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Abstract

Artificial Lift Systems (ALS) play a crucial role in producing natural gas from Coal Seam Gas
(CSG) wells in Australia. These systems are employed in over five thousand wells located in
the Bowen and Surat Basins of Queensland. Operators face significant challenges in managing
and maintaining ALS-supported production due to regular failures caused by factors like coal
fines. Failure of ALS can have a detrimental impact on meeting both local and international
gas export commitments; hence, effective management and maintenance of ALS-supported

production are paramount.

The thesis highlights the importance of utilizing real-time data and time series analytics to
evaluate ALS performance. Real-time data can help manage CSG wells with artificial lift
proactively and with greater insight. Petroleum and well surveillance engineers' expertise is

combined to enhance the analysis of time series data.

The research presents an innovative approach that involves transforming time series data into
images through Symbolic Aggregate Approximation (SAX). SAX serves as a feature extraction
technique that converts time series data into a symbolic representation, which is then
translated into performance heatmap images. Petroleum and well surveillance engineers
label these SAX-generated performance heatmap images with expert precision. By
incorporating domain-specific insights and utilizing novel time series analytics techniques,
operators can detect abnormal ALS behavior, proactively address performance issues, and

improve overall production efficiency.

This research enabled the creation of a tailor-made ALS analytics application that helps
monitor an extensive network of CSG wells, detect abnormal ALS behavior early, and provide
insights for proactively managing performance issues, thereby imparting a significant

economic impact on CSG operations in Australia.
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1. Contextual Statement

1.1. Research Rationale and Background
This thesis is motivated by the confluence of two critical challenges encountered in the

domain of ALS within CSG wells. First, the sheer volume of ALS-equipped wells, totalling
approximately eight thousand five-hundred (Figure 1 and Figure 2), presents a formidable
challenge in terms of real-time monitoring and performance analysis. Second, there is a
notable absence of research dedicated to effectively utilizing time series data to enhance ALS
performance, further compounded by issues related to data labelling. These challenges
collectively underscore the need for an innovative approach that can bridge these gaps and

pave the way for improved ALS management in CSG wells.

Production Wells

@ Exploration Wells

Figure 1 — An overview of Queensland's CSG wells (Production and Exploration). The map depicts the high
density of wells across the Surat and Bowen basins.

To address the aforementioned challenges, this research adopts a novel approach. The
primary focus is transforming time series data into images using Symbolic Aggregate
Approximation (SAX) as a feature extraction technique. This innovative method streamlines
the process of generating interpretable images, enabling easy labelling by experienced
petroleum and well surveillance engineers. Their expertise in labelling these images unlocks
valuable insights into the underlying patterns, anomalies, and trends inherent in the time
series data. Moreover, the participation of petroleum and well surveillance engineers in
labelling the images provides valuable insights and helps handle unlabelled data, making the

analytical approach more robust. The analysis of the labelled images not only improves the
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understanding of ALS performance but also helps to optimize it. This optimization leads to

better failure mitigation, which ultimately facilitates improved gas production efficiency.

Cumulative Gas Production (MM3) vs. Wells on Production
From 2015 to 2021

Cumulative Gas Production (MM3)

20,000

15,000

10,000

5,000

2015 2016 2017 2018 2019 2020 2021
Year

®5um of GAS_CUM_VOLUME (MM3) @5Sum of WELLS_ON_PROD

Wells on Production

Figure 2 — Number of CSG wells and Cumulative Gas Production from 2015-2021 in Queensland.

This SAX based time-series image conversion represents a pivotal advancement, extracting
actionable insights from time series data while harnessing the knowledge of domain experts.
The ultimate objective is to elevate the overall performance and management of ALS in the
unique context of CSG wells, addressing the challenges posed by a multitude of operational

ALS wells.

1.2. Research Objectives
The research objective is to establish a comprehensive time series analytics methodology

designed to assess the performance of ALS in near real-time and support well-informed
decision-making in CSG production. The methodology detailed in this research adopts an
innovative approach, simplifying the interpretation of complex multivariate time series data
by converting it into SAX-derived images. This transformation into images streamlines the
process for petroleum and well surveillance engineers, allowing them to easily label events of
interest, which can serve as early indicators of actionable events, providing operators with
opportunities to implement corrective measures that can effectively mitigate failures or

enhance the performance of the Artificial Lift Systems.
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The research objectives are outlined as follows:

1. Develop an efficient and near real-time methodology utilizing the SAX
technique to convert raw time series data from ALS into easily interpretable
images.

2. Thoroughly test and validate the proposed time series conversion method
using historical ALS data to ensure its accuracy and reliability in capturing
relevant features and patterns.

3. Create a user-friendly software tool, with an intuitive interface to empower
production and well-surveillance engineers to annotate SAX-derived images,
allowing them to label and offer valuable insights into the behavior and
performance of ALS.

4. Validate the effectiveness of the annotated SAX-derived images through
comprehensive testing on historical datasets, ensuring the accuracy and
consistency of the labelling process.

5. Develop a comprehensive ALS analytics platform that integrates the converted
time series data and annotated images, enabling near real-time monitoring of
well operations. The platform should identify events of interest and provide
actionable insights to optimize ALS performance and enhance operational

efficiency.

The research objectives described above aim to showcase the significance of SAX derived
heatmap images in enhancing time series analytics of coal seam gas (CSG) wells. The primary
goal of this study is to illustrate how implementing a novel approach to time series analysis
can be beneficial in real-world situations for monitoring and managing a large number of CSG
wells. This research will provide a comprehensive understanding of the importance of SAX-
derived heatmap images in analyzing CSG wells and how it can help in managing the wells
more efficiently. Additionally, the study will demonstrate the practical application of the
innovative approach to time series analysis and its potential to improve the performance of

CSG wells in the long run.
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1.3. Thesis Structure
This is a PhD thesis by publication.

The thesis consists of three (3) principal sections: literature review (Chapter 2), development
of novel time series analytics method (Chapter 3, 4 & 5) and real-time analytics tool
development (Chapter 6, 7 & 8). Chapters 3 through 8 comprise published papers that address

the research gap.

The literature review section provides a comprehensive overview of how ALS is currently used
in CSG wells and how real-time data is collected. Various machine learning methods currently
used to detect anomalies in time series data are also delved into. The explanation includes
how these methods work, their strengths and limitations. Additionally, significant gaps
identified in these methods by recent studies are highlighted, and potential solutions are
discussed to address these gaps. Finally, SAX, a mathematical technique to convert time series
data into performance heatmap images, is delved into. The explanation includes how this
technique works, its advantages over other machine learning methods, and how it helps to

identify anomalies in real-time data more accurately and efficiently.

In the second section of the thesis, which comprises Chapters 3, 4, and 5, the methods
employed to develop a novel approach to time series performance analytics are
comprehensively discussed. The discussion begins by detailing the initial exploratory data
analysis work, which involved examining the data to identify the key trends and patterns. The
SAX technique used to extract useful features from the data, enabling the generation of time
series performance heatmaps, is then described. This section also covers the work with PCPs
and the leveraging of machine learning methods to cluster the time series heatmap images
created through the novel approach. The discussion provides a detailed account of the
clustering process used, including the algorithms employed, the parameters set, and the

results obtained.

The third section of this thesis, spanning Chapters 6, 7, and 8, presents a comprehensive
analysis of the development process for a time series analytics tool. This tool comprises
various sub-components designed to cater to the specific needs of experts, particularly
Petroleum and Well Surveillance Engineers. It explains how the tool effectively incorporates

feedback from these professionals, utilizing their insights for event and sequence labelling.
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These labelled events and sequences subsequently serve as the basis for generating real-time

alerts, facilitating management-by-exception of multiple CSG wells.

The third section also delves into the discussion of two additional artificial lift methods. Firstly,
the functioning of ESPCPs is expounded upon, a technology employed for fluid and gas
extraction from wells, while underscoring their advantages compared to other artificial lift
methods. Secondly, ESPs, another artificial lift method used in CSG production, are explored
in detail. Furthermore, a comprehensive overview is provided of how additional multivariate
parameters from these ALS are harnessed to create time series performance heatmap
images. These images are pivotal in delivering precise results for real-time performance

analysis.

1.4. Chapter Overview
The thesis is built upon six (6) papers published in highly ranked peer-reviewed journals and

distinguished conferences, as indicated in Table 1. In its entirety, the thesis consists of nine

(9) chapters, and the details of each are as follows:

Chapter 1: Introduces the research rationale, background, and objectives, discusses the
structure of the dissertation, and outlines the relationship and contribution of the papers to

the thesis.

Chapter 2: Presents a detailed literature review surrounding the works of this thesis, including
discussions of the theoretical background, application and the state of anomaly detection

methods in time series analytics.

Chapter 3: This section delves into the initial exploratory data analytics conducted on

historical time series data collected from 42 wells.

Chapter 4 marks the initial introduction of the innovative approach, wherein time series data

is transformed into performance heatmap images.

Chapter 5: Presents how clustering ALS time series data can help with labelling anomalous

events to understand Progressive Cavity Pump performance in real-time.

Chapter 6: This chapter provides a comprehensive examination of how Machine Learning
methods can be applied to performance heatmap images and how the outcomes from the

ML models can be utilized for monitoring the performance of PCPs.
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Chapter 7: Presents a method of clustering time series data based on performance heatmap

images and showcases a data annotation tool to identify abnormal PCP performance.

Chapter 8: This section introduces the full Artificial Lift Analysis Tool and demonstrates its
utilization by experts in the CSG industry to acquire valuable insights and mitigate ALS

performance issues.

Chapter 9: This chapter summarizes the research conducted and offers recommendations for

future work.

Table 1: Published Papers Status

Chapter Paper Title Status

Chapter 3 | Application of Exploratory Data Analytics EDA in Coal Seam Gas Wells with Progressive | Published

Cavity Pumps PCPs

Chapter 4 | Converting Time Series Data into Images: An Innovative Approach to Detect Abnormal | Published

Behavior of Progressive Cavity Pumps Deployed in Coal Seam Gas Wells

Chapter 5 | Machine Learning for Progressive Cavity Pump Performance Analysis: A Coal Seam Gas | Published

Case Study

Chapter 6 | Application of machine learning methods to assess progressive cavity pumps (PCPs) | Published

performance in coal seam gas (CSG) wells

Chapter 7 | Application of streaming analytics for Artificial Lift systems: a human-in-the-loop | Published

approach for analyzing clustered time-series data from progressive cavity pumps

Chapter 8 | Performance analysis of artificial lift systems deployed in natural gas wells: A time- | Published

series analytics approach

1.5. Addressing Research Gap through Published Papers
The published papers shown in Table 1 represent an extensive exploration of real-time

performance assessment in the realm of ALS within the specific context of CSG operations.
The combination of these six papers addresses the previously mentioned gap in this thesis,
specifically the ability to monitor large numbers of wells through exception and the
application of time-series analytics for ALS deployed in CSG wells. Chapter 3 lays the
groundwork with an in-depth exploration of historical time series data from 42 wells, using
exploratory data analytics. Chapter 4 introduces the novel approach that revolves around the
innovative transformation of traditional time series data into performance heatmap images.
These visual representations open new avenues for understanding and evaluating ALS
operations. Progressing to Chapter 5, the focus shifts towards the crucial role of ML,
specifically unsupervised clustering, in handling ALS time series data. The application of
clustering techniques facilitates labelling anomalous events, contributing to a more

comprehensive understanding of PCP performance dynamics.

Page 15




Chapter 6 demonstrates the practical application of ML methods to utilize performance
heatmap images for time series analytics using data from 359 wells. This chapter introduces
three innovative concepts that significantly enhance the research methodology. First, it
presents the expanding window technique for time series data, allowing for the
comprehensive assessment of PCP performance from the inception of operations. This
approach offers valuable insights into the entire lifecycle of PCPs. Second, autoencoders are
employed to reduce the dimensionality of performance heatmap images effectively. This is a
pivotal step aimed at alleviating the computational burden that stems from processing vast
guantities of data gathered from 359 wells, without compromising the quality and accuracy
of the analysis. Finally, Hierarchical Density-Based Spatial Clustering (HDBSCAN) is introduced,
offering superior clustering of PCP performance. One advantage of HDBSCAN is that it
eliminates the need to predefine the number of clusters, making it ideal for situations where
the number of clusters is not known in advance. Also, in Chapter 6, the foundation for real-

time PCP performance monitoring through visual analytics tools is established.

Chapter 7 addresses two essential tasks of this research. Firstly, it meticulously elaborates on
the machine learning methods introduced in Chapter 6, providing a step-by-step guide on the
clustering and labelling procedures. It demonstrates the practical implementation of these
techniques and their effectiveness. Secondly, Chapter 7 introduces a performance analysis
tool. This tool is utilized by petroleum and surveillance engineers to label the clustered
performance heatmaps effectively. The chapter underscores how the grouping of
performance heatmap clusters enables surveillance and production engineers to discern
abnormal patterns in PCP performance. It provides a holistic view of the complete streaming
analytics approach, showcasing how this methodology equips engineers with the necessary

tools to monitor wells by exception and maintain optimal ALS performance.

To conclude the research work, Chapter 8 unveils the full Artificial Lift System Analytics
Application (ALSAA) — a culmination of the previous chapters' work. The analytics platform
is meticulously showcased in extensive detail within practical scenarios in the CSG industry.
The research provides real-world results and insights obtained from two operators in
Queensland. These practical demonstrations underline the platform's applicability and
effectiveness in monitoring and optimizing ALS in the field. This chapter also showcases how

the SAX performance heatmap images can be applied to ESPCPs and ESPs. It serves as a
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Paper 3 (Chapter 5)

practical solution for experts and engineers to harness the insights gained from performance

heatmap images and mitigate ALS performance issues in real-time. This paper serves as a

culmination of the research presented in the preceding chapters and illustrates how the

identified research gap is effectively addressed through real-world adaptation in the CSG

industry.

Figure 3 provides a flow chart representation of the published papers and how the outcomes

of each paper contribute to addressing research gaps.

Conference Papers

Application of Exploratory Data Analytics EDA in Coal Seam Gas
Wells with Progressive Cavity Pumps PCPs

» Use EDA to extract relevant engineering features from SCADA data
» Investigate co-relation between muilti variate time-series data

» Experiment with SAX conversion on multi-variate data

» |dentify pre-processing steps for SAX based heatmap conversion

EDA sets the foundation for using extracted features from time series data to
conduct further statistical and machine learning evaluation of PCP performance.
SAX conversion methodology is also discussed briefly in this paper.

Converting Time Series Data into An i pp h to Detect Abnormal
Behavior of Progressive Cavity Pumps Deployed in Coal Seam Gas Wells

» Discuss steps to convert time-series data to SAX symbols
» Identify the process to convert SAX symbols into color-coded heatmaps
» Introduce kMeans clustering to group heatmaps on a set of 42 CSG wells

This papers describes the methodology of converting time-series data into SAX
based performance heatmaps that are used for real-time ALS analysis. This paper
lays the foundation of using clustered SAX images for PCP performance analysis.

Machine Learning for Progressive Cavity Pump Performance
Analysis: A Coal Seam Gas Case Study

» Use unsupervised clustering for SAX based PCP perfromance analysis
» Describe various features of the SAX based performance heatmaps
» Create an unsupervised ML process for clustering of stremaing data

The first ML process flow is described in this paper, that forms the basis of real-time
clustering analysis. The process forms the basis of advanced ML methods that can
be used with streaming data to monitor thousands of wells on an exception basis.

Paper 5 (Chapter 7) Paper 4 (Chapter 6)

Paper 6 (Chapter 8)

Journal Papers

Application of machine learning methods to assess progressive
cavity pumps (PCPs) performance in coal seam gas (CSG) wells

» Introduction to the Expanding Window method for SAX conversion

» Describe Convolutional Auto Encoder for SAX image dimension reduction
*» Improved clustering method using HDBSCAN

» Real-time data visualisation tool for performance analysis

Paper detailing the use of the Expanding Window method and CAE for improved
heatmap clustering. This paper also introduces the initial visualisation tool for
monitoring PCP performance based on heatmap clusters.

Application of machine learning methods to assess progressive
cavity pumps (PCPs) performance in coal seam gas (CSG) wells

» In-depth coverage of the ML experiments coducted for the thesis

» Introduction to an improved data visualisation tool

» Describe the Cluster Analysis Tool that assits engineers with data labelling
*» Detection of various abnormal performane patterns in CSG wells

Demonstrated that the human-in-the-loop cluster labelling method and the streaming
analytics tools developed as part of this research provide a reliable and scalable
approach to determining and evaluating the performance of PCP-operated wells.

Performance analysis of artificial lift systems deployed in natural gas
wells: A time-series analytics approach

» Integration of all the all the research work done in previous papers

» Applied the SAX image methodolgy to ESP and ESPCP wells

» Development of the enhanced ALS analytics and data labelling tool

» Showcase results from 2 CSG operators on managing multiple CSG wells

Showcased how the ALS tool autonomously detects various performance states and
provides engineers with real-time notifications that aid in proactively managing ALS
across multiple CSG assets.

Figure 3 — Flow Chart showing the work done for each published paper and how the findings from each
paper help in addressing the research gap.

2. Literature Review

2.1. Artificial Lift Systems Used in CSG Wells

During this research, a comprehensive analysis was conducted on the operational

mechanisms of three different types of artificial lift systems in CSG wells. The main aim was

to develop a deeper understanding of each lift type and explore the potential for operators

to optimize pump performance using time series analytics.
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a. Progressive Cavity Pumps
PCPs have gained prominence as a reliable artificial lift method in CSG operations [1]. The

presence of solids (coal fines) in CSG makes PCPs ideal for dewatering natural gas wells. PCPs

utilize a helical rotor-stator configuration, creating a continuous cavity that enables the

movement of fluids containing solids. The gentle conveying action and low shear rate within

the pump mechanism contribute to its impressive solid handling capability. The stator's

elastomeric material and the rotor's precision design further enhance the pump's ability to

manage abrasive materials without excessive wear. At present, the majority of ALS used in

CSG wells is composed of PCPs. Figure 4 shows the various components of a PCP and how

they are deployed in CSG wells.
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Figure 4 — (Left) Natural Gas Production from Coal Seam Gas (CSG) wells. (Centre) Main Components of a
PCP system. (Right) Cut-out view of PCP Rotor and Stator.

b. Electric Submersible Progressive Cavity Pumps

Although PCPs are highly adept at managing solid production, the accumulation of solids from

the interburden can become a significant concern. This problem can potentially lead to PCP

failure, significantly impeding the operational reliability of the system. Moreover, the

formidable torque exerted by the solids-laden fluid exacerbates the vulnerability of rods to

mechanical stress, elevating the risk of rod failure. As a result, addressing the interplay
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between interburden-induced solid buildup, torque imposition, and rod integrity is crucial to

sustaining the operational longevity of CSG wells.

Furthermore, natural gas producers operating many wells (typically more than five hundred)
have recently looked at lateral well completions. Lateral wells minimize surface footprint by
consolidating multiple wells in close proximity. This strategy minimizes land disturbance and
complies with regulatory directives to preserve the environment. Moreover, the lateral wells
enhance gas recovery by accessing a broader reservoir area, thereby offering improved

production rates.

Recently, natural gas producers with a high number of CSG wells have begun utilizing ESPCPs
to avoid rod failures and make use of lateral wells [2-5]. One major advantage of these pumps
is that they do not require rods to transfer motor energy to the rotor. Figure 5 shows the

various components of an ESPCP.
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Figure 5 — Components of an Electric Submersible Progressive Cavity Pump (ESPCP)
c. Electric Submersible Pumps
Electric Submersible Pumps (ESPs) are centrifugal pumps used for artificial lift in CSG
operations due to their ability to deliver high flow rates. They are chosen as an alternative to
ESPCPs where natural gas operators require faster water drawdown rates. However, ESPs do

have limitations versus ESPs where they are not designed to manage solid contents in
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produced fluids. Hence, ESPs are only used in lateral configurations, where the well-

completion design allows for minimal solid encroachment into the produced water. The

components of an ESP are shown in Figure 6.
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Figure 6 — Components of an Electric Submersible Pump (ESP)

2.2. Automation and Surveillance of Artificial Lift Systems

Supervisory Control and Data Acquisition (SCADA) systems are predominantly used to

automate and monitor ALS deployed for oil and gas production [6]. Remote Telemetry Units

(RTUs) are typically installed on wellheads, connecting to various sensors and electrical

systems. The RTUs are critical to the SCADA system as they collect data from multiple sensors

and transmit it to a central control through available communication media. Moreover,

operators can also create and deploy logic on the RTUs to autonomously control ALS.

