
Page 1 
 

 

 

Application of Time Series Analytics to Assess 

Performance of Artificial Lift Systems Deployed in 

Coal Seam Gas (CSG) Wells 

By: 

Fahd Saghir 

B. Eng. (Hons) 

A thesis submitted for the degree of Doctor of Philosophy (PhD.) 

 

Supervisors: 

Maria Gonzalez Perdomo 

Peter Behrenbruch 

School of Chemical Engineering. Discipline of Petroleum Engineering. 

Faculty of Sciences, Engineering and Technology (SET)  

The University of Adelaide, Australia 

October 2023 



Page 2 
 

Abstract 
Artificial Lift Systems (ALS) play a crucial role in producing natural gas from Coal Seam Gas 

(CSG) wells in Australia. These systems are employed in over five thousand wells located in 

the Bowen and Surat Basins of Queensland. Operators face significant challenges in managing 

and maintaining ALS-supported production due to regular failures caused by factors like coal 

fines. Failure of ALS can have a detrimental impact on meeting both local and international 

gas export commitments; hence, effective management and maintenance of ALS-supported 

production are paramount. 

The thesis highlights the importance of utilizing real-time data and time series analytics to 

evaluate ALS performance. Real-time data can help manage CSG wells with artificial lift 

proactively and with greater insight. Petroleum and well surveillance engineers' expertise is 

combined to enhance the analysis of time series data.  

The research presents an innovative approach that involves transforming time series data into 

images through Symbolic Aggregate Approximation (SAX). SAX serves as a feature extraction 

technique that converts time series data into a symbolic representation, which is then 

translated into performance heatmap images. Petroleum and well surveillance engineers 

label these SAX-generated performance heatmap images with expert precision. By 

incorporating domain-specific insights and utilizing novel time series analytics techniques, 

operators can detect abnormal ALS behavior, proactively address performance issues, and 

improve overall production efficiency. 

This research enabled the creation of a tailor-made ALS analytics application that helps 

monitor an extensive network of CSG wells, detect abnormal ALS behavior early, and provide 

insights for proactively managing performance issues, thereby imparting a significant 

economic impact on CSG operations in Australia.  
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1. Contextual Statement 

1.1. Research Rationale and Background 
This thesis is motivated by the confluence of two critical challenges encountered in the 

domain of ALS within CSG wells. First, the sheer volume of ALS-equipped wells, totalling 

approximately eight thousand five-hundred (Figure 1 and Figure 2), presents a formidable 

challenge in terms of real-time monitoring and performance analysis. Second, there is a 

notable absence of research dedicated to effectively utilizing time series data to enhance ALS 

performance, further compounded by issues related to data labelling. These challenges 

collectively underscore the need for an innovative approach that can bridge these gaps and 

pave the way for improved ALS management in CSG wells. 

Figure 1 – An overview of Queensland's CSG wells (Production and Exploration). The map depicts the high 
density of wells across the Surat and Bowen basins.  

To address the aforementioned challenges, this research adopts a novel approach. The 

primary focus is transforming time series data into images using Symbolic Aggregate 

Approximation (SAX) as a feature extraction technique. This innovative method streamlines 

the process of generating interpretable images, enabling easy labelling by experienced 

petroleum and well surveillance engineers. Their expertise in labelling these images unlocks 

valuable insights into the underlying patterns, anomalies, and trends inherent in the time 

series data. Moreover, the participation of petroleum and well surveillance engineers in 

labelling the images provides valuable insights and helps handle unlabelled data, making the 

analytical approach more robust. The analysis of the labelled images not only improves the 
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understanding of ALS performance but also helps to optimize it. This optimization leads to 

better failure mitigation, which ultimately facilitates improved gas production efficiency.  

Figure 2 – Number of CSG wells and Cumulative Gas Production from 2015-2021 in Queensland.  

This SAX based time-series image conversion represents a pivotal advancement, extracting 

actionable insights from time series data while harnessing the knowledge of domain experts. 

The ultimate objective is to elevate the overall performance and management of ALS in the 

unique context of CSG wells, addressing the challenges posed by a multitude of operational 

ALS wells. 

1.2. Research Objectives 
The research objective is to establish a comprehensive time series analytics methodology 

designed to assess the performance of ALS in near real-time and support well-informed 

decision-making in CSG production. The methodology detailed in this research adopts an 

innovative approach, simplifying the interpretation of complex multivariate time series data 

by converting it into SAX-derived images. This transformation into images streamlines the 

process for petroleum and well surveillance engineers, allowing them to easily label events of 

interest, which can serve as early indicators of actionable events, providing operators with 

opportunities to implement corrective measures that can effectively mitigate failures or 

enhance the performance of the Artificial Lift Systems. 
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The research objectives are outlined as follows: 

1. Develop an efficient and near real-time methodology utilizing the SAX 

technique to convert raw time series data from ALS into easily interpretable 

images. 

2. Thoroughly test and validate the proposed time series conversion method 

using historical ALS data to ensure its accuracy and reliability in capturing 

relevant features and patterns. 

3. Create a user-friendly software tool, with an intuitive interface to empower 

production and well-surveillance engineers to annotate SAX-derived images, 

allowing them to label and offer valuable insights into the behavior and 

performance of ALS. 

4. Validate the effectiveness of the annotated SAX-derived images through 

comprehensive testing on historical datasets, ensuring the accuracy and 

consistency of the labelling process.  

5. Develop a comprehensive ALS analytics platform that integrates the converted 

time series data and annotated images, enabling near real-time monitoring of 

well operations. The platform should identify events of interest and provide 

actionable insights to optimize ALS performance and enhance operational 

efficiency.  

The research objectives described above aim to showcase the significance of SAX derived 

heatmap images in enhancing time series analytics of coal seam gas (CSG) wells. The primary 

goal of this study is to illustrate how implementing a novel approach to time series analysis 

can be beneficial in real-world situations for monitoring and managing a large number of CSG 

wells. This research will provide a comprehensive understanding of the importance of SAX-

derived heatmap images in analyzing CSG wells and how it can help in managing the wells 

more efficiently. Additionally, the study will demonstrate the practical application of the 

innovative approach to time series analysis and its potential to improve the performance of 

CSG wells in the long run. 
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1.3. Thesis Structure 
This is a PhD thesis by publication.  

The thesis consists of three (3) principal sections: literature review (Chapter 2), development 

of novel time series analytics method (Chapter 3, 4 & 5) and real-time analytics tool 

development (Chapter 6, 7 & 8). Chapters 3 through 8 comprise published papers that address 

the research gap.  

The literature review section provides a comprehensive overview of how ALS is currently used 

in CSG wells and how real-time data is collected. Various machine learning methods currently 

used to detect anomalies in time series data are also delved into. The explanation includes 

how these methods work, their strengths and limitations. Additionally, significant gaps 

identified in these methods by recent studies are highlighted, and potential solutions are 

discussed to address these gaps. Finally, SAX, a mathematical technique to convert time series 

data into performance heatmap images, is delved into. The explanation includes how this 

technique works, its advantages over other machine learning methods, and how it helps to 

identify anomalies in real-time data more accurately and efficiently.  

In the second section of the thesis, which comprises Chapters 3, 4, and 5, the methods 

employed to develop a novel approach to time series performance analytics are 

comprehensively discussed. The discussion begins by detailing the initial exploratory data 

analysis work, which involved examining the data to identify the key trends and patterns. The 

SAX technique used to extract useful features from the data, enabling the generation of time 

series performance heatmaps, is then described. This section also covers the work with PCPs 

and the leveraging of machine learning methods to cluster the time series heatmap images 

created through the novel approach. The discussion provides a detailed account of the 

clustering process used, including the algorithms employed, the parameters set, and the 

results obtained.  

