introns, promoters, 

predicted enhancers, and 3’UTRs, regardless of the reference genome used.  

 

Shared and breed-specific CpGs 

We were able to confidently identify 74-75% of CpGs in the Brahman and 

Angus genomes that were shared between the two breeds (Table 2; S. table 6). We 
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found that around four per cent of CpG alignments contained a SNP between reference 

genomes (S. table 6; S. figure 9), i.e., were breed-specific. About 22% of CpGs could 

not be confidently assigned as shared or breed-specific and so were not considered in 

the shared CpG analysis. By definition, breed-specific regions with CpG sites did not 

align when the other breed genome was used as the reference. We found ~1% of such 

CpG sites. In total, the SNP change and breed-specific categories of CpG sites 

constituted 4.7% and 4.9% of CpGs between the Angus and Brahman reference 

genomes, respectively, and were considered breed-specific.  

 

Enrichment of SNPs affecting CpG sites 

Using the autosomal SNPs identified by MUMmer, we observed that Brahman 

and Angus autosomal sequences differ by an average of ~0.6% (S. table 7). SNPs in 

CpG sites were found to be enriched by ~8 times compared to the genome-wide 

average (binomial test, p-value < 5 × 10−324), which means there is a higher level of 

divergence between Angus and Brahman at CpG sites than at other autosomal sites.  

Looking more closely at the CpG SNP changes, we found that most (~81%) of the 

CpG SNP were either C to T or G to A changes (S. figure 7). The remaining SNP 

changes individually comprised less than ~10% of the total observed mutations at CpG 

sites (S figure 9; S. table 6).  

 

Increased number of CpGs within structural variants 

Next, we tested whether CpGs were enriched in SVs compared to the rest of 

the genome. Using the Brahman genome as the reference, we observed 25,009 SVs 

between Brahman and Angus, making up ~27Mb of sequence. We observed 1.13-fold 

more CpGs within SVs than in non-SVs (binomial test, p-value < 5 × 10−324). When 
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considering CpGs affected by SNPs and SVs, the CpG mutation rate is approximately 

4% between Brahman and Angus compared to the genome-wide mutation rate of 

around 1.7%. 

 

Choice of reference genome influences methylome results 

We observed a statistically significant difference in global CpG methylation in 

BTBT, BIBT and BIBI depending on whether the Angus or Brahman genome was 

used to quantify methylation at 10X coverage (paired Wilcoxon test, p-value < 0.05) 

(Figure 3A; S. figure 10). Although not statistically significant, the BTBI group 

(paired Wilcoxon test, p-value = 0.06) approaches significance. The reference 

genomes showed no difference in global methylation when only shared CpG sites were 

considered (Figure 3B). When comparing global CpG methylation differences 

between samples mapped to Brahman versus those mapped to Angus, the largest 

quantification bias was ~2% for BTBT. The other quantification biases were ~0.8%, 

~0.7% and ~0.3% for BTBI, BIBT and BIBI samples, respectively (Figure 3A).  

 

To further investigate the influence of the reference genome on downstream 

analyses, we compared DMRs identified by the two reference genomes to evaluate if 

the direction of methylation changed, i.e., hypermethylated vs hypomethylated and 

vice versa. Approximately 12% (28,922) of Angus DMRs overlapped with Brahman 

DMRs by at least 90% of their length. Of the DMRs that mapped to the Angus 

reference, 3,575 showed changes in methylation direction when mapped to the 

Brahman reference (S. table 8). We observed similar numbers (3,581) when lifting 

DMRs from Brahman to Angus (S. table 8). There were no methylation direction 

changes when we considered differentially methylated cytosines (DMCs).  
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Breed-specific CpGs show distinct methylation patterns 

Looking more closely at the breed-specific CpGs, we first determined whether 

a given breed-specific CpG was methylated or not. We binned individual CpGs into 

“unmethylated” (CpG methylation  35%) and “methylated” (CpG methylation  

65%). CpGs that were between 35% and 65% were considered “hemimethylated” and 

were excluded from this analysis. We only considered breed-specific CpGs with at 

least 10X coverage in all purebred samples mapped to their respective genome. We 

then randomly sampled 1000 CpG sites for 100 iterations, recording the number of 

“methylated” and “unmethylated” CpGs for each breed. We observed significantly 

more Brahman-specific CpGs as hypomethylated than hypermethylated (Mann-

Whitney U-test, p =2.5 × 10−34). Interestingly, we observed the inverse when 

considering Angus-specific CpGs; significantly more Angus-specific CpGs were 

hypermethylated than hypomethylated (Mann-Whitney U-test, p =2.5 × 10−34) 

(Figure 3C).  

 

Breed-specific DMRs show poor association with DEGs 

As we observed a quantification bias when using all CpGs mapped against 

each reference genome, we restricted breed-specific and POE analyses to those CpGs 

identified as shared. Additionally, we examined the number of DMRs at the 25% and 

50% difference thresholds, i.e., more stringent thresholds for calling DMRs which 

substantially reduced the numbers (S. table 9). Given that minor changes of less than 

10-15% in methylation have been observed to influence gene expression and 

phenotype (Leenen et al. 2016; Thomson et al. 2022), we used a difference threshold 

of 10% to interpret the results. 
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Using Brahman as the reference, we identified 123,602 DMRs and 1,397 

DEGs (S. table 9; S. table 10). Of the 123,602 DMRs observed, ~20% (25,367) 

overlapped with the surrounding region of the significant DEGs, with most (~69%) 

falling within the putative-enhancer region. Only 0.8% of the DMRs overlapped with 

promoters of DEGs. When the Angus reference was used, of the 125,544 DMRs 

identified, ~32% (40,787) of those overlapped with a DEG. Most (~64%) of these 

DMRs fell into the putative enhancer region, while only 0.8% of the DMRs overlapped 

with a DEG promoter, despite substantially more (2,151) DEGs observed (S. table 10).  

 

We then examined the overlap of DMRs and imprinted genes, first using 

Brahman as the reference. Here, ~1% (1,282) of the DMRs identified between BIBI 

and BTBT overlapped 79 imprinted genes. Only one imprinted gene, Par-6 family cell 

polarity regulator gamma (Pard6g), did not overlap with any DMR. Most DMRs 

(~72% of the 1,282) that overlapped an imprinted gene fell into putative enhancer 

regions. Seven imprinted genes were significantly differentially expressed when 

comparing BIBI and BTBT (Table 3). These genes were SPARC related modular 

calcium-binding 1 (Smoc1), neuronatin (Nnat), ganglioside induced differentiation 

associated protein 1 like 1 (Gdap1l1), diacylglycerol O-acyltransferase 1 (Dgat1), 

solute-carrier family 22 member 18 (Slc22a18), potassium voltage-gated channel 

subfamily Q member 1 (Kcnq1) and protein phosphatase 1 regulatory subunit 9A 

(Ppp1r9a). Nnat and Gdap1l1 had higher expression in BTBT, and the remaining five 

DEGs, Smoc1, Dgat1, Slc22a18, Kcnq1 and Ppp1r9a, had higher expression in BIBI. 

We observed seven imprinted DEGs using the Angus reference; however, the genes 

identified differed: estrogen receptor 2 (Esr2), Ppp1r9a, and DLG-associated protein 



 102 

2 (Dlgap2) had higher expression in BIBI (Table 4), while Nnat and zinc finger protein 

90 (Zfp90) had higher expression in BTBT.  

 

Dam-of-origin methylation  

To investigate the dam-of-origin effects (DOEs), we compared samples with 

Brahman dams (BIBI and BTBI) with those with Angus dams (BTBT and BIBT). 

Using the Brahman genome as the reference, 243 DEGs were identified in the DOE 

comparison.  Around 3% (497) of the DMRs overlapped with DEGs. Most DMRs 

(~357) fell into the putative enhancer region; 0.9% of DMRs overlapped with a DEG 

promoter (S. table 9; S. table 10).  There were 52 imprinted genes that overlapped with 

~1% (188) of the DMRs identified in the comparison. Of the 188 DMRs that 

overlapped with an imprinted gene, 125 DMRs overlapped with the putative enhancer 

region. Only two imprinted genes were significantly differentially expressed (Table 

3). Zinc finger CCCH-type containing 12C (Zc3h12c) and Ppp1r9a had higher 

expression in samples with Brahman mothers. Using Angus as the reference, we 

observed 809 (~4%) DMRs overlap with the 260 DEGs. Most (592) of these DMRs 

fell into the putative enhancer regions. The same imprinted DEGs (Zc3h12c and 

Ppp1r9a) were identified using the Angus genome as the reference (Table 4). 

 

Sire-of-origin methylation may be driving differential gene expression 

To investigate the sire-of-origin effects (SOEs), we compared samples with 

Brahman sires (BIBI and BIBT) with those with Angus sires (BTBT and BTBI). Using 

the Brahman reference, we identified 62,056 DMRs and 1,364 DEGs in the sire group 

comparison using shared CpGs (S. table 9; S. table 10). There were 63,516 DMRs 

identified using the Angus reference, but substantially more DEGs (2,137) were 



 103 

identified (S. table 10). Around 15% (~9,300) of the DMRs overlap with a significant 

DEG; most (72% of the 9,300) of those overlaps were in a putative enhancer region. 

Using the Angus reference, ~27% (~17,100) of DMRs overlapped a DEG, with most 

(~70%) of the DMRs overlapping a putative enhancer region. One per cent and 0.7% 

of DMRs overlapped with a DEG promoter when using either the Brahman or Angus 

as the reference.  

 

We observed 73 imprinted genes that overlapped DMRs identified between the 

two different sire groups. Less than 1% (586) of DMRs overlapped the 73 imprinted 

genes, with most (~73% of 586) occurring in the putative enhancer region. Seven 

imprinted genes were significantly differentially expressed and overlapped with a 

DMR (Table 3). These genes were DS cell adhesion molecule (Dscam), 5-

hydroxytryptamine receptor 2A (Htr2a), Nnat, Dgat1, AXL receptor tyrosine kinase 

(Axl), necdin MAGE family member (Ndn), and tissue factor pathway inhibitor 2 

(Tfpi2). Dscam, Nnat, Ndn and Tfpi2 had higher expression in samples with Angus 

sires, with the other genes being more highly expressed in samples with Brahman sires. 

Slc22a18 showed high expression in the Brahman sire group but did not overlap with 

any DMRs. More significantly differentially expressed imprinted genes were observed 

using the Angus than the Brahman reference (Table 4). In this case, the ten 

significantly differentially expressed imprinted genes with DMR overlap were Dscam, 

Esr2, Htr2a, Nnat, succinate dehydrogenase complex subunit D (Sdhd), Axl, makorin 

ring finger protein 3 (Mkrn3), Ndn, Dlgap2 and Slc22a18. Dscam, Nnat, Sdhd, Mkrn3 

and Ndn had higher expression in samples with an Angus sire. The remaining five 

genes (Esr2, Htr2a, Axl, Dlgap2, Slc22a18) had higher expression in samples with a 

Brahman sire. Dgat1 did not overlap any DMRs when using the Angus reference.  
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Discussion 

In the present study, we observed genome-wide CpG methylation correlations 

among replicates that ranged from 75% to 82% between groups and from 81% to 87% 

within groups. These correlations were similar to a recent study in mice where 

genome-wide CpG methylation correlations among replicates ranged from 73% to 

greater than 80% (He et al. 2020). Moreover, we observed levels of liver global CpG 

methylation between 47-62% in the present study, which is similar to previous studies 

of human (Hama et al. 2018), mouse (He et al. 2020) and cattle (Zhou et al. 2020).  

 

Mapping statistics can provide an insight into how the choice of reference 

genome will affect downstream analyses (Valiente-Mullor et al. 2021). However, we 

observed negligible differences in raw mapping statistics regardless of whether the 

Angus or Brahman reference genomes were used. Additionally, the global methylation 

quantification bias observed was less than 2%, depending on the reference genome 

used. This quantification bias is lower than the 7-9% quantification bias found in the 

mouse genome, depending on the reference genome used (Wulfridge et al. (2019). The 

extent of this bias is influenced by the divergence between reference genomes and 

whether the breed-specific CpGs tend to be hypo- or hypermethylated. Brahman and 

Angus have a CpG divergence of ~4%, whereas the mouse genomes analysed by 

Wulfridge et al. (2019) had a CpG divergence of 10.7%. The bias we observed was 

greatest in the BTBT samples when the Brahman genome was used as the reference, 

most likely because the Angus-specific CpG sites tended to be hypermethylated. 