In the late 20th century, SCADA systems were introduced into the oil and gas industry to

monitor production systems in real time [7]. However, it was not until the early 21st century

that they became widely used. This was largely due to the implementation of digital oilfield
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programs by both international and national oil companies [8]. These programs helped to

monitor and improve production processes, leading to increased efficiency and profitability.

Furthermore, SCADA systems were predominantly utilized for the monitoring of ALS in
maturing onshore oilfields, where operators used real-time data to optimize pump speeds for
improved hydrocarbon production rates [9]. Figure 7 and Figure 8 show the CSG well layout
and SCADA data flow, respectively. This research investigated the process of gathering data
from SCADA systemes, its storage in corporate historians, and its subsequent analysis for both

business and engineering purposes.

Progressive Cavity Pump Radio Antenna
for SCADA Data Transmission

RTU Cabinet

Figure 7 - CSGWeII Layout depicting the PCP ad RTU and Rado ntenna for data trasmission.
A thorough analysis was conducted on how connectivity to SCADA (Supervisory Control and
Data Acquisition) systems affects data frequency, a critical factor in time series analytics. This
research explored the complexities of varying data frequencies and their impact on time-

series analytics. It became evident that the effective management of these varying data

frequencies was paramount to the methodology employed.

2.3. Exception-Based Surveillance in Coal Seam Gas Applications
Following a literature review on SCADA systems, an analysis was undertaken to examine how

Coal Seam Gas operators, both domestically and internationally, leveraged real-time data to
enhance ALS surveillance. Typically, SCADA data is utilized to optimize ALS control speed set

points to increase production or prevent unnecessary shutdowns [10-13].

Furthermore, ALS surveillance systems are designed to monitor crucial parameters such as
pressure, flow, torque and temperature. Operators are immediately alerted whenever any of

these parameters exceed a certain threshold. This real-time information empowers operators
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to develop exception-based surveillance methods that efficiently monitor artificially lifted
wells. By utilizing these methods, operators can streamline their procedures and ensure that

any potential issues are identified and addressed in a timely manner[14].
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Figure 8 — Data Flow from CSG Wells to Company Head Office

Although exception-based surveillance methods are valuable for CSG operators, they do not
provide early warning signs of abnormal ALS performance. Some of these methods also rely
on downhole sensors, which are prone to failure during lifting operations [15]. Our analysis
of exception-based surveillance revealed that providing context driven alerts for ALS

performance would be more effective in managing ALS in coal seam gas wells.

2.4. Time Series Analytics
Time series analytics is a field of study that focuses on analyzing data that changes over time.

It involves forecasting future trends and identifying any unusual patterns or outliers, which
are known as anomalies. This field covers a broad range of topics, including machine learning
algorithms, statistical modelling techniques, and data visualization methods. Extensive
research is being conducted in this sought-after field by both academic and industrial sectors

to uncover new insights and knowledge from time series data. Time series analysis aims to
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create models and methods that can accurately predict future trends and identify any
anomalies that may arise, enabling businesses and organizations to make more informed
decisions and stay ahead of the curve. Research in forecasting and anomaly detection has
significantly increased with the rise of real-time data monitoring and the Internet of Things
(loT) in the past decade [16, 17]. In the case of ALS, this research focused on detecting
changes in performance parameters and understanding trends in multivariate time series

data; hence, the next step is to discuss notable methods used for anomaly detection.

a. Machine Learning Methods for Time Series Anomaly Detection
As SCADA data is often unlabeled, unsupervised machine learning methods are commonly

used for analyzing time series data. The mutual theme among time series-based machine
learning methods is to detect anomalies through clustering or classification. These methods
help label events of interest that aid in improving asset performance monitoring. Following a
comprehensive analysis of various machine learning techniques, two primary approaches
were identified for time series clustering and anomaly detection: Convolutional Autoencoders
and Long Short-Term Memory Autoencoders. These approaches are prominently featured in

recent publications, and many other methods draw inspiration from these two approaches.

i.  Convolutional Autoencoders (CAE)
Autoencoders, a class of neural networks, have gained prominence in time series anomaly

detection due to their ability to capture complex patterns and representations within data.
They have proven particularly effective in unsupervised settings where labelled anomaly
examples are scarce or unavailable. One key advantage of autoencoders is their ability to
learn a compact and informative representation of the input data, which can be exploited for

anomaly detection purposes. Figure 9 shows a typical AE architecture.

Autoencoders can learn to compress data and then reconstruct it. This is done by mapping
the input data into a lower-dimensional latent space through an encoder network and then
attempting to reconstruct the original data from this compressed representation through a
decoder network. In the context of time series data, an autoencoder works by taking a
sequence of data points as input and then transforming it into a compressed representation
using the encoder network. The decoder network then tries to reconstruct the original

sequence from this compressed representation.
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Figure 9 — A typical Autoencoder Neural Network Architecture

Throughout the training phase, the autoencoder acquires the ability to minimize the

reconstruction error between the initial and reconstructed data. This process incentivizes the

model to capture the most significant features and patterns inherent in the input data. By

doing this, the autoencoder can identify the most important characteristics of the input data,

which can be useful in a variety of applications such as anomaly detection, dimensionality

reduction, and denoising. Figure 10 shows an overview of how time series data is encoded

and decoded to produce a reconstructed time series signal.

Input Time Series Signal Latent Layer

R —— aa—

Encoder
Convolutional Layer
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Figure 10 — Conversion of Time Series Signal to a Latent layer via an Encoder, and conversion to
reconstructed Time Series signal via a Decoder. The difference between the reconstructed and input signal is
used to determine the anomalies in the data.
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Autoencoders are crucial in time series anomaly detection as they efficiently learn a
representation of temporal data and identify deviations from learned patterns [18]. The
autoencoder is trained on a dataset of "normal" time series sequences, capturing the
underlying temporal dependencies and patterns. The encoder compresses the time series
data into a lower-dimensional latent representation during training, while the decoder
attempts to reconstruct the original data from this compressed representation. The primary
objective of the autoencoder is to minimize the reconstruction error, ensuring that it learns

to accurately encode and decode the normal data sequences.

Once the autoencoder is trained and verified, it can be employed for anomaly detection on
streaming time series data. When presented with a new or unseen time series sequence, the
model attempts to reconstruct it. If the sequence follows the learned patterns and is
considered "normal," the reconstruction error is typically low. However, the reconstruction
error tends to be significantly higher when the input sequence contains anomalies or
deviations from the learned patterns. By setting an appropriate threshold for the
reconstruction error, anomalies can be effectively identified. This mechanism allows
autoencoders to excel in detecting various time series anomalies, including point and
contextual anomalies, making them valuable tools in monitoring systems for deviations from
expected temporal behavior [19]. Autoencoders' ability to capture intricate temporal
dependencies, combined with their unsupervised nature, makes them particularly useful in
scenarios where labelled anomaly data is scarce or when the nature of anomalies is not well-

defined in advance.
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ii. Long Short-Term Memory Neural Networks (LSTM) based Auto Encoders
LSTM is a type of recurrent neural network (RNN) specifically designed to capture and model

data sequences. This makes it a great tool for analyzing time series data. Unlike traditional
statistical methods that rely on predefined patterns and assumptions, LSTM networks can
learn complex temporal dependencies from data [20]. This makes them highly adaptable to
diverse and dynamic time series. One of the most significant features of LSTMs is the presence
of memory cells within LSTM units. These memory cells allow LSTMs to capture and store

information over extended time periods, as shown in Figure 11 [21].
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Figure 11 — A typical LSTM Cell with various operation functions.
As a result, LSTMs can learn and represent long-range dependencies in sequential data. This
feature makes them well-suited for tasks that involve complex temporal patterns. In addition,
LSTMs operate sequentially, processing data point by point. This allows them to capture the
intricate temporal dynamics of sequences, making them highly effective in recognizing
patterns and trends. Furthermore, LSTMs are robust in handling irregularly sampled time
series data, missing values, and noisy observations. They can effectively adapt to different
time intervals between data points and imputing missing values. The adaptability of LSTMs,
combined with their ability to automatically extract relevant features from data, makes them
tools for time series forecasting and anomaly detection [22]. Figure 12 shows an overview of
how time series data is encoded and decoded using LSTM cells to produce a reconstructed

time series signal.
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Figure 12 — Conversion of Time Series Signal to a Latent layer via an LSTM Encoder and conversion to
reconstructed Time Series signal via an LSTM Decoder. The difference between the reconstructed and input
signal determines the anomalies.

LSTM autoencoders are a powerful solution for a wide range of data analysis tasks, including
sequence data compression, feature extraction, and anomaly detection [19]. They combine
the strengths of autoencoders and LSTM neural networks, resulting in an efficient data
representation. These models contain an encoder that compresses the input data into a
lower-dimensional latent representation and a decoder that reconstructs the original data
from this representation. However, what sets LSTM autoencoders apart is the inclusion of
LSTM units in the encoder and decoder components. This addition equips the model with the
ability to capture and model intricate temporal dependencies and sequential patterns present
in the data, allowing it to maintain the sequential context while learning an efficient
representation. LSTM autoencoders are particularly effective when dealing with time series
and sequential data, preserving the temporal aspects of the data that standard autoencoders
may overlook. They can capture complex temporal dependencies, making them highly adept
at preserving the sequential information in data, which is essential for tasks like sequence
reconstruction, forecasting, and anomaly detection. They are also capable of feature
extraction and dimensionality reduction while maintaining the temporal context, offering a
more comprehensive representation of the data.
b. Limitations in Machine Learning Methods for Time Series Data

Despite the abundance of machine learning methods available for analyzing time series data,
studies conducted in the past few years have revealed that ML-based methods for
multivariate time series data have noteworthy limitations [17, 23-28]. These limitations
compromise the accuracy and practical value of insights derived from such methodologies.
When applying machine learning techniques to the analysis of time series data, it is crucial to
carefully acknowledge and factor in the limitations. This holds true even for well-published

methods that use AE and LSTM autoencoder approaches. Several fundamental reasons
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account for the limitations in these methods, and through an extensive literature review, the
most prominent gaps have been identified, as outlined below. There are several underlying
reasons for the limitations of these methods, and based on our extensive literature review,
we were able to identify the most notable gaps, which are presented below.
i.  Handling Missing Data

The presence of missing data can significantly impact machine learning-based time series
analysis, introducing challenges that must be carefully addressed. In time series data, missing
values often occur due to various reasons, such as sensor malfunctions, data transmission
issues, or irregular sampling intervals. This is true for SCADA systems that collect data from
artificial lift pumps, as these gaps can disrupt the continuity of the time series, potentially

leading to inaccurate anomaly detection and unreliable results.

Handling missing data in time series analysis is essential because it can affect the model's
ability to capture temporal dependencies, make accurate predictions, or detect anomalies.
Various techniques, including imputation methods, handling strategies, and deep learning
models, are employed to mitigate the effects of missing data [29]. However, these methods

make anomaly detection from ML methods even more unreliable [30].

One of the primary drawbacks of data imputation is the potential introduction of bias and
distortion into the dataset. Imputation methods, whether they involve simple techniques like
mean imputation or more advanced methods such as interpolation, introduce values that
may not accurately represent the underlying reality of the time series. This can lead to
misleading interpretations and incorrect conclusions, particularly when the missing data
points are not missing at random, and their absence carries meaningful information or
patterns. Moreover, imputing missing data can artificially reduce the variability in the time
series, which can affect statistical analyses and lead to inaccurate forecasts or anomaly
detection results. Additionally, imputation assumes that the relationships between variables
remain constant over time, which may not hold in dynamic and evolving systems, further
compromising the integrity of the analysis. Therefore, while imputation is a practical
approach to handle missing data, its disadvantages necessitate careful consideration and
validation of the imputed values' impact on the overall analysis and decision-making

processes in time series analytics.
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ii. Managing Multivariate Data
Multivariate data, characterized by multiple variables or features measured over time, can

have a profound impact on the performance and applicability of AEs and LSTMs. When
applied to multivariate time series data, these models need to grapple with the increased
complexity and dimensionality, which can present multiple challenges with neural network

architecture design.

When dealing with AEs, managing multivariate data requires encoding and decoding multiple
variables simultaneously. This increases computational demands, especially for high-
dimensional data. Additionally, processing multiple variables in parallel can limit the capture
of interdependencies and correlations among variables. Therefore, it is essential to carefully
engineer and preprocess features to ensure that the autoencoder can effectively learn
relevant patterns within the multivariate time series. Furthermore, the choice of loss function

and evaluation metrics should align with the multivariate nature of the data.

LSTM networks, when applied to multivariate time series, can simultaneously model the
temporal dependencies across multiple variables. This ability makes them well-suited for
capturing complex interactions and patterns within the data. However, increased
dimensionality can lead to model training and interpretation challenges. Proper architecture
design and hyperparameter tuning become critical to ensure that the LSTM network
effectively captures the relevant temporal dependencies. Additionally, handling missing data,
ensuring proper normalization, and dealing with varying scales among different variables are

essential preprocessing steps.

iii. Capturing Domain Context
AEs and LSTM autoencoders can struggle to capture domain-specific context, which is often

crucial for accurate modelling in specific applications. LSTMs, although skilled at capturing
temporal dependencies in sequential data, may not inherently understand the semantics or
domain-specific meaning of the data they analyze. They rely solely on patterns and
relationships learned from the data, potentially missing out on domain-specific nuances that
a human expert might recognize. This can lead to suboptimal performance when dealing with
data where contextual understanding is essential, such as medical diagnoses or natural

language understanding.
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Similarly, AEs, while proficient at feature extraction and data reconstruction, do not
inherently possess domain knowledge. They learn to compress and reconstruct data based
on statistical patterns without understanding the underlying meaning or context. Therefore,
integrating domain-specific knowledge and context into these models often requires
additional techniques and human expertise to ensure that the insights derived from these
models are meaningful and relevant in the specific domain of interest.
iv. Sampling Window Size

Selecting an appropriate window size is a crucial yet challenging aspect of time series analysis
when using machine learning models like AEs and LSTMs. The window size determines the
temporal context that the model can consider when making predictions or detecting patterns
in the data. However, choosing the right window size is far from a one-size-fits-all task and

involves several challenges.

One of the primary challenges is balancing the trade-off between capturing local and global
temporal patterns. A smaller window size allows the model to focus on fine-grained, short-
term patterns but may overlook longer-term trends or seasonality. Conversely, a larger
window size can capture broader trends but may blur or dilute the impact of shorter-term
fluctuations. Deciding on the appropriate window size often requires a deep understanding
of the specific domain and the underlying temporal dynamics. Furthermore, the choice of
window size can impact the model's computational requirements and memory consumption,
as larger windows lead to more extensive feature vectors and potentially longer training
times. Therefore, users must carefully consider the intended use case and objectives of the
analysis to strike the right balance and select an optimal window size for their machine

learning models in time series analysis.

Another challenge in choosing the right window size is dealing with irregular or missing data.
Time series data often exhibit irregular sampling intervals or missing values, which can
complicate the selection of a suitable window size. Irregular data may lead to misalignment
between windows and data points, requiring interpolation or data preprocessing to address
gaps. Additionally, selecting an inappropriate window size in the presence of missing data can
result in either information loss or excessive noise in the analysis. Thus, practitioners must

carefully handle data irregularities and consider how the window size interacts with the data's
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temporal characteristics to ensure meaningful and accurate results in time series analysis

using machine learning models.

V. Reconstruction Error Threshold
The reconstruction error threshold presents a challenge in time series analysis for AEs and

LSTM autoencoders. This threshold determines when the model flags an observation as an
anomaly based on the difference between the original data and its reconstruction. However,

setting an appropriate threshold can be highly challenging due to several factors.

The choice of threshold in anomaly detection can be subjective and context-dependent. There
is a trade-off between sensitivity (the ability to detect true anomalies) and specificity (the
ability to avoid false alarms). If the threshold is set too low, it may result in many false
positives, while some anomalies may be missed if it is too high. The optimal threshold can
vary for different datasets and use cases, or even over time as the data distribution changes.
As a result, practitioners must carefully consider these trade-offs and domain-specific

requirements when establishing the reconstruction error threshold.

It is worth noting that the distribution of reconstruction errors can be quite complex and
multi-modal. As a result, not all anomalies will necessarily stand out as clear outliers in the
reconstruction error distribution. Some anomalies may have subtle deviations that are
difficult to distinguish from normal variations. This complexity can make it challenging to
define a single, fixed threshold that effectively captures all types of anomalies. It is often
necessary to use advanced techniques, such as adaptive or percentile-based thresholds, to
handle these complexities. Additionally, the presence of noise or outliers in the training data
can affect the reconstruction error distribution, making the threshold selection process even
more complicated. Thus, the challenge lies in developing thresholding strategies that can
account for the diverse nature of anomalies and their corresponding reconstruction errors in

time series data analysis using autoencoders and LSTM autoencoders.

vi. Flawed Anomaly Detection Benchmarks
Over the past decade, there has been a significant increase in work related to time series

analysis. Many studies [17, 28, 31-35] have been conducted to evaluate the effectiveness of

machine learning-based time series anomaly detection methods.
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In a paper covering a comprehensive evaluation of time series anomaly detection, Schmidl et
al. [35] observed that, despite the increased computational resources required during
training, deep learning methodologies are currently not competitive in the field of time series
anomaly detection; this includes AEs and LSTM AEs. The study also confirms the principle that
simpler techniques can yield performance results almost on par with more complex
approaches. Furthermore, no single machine learning algorithm comprehensively
outperforms the others. Various algorithms exhibit specific strengths, but the overall findings

call for further exploration in three critical domains.

Schmidl et al. highlight three (3) areas for further research. Firstly, the importance of
flexibility, as no single algorithm or algorithmic family universally dominates all anomaly
detection scenarios, urging the pursuit of hybrid systems to enhance anomaly detection in
diverse time series settings. Second, it highlights the necessity for more research on the
reliability and scalability of these algorithms, given that only a few were able to process time
series data error-free within common resource constraints. Lastly, the research underscores
the challenge of parameter sensitivity in many anomaly detection algorithms and advocates
for the development of auto-configuring and self-tuning algorithms to simplify parameter
selection, which is particularly vital in practical use cases lacking training data for parameter

optimization.

Another notable paper by Wu and Keogh [32] highlights four significant flaws in publicly
available time series datasets that are utilized to train anomaly detection models based on
machine learning. These flaws include triviality, unrealistic anomaly density, mislabeled
ground truth, and run-to-failure bias. By identifying these issues, the paper emphasizes the
need for reliable and accurate time series datasets to train robust machine learning models
for anomaly detection.
c. Matrix Profile for Time Series Anomaly Detection — A non-ML based approach

During the course of this research, Matrix Profile [36] based anomaly detection garnered
prevalent adoption in the time series analytics domain. The Matrix Profile is a way to
represent the similarity between subsequences in time series data. It is very efficient in
capturing complex patterns and irregularities, which makes it an excellent tool for detecting
anomalies in various applications. It can be used for monitoring industrial processes or

identifying unusual behaviors in sensor data.
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Matrix profile-based anomaly detection has a significant advantage in providing a detailed
understanding of time series data. This technique enables the identification of both recurring
patterns (motifs) and distinct patterns (discords), which helps to improve the interpretability
of anomalies in different datasets. This interpretability is crucial in practical applications
where specific patterns can reveal valuable insights, ensuring more accurate and informed

decision-making.

However, matrix profile-based methods are not without limitations. Like the shortcoming of
ML based anomaly detection methods, matrix profile-based methods are also influenced by
various parameters that collectively impact their performance. The window size, which
determines the length of subsequences used to compute the matrix profile, is a critical
parameter. A larger window size can capture broader patterns but may overlook localized
anomalies, while a smaller window size could be more sensitive to noise. The matrix profile
length, or the granularity of pattern detection, is another important parameter, with longer
profiles offering more detailed insights but requiring increased computational resources. The
choice of distance metric to quantify similarity between subsequences is a pivotal decision,
as different measures may be more suitable for specific data types. Setting thresholds for
anomaly detection is crucial, with careful consideration needed to avoid false positives or
negatives. Additionally, the normalization method applied to the time series data plays a role

in ensuring consistent performance across datasets with varying scales and magnitudes.