The third section of this thesis, spanning Chapters 6, 7, and 8, presents a comprehensive 

analysis of the development process for a time series analytics tool. This tool comprises 

various sub-components designed to cater to the specific needs of experts, particularly 

Petroleum and Well Surveillance Engineers. It explains how the tool effectively incorporates 

feedback from these professionals, utilizing their insights for event and sequence labelling. 
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These labelled events and sequences subsequently serve as the basis for generating real-time 

alerts, facilitating management-by-exception of multiple CSG wells. 

The third section also delves into the discussion of two additional artificial lift methods. Firstly, 

the functioning of ESPCPs is expounded upon, a technology employed for fluid and gas 

extraction from wells, while underscoring their advantages compared to other artificial lift 

methods. Secondly, ESPs, another artificial lift method used in CSG production, are explored 

in detail. Furthermore, a comprehensive overview is provided of how additional multivariate 

parameters from these ALS are harnessed to create time series performance heatmap 

images. These images are pivotal in delivering precise results for real-time performance 

analysis.  

1.4. Chapter Overview 
The thesis is built upon six (6) papers published in highly ranked peer-reviewed journals and 

distinguished conferences, as indicated in Table 1. In its entirety, the thesis consists of nine 

(9) chapters, and the details of each are as follows: 

Chapter 1: Introduces the research rationale, background, and objectives, discusses the 

structure of the dissertation, and outlines the relationship and contribution of the papers to 

the thesis. 

Chapter 2: Presents a detailed literature review surrounding the works of this thesis, including 

discussions of the theoretical background, application and the state of anomaly detection 

methods in time series analytics.  

Chapter 3: This section delves into the initial exploratory data analytics conducted on 

historical time series data collected from 42 wells. 

Chapter 4 marks the initial introduction of the innovative approach, wherein time series data 

is transformed into performance heatmap images. 

Chapter 5: Presents how clustering ALS time series data can help with labelling anomalous 

events to understand Progressive Cavity Pump performance in real-time. 

Chapter 6: This chapter provides a comprehensive examination of how Machine Learning 

methods can be applied to performance heatmap images and how the outcomes from the 

ML models can be utilized for monitoring the performance of PCPs. 
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Chapter 7: Presents a method of clustering time series data based on performance heatmap 

images and showcases a data annotation tool to identify abnormal PCP performance. 

Chapter 8: This section introduces the full Artificial Lift Analysis Tool and demonstrates its 

utilization by experts in the CSG industry to acquire valuable insights and mitigate ALS 

performance issues. 

Chapter 9: This chapter summarizes the research conducted and offers recommendations for 

future work. 

Table 1: Published Papers Status 

 

1.5. Addressing Research Gap through Published Papers 
The published papers shown in Table 1 represent an extensive exploration of real-time 

performance assessment in the realm of ALS within the specific context of CSG operations. 

The combination of these six papers addresses the previously mentioned gap in this thesis, 

specifically the ability to monitor large numbers of wells through exception and the 

application of time-series analytics for ALS deployed in CSG wells. Chapter 3 lays the 

groundwork with an in-depth exploration of historical time series data from 42 wells, using 

exploratory data analytics. Chapter 4 introduces the novel approach that revolves around the 

innovative transformation of traditional time series data into performance heatmap images. 

These visual representations open new avenues for understanding and evaluating ALS 

operations. Progressing to Chapter 5, the focus shifts towards the crucial role of ML, 

specifically unsupervised clustering, in handling ALS time series data. The application of 

clustering techniques facilitates labelling anomalous events, contributing to a more 

comprehensive understanding of PCP performance dynamics.  

Chapter Paper Title Status 

Chapter 3 Application of Exploratory Data Analytics EDA in Coal Seam Gas Wells with Progressive 
Cavity Pumps PCPs 

Published 

Chapter 4 Converting Time Series Data into Images: An Innovative Approach to Detect Abnormal 
Behavior of Progressive Cavity Pumps Deployed in Coal Seam Gas Wells 

Published 

Chapter 5 Machine Learning for Progressive Cavity Pump Performance Analysis: A Coal Seam Gas 
Case Study 

Published 

Chapter 6 Application of machine learning methods to assess progressive cavity pumps (PCPs) 
performance in coal seam gas (CSG) wells 

Published 

Chapter 7 Application of streaming analytics for Artificial Lift systems: a human-in-the-loop 
approach for analyzing clustered time-series data from progressive cavity pumps 

Published 

Chapter 8 Performance analysis of artificial lift systems deployed in natural gas wells: A time-
series analytics approach 

Published 
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Chapter 6 demonstrates the practical application of ML methods to utilize performance 

heatmap images for time series analytics using data from 359 wells. This chapter introduces 

three innovative concepts that significantly enhance the research methodology. First, it 

presents the expanding window technique for time series data, allowing for the 

comprehensive assessment of PCP performance from the inception of operations. This 

approach offers valuable insights into the entire lifecycle of PCPs. Second, autoencoders are 

employed to reduce the dimensionality of performance heatmap images effectively. This is a 

pivotal step aimed at alleviating the computational burden that stems from processing vast 

quantities of data gathered from 359 wells, without compromising the quality and accuracy 

of the analysis. Finally, Hierarchical Density-Based Spatial Clustering (HDBSCAN) is introduced, 

offering superior clustering of PCP performance. One advantage of HDBSCAN is that it 

eliminates the need to predefine the number of clusters, making it ideal for situations where 

the number of clusters is not known in advance. Also, in Chapter 6, the foundation for real-

time PCP performance monitoring through visual analytics tools is established.  

Chapter 7 addresses two essential tasks of this research. Firstly, it meticulously elaborates on 

the machine learning methods introduced in Chapter 6, providing a step-by-step guide on the 

clustering and labelling procedures. It demonstrates the practical implementation of these 

techniques and their effectiveness. Secondly, Chapter 7 introduces a performance analysis 

tool. This tool is utilized by petroleum and surveillance engineers to label the clustered 

performance heatmaps effectively. The chapter underscores how the grouping of 

performance heatmap clusters enables surveillance and production engineers to discern 

abnormal patterns in PCP performance. It provides a holistic view of the complete streaming 

analytics approach, showcasing how this methodology equips engineers with the necessary 

tools to monitor wells by exception and maintain optimal ALS performance. 

To conclude the research work, Chapter 8 unveils the full Artificial Lift System Analytics 

Application (ALSAA) — a culmination of the previous chapters' work. The analytics platform 

is meticulously showcased in extensive detail within practical scenarios in the CSG industry. 

The research provides real-world results and insights obtained from two operators in 

Queensland. These practical demonstrations underline the platform's applicability and 

effectiveness in monitoring and optimizing ALS in the field. This chapter also showcases how 

the SAX performance heatmap images can be applied to ESPCPs and ESPs. It serves as a 
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practical solution for experts and engineers to harness the insights gained from performance 

heatmap images and mitigate ALS performance issues in real-time. This paper serves as a 

culmination of the research presented in the preceding chapters and illustrates how the 

identified research gap is effectively addressed through real-world adaptation in the CSG 

industry. 

Figure 3 provides a flow chart representation of the published papers and how the outcomes 

of each paper contribute to addressing research gaps. 

Figure 3 – Flow Chart showing the work done for each published paper and how the findings from each 
paper help in addressing the research gap. 