Conversely, the quantification bias was lower in the other genetic groups, possibly due 

to the hypomethylation in Brahman-specific CpG sites. 
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Spontaneous deamination of methylated CpG to TpG is the most common 

dinucleotide mutation in the mammalian genome (Żemojtel et al. 2011; Yang et al. 

2021). We observed around 800,000 C-T or G-A mutations between Brahman and 

Angus. A recent study observed 34,677 SNPs affecting CpG sites between indicine 

and taurine genomes (Capra et al. 2023). The difference in the number of SNPs 

between the two studies is likely due to Capra et al. (2023) having used reduced 

representation bisulfite sequencing with substantially lower coverage than the present 

study and that they only considered SNPs that affected CpG sites. When differential 

methylation analysis is performed, a breed that has lost the C (mutated to T) will be 

reported as having 0% methylation at that site when, in fact, there is no CpG present. 

This incorrect identification of an unmethylated site can then severely impact the 

interpretation of results.  

 

SVs have been associated with various traits in humans, including HIV-1 

susceptibility (Gonzalez et al. 2005), autism (Kumar et al. 2008; Marshall et al. 2008; 

Weiss et al. 2008) and carcinogen metabolism (Bell et al. 1993). In livestock, SVs 

have been implicated in diverse traits ranging from horn (polled) status (Rothammer 

et al. 2014; Lamb et al. 2020) to bulldog calf syndrome (Jacinto et al. 2020). The SVs 

between Brahman and Angus have significantly more CpGs than the background 

genome, potentially introducing CpGs with important regulatory effects. However, 

due to their presence in only one subspecies, a single reference genome will fail to 

account for these breed-specific CpG sites. Therefore, the phenotypic differences 

between the two breeds may be influenced by CpGs that cannot be compared 

accurately with a single reference genome if they are in breed-specific regions. 
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We observed relatively few changes in methylation direction, and these were 

likely to be an artifact of how the genome was tiled and possible erroneous alignments 

in the coordinate conversion. A common step of some DMR callers is to perform 

window tiling of the genome to identify DMRs or to enable analysis when coverage 

is low (Akalin et al. 2012; Park et al. 2014; Kishore et al. 2015). SNPs and SVs can 

potentially complicate analyses when genome tiling is used to identify DMRs, as a 

single reference genome cannot account for these variants. Although we observed no 

directional changes when considering DMCs, it is possible that some DMRs were 

specific to the reference genome, which affected the analysis.  Researchers should be 

careful when using genome tiling in methylation analyses that compare breeds, strains 

or populations. 

 

Most DMRs identified in this study were not associated with DEGs. However, 

of the DEGs that overlapped with a DMR, there was a tendency for the overlap to 

occur more frequently in the putative enhancer region than in promoters or DEG 

bodies. This trend suggests that differential methylation of enhancers may impact gene 

expression differences in bovine fetal liver. Indeed, a growing body of evidence 

suggests that enhancer methylation is important in embryonic and fetal development 

(Lee et al. 2015; Slieker et al. 2015; He et al. 2020; Alajem et al. 2021).  

 

There were more significant DEGs when mapping to the Angus reference than 

the Brahman reference. Interestingly, genes that were DE using the Brahman reference 

were not always DE when using the Angus reference. The choice of reference genome 

has been shown to impact differential expression analysis in rice (Slabaugh et al. 
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2019), bacteria (Price & Gibas 2017) and human (Wu et al. 2013; Kaminow et al. 

2022) when using short-read RNA-seq. When the reference genome better represents 

the individuals being studied, more reads can be uniquely aligned to the correct 

position, providing a more accurate estimate of gene expression. 

 

We identified several interesting DEGs associated with DMRs, particularly 

imprinted genes. Among these was Dgat1, which is involved in fat metabolism in milk 

production (Khan et al. 2021), feed conversion and adipogenesis (Abeel et al. 2009; 

Khan et al. 2021). Several studies have investigated the role of Dgat1 in weight gain 

(Zhang et al. 2010; Tsuda et al. 2014); expression of Dgat1 is necessary for weight 

gain, especially when the caloric density of food is high (Zhang et al. 2010). We found 

differential expression of Dgat1, with higher expression in Brahman than Angus (BIBI 

vs BTBT) and when Brahman was the sire (BIBI, BIBT vs BTBT, BTBI). Taken 

together, the breed and sire of origin comparisons suggest that the breed of the sire 

may be an important determinant in the expression of this gene. Higher Dgat1 

expression may result from adaptation to poor feed quality, e.g. Elzo et al. (2009) 

observed better feed conversion efficiency in Brahman compared to Angus and 

Brahman x Angus cattle. Regulation of Dgat1 expression may occur via DNA 

methylation, as there is a DMR ~42kb downstream of the transcription start site, which 

was identified in both the breed-specific and SOE comparisons. 

 

Parent-of-origin DMRs may change how cis-regulatory elements interact with 

target genes and influence gene expression in the offspring (Giannoukakis et al. 1993; 

Lawson et al. 2013). It has been observed that parent-specific methylation can alter 

the cis-regulatory landscape around certain genes, such as Igf2 (Szabo et al. 2000; 
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Yang et al. 2003).  DMRs may influence the DEGs and, ultimately, help drive the 

differences in phenotype. However, to confidently assign gene expression and DMRs 

to a particular parent, long-read sequencing (Ren et al. 2023) is needed to identify 

variations that link the sequences to the parent of origin. Additionally, the use of 

reciprocal crosses will enable one to investigate if a combination of breed and sex of 

the parent impacts which transcript is expressed.  

 

SNPs and SVs have been shown to complicate and bias analyses in several 

studies (Wu et al. 2013; Price & Gibas 2017; Slabaugh et al. 2019; Wulfridge et al. 

2019; Kaminow et al. 2022). In our analysis, we observed an enrichment of SNPs 

affecting CpGs between Brahman and Angus. Capra et al. (2023) also reported a 

higher frequency of breed-specific SNPs around DMCs in a study of indicine and 

taurine cattle. This finding suggests that genetic differences between the two breeds 

may contribute to epigenetic variations. Using individual animal genomes in the study 

to account for genetic variations, as Wulfridge et al. (2019) suggested, would enhance 

the accuracy for each individual. However, despite decreasing sequencing costs, the 

cost will likely be prohibitive in most livestock contexts. A possible solution was 

explored in a recent study comparing methylation in taurine and indicine cattle (Capra 

et al. 2023). Here the authors used genotyping by sequencing to exclude SNPs 

affecting CpG sites from the analysis (Capra et al. 2023). While this simplifies 

downstream analysis, it may also remove CpGs involved in the phenotypic differences 

between the two breeds, representing a limitation of the present study and that of Capra 

et al. (2023). An alternative approach to using single reference genomes is the 

utilisation of pan-genomes, which encompass the majority of variations within the 

population (Paten et al. 2017; Groza et al. 2020). This feature is particularly important 
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in the context of DNA methylation studies where, demonstrated in our study, SNPs at 

CpG sites can exert substantial effects on local methylation information.  

 

Conclusions 

This study generated a substantial WGBS dataset derived from two 

phenotypically diverse cattle breeds which are representative of the two cattle 

subspecies and highlighted the importance of reference genome choice in methylation 

analyses. Our findings suggest that the DMRs may primarily exert their influence on 

enhancer elements rather than promoters. We also identified 11 genes that might be 

under DMR control. The results underscore the advantages of using the appropriate 

reference genome for the data set and, through highlighting the limitations of linear 

reference genomes when comparing DNA methylation between diverse populations, 

provide additional evidence supporting the incorporation of genome graphs to improve 

methylation analyses of populations with high genetic divergence. 
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Tables 

Table 1. Mapping statistics of Angus and Brahman reference genomes. 

 Angus Brahman 

Mapped reads* 1,455,481,398 1,457,794,807 

Duplication rate (%)* 10 14 

CpGs with  10X coverage in all samples 22,116,287 21,962,589 

CpG coverage* 30 30 

* Mean of all samples. 
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Table 2. Number of CpGs in the Angus and Brahman reference genomes.  

 Angus Brahman 

Total CpGsA 25,712,300 25,799,151 

CpGs aligned to other referenceB 25,209,966 25,228,509 

CpGs shared in other genomeC 18,813,726 18,781,688 

CpGs affected by SNPD 993,318 1,003,167 

Unresolved CpGsE 5,402,922 5,443,654 
A Total number of CpGs present within the genome. 
B Number of CpGs that could be aligned from one genome to the other using 

Minimap2. 
C Number of CpGs in B that were CpGs in both species. 
D Number of CpGs in B that were a CpG in one species but are no longer CpGs in the 

other. 
E Number of CpGs in B that could not be confidently assigned as either shared or a 

SNP.  
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Table 3. Significant imprinted DEGs and their overlap with DMRs when using 

the Brahman reference genome. 

Gene ID Gene 

name 

Protein name Increased 

expression 

in 

Brahman* 

Number of 

hypo-

DMRs in 

Brahman 

Number 

of hyper-

DMRs in 

Brahman 

Breed comparison 

ENSBIXG00

005001873 

Smoc1 SPARC-related 

modular 

calcium-binding 

1 

Yes 16 1 

ENSBIXG00

005012203 

Nnat Neuronatin No 37 1 

ENSBIXG00

005014559 

Gdap1l1 Ganglioside-

induced 

differentiation-

associated 

protein 1 like 1 

No 30 2 

ENSBIXG00

005009822 

Dgat1 Diacylglycerol 

O-

acyltransferase 1 

Yes 3 2 

ENSBIXG00

005024991 

Slc22a18 Solute-carrier 

family 22 

member 18 

Yes 2 3 

ENSBIXG00

005004279 

Kcnq1 Potassium 

voltage-gated 

channel 

subfamily Q 

member 1 

Yes 9 5 

ENSBIXG00

005007141 

Ppp1r9a Protein 

phosphatase 1 

regulatory 

subunit 9A 

Yes 11 5 

Dam of origin comparison 

ENSBIXG00

005019306 

Zc3h12c Zinc finger 

CCCH-type 

containing 12C 

Yes 5 1 

ENSBIXG00

005007141 

Ppp1r9a Protein 

phosphatase 1 

regulatory 

subunit 9A 

Yes 3 2 

Sire of origin comparison 

ENSBIXG00

005007073 

Dscam DS cell 

adhesion 

molecule 

No 38 5 

ENSBIXG00

005021735 

Htr2a 5-

hydroxytryptami

ne receptor 2A 

Yes 18 2 
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ENSBIXG00

005012203 

Nnat Neuronatin No 8 0 

ENSBIXG00

005009822 

Dgat1 Diacylglycerol 

O-

acyltransferase 1 

Yes 0 1 

ENSBIXG00

005016997 

Axl AXL receptor 

tyrosine kinase 

Yes 9 1 

ENSBIXG00

005025694 

Ndn Necdin MAGE 

family member 

No 0 1 

ENSBIXG00

005024991 

Slc22a18 Solute-carrier 

family 22 

member 18 

Yes 0 0 

ENSBIXG00

005013434 

Tfpi2 Tissue factor 

pathway 

inhibitor 2 

No 25 0 

* Increased expression in Brahman denotes genes that were significantly more highly 

expressed in Brahman than in Angus. “No” denotes that gene was significantly more 

highly expressed in Angus. 
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Table 4. Significant imprinted DEGs and their overlap with DMRs when using 

the Angus reference genome. 