For multivariate time series data, a different set of considerations emerges, including the
definition of distance measures and the handling of multiple dimensions [37]. Adapting matrix
profile-based methods to multivariate scenarios requires careful parameter selection to
account for the complexities introduced by the additional dimensions. Optimal parameter
choices are often dataset-specific, and fine-tuning based on the characteristics of the specific
dataset is essential for achieving accurate and meaningful results in matrix profile-based time
series analysis. Experimentation and thorough parameter tuning are critical steps to maximize

the effectiveness of these methods in capturing and interpreting patterns in diverse datasets.

2.5.Symbolic Aggregation Approximation
In response to the limitations encountered with ML-based time series analysis methods, an

exploration was undertaken to discover more effective alternatives for extracting contextual

information from multivariate time-series data. The primary goal was to identify innovative
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approaches that could provide more meaningful insights and facilitate better decision-making
based on the data. In the course of this research, Symbolic Aggregate Approximation (SAX)
emerged as a pivotal data transformation technique that plays a critical role in the analysis of
time series data. [38]. It operates by converting continuous time series data into a symbolic
representation, enabling the application of various data mining and pattern recognition
techniques. SAX offers several advantages over machine learning (ML) methods, making it a

valuable tool in specific time series analysis scenarios.

One of the primary advantages of SAX is its ability to reduce the dimensionality of time series
data while preserving essential information. By representing the data symbolically, SAX
significantly reduces the data's dimensionality, making it more manageable for subsequent
analysis [39-42]. This reduction simplifies the computational demands, especially when
working with large-scale or high-dimensional time series datasets. Furthermore, the symbolic
representation makes visualizing and interpreting the data easier, aiding in pattern discovery

and anomaly detection tasks.

SAX also excels in handling noisy or uncertain time series data. ML methods often require
clean, pre-processed data, which can be challenging to obtain in real-world scenarios. On the
other hand, SAX is robust to noise and variations in the data, as it discretizes the time series
into a predefined set of symbols. This robustness allows SAX to work effectively with data
from domains like sensor networks, financial markets, and healthcare, where noise and
irregularities are common. Additionally, SAX provides a compact representation of time series

data, reducing the impact of outliers and anomalies on subsequent analysis.

Another advantage of SAX is its interpretability. The symbolic representation is intuitive and
understandable (as shown in Figure 13), making it easier for domain experts to interpret and
extract insights from the data. This interpretability is particularly valuable in fields where
domain knowledge is critical. By simplifying the data representation and focusing on patterns
within symbols, SAX enables domain experts to gain meaningful insights and make informed

decisions based on the transformed data.
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Figure 13 — A time series feature (above) is discretized based on SAX, and a plot is shown (below) with the
relevant SAX labels.

SAX's ability to simplify and enhance the analysis of time series data makes it a valuable tool
in various domains, where it complements machine learning approaches and aids in

uncovering hidden patterns and insights in time-dependent data.

2.6.Summary
Monitoring real-time SCADA data from thousands of CSG wells is an intricate task, and as a

result, there is a pressing need for a more simplified exception-based approach to discern
which wells require heightened attention. Although ML-based solutions have been proposed
and may seem promising, they come with a host of limitations. These limitations include the
complexity of ML model training and interpretation, sensitivity to parameter settings, and the
significant requirement for labelled data, which can be particularly challenging to obtain in
industrial settings. Consequently, harnessing SAX-based time series analysis emerges as the
most compelling approach for effective real-time well performance monitoring. SAX's ability
to reduce data dimensionality while preserving critical information renders it highly robust
against noisy data, all while maintaining interpretability. Given the paramount importance of
timely and accurate insights in real-time SCADA systems for optimizing well operations, the
plan is to utilize SAX as the foundation of the research. The research aims to develop a novel
approach that transforms time series data into performance images, offering a simplified and
accessible solution for identifying anomalies and optimizing well performance in real time.
This approach will help CSG operators manage vast numbers of wells by exception, avoiding

limitations of existing ML based anomaly detection methods.
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3. Paper 1: Application of Exploratory Data Analytics EDA in Coal Seam
Gas Wells with Progressive Cavity Pumps PCPs

This paper explores the application of EDA within the realm of CSG wells equipped with PCPs.
The primary aim is to enhance the understanding and optimize PCP performance, addressing

unique challenges posed by multivariate time series data within the oil and gas industry.

The application of EDA methodologies on a three-year time series dataset gathered from 42
CSG wells is demonstrated, utilizing the Python programming language and its supporting

libraries.

The critical role of EDA as a preliminary step before embarking on real-time analytics cannot
be overstated. EDA is used to address data discontinuity, which is prevalent in SCADA data,
and generalize multivariate SCADA data with time series analytics. This helps to comprehend
the behavior of time series data and extract pertinent features, especially in the context of

multivariate datasets.

The methodology encompasses several key steps, including the sorting and normalization of
raw time series data, interpolation to handle missing values, data filtering to remove non-
representative data, and data decomposition to reveal underlying trends. Correlation analysis
is explored as a means to assess PCP performance over different time periods, employing
sliding window techniques. Additionally, a novel approach to data visualization is introduced,

leveraging SAX to create HEATMAP images for real-time monitoring of PCP performance.

The results discussed in the paper demonstrate how managing SCADA data and converting

time-series data to SAX HEATMAP are necessary for real-time PCP performance analysis.
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Abstract

Artificial lift methods typically drive Coal Seam Gas (CSG) wells, and Progressive Cavity Pump (PCP) is
the preferred method of lift with Australian CSG operators. CSG wells in Australia are typically equipped
with necessary instrumentation and automation systems to provide real-time data gathering for monitoring
and control purposes. Real-time data gathered from CSG wells presents an opportunity to better understand
PCP performance by identifying anomalous pump behavior.

However, before undertaking any real-time analytics exercise, it is pertinent to carry out Exploratory Data
Analytics (EDA) to understand time series data behavior and extract relevant features; and this exercise
is particularly important with multi-variate data sets. Obtaining significant data features from multivariate
time series data can help define which analytics and machine learning methods could be exploited to analyze
PCP performance in near real time.

This paper will discuss EDA methodologies that can help streamline time-series data normalization and
feature extraction techniques. A three (3) year time-series dataset, gathered from forty-two (42) CSG wells,
will be used to showcase EDA methodologies utilized as part of this research. All EDA activities covered
in this paper are based on the Python programming language and its supporting libraries.

Introduction

Time Series Data in Production Systems - Challenges and Opportunities
Not all time series datasets are created equal. Although, standardization of Supervisory Control and Data
Acquisition (SCADA) systems in upstream oil and gas has paved the way for real-time data gathering;
the data collection and storage methodology may still be unique to each SCADA technology provider.
Heterogeneous datasets, produced by varying data collection and storage methodologies, pose a challenge
for analytics and machine learning platforms in terms of data ingestion[1].

Common issues encountered with heterogeneous datasets include, but are not limited to, unsynchronized
data measurements, missing values due to network communication failures, and values captured when
sensors are faulty[2]. Another drawback with time series repositories is that they store multivariate data
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TIME TAG Value
2015-05-0100:45:00 Tag_1 41.401699
2015-05-0100:45:39 Tag_7  36.900002
2015-05-01 00:45:39 Tag_2 393.910004
2015-05-01 00:45:39 Tag_12 611.000000
2015-05-0100:49:39 Tag_2 393.910004
2015-05-01 00:49:39 Tag_7  36.900002
2015-05-0100:49:39 Tag_ 6 29.145697
2015-05-0100:49:39  Tag_4 421439532
2015-05-0100:50:00 Tag_1  41.401699
2015-05-0100:50:39 Tag_2 377.222992
2015-05-0100:50:39 Tag_7  36.500000

Figure 1—Sequentially Stored Time Series Dataset

sequentially, and this too is not suitable for analytics and machine learning applications. Figure 1 shows a
sample sequentially stored time series dataset, which was used as part of this project.

It is important that sequentially arranged and heterogeneously collected multivariate data sets are sorted
and normalized, so they may be used for further analysis. EDA presents an opportunity not only to discover a
streamlined methodology to cleanse, filter and normalize multivariate time series data but also to experiment
with a variety of feature extraction methodologies that enable a better understanding of PCP performance

in CSG wells.

Methodology

Step 1: Sort Raw Time Series Data

As with any EDA exercise, it is pertinent first to sort data in a format that is acceptable within the software
platform; in this case, Python programming language. Statistical and Machine Learning libraries associated
with Python accept data input in the shape of n _samples, n_features (Figure 2), where n samples represents
the increasing timestamp rows, and n_features represents data column unique to each sensor value.

n_sam

ples

n_features —

Figure 2—Python Data Format for Statistical and Machine Learning Libraries[3]
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Raw time series data shown in Figure 1, can be re-arranged and sorted as per timestamp (Date) values,
with each sensor value segregated into columns. This transformation is shown in Figure 3. However, there
are drawbacks when raw time series data is converted into n samples and n_features format. Sensor values
which are not recorded concurrently produce NaN entries in the time series dataset.

Flow Speed Torque
Date

2015-05-09 01:56:56 NaN NaN 24.100000
2015-05-09 01:57:56 NaN NaN NaN
2015-05-09 01:58:56 NaN NaN 24.200001
2015-05-09 02:00:56 NaN NaN NaN
2015-05-09 02:01:56 261.395996 NaN  24.200001
2015.05-09 02:02:56 NaN NaN 24.000000
2015-05-09 02:05:56 NaN NaN NaN
2015-05-09 02:06:56 NaN NaN NaN
2015-05-09 02:07:56 NaN NaN NaN
2015-05-09 02:09:56 NaN 177.260269 NaN

Figure 3—Raw Time Series Data sorted into n_samples, n_features format

Figure 4 shows a plot diagram of the dataset, where gaps in time series data are visible in the Flow and
Speed trends. The Torque values are recorded with a higher frequency. Hence fewer gaps are visible in

this trend.

400

200

— Flow

—— Speed

T T T T

T

- Torque

A

Date

-
T

m

Figure 4—Plotted Raw Time Series Data with NaN entries

Step 2: Interpolate Time Series Data
To ensure all NaN values are replaced with useful data, it is best to interpolate the sensor values. Interpolation
enables estimation of missing data points by using either a linear or a polynomial method of calculation.
Both methods of interpolation are available through the SciPy[4] library in Python. Before deciding which
interpolation techniques can be applied to time series data, it is best to understand the characteristics of
the measured values. From a PCP production perspective, Flow and Torque values are measured by an
instrument. Speed, however, is a control setpoint, which is altered based on pump control methodology.
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As Flow and Torque demonstrate a more dynamic behavior, it is best to interpolate these values using the
cubic interpolation method. For Speed, /inear interpolation works best as there is no dynamic value change
between two (2) recorded values.

Figure 5 shows the dataset where NaN entries were replaced with interpolated values. Figure 6 is
the plotted time series data with interpolated values. An interpolated dataset provides a better visual
representation of the multivariate time series data.

Flow Speed Torque
Date

2015-05-09 01:56:56 261846279 177.260269 24.100000
2015-05-09 01:57:56 261858708 177.260269 24.150001
2015-05-09 01:58:56 261.871137 177.260269 24.200001
2015-05-09 02:00:56 261833567 177260269 24200001
2015-05-09 02:01:56 261895996 177 260269 24 200001
2015-05-09 02:02:56 261962163 177.260269 24.000000
2015-05-09 02:05:56 262028330 177.260269 24000000
2015-05-09 02:06:56 262094498 177260269 24.000000
2015-05-09 02:07:56 262160665 177.260269 24.000000
2015-05-09 02:09:56 262226832 177.260269 24.000000

Figure 5—Interpolated Time Series Data

— Flow
400
200 1
0 E T T T T
pr— amdbe . PR r
175
170
- ) ~ Speed
40
- Torque
35
30 B
25
Date

Figure 6—Plotted Interpolated Time Series Data

Step 3: Filter and Normalize Time Series Data

Next step in the EDA process is to filter out any data that is not representative of the PCP performance.
Figure 7 shows unfiltered time series data, and it is obvious that the high peaks in the Flow trend are
not representative of the actual production performance. These non-characteristics values can easily be
filtered out by confirming peak PCP flow design, which is done in the initial production design stage. In this
example, the PCP theoretical flow rate cannot exceed 2000bbl/day of water. Hence, any values greater than
this number can be filtered out. Likewise, any non-representative sensor values can be filtered out based on
technical design limit of the artificial lift system.
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4000 — Flow

2000

= ——

- Tlorque

o 8 &8 8

Date

Figure 7—Unfiltered Time Series Data

Once the data is filtered, it should be normalized to remove sensitivities based on the measurement scale
(y-axis). In the context of machine learning, data normalization removes dependencies on measurement
scales which may otherwise produce skewed results. Scikit-learn[5] library in Python provides various data
normalization techniques that can be chosen based on data characteristics.

In the case of CSG operated PCPs, normalizing data by removing the mean and scaling to unit variance
will not suffice, as certain pump operating conditions must be factored into data normalization. During pump
startup, torque is usually high either due to PCP polymer swell or solids settling over the pump. Another
operating method applied to PCP wells is sudden speed bursts which are required to clear any solid contents
in the pump stator. These events create measurement readings which highly deviate from the mean and
hence require specialized normalization. The RobustScaler method from Scikit-learn is best suited for PCP
data normalization where unique events cannot be ignored during the data normalization process.

Figure 8 shows plotted PCP dataset that has been filtered and normalized based on the procedure
described above.

1 | Flow

0

L == Speed

| T ||’ [Tl

—2 T T l T T T T

5 - Torque

0 N
Date

Figure 8—Filtered and Normalized Data
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Step 4: Data Decomposition
Decomposition breaks down time series data into Trends, Seasonality, and Residue. As PCP data is void
of any seasonal characteristics, we will work with the Trend and Residue decomposition components of
time series data.

The extracted Trend plots reveal the underlying characteristics of the measured values. As seen in Figure
9, the Trend plot for Flow, Torque, and Speed depicts how these measurements change over the production
period.

Flow Observed Flow Trend Flow Residue
5 45 5
-25 14 T T T T T =51 T T T T T
Date Date Date
Torque Observed Torque Trend Torque Residue
5 25 10
00
i imman T T I R A T o
Date Date Date
Speed Observed Speed Trend Speed Residue
2 | See—— 2
| LimT 1B 1 | &l SERPRTR ) SR TY B ——
v s—v— —— L I 01 ! | 00 1% LmERL LU R LA
— JUTINITNN | ! 1] " ! 2 ' =25 -y Fis i
Date Date Date

Figure 9—Decomposing Time Series Data to Extract Trend and Residue from Observed Values

Decomposition is achieved by using the Statsmodels library, where the seasonal decomposition function
is used to split the observed data in 7rend and Residue.

Step 5: Analyze Correlations in Multi-Variate Data

Correlation analysis is conducted as part of the EDA exercise to establish an association between
multivariate sensor readings. Trend decomposition values are used from Step 4 to create Speed vs. FFlow, and
Speed vs. Torque correlation plots. These plots help analyze PCP performance over various time periods.
Figure 10 shows a sample Speed vs. Flow correlation plot, which is created using the jointplot function from
the Seaborn library in Python. Pearson coefficient, along with a regression plot, is also calculated to show
the linear relationship between the measured time series variables.
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Step 6: Data Approximation
Approximating time series data into bins is a dimensionality reduction technique where measured sensor
values are converted into alphabet characters. This character-based conversion is derived from the Symbolic
Aggregation Approximation (SAX) methodology [6], where time series data is divided into bins based on
Gaussian Distribution.

Figure 11 shows a time series trend converted to nine (9) SAX characters. Approximation based
dimensionality reduction aids with improved time series data visualization, where character-labeled trends
can distinctly illustrate the change in PCP performance. SAX-based trends will be shown in the Results
section of this paper.

Figure 10—Correlation Plot: Speed vs. Flow
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Figure 11—SAX Based Breakdown of Time Series data into 9 Bins (Alphabet Characters)
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Results

Correlation-Based PCP Performance Analysis

The correlation analysis technique mentioned in Step 5 can be used to gauge PCP performance based on a
sliding window technique, which is shown in Figure 12. A correlation plot is created for a one (1) day time
window, with a half-day stride. By doing so, a correlation plot is created every twelve (12) hours to gauge
overall PCP performance. This allows CSG operators to observe the regression and Pearson coefficient
trend across progressive correlation plots.

/ s Window
- 4 /—Stride
//

-

Figure 12—Sliding Window Mechanism for Creating Correlation Plots

Figure 13 shows the progression of correlation plots over a life of CSG operated PCP well. In the figure
below, the left column shows Speed vs. Flow and Speed vs. Torque during an early stage of pump life where
both plots have a positive linear regression plot. The Pearson coefficient is also positive and closer to one (1).
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Figure 13—Sliding Window Based Correlation Plots
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The center column depicts PCP performance characteristic that requires further investigation as the
Speed vs. lorque and Speed vs. Flow have the opposite correlation. Ideally, both correlation plots should
have the same regression trend (either increasing or decreasing), and the opposite trend is an indication of
uncharacteristic PCP performance. Cases where Speed vs. Torque correlation is negative, and the Speed vs.
Flow correlation is positive indicates a solid intake problem with PCP. In a reverse scenario, where Speed
vs. Torque correlation is positive, and Speed vs. Flow correlation is negative, this is an indication of either
plugged pump intake/discharge or a pump-off condition.

The last column in Figure 13 shows Speed vs. Flow and Speed vs. Torque towards the end of PCP run
life. Both correlations now have a negative linear regression and a slightly negative Pearson coefficient.
This indicates that PCP efficiency has decreased due to elastomer degradation.

Correlation plots can be adjusted to characterize PCP performance over a shorter time window. Reducing
the time window adds granularity to the multivariate time series analysis, which allows operators to observe
changes in correlation over shorter time periods.

SAX Based Data Visualization

SAX-based data approximation technique aids with improved visualization of multivariate time series
trends. Both the time series trends and SAX-based plots can be generated in real-time to capture changes
in PCP performance profile.

In Figure 14, the SAX-based trend for Flow shows regions where the water measurements start increasing
above the mean, then plateau off, followed by measurements which start falling below the mean. Such
visualization help track PCP performance in real-time, where observing a transition in SAX characters can
easily identify overall PCP performance. Abnormal events can also be gauged with this method where
a non-linear transition of SAX characters can indicate events which are uncharacteristic of normal PCP
performance, for example, characters changing from d to g without transitioning through e and f.

mﬂmnmm—u'mmmﬂﬂm

SAX Based HEATMAP Conversion
Another method to visualize PCP performance is by converting the SAX-based characters into HEATMAP

Figure 14—SAX Based Visualization of Time Series Data
images[7]. Converted images enable the use of supervised and unsupervised machine learning methods to
tag PCP performance in near real-time autonomously. This methodology also assists with the detection of
anomalous events based on HEATMAP color.
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v ==Speed =

Figure 15—Multivariate Time Series Data Converted to SAX-based HEATMAP

Conclusion

In this paper, we have shown that Exploratory Data Analytics help extract significant information from
time series data that can aid with a better understanding of PCP performance. EDA steps described in
the Methodology section set the foundation for using extracted features from time series data to conduct
further statistical and machine learning evaluation of PCP performance. These methods, although not
exhaustive, are reusable with any sequential time series data set. Furthermore, these reusable methods can be
standardized as part of a broader analytics and machine learning endeavor to obtain diagnostic and predictive
insights on PCP performance in near real time.
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4. Paper 2: Converting Time Series Data into Images: An Innovative
Approach to Detect Abnormal Behavior of Progressive Cavity Pumps
Deployed in Coal Seam Gas Wells

This paper introduces a novel approach to detect abnormal PCP behavior in CSG wells by
converting time series data into heatmap images and utilizing machine learning techniques.
The method involves converting multivariate time series data from PCPs into images using
the SAX methodology, which helps to detect abnormal behavior autonomously. SAX is a
technique for normalizing time series data and converting it into heatmap images. The
methodology includes selecting relevant variables, creating a Gaussian distribution, and

adding breakpoints to convert data into SAX symbols.

The paper highlights the significance of PCPs as a primary artificial lift method in CSG wells,
and the challenges they face due to coal fines. Frequent pump failures caused by coal fines
make it challenging to manage CSG wells. Hence, the proposed method has the potential to

benefit the management of CSG wells in Australia significantly.