2. Literature Review 

2.1. Artificial Lift Systems Used in CSG Wells 
During this research, a comprehensive analysis was conducted on the operational 

mechanisms of three different types of artificial lift systems in CSG wells. The main aim was 

to develop a deeper understanding of each lift type and explore the potential for operators 

to optimize pump performance using time series analytics.  
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a. Progressive Cavity Pumps 

PCPs have gained prominence as a reliable artificial lift method in CSG operations [1]. The 

presence of solids (coal fines) in CSG makes PCPs ideal for dewatering natural gas wells. PCPs 

utilize a helical rotor-stator configuration, creating a continuous cavity that enables the 

movement of fluids containing solids. The gentle conveying action and low shear rate within 

the pump mechanism contribute to its impressive solid handling capability. The stator's 

elastomeric material and the rotor's precision design further enhance the pump's ability to 

manage abrasive materials without excessive wear. At present, the majority of ALS used in 

CSG wells is composed of PCPs. Figure 4 shows the various components of a PCP and how 

they are deployed in CSG wells. 

Figure 4 – (Left) Natural Gas Production from Coal Seam Gas (CSG) wells. (Centre) Main Components of a 
PCP system. (Right) Cut-out view of PCP Rotor and Stator.  

b. Electric Submersible Progressive Cavity Pumps 

Although PCPs are highly adept at managing solid production, the accumulation of solids from 

the interburden can become a significant concern. This problem can potentially lead to PCP 

failure, significantly impeding the operational reliability of the system. Moreover, the 

formidable torque exerted by the solids-laden fluid exacerbates the vulnerability of rods to 

mechanical stress, elevating the risk of rod failure. As a result, addressing the interplay 
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between interburden-induced solid buildup, torque imposition, and rod integrity is crucial to 

sustaining the operational longevity of CSG wells. 

Furthermore, natural gas producers operating many wells (typically more than five hundred) 

have recently looked at lateral well completions. Lateral wells minimize surface footprint by 

consolidating multiple wells in close proximity. This strategy minimizes land disturbance and 

complies with regulatory directives to preserve the environment. Moreover, the lateral wells 

enhance gas recovery by accessing a broader reservoir area, thereby offering improved 

production rates. 

Recently, natural gas producers with a high number of CSG wells have begun utilizing ESPCPs 

to avoid rod failures and make use of lateral wells [2-5]. One major advantage of these pumps 

is that they do not require rods to transfer motor energy to the rotor. Figure 5 shows the 

various components of an ESPCP. 

Figure 5 – Components of an Electric Submersible Progressive Cavity Pump (ESPCP) 

c. Electric Submersible Pumps 

Electric Submersible Pumps (ESPs) are centrifugal pumps used for artificial lift in CSG 

operations due to their ability to deliver high flow rates. They are chosen as an alternative to 

ESPCPs where natural gas operators require faster water drawdown rates. However, ESPs do 

have limitations versus ESPs where they are not designed to manage solid contents in 
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produced fluids. Hence, ESPs are only used in lateral configurations, where the well-

completion design allows for minimal solid encroachment into the produced water. The 

components of an ESP are shown in Figure 6. 

Figure 6 – Components of an Electric Submersible Pump (ESP) 

2.2. Automation and Surveillance of Artificial Lift Systems 
Supervisory Control and Data Acquisition (SCADA) systems are predominantly used to 

automate and monitor ALS deployed for oil and gas production [6]. Remote Telemetry Units 

(RTUs) are typically installed on wellheads, connecting to various sensors and electrical 

systems. The RTUs are critical to the SCADA system as they collect data from multiple sensors 

and transmit it to a central control through available communication media. Moreover, 

operators can also create and deploy logic on the RTUs to autonomously control ALS.  

In the late 20th century, SCADA systems were introduced into the oil and gas industry to 

monitor production systems in real time [7]. However, it was not until the early 21st century 

that they became widely used. This was largely due to the implementation of digital oilfield 
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programs by both international and national oil companies [8]. These programs helped to 

monitor and improve production processes, leading to increased efficiency and profitability. 

Furthermore, SCADA systems were predominantly utilized for the monitoring of ALS in 

maturing onshore oilfields, where operators used real-time data to optimize pump speeds for 

improved hydrocarbon production rates [9]. Figure 7 and Figure 8 show the CSG well layout 

and SCADA data flow, respectively. This research investigated the process of gathering data 

from SCADA systems, its storage in corporate historians, and its subsequent analysis for both 

business and engineering purposes. 

Figure 7 – CSG Well Layout depicting the PCP and RTU and Radio Antenna for data transmission.  

A thorough analysis was conducted on how connectivity to SCADA (Supervisory Control and 

Data Acquisition) systems affects data frequency, a critical factor in time series analytics. This 

research explored the complexities of varying data frequencies and their impact on time-

series analytics. It became evident that the effective management of these varying data 

frequencies was paramount to the methodology employed. 

2.3. Exception-Based Surveillance in Coal Seam Gas Applications 
Following a literature review on SCADA systems, an analysis was undertaken to examine how 

Coal Seam Gas operators, both domestically and internationally, leveraged real-time data to 

enhance ALS surveillance. Typically, SCADA data is utilized to optimize ALS control speed set 

points to increase production or prevent unnecessary shutdowns [10-13].  

Furthermore, ALS surveillance systems are designed to monitor crucial parameters such as 

pressure, flow, torque and temperature. Operators are immediately alerted whenever any of 

these parameters exceed a certain threshold. This real-time information empowers operators 
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to develop exception-based surveillance methods that efficiently monitor artificially lifted 

wells. By utilizing these methods, operators can streamline their procedures and ensure that 

any potential issues are identified and addressed in a timely manner[14].  

Figure 8 – Data Flow from CSG Wells to Company Head Office 

Although exception-based surveillance methods are valuable for CSG operators, they do not 

provide early warning signs of abnormal ALS performance. Some of these methods also rely 

on downhole sensors, which are prone to failure during lifting operations [15]. Our analysis 

of exception-based surveillance revealed that providing context driven alerts for ALS 

performance would be more effective in managing ALS in coal seam gas wells. 

2.4. Time Series Analytics  
Time series analytics is a field of study that focuses on analyzing data that changes over time. 

It involves forecasting future trends and identifying any unusual patterns or outliers, which 

are known as anomalies. This field covers a broad range of topics, including machine learning 

algorithms, statistical modelling techniques, and data visualization methods. Extensive 

research is being conducted in this sought-after field by both academic and industrial sectors 

to uncover new insights and knowledge from time series data. Time series analysis aims to 
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create models and methods that can accurately predict future trends and identify any 

anomalies that may arise, enabling businesses and organizations to make more informed 

decisions and stay ahead of the curve. Research in forecasting and anomaly detection has 

significantly increased with the rise of real-time data monitoring and the Internet of Things 

(IoT) in the past decade [16, 17]. In the case of ALS, this research focused  on detecting 

changes in performance parameters and understanding trends in multivariate time series 

data; hence, the next step is to discuss notable methods used for anomaly detection. 

a. Machine Learning Methods for Time Series Anomaly Detection 

As SCADA data is often unlabeled, unsupervised machine learning methods are commonly 

used for analyzing time series data. The mutual theme among time series-based machine 

learning methods is to detect anomalies through clustering or classification. These methods 

help label events of interest that aid in improving asset performance monitoring. Following a 

comprehensive analysis of various machine learning techniques, two primary approaches 

were identified for time series clustering and anomaly detection: Convolutional Autoencoders 

and Long Short-Term Memory Autoencoders. These approaches are prominently featured in 

recent publications, and many other methods draw inspiration from these two approaches.  

i. Convolutional Autoencoders (CAE) 

Autoencoders, a class of neural networks, have gained prominence in time series anomaly 

detection due to their ability to capture complex patterns and representations within data. 

They have proven particularly effective in unsupervised settings where labelled anomaly 

examples are scarce or unavailable. One key advantage of autoencoders is their ability to 

learn a compact and informative representation of the input data, which can be exploited for 

anomaly detection purposes. Figure 9 shows a typical AE architecture. 