Gene ID Gene 

name 

Protein name Increased 

expression 

in Angus* 

Number 

of hypo-

DMRs in 

Angus 

Number 

of hyper-

DMRs in 

Angus 

ENSBIXG00

000024138 

Esr2 Estrogen receptor 2 No 4 8 

ENSBIXG00

000021864 

Nnat Neuronatin Yes 2 32 

ENSBIXG00

000015750 

Zfp90 Zinc finger protein 

90 

Yes 2 1 

ENSBIXG00

000012277 

Dlgap2 DLG-associated 

protein 2 

No 11 23 

ENSBIXG00

000005197 

Ppp1r9a Protein 

phosphatase 1 

regulatory subunit 

9A 

No 9 15 

Dam of origin comparison 

ENSBIXG00

000011151 

Zc3h12c Zinc finger CCCH-

type containing 

12C 

No 0 4 

ENSBIXG00

000005197 

Ppp1r9a Protein 

phosphatase 1 

regulatory subunit 

9A 

No 6 3 

Sire of origin comparison 

ENSBIXG00

000027129 

Dscam DS cell adhesion 

molecule 

Yes 5 35 

ENSBIXG00

000024138 

Esr2 Estrogen receptor 2 No 3 1 

ENSBIXG00

000008539 

Htr2a 5-

hydroxytryptamine 

receptor 2A 

No 1 17 

ENSBIXG00

000021864 

Nnat Neuronatin Yes 1 11 

ENSBIXG00

000012321 

Dgat1 Diacylglycerol O-

acyltransferase 1 

No 0 0 

ENSBIXG00

000010895 

Sdhd Succinate 

dehydrogenase 

complex subunit D 

Yes 0 5 

ENSBIXG00

000016809 

Axl AXL receptor 

tyrosine kinase 

No 0 8 

ENSBIXG00

000015087 

Mkrn3 Makorin ring finger 

protein 3 

Yes 1 1 

ENSBIXG00

000015080 

Ndn Necdin MAGE 

family member 

Yes 1 0 

ENSBIXG00

000012277 

Dlgap2 DLG-associated 

protein 2 

No 1 11 
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ENSBIXG00

000028529 

Slc22a18 Solute-carrier 

family 22 member 

18 

No 0 2 

* Increased expression in Angus denotes genes that were significantly more highly 

expressed in Angus than in Brahman. “No” denotes that gene was significantly more 

highly expressed in Brahman. 
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Figures 

 

Figure 1. Overview of methods. A.) Representation of the four genetic 

groups used in this study. The blue cow represents pure Angus individuals 

(BTBT). The blue then orange cow represents individuals with an Angus sire 

and Brahman dam (BTBI). The orange then blue cow represents individuals 

with a Brahman sire and Angus dam (BIBT). The orange cow represents pure 

Brahman individuals (BIBI). B.) Process of mapping WGBS reads (light green-

blue), and RNA-seq reads (green) to both the Brahman and Angus reference 

genomes. C.) Simple representation of shared and breed-specific CpG sites 

between Brahman and Angus reference genomes. D.) Breed-specific CpGs 

arise from a single nucleotide polymorphism between Brahman and Angus, 

such as spontaneous deamination of the C to a T. Structural variants, such as 
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indels between the two genomes, can introduce or remove CpGs in one 

genome relative to the other. E.) Simple representation of how differential 

methylation can be influenced by breed-specific CpGs. The grey boxes 

demonstrate how a differentially methylated cytosine is identified when both 

breeds share that site. Essentially, one compares the number of Cs and Ts in 

group 1 against the number of Cs and Ts in group 2. If one group reports 

significantly more Cs than the other, it is considered differentially methylated. 

The yellow boxes represent a breed-specific CpG where only samples from 

one group have that CpG, so differential methylation cannot be determined. 

The red boxes represent a situation where the CpG is present in one 

subspecies, but spontaneous deamination has mutated the CpG site into a 

TpG site in the other subspecies. In this case, differential methylation can be 

calculated. However, it will be erroneous as only one group has a true CpG at 

that site. F.) Graphical representation of how breed differences were 

determined. We compared methylation and gene expression between BTBT 

and BIBI samples. G.) Graphical representation of how we determined parent-

of-origin effects (POEs). Maternal POEs were determined by comparing BTBT 

and BIBT against BIBI and BTBI. Paternal POEs were determined by 

comparing BTBT and BTBI against BIBI and BIBT. 
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Figure 2. A.) PCA plot showing separation of genetic groups by methylation. 

Blue represents BTBT, orange represents BIBI, green represents BTBI and 

red represents BIBT. The X axis is principal component 1, and the Y axis is 

principal component 2. B.) PCA plot showing separation of genetic groups by 

gene expression data; colours are same as A. The X axis is the first dimension 

of the logFC, and the Y axis is the second dimension of the logFC. 
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Figure 3. A.) Boxplot showing mean global CpG methylation for samples 

belonging to the four genetic groups. When Brahman and Angus are mapped 

to their respective genomes, they tend to be more methylated than when 

mapped to the incorrect reference. The hybrids (BTBI and BIBT) tend toward 

hypermethylation when mapped to the Angus reference though this is only 

significantly different in BIBT. * denotes p-value < 0.05, Wilcox test. B.) Boxplot 

showing mean global CpG methylation for samples belonging to each of the 

four genetic groups mapped to each reference genome; however, this time, 

only the shared CpGs were considered. Here, there is no significant difference 

in methylation within genetic groups regardless of which reference genome is 

used. C.) Boxplot showing the mean frequencies methylation states observed 

in Angus and Brahman after 100 permutations. Dark blue represents 

hypomethylated CpG sites (methylation  35%). Dark orange bars represent 

hypermethylated CpG sites (methylation  65%). * denotes p-value < 0.05, 

Mann-Whitney U-test. The X-axis denotes the breed, either Angus or 

Brahman. The Y-axis represents the count, i.e., the number of sites that fell 

into the hypo- or hypermethylated categories.  
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Supplementary materials for Chapter 4 can be in Appendix II. 

 

 



 

 

 

 

 

Chapter 5: MicroRNA breed and parent-of-origin effects provide insights into 

biological pathways differentiating cattle subspecies 
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Contextual Statement 

Chapter 5 further investigates the possible causes of gene expression 

differences between Brahman and Angus cattle by comparing microRNA expression 

differences between the two breeds. MicroRNAs play an essential role in regulating 

diverse biological processes, and to date, no studies have examined these differences 

between Brahman and Angus using an essential metabolic organ like the liver. This 

study built on Chapter 4 by investigating differential microRNA expression between 

Brahman and Angus in a breed- and parent-of-origin-specific manner. MicroRNA 

expression was correlated with mRNA expression from the same samples, and 

standard tools for microRNA and mRNA expression analysis were used alongside 

KEGG pathway enrichment to identify differentially expressed microRNAs, mRNAs 

and pathways that may be contributing to phenotypic differences observed between 

these two breeds. 
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Abstract 

MicroRNAs (miRNAs) are small non-coding RNA species that play a crucial 

role in regulating gene expression during key developmental processes, such as fetal 

development. Brahman (Bos taurus indicus) and Angus (Bos taurus taurus) are two 

economically important cattle breeds with contrasting phenotypes. We analysed 

miRNA expression data from fetal liver of pure and reciprocally crossed samples of 

Angus and Brahman to investigate breed and parent-of-origin differences between 

these two phenotypically diverse breeds. There were 14 differentially expressed 

miRNAs (DEMs) between the two pure breeds. Correlation of gene expression 

modules and miRNAs by breed and parent-of-origin differences revealed an 

enrichment of genes associated with breed traits like heat tolerance in Brahman and 

fat gain in Angus. We demonstrate that genes predicted to be targeted by DEMs were 

more likely to be differentially expressed than non-targets (p-value <0.05). We 

identified several miRNAs (bta-miR-187, bta-miR-216b, bta-miR-2284c, bta-miR-

2285c, bta-miR-2285cp, bta-miR-2419-3p, bta-miR-2419-5p, bta-miR-11984) that 

showed similar correlation patterns as bta-miR-2355-3p which was a miRNA that may 

have a role in heat tolerance in Brahman and several Angus-specific miRNAs (bta-

miR-2313-5p, bta-miR-490, bta-miR-2316, bta-miR-11990) that that may be involved 

in fat gain in Angus. Furthermore, we showed that the differentially expressed fetal 

miRNAs we identified tend to target Rap1, MAPK and Ras signalling pathways. This 

work sheds light on miRNA expression patterns that contribute to gene expression 

differences that drive phenotypic changes in indicine and taurine cattle. 
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Introduction 

The two main lineages of modern cattle breeds are generally accepted to have 

been derived from two separate domestication events of the wild auroch (Bos 

primigenius) (McTavish et al. 2013). The first domestication event occurred in the 

Fertile Crescent around 10,000 years ago and gave rise to Bos taurus taurus from the 

wild auroch, B. p. primigenius (Bruford et al. 2003; Ajmone-Marsan et al. 2010; 

MacHugh et al. 2017). A second domestication event occurred in the Indus Valley, 

~1,500 years later, from B. p. nomadicus, which separated from the B. p. primigenius 

around 250-330,000 years ago (Loftus et al. 1994) and gave rise to Bos taurus indicus. 

The subspecies are referred to here as taurine and indicine cattle, respectively 

(McTavish et al. 2013). In this work, the Angus breed represents taurine cattle and 

Brahman is representative of indicine cattle. Angus and Brahman have contrasting 

phenotypes, e.g., Angus have been bred for meat production and growth traits (Elzo 

et al. 2012), and hence have shorter gestation length and lower calving difficulty 

(Casas et al. 2011). In contrast, Brahman cattle have superior heat and disease 

tolerance traits that enable them to adapt to tropical environments but mature slowly 

(Dikmen et al. 2018; Goszczynski et al. 2018).  

 

The genetic regulatory changes that drive the phenotypic differences between 

taurine and indicine cattle have been of substantial interest from both scientific and 

economic standpoints due to the value of understanding and combining desirable traits 

from both subspecies (Li et al. 2023). Angus and Brahman differ by ~1% genetically 

(Low et al. 2020) but can be mated to produce fertile hybrids, which has enabled 

researchers to investigate factors driving their phenotypic differences (Hiendleder et 

al. 2008; Akanno et al. 2018; Gobena et al. 2018; Andrade et al. 2022). One of the 
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main factors behind their phenotypic differences could be changes in their microRNA 

(miRNA) expression, but this has never been explored before in economically 

important breeds.  

 

MiRNAs are small non-coding RNAs, around 22bp long, that primarily inhibit 

gene expression at the post-transcriptional level (Kim et al. 2008; Ha & Kim 2014). 

They are essential regulators of gene expression and have been implicated in a wide 

range of biological processes, including growth and developmental processes 

(Awamleh et al. 2019; Morales-Roselló et al. 2022), differentiation  (Galagali & Kim 

2020), metabolism (Rottiers & Näär 2012), and responding to environmental stimuli 

(Vrijens et al. 2015; Liu et al. 2020). In general, miRNAs are highly conserved across 

species (Macfarlane & Murphy 2010). Interestingly there are species- and tissue-

specific miRNA expression patterns (Jopling 2012; Sun et al. 2014). Regulatory 

changes by miRNA can lead to changes in gene expression, which contributes to the 

emergence of new traits and phenotypic diversity (Yan et al. 2013; Li et al. 2020; Hao 

et al. 2023).  

 

In cattle, several miRNAs have been implicated in adipogenesis and 

myogenesis. Bta-miR-424 has been shown to promote adipogenesis by binding to and 

upregulating serine/threonine kinase 11 (stk11) (Wang et al. 2020). Conversely, bta-

miR-148-3p inhibition promotes muscle differentiation by downregulating the 

Krueppel-like factor 6 (klf6) gene (Song et al. 2019). Similarly, bta-miR-206, bta-

miR-1, bta-miR-133 and two novel miRNAs were highly expressed in muscle-related 

tissues and organs, suggesting a possible role in myogenesis (Sun et al. 2013).  
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Several studies have investigated the differential expression of miRNAs 

among different cattle breeds in an effort to elucidate possible regulatory mechanisms 

of certain traits. A comparison of miRNA expression in Sahiwal (Bos indicus) and 

Frieswal (Bos indicus x Bos taurus) cattle in response to heat stress found bta-miR-

150, bta-miR-16a and bta-miR-181b were upregulated in Frieswal cattle (Deb & 

Sengar 2021). These three miRNAs were negatively correlated with heat shock protein 

70.1 (HSP70.1) expression (Deb & Sengar 2021), suggesting a possible cause of the 

difference in heat tolerance between the two breeds. Similarly, a comparison of 

miRNA expression in the mammary glands of two dairy breeds revealed 17 

differentially expressed miRNAs (DEMs) that were predicted to target genes that are 

likely important for milk synthesis, such as those involved in glucose and lipid 

metabolism (Billa et al. 2019). 