In the results section, the paper demonstrates the effectiveness of using heatmap images for
detecting abnormal performance events in PCPs. The paper proposes an automated approach
that involves K-Means clustering to segregate and label the clusters. Each heatmap cluster
represents a specific type of PCP abnormal behavior, which is used to identify performance

issues in real-time.

The findings outlined in this paper demonstrate the significance of using SAX-based heatmap
images to enhance the accuracy of time-series clustering. By clustering time-series data, it is
possible to automatically identify abnormal PCP behavior and label datasets to improve PCP

performance analysis.
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TR R ORI .
Abstract

Progressive Cavity Pumps (PCPs) are the predominant form of artificial lift method deployed by Australian
operators in Coal Seam Gas (CSG) wells. With over five thousand CSG wells [1] operating in Queensland's
Bowen and Surat Basins, managing and maintaining PCP supported production becomes a significant
challenge for operators. Especially when these pumps face regular failures due to the production of coal
fines.

It is possible to gauge the holistic production performance of PCPs with the aid of real-time data, as this
allows for pro-active and informed management of artificially lifted CSG wells. Based on data obtained
from two (2) CSG operators, this paper will discuss in detail how features extracted from time series data
can be converted to images, which can then aid in autonomously detecting abnormal PCP behavior.

Introduction

Overview of PCPs in CSG Wells

In a CSG reservoir, methane is adsorbed to the surface of the coal, and gas is extracted by dewatering a
CSG well [2]. As depicted in Figure 2 [3], dewatering is required at an early onset to produce gas from
the reservoir. Progressive Cavity Pumps (PCPs) are utilized in the well to facilitate the dewatering process
throughout the production lifecycle. Figure 3 shows the main components of a PCP system.
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Figure 1—Map of CSG fields in Queensland, Australia [1]
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Figure 2—CSG Well Production Life Cycle [3]

Page 53



SPE-195905-MS 3

Surface Equipment Downhole Equipment

y ¥t Rotor
.. Drivehead 7
— Rod strin
,}" v Stator elastomer
,
—— Stuffing box ," Stator housing
4
/
/
Pumping tee
e Z— pC pump

— Polished rod

«—— No-turn device

Rod string

Figure 3—(Left) Main Components of a PCP system. (Right) Cut out view of PCP Rotor and Stator. [4]

Progressive Cavity Pumps (PCPs) have been deployed in CSG wells since the mid-1980s [2]. PCP is a
positive displacement pump, where elastomer with cavities acts as a stator, and a helix shape metallic rotor
acts as a stator. The unique design makes this Artificial Lift method resilient to solids, and hence can be
deployed in wells with high solid contents.

Common PCP Failures in CSG Wells

Table 1 [4] captures the most common PCP failures, their symptoms, and possible root causes. Although
their mechanical design makes PCPs resilient to solid production, the presence of coal fines and interburden
incursion in CSG wells presents significant pump performance challenges. Failures highlighted in Table
1, capture problems that are common in CSG operations. Multiple CSG operators have documented PCP
failures and have provided best practices and remedial actions to improve pump life [5-7]. Except for gas
interference at pump intake (caused either by setting the pump above perforation or reduction in the liquid
level below pump intake), all operators agree that coal fines and interburden intrusion are the root cause
for the majority of PCP failures [5—7]. These failures are inclusive of, but not limited to, plugged intake,
plugged discharge, parted rods and hole in tubing.
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Table 1—List of PCP Failures and their Root Cause [4]

Symptom
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X X Rods Parted mer oper system design guidelines for
esgh load limits
Improper connection | Follow recommended
X X Rods Parted
makeup makeup procedures
Improper setting of Set torque limiter
X X Rods Parted | drivehead torque according to rod torque
limiter capacity
Tubing wear because i
x| x X Tubing Leak | of improper system L“sse'aclgﬁaggﬂgargée’s'
design
High Check for flow
X X Tubing | pressure :jmp_roper system restrictions caused by
drop esign centralizers
Surface
x| x drive I_Beh_s :rr‘r;;t);ﬁggg:ystem Repair surface drive
system | S'PPING system

Automation Systems in CSG Operations

Majority of CSG wells operated in Australia are equipped with automation and control systems, which
allows operators to gather real-time data for operational and process control purposes. These systems are
also responsible for safety and control of water/gas production process. A typical CSG well, as shown in

Figure 4, comprises of three main components:

— Water and Gas Separator
— Progressive Cavity Pump

— A combined Variable Speed Drive (VSD) and Remote Telemetry Unit (RTU) Panel
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Figure 4—A typical CSG Well Facility Layout [8]

Primarily, real-time data enables operators to monitor and control production operations at well sites.
With the aid of RTUs, the automation system controls the well in a desired operating envelope and invokes
a shutdown or pump speed change when an unwanted situation is detected; such as pump-oft [9], high
torque, high pressure or any process related stoppage. Although such systems aid operators in ensuring that
production is maintained at an optimal level; however, managing hundreds of PCPs can prove challenging,
primarily if optimization must be achieved across multiple wells in a streamlined fashion.

Challenge with Monitoring CSG Wells in Near Real Time

Although exception-based surveillance has been used in the past to characterize PCP failure [10], there
remains a significant challenge associated with detecting anomalous or abnormal PCP behavior in near
real-time. Due to the sheer volume of data collected from wells, an approach is required to classify pump
performance in near real-time and streamline identification of abnormal pump behavior. This near real
time pump performance analysis can be achieved by implementing Symbolic Aggregation Approximation
analysis on time-series data.

Symbolic Aggregation Approximation (SAX) is a normalization technique that enables improved
performance analysis of time series data collected by automation systems. This technique segregates time
series data into symbols, which are then converted into Heatmap images. These images provide an improved
indication of PCP performance as they aid with the identification of abnormal pump behavior. This behavior
is easily identified by a change in Heatmap image shape and color, hence enabling the detection of abnormal
events.

Methodology

Research Data

Real-time PCP production data provided by two (2) CSG operators was analyzed as part of this research.
Failure data provided by operator 1, covers a four (4) years period and shows 52% failure (Figure 5) in
two-hundred (200) wells related to pump-off (pumped dry) and coal fine conditions (coal fines, torqued
up, plugged intake and hole in tubing). A three (3) year data set provided by operator 2 shows almost 80%
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failures (Figure 6) in forty-two (42) wells, where the symptoms are caused by coal fines (hole in tubing,
plugged intake and plugged discharge).

PUMP FAILURE CATEGORY'
© WORN OUT
®PUMPED DRY
® UNKNOWN
COAL FINES
© TORQUED UP
PLUGGED INTAKE
© HOLE IN TUBING
© BROKEN RODS
© SAND INGRESS

Figure 5—Pump Failures Data from Operator 1

allure Mode
® Hole in Tubing

® Plugged Discharge
Plugged Intake
® Inconclusive

Other Components

Figure 6—Pump Failures Data from Operator 2

Converting Time Series Data to SAX Symbols

Time-series data gathered by automation systems is usually stored in data historians. This data is sequentially
organized and requires pre-processing before any analytics can be carried out. This section will describe
a step-by-step process of converting time series data to heatmap images. It is assumed that the time series
data has been quality checked and normalized as part of the exploratory data analytics exercise.
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Selecting the right variables from a multivariate data-set. To achieve tangible outcomes from time series
analysis, it is vital to choose a subset of variables from the data-set that account for maximum influence
on the pump performance. Based on Table 1, it is observed that the behavior of torque and efficiency are
primary indicators of PCP failure symptoms. As pump efficiency is not directly measured, we can replace
it with the measured flow since efficiency is the ratio of actual versus theoretical flow. Furthermore, pump
design calculations confirm a correlation between speed, torque, and flow parameters.

Correlation between flow and speed is shown in equation 1 [4].

Wi M
Where,
qu = theoretical flow, s = pump displacement, @ = rotational speed
Correlation between torque and speed is shown in equation 2 [4].

L @)
Where,
1, = polished rod torque, P,,, = prime mover power, I, = power transmission efficiency, C = constant,
= rolational speed
Based on information from Table 1 and the correlation between speed, torque, and flow, we will use these
three (3) measured variables to convert time series data into heatmap images.

Gaussian Distribution. This method is commonly used towards providing standard deviation and mean
distribution in sequential datasets. Equation 3 [11] provides an overview of a bell curve based on the
Gaussian Distribution function.

02 03 04

|

34.1%| 34.1%

0.0 0.1

-3c -20 -1lo 0 lo 20 30

Figure 7—Gaussian Distribution (bell curve) based on Normal Distribution

)=l o e 3)
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Where,

o = Standard Deviation, a = Mean
Adding Breakpoints to Gaussian Distribution — Conversion to SAX Symbols. Once data is normalized,
the Gaussian Distribution is divided into breakpoints. The number of breakpoints is determined based on

the data spread, which is then divided into equidistant regions. These regions are based on the equation
below [12],

“

=
Il
Y—

it
Where,
a = number of breakpoints or bins, § = Breakpoint (cut-off)
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Exploratory data analytics must be carried out on time series data before determining an optimal number
of bins or SAX symbols. Mean, standard deviation, and outliers should be considered when deciding the
number of bins. Figure 8 shows an example of time series data converted into regions of three (3) SAX

characters.

Figure 8—Time Series Data divided into 3-character bins

Table 2 shows the breakpoint regions for up to ten (10) bins. Nine (9) character bins are chosen for the

dataset used in this research.

Table 2—Breakpoint regions based on Gaussian Distribution [12]

a

B, 3 4 5 6 7 8 9 10
By [0 067084 097107 [-1as] 122 ] 128
Bs 0.43 0] -025] -043] 057 067 ] 076 | -084
B; 067 | 025 0f -018 | -032]-043]-052
B4 084 | 043 | 018 o] -014] 025
Bs 097 | 057 | 032 | o014 0
Be 1.07 | 067 | 043 | 025
B, L1s | 076 | 052
Bs 122 | 0384
Bo 1.28

Once the number of bins is decided, we can then convert our time series data into SAX character
representation. Figure 9 shows an example where torque data is converted into nine (9) SAX characters.
Each symbol is denoted by a unique color, which provides an informative view of torque performance

during PCP run time.
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Figure 9—(Top) Time Series Torque Data, (Bottom) Time Series data converted to 9-character bins

Transforming SAX Derived Characters to Performance Heatmaps

SAX representations, obtained from time series data, are converted into a matrix representation. These
matrix representations are then transformed into Heatmap images. Figure 10 (Left) shows the position of
‘HIGH’, ‘NORMAL’, and ‘LOW’ matrix cells, where each cell indicates the performance range based on
SAX bins distribution. The top-tiered matrix cell signifies ‘HIGH’ performance range bin (character i),
mid-tiered matrix cell signifies ‘NORMAL’ performance range bins (characters h, g, f, e, d), and bottom-
tiered matrix cell signifies ‘LOW’ performance range bins (character c, b, a). Figure 10 (Center) shows
the color-coding map where individual colors (red, yellow, green, and black)are applied to each matrix cell
based on the time-based count of each symbol. A converted Heatmap is shown in Figure 10 (Right).

HOIH
HOIH

Event Existence less than 10% during time window -

Event Existence between 10% and 30 % during time window

TVYWYON

01

TYWHON

Event Existence greater than 30% during time window

MO1

No event existence during time window

Figure 10—(Left) Single Variable Heatmap showing HIGH, NORMAL and LOW-performance range, (Center) Time
Distribution based Color Code for each Matrix Cell, (Right) Example of Converted Heatmap for Uni-variate Time Series Data

A sample conversion of flow time series data is shown in Figure 11, where the converted heatmap
indicates performance varying between ‘HIGH’ and ‘NORMAL’ range. Character ‘i’ had the most counts
(greater than 30%)in a single time-window and hence the ‘HIGH’ performance matrix cell is colored green.
Characters ‘e’, ‘f” and ‘h’ have a cumulative count in the range of 10% and 30%. Hence the ‘NORMAL’
performance matrix cell is colored yellow. A similar process for torque and speed conversion is shown in
Figures 12 and 13, respectively.
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Figure 11—Flow Time Series Data conversion to HEATMAP Image

Figure 12—Torque Time Series Data conversion to HEATMAP Image

=

Figure 13—Speed Time Series Data conversion to HEATMAP Image

Individual color-coded Heatmaps for each variable (flow, torque, and speed) are then merged to form a
multivariate Heatmap. Figure 14 shows a multivariate Heatmap for one (1) day time series data inclusive of
flow, torque, and speed. Two events are observed during this twenty-four (24) hour period; the first event is
a speed change, and the second event is unstable flow. Both events are captured by the multivariate Heatmap
as per the color code shown in Figure 10. However, this Heatmap does not recognize if flow fluctuation
occurred before or after the speed change. This drawback can be avoided if a smaller time window is used
for SAX conversion and Heatmap generation.

W:

Figure 14—Multivariate Heatmap for a One (1) Day Time Window
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Results

Detecting Abnormal PCP Performance Events with Heatmap Images

Once time series data is converted into a representation of multivariate Heatmap images, we can then use
color-coded matrix cells to identify abnormal PCP behavior. Figure 15 shows the same one (1) day time
series data, as in Figure 14, converted to twenty-four (24) Heatmap images.

—Flow =—Speed = Torque
\ [ | Al
A A_WA_,Y i - ‘ f L 1 Wy W, i h\ ﬂ
—J ey Lf«"\_ﬂrﬁkﬂﬁ ”;/w/w*m =
11 12 13 16 17 19 20 21 22 23 24

Figure 15—Multivariate Heatmap for a One (1) Hour Time Window over a One (1) Day Period

From the above figure, it is evident that Heatmaps generated for smaller time series windows
better illustrate PCP performance. This added granularity provides improved visual analysis of the PCP
performance, where minor changes in flow profile are easily recognized during a twenty-four (24) hour
period. In hours 2, 7, and 9, the Heatmap images pick up variations in flow profile, which is characterized
by the presence of yellow cells. Variation in flow is also detected during hours 18 and 19.A noticeable
fluctuation in flow occurred during hour 18, which is highlighted by the presence of both yellow and red
cells. These variations in flow performance occur without any change in speed or torque; hence, the behavior
of PCP during hours 2, 7,9, 18, and 19 can be categorized as abnormal.

Heatmap images can be tailored to capture events that have occurred for a fraction of the time during
a one (1) hour period, i.e., events highlighted by red cells. This can be done by masking all other colors
in the Heatmap except red and black. Figure 16 shows time series data where both original and masked
Heatmaps are depicted with the multi-variate trend. Based on the masked Heatmaps, it is seen that torque
events occur during hours 2, 11, 12, 16, and 24; whereas, a flow event occurs during hour 23 of this period.
These events occurred without any change in pump speed; hence, these periods within the time series data
can be marked as abnormal PCP performance and can be investigated further. Furthermore, torque event
captured during hour 16 is not visible on the time series trend; however, SAX character conversion can
capture minute variations in data that may be missed through visual inspection of data.

| —Flow =Speed = Torque

\"Mf““’“‘ ﬁi“r**””“W“”””M“U“

15 16 17 18 19 20 21 22 23 24|

Figure 16—Original and Masked Heatmaps for Multi-variate Time Series Data
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Heatmap masking technique can also be adapted to observe changes in majority events, i.e., events
highlighted by green cells. This would allow operators to monitor change in PCP performance over the life
of the pump by filtering out abnormal activity depicted by yellow and red cells.

Using K-Means Clustering to Automate Abnormal Event Detection

Heatmap images generated with SAX character conversion can be grouped based on the K-Means clustering
method. This unsupervised machine learning method organizes unlabeled data-set (in this case Heatmap
images) into clusters based on their similarity. This is done by computing centroids for each cluster, and
images are then grouped in clusters based on the nearest centroid [13]. Machine Learning libraries in
Python such as Sci-kit Learn provide access to the K-Means clustering algorithm which can be utilized to
automatically group existing Heatmap images and match new Heatmap images to a cluster based on their
distance from pre-computed centroids [14].

Figure 17 shows ten (10) Heatmap image clusters identified for forty-two (42) PCP wells. In this case,
masked Heatmap images (red and black cells only) have been used to minimize the number of clusters. As
the goal is to identify abnormal PCP behavior, newly created Heatmap images from streaming time series
data can automatically be tagged as anomalous if they fall in clusters 2 through 10. Likewise, Heatmap
images in cluster 1 can automatically be tagged as normal.

'V‘\"\ ]
m ot
10

Figure 17—Heatmap Image Clusters Identified by K-Means Clustering

To improve abnormal event inference, clusters can be tagged based on the anomaly they represent.
Clusters 4, 5, 6, 8 and 9 can be labelled "T" as they represent anomalous events due to torque. Similarly,
clusters 2, 3, and 7 can be labelled "F" as they represent anomalous events due to flow. Cluster 10 can be
labelled "T|F" as it represents an abnormal event due to flow and torque. Figure 18 shows an automatically
labelled time-series trend based on the tag representation.
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Figure 18—Automatically Labelled Time Series Data based on K-Means Clustering

Conclusion

In this paper, we have shown that converting time series data into SAX based Heatmap images not only
provides improved visualization of real-time trends, but also enables identification of PCP performance
events in near real-time. This unique methodology further allows the use of unsupervised machine learning
techniques to cluster and label Heatmap images to automate abnormal event detection. By doing so,
thousands of CSG wells can be analyzed autonomously in a streamlined manner, which can allow operators
to focus on wells requiring attention and help capture performance trends that can in-turn assist with
improving pump life and reducing failures.

Further Work

Research work is underway to examine how machine learning methods and image analysis techniques can
further be improved to provide a more holistic PCP performance analysis. Supervised learning methods are
being investigated where clustered images are labelled by an expert, and these labelled images can then
be used to automate pump performance classification. Further image analytics techniques are also being
investigated where algorithms can pick the difference in colored cells between two consecutive Heatmap
images to more definitively categorize PCP performance factors such as drop or increase in flow rate or
fluctuations in torque. Results from these investigations will be published in future conference papers and
journals.
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5. Paper 3: Machine Learning for Progressive Cavity Pump
Performance Analysis: A Coal Seam Gas Case Study

The paper emphasizes the application of machine learning techniques in conjunction with
innovative visualization methods for enhancing the analysis of performance in CSG wells. The
methodology introduced in the paper centers around the conversion of time-series data into
SAX Heatmap images. The Heatmaps serve as a powerful tool for visually depicting changes

in PCP performance, allowing for a more intuitive understanding of the data.

The paper's standout feature is its application of machine learning techniques to the
dimensionality reduction process. Principal Component Analysis (PCA) is employed for this
purpose, reducing the complexity of the data. The resulting PCA components are visualized
using t-Distributed Stochastic Neighbor Embedding (t-SNE), a machine learning technique

that simplifies the representation of high-dimensional data in two dimensions.

The machine learning component is further advanced by the application of k-Means
clustering, where the ideal number of clusters is derived using the elbow method. This
clustering method categorizes the SAX Heatmap images based on their characteristics. It helps
identify patterns and similarities within the data, ultimately enabling the detection of PCP
performance and anomalies. These insights are gained in near real-time, offering significant

advantages for operational management.

The visual representation of Heatmaps alongside time-series data plays a crucial role in
understanding PCP performance changes. The clusters generated through k-Means are
labelled based on the characteristics of the Heatmap images, such as torque or flow
anomalies. This process allows for the automated tagging of new Heatmap images generated
from streaming time-series data, making it a powerful tool for anomalous PCP performance

detection.

The automated tagging of SAX images, based on the clustering method discussed, enhances
the detection of anomalous PCP performance in streaming time-series data, highlighting the
paper's contribution to effective anomaly detection and hence paving the way for manage-

by-exception for a large fleet of CSG wells.
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Abstract

Limited research work and publications are available to examine the performance of Progressive Cavity
Pumps (PCP) based on machine learning methods, especially in Coal Seam Gas (CSG) operations. Previous
work done in this space either focuses on exception-based surveillance on time-series data [1], or the use
of machine learning to optimize completion design [2] and production [3].

This paper will discuss how data approximation and unsupervised machine learning methods can
be applied to time-series data-sets, using data gathered from automation systems, to help analyze PCP
performance and detect anomalous pump behavior.

Introduction

The majority of CSG wells operated in Australia are automated with Remote Telemetry Units (RTUs)
and Supervisory Control and Data Acquisition (SCADA) systems [1, 2]. These automation systems gather
production, mechanical, and electrical time-series data from PCPs, which allow operators to manage day-to-
day production operations. However, SCADA systems are not suited to run advanced analytics and machine
learning algorithms that can help determine PCP performance.