Autoencoders can learn to compress data and then reconstruct it. This is done by mapping 

the input data into a lower-dimensional latent space through an encoder network and then 

attempting to reconstruct the original data from this compressed representation through a 

decoder network. In the context of time series data, an autoencoder works by taking a 

sequence of data points as input and then transforming it into a compressed representation 

using the encoder network. The decoder network then tries to reconstruct the original 

sequence from this compressed representation. 
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Figure 9 – A typical Autoencoder Neural Network Architecture 

Throughout the training phase, the autoencoder acquires the ability to minimize the 

reconstruction error between the initial and reconstructed data. This process incentivizes the 

model to capture the most significant features and patterns inherent in the input data. By 

doing this, the autoencoder can identify the most important characteristics of the input data, 

which can be useful in a variety of applications such as anomaly detection, dimensionality 

reduction, and denoising. Figure 10 shows an overview of how time series data is encoded 

and decoded to produce a reconstructed time series signal.  

Figure 10 – Conversion of Time Series Signal to a Latent layer via an Encoder, and conversion to 
reconstructed Time Series signal via a Decoder. The difference between the reconstructed and input signal is 

used to determine the anomalies in the data. 
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Autoencoders are crucial in time series anomaly detection as they efficiently learn a 

representation of temporal data and identify deviations from learned patterns [18]. The 

autoencoder is trained on a dataset of "normal" time series sequences, capturing the 

underlying temporal dependencies and patterns. The encoder compresses the time series 

data into a lower-dimensional latent representation during training, while the decoder 

attempts to reconstruct the original data from this compressed representation. The primary 

objective of the autoencoder is to minimize the reconstruction error, ensuring that it learns 

to accurately encode and decode the normal data sequences. 

Once the autoencoder is trained and verified, it can be employed for anomaly detection on 

streaming time series data. When presented with a new or unseen time series sequence, the 

model attempts to reconstruct it. If the sequence follows the learned patterns and is 

considered "normal," the reconstruction error is typically low. However, the reconstruction 

error tends to be significantly higher when the input sequence contains anomalies or 

deviations from the learned patterns. By setting an appropriate threshold for the 

reconstruction error, anomalies can be effectively identified. This mechanism allows 

autoencoders to excel in detecting various time series anomalies, including point and 

contextual anomalies, making them valuable tools in monitoring systems for deviations from 

expected temporal behavior [19]. Autoencoders' ability to capture intricate temporal 

dependencies, combined with their unsupervised nature, makes them particularly useful in 

scenarios where labelled anomaly data is scarce or when the nature of anomalies is not well-

defined in advance. 
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ii. Long Short-Term Memory Neural Networks (LSTM) based Auto Encoders  

LSTM is a type of recurrent neural network (RNN) specifically designed to capture and model 

data sequences. This makes it a great tool for analyzing time series data. Unlike traditional 

statistical methods that rely on predefined patterns and assumptions, LSTM networks can 

learn complex temporal dependencies from data [20]. This makes them highly adaptable to 

diverse and dynamic time series. One of the most significant features of LSTMs is the presence 

of memory cells within LSTM units. These memory cells allow LSTMs to capture and store 

information over extended time periods, as shown in Figure 11 [21]. 

Figure 11 – A typical LSTM Cell with various operation functions.  

As a result, LSTMs can learn and represent long-range dependencies in sequential data. This 

feature makes them well-suited for tasks that involve complex temporal patterns. In addition, 

LSTMs operate sequentially, processing data point by point. This allows them to capture the 

intricate temporal dynamics of sequences, making them highly effective in recognizing 

patterns and trends. Furthermore, LSTMs are robust in handling irregularly sampled time 

series data, missing values, and noisy observations. They can effectively adapt to different 

time intervals between data points and imputing missing values. The adaptability of LSTMs, 

combined with their ability to automatically extract relevant features from data, makes them 

tools for time series forecasting and anomaly detection [22]. Figure 12 shows an overview of 

how time series data is encoded and decoded using LSTM cells to produce a reconstructed 

time series signal.  
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Figure 12 – Conversion of Time Series Signal to a Latent layer via an LSTM Encoder and conversion to 
reconstructed Time Series signal via an LSTM Decoder. The difference between the reconstructed and input 

signal determines the anomalies.  

LSTM autoencoders are a powerful solution for a wide range of data analysis tasks, including 

sequence data compression, feature extraction, and anomaly detection [19]. They combine 

the strengths of autoencoders and LSTM neural networks, resulting in an efficient data 

representation. These models contain an encoder that compresses the input data into a 

lower-dimensional latent representation and a decoder that reconstructs the original data 

from this representation. However, what sets LSTM autoencoders apart is the inclusion of 

LSTM units in the encoder and decoder components. This addition equips the model with the 

ability to capture and model intricate temporal dependencies and sequential patterns present 

in the data, allowing it to maintain the sequential context while learning an efficient 

representation. LSTM autoencoders are particularly effective when dealing with time series 

and sequential data, preserving the temporal aspects of the data that standard autoencoders 

may overlook. They can capture complex temporal dependencies, making them highly adept 

at preserving the sequential information in data, which is essential for tasks like sequence 

reconstruction, forecasting, and anomaly detection. They are also capable of feature 

extraction and dimensionality reduction while maintaining the temporal context, offering a 

more comprehensive representation of the data.  

b. Limitations in Machine Learning Methods for Time Series Data 

Despite the abundance of machine learning methods available for analyzing time series data, 

studies conducted in the past few years have revealed that ML-based methods for 

multivariate time series data have noteworthy limitations  [17, 23-28]. These limitations 

compromise the accuracy and practical value of insights derived from such methodologies. 

When applying machine learning techniques to the analysis of time series data, it is crucial to 

carefully acknowledge and factor in the limitations. This holds true even for well-published 

methods that use AE and LSTM autoencoder approaches. Several fundamental reasons 
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account for the limitations in these methods, and through an extensive literature review, the 

most prominent gaps have been identified, as outlined below. There are several underlying 

reasons for the limitations of these methods, and based on our extensive literature review, 

we were able to identify the most notable gaps, which are presented below. 

i. Handling Missing Data 

The presence of missing data can significantly impact machine learning-based time series 

analysis, introducing challenges that must be carefully addressed. In time series data, missing 

values often occur due to various reasons, such as sensor malfunctions, data transmission 

issues, or irregular sampling intervals. This is true for SCADA systems that collect data from 

artificial lift pumps, as these gaps can disrupt the continuity of the time series, potentially 

leading to inaccurate anomaly detection and unreliable results.  

Handling missing data in time series analysis is essential because it can affect the model's 

ability to capture temporal dependencies, make accurate predictions, or detect anomalies. 

Various techniques, including imputation methods, handling strategies, and deep learning 

models, are employed to mitigate the effects of missing data [29]. However, these methods 

make anomaly detection from ML methods even more unreliable [30].  

One of the primary drawbacks of data imputation is the potential introduction of bias and 

distortion into the dataset. Imputation methods, whether they involve simple techniques like 

mean imputation or more advanced methods such as interpolation, introduce values that 

may not accurately represent the underlying reality of the time series. This can lead to 

misleading interpretations and incorrect conclusions, particularly when the missing data 

points are not missing at random, and their absence carries meaningful information or 

patterns. Moreover, imputing missing data can artificially reduce the variability in the time 

series, which can affect statistical analyses and lead to inaccurate forecasts or anomaly 

detection results. Additionally, imputation assumes that the relationships between variables 

remain constant over time, which may not hold in dynamic and evolving systems, further 

compromising the integrity of the analysis. Therefore, while imputation is a practical 

approach to handle missing data, its disadvantages necessitate careful consideration and 

validation of the imputed values' impact on the overall analysis and decision-making 

processes in time series analytics. 
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ii. Managing Multivariate Data 

Multivariate data, characterized by multiple variables or features measured over time, can 

have a profound impact on the performance and applicability of AEs and LSTMs. When 

applied to multivariate time series data, these models need to grapple with the increased 

complexity and dimensionality, which can present multiple challenges with neural network 

architecture design. 