  

Studies in cattle are limited, but recent work using mouse embryonic stem cells 

has revealed that miRNAs originating from maternally inherited regions of the 

genome antagonise paternally driven gene programmes by targeting paternally 

expressed transcripts (Whipple et al. 2020). This finding suggests that miRNAs may 

have a role in the parental genome conflict (Haig 2014), where paternally expressed 

genes like Igf2 promote the uptake of nutrients in the fetus (DeChiara et al. 1991), 

while maternally expressed genes, like Igf2r, restrict growth (Barlow et al. 1991), thus 

conserving maternal resources. Given that Brahman and Angus have evolved under 

different selection pressures, their parent-of-origin-specific miRNA expression is 

likely different, though this has not been explored. 
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We have previously investigated the gene expression (Liu et al. 2021) and 

methylation differences (Chapter 4) between purebred and reciprocal crosses of Angus 

and Brahman. Here we report differential miRNA expression by breed and parent-of-

origin effects in Angus and Brahman cattle and explore their correlation with mRNA 

expression and potential biological pathways targeted by these miRNAs. This study 

aims to shed light on miRNA expression differences that may contribute to phenotypic 

differences between these two economically valuable cattle breeds. 

 

Materials and methods 

Study Animals and Sample Collection 

Liver samples of concepti used in the present study were the same as those 

described in our previous work (Liu et al. 2021). All animal experiments and 

procedures described in this study complied with Australian guidelines, approved by 

the University of Adelaide’s Animal Ethics Committee and followed the ARRIVE 

Guidelines (https://arriveguidelines.org/) (Approval No. S-094-2005). The samples 

were created as described in Liu et al. (2021). Briefly, the parents were purebred 

Angus (Bos taurus taurus) and purebred Brahman (Bos taurus indicus), denoted as BT 

and BI, respectively. Heifers and fetuses were ethically sacrificed at day 153 of 

gestation, then snap-frozen in liquid nitrogen and stored at -80°C until further use. The 

liver samples represented three female and three male individuals from each of the 

four genetic crosses: BT x BT, BT x BI, BI x BT, and BI x BI. The four genetic groups 

of the offspring were denoted by the breed of their parents, with the paternal breed 

being first. For example, BIBT represents a fetus whose sire was Brahman (BI) and 

whose dam was Angus (BT). The groups were BTBT, BTBI, BIBT and BIBI. 
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DNA extraction and sequencing 

MicroRNA was extracted from frozen fetal liver tissue samples using the Bioo 

Scientific® NEXTflex™ Small RNA-Seq kit v3 according to the manufacturer’s 

recommendations. All samples were sequenced in a single batch at Australian Cancer 

Research Foundation, Adelaide, Australia using an Illumina® NextSeq 500. 

Individual sample names and their corresponding genetic group are outlined in 

Supplementary Table 1. 

 

Sequence alignment 

MicroRNA sequences were aligned using a custom Nextflow pipeline (Di 

Tommaso et al. 2017). Sequencing reads were first checked for quality using FastQC 

(v. 0.12.1) (Andrews 2010). Adapters from the 5’ and 3’ ends of the reads were then 

trimmed using CutAdapt (v. 4.3) (Martin 2011). We then filtered reads to retain those 

within the 17-28bp range with a mean sequence quality of 25 using Prinseq (v. 0.20.4) 

(Schmieder & Edwards 2011). Reads passing the filtering were reassessed with 

FastQC. Reads were then filtered for various bovine small RNA species that included 

ribosomal RNA (rRNA), transfer RNA (tRNA), small nuclear RNA (snRNA), and 

small nucleolar RNA (snoRNA). These small RNAs were downloaded from the Rfam 

database (Kalvari et al. 2018; Kalvari et al. 2020) via RNA Central and accessed on 

the 28th of April, 2023. Next, we filtered reads against non-coding RNA (ncRNA) and 

coding DNA (cDNA) from Ensembl release 109 for ARS-UCD1.2. Reads that did not 

map to these RNA species were considered potential miRNAs and used in the 

subsequent analyses. Code relating to all analyses is available at: 

https://github.com/DaviesCentreInformatics/MicroRNA_BiVsBt. MiRNA 

sequencing reads are available from BioProject: PRJNA626458. 

https://github.com/DaviesCentreInformatics/MicroRNA_BiVsBt
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Messenger RNA from RNA-seq reads of the same samples (BioProject 

PRJNA626458) were aligned to ARS-UCD1.2 (Rosen et al. 2020) using the 

parameters described in Liu et al. (2021). Reads were quantified using featureCounts 

from the Rsubread package (v. 2.14.2) (Liao et al. 2019) and the ARS-UCD1.2 

Ensembl gene annotation version 109. 

 

Quantification of known and discovery of novel miRNAs 

Potential miRNA reads were used as input for the miRDeep2 pipeline 

(Friedländer et al. 2011). We first used ‘mapper.pl’ from miRDeep2 with default 

parameters, except ‘-l’, which we set to 17. This step produced collapsed reads and 

alignments in the miRDeep2 ‘arf’ format, which were then used in the miRDeep2 

quantification and discovery steps. As input to ‘miRDeep2.pl’, we used the collapsed 

reads from the ‘mapper.pl’ step, the ARS-UCD1.2 reference genome, the ‘.arf’ file 

from the ‘mapper.pl’ step, mature and hairpin miRNAs belonging to Bos taurus, which 

is denoted as bta from miRbase (Kozomara & Griffiths-Jones 2011). We also used 

mature miRNAs from Capra hircus (chi) and Ovis ares (oar) in the miRDeep2 

pipeline. We used a mirDeep2 score of  4, an estimated probability of being a true 

positive  70%, a significant Randfold p-value and the precursor location as an ID to 

identify novel miRNAs (Mukiibi et al. 2020). 

 

Identification of differentially expressed miRNAs and mRNAs 

We used the output from miRDeep2 to generate counts for differentially 

expressed miRNA (DEM) analysis. We followed a standard differential expression 

workflow using DESeq2 (Love et al. 2014). All miRNA samples were sequenced in a 

single batch. The model parameters were breed and sex, with the contrasts being the 
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six pairwise comparisons of each breed and the comparison between males and 

females. 

 

The mRNA counts were quantified using featureCounts, and the output was 

used as input to DESeq2 for differential expression analyses (Love et al. 2014). Here, 

the model parameters were breed, sex and batch. The contrasts were the same as those 

used in the miRNA analyses. Only DEGs and DEMs with an adjusted p-value less 

than 0.05 were considered significant. 

 

miRNA target prediction 

The miRanda (v. 3.3a) (Enright et al. 2003) miRNA target prediction software 

was used to identify possible gene targets of miRNAs. We extracted the three prime 

untranslated regions (3’UTRs) from the ARS-UCD1.2 Ensembl release 109. We then 

extracted the sequences of all mature miRNAs of interest, e.g., DEMs and group-

specific miRNAs. We then aligned mature miRNA sequences to the 3’UTRs of ARS-

UCD1.2 using miRanda with default parameters (Enright et al. 2003).  

 

miRNA and mRNA co-expression  

The weighted gene co-expression network analysis (WGCNA) package (v. 

1.72)  was used to identify miRNA and mRNA co-expression networks (Langfelder 

& Horvath 2008). WGCNA enables users to identify which genes have similar 

expression profiles (likely co-expressed) and to correlate that gene expression with 

other data like phenotype data or miRNA expression. 

 



 144 

WGCNA removes genes with insufficient counts across samples, outlier 

genes, and outlier samples from the normalised count matrix. We used a variance 

stabilising transformation to normalise the matrix, as recommended by Langfelder and 

Horvath (2008). The input matrix is of the form mn where m is the number of samples 

and n is the number of genes. 

 

We then constructed the gene co-expression network by calculating an 

adjacency matrix from the filtered and normalised count matrix. The adjacency matrix 

is an nn matrix, where n is the number of genes in the count matrix. The adjacency 

matrix is populated with values between 0 and 1, such that aij gives the connection 

strength between gene i and gene j. We used a ‘softPower’ of five and seven in 

calculating the adjacency matrix for the parent of origin and breed comparisons, 

respectively. We then transformed the adjacency matrix into a topological overlap 

matrix (TOM) to calculate which genes have high topological overlap, i.e., are 

connected to roughly the same genes as one another. We then identified the 

dissimilarity TOM by subtracting the TOM from 1. Following this, we performed 

hierarchical clustering to identify genes that grouped into modules of co-expressed 

genes. Each module needed to contain at least 90 genes to be considered separate from 

another module, and modules needed a correlation of at least 0.8 to be merged. We 

then correlated the expression of these gene modules with the genetic groups and 

miRNA expression data. We considered any correlation between mRNA and miRNA 

and mRNA and genetic group with a p-value below 0.05 as significant. 

 

DEGs in miRNA targets 
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To determine if the predicted targets of a given miRNA were more likely to be 

DE within the present study, we tested how likely the targets of each miRNA were to 

be DE over all DE genes. Here, we defined the number of trials (n) as the number of 

predicted targets for a given miRNA, I.e., there were n targets that could be DE or not. 

The successes (k) were the number of predicted targets that were also DE. Finally, the 

probability of success (p) was the number of DEGs in a given comparison divided by 

the total number of genes in the count matrix. We paired the DEM and DEG 

comparisons such that if we were comparing DEMs identified between BIBI and 

BTBT, we only considered DEGs that were also identified between BIBI and BTBT. 

 

KEGG pathway analyses 

The clusterProfiler R package (v. 4.8.1) (Yu et al. 2012) was used to perform 

KEGG pathway analysis. The ‘enrichKEGG’ function was used to identify KEGG 

pathways significantly enriched in target genes. We used a cut-off of 0.05 for p-values, 

and the Benjamini-Hochberg method was used to adjust p-values to give q-values, 

which we also used a cut-off of 0.05 for significance testing. We performed KEGG 

analyses for the predicted targets of each miRNA that was either DE or specific to a 

particular group. 

 

Determination of most frequently targeted pathways 

To determine which pathways were most frequently targeted by either DE or 

group-specific miRNAs, we first performed target prediction for each miRNA. Next, 

we performed KEGG pathway enrichment with clusterProfiler (v. 4.8.1)  (Yu et al. 

2012) for the genes targeted by each miRNA. We then identified all unique pathways 

and counted the number of times they were targeted by a different miRNA. Word 
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clouds to represent frequency of pathways were made using wordcloud (v. 1.9.2. 

http://amueller.github.io/word_cloud/) against Angus and Brahman cattle outline as 

background.  

 

Results 

miRNA and mRNA sequence quality  

There was a sample average of ~16.9 million reads before filtering (S. table 2). 

No reads were shorter than our minimum length threshold, but around 588,000 reads 

per sample were longer than our maximum length threshold and thus were removed. 

This initial filtering left around 15.5 million reads to be assessed as potential miRNAs. 

 

Just over 50% of reads were found to be other RNA species, i.e., not miRNAs 

(Figure 1A). Most non-miRNA RNA species were non-coding RNA (ncRNA), with 

an average of 7 million reads per sample mapped to known bovine ncRNA sequences 

(Figure 1A; S. table 2). After filtering, an average of ~8.2 million candidate miRNA 

reads remained for downstream analyses.  

 

Our previous work has reported the RNA-seq alignment quality in detail (Liu 

et al. 2021). Briefly, after read trimming, an average of 49.9 million reads remained 

for alignment, and between 72 and 77% of them could be assigned to genes.  