To exploit information from SCADA systems, a time-series based image conversion technique is utilized
to aid with a better understanding of PCP performance. Machine learning based image classification
techniques are applied to these converted images, where they are clustered based on t-Distributed Stochastic
Neighbor Embedding (t-SNE) and k-Means algorithms (unsupervised learning).

Results from this study depict how time-series based heatmap conversion, coupled with unsupervised
machine learning techniques can provide an innovative method to identify the abnormal behavior of PCPs
in CSG wells. The findings discussed in this paper are based on three (3) years' worth of time series PCP
data collected from forty-two (42) CSG wells.
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Methodology

Time Series Data Approximation

Prior to initiating PCP performance analysis, it is important to extract relevant features from time-series data
in order to facilitate work with machine learning methods. After completing the initial pre-processing steps
[4], data approximation techniques should be employed to generalize time-series data. An approximated
time-series data set reduces dimensionality while capturing key features.

Symbolic Aggregation Approximation (SAX) is a data estimation technique that converts time-series
data to symbols based on a gaussian distribution [5]. The SAX symbols represent standard deviation based
equidistant regions in a gaussian distribution curve. The number of regions is decided by the pre-selected
number of SAX symbols chosen to represent the time series data-set, and the distribution of each region is
based on the difference between the measured value and the overall mean. The conversion of time series
data to nine (9) SAX symbols is shown in Figure 1.

ot
|‘-‘ ‘ |

Figure 1—(Top) Time Series Flow Data, (Bottom) Time Series data converted to 9-character bins

Once time series data is converted into SAX representation, the symbol distribution for each measured
variable (flow, speed, torque) can then be transformed into a Heatmap representation of the PCP
performance [6]. A sample Heatmap transformation for a twenty-four (24) hour period is shown in Figure
2 below.

HIGH

NORMAL

Low

Figure 2—Time Series Data Conversion into Heatmap Image Representation
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Heatmap Image Analysis

Time Series Heatmaps allow for improved analysis of PCP performance. The Heatmap conversion, shown
in Figure 2, depicts different performance profile areas (high, normal, low) for flow, torque, and speed.
The color code in each cell corresponds to the time-period for which the PCP operated in a particular
performance profile.

The image shown in Figure 3 depicts a PCP Performance Heatmap generated for a twenty-four (24) hour
period. This Heatmap provides a performance overview where flow, speed, and torque have remained in the
normal range for a time-period of seven (7) hours or more during a single day. This time-period is indicated
by the color green and signifies Majority Performance. Color yellow shows a performance time-period in
the range of two (2) and seven (7) hours, and this is depicted in the Heatmap when the torque is in the higher
tier of the normal profile. This Heatmap also depicts high torque for a time-period of two (2) hours or less;
hence, this event is indicated with the color red.

PCP Performance Heatmap Color Code Legend

- Event Existence less than 10% during time window

Event Existence between 10% and 30 % during time window
- Event Existence greater than 30% during time window
- No event existence during time window

Figure 3—PCP Performance Heatmap Color Code Overview

As shown in Figure 4, a single PCP Performance Heatmap can be further decomposed to Majority
Performance (green time-period) and Anomaly Event (red time-period) Heatmap images. The yellow time-
periods will be ignored as part of this study as they represent acceptable performance deviations during
normal PCP operations.

PCP Performance Heatmap Majority Performance Ignored Anomaly Event

Figure 4—Time Series Heatmap Decomposition to Majority Performance and Anomaly Event

Difference Heatinaps.  Majority Performance Heatmaps can aid with the understanding of PCP
performance over the life of the pump. This can be achieved by creating Difference Heatmaps, where two
(2) sequential Heatmap images can be subtracted from each other, to detect a change in the PCP performance
profile.
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DAY 116 DAY 117 DAY 118 DAY 119 DAY 120 DAY 121 DAY 122

DAY 117 - 116 DAY 118 - 117 DAY 119-118 DAY 120-119 DAY 121 -120 DAY 122 -121

Figure 5—(TOP) Majority Performance Heatmap Images, (BOTTOM) Difference Heatmap Images

In Figure 5 above, the top row depicts Majority Performance Heatmaps over a period of seven (7)
days. The bottom row shows Difference Heatmaps produced by subtraction of two (2) consecutive
Majority Performance Heatmaps. Empty, or entirely black, Difference Heatmaps indicate no change in PCP
performance between two (2) consecutive Heatmaps. Difference Heatmaps which show highlighted green
cells indicate a change in PCP performance.

An interesting observation in the figure above is the change in PCP behavior over days 117, 118, and
119. The Difference Heatmap captures the first performance change on day 118 and then on day 119. The
two (2) consecutive Difference Heatmaps (118-117 and 119-117) are identical, and this depicts that PCP
performance temporarily changed between days 117 and 119. On the other hand, a permanent change in
PCP performance is observed on day 121.

Machine Learning for PCP Heatmap Image Analysis

Once Anomaly Event and Difference Heatmap images are derived from time-series data, they can then be
clustered via machine learning methods to identify PCP performance and capture anomalous events. Figure
6 outlines the process used to convert SAX images to k-Means clusters.

PCP PERFORMANCE

ime ANOMALY EVENTS HEATMAPS
HEATMAPS

DIFFERENCE HEATMAPS

Figure 6—Overview of Unsupervised Machine Learning Process

Dimensionality Reduction through Principal Component Analysis (PCA). As the Heatmap images
produced are /72 x 112 x 3 in dimension, they represent a total of 37,632 pixels or sample points. The
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first step to reducing the number of dimensions is to run a Principal Component Analysis of the images.
Based on the plots in Figure 7, it is observed that twenty (20) components capture almost a hundred-percent
(100%) variance for all three (3) Heatmap image types.

cumulative explained variance

PCA Variance - Majority Performance Heatmaps

PCA Variance - Anomaly Event Heatmaps

PCA Vanance - Difference Heatmaps
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Figure 7—PCA Variance Plots for all three (3) Heatmap Image Types

t-Distributed Stochastic Neighbor Embedding (t-SNE). t-SNE allows for improved visualization of high-
dimensional data [7], and based on the PCA results above, the twenty (20) components extracted from the
Heatmap images can be visualized in two-dimensional space. Figure 8 illustrates the 2-D t-SNE visualization
of twenty (20) components of each Heatmap type captured by the PCA process. This 2-D representation
can further be used for k-Means clustering.
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Figure 8—t-SNE 2-D Plots for all three (3) Heatmap Image Types

k-Means for Unsupervised Machine Learning. Prior to conducting k-Means clustering, it is important
to determine the optimal number of clusters for the 2-D t-SNE representation of the Heatmap images. This
can be achieved by using the elbow method [8] where a range of & values are used to compute distortion for
each cluster number. The optimal number of clusters or & value is selected when the distortions are closer to
zero. In Figure 9, the & value is determined from the line chart, based on the point of inflection on the curve.
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Figure 9—EIbow Method Curve to Determine Optimal k Value

Once the optimal number of clusters is determined, the k-Means algorithm is used to identify clusters
within the 2-D t-SNE representation. Figure 10 shows the categorized clusters for each Heatmap image type.
It is observed that both Majority Performance Heatmaps and Difference Heatmaps have a similar number
of clusters based on the t-SNE plots. Comparatively, the cluster grouping for Anomaly Event Heatmaps is
more compact compared to other Heatmap types. These clusters are based on historical time-series data

gathered from forty-two (42) wells.
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Figure 10—k-Means Clusters for the three (3) Heatmap Image Types

The demarcation of cluster groups for Majority Performance Heatmaps and Difference Heatmaps could
be improved by choosing a higher number of clusters, but for this study, we will choose the clusters
based on the elbow method. Also, the k-Means centroids generated during the unsupervised learning stage
are recorded to label Heatmaps that will be generated by new time-series data gathered from automation

systems.

Results

Image Sequence Visualization

SAX based Heatmaps improve visualization of time-series data, allowing for improved analysis of data in
near real-time. As shown in Figure 11, plotting time-series trends in tandem with Heatmap images aid with
the analysis of PCP performance and anomalous events.
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—Flow —Speed — Torque

14 15 16

Figure 11—Time Series Trend Plotted with various Heatmaps. (TOP) Time Series Trend, (ROW
1) Majority Performance Heatmaps, (ROW 2) Anomaly Event Heatmaps, (ROW 3) Difference Heatmaps

13

17 18 19

Figure 11 shows a twenty-four (24) hour trend, where the Heatmaps are generated on an hourly basis.
Anomaly I'vent Heatmaps, which are shown in ROW 2 (Figure 11), are able to pick up anomalous torque
peaks (hours 2, 5, 20, 22), and also flow related anomalous events (hours 11, 12). A torque-flow anomalous
event is also detected for this time-series data (hour 1).

Other than the anomalous events, the overall PCP performance is stable for the twenty-four (24)
hour period shown in Figure 11. Although the Difference Heatmaps show deviations (hours 3+4, 8+9,
12+13, 21+22), these deviations occur in pairs, which indicates that the PCP performance divergence was
temporary.

Image Clustering for PCP Performance Analysis

For each Heatmap type, the cluster groups can be labeled based on their image characteristics. Figure 12
shows different Anomaly Heatmap images as represented by the cluster numbers. The figure also shows
that it is simple to identify which anomaly is represented by each cluster.

y TSNE
o

=20

-40 -20 0 20 40
X TSNE

Heatmap Image Clusters
Identified by k-Means Clustering

Figure 12—Anomaly Heatmaps
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Clusters 4, 6, 7, and 8 can be labeled as "F" as they represent flow anomaly. Clusters 2, 3, 14, and 16
can be labeled as "T" as they represent torque anomaly. Cluster 1 can be labeled as "T[F" as it represents
torque-flow anomaly. Clusters 5,9, 10, 11, 12, and 13 are not labeled, as these Heatmaps represent a speed
change, and are not considered as anomalies. Speed changes are either controlled manually (by an operator)
or autonomously (through SCADA control logic); hence, they do not represent an anomaly.
k-Means centroids recorded during the unsupervised learning phase are used to label new Heatmaps
generated via streaming time-series data. As new data is processed and Heatmap images are generated, the
recorded centroids are matched against these images to assign them a cluster number. These cluster numbers
are allotted a label as described in the previous paragraph. Figure 13 shows how this cyclical process assists
with the autonomous tagging of anomalous events on streaming time-series data.

—Flow —Speed — Torque

— f"\"%m/wkz\fw s SN T]I’ F
| , s

Figure 13—Autonomous Tagging of Streaming Time-Series Data

Conclusion

In this paper, we have described how machine learning methods, when applied to time-series based Heatmap
images, can improve PCP performance analysis. In particular, the methods described in this paper can assist
with detecting anomalous events on streaming time-series data and assist CSG operators with managing
their wells.

Although examples in this paper are based on Heatmaps generated on an hourly basis; the process of
autonomous tagging through machine learning methods can also be applied to Heatmaps generated over
shorter time periods.
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6. Paper 4: Application of machine learning methods to assess
progressive cavity pumps (PCPs) performance in coal seam gas (CSG)
wells

This paper advances the application of machine learning methods for assessing the
performance of PCPs in CSG wells. The paper incorporates a neural network-based
dimensionality reduction method to reduce the Heatmap image representation using
Convolutional Auto Encoders (CAE). Moreover, the study employs an enhanced high-density-
based clustering method HDBSCAN, to create clusters. Data from 359 PCP wells was used to

develop the method and validate results for this paper.

To analyze a large amount of data used for the research, the CAEs were employed instead of
the PCA approach discussed in previous papers. The CAEs provided a more compressed latent
representation of the SAX heatmap images compared to PCA. Additionally, the k-Means
clustering method was replaced with HDBSCAN. This was done to identify clusters without

providing a pre-set number of clusters, which is the case with the k-Means approach.

This paper also introduces some key concepts and techniques which are pivotal to real-time
analysis of PCP performance. Firstly, it introduces the "expanding window technique," which
is fundamental for the analysis of PCP performance over its entire operating life. Second, the
visual analytics approach to assess PCP performance is discussed, where multivariate trends
are plotted against cluster heatmap labels as bar charts to aid in assessing changing ALS

performance.

These innovative additions distinguish this research and underscore its significance in the field
of PCP performance analysis using machine learning. This study showcases how utilizing
machine learning to automatically identify and plot performance heatmap clusters, along
with streaming data, provides engineers with an improved overview of PCP performance. This

aids in real-time anomaly detection and automation.
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Abstract. In Queensland, progressive cavity pumps (PCPs) are the artificial lift method of choice in coal seam gas
(CSG) wells, and this choice of artificial lift production stems from the ability of PCPs to better manage the production
of liquids with suspended solids. As with any mechanical pumping system, PCPs are prone to natural wear and tear
over their operational life, and with the production of coal fines and inter-burden, the run life of PCPs in CSG wells is
significantly reduced. Another factor to consider with the use of PCPs is their reliability. As per the CSG production
data available through the Queensland Government Data Portal, there are approximately 6400 wells operational in the
state as of December 2018. This number is expected to grow significantly over the next decade to meet both
international and domestic gas utilisation requirements. Operators supervising these wells rely on a reactive or
exception-based approach to manage well performance. In order to efficiently operate thousands of PCP wells, it is
pertinent that a benchmark methodology is devised to autonomously monitor PCP performance and allow operators to
manage wells by exception. In this study, we will cover the application of machine learning methods to understand
anomalous PCP behaviour and overall pump performance based on the analysis of multivariate time-series data. An
innovative time-series data approximation and image conversion technique will be discussed in this paper, along with
machine learning methods, which will focus on a scalable and autonomous approach to cluster PCP performance and
detection of anomalous pump behaviour in near real-time. Results from this study show that clustering real-time data
based on converted time-series images helps to pro-actively detect change in PCP performance. Discovery of
anomalous multivariate events is also achieved through time-series image conversion. This study also demonstrates
that clustering time-series data noticeably improves the real-time monitoring capabilities of PCP performance through
improved visual analytics.

Keywords: artificial lift, data analytics, time-series data, visual analytics.
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Introduction ; ; ; ; s
This study will describe the conversion of multivariate

Historical time-scries data from 359 wells was utilised to time-series data  (flow, torque and speed) into

perform the work undertaken as part of this research. This
data was provided by two coal seam gas (CSG) operators and
spanned a period of three and a half years. Multivariate data
from these wells was processed and analysed to create
performance heatmap images (Saghir et al. 2019b), where
the images were used to train time-series classification models.
This image-based time-series data classification method serves
two purposes; first, it helps in the identification of anomalous
progressive cavity pump (PCP) behaviour. Second, it assists
with gauging the PCP performance over pump run life.

Journal compilation © APPEA 2020

CSIRO PUBLISHING

performance heatmaps based on the Symbolic Aggregation
Approximation (SAX) technique. We will also examine the
use of Convolutional Auto Encoders (CAE) and Hierarchical
Density-Based  Spatial  Clustering  of  Applications  with
Noise (HDBSCAN) methodologies to characterise multivariate
time-series data. The conversion of multivariate time-series
data to heatmaps also provides improved visual aid to
petroleum or well surveillance engineers that can
assess varying pump performance and assist with pro-active
well management.
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Background

Machine learning methods have been applied towards
exploration and production-related problems within the CSG
operations in Australia. These efforts have mainly focused on
well completion design (Prosper and West 2018), drilling and
logging activities (Zhong et al. 2019) as well as estimation of well
production potential (Biniwale and Trivedi 2012). However,
there is no research work available on the use of machine
learning methods for identifying PCP performance and
anomalous bchaviour, especially in the case of CSG wells.
This is true for both historical and real-time datasets.

Other approaches have been used that enable well
surveillance engineers to manage PCP wells by exception.
Methods such as exception-based surveillance (EBS)
(Hoday er al. 2013) have been utilised to monitor PCP
performance in near real-time; however, these exceptions
are based on set rules or alarms (derived from operator
experience), and they rely on availability of bottom hole
pressure for calculating failure indicators (displacement and
friction performance indicators). The drawback of the EBS
approach is its dependence on bottom hole pressure, which is
measured by downhole gauges, and not all operators deploy
downhole pressure gauges in their CSG wells. These gauges
arc expensive to install, have a high probability of failure and
are not easy to replace or maintain (Firouzi and Rathnayake
2019). Hence, this study will use multivariate sensor data from
surface instruments and clectrical equipment, which are less
prone to failure and easy to calibrate and manage.

Multivariate data — selection of flow, torque and speed
as key performance variables

The approach outlined in this study looks at three multivariate
data points: flow, torque and speed. These three key performance
parameters are selected based on the PCP mechanical design and
correlations derived from historical data analysis.

Based on the mechanical design calculations for PCPs,

Eqn 1 (Matthews et al. 2007) provides a relationship
between speed and flow:
Smin = ‘Zz. (])

where s,,;,, = minimum required pump displacement, ¢, =
required flow rate, @ = pump rotational speed and
E = volumetric pump efficiency.
Eqn 2 (Matthews et al. 2007) provides a relationship between
torque and speed:
Ppmu - CTpl'w (2)

Ey

where P,,, = prime mover power output, C = constant,
T, = polished-rod torque, w = pump rotational speed and
E,, = power transmission system efficiency.

A correlation analysis was also conducted to further support
the utilisation of flow, torque and speed as the primary
multivariate data points for this study. The correlation matrix
shown in Fig. 1 was derived from a set 42 random wells, and it
illustrates the high dependencies between flow, torque and speed
data points.

Moreover, PCP pump failure in CSG wells is most
commonly attributed to high torque due to build-up of coal
fines in pump cavities (Matthews et al. 2007; Saghir ef al.
2019b). Torque is also considered to be an early indicator of
other PCP failures, such as blockage at the pump intake or
discharge, parted rods and slug build-up. Hence, as shown
through the PCP design equations and data correlation, we will
usc only three data points (flow, torque and speed) to conduct
PCP performance analysis and anomaly dctection via
conversion of time-series data into performance heatmaps.

Related work

As this study covers the analysis of real-time PCP production
data, we will utilise this section to briefly discuss published
work that encompass methodologies that describe time-series
data clustering. The discussion is divided into two parts:
(1) time-series data approximation and (2) time-series data
clustering.

Time-series data approximation

Although various techniques have been used for high-level
representation of time-series data, which mostly focuses on
using linear approximations (Dan et al. 2013; Bettaiah 2014;
Duvignau ef al. 2018) or wavelet transformation functions
(Chaovalit ef al. 2011; Shaw et al. 2015), the SAX technique
(Lin et al. 2007) is considered the most practical due to its
consideration of the temporal nature of time-series data. The
SAX technique uses Gaussian distribution to approximate
time-series data into bins, where equally distributed regions
arc assigned symbols or characters, thereby reducing the
dimensionality of the time-series dataset to a set character
range. Fig. 2 shows the approximation of a univariate time-
series dataset to nine equally distributed symbol regions.

Once time-series data is approximated with the SAX
technique, it is easy to identify anomalies and patterns in
the dataset. To do this, multiple methods have been suggested,
such as visualising discrete letter sequences through bitmap
images (Kumar er al. 2005) or using motif discovery to
identify patterns within the time-series datasets (Lin et al.
2005; Sivaraks and Ratanamahatana 2015; Guigou et al. 2017,
Gao and Lin 2018). However, these methods are limited to
univariate datasets and they assume that time-series data is
uniformly recorded. The PCP performance heatmap method
employed in this paper will discuss how these shortcomings
can be addressed and make a case for utilising SAX
representation when streaming time-series data.

Time-series data clustering

Another critical facet of anomaly detection and
performance analytics is the process of time-series data
clustering. Clustering helps with identifying varying
patterns in time-series datasets. However, due to the
temporal nature of time-series data, applying classical
clustering algorithms will produce inaccurate results
(Vidaurre et al. 2014). Therefore, neural network based
clustering methods (Hatami et al. 2017; Ali et al. 2019)
have become popular in recent times. Using a neural
network based clustering method involves dimensionality
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Fig. 1. Correlation matrix depicting high dependencies between flow, torque and speed multivariate data points.

reduction and feature extraction of time-series datasets. This
can be achieved in two ways: (1) by feeding time-series data
tables directly into a neural network model or (2) by
converting time-series data in images.

There are three methodologies that describe the conversion
of time-series data into images: recurrence plots (RP) (Wang
and Oates 2015), Gramian Angular Fields (GAF) and
Markov Transition Fields (MTF) (Hatami er al. 2017). Each
method works towards creating a matrix representation of
time-series data, which is then converted to images.