When dealing with AEs, managing multivariate data requires encoding and decoding multiple 

variables simultaneously. This increases computational demands, especially for high-

dimensional data. Additionally, processing multiple variables in parallel can limit the capture 

of interdependencies and correlations among variables. Therefore, it is essential to carefully 

engineer and preprocess features to ensure that the autoencoder can effectively learn 

relevant patterns within the multivariate time series. Furthermore, the choice of loss function 

and evaluation metrics should align with the multivariate nature of the data.  

LSTM networks, when applied to multivariate time series, can simultaneously model the 

temporal dependencies across multiple variables. This ability makes them well-suited for 

capturing complex interactions and patterns within the data. However, increased 

dimensionality can lead to model training and interpretation challenges. Proper architecture 

design and hyperparameter tuning become critical to ensure that the LSTM network 

effectively captures the relevant temporal dependencies. Additionally, handling missing data, 

ensuring proper normalization, and dealing with varying scales among different variables are 

essential preprocessing steps.  

iii. Capturing Domain Context 

AEs and LSTM autoencoders can struggle to capture domain-specific context, which is often 

crucial for accurate modelling in specific applications. LSTMs, although skilled at capturing 

temporal dependencies in sequential data, may not inherently understand the semantics or 

domain-specific meaning of the data they analyze. They rely solely on patterns and 

relationships learned from the data, potentially missing out on domain-specific nuances that 

a human expert might recognize. This can lead to suboptimal performance when dealing with 

data where contextual understanding is essential, such as medical diagnoses or natural 

language understanding. 
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Similarly, AEs, while proficient at feature extraction and data reconstruction, do not 

inherently possess domain knowledge. They learn to compress and reconstruct data based 

on statistical patterns without understanding the underlying meaning or context. Therefore, 

integrating domain-specific knowledge and context into these models often requires 

additional techniques and human expertise to ensure that the insights derived from these 

models are meaningful and relevant in the specific domain of interest. 

iv. Sampling Window Size 

Selecting an appropriate window size is a crucial yet challenging aspect of time series analysis 

when using machine learning models like AEs and LSTMs. The window size determines the 

temporal context that the model can consider when making predictions or detecting patterns 

in the data. However, choosing the right window size is far from a one-size-fits-all task and 

involves several challenges. 

One of the primary challenges is balancing the trade-off between capturing local and global 

temporal patterns. A smaller window size allows the model to focus on fine-grained, short-

term patterns but may overlook longer-term trends or seasonality. Conversely, a larger 

window size can capture broader trends but may blur or dilute the impact of shorter-term 

fluctuations. Deciding on the appropriate window size often requires a deep understanding 

of the specific domain and the underlying temporal dynamics. Furthermore, the choice of 

window size can impact the model's computational requirements and memory consumption, 

as larger windows lead to more extensive feature vectors and potentially longer training 

times. Therefore, users must carefully consider the intended use case and objectives of the 

analysis to strike the right balance and select an optimal window size for their machine 

learning models in time series analysis. 

Another challenge in choosing the right window size is dealing with irregular or missing data. 

Time series data often exhibit irregular sampling intervals or missing values, which can 

complicate the selection of a suitable window size. Irregular data may lead to misalignment 

between windows and data points, requiring interpolation or data preprocessing to address 

gaps. Additionally, selecting an inappropriate window size in the presence of missing data can 

result in either information loss or excessive noise in the analysis. Thus, practitioners must 

carefully handle data irregularities and consider how the window size interacts with the data's 
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temporal characteristics to ensure meaningful and accurate results in time series analysis 

using machine learning models. 

v. Reconstruction Error Threshold 

The reconstruction error threshold presents a challenge in time series analysis for AEs and 

LSTM autoencoders. This threshold determines when the model flags an observation as an 

anomaly based on the difference between the original data and its reconstruction. However, 

setting an appropriate threshold can be highly challenging due to several factors. 

The choice of threshold in anomaly detection can be subjective and context-dependent. There 

is a trade-off between sensitivity (the ability to detect true anomalies) and specificity (the 

ability to avoid false alarms). If the threshold is set too low, it may result in many false 

positives, while some anomalies may be missed if it is too high. The optimal threshold can 

vary for different datasets and use cases, or even over time as the data distribution changes. 

As a result, practitioners must carefully consider these trade-offs and domain-specific 

requirements when establishing the reconstruction error threshold. 

It is worth noting that the distribution of reconstruction errors can be quite complex and 

multi-modal. As a result, not all anomalies will necessarily stand out as clear outliers in the 

reconstruction error distribution. Some anomalies may have subtle deviations that are 

difficult to distinguish from normal variations. This complexity can make it challenging to 

define a single, fixed threshold that effectively captures all types of anomalies. It is often 

necessary to use advanced techniques, such as adaptive or percentile-based thresholds, to 

handle these complexities. Additionally, the presence of noise or outliers in the training data 

can affect the reconstruction error distribution, making the threshold selection process even 

more complicated. Thus, the challenge lies in developing thresholding strategies that can 

account for the diverse nature of anomalies and their corresponding reconstruction errors in 

time series data analysis using autoencoders and LSTM autoencoders. 

vi. Flawed Anomaly Detection Benchmarks 

Over the past decade, there has been a significant increase in work related to time series 

analysis. Many studies [17, 28, 31-35] have been conducted to evaluate the effectiveness of 

machine learning-based time series anomaly detection methods. 
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In a paper covering a comprehensive evaluation of time series anomaly detection, Schmidl et 

al. [35] observed that, despite the increased computational resources required during 

training, deep learning methodologies are currently not competitive in the field of time series 

anomaly detection; this includes AEs and LSTM AEs. The study also confirms the principle that 

simpler techniques can yield performance results almost on par with more complex 

approaches. Furthermore, no single machine learning algorithm comprehensively 

outperforms the others. Various algorithms exhibit specific strengths, but the overall findings 

call for further exploration in three critical domains. 

Schmidl et al. highlight three (3) areas for further research. Firstly, the importance of 

flexibility, as no single algorithm or algorithmic family universally dominates all anomaly 

detection scenarios, urging the pursuit of hybrid systems to enhance anomaly detection in 

diverse time series settings. Second, it highlights the necessity for more research on the 

reliability and scalability of these algorithms, given that only a few were able to process time 

series data error-free within common resource constraints. Lastly, the research underscores 

the challenge of parameter sensitivity in many anomaly detection algorithms and advocates 

for the development of auto-configuring and self-tuning algorithms to simplify parameter 

selection, which is particularly vital in practical use cases lacking training data for parameter 

optimization. 

Another notable paper by Wu and Keogh [32] highlights four significant flaws in publicly 

available time series datasets that are utilized to train anomaly detection models based on 

machine learning. These flaws include triviality, unrealistic anomaly density, mislabeled 

ground truth, and run-to-failure bias. By identifying these issues, the paper emphasizes the 

need for reliable and accurate time series datasets to train robust machine learning models 

for anomaly detection. 

c. Matrix Profile for Time Series Anomaly Detection – A non-ML based approach 

During the course of this research, Matrix Profile [36] based anomaly detection garnered 

prevalent adoption in the time series analytics domain. The Matrix Profile is a way to 

represent the similarity between subsequences in time series data. It is very efficient in 

capturing complex patterns and irregularities, which makes it an excellent tool for detecting 

anomalies in various applications. It can be used for monitoring industrial processes or 

identifying unusual behaviors in sensor data. 
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Matrix profile-based anomaly detection has a significant advantage in providing a detailed 

understanding of time series data. This technique enables the identification of both recurring 

patterns (motifs) and distinct patterns (discords), which helps to improve the interpretability 

of anomalies in different datasets. This interpretability is crucial in practical applications 

where specific patterns can reveal valuable insights, ensuring more accurate and informed 

decision-making. 