 

Known miRNA expression and novel miRNA profiles 

There were 414 and 416 known miRNAs with a normalised count of at least 

one in all BIBI and BTBT samples, respectively (Figure 1B; S. table 3). Most (388) 

known miRNAs were shared between BIBI and BTBT samples (Figure 1B). BTBT 
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samples had 28 miRNAs that were not expressed in BIBI samples, and BIBI had 26 

miRNAs not expressed in BTBT samples (Figure 1B). 21 of the 24 samples had bta-

miR-122 as the most highly expressed miRNA, with an average of 39% of the reads 

for each sample mapped to this miRNA.   

 

When we separated samples based on the breed of their parents, there were 

between 376 and 398 miRNAs with a normalised count of one in all 12 samples for 

each parental group, i.e., maternal BI, maternal BT, paternal BI, paternal BT (Figure 

1C and 1D). We observed 361 miRNAs shared between the maternal BT and maternal 

BI groups; this was mirrored when we compared paternal BI and paternal BT groups. 

The maternal BI group samples had 37 miRNAs not expressed in the maternal BT 

group. In contrast, we identified 15 miRNAs unique to the maternal BT group 

compared to the maternal BI group (Figure 1B). The inverse of this pattern was 

observed between paternal groups, where samples from paternal BT had 33 unique 

miRNAs compared to 16 in those from the paternal BI group (Figure 1C). There were 

163 known miRNAs from miRbase with no expression in any sample. 

 

We identified seven novel miRNAs in BTBT and BIBI samples (S. table 4). 

We considered these high-confidence novel miRNAs as they were found in all samples 

within a particular group. Six of these novel miRNAs were shared between BIBI and 

BTBT samples, with one being exclusive to each group, i.e., one novel miRNA was 

found in all six BTBT samples but not BIBI samples and vice versa (S. table 4). 

 

Ten miRNAs can differentiate the breeds 
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We performed principal component analyses to determine if the samples 

clustered by breed using the miRNA data as with RNA-seq (Liu et al. 2021) and whole 

genome bisulfite sequencing data (Chapter 4). We observed no discernible clustering 

pattern when using all miRNAs (Figure 1E). We then filtered the miRNA data and 

used the top ten most variable miRNAs, as measured by variance. We subsequently 

observed a clear demarcation between BTBT and BIBI samples (Figure 1F). The 

hybrid groups (BIBT; BTBI) showed considerable overlap with one another and the 

purebred samples. The BTBT samples tended to cluster more closely to other samples 

within their group than any other group with BIBT, BTBI and BIBI samples spanning 

the full range of PC1 (Figure 1F). 

 

Gene expression modules correlated with breed 

Using the WGCNA method (Langfelder & Horvath 2008), we identified seven 

gene modules with significant correlations and one close to our significance cut-off (p 

= 0.09) with BIBI and BTBT (Figure 2A). These modules comprised 154, 343, 3,603, 

1,630, 221, 780, 787 and 189 genes, with 1, 10, 141, 41, 2, 18, 21 and 5 being 

differentially expressed between BIBI and BTBT samples, respectively. We identified 

2,525 DEGs between BIBI and BTBT, and together (Table 1), these eight modules 

contained ~9% of DEGs identified between the two groups. 

 

A significant correlation is defined as modules with a p-value < 0.05. Modules 

A, B, D and E displayed significant positive correlations with BTBT samples and 

significant negative correlations with BIBI samples. Module C had a positive trend 

with BTBT samples and a negative trend with BIBI samples but was not statistically 
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significant (p = 0.09). Modules F, G and H displayed significant negative correlations 

with BTBT samples and significant positive correlations with BIBI samples.  

 

We then performed KEGG pathway analysis on the genes within each module 

to determine if they were enriched in any pathways. Among the eight gene modules 

correlated with breed, four modules were enriched with pathways. Module br-C, while 

not significantly correlated with breed (p = 0.09), displayed an enrichment of 32 

pathways, including thermogenesis, TGF-beta signalling, mTOR signalling, 

neurotrophin signalling and Ras signalling (S. table 5). Module br-D was enriched in 

eight pathways; amino sugar and nucleotide sugar metabolism, biosynthesis of 

nucleotide sugars, apoptosis, MAPK signalling, phosphatidylinositol signalling, one 

carbon pool by folate and lipid and atherosclerosis pathways. Module br-F displayed 

a single enrichment in the glutamatergic synapse pathway. Module br-G had 

enrichments in relaxin signalling, chemical carcinogenesis – reactive oxygen species, 

nicotinate and nicotinamide metabolism, thermogenesis, retrograde endocannabinoid 

signalling, GnRH signalling and purine metabolism pathways. Modules br-A, br-B, 

br-E and br-H were not enriched in any pathways. 

 

Gene expression modules correlated with dam of origin 

Three gene modules (m-A, m-B, m-C) significantly correlated with maternal 

BI or BT groups (Figure 2B). These modules contained 1,457, 283 and 281 genes, 

respectively, with 130, 71 and 13 differentially expressed between maternal groups. 

There were 635 DEGs identified between the maternal groups (Table 1), and ~34% 

were within the three correlated gene modules. 
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 Modules m-A and m-C were positively correlated with the maternal BI group 

and negatively correlated with maternal BT. Module m-B was negatively correlated 

with maternal BI samples and positively correlated with maternal BT samples (Figure 

2B).  

 

All three modules that correlated with the maternal breed were enriched in 

pathways (S. table 5). Module m-A showed enrichment for purine metabolism, bile 

secretion, glutamatergic synapse and pancreatic secretion pathways. Module m-B was 

enriched in ECM-receptor interaction, focal adhesion, human papillomavirus 

infection, amoebiasis, PI3K-Akt signalling, small cell lung cancer and AGE-RAGE 

signalling pathway in diabetic complications pathways. Module m-C displayed 

enrichments in neutrophil extracellular trap formation, systemic lupus erythematosus, 

alcoholism, cell cycle, viral carcinogenesis, DNA replication, amyotrophic lateral 

sclerosis, nucleocytoplasmic transport, gap junction and small cell lung cancer. 

 

Gene expression modules correlated with sire of origin 

We identified four gene modules with significant correlations and one module 

close to our cut-off (p = 0.07) with the paternal groups (Figure 2C). There were 1,457, 

7,071, 3,852, 118 and 1,307 genes in each module, respectively. Of these, 626, 701, 

468, 10 and 98 were differentially expressed, meaning ~65% of the 2,097 DEGs 

identified between paternal groups were contained within these five gene modules. 

 

 Modules p-A and p-B were positively correlated with paternal BI samples and 

negatively correlated with paternal BT samples. The remaining modules (pC-E) were 
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negatively correlated with paternal BI and positively correlated with paternal BT 

samples (Figure 2C). 

 

All five modules correlated with paternal breeds were enriched in pathways 

(S. table 5). Purine metabolism, bile secretion, glutamatergic synapse and pancreatic 

secretion were all enriched in module p-A. Module p-B was enriched in 84 pathways; 

too many to list; refer to (S. table 5). Module p-C saw an enrichment in valine, leucine 

and isoleucine degradation, sphingolipid metabolism, MAPK signalling, 

proteoglycans in cancer, propanoate metabolism, sphingolipid signalling pathway and 

pantothenate and CoA biosynthesis pathways. Module p-D was enriched for the 

spliceosome pathway. Module p-E was enriched for 20 pathways and among these 

were thermogenesis and purine metabolism. 

 

Breed-specific DEMs 

There were 14 differentially expressed miRNAs (DEMs) between BIBI and 

BTBT samples (Figure 2D; Table 1). Three DEMs displayed higher expression in 

BTBT samples; bta-miR-11998, bta-miR-2313-5p, and bta-miR-6518. These three 

miRNAs showed significant positive correlations with at least one breed-correlated 

module (Figure 2D). Bta-miR-11998 was negatively correlated with module br-H and 

displayed a trend with module br-G (p = 0.05). Modules br-C to E were positively 

correlated with bta-miR-2313-5p, and module br-B was positively correlated with bta-

miR-6518.  

 

The remaining 11 DEMs identified between BIBI and BTBT (bta-miR-11984, 

bta-miR-187, bta-miR-2284c, bta-miR-2285aj-5p, bta-miR-2285cp, bta-miR-2285cz, 
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bta-miR-2355-3p, bta-miR-2419-3p, bta-miR-2419-5p, bta-miR-2481, bta-miR-6522) 

were upregulated in BIBI samples (Table 1; S. table 6). All 11 displayed positive 

correlations with modules positively correlated with the BIBI breed (Figures 2A and 

2D). Module br-A displayed significant negative correlations with bta-miR-19984, 

bta-miR-2285cz, bta-miR-2355-3p and bta-miR-2481. Module br-B exhibited 

negative correlations with bta-miR-187, bta-miR-2284c, bta-miR-2285-aj-5p, bta-

miR-2285cp, bta-miR-2419-3p, bta-miR-2419-5p, bta-miR-2481 and bta-miR-6522. 

Module br-C displayed no significant correlations with any miRNAs. MiRNAs bta-

miR-11984, bta-miR-187, bta-miR-2284c, bta-miR-2285cp, bta-miR-2285cz, bta-

miR-2355-3p, bta-miR-2419-3p, bta-miR-2419-5p and bta-miR-2481 all displayed 

negative correlations with module br-D. Module br-E showed negative correlations 

with bta-miR-2419-3p, bta-miR-2419-5p and bta-miR-2481. The miRNAs bta-miR-

187, bta-miR-2284c, bta-miR-2285aj-5p, bta-miR-2285cp, bta-miR-2285cz, bta-miR-

2355-3p, bta-miR-2419-3p, bta-miR-2419-5p, bta-miR-2481 and bta-miR-6522 were 

all positively correlated with module br-F. These miRNAs were also positively 

correlated with module br-G except for bta-miR-11984, which was only positively 

correlated with br-G, not br-F and bta-miR-6522, which was not significantly 

correlated with br-G. Lastly, module br-H displayed positive correlations with bta-

miR-2284c, bta-miR-2285aj-5p, bta-miR-2285cp, bta-miR-2419-5p and bta-miR-

2481. 

 

There were 26 BIBI-specific miRNAs, i.e., had a count of at least one in all 

samples within the BIBI group, with fifteen of these being significantly correlated with 

breed-correlated modules. Bta-miR-11985 was positively correlated with module br-

C, and bta-miR-12003 was negatively correlated with this module. Bta-miR-190a was 
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positively correlated with module br-C. Bta-miR-216b displayed negative correlations 

with modules br-A and br-D and a positive correlation with br-G. Bta-miR-2284b was 

negatively correlated with module br-B and positively correlated with br-F and br-H. 

This pattern was also observed in bta-mir-2284d, with the addition of a positive 

correlation with module br-G. Bta-mir-2285c was solely negatively correlated with 

module br-A. Bta-miR-677 was only positively correlated with module br-E.  

 

Thirteen of the 28 BTBT-specific miRNAs displayed significant correlations 

with gene modules associated with breed (Figure 2D). Bta-miR-11990 was positively 

correlated with modules br-C and br-D. Bta-miR-1301 was only positively correlated 

with module br-A. Modules br-D and br-E were positively correlated with bta-miR-

184. Module br-G and br-H were positively correlated with bta-miR-2285az. Module 

br-G displayed a negative correlation with bta-miR-2285cx. Modules br-D and br-F 

displayed positive and negative correlations with bta-miR-2316, respectively. Module 

br-A was positively correlated with bta-miR-2330-3p. Bta-miR-2415-3p was 

positively correlated with modules br-D and br-E and negatively correlated with 

modules br-F to br-H. Bta-miR-2440 was positively correlated with modules br-B, br-

D, and br-E and negatively correlated with modules br-F to br-H. Bta-miR-490 was 

positively correlated with modules br-C and br-D.  

 

Dam of origin-specific miRNAs 

Only one miRNA was differentially expressed between maternal groups (bta-

miR-187). Module m-A was positively correlated with this miRNA, and module m-B 

displayed a negative correlation (Figure 2E). Most of the miRNAs identified as only 

occurring in the maternal BI or maternal BT groups occurred in the maternal BI group 
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(Figure 2E). The maternal BI-specific miRNAs with significant correlations were bta-

miR-11984, bta-miR-2284c, bta-miR-2285c, bta-miR-2285cp, bta-miR-2285cz and 

bta-miR-2355-3p; these were positively correlated with module m-A. MiRNAs bta-

miR-2285cz and bta-miR-2355-3p were the only miRNAs that had a significant 

correlation with module m-B, both of which were negative. Of the miRNAs only 

expressed in the maternal BT group, bta-miR-11998, bta-miR-2331-5p, bta-miR-

2415-3p, bta-miR-2440 and bta-miR-4449 were all negatively correlated with module 

m-A. Module m-C exhibited no significant correlations.  