Although it is not the purpose of this study to compare the
results of the image conversion techniques, it is worth
mentioning the limitations of the aforementioned methods.
Similar to the limitations of data approximation techniques,

these image conversion methods have no inherent ability
to manage multivariate time-series data. They require a multi-
channel neural network approach to overcome this limitation.
The requirement for uniformly recorded time-series data is
also valid for these methods.

Methodology

Data transformation and preparation

Data transformation and preparation is compulsory when
working with time-series datasets and is typically the most
tedious task. Sensor data, gathered from industrial control
systems, is stored in a hierarchical configuration where
streaming data is stored in the order it is recorded (Saghir
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Fig. 2. An example of the SAX technique, where univariate time-series data is approximated to nine symbols.
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et al. 2019a). Popular data science programming languages
process and store data as arrays or vectors (McKinney 2013);
hence, the transformation of streaming time-series data is
necessary before conducting any detailed analytics (Fig. 3).

As part of the transformation process, raw time-series
data is first rearranged into an array format. Traditionally,
time-series data is non-uniform, i.e. not all sensor values are
recorded at each time step (or sampling rate) as some values
are measured faster than others. Hence, the conversion of raw
time-series data to an array format will produce time-step gaps
where all values are not recorded at the same interval. A gap
laden array is shown in Fig. 4, where it is evident that some
values are measured at a higher frequency than others.

The gaps in transformed arrays are filled by using
imputation or fill methods that are readily available in
machine learning software libraries (Pedregosa et al. 2011).
An essential factor to consider while filling missing (or NaN)
entries is to know the measured variable characteristics.
Analog variables (such as flow and torque) should be filled
using a cubic imputation method, as this method matches
the measurement characteristics. Digital variables (such as
speed) should be filled using a forward-fill method, as this
characterises step-wise change, i.e. variables change only

Flow chart depicting data transformation and preparation steps before conducting SAX transformation.

when a command is initiated to modify them. A filled array
is shown in Fig. 5.

Once the time-series array is transformed, data is then filtered
and normalised. Process-based outliers, where sensor
measurements arc out-of-bounds, are deleted from the array
based on set limits. The normalisation of time-scries data is
achieved through adjusting sensor values to a standard
scale and removing variability in measurement range across
sensors. This ensures identical feature extraction across
different wells during the SAX transformation process.

Time-series data to SAX symbols conversion — expanding
window method

Once data preparation and transformation is complete,
multivariate datasets are then converted to SAX symbols
based on an aggregate window method. Usually, data analysis
is done ona sliding window-based method. Analysis based on the
sliding window methodology captures events, features and
statistical information from a pre-defined time window with a
fixed stride movement. A limitation of this approach is that
statistical information (mean, average, variance, etc.) is confined
to the window length alone. While using SAX feature extraction
for multivariate time-series analysis, a sliding window, as
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Flow Speed Tubing_Pressure Casing_Pressure Gas_Rate Torque Downhole_Level
Date

2015-05-01 00:54:39  294.039001 NaN NaN NaN 95146599 14.0 137.114532
2015-05-01 00:55:39 NaN NaN NaN NaN NaN 14.0 137.114532
2015-05-01 00:56:39 NaN NaN 32.167301 NaN NaN 138 148.116623
2015-05-01 00:59:39 NaN NaN NaN NaN NaN 138 148.116623
2015-05-01 01:00:39 NaN NaN NaN NaN NaN 147 98.714333
2015-05-01 01:01:39 NaN NaN NaN NaN NaN NaN NaN
2015-05-01 01:02:40 NaN NaN NaN NaN NaN 147 98.714333
2015-05-01 01:03:40 290.309998 NaN NaN NaN  94.603500 143 120.666069
2015-05-01 01:04:40 NaN NaN NaN NaN NaN NaN NaN
2015-05-01 01:05:40 NaN 273.698608 NaN NaN NaN NaN NaN
2015-05-01 01:06:40 NaN NaN NaN NaN 94603500 NaN 120.666069
2015-05-01 01:07:40 NaN NaN NaN 34.483501 100.022003 NaN 114.570335
2015-05-01 01:09:40 NaN NaN NaN NaN NaN 144 114570335
2015-05-01 01:10:40 NaN NaN 32.037800 NaN NaN 147 98.615585
2015-05-01 01:12:40 289.291992 NaN NaN NaN NaN 147 98 615585
2015-05-01 01:13:40 NaN NaN NaN NaN NaN 143 121.013443
2015-05-01 01:14:40 NaN NaN NaN NaN 99246303 143 121.013443
2015-05-01 01:15:40 NaN NaN NaN NaN 95022003 140 137.147720
2015-05-01 01:16:40 NaN NaN NaN NaN NaN 14.0 137.147720
2015-05-01 01:17:40 NaN NaN NaN NaN NaN 14.1 131.699463
2015-05-01 01:18:40 NaN NaN NaN NaN 95533699 147 98.712791
2015-05-01 01:19:40 NaN 273.698608 NaN NaN  98.562698 14.0 136.996597

Fig. 4.

shown in Fig. 6, will only capture approximation for a time
window without considering the effect of overall PCP
performance since time zero (fy). This will lead to limited
representation of the overall PCP performance.

This study proposes the use of the aggregating window
technique to overcome the shortfalls of the sliding window
method when applied to multivariate time-series analysis. As
the name suggests, the aggregating window method takes into
consideration data starting from time zero (7y) and normalises
data over the entire aggregate of time-series data at each
expansion stride. The process is shown in Fig. 7, where the
mean of time-series data is effected every time new
measurements are captured in expansion stride. This
technique ensures that extracted features are representative of
PCP performance from 7, onwards.

Fig. 8 further demonstrates how SAX transformation is
applicd with an cxpanding window technique. In this
example, the expansion stride is 20 time-series samples, i.e.
normalisation and SAX transformation is executed every 20 min
based on a 1 min sampling rate. Fig. 8« depicts the first time-
series sample window of 20 data points starting at 7y. These

Raw time-series data transformed into an array, where values are missing due to the measurement of sensor data at varying time steps.

data points are normalised, after which SAX transformation is
applied to the equally distributed bin regions. The SAX
symbols for this window arc recorded and stored for the
purposc of PCP performance heatmap conversion.

Fig. 8b depicts the next 20 streaming data points. Once the
second expansion stride is completed, all data points starting
from ¢, are normalised and SAX transformation is applied to
the complete dataset. It can be observed that the SAX symbols
in the first window were adjusted as per the normalisation with
the new data window. However, we record the SAX symbols
for the new window only and discard the symbols of the
previous windows. By doing so, the SAX symbols created in
the window are representative of the change in PCP
performance. The previous windows that have adjusted
symbols are of no particular use in terms of machine
learning and analytics as they do not represent streaming
time-series data.

SAX symbols to performance heatmaps

Converting SAX symbols to performance heatmaps is a four-
step process where symbols are first arranged in a matrix, each
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Flow Speed Tubing_Pressure Casing_Pressure Gas_Rate Torque Downhole_Level
Date

2015-05-01 00:54:39 294.039001 273.698608 32.160355 34556833 95.146599 14.00 137.114532
2015-05-01 00:55:39 293506287 273.698608 32.164078 34550166 95.069013 14.00 137.114532
2015-05-01 00:56:39 292973572 273.698608 32.167801 34543500 94991428 13.80 148.116623
2015-05-01 00:59:39 292.440857 273698608 32155083 34536833 94913842 1330 148.116623
2015-05-01 01:00:39 291.908142 273.698608 32144164 34530167 94836257 14.70 98.714333
2015-05-01 01:01:39  291.375427 273.698608 32.132346 34523500 94758671 1470 98.714333
2015-05-01 01:02:40 290.842712 273.698608 32.120528 34516834 94681086 14.70 98.714333
2015-05-01 01:03:40 290.309998 273.698608 32.108710 34510167 94603500 14.30 120.666069
2015-05-01 01:04:40 290.164568 273.698608 32.096891 34503501 94603500 1432 120.666069
2015-05-01 01:05:40 290019139 273.698608 32.085073 34496834 94603500 1434 120.666069
2015-05-01 01:06:40 289.873710 273.698608 32.073255 34490168 94603500 14.36 120.666069
2015-05-01 01:07:40 289.728230 273.698608 32.061436 34483501 100.022003 14.38 114570335
2015-05-01 01:09:40 289582851 273.698608 32.049618 34483501 99.866963 14.40 114.570335
2015-05-01 01:10:40 289.437422 273.698608 32.037800 34483501 99.711923 1470 98.615585
2015-05-01 01:12:40 289.291992 273.698608 32.050715 34483501 99556883 14.70 98.615585
2015-05-01 01:13:40 289255439 273.698608 32.063631 34483501 99401843 1430 121.013443
2015-05-01 01:14:40 289218886 273.698608 32.076546 34483501 99246303 14.30 121.013443
2015-05-01 01:15:40 289.182332 273.698608 32.089461 34483501 95022003 14.00 137.147720
2015-05-01 01:16:40 289.145779 273.698608 32102377 34483501 95192568 14.00 137.147720
2015-05-01 01:17:40 289.109226 273.698608 32.115292 34483501 95363134 14.10 131.699463
2015-05-01 01:18:40 289.072673 273.698608 32.128208 34483501 95533699 14.70 98.712791
2015-05-01 01:19:40 289.036119 273.698608 32141123 34483501 98562698 14.00 136.996597

Fig. 5. Transformed array after imputation and fill methods are applied to various measurements and sensor readings. Gaps in the speed columns are
filled using a ‘forward-fill’ method. Remaining variables are filled through cubic imputation.
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Fig. 6. Example of a rolling window method with a fixed stride.
matrix cell is assigned a timed colour code, a combined Matrix conversion
heatmap is produced for a single time window, and finally, =~ SAX symbols from each of the three variables (flow, torque and

the heatmaps are segregated by masking colour codes. These speed) are converted into matrices. Flow and torque SAX
steps are described in detail below. symbols are each converted into a 5 x | matrix, where the
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Fig. 7. Example of an Expanding Window method with an expansion stride.

cells denote a low-, normal- and high-operational range. Each
cell in the matrix holds either a single SAX symbol or an
aggregate of SAX symbols. For flow and torque, symbol
(i) denotes a high-performance range, and the symbols are
placed on the top cell of their respective matrices.
Symbol aggregates (f+g+h) and (c+d+e) denote a normal-
performance range and are placed in the mid-cells. Similarly,
symbols (a) and (b) represent the low-performance range and are,
therefore, placed in the two bottom cells of the matrices.
Aggregation of mid-range symbols is performed to suppress
their high rate of occurrence within a time window, which can
inaccurately be characterised as fluctuating behaviour.

Speed SAX symbols are converted into a 9 x 1 matrix,
where each symbol has its own designated cell. Symbols for

this time-series data are not aggregated as speed does not have
a highly dynamic behaviour versus flow and torque. The
matrix conversion for all three variables is shown in Fig. 9.

Timed colour-code conversion

To better visualise the occurrence of SAX symbols in a time
window, we need to transform matrix cells as per a set timed
behaviour. Each matrix cell represents a count of its respective
symbol(s) within a pre-selected time window. If we run SAX
symbol conversion on a pre-selected 1-day window and the
sampling time for each data point is 1 min, we will then have
1440 SAX symbols for each of the selected variables. In order
to capture the occurrence or count of symbols, the colour-code
scheme shown in Table 1 is applied to each matrix cell.
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Time (min)

occurrence of symbols (f) and (h), when accumulated

together, is also higher than 60 min but less than 720 min.

Hence the matrix cell (f+g+h) is colour coded yellow. The

same process is shown for torque and speeds SAX symbols in

Figs 11 and 12, respectively.

into colour-coded

After data variables are converted

heatmaps,

together to form a
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they are

multivariate heatmap. Fig. 13, shows a multivariate heatmap
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Fig. 8. SAX transformation of time-series data using the Expanding Window Technique.

Fig. 10 provides an overview of how a 1-day window of flow
time-series data is converted into a heatmap. For this instance,
symbol (i) is prevalent where it has occurred more than
symbol (i) is colour coded green. The occurrence of the

720 min (or half a day). Hence the matrix cell for the
symbol (e) is higher than 60 min but less than 720 min,

Combined heatmap transformation
hence the matrix cell (ctd+e)
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Flow Torque Speed Table 1. Colour code based on SAX symbol count during a 1-day

window

SAX symbol count Colour
in one day window code

(1440 min)

Performance type

[ewioN  ybiH
[ewloN  ybiH

720 < count < 1440 Majority performance
60 < count < 720 Yellow Variation performance

00 < count < 60

Mo
Mo

Anomaly event

Nil

i
h
9
f
e
d
c
b
a

Count = 00

Fig. 9. HEATMAP matrices for flow, torque and speed.

Flow

Flow SAX @e © 1@h®i |

Fig. 10. Flow time-series data conversion to SAX HEATMAP. Symbol (i) is colour coded green and the remaining yellow.

Torque

Torque SAX @i

e

Fig. 11. Torque time-series data conversion to SAX HEATMAP. Symbol (i) is colour coded green.

Speed

Speed SAX @ f

Fig. 12. Speed time-series data conversion to SAX HEATMAP. Symbol (¢) is colour coded green and (f) yellow.
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for a 1-day time-series data of flow, torque and speed. Two
events are observed during this 24-h period; the first event is a
speed change, and the second event is unsteady flow. As per
the colour-code SAX symbol count, both these events are
captured by the multivariate heatmap. However, this heatmap
does not recognise if flow fluctuation occurred before or after
the speed change. This drawback can be avoided if a smaller
time window is used for SAX symbol conversion and heatmap
generation.

Table 2 shows the colour-code conversion scheme for a PCP
performance heatmap generated for a 1-h window. For a 1-h
window, the maximum symbol count for cach variable is 60
symbols. The limits for each performance type are set based on the
count of SAX symbols, where a count in the range of 15-60
represents majority performance. Variation performance is set

Table2. Colour codebased on SAX symbolcount during a 1-h window

SAX symbol count Colour
in 1-h window code
(maximum of

Performance type

15 < count < 60 Majority performance

S<count< 15 Yellow Variation performance
00 < count < 5

Count = 00

Anomaly event

Nil

== Flow ==Speed == Torque

between five and 15 symbols. Moreover, an anomaly event is
recognised when the symbol count range is between zero and five.
In Fig. 14 performance heatmap images are generated with a
1-h window. With the improved granularity provided by a
smaller window analysis, change in performance can be seen
for each hour. The change in flow behaviour is picked up by the
performance heatmaps on either side of the 6:00 p.m. mark.

Splitting performance heatmaps

To further aid with PCP performance analysis, the
performance heatmaps are split by masking the individual
colours shown in the colour code Table 2 (Saghir et al.
2019c¢). Three heatmaps are extracted by this method, and
they arc shown in Fig. 15. By splitting the hcatmaps, it
becomes easier to train the machine learning models to
detect performance and anomalous related events
individually. Majority performance heatmaps represent the
stable PCP performance recorded for a particular time
window. Anomaly event heatmaps are representative of
behaviour that has occurred for a brief period, as illustrated
in Table 2.

The variation performance heatmaps are ignored, as they
represent passing variation in sensor data and characterise
acceptable performance deviation when physical measurements
are in transition. Fig. 16 shows a sample of split heatmaps, which
are created for training the auto encoder and the machine
learning model.

'

Fig. 13. Multivariate Performance Heatmap for a 1-day time window

@ Flow @ Speed @ Torque

WL
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3:00 am 9:00 am

12:00 pm

3:00 pm 6:00 pm 9:00 pm

Fig. 14. Multivariate Performance Heatmaps generated on an hourly basis.

Page 88



Machine learning methods to assess PCP in CSG wells

The APPEA Journal 207

PCP performance heatmap Majority performance

Variation performance

(lgnored) Anomaly event

Fig. 15. Multivariate Performance Heatmap split into masked components.
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Fig.16. Split Heatmaps used for training Auto Encoders and Machine Learning Models. (@) Original PCP Performance Heatmaps. (b) Majority Performance

Heatmaps. (¢) Anomaly Heatmaps.

Convolutional neural network based auto encoder

Once performance heatmaps are created and masked, a CAE is
employed to reduce the dimensionality of the generated
images. The performance heatmaps generated for this study
have a dimension of 48 x 48 x 3 (6912 pixels). With the CAE,
we reduce the dimensionality of the image to latent space,
which helps to improve the model training time.

As shown in Fig. 17, we are using a seven-layer neural
network to reduce the dimension of the image to 1 x 8
representation of the original 48 x 48 x 3 image. All the
layers in the CAE are fully connected. The top section of
the network represents the encoder, which reduces the
dimension of the original image to a simplified code. The
decoder takes the code and converts it back to the original
image dimension. Although the encoder would suffice by itself
for reducing the image dimensionality, the decoded image is
required to compare the loss between the original and
reconstructed image to validate the accuracy of the
CAE. The accuracy of the CAE will be discussed in the
results section.

All PCP performance heatmaps are converted to an
encoded representation before the application of the clustering
methodology.

Time-series data clustering based on PCP performance
heatmaps

Fig. 18 summarises the end-to-end process for converting
performance heatmaps into clusters. All heatmaps are
encoded via the CAE before being processed by the
clustering algorithm. A further dimensionality reduction
step is performed with the singular value decomposition
(SVD) to convert the encoded images into two-dimensional
representation. This is done to visualise the results of the
clusters on a single plane (X-Y) plot. The two-dimensional
representation also helps with faster computation analysis to
determine the time-series clusters.

As per the second step of this process, we pass the SVD data
through the HDBSCAN clustering algorithm. Although there
are multiple benefits of using a density-based clustering
algorithm over partitional clustering algorithms (K-means as
an example), there are two benefits that make HDBSCAN
suitable for our application (Campello et al. 2013). First,
unlike partitional clustering algorithms where the number of
clusters must be pre-defined, HDBSCAN only requires
identification of a minimum number of clusters to work out
the optimum cluster number based on a hierarchical cluster
tree. Second, the HDBSCAN algorithm can identify outliers,
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which can further aid with analysis of PCP Performance

CODE

Fig. 17. CAE used for reducing the dimension of the PCP Performance Heatmaps.

PCP performance heatmaps

Majority heatmap clusters

Majority
performance =
heatmaps

Clustering
SAX transformation m_» LDBRSCANENS
(aggregating window) Anomaly heatmap clusters

Anomaly
events
heatmaps

Fig. 18. Summary of the process applied to convert PCP Performance Heatmaps to clusters.

of this study. Fig. 19 features the performance of the CAE,

Heatmaps. where the top row (Fig. 19a)shows 20 random anomaly
heatmaps. Fig 195 shows the encoded 1 x 8 images, but
Results they are displayed in a 2 x 4 configuration. Fig 19¢ shows the

CAE performance

We first describe the performance of the CAE model, as it
forms the basis of the clustering and the visual analysis results

decoded anomaly heatmaps, and it is observed that the

majority of the original images closely match their original
counterparts. For anomaly heatmaps that do not have enough
training samples, a loss is observed in their decoded images.

Page 90



Machine learning methods to assess PCP in CSG wells

The APPEA Journal 209

(a)

(b)
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Fig.19. CAE Encoder and Decoder overview for Anomaly Heatmaps, where (a) shows the original Anomaly Heatmap images; (b) shows the encoded image
(with an 8 x 1 dimension but displayed as a 2 x 4 image); and (¢) shows the decoded images.
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Fig. 20. CAE model loss for Anomaly Heatmaps.

Anomaly heatmaps from 200 wells were used to develop
the CAE model. A total of 800000 images were split into
60/40 configuration to create training and test samples,
respectively. The CAE was trained over 20 epochs, and the
model results are shown in Fig. 20. The training and validation
loss decreased over the epoch cycles and the two lines closely
follow each other. This means the model neither under or
overperformed and functioned effectively with the anomaly
heatmaps.

Figs 21 and 22 show the CAE image conversion overview
and model loss, respectively, for the majority performance
heatmaps. The CAE model for the majority performance
heatmaps was also trained with images from 200 wells and
had the same training parameters as the anomaly heatmap
CAE. The training and validation loss also decreased in this
case, with validation loss slightly higher than the training loss.
This indicates marginal overfitting of the majority heatmap
CAE model, which falls within an acceptable tolerance range.