However, matrix profile-based methods are not without limitations. Like the shortcoming of 

ML based anomaly detection methods, matrix profile-based methods are also influenced by 

various parameters that collectively impact their performance. The window size, which 

determines the length of subsequences used to compute the matrix profile, is a critical 

parameter. A larger window size can capture broader patterns but may overlook localized 

anomalies, while a smaller window size could be more sensitive to noise. The matrix profile 

length, or the granularity of pattern detection, is another important parameter, with longer 

profiles offering more detailed insights but requiring increased computational resources. The 

choice of distance metric to quantify similarity between subsequences is a pivotal decision, 

as different measures may be more suitable for specific data types. Setting thresholds for 

anomaly detection is crucial, with careful consideration needed to avoid false positives or 

negatives. Additionally, the normalization method applied to the time series data plays a role 

in ensuring consistent performance across datasets with varying scales and magnitudes. 

For multivariate time series data, a different set of considerations emerges, including the 

definition of distance measures and the handling of multiple dimensions [37]. Adapting matrix 

profile-based methods to multivariate scenarios requires careful parameter selection to 

account for the complexities introduced by the additional dimensions. Optimal parameter 

choices are often dataset-specific, and fine-tuning based on the characteristics of the specific 

dataset is essential for achieving accurate and meaningful results in matrix profile-based time 

series analysis. Experimentation and thorough parameter tuning are critical steps to maximize 

the effectiveness of these methods in capturing and interpreting patterns in diverse datasets. 

2.5. Symbolic Aggregation Approximation 
In response to the limitations encountered with ML-based time series analysis methods, an 

exploration was undertaken to discover more effective alternatives for extracting contextual 

information from multivariate time-series data. The primary goal was to identify innovative 
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approaches that could provide more meaningful insights and facilitate better decision-making 

based on the data. In the course of this research, Symbolic Aggregate Approximation (SAX) 

emerged as a pivotal data transformation technique that plays a critical role in the analysis of 

time series data. [38]. It operates by converting continuous time series data into a symbolic 

representation, enabling the application of various data mining and pattern recognition 

techniques. SAX offers several advantages over machine learning (ML) methods, making it a 

valuable tool in specific time series analysis scenarios. 

One of the primary advantages of SAX is its ability to reduce the dimensionality of time series 

data while preserving essential information. By representing the data symbolically, SAX 

significantly reduces the data's dimensionality, making it more manageable for subsequent 

analysis [39-42]. This reduction simplifies the computational demands, especially when 

working with large-scale or high-dimensional time series datasets. Furthermore, the symbolic 

representation makes visualizing and interpreting the data easier, aiding in pattern discovery 

and anomaly detection tasks. 

SAX also excels in handling noisy or uncertain time series data. ML methods often require 

clean, pre-processed data, which can be challenging to obtain in real-world scenarios. On the 

other hand, SAX is robust to noise and variations in the data, as it discretizes the time series 

into a predefined set of symbols. This robustness allows SAX to work effectively with data 

from domains like sensor networks, financial markets, and healthcare, where noise and 

irregularities are common. Additionally, SAX provides a compact representation of time series 

data, reducing the impact of outliers and anomalies on subsequent analysis. 

Another advantage of SAX is its interpretability. The symbolic representation is intuitive and 

understandable (as shown in Figure 13), making it easier for domain experts to interpret and 

extract insights from the data. This interpretability is particularly valuable in fields where 

domain knowledge is critical. By simplifying the data representation and focusing on patterns 

within symbols, SAX enables domain experts to gain meaningful insights and make informed 

decisions based on the transformed data. 
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Figure 13 – A time series feature (above) is discretized based on SAX, and a plot is shown (below) with the 
relevant SAX labels. 

SAX's ability to simplify and enhance the analysis of time series data makes it a valuable tool 

in various domains, where it complements machine learning approaches and aids in 

uncovering hidden patterns and insights in time-dependent data. 

2.6. Summary 
Monitoring real-time SCADA data from thousands of CSG wells is an intricate task, and as a 

result, there is a pressing need for a more simplified exception-based approach to discern 

which wells require heightened attention. Although ML-based solutions have been proposed 

and may seem promising, they come with a host of limitations. These limitations include the 

complexity of ML model training and interpretation, sensitivity to parameter settings, and the 

significant requirement for labelled data, which can be particularly challenging to obtain in 

industrial settings. Consequently, harnessing SAX-based time series analysis emerges as the 

most compelling approach for effective real-time well performance monitoring. SAX's ability 

to reduce data dimensionality while preserving critical information renders it highly robust 

against noisy data, all while maintaining interpretability. Given the paramount importance of 

timely and accurate insights in real-time SCADA systems for optimizing well operations, the 

plan is to utilize SAX as the foundation of the research. The research aims to develop a novel 

approach that transforms time series data into performance images, offering a simplified and 

accessible solution for identifying anomalies and optimizing well performance in real time. 

This approach will help CSG operators manage vast numbers of wells by exception, avoiding 

limitations of existing ML based anomaly detection methods. 
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3. Paper 1: Application of Exploratory Data Analytics EDA in Coal Seam 

Gas Wells with Progressive Cavity Pumps PCPs 
 

This paper explores the application of EDA within the realm of CSG wells equipped with PCPs. 

The primary aim is to enhance the understanding and optimize PCP performance, addressing 

unique challenges posed by multivariate time series data within the oil and gas industry. 

The application of EDA methodologies on a three-year time series dataset gathered from 42 

CSG wells is demonstrated, utilizing the Python programming language and its supporting 

libraries. 

The critical role of EDA as a preliminary step before embarking on real-time analytics cannot 

be overstated. EDA is used to address data discontinuity, which is prevalent in SCADA data, 

and generalize multivariate SCADA data with time series analytics. This helps to comprehend 

the behavior of time series data and extract pertinent features, especially in the context of 

multivariate datasets.  

The methodology encompasses several key steps, including the sorting and normalization of 

raw time series data, interpolation to handle missing values, data filtering to remove non-

representative data, and data decomposition to reveal underlying trends. Correlation analysis 

is explored as a means to assess PCP performance over different time periods, employing 

sliding window techniques. Additionally, a novel approach to data visualization is introduced, 

leveraging SAX to create HEATMAP images for real-time monitoring of PCP performance. 

The results discussed in the paper demonstrate how managing SCADA data and converting 

time-series data to SAX HEATMAP are necessary for real-time PCP performance analysis.  
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4. Paper 2: Converting Time Series Data into Images: An Innovative 

Approach to Detect Abnormal Behavior of Progressive Cavity Pumps 

Deployed in Coal Seam Gas Wells 
 

This paper introduces a novel approach to detect abnormal PCP behavior in CSG wells by 

converting time series data into heatmap images and utilizing machine learning techniques. 

The method involves converting multivariate time series data from PCPs into images using 

the SAX methodology, which helps to detect abnormal behavior autonomously. SAX is a 

technique for normalizing time series data and converting it into heatmap images. The 

methodology includes selecting relevant variables, creating a Gaussian distribution, and 

adding breakpoints to convert data into SAX symbols. 

The paper highlights the significance of PCPs as a primary artificial lift method in CSG wells, 

and the challenges they face due to coal fines. Frequent pump failures caused by coal fines 

make it challenging to manage CSG wells. Hence, the proposed method has the potential to 

benefit the management of CSG wells in Australia significantly. 

In the results section, the paper demonstrates the effectiveness of using heatmap images for 

detecting abnormal performance events in PCPs. The paper proposes an automated approach 

that involves K-Means clustering to segregate and label the clusters. Each heatmap cluster 

represents a specific type of PCP abnormal behavior, which is used to identify performance 

issues in real-time. 