 

Sire of origin-specific miRNAs 

Five DEMs were identified between paternal BI and paternal BT groups. 

Bta-miR-184, bta-miR-2313-5p and bta-miR-6518 were up-regulated in the paternal 

BT group, with bta-miR-2285c and bta-miR-2419-5p being upregulated in the paternal 

BI group (S. table 6). Among the miRNAs that were paternal BI-specific, bta-miR-

11984, bta-miR-187, bta-miR-216b, bta-miR-2284c, bta-miR-2285cp, bta-miR-2355-

3p and bta-miR-2419-3p were positively correlated with module p-A. Bta-miR-

2285cp was negatively correlated with module p-C, whereas bta-miR-2397-3p was 

positively correlated; bta-miR-383 was negatively correlated with module p-E.  

 

Despite paternal BT having many more unique miRNAs, only seven exhibited 

significant correlations with any paternal group correlated gene modules. Bta-miR-

11998 was positively correlated with module p-A and negatively correlated with 

module p-C. Bta-miR-1277 was positively correlated with p-B, and bta-miR-2284n 

was positively correlated with module p-D. Bta-miR-2415-3p displayed a negative 

correlation with module p-A, as did bta-miR-2440 and bta-miR-365-3p. Bta-miR-365-
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3p and bta-miR-4449 were also positively correlated with module p-C. Bta-miR-4449 

was also negatively correlated with module p-B (Figure 2F). No significant 

correlations were identified between bta-miR-184 and the paternal gene modules. Bta-

miR-2285c displayed positive correlations with module p-A and a negative correlation 

with module p-C. Bta-miR-2313-5p displayed a single significant correlation with 

module p-A. Bta-miR-2419-5p was positively correlated with module p-A. Bta-miR-

6518 displayed negative correlations with modules p-A and p-B and a positive 

correlation with module p-C (Figure 2F). 

 

Predicted targets of DEMs more likely to be DEGs 

We compared the predicted targets of each DEM identified between BIBI and 

BTBT samples and determined whether they were more likely to be DE than the 

background genes, i.e., genes not predicted to be targeted by a given miRNA. We 

found that predicted targets of 12 of the 14 DEMs identified between BIBI and BTBT 

samples were significantly more likely to be DE than non-target genes (binomial test, 

p <0.05) (S. table 7). Furthermore, the targets of the single DEM identified between 

maternal BI and maternal BT were significantly more likely to be DE (binomial test, 

p <0.05). The targets of four of the five DEMs identified between paternal groups were 

significantly more likely to be DE than non-target genes (binomial test, p <0.05).  

 

Pathways predicted to be targeted by DE and group-specific miRNAs 

There were 23, 15, 33, 29, 37 and 17 miRNAs upregulated or only expressed 

in breed BTBT, maternal BT, paternal BT, breed BIBI, maternal BI and paternal BI, 

respectively (Figure 3A; S. table 8). We used the miRanda target prediction software 

(v. 3.3a) (Enright et al. 2003) to identify potential targets of each miRNA (Figure 3). 
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Between 300 and 5,115 targets were predicted among these miRNAs (S. table 9), 

which were then used to perform KEGG pathway analysis. Genes involved in the 

MAPK and Rap1 signalling pathways were consistently targeted by miRNAs, with 

between 37% and 56% of miRNAs in each group targeting these pathways (S. table 8). 

All pathways targeted by miRNAs expressed in each group can be seen in Figure 3 

and Supplementary Table 8. 

 

No DEMs were identified between the sexes  

To determine if any differences between the sexes existed, independent of 

breed differences, we compared all males against all females to search for DEMs by 

sex. We observed no significant DEMs between the male and female samples. We also 

found no significant correlations between gene modules and sex. As we observed no 

significant correlations between sex and gene modules and no significant DEMs by 

sex, we performed no pathway analysis for this comparison. 

 

Discussion 

To our knowledge, this study is the first to report on miRNA expression 

differences between taurine and indicine cattle breeds and correlating the results with 

mRNA expression. This study utilised miRNA expression data from fetal liver 

samples representing male and female individuals of Brahman, Angus and their 

reciprocal crosses. The inclusion of reciprocal crosses enables us to disentangle not 

only miRNA expression differences that might be related to breed but also whether 

the genetics of the dam or sire has an impact on miRNA expression differences, which 

is a novel aspect of this work. Previous efforts to understand what drives these breed 

differences have focused on the adult stage of development. For example, Deb and 
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Sengar (2021) investigated the miRNA expression profiles between Sahiwal (indicine) 

and Frieswal (indicine x taurine) cattle breeds in response to summer heat stress, 

identifying DEMs that interact with heat shock protein 70 (Hsp70). Similarly, Dong 

et al. (2023) investigated miRNA expression differences in the testes of Mongolian 

(taurine) and Hainan (indicine) cattle, determining that breed differences in 

spermatogenesis-related miRNAs existed. While this study did investigate differences 

between taurine and indicine cattle, the niche nature of the breeds and tissue studied 

potentially limits the applicability of their findings. Although these studies provide 

valuable insight into miRNA differences between cattle subspecies, they have not 

utilised reciprocal crosses and thus have been unable to differentiate the impact of 

maternal or paternal genetics on miRNA expression. 

 

Our previous study using mRNA expression data from these samples was able 

to clearly distinguish BTBT, BIBT, BTBI and BIBI samples from each other (Liu et 

al. 2021). In contrast, only BIBI and BTBT samples were clearly distinguishable in 

this study. Furthermore, despite observing over thousands of differentially expressed 

genes between Brahman and Angus samples, we identified only 14 DEMs between 

the two breeds. This pattern is similar to a study that observed only 23 DEMs when 

comparing miRNA expression in Hereford x Limousine (beef breed) and Holstein-

Friesian (dairy breed) muscle cells during myogenic differentiation (Sadkowski et al. 

2018). As a single miRNA target multiple mRNAs (Peterson et al. 2014), the relatively 

low number of DEMs is not unexpected and these miRNAs profoundly impact 

differentially expressed genes between breeds.  
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Using the mRNA expression data, we were able to identify gene modules that 

were correlated with the two cattle breeds. Moreover, by correlating this same gene 

expression data with corresponding miRNA expression, we could identify miRNAs 

that may be contributing to the gene expression that distinguishes the two breeds. For 

example, module br-C was positively correlated with BTBT samples and was enriched 

for several pathways, including thermogenesis and Ras signalling. Ras signalling plays 

an essential role in adipogenesis (Murholm et al. 2010), with adipocyte hyperplasia 

underway in cattle at this developmental stage (Zhao et al. 2019). Interestingly, bta-

miR-11990 was predicted to target genes involved in the Ras signalling pathway, and 

this miRNA shares a similar correlation pattern with several BTBT-specific miRNAs 

(bta-miR-2313-5p, bta-miR-490, bta-miR-2316). As Angus cattle are known to have 

superior fat gain performance in cold climates (Boyles & Riley 1991), it may be 

possible that these miRNAs are contributing to post-transcriptional regulation that 

conveys this trait to Angus cattle. 

 

An advantage of including reciprocal crosses in comparisons of breeds is that 

it enables the investigation of any dam or sire of origin effects. We observed a single 

DEM between different maternal groups. In addition to the single DEM (bta-miR-

187), we observed several miRNAs that were only expressed in maternal BI samples 

(bta-miR-2284c, bta-miR-2285c, bta-miR-2285cp, bta-miR-2285cz, bta-miR-2355-

3p, bta-miR-11984) that was only found in the maternal BI group. These miRNAs 

were positively correlated with module m-A, and one of them (bta-miR-2355-3p) was 

predicted to target genes involved in the glutamatergic synapse pathway. Module m-

A was positively correlated with the maternal BI group and was enriched for several 

pathways, including glutamatergic synapse. We observed a similar pattern in the sire 
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of origin comparison, with bta-miR-2355-3p being positively correlated to module p-

A, which was also enriched for the glutamatergic synapse pathway. Several miRNAs 

(bta-miR-187, bta-miR-216b, bta-miR-2284c, bta-miR-2285c, bta-miR-2285cp, bta-

miR-2419-3p, bta-miR-2419-5p, bta-miR-11984) shared a similar correlation pattern 

to bta-miR-2355-3p. The glutamatergic synapse has a known role in heat tolerance of 

an individual as glutamatergic neurons transmit peripheral and central heat signals to 

the hypothalamic preoptic area of the brain (Sun et al. 2022), which then begins a 

coordinated response to lower the temperature. The liver is known to play an integral 

role in coordinating this heat stress response via increased production of heat shock 

proteins, increasing metabolic rate and increased vasodilation (Thorne et al. 2020).  

 

Further evidence to support the possible role of glutamatergic synapses in 

conveying heat tolerance in cattle can be found in another recent study of dairy cattle 

(Cheruiyot et al. 2021). Given the developmental timeline of the liver and the observed 

pathway enrichments (Tiniakos et al. 1996; Giancotti et al. 2019), it is possible that 

bta-miR-2355-3p and those miRNAs with similar correlation patterns play a role in 

modulating neuron development in the liver, priming it for hotter temperatures later in 

life and that this can be conveyed by either a Brahman sire or dam.  

 

While we observed several DEMs that were correlated to gene modules, many 

more miRNAs were observed that were only expressed in one of the two groups in 

each comparison, e.g., bta-miR-490 in the breed comparison, bta-miR-11998 in the 

maternal breed comparison and bta-miR-187 in the paternal breed comparison. There 

was some overlap between DEMs and group-specific miRNAs, e.g. bta-miR-184 in 

the paternal-breed comparison. However, this was due to the cut-off used to identify 
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miRNAs being calculated differently from how DESeq2 determines if a gene or 

miRNA should be retained. In any case, there were considerably more miRNAs 

expressed in a single group than there were differentially expressed between groups. 

This pattern leads one to posit that group-specific miRNAs may be more important in 

driving gene regulatory differences than DEMs between Brahman and Angus cattle. 

 

We did not observe any DEMs between males and females, which is consistent 

with the limited number of DEGs observed between male and female samples. The 

lack of sex-specific miRNA expression could be a result of the limited sex-specific 

expression that is observed in the liver prior to puberty (Conforto & Waxman 2012) 

and other mechanisms are driving DEGs by sex.  

 

We identified a range of predicted targets for each of the differentially 

expressed and group-specific miRNAs and performed biological pathway analyses on 

these targets to gain insights into the pathways that may be affected. Notably, a 

substantial proportion of the targeted pathways identified in each of the three 

comparisons were signalling pathways, such as the Rap1, MAPK and Ras signalling 

pathways. Each of these pathways plays important roles in fetal development. Rap1 

signalling is important for vascular morphogenesis (Chrzanowska-Wodnicka 2013), 

and has also been implicated as a possible cause of the differences between high and 

low-performing meat goat breeds (Shen et al. 2022). Additionally, Rap1 signalling 

ablation in the brain of mice has been shown to protect mice from high-fat diet-induced 

obesity (Kaneko et al. 2016), suggesting a critical role of Rap1 signalling in fat 

storage. While this study investigated Rap1 signalling in the brain, given the close 

interactions between the brain and liver to monitor glucose and lipid homeostasis, it 
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could be that Rap1 signalling in the liver also has a role in fat storage. Ras and MAPK 

signalling pathways are critical to cell proliferation and differentiation (Zhang & Liu 

2002). Moreover, the Ras signalling pathway is purported to have a role in 

adipogenesis as ectopic expression of the pathway can induce preadipocyte formation 

in the absence of insulin and insulin-like growth factor 1 (Igf-1) (MacDougald & Lane 

1995), suggesting a possible role in modulating adipogenesis in the fetus. In addition, 

MAPK signalling can act as a negative regulator of muscle development (Xie et al. 