(a)

o o o e e o o P

(c)

Fig. 21. CAE encoder and decoder overview for Majority Heatmaps, where («) shows the original Majority Heatmap images; (b) shows the encoded image
(with an 8 x 1 dimension but displayed as a 2 x 4 image); and (c¢) shows the decoded images.
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Heatmap clustering

Once the heatmap images were encoded, they were clustered
as per the process depicted in Fig. 18. It is noted that the
HDBSCAN created a high number of clusters for both the
majority performance and anomaly event heatmaps. For the
majority performance heatmaps, the HDBSCAN algorithm
produced 1000 plus clusters. Moreover, for the anomalous
events heatmaps, approximately 300 clusters were produced.

Model loss

~— Train
0.065 [ Test

0.060

0.055 A

Loss

0.050

0.045

0.040

00 25 50 75 100 125 150 175
Epoch

Fig. 22. CAE model loss for Majority Heatmaps.
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There are two reasons for such a high cluster count. First,
the clusters were created based on time-series heatmaps
generated from a large pool of CSG wells. Second,
HDBSCAN applied limited generalisation to the identified
clusters compared to other methods.

Although the number of clusters looks significantly high,
they do not apply to each well. Figs 23 and 24 show the number
of majority performance and anomalous event clusters across
17 randomly sclected wells. Wells with a higher number of
clusters attributed to the significantly high overall cluster count
for the time-serics images analysed as per the HDBSCAN
algorithm. Furthermore, the high cluster numbers also helped
to identify CSG wells with highly abnormal PCP performance.

Visual analytics — PCP performance analysis

Although the number of heatmap clusters detected was
relatively high, they presented an advantage when used in
conjunction with visual analytics tools. Fig. 25 shows how
clusters can be visualised in combination with streaming time-
series data. The visual analytics interface is a 30-day moving
window that helps the observer gauge PCP performance as
streaming data is captured and analysed.

Fig. 254 shows a stacked bar chart of the majority
performance clusters. Each stack is populated on an hourly
basis and represents one day of the performance. Different
colours in each stack represent a cluster count for that
particular day. In this visual analysis, the cluster number is

Count of majority performance clusters across 17 randomly selected wells.

287
255
195
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152
133
111 13 115 Uik =
79
H =
Well

Count of Anomalous Event Clusters across 17 randomly selected wells.
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not essential, but the variation in cluster count over time is of
significance. For the majority performance clusters bar charts,
the variance in cluster count is related to the change in PCP
performance. This is obvious by the change in colour of the
stacked columns. While the pump is running, the stacked bar
charts will usually contain two to five colours daily. However,
during pump shutdown and startup, multi-colour stacks were
observed, which indicated the fluctuating performance of the
pump during such stages.

Similarly, Fig. 25¢ shows a stacked bar chart of the
anomaly event clusters. A single colour stack (blue in this
case) represents a 24-h period, where no anomaly was

detected. As anomalies were detected and accumulated for
a particular day, the bar chart identified periods with atypical
performance. Change in the number of anomaly clusters aids
the operator in selecting days or periods to conduct an in-
depth PCP performance analysis.

To further aid with visual analysis, a cluster variance trend
was plotted over the stacked bar chart to provide an overview
of changing cluster behaviour. This visualisation is shown in
Fig. 26. Furthermore, an in-depth analysis was performed on a
daily trend by displaying majority performance and anomalous
heatmap images for a selected 24-h period. By focusing on a
particular day, operators and well surveillance engineers can

Majority performance clusters

(a) g
(b)

@ Flow @ Speed @ Torque

LI}

Anomaly event clusters

(c)

Fig.25. PCP visual analytics for 30-day rolling period. (@) Stacked colour bar chart depicting the count of daily majority performance clusters. (b) Time-series
trend. (¢) Stacked colour bar chart depicting the count of daily anomalous event clusters.

®Flow ®Speed @ Torque

Majority performance clusters

Anomaly event clusters

Fig. 26. PCP visual analytics for 30-day rolling period with a cluster variation line plot.
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Majority performance clusters

®Flow @Speed ®Torque

Fig. 27.

correlate anomalous behaviour to overall PCP performance.
An example of in-depth daily analysis is shown in Fig. 27,
where time-series plot, stacked bar charts and heatmap images
are displayed together.

Conclusion

Work described in this study shows that heatmap image-
based analysis of time-series data can effectively aid with
PCP performance analysis. Although only three multivariate
data points (flow, torque and speed) were used in this
study, this unique methodology can work with any number
of data points.

This study has also shown that visual analysis capability
provided by heatmap images can improve operator workload
and aid with in-depth PCP performance analysis.

Future work

Although the methodology covered in this study provides an
improved method to conduct PCP performance analysis,
further improvements are envisaged as part of continuing
rescarch. Future publications will cover the following work,
some of which are already underway:

e Analysis of CSG well meta-data (well orientation and pump

setting depth) to improve cluster generalisation,

Understanding the progressive behaviour of heatmap clusters

to help with sequential prediction analysis, and

* A comparative study to understand clustering behaviour
between the image analysis technique conducted in this
study and other time-series data based image conversion
techniques (RP, GAF and MTF).

Conflicts of interest

The authors declare no conflicts of interest.

Anomaly event clusters

PCP visual analytics with Heatmap image clusters for a 24-h, in-depth analysis.

Acknowledgments

The authors would like to thank the University of Adelaide for permission
to submit this paper. This research did not receive any specific funding.

References

Ali, M., Jones, M., Xie, X., and Williams, M. (2019). TimeCluster:
dimension reduction applied to temporal data for visual analytics.
The Visual Computer 35, 1013-1026. doi:10.1007/s00371-019-
01673-y

Bettaiah, V. (2014). The hierarchical piecewise linear approximation of time
series data. PhD Thesis, Department of Computer Science, University of
Alabama in Hunstville. Available at https://cdm16608.contentdm.oclc.
org/digital/collection/p16608coll23/id/2485  [Verified 30 January
2020]

Biniwale, S. S., and Trivedi, R. (2012). Managing LNG Deliverability: An
Innovative Approach Using Neural Network and Proxy Modeling for
Australian CSG  Assets. In ‘Abu Dhabi International Petroleum
Conference and Exhibition, 11-14 November, Abu Dhabi, UAE.
(Society of Petroleum Engineers.) doi:10.2118/160445-MS

Campello, R. J. G. B, Moulavi, D., and Sander, J. (2013). Density-Based
Clustering Based on Hierarchical Density Estimates. In: ‘Advances in
Knowledge Discovery and Data Mining’. (Eds J. Pei, V. S. Tseng, L. Cao,
H. Motoda and G. Xu.) pp. 160-172. (Springer: Berlin Heidelberg)

Chaovalit, P., Gangopadhyay, A., Karabatis, G., and Chen, Z. (2011).
Discrete wavelet transform-based time series analysis and mining. ACM
Computing Surveys 43, 1-37. doi:10.1145/1883612.1883613

Dan, J.. Shi, W., Dong, F., and Hirota, K. (2013). Piecewise Trend
Approximation: A Ratio-Based Time Series Representation. Abstract
and Applied Analysis 2013, 603629. doi:10.1155/2013/603629

Duvignau, R., Gulisano, V., Papatriantafilou, M., and Savic, V. (2018).
Piecewise Linear Approximation in Data Streaming: Algorithmic
Implementations and Experimental Analysis. Available at https://
arxiv.org/abs/1808.08877 [Verified 30 January 2020]

Firouzi, M., and Rathnayake, S. (2019). Prediction of the Flowing Bottom-
Hole Pressure Using Advanced Data Analytics. In *‘SPE/AAPG/SEG
Asia Pacific Unconventional Resources Technology Conference, 18-19
November, Brisbane, Australia.”. (Unconventional Resources
Technology Conference). doi:10.15530/AP-URTEC-2019-198240

Page 94



Machine learning methods to assess PCP in CSG wells

The APPEA Journal 213

Gao, Y., and Lin, J. (2018). Efficient Discovery of Variable-length Time
Series Motifs with Large Length Range in Million Scale Time Series.
Available at https://arxiv.org/abs/1802.04883 [verified 30 January 2020]

Guigou, F., Collet, P., and Parrend, P. (2017). Anomaly detection and motif
discovery in symbolic representations of time series. Technical Report
No 69427/2. (Complex System Digital Campus, UNITWIN UNESCO).
Available at https://hal.archives-ouvertes.fr/hal-01507517/document
[Verified 30 January 2020]

Hatami, N., Gavet, Y., and Debayle, J. (2017). Classification of Time-Series
Images Using Deep Convolutional Neural Networks. Available at https://
arxiv.org/abs/1710.00886 [Verified 30 January 2020]

Hoday, J. P., Knafl, M., Prosper, C., and Braas, M. (2013). Diagnosing PCP
Failure Characteristics using Exception Based Surveillance in CSG. In
‘SPE Progressing Cavity Pumps Conference. Calgary, Alberta, Canada.’
(Society of Petroleum Engineers.) doi:10.2118/165655-MS

Kumar, N, Lolla, V. N., Keogh, E. J., Lonardi, S., Ratanamahatana, C., and
Wei, L. (2005). Time-scries Bitmaps: a Practical Visualization Tool for
Working with Large Time Series Databases. In ‘Proceedings of the 2005
STAM International Conference on Data Mining’. Available at https://
doi.org/10.1137/1.9781611972757.55 [Verified 30 January 2020]

Lin, I., Keogh, E., and Lonardi, S. (2005). Visualizing and discovering non-
trivial patterns in large time series databases. Information Visualization 4,
61-82. doi:10.1057/palgrave.ivs.9500089

Lin, J., Keogh, E., Wei, L., and Lonardi, S. (2007). Experiencing SAX: a
novel symbolic representation of time series. Data Mining and
Knowledge Discovery 15, 107-144. doi:10.1007/510618-007-0064-z

Matthews, C. M., Zahacy, T. A., Alhanati, F. J. S., Skoczylas, P., and Dunn,
L. J.(2007). ‘Petroleum Engineering Handbook. Production Operations
Engineering’. (Society of Petroleum Engineers: Richardson, Texas).

McKinney, W. (2013). ‘Python for Data Analysis’. (O'Reilly Media:
Sebastopol, California).

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel,
O.. Blondel. M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas,
I., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., and Duchesnay,

E. (2011). Scikit-lecarn: Machine Learning in Python. Journal of

Machine Learning Research 12, 2825-2830.

Prosper, C., and West, D. (2018). Case Study Applied Machine Learning to
Optimise PCP Completion Design in a CBM Field. In ‘SPE Asia
Pacific Oil and Gas Conference and Exhibition, 23-25 October,
Brisbane, Australia.” (Society of Petroleum Engineers.)
doi:10.2118/192002-MS

Saghir, F., Gonzalez Perdomo, M. E., and Behrenbruch, P. (2019a).
Application of Exploratory Data Analytics (EDA) in Coal Seam Gas
Wells with Progressive Cavity Pumps (PCPs). In * SPE/JATMI
Asia Pacific Oil & Gas Conference and Exhibition, 29-31
October, Bali, Indonesia.” (Society of Petroleum Engineers.)
doi:10.2118/196528-MS

Saghir, F., Perdomo, M. E. G., and Behrenbruch, P. (20195). Converting
Time Series Data into Tmages: An Innovative Approach to Detect
Abnormal Behavior of Progressive Cavity Pumps Deployed in Coal
Seam Gas Wells. In ‘SPE Annual Technical Conference and Exhibition,
30 September-2 October, Calgary, Canada: (Society of Petroleum
Engineers.) doi:10.2118/195905-MS

Saghir, F., Gonzalez Perdomo, M. E., and Behrenbruch, P. (2019¢). Machine
Learning for Progressive Cavity Pump Performance Analysis: A Coal
Seam Gas Case Study. In *SPE/AAPG/SEG Asia Pacific Unconventional
Resources Technology Conference, 18-19 November,. Brisbane,
Australia.” (Unconventional Resources Technology Conference.)
doi:10.15530/AP-URTEC-2019-198281

Shaw. P. K., Saha, D., Ghosh, S., Janaki, M. S., and Tyengar, A. N. S.
(2015). Investigation of coherent modes in the chaotic time series
using empirical mode decomposition and discrete wavelet transform
analysis. Chaos, Solitons and Fractals 78, 285-296.
doi:10.1016/j.cha0s.2015.08.012

Sivaraks, H., and Ratanamahatana, C. A. (2015). Robust and Accurate
Anomaly Detection in ECG Artifacts Using Time Series Motif
Discovery. Computational and Mathematical Methods in Medicine
2015, 453214. doi:10.1155/2015/453214

Vidaurre, D., lead, R., Harrison, S., Smith, S., and Woolrich, M. (2014).
Dimensionality reduction for time series data. Available at https://arxiv.
org/abs/1406.3711 [Verified 30 January 2020]

Wang, Z., and Oates, T. (2015). Imaging Time-Series to Improve
Classification and ITmputation. Tn Proceedings of the Twenty-Fourth
International Joint Conference on Artificial Intelligence (IJCAI 2015).
Available at  https://www.ijcai.org/Proceedings/15/Papers/553.pdf
[Verified 30 January 2020]

Zhong, R., Johnson, R. L., and Chen, Z. (2019). Using Machine Learning
Mecthods to Tdentify Coals from Drilling and Logging-While-Drilling
LWD Data. In ‘SPE/AAPG/SEG.) Asia Pacific Unconventional
Resources Technology Conference, 18-19 November,. Brisbane,
Australia.” (Unconventional Resources Technology Conference.)
doi:10.15530/AP-URTEC-2019-198288

Page 95



214 The APPEA Journal F. Saghir et al.

The authors

Fahd Saghir is an Automation Engineer with 10+ years of experience in the digital oilfield domain. Since
completing his BSc in Electrical Engineering from the University of Houston in 2006, Fahd has been involved
in creating digital solutions for the production and operations verticals within the oil and gas sector, based on
innovative hardware and software technologies. Fahd is currently pursuing a PhD in Petroleum Engineering
from the University of Adelaide. His research work focuses on the use of Machine Learning methods to classify
and detect abnormal PCP performancein CSG wells. This research investigates an innovative approach where
time-series data is transformed into heatmap images, and the images are then used to classify PCP
performance in near real-time. Fahd is also an active SPE volunteer and has participated as a speaker
and moderator at multiple SPE conferences and webinars. He is currently a member of the Digital Solutions
Committee, which falls under SPE’s Digital Energy Technical Section.

Mary Gonzalez is a senior lecturer at the Australian School of Petroleum and Energy Resources (ASPER) at the
University of Adelaide. Her research and teaching focus is on reservoir and production engineering,
particularly production enhancement and optimisation. She joined the ASP in 2009 after several years of
experience in the oil and gas industry, where she provided practical petroleum engineering, consultancy
services and solutions in the areas of subsurface and production engineering. Mary has published several
articles in peer-reviewed journals and presented at international conferences. She has served as a reviewer for
different journals and as a mentor for young professionals, and she is the Community Education Chair and the
ASPER Faculty Officer for the SPE.

Professor Peter Behrenbruch is currently the Managing Director of Bear and Brook Consulting Pty Ltd (since
2003). He is also an Adjunct Professor at the Ho Chi Minh University of Technology, Faculty of Geology and
Petroleum Engineering, Vietnam. Behrenbruch’s last full-time industry position (2008-2009) was Chief
Operating Officer/Managing Director for East Puffin (SINOPEC) for the Puffin offshore development project,
Timor Sea. He held a similar position (2007-2008) for AED Oil Ltd on the same project. He was also the
inaugural Head of the School of Petroleum Engineering and Management (2001-2003) and full-time
Professor at the University of Adelaide (2001-2007), with tenure since 2004. More recently, he taught as
a Visiting Professor at the University of Western Australia (2014), Curtin University (2014), Stanford
University (2000) and several other institutions.

www.publish.csiro.au/journals/aj

Page 96



7. Paper 5: Application of streaming analytics for Artificial Lift systems:
a human-in-the-loop approach for analyzing clustered time-series
data from progressive cavity pumps

The paper provides a comprehensive methodology for replicating the clustering process for
multivariate time-series data. This begins with the creation of a performance heatmap-
specific autoencoder designed to reduce the size of heatmap images, thus improving
computational efficiency. The paper also explores various dimensionality reduction methods

for visualizing the performance heatmaps in a two-dimensional space.

Moreover, the paper discusses the pivotal role of petroleum engineers in the human-in-the-
loop approach for labelling performance heatmaps. Engineers are entrusted with cluster
labeling to accurately categorize different PCP performance states. The paper presents a
workflow for human-assisted labelling of streaming time-series data using Major and

Anomaly clusters.

Petroleum and surveillance Engineers narrow down events of interest for real-time alerts by
pairing relevant Major and Anomaly clusters. This empowers them to enhance their
management of ALS through machine learning-supported exception-based surveillance.
Based on the labelled Major and Anomaly pairs, the method identifies ten performance-
related events and five anomalous events when analyzing the heatmap images,

demonstrating its real-world effectiveness.

This collaborative effort between engineers and machine learning algorithms significantly
enhances the accuracy and the overall efficacy of the streaming analytics system, hence

assisting with improved management of a large fleet of CSG wells.
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Abstract

Assessing real-time performance of Artificial Lift Pumps is a prevalent time-series problem to tackle for natural gas
operators in Eastern Australia. Multiple physics, data-driven, and hybrid approaches have been investigated to analyse or
predict pump performance. However, these methods present a challenge in running compute-heavy algorithms on
streaming time-series data. As there is limited research on novel approaches to tackle multivariate time-series analytics for
Artificial Lift systems, this paper introduces a human-in-the-loop approach, where petroleum engineers label clustered
time-series data to aid in streaming analytics. We rely on our recently developed novel approach of converting streaming
time-series data into heatmap images to assist with real-time pump performance analytics. During this study, we were able
to automate the labelling of streaming time-series data, which helped petroleum and well surveillance engineers better
manage Artificial Lift Pumps through machine learning supported exception-based surveillance. The streaming analytics
system developed as part of this research used historical time-series data from three hundred and fifty-nine (359) coal seam
gas wells. The developed method is currently used by two natural gas operators, where the operators can accurately detect
ten (10) performance-related events and five (5) anomalous events. This paper serves a two-fold purpose; first, we describe
a step-by-step methodology that readers can use to reproduce the clustering method for multivariate time-series data.
Second, we demonstrate how a human-in-the-loop approach adds value to the proposed method and achieves real-world
results.

Keywords Multivariate time-series data - Unsupervised clustering - Machine Learning - Anomaly detection -
Artificial lift - Progressive cavity pump - Coal seam gas

1 Introduction

The State of Queensland is home to approximately nine
thousand natural gas wells [1], where energy operators
depend on positive displacement pumps to produce
hydrocarbons from these geographically dispersed Coal
Seam Gas (CSG) assets. As the natural gas supplied from

4 Fahd Saghir
fahd.saghir@adelaide.edu.au

Australian School of Petroleum and Energy Resources,
Santos Petroleum Engineering Building, University of
Adelaide, Adelaide, SA 5005, Australia
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Bear and Brook Consulting, 135 Hilda Street, Corinda,
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these wells is critical to sustaining energy demand in
domestic and international markets, operators need to avoid
unplanned downtime caused by pump failures. To monitor
pump performance, data acquisition and control systems
are deployed across the entire fleet of CSG wells, where
they gather and transmit time-series data from pumps and
well sensors. Depending on the natural gas operating
company, a petroleum engineer may be assigned to manage
anywhere from fifty to a hundred wells. They monitor
streaming time-series data to evaluate pump performance
and anticipate any failure that may disrupt gas production.
However, monitoring, analysing, and mitigating issues on a
well-by-well basis is a tedious task, and most often, critical
pump events are either missed or ignored [2]. Most
importantly, CSG producers are looking to add several
hundred wells in the coming years to sustain global energy

@ Springer
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demand, which will only exacerbate the real-time pump
performance analysis issue. This is where machine learn-
ing-assisted pump performance analysis can improve pump
life.

1.1 Drawbacks of time-series analysis methods
used for artificial lift systems

Generally, time-series analysis of Artificial Lift systems is
based on either fuzzy logic [3, 4], physics-based models [5]
or machine learning [6-9] based pattern recognition
methods. However, such methods present a drawback when
assessing an Artificial Lift system’s performance as they
identify events without context, which may or may not
impact the pump performance. Moreover, these methods
rely on labelled or known events, and any new or outlier
events are not detected. Furthermore, it is rare to find
labelled datasets for Artificial Lift applications. In most
cases, the assistance of subject matter experts (SMEs) is
required to label data sets for improved failure prediction
results [10]. However, labelling patterns in raw time-series
data is challenging for SMEs, as each pump presents a
different data performance profile where the same anomaly
or event may have very different characteristics, such as
amplitude and length of an event.