The findings outlined in this paper demonstrate the significance of using SAX-based heatmap 

images to enhance the accuracy of time-series clustering. By clustering time-series data, it is 

possible to automatically identify abnormal PCP behavior and label datasets to improve PCP 

performance analysis. 
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5. Paper 3: Machine Learning for Progressive Cavity Pump 

Performance Analysis: A Coal Seam Gas Case Study 
 

The paper emphasizes the application of machine learning techniques in conjunction with 

innovative visualization methods for enhancing the analysis of performance in CSG wells. The 

methodology introduced in the paper centers around the conversion of time-series data into 

SAX Heatmap images. The Heatmaps serve as a powerful tool for visually depicting changes 

in PCP performance, allowing for a more intuitive understanding of the data. 

The paper's standout feature is its application of machine learning techniques to the 

dimensionality reduction process. Principal Component Analysis (PCA) is employed for this 

purpose, reducing the complexity of the data. The resulting PCA components are visualized 

using t-Distributed Stochastic Neighbor Embedding (t-SNE), a machine learning technique 

that simplifies the representation of high-dimensional data in two dimensions. 

The machine learning component is further advanced by the application of k-Means 

clustering, where the ideal number of clusters is derived using the elbow method. This 

clustering method categorizes the SAX Heatmap images based on their characteristics. It helps 

identify patterns and similarities within the data, ultimately enabling the detection of PCP 

performance and anomalies. These insights are gained in near real-time, offering significant 

advantages for operational management. 

The visual representation of Heatmaps alongside time-series data plays a crucial role in 

understanding PCP performance changes. The clusters generated through k-Means are 

labelled based on the characteristics of the Heatmap images, such as torque or flow 

anomalies. This process allows for the automated tagging of new Heatmap images generated 

from streaming time-series data, making it a powerful tool for anomalous PCP performance 

detection. 

The automated tagging of SAX images, based on the clustering method discussed, enhances 

the detection of anomalous PCP performance in streaming time-series data, highlighting the 

paper's contribution to effective anomaly detection and hence paving the way for manage-

by-exception for a large fleet of CSG wells. 
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6. Paper 4: Application of machine learning methods to assess 

progressive cavity pumps (PCPs) performance in coal seam gas (CSG) 

wells 
 

This paper advances the application of machine learning methods for assessing the 

performance of PCPs in CSG wells. The paper incorporates a neural network-based 

dimensionality reduction method to reduce the Heatmap image representation using 

Convolutional Auto Encoders (CAE). Moreover, the study employs an enhanced high-density-

based clustering method HDBSCAN, to create clusters. Data from 359 PCP wells was used to 

develop the method and validate results for this paper. 

To analyze a large amount of data used for the research, the CAEs were employed instead of 

the PCA approach discussed in previous papers. The CAEs provided a more compressed latent 

representation of the SAX heatmap images compared to PCA. Additionally, the k-Means 

clustering method was replaced with HDBSCAN. This was done to identify clusters without 

providing a pre-set number of clusters, which is the case with the k-Means approach. 

This paper also introduces some key concepts and techniques which are pivotal to real-time 

analysis of PCP performance. Firstly, it introduces the "expanding window technique," which 

is fundamental for the analysis of PCP performance over its entire operating life. Second, the 

visual analytics approach to assess PCP performance is discussed, where multivariate trends 

are plotted against cluster heatmap labels as bar charts to aid in assessing changing ALS 

performance.  

These innovative additions distinguish this research and underscore its significance in the field 

of PCP performance analysis using machine learning. This study showcases how utilizing 

machine learning to automatically identify and plot performance heatmap clusters, along 

with streaming data, provides engineers with an improved overview of PCP performance. This 

aids in real-time anomaly detection and automation. 
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7. Paper 5: Application of streaming analytics for Artificial Lift systems: 

a human-in-the-loop approach for analyzing clustered time-series 

data from progressive cavity pumps 
 

The paper provides a comprehensive methodology for replicating the clustering process for 

multivariate time-series data. This begins with the creation of a performance heatmap-

specific autoencoder designed to reduce the size of heatmap images, thus improving 

computational efficiency. The paper also explores various dimensionality reduction methods 

for visualizing the performance heatmaps in a two-dimensional space.  

Moreover, the paper discusses the pivotal role of petroleum engineers in the human-in-the-

loop approach for labelling performance heatmaps. Engineers are entrusted with cluster 

labeling to accurately categorize different PCP performance states. The paper presents a 

workflow for human-assisted labelling of streaming time-series data using Major and 

Anomaly clusters.  

Petroleum and surveillance Engineers narrow down events of interest for real-time alerts by 

pairing relevant Major and Anomaly clusters. This empowers them to enhance their 

management of ALS through machine learning-supported exception-based surveillance. 

Based on the labelled Major and Anomaly pairs, the method identifies ten performance-

related events and five anomalous events when analyzing the heatmap images, 

demonstrating its real-world effectiveness. 

This collaborative effort between engineers and machine learning algorithms significantly 

enhances the accuracy and the overall efficacy of the streaming analytics system, hence 

assisting with improved management of a large fleet of CSG wells. 
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8. Paper 6: Performance analysis of artificial lift systems deployed in 

natural gas wells: A time-series analytics approach 
 

The culmination of this research is presented in the final paper, which consolidates all the 

methods and procedures detailed in the preceding publications. It introduces the Artificial Lift 

Systems Analytics Application (ALSAA), a pivotal development for addressing the CSG 

industry's real-time monitoring and data annotation process. ALSAA exemplifies how multiple 

wells can be efficiently monitored through exception-based surveillance. Additionally, this 

paper illustrates the versatility of performance heatmap images, demonstrating their 

application to other forms of Artificial Lift Systems (ALS), including Electrical Submersible 

Pumps (ESPs) and Electrical Submersible Progressive Cavity Pumps (ESPCPs). 

The paper offers a comprehensive view of how the ALSAA is harnessed by petroleum and 

surveillance engineers for labelling ALS performance using a data annotation toolbar and 

applying these results to streaming data. It details the complete workflow involved in the data 

annotation process. Additionally, the paper delves into the concepts of events and sequences. 

Events signify notable changes or anomalies within the ALS performance, such as variations 

in downhole pressure or the occurrence of specific operational issues. Conversely, sequences 

are combinations of events that transpire in a particular order or pattern. Through the 

identification and analysis of these events and sequences, engineers can gain valuable insights 

into the performance of the ALS and take proactive measures to address potential issues or 

failures.  

The paper demonstrates how live monitoring dashboards and ALS analysis tools can detect 

early signs of issues, such as gas intake, and end-of-life for an ALS. Overall, the paper 

addresses two crucial research gaps in the field of artificial lift system management. Firstly, it 

focuses on the accurate labeling of ALS data and, secondly, on the capacity to monitor a 

significant number of wells on an exception basis. ALSAA overcomes these challenges and 

showcases how they are addressed, significantly contributing to the broader field of ALS 

operations in CSG wells. 
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9. Conclusions and Recommendations 

9.1. Conclusion 
In conclusion, this thesis presents a groundbreaking approach to analyzing time-series data 

using SAX-based Heatmap images for the purpose of ALS performance analysis in CSG 

production. The results demonstrate the effectiveness of this methodology in providing 

improved visualization of real-time trends and automating the detection of abnormal events 

in the context of ALS operations. By allowing engineers to focus on wells requiring attention 

and proactively managing ALS systems, this approach significantly enhances the efficiency of 

CSG asset management and minimizes natural gas production losses due to mechanical 

failures. 