2018), suggesting that differences in how this pathway is regulated may influence how 

the fetus develops muscle. The differences in miRNA expression between taurine and 

indicine cattle may result in differential modulation of signalling cascades involved in 

fetal liver development and growth regulation, which in turn contributes to the 

observed phenotypic differences. 

 

Conclusions 

This study sheds light on the miRNA expression differences between taurine 

and indicine cattle using two global economically important breeds. We identified 

several miRNAs that may play a role in controlling economically important traits in 

these breeds, such as fat gain and heat tolerance. This study has identified miRNAs 

that may play important roles in how traits may be conferred to the developing fetus 

and provides valuable biological insight into the possible mechanisms of how these 

traits are controlled. 
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Tables 1 

Table 1. DEMs and DEGs of breed and parent-of-origin effects 2 

 BIBI - BTBT Maternal BI – 

Maternal BT 

Paternal BI – 

Paternal BT 

miRNA 

Up 11 1 2 

Not significant 910 923 919 

Down 3 0 3 

Total DE 14 1 5 

mRNA 

Up 1,290 279 1,030 

Not significant 16,128 18,018 16,556 

Down 1,235 356 1,067 

Total DE 2,525 635 2,097 

The reference groups for the three comparisons are BTBT, Maternal BT and Paternal 3 

BT. 4 
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Figure 1. A.) Bar chart showing mean proportions of reads belonging to the 

filtered, cDNA, tRNA, ncRNA, rRNA, snoRNA, snRNA, too short, too long and 

“low qual” categories. Filtered refers to reads that are not contaminants and 

passed length and quality thresholds. cDNA, tRNA, ncRNA, snoRNA and 

snRNA refer to any reads that mapped to them i.e., contaminants. B.) Upset 

plot outlining the intersections of miRNAs with a count of at least one in all 

samples within a group. The x-axis of the bar plot represents each combination 

of groups e.g., the first point refers to the group of miRNAs found in all groups. 

The second point refers to the miRNAs found in BIBI, BTBT and BTBI but not 

BIBT. The y-axis is the number of miRNAs found in each point on the x-axis. 

C.) PCA plot showing how all 24 samples cluster when using all expressed 

miRNAs. Samples are coloured by breed, where blue denotes BTBT, orange 

is BTBI, green is BIBT and red is BIBI. D.) Same as C but only using the top 

ten most variable miRNAs determined by variance. The colours are the same 

as in C. E) PCA plot showing clustering of samples using all expressed 

miRNAs. Dots represent an individual, and colours represent genetics. Blue 

dots represent BTBT, orange dots represent BTBI, green dots represent BIBT, 

and red dots represent BIBI. The x-axis represents PC1, and the y-axis 

represents PC2. F) PCA plot showing clustering of samples using only the top 

ten most variable miRNAs based on variance. Colours and axes are the same 

as in E. 

 

 

 



 



Figure 2. A) Correlation heat map displaying the correlations between traits 

and the mRNA expression data. The x-axis refers to each phenotypic trait, i.e., 

breed. The y-axis refers to each of the gene modules identified by WGCNA. 

Each cell in the heatmap is coloured by the strength of the correlation, where 

a darker shade of red denotes an increasingly positive correlation, and darker 

shades of blue denote an increasingly negative correlation. The values in the 

heatmap denote the p-value associated with the correlation. B) Same as A but 

comparing maternal genetics. C) Same as A and B but comparing paternal 

genetics. D) Correlation heat map displaying the correlations between mRNA 

and miRNA. The x-axis denotes each of the miRNAs deemed of interest, i.e., 

was differentially expressed or only found in a particular group. The y-axis and 

correlation colour scheme are the same as A. The matrix underneath the 

heatmap denotes which comparison or group within which a given miRNA was 

identified. A yellow box denotes a miRNA that was upregulated in BIBI, and a 

blue box denotes a miRNA that was upregulated in BTBT. A black square 

denotes the presence of that miRNA in that group. E) Same as D but 

comparing miRNAs expressed in samples with different maternal genetics. A 

yellow box denotes miRNA that was upregulated in maternal BI. F) Same as 

D and E but comparing samples with different paternal genetics. Yellow boxes 

denote miRNAs upregulated in paternal BI, and blue boxes denote miRNAs 

upregulated in paternal BT. 

 

 

 



 



Figure 3. Schematic overview of how the most frequently targeted pathways 

were identified. For each DE and group-specific miRNA, we predicted their 

mRNA targets. We then performed pathway enrichment, where the input was 

a list of genes predicted to be targeted by a given miRNA. We then identified 

all the unique pathways predicted to be targeted by all the upregulated and 

expressed miRNAs for a particular group (e.g., all upregulated and expressed 

miRNAs in the BTBT group) and counted how many miRNAs targeted each 

pathway. The number of miRNAs upregulated and expressed in each group 

was BIBI = 29, BTBT = 28, maternal BI = 37, maternal BT = 15, paternal BI = 

17 and paternal BT = 33. 
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Supplementary materials for Chapter 5 can be found in Appendix III. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

Chapter 6: Thesis summary and future directions 
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Thesis summary 

Understanding genetic and epigenetic regulation in Angus and Brahman cattle 

is vital to understanding the gene expression differences that drive their contrasting 

phenotypes. Critical to this is knowledge of the location of enhancers, regions of 

differential methylation and differences in microRNA expression, as these can 

contribute substantially to altered gene expression between Angus and Brahman 

individuals. Additionally, to understand how these phenotypic differences are first 

established, it is crucial to investigate them when they first appear. Research presented 

in this thesis has shed light on genetic and epigenetic differences between Angus and 

Brahman cattle. The findings reveal multiple genetic and epigenetic differences 

between Angus and Brahman cattle that may contribute to the contrasting phenotypes 

observed between these economically important breeds. 

 

 Currently, very little is known about the genomic positions of enhancers in 

cattle. However, a plethora of data exists describing these important genetic features 

in human and mouse. Since around 2012, machine learning has made substantial 

strides in various classification tasks, such as sentiment analysis, image classification 

and object detection. Owing to their ability to detect patterns not readily observed by 

humans, substantial interest has been placed in machine learning models and their 

ability to predict enhancers from DNA sequences. Additionally, new approaches have 

been developed to try and represent non-numerical data like the DNA sequence in a 

way that is interpretable by these machine learning models. Parallel to these 

developments, there have been efforts to use these methods to identify enhancers in 

lesser-studied species. In Chapter 3, evaluations of the best combination of machine 

learning models and DNA representations were applied to determine which offered 
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the best cross-species enhancer prediction performance. While all combinations of 

model and DNA representation performed less effectively at cross-species enhancer 

prediction than within-species enhancer prediction, the convolutional neural network 

(CNN) with a one-hot encoded DNA representation and the support vector machine 

with a kmer-proportion representation of the DNA performed the best at cross-species 

enhancer prediction for deep and shallow learning methods, respectively. 

Furthermore, their high concordance with the species-specific ChIP-seq data suggests 

they may have indirectly learnt DNA features associated with H3K27ac and 

H3K4me1 binding. Moreover, when these models were applied to the genomes of 

cattle, pig and dog, they predicted a similar proportion of enhancers within these 

genomes as what ENCODE predicts the enhancer proportion of the human genome to 

be, suggesting these models can identify enhancer-like elements from DNA sequence 

alone. Of course, these predicted enhancers would need to be experimentally validated 

by wet lab experiments that can identify enhancers such as cap analysis of gene 

expression sequencing (CAGE-seq) (Chang et al. 2019; Khor et al. 2021), clustered 

regularly interspaced short palindromic repeats (CRISPR) interference (CRISPRi) 

(Fulco et al. 2016), or micro-C (Hsieh et al. 2015; Hsieh et al. 2016). As more breed-

specific data is generated, such as the recent additions to the cattle reference genome 

(Salavati et al. 2023), and new enhancer identification techniques are developed, these 

models can be further refined to improve their accuracy.  

 

In Chapter 4, whole-genome bisulfite sequencing was used to investigate DNA 

methylation differences between Angus and Brahman fetal liver samples at various 

genomic loci, including enhancers predicted in Chapter 3. The WGBS was used to 

determine what, if any, DNA methylation differences existed between these two 
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breeds at a critical developmental time point. DNA methylation was compared 

between the breeds (Brahman versus Angus), the maternal groups (samples with a 

Brahman dam versus samples with an Angus dam) and paternal groups (samples with 

a Brahman sire versus samples with an Angus sire). The breed comparison showed the 

greatest number of differentially methylated regions (DMRs) and differentially 

expressed genes (DEGs), followed by the paternal comparison and the maternal 

comparison, with the least. Minimal DMRs were observed in the promoter regions of 

genes, with the bulk of DMRs occurring in intergenic regions. Furthermore, most of 

the DMRs near genes fell within the putative enhancer regions (identified in Chapter 

3) of those genes. These results suggest that differential enhancer methylation may be 

an important epigenomic feature driving the differences in the observed gene 

expression. Additionally, many of the imprinted genes investigated had a DMR within 

their putative enhancer region, further highlighting a possible role for enhancer 

methylation in gene regulatory differences between Brahman and Angus. These 

findings were made using the shared CpGs identified between the Brahman and Angus 

genomes. However, Chapter 4 also demonstrated that structural variants (SVs) and 

single nucleotide variants (SNVs) exist between Brahman and Angus and that these 

disproportionately impact CpGs, highlighting the likelihood that a combination of 

differential methylation of shared genomic regions between the two breeds as well as 

breed-specific genomic and epigenomic variants play a role in gene expression 

differences between these two breeds.  

 

Chapter 5 built on the findings of Chapter 4 by investigating miRNA 

expression differences between the two breeds and whether this might shed light on 

possible causes of the contrasting phenotypes observed between Brahman and Angus. 
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Interestingly, it appeared that at this developmental time point, Brahman and Angus 

could be separated via the top ten most variable miRNAs, with the breeds being 

indistinguishable when all miRNAs were used. This poor clustering was unexpected, 

given the clustering observed in the methylation and gene expression data examined 

in Chapter 4. Most of the differentially expressed miRNAs (DEM) were identified in 

the breed comparison, with only one DEM identified between maternal groups and 

five DEMs between paternal groups. Interestingly, this followed the pattern observed 

in Chapter 4, where the breed comparison had the greatest number of DMRs and 

DEGs, followed by the paternal and maternal comparisons. There tended to be a 

greater number of group-specific miRNAs than differentially expressed miRNAs, 

highlighting a parallel with Chapter 4. In Chapter 4, it appeared likely that a 

combination of differential methylation between shared regions and breed-specific 

methylation impacted gene regulation. Similarly, in Chapter 5, the greater number of 

breed-specific miRNAs than DEMs also suggests that a combination of DE and breed-

specific miRNAs regulates gene expression differences. Weighted correlation network 

analysis was used to identify gene modules that were positively and negatively 

correlated with each group and to identify miRNAs that may be regulating those 

modules. Unsurprisingly, gene modules that were positively correlated with Angus 

samples were negatively correlated with Brahman samples and vice versa. KEGG 

pathway analysis revealed that genes related to the glutamatergic synapse were 

significantly correlated with Brahman cattle. Similarly, KEGG analysis revealed that 

genes associated with adipogenesis were significantly correlated with Angus cattle. 

Given the role of the glutamatergic synapse in coordinating the body’s response to 

hyperthermia and the superior meat quality of Angus cattle, the miRNAs that were 

significantly correlated with genes associated with glutamatergic synapse and 
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adipogenesis are promising candidates to investigate the origin of these traits. Finally, 

many DE and breed-specific miRNAs targeted the same pathways in Brahman and 

Angus cattle, suggesting that differential modulation of these pathways between the 

breeds may be causing the observed phenotypic differences between Brahman and 

Angus. This differential regulation via miRNAs may arise from SNVs in the three 

prime UTRs of the mRNA or within the miRNA.  