The detailed methodology, results, and observations presented in this research demonstrate 

the efficacy of the proposed approach in detecting various performance states of ALS systems 

during CSG production. One key advantage of the developed approach is the ability to analyze 

time-series data from multiple CSG wells in near real-time. In addition, the analytics 

application developed in this work allows engineers to see real-time results from live wells, 

providing an automated system to assess any abnormal ALS system behavior and investigate 

further factors to foresee any impending failure. 

Moreover, the analysis tools discussed in this research have the potential to provide 

engineers with additional capabilities to conduct detailed investigations of different 

performance parameters. For example, the Events Analysis Tool can help engineers identify 

the impact of certain events on overall pump life. Furthermore, the events and sequences 

library developed during the data annotation stage proved critical for real-time analysis, 

providing engineers with clear insights into why changes in behavior occurred during CSG 

operations. 

Chapters 7 and 8 showcase the practical application of the research work by two CSG 

operators who gained valuable insights into their ALS operations. With the help of real-time 

alerts, these operators can now manage a large number of wells with ease by identifying 

exceptions that require immediate attention. Additionally, the analytics application 

developed as part of this research work has the potential to evolve into a fully autonomous 

control system, where parameters such as pump speed can be adjusted without human 

intervention. 
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9.2. Summary of Findings  
The culmination of this research reveals remarkable findings, contributing to the 

advancement of ALS performance analysis in CSG production. The following key outcomes 

underscore the significance of the developed methodology: 

a. Innovative Application of SAX 

The study innovatively applies SAX to transform complex multivariate time-series data into 

visual performance heatmaps. This novel approach serves to streamline the labeling process 

for petroleum and surveillance engineers, providing a comprehensive and intuitive 

representation of ALS dynamics. 

b. Efficiency and Accuracy Through Labeling 

The assignment of labels, encompassing events and sequences, to time-series images 

emerges as a pivotal enhancement. This labeling strategy significantly augments the efficiency 

and accuracy in detecting abnormal ALS performance. The structured labeling schema 

facilitates swift and effective decision-making processes. 

c. Confidence in Result Accuracy 

Petroleum and surveillance engineers derive heightened confidence in the accuracy of 

obtained results through the systematic labeling process. This meticulous organization of 

pertinent data ensures a foundation for informed decision-making, fostering a robust 

analytical framework. 

d. Analytics Platform for Efficient Well Management 

The research presents a user-friendly analytics platform that demonstrates the effectiveness 

of streaming analytics. This platform empowers CSG operators to adeptly manage a 

substantial number of wells. By leveraging real-time data, the platform contributes to the 

efficient monitoring and optimization of ALS performance across diverse operational 

scenarios. 

e. Collaborative Approach for Early Detection 

The collaborative approach advocated in this study empowers engineers to create events and 

sequences. This collaborative effort is instrumental in the early detection of abnormal ALS 

performance, allowing for proactive corrective actions and the prevention of downtime. 
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f. Real-time ALS Performance Analysis Framework 

The developed real-time ALS performance analysis framework advocates a manage-by-

exception approach. This strategic framework streamlines ALS management practices within 

the CSG industry. By focusing attention on wells requiring intervention, the framework 

optimizes operational efficiency and minimizes production losses due to mechanical failures. 

9.3. Summary of Results 

a. Real-time identification of ALS-related issues 

Starting in 2021, ALSAA was implemented with two (2) CSG operators who collectively 

operated close to a thousand wells, and the live alerts enabled these operators to monitor 

these large number of CSG wells by exception. The analytics tool proved to be efficient in 

detecting issues with various ALS systems, significantly reducing the time needed to identify 

and address problems. The tool provided engineers with real-time alerts and valuable insights 

into specific performance behaviors, enabling them to quickly and accurately address any 

issues that arose. This mitigated various unnecessary shutdowns, and possibly prevented ALS 

failures due to undetected abnormal behavior. 

b.  Actionable Alerts 

Operators have identified nine (9) actionable alerts for PCPs and eight (8) actionable alerts 

for ESPs/ESPCPs. These actionable alerts have enabled the operators to carry out necessary 

interventions and performance analysis to improve overall production from CSG wells. 

Furthermore, the data annotation tool provided as part of ALSAA, provides operators with 

the flexibility to modify and add alerts to meet their specific operational needs. 

c. Labelled Time-series Data Repository 

As the time-series data was automatically labelled based on the SAX-based heatmap clusters, 

this provided operators with a host of advantages, including efficient data retrieval and the 

development of additional analytics applications. In Chapter 8, it is demonstrated how 

labelled time-series data facilitated the development of five (5) insightful applications. These 

applications provided operators with valuable insights into PCP end-of-life analysis, tracking 

and identification of unique labels, and deep-dive analysis tools to understand the patterns 

of labels, sequences, and events. This immensely improved task efficiency, facilitating root-

cause analysis for certain PCP performance issues. 
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d. Improved ALS workover management 

The end-of-life heatmap analysis tool presented in Chapter 8 assists operators with planning 

pump changeover activities well in advance versus waiting for pumps to fail. This insight helps 

companies to streamline workover activities, and significantly minimize production 

downtime. Furthermore, the tool enables operators to efficiently manage pump inventory 

and assist with supply chain related decisions. By improving ALS workover management, 

companies reduce operational costs and maintain undisrupted gas production levels, leading 

to improved profits for CSG operators. 

9.4. Recommendations 
While the time-series analytics method was developed using data from CSG-operated wells, 

a similar approach can be applied to other rotating equipment operated in the Oil and Gas 

industry and other industrial applications. This research paves the way for transformative 

advancements in real-time monitoring and predictive maintenance across multiple sectors, 

potentially enhancing operational efficiency and reducing downtime. 

Furthermore, the study highlights the versatility of SAX-based performance heatmap analysis, 

as it can be applied to a wide range of rotating equipment in the Oil and Gas industry and 

other industrial applications where ALS systems are employed. The innovative time-series 

analytics tools and event analysis capabilities presented in this research offer engineers 

valuable insights into performance parameters and the impact of events, making it a valuable 

asset for various industries beyond CSG production. 

The findings showcased in this research not only have implications for the Australian context 

but also hold the potential to foster valuable collaborations with oil and gas operators in 

countries like India and the USA, where CSG operations are prevalent. 

Expanding the scope beyond CSG operations, potential collaborators for advancing the 

domain of this research extend to any operator heavily reliant on ALS for hydrocarbon 

production. The inherent adaptability of the presented methodology not only invites 

collaboration but also signifies its potential for broader refinement, especially in the context 

of global applicability. This adaptability positions the research as a versatile framework that 

can be tailored to address the diverse needs and operational nuances of hydrocarbon 

producers worldwide, thereby fostering collaborative efforts and advancements beyond the 

realm of CSG operations. 
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One notable avenue for further improvement is the prospect of leveraging labelled datasets 

to pave the way for advanced time-series-based search engines. Such engines would 

revolutionize data retrieval processes by allowing users to access specific information through 

intuitive search prompts, significantly enhancing the efficiency of data retrieval and analysis. 

This development could serve as a technological breakthrough, providing a versatile tool that 

transcends to any time-series based application. 

A particularly compelling avenue for further exploration in this research would be the 

development of a fully autonomous control system. This system would possess the capability 

to automatically regulate parameters, thereby adjusting the performance of mechanical 

equipment in real-time to optimize production while concurrently extending equipment run 

life. The foundation for such an autonomous control system could be established by 

leveraging insights gained from engineers' responses to alerts generated by the current 

analytics tool. By learning from and emulating the decision-making processes of engineers in 

response to specific alerts, this autonomous system could offer a transformative approach to 

enhancing operational efficiency and prolonging the life of mechanical equipment in dynamic 

environments. 
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APPENDIX 
 

Letter from CSG operator acknowledging the use of Artificial Lift Analytics Application 

 