 

 The results presented in this thesis were obtained via a range of machine-

learning, genomic and epigenomic analyses, all aimed at improving our understanding 

of genetic and epigenetic regulation in Brahman and Angus cattle and how differences 

between the two breeds may inform their phenotypic differences. This analysis has 

uncovered various candidate genetic and epigenetic features that may influence breed-

specific traits in Brahman and Angus cattle. In summary, we have shown that: (1) 

machine-learning models can be used to predict enhancers across species and that this 

can be used to inform subsequence epigenomic analysis. (2) differential methylation 

of potential enhancers is likely more important than differential methylation of 

promoters in regulating gene expression in the liver of Angus and Brahman fetuses at 

gestational day 153. (3) the genetics of the sire (i.e., whether it is Angus or Brahman) 

likely influences how imprinted genes like Dgat1 are methylated. (4) breed-specific 

gene expression patterns are associated with breed-specific traits and are likely under 

miRNA control. (5) although the impacts of SVs and SNVs on methylation and 

miRNA binding were unclear, they will form the basis of future studies as we 

transition to the pangenome era, where variants between genomes can be better 

accounted for during analyses. In conclusion, the work presented in this thesis adds to 

the body of knowledge of genetic and epigenetic regulation in Brahman and Angus 
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cattle by providing possible mechanisms for the establishment of the contrasting 

phenotypes observed between these breeds. 

 

Future directions 

 Results from this thesis highlight candidate regions and pathways that may 

contribute to understanding how the contrasting phenotypes between Brahman and 

Angus are established. Despite this, the exact contribution of each of these components 

remains unclear. The work presented here has demonstrated the potential for enhancer 

prediction tools with genomic and epigenomic assays to improve our understanding 

of how certain traits in cattle come about. As a product of this study, key questions 

remain to be answered, which could provide the basis for future work. 

 

Can further improvements be made in identifying cattle enhancers?  

For all the advantages of working with livestock, such as being able to control 

mating, there are substantial downsides as well. The most severe of which is the degree 

of funding available for basic science research on livestock. Given that livestock 

research will likely never see the same level of investment that human medical 

research receives, the question remains as to how we can further improve our 

understanding of cis-regulatory elements like enhancers in livestock species like 

cattle. This thesis examined the role of machine learning in predicting enhancers in 

under-studied species; however, with the speed with which the machine learning field 

moves, in addition to new sequencing data being generated, further improvements can 

likely be made in this area.  
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Much attention has been given to deep learning models, specifically image 

classifiers, and their applicability to genomics. For example, DeepVariant has been 

shown to outperform GATK in calling genomic variants (Poplin et al. 2018). 

DeepVariant is a convolutional neural network (CNN) based model that converts 

variants to image-like input to determine variant type. The image-like input consists 

of the bases, quality scores and additional read features, where each of these inputs 

represents a colour channel in an image, i.e., red, green or blue. As more epigenomic 

sequencing data becomes available for a variety of cattle breeds and tissues, such as 

assay of transposase-accessible chromatin sequencing (ATAC-seq), DNase I 

hypersensitivity sequencing (DNase-seq) and chromatin immunoprecipitation 

sequencing (ChIP-seq), there will be an opportunity to develop models that do not 

solely rely on the DNA sequence. Using the Hilbert Curve representation from Chapter 

3, researchers will be able to generate “images” of DNA regions from cattle where one 

colour channel is the sequence, another colour channel is the ATAC-seq signal or 

DNase-seq signal, and the third channel is the H3K27ac ChIP-seq signal, for example. 

The integration of DNA sequence and DNase-seq signal has been used successfully 

with human data (Yin et al. 2019) but has not previously been feasible in cattle owing 

to the lack of matched ATAC-seq and ChIP-seq datasets. As more are generated as 

part of the various livestock consortia, this will become a more viable option. 

 

Alternatively, different assay approaches may provide new avenues to pursue 

to improve our understanding of the cattle genome. Enhancer RNAs (eRNAs) are a 

recently discovered class of non-coding RNAs that are transcribed from the DNA 

sequence of enhancers in a tissue-specific manner (Sartorelli & Lauberth 2020). Due 

to the nascent nature of eRNAs, they can only be captured by more specialised 
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sequencing techniques like global run-on sequencing (GRO-seq) (Step et al. 2014; 

Liang et al. 2016; Kim et al. 2018; Pan et al. 2021), precision run-on sequencing 

(PRO-seq) (Levandowski et al. 2021; Xu et al. 2022; Bae et al. 2023; Caligiuri et al. 

2023) and CAGE-seq (Chang et al. 2019; Khor et al. 2021). CAGE-seq data has 

recently been generated in cattle to improve the annotation of the cattle genome as part 

of the BovReg consortium (Salavati et al. 2023). As more CAGE-seq and similar data 

are generated for cattle, it would be interesting to evaluate the performance of 

enhancer prediction models trained on CAGE-seq data. 

 

Would chromatin conformation capture technologies be a better use of money as they 

enable the inference of the enhancer target and location? 

 Parallel to the deep learning and cattle epigenomic dataset developments, 

chromatin conformation capture (3C) based techniques have become increasingly 

popular, in particular, micro-C (Hsieh et al. 2015; Hsieh et al. 2016; Krietenstein et 

al. 2020), micro-ChIP (Mumbach et al. 2016; Mumbach et al. 2017) and pore-C 

(Deshpande et al. 2022). The appeal of these techniques is that they provide insight 

into the 3D structure of the genome and, with sufficient resolution, can reveal 

enhancer-promoter contacts, meaning one can gain insight into the location of 

enhancers and their target genes. The cost of these technologies is still high and may 

be prohibitive in many contexts for cattle. However, Hi-ChIP offers a possible middle 

ground. This assay combines ChIP-seq with 3C technologies, and so by using an 

enhancer-associated histone modification like H3K27ac, one can enrich the 3C library 

with DNA fragments bound to this histone mark (Mumbach et al. 2016; Mumbach et 

al. 2017), giving insight into DNA regions interacting with potential enhancers at a 

fraction of the cost of sequencing the entire genome. Of course, the challenge of 
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choosing what tissue and time point to generate the sequencing data remains. As 

sequencing costs decrease, these 3C-based techniques will arguably provide the best 

value, even of CAGE-seq, as one can get the location and target of enhancers in one 

assay instead of just the location. 

 

Can long-read sequencing technologies be used to decipher which parent is 

contributing DNA methylation and gene expression? 

 Parent-of-origin effects (POEs) are known to play a role in cattle, with 

maternally inherited genes disproportionately influencing muscle development in 

reciprocal crosses (Xiang et al. 2013). It is less clear, however, how this differs 

depending on what breed the dam is, what breed the sire is and whether there is an 

association between traits and which parent contributes to the DNA methylation and 

gene expression pattern in the reciprocal cross. To address this, recording various 

phenotypic traits in the reciprocal crosses and performing Iso-seq and nanopore 

sequencing of the relevant tissues would be interesting to determine the association 

between different traits and the parents' genetics. By using these long-read sequencing 

techniques, it is possible to determine whether any genes show preferential expression 

from either the maternal or paternal chromosomes. Similarly, by capturing DNA 

methylation data from the nanopore sequencing, one can investigate whether the 

preferential expression of the maternal allele is due to higher methylation of the 

paternal allele, for example. Knowledge of any differential transcript usage would be 

of particular interest in breeding hybrid progeny, where the aim is to maximise the 

desirable traits of both breeds in one animal. For example, if there are significant 

differences in post-birth growth rate between hybrid progeny from an Angus dam 

compared to a Brahman dam, with Angus dams birthing smaller calves that then have 
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accelerated post-birth weight gain, Iso-seq and nanopore-sequencing enables one to 

tease apart the possible mechanisms causing this; causative mechanisms could be 

differential methylation, structural variants, preferential expression of parental allele, 

differential transcript usage or a combination of all of them. This information can then 

inform breeding programmes so that only Angus dams with those mechanisms are 

used for breeding. 

 

 Determining whether it is a maternal or paternal copy of a gene being 

expressed and its association with DNA methylation will also enable a better 

understanding of imprinting in cattle. Much of what we know about imprinted genes 

comes from human and mouse studies. However, there is evidence to suggest that 

imprinting is not well-conserved among mammals (Monk et al. 2006; Khatib et al. 

2007). Given the uncertainty around imprinting conservation, it is likely that cattle 

researchers cannot solely rely on human and mouse studies to inform on imprinting in 

cattle. As a result, long-read sequencing will provide a valuable tool to help us 

investigate imprinting in a wide array of species. 

 

What impacts do SVs and SNVs have on genomic and epigenomic differences between 

the breeds? 

 The advent of long-read sequencing technologies has enabled us, for the first 

time, to sequence highly repetitive regions of the genome, resulting in the first 

telomere-to-telomere (T2T) genome assemblies (Nurk et al. 2022; Chen et al. 2023; 

Wang et al. 2023). These highly accurate reference genomes can then form the 

backbone of pangenome graphs, which capture a high degree of within-species 

diversity. These pangenome graphs will be crucial to enabling accurate breed 
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comparisons, like Brahman and Angus. As Chapter 4 demonstrated, SNVs and SVs 

disproportionately affected CpGs between Brahman and Angus. By aligning to a 

pangenome graph that accounts for these variants, we can better understand how 

genetic and epigenetic differences between the breeds might contribute to gene 

regulation. For example, analysis of DNA methylation data with a pangenome graph 

may reveal a Brahman-specific insertion that introduces a CpG island near a gene 

implicated in conveying heat tolerance.  

 

Analysing miRNA data with pangenome graphs may reveal SNVs within the seed 

region of miRNAs that alter the target specificity of that miRNA. Similarly, SNVs in 

the 3’UTR of genes may change the binding strength of miRNAs. Regardless of 

whether the SNV occurs in the miRNA seed region or the 3’UTR, both have the 

potential to alter miRNA-mRNA interactions, which can cause changes in how genes 

are regulated between Brahman and Angus cattle. Moreover, pangenome graphs have 

the potential to simplify analyses as all genomic features will be on the same 

coordinate system, enabling accurate comparisons across breeds to be made. 

 

Does more need to be done to apply this knowledge to breeding programmes? 

 The main driver of much of the research in cattle is how this understanding of 

the underlying biology can be used to improve breeding programmes. Examining first 

the enhancer predictions, these have the potential to help prioritise SNVs within a 

breeding programme. By prioritising SNVs, one can reduce the number of SNVs that 

need to be examined for genomic prediction. The use of regulatory elements to 

prioritise SNVs has been previously investigated in cattle (Xiang et al. 2019). 

However, there is still a need for breed-specific identification of cis-regulatory 
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elements, like enhancers, as there are likely important breed-specific differences in 

these elements. As more breed-specific data are generated, we can develop breed-

specific prioritisation of SNVs that will further improve the accuracy of these genomic 

predictions. 

 

 Investigating DNA methylation differences between Brahman and Angus 

during fetal development is an important step in understanding how differential 

methylation may contribute to breed differences during the development of muscle 

and fat, essential tissues for meat production. While this is important for understanding 

how fetal programming may improve the productivity of the progeny, it may be too 

invasive and costly for producers. With this in mind, collecting methylation data from 

muscle and fat tissues in cattle around the age of slaughter would be worthwhile. The 

reason is that several studies have identified DNA methylation quantitative trait loci 

(meQTLs) associated with phenotypes, such as tender and tough meat (de Souza et al. 

2022), milk fat content (Wang et al. 2021) and muscle growth (Van Laere et al. 2003). 

By capturing DNA methylation profiles when carcass traits are recorded, one can gain 

an insight into which SNVs are affected by DNA methylation. This information can 

then be used to prioritise SNVs, thus reducing the number of loci in the genomic 

prediction model and improving prediction. 

 

 Finally, the use of miRNAs to improve genomic prediction in cattle could be 

utilised in a similar way as enhancers and DNA methylation have been proposed 

above. SNVs that occur in miRNA seed regions or 3’UTRs of important genes could 

help reduce the number of loci needed in genomic prediction. This miRNA-SNV 

prioritisation has been shown to be effective in Holstein, Jersey and Nordic red cattle 
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in prioritising SNVs associated with milk production and mastitis traits (Fang et al. 

2018), but further work is needed to evaluate the usefulness of this in other genomic 

prediction contexts. 
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