1.2 Limitations of time-series clustering
methods

In a recently published paper, where the authors bench-
marked eight (8) well-known time-series clustering meth-
ods [I1], they set limitations for their evaluation
methods which are mentioned below:

1. Uniform length time-series: The benchmarked methods
mentioned in the paper above were tested on time-
series data of uniform length for a pre-defined time-
window length. However, time-series data from indus-
trial sensors mostly have non-uniform lengths.

2. Known number of clusters: The datasets tested to
benchmark the clustering methods had a known
number of clusters (or k values). As our previous
publications have demonstrated [12-14], it is impos-
sible to pre-define a set number of clusters for
industrial time-series data, especially when dealing
with data gathered from Artificial Lift Systems.

Another notable research on deep time-series-based clus-
tering [15] mentions similar or related drawbacks. These
will be discussed later in the Related Works section.
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1.3 A practical approach for streaming time-
series analysis of artificial lift systems

To address the drawbacks and limitations mentioned
above, we propose a human-assisted approach to labelling
clustered time-series data that can be utilized for running
streaming performance analytics of positive displacement
pumps.

Our research has two unique parts; firstly, we define a
streamlined process to cluster multi-variate time-series
data. This process is based on our previous research work
where we convert multi-variate time-series data into per-
formance heatmap images [14]. These images are then
converted to unlabelled clusters based on the methodology
defined later in the paper.

Second, to assist with the cluster labelling process, we
developed a cluster analysis tool for engineers, where they
could apply their petroleum domain expertise to label
events of interest. Through this tool, petroleum engineers
can combine their expertise with streaming analytics and
automate the process of labelling events of interest,
allowing them to manage Artificial Lift System proac-
tively. Furthermore, petroleum engineers from two CSG
operating companies currently use the cluster analysis tool
system developed as part of this research for their daily
analysis of approximately five-hundred PCP wells.

2 Overview of Coal Seam Gas production

In eastern Australia, natural gas is predominantly produced
through CSG production, where coal seams are depres-
surized through a dewatering process that allows gas to
escape from coal cleats and flow to the surface. Positive
displacement pumps are installed in CSG wells, which
produce water to the surface and, in the process, depres-
surize the coal seams. In the oil and gas industry, such
pumps are referred to as Artificial Lift Pumps, and a net-
work of these pumps collectively forms an Artificial Lift
System. In Fig. 1 (Left), we see how water is displaced
from the bottom of the well through the Production Tubing,
and gas is produced via the production casing.

A salient characteristic of CSG wells is that they have a
shorter production life span, usually ten (10) years, com-
pared to conventional gas-producing wells. This lifespan is
shown in Fig. 1 (right), with three (3) distinct stages, where
a large quantity of water is produced initially to depres-
surize the coal seams, followed by a production stage with
an increase in gas production. Finally, gas rates decline
towards the end of the production lifecycle.

As gas production depletes quickly, CSG producers in
Queensland must periodically drill and add new wells to
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Fig. 1 (Left) Depiction of natural gas production from coal seam gas (CSG) wells [16], (right) production stages of a coal seam gas well [17]

maintain natural gas supplies. Hence, many CSG wells are
dotted across Queensland, and this geographical spread and
density are shown in Fig. 2.

2.1 Progressive Cavity Pumps

Like any positive displacement pump, a rotor and a stator
work in tandem to push the liquid through to achieve
vertical hydraulic lift. Figure 3 shows various components
of a PCP assembly installed in a producing well. The rotor
and elastomer assembly are designed such that the cavities
between them push the fluid through when the rotor is
operational.

Equations (1) and (2) show the correlation between
speed, flow and torque. Time-series trends of these three
parameters provide the necessary operational details of
PCPs over their lifetime. Hence, the multivariate time-
series analysis of our study will focus on these three
parameters.

The correlation between flow and speed is shown in
Eq. (1) [18].
gih = SO (1)
where ¢, = theoretical flow, s = pump displacement,

= rotational speed.
The correlation between torque and speed is shown in

Eq. (2) [18).

PomoE,
gy, < FimsiFl @
where T, = polished rod torque, P,me = prime mover

power, Ep = power transmission efficiency, C = constant,
@ = rotational speed

2.2 Data gathering from CSG wells
As CSG wells are located in remote and geographically

dispersed areas, operators must utilize Supervisory Control
and Data Acquisition (SCADA) Systems to control wells
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Fig. 2 a Geographical Spread of
CSG Wells in Queensland.

b High-Density Well Population
of CSG Wells (Source:
Queensland Globe)
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Fig. 3 (Left) Main components of a PCP system. (Right) Cut-out view of PCP rotor and stator [18]
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through Wireless Telemetry. Ultra-high frequency (UHF)
or microwave radio transmit data from CSG wells to a
central control room. Figure 4 shows a layout of a typical
CSG well site. The Remote Telemetry Unit (RTU) installed
at each well site is responsible for recording data from
multiple sensors and forwarding it to a central SCADA
system. The data are stored and historized in data servers
and delivered onwards to a corporate Historian database. It
is important to note that data transferred via SCADA sys-
tems may not always have a fixed transmit rate; hence, data
reporting time in most cases is asynchronous where time
windows are not of identical length. Some SCADA sys-
tems use a report-by-exception approach, where data are
only transmitted when a critical data point changes based
on a pre-set percentage change. The report-by-exception
method also produces data of unequal time windows.

3 Related work

Unlike univariate time-series data, applying anomaly
detection and clustering methods to multivariate time-ser-
ies data are a complex task which requires additional
interpretation and insights [19]. In this section, we will
further shed light on research gaps in multivariate time-
series based anomaly detection and clustering methods.
Furthermore, our previous work on Symbolic Aggregation
Approximation (SAX)-based performance heatmap con-
version [14] will be discussed to demonstrate why this
novel approach provides a better basis for a human-in-the-
loop approach when clustering multivariate time-series

Fig. 4 Layout and key components of a CSG well

data. Finally, we will discuss why a human-in-the-loop
approach adds value to time-series analysis process pro-
posed in this paper.

3.1 Neural net-based anomaly detection

Neural nets have become a popular choice to solve
anomaly detection problems in time-series data. One
approach proposes using a fully connected convolutional
network, U-Net, to identify anomalies in multivariate time-
series data [20]. This method treats a fixed-length multi-
variate time-series snapshot as a multi-channel image. A U-
Net segmentation technique is applied to obtain a final
convolution layer corresponding to an augmentation map.
The last layer includes the anomaly identification classes
for the time-series snapshot, and each anomaly class is
considered a mutually exclusive event. However, there are
two drawbacks to this anomaly detection approach. Firstly,
as the U-Net architecture accepts a fixed number of sam-
ples as input in a time window, the time-series data must be
resized based on up-sampling or down-sampling tech-
niques. Second, as each anomaly is a mutually exclusive
event, it is difficult to segregate anomalies of interest from
a routine change in process behaviour.

Another neural net-based anomaly detection approach
proposes a Multi-Scale Convolutional Recurrent Encoder—
Decoder (MSCRED) method [21]. This method converts
multivariate time-series data into signature matrices based
on the pairwise inner-product of time-series data streams.
The matrices are encoded using a fully connected convo-
lutional encoder. A Convolutional Long Short-Term

Variable Speed Drive + RTU Panel
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Memory (ConvLSTM) network is used to extract the hid-
den layer of each encoder stage, which is added to a con-
volutional decoder to produce a reconstructed signature
matrix. The difference between the original signature and
the reconstructed matrix is labelled as the residual signa-
ture matrix. This matrix defines a loss function that helps
the model detect anomalies in multivariate time-series data.
The residual signature matrix also helps determine the
duration of anomaly events in time-series data based on
small, medium, and large time-window duration.

Although the MSCRED methodology is novel in its
approach, there are three limitations to using this approach
for multivariate time-series analysis. Firstly, identifying
anomaly events depends on the time-window duration.
Therefore, the duration of the small, medium and large
time windows will have to be tuned based on the properties
of the time-series data and the application where it will be
applied. Secondly, this approach does not consider the state
of the process from time zero (fy), when the process was
initiated for the first time. This restriction, therefore, fails
to observe any changes in pump mechanical degradation,
which can provide additional insights into time-series-
based performance analysis.

3.2 Neural net-based time-series clustering

Multiple research papers have recently been published on
the use of neural net based time-series clustering methods
[15, 22-24], both for univariate and multivariate data sets.
These novel research methods extract feature matrices
which are fed to a neural net architecture to extract low-
dimensional embedding. The embeddings are then used to
cluster the time-series data with a known clustering
method, primarily the k-means method, which means the
number of clusters must be known beforehand.

Although our approach is similar, we do not need to
know the number of clusters beforehand. Most importantly,
our low-dimensional embeddings are based on the novel
approach of SAX derived time-series performance heatmap
images.

3.3 Converting time-series data
into performance heatmap images

This section provides an overview of how the SAX-based
performance heatmaps are created for improved under-
standing of Atrtificial Lift Performance analysis and, more
importantly, how these images provide contextual cluster-
ing of multivariate time-series data.
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3.3.1 Expanding window technique

To understand how PCPs operate in CSG operations, it is
essential to look at their performance from the day they are
initiated into operation for dewatering wells. For this pur-
pose, we use the expanding window technique shown in
Fig. 5, which evaluates the multivariate data in the
expansion stride based on the elapsed pump performance.
By doing so, the exploratory data analysis methods utilized
for performance analysis can capture the varying
mechanical dynamics in the PCP through the pump’s life.

3.3.2 Symbolic aggregation approximation (SAX)-based
performance heatmaps for PCPs

Performance heatmaps help capture the temporal variation
and time-window-based impact of multiple sensor readings
in a single image [12]. By converting time-series data into
performance heatmaps, it is possible to visualize the
sequential variation in sensor readings while understanding
the influence of change in sensor values between time
windows. Furthermore, the performance heatmap approach
is exempt from some of the shortcomings of other time-
series-based image conversion techniques.

While other time-series to image conversion methods
require a fixed sampling rate for each analysed time win-
dow to produce consistent images, the performance heat-
map technique overcomes this deficiency by converting
sensor values into Symbolic Aggregation Approximation
(SAX) symbols [27]. The SAX symbols obtained through
the conversion of time-series data are transformed into a
symbol matrix and then converted to a performance heat-
map—an example of SAX-based time-series image con-
version [12]. Figure 6 shows a 1-h time-series trend of
flow, speed and torque converted to a performance
heatmap.

Moreover, most image conversion techniques [28] are
developed for univariate time-series data. Although some
techniques convert multivariate data into images [29], they
mostly rely on converting univariate data into images and
then either stack them horizontally or vertically to create a
single 2D image.

3.3.3 Majority and anomaly heatmap images

Once the performance heatmaps are created, they can be
split into majority and anomaly event images. Table 1
shows the time-based colour code used to label major,
variation and anomaly event in a performance heatmap. In
this study, we will only focus on majority and anomaly
events, as the variation events are events in transition that
are not significant in deducing any abnormal behaviour of
the PCPs.
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Fig. 5 Depiction of the Expanding Window technique captures PCP performance variation from time 7,
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Fig. 6 An example of SAX based time-series image conversion [12]

Table 1 Color code for performance heatmaps based on the counts of SAX symbols in a 1-day window

SAX Symbol Count in One (1) Day Window (1440 MINUTES)

720 < Count < 1440
60 < Count < 720
00 < Count < 60
Count =00

Figure 7 shows how a performance heatmap is split into
majority and anomaly event images. We will use these
images to create our unsupervised image cluster library for
time-series data. Each image has a 48 x 48x3 (6912) pixel
dimension.

Figure 8 provides a breakdown of the majority and
anomaly heatmaps where we have three (3) parameters
(flow, torque and speed) represented in their respective
columns. The position of the coloured boxes provides the
state of each parameter, which can either be low, medium
or high. These states can be used in cluster labelling pro-
cessing to group various time-series clusters into similar
performance and anomalous event categories.

Colour Code

Performance Type

3.4 Advantages of a human-in-the-loop
approach for data labelling

Multivariate time-series data collected from industrial
processes are seldom labelled, and hence, extracting any
meaningful information from such data requires input from
domain experts [19, 25]. This holds true for CSG opera-
tions, where the geophysical dynamics between coal seams
and the pump require inference from domain experts for
correct interpretation of normal and abnormal behaviour.
By adding human inference to unlabelled data sets, it
becomes easier for domain experts to accept the results
generated by machine learning solutions [26].
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PCP Performance Heatmap Majority

Ignored Anomaly

Fig. 7 Splitting a performance heatmap to majority and anomaly event images [12]

a

Colour

b

Fig. 8 a Majority heatmap depicting medium flow, high torque and
low speed. b Anomaly heatmap depicting medium flow, high torque
and no speed event

In our methodology, we rely on cluster labelling from
petroleum engineers to correctly identify various perfor-
mance states of PCPs used in Artificial Lift Systems. The
SAX performance heatmaps provide petroleum engineers
with a visual context as to why different clusters are
identified based on the majority and anomaly heatmaps. In
the next section, we will cover in detail the methodology to
cluster SAX-derived performance heatmaps and how pet-
roleum engineers label these clusters via a cluster analysis
tool.

4 Methodology

In this section, we will discuss the methodology shown in
Fig. 9, which is used to cluster un-labelled time-series data:

@ Springer

1. Develop a Performance Heatmap-specific Auto-Enco-
der: This step will be used as the first dimensionality
reduction method to reduce the size of the images,
which will lower memory usage and improve calcula-
tion times on the computer used for conducting the
experiments.

2. Embedding-based Dimensionality Reduction: In this
step, we will experiment with various dimensionality
reduction methods (DRMs) and reduce the dimension
of auto-encoded images to a 2-dimensional plane.
Doing so will better visualize the performance
heatmaps grouping in an XY plot.

3. Hierarchical  Density-Based  Spatial — Clustering
(HDBSCAN): We will use HDBSCAN to identify
various clusters within the 2-dimensional plane of
various DRMs in step 2.

4. Cluster Labelling: Once the images have been clus-
tered, we will assign a label to known historical events
from a selected number of wells using a cluster
analysis tool. Once these events are labelled, we will
use an automated cluster labelling pipeline to identify
events on real-time data.

Assumptions Our methodology works under the following
assumptions:

1. Availability of Key Data Variables: To analyse PCP
performance, the time-series data should have flow,
toque and speed variables. These three variables are
needed to produce SAX performance heatmap that is
required for the clustering process. For other multi-
variate time-series application, key variables should be
defined based on the processed being analysed.
Domain Expertise: Petroleum engineers using the
cluster analysis tool should have relevant experience
in their field to properly label SAX performance
heatmap clusters.

3. Data Completeness: The multivariate data set used for
the clustering process must cover the entire operation
cycle of a PCP in CSG operation, i.e. the time-series
data from beginning to end-of-life of PCPs. This will

]
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Fig. 10 An example of Weights and Biases (WANDB.) Sweep to analyse the effect of various deep auto-encoder (DAE) layers on validation loss

help capture various performance heatmaps over the
life cycle of CSG wells.

Experiment tracking setup We used Weights & Biases [30]
for experiment tracking and visualizations to develop
insights for this paper. The Weights & Biases application
allows automated tracking of machine learning experi-
ments through Code Sweeps. Through this, multiple com-
binations of model training, hyperparameter tuning and
clustering results can be captured and visualized to obtain
the best results for machine learning projects. Figure 10
provides an overview of how multiple sweep experiments

can be recorded and visualized to provide actionable
insights into the effect of different layer properties for a
deep auto-encoder (DAE). All coding for these experi-
ments was done using Python 3.7 and necessary statistics,
computer vision and machine learning libraries suited for
this Python version.

4.1 |. Auto-encoder-based dimensionality
reduction

This section will look at selecting the most optimum auto-
encoder (AE) to reduce the latent representation of the
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Fig. 11 An overview of a fully
connected neural network with
an input, hidden and output
layer

Input Layer € R®

Hidden Layer € R*

Output Layer € R®

performance heatmaps. The SAX-based performance
heatmaps have a dimension of 48 x 48 =+ 3 pixels (6912
pixels in total). Any data clustering problem must represent
data in a two-dimensional space to evaluate results through
an X-Y scatter plot. We will utilize an AE approach to
minimize pixel dimensionality. Furthermore, reducing
dimensionality allows us to examine many images due to
reduced processing memory requirement, which improves
the overall clustering analysis of the Performance
Heatmaps.

4.1.1 i Deep auto-encoder (DAE)

We will start the experiment by developing a DAE that
reduces the performance heatmap to fewer dimensions.
Figure 11 shows a fully connected neural network with an
input, hidden and output layer. These layers form a DAE,
where the hidden layer is the reduced latent representation

Table 2 Parameter settings for a 2-layer DAE sweep experiment

Parameter Settings

Layer 1 [16, 32]

Layer 2 14, 8, 16]

Train images 134, 346

Test images 33, 587

Loss function Binary cross entropy
Epochs 100

@ Springer

of the input layer. The output layer is the input layer
reconstruction based on the hidden layer’s interpretation.
To gauge the performance of the DAE, we track the vali-
dation loss (val_loss), where the lowest value determines
the best performing DAE architecture.

Step 1-2-Layer DAE sweep run

In Step 1, we begin the experiment by evaluating a two-
layer DAE to gauge the performance of val_loss over
different channel sizes. The parameters for the first Sweep
Run are as follows:

The settings shown in Table 2 run six (6) sweep
experiments and measure the val_loss for different layer
combinations. Figure 12 shows that for a two-layer deep
neural network, a 16-channel /ayer2 produces the mini-
mum val_loss compared to an eight or four-channel layer2.
As shown in Fig. 13, the decoded image for a /6 x §&-
channel DAE configuration does not accurately represent
the original image. However, as shown in Fig. 14, the
decoded image for a 716 x I6-channel DAE configuration
is a more accurate copy of the original image. Table 3
confirms that sweep-4, where layerl and layer2 are sixteen-
channel each, produces the best val_loss for a two-layer
DAE.

Step 2-3-Layer DAE sweep run

In this step, we will add a third layer to the DAE and try
further dimensionality reduction. As per Table 4, we will
try dimensions 8, 4 and 2 for the third layer in the DAE
Table 3 shows the setup for the Sweep experiment used in
this step.
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layer1 layer2 loss val_loss
32 16 0.10
15 -
30 0.09
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28 13 0.08
12
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Fig. 12 Results showing the val_loss from a 2 Layer DAE Sweep Run
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Fig. 13 Result of /6 x 8 DAE showing the Decoded Image versus the Input Image
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Fig. 14 Result of /6 x /6 DAE showing the decoded image versus the input image
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Table 3 val_loss results from the 2 Layer DAE sweep run

Name layerl layer2 Loss val_loss

sweep-6 16 0.043735 0.057785
sweep-5 16 8 0.021559 0.023302
sweep-4 16 16 0.021424 0.02292

sweep-3 32 0.064341 0.093155
sweep-2 32 8 0.032088 0.032394
sweep-1 32 16 0.021083 0.023502

Table 4 Parameter settings for a 3-layer DAE sweep experiment

Parameter Settings

Layer 1 [16]

Layer 2 [16]

Layer 3 [2, 4, 8]

Train images 134, 346

Test images 33, 587

Loss function Binary cross entropy
Epochs 100

Figure 15 provides an overview of the three-layer DAE
Sweep experiment. A /6 x 16x8 DAE produces the min-
imum val_loss, and the results of this layer configuration
are shown in Fig. 16. Results from all three (3) sweep runs
are summarized in Table 5.

Step 3—4-Layer DAE sweep run

layer1 layer2

16

EN
P

5.0
4.5
4.0
3.5
3.0
2.5

layer3

Fig. 15 Results showing the val_loss from a 3-layer DAE sweep run

@ Springer

20—~

In this step, we will experiment with dimensions 8, 4
and 2 in the four-layer of the DAE. Table 6 shows the setup
for this sweep experiment.

Figure 17 shows that further dimensionality reduction to
2 or 4 channels increases the val_loss; hence, further
reduction from 8 channels is not feasible. However, an
eight (8) channel fourth-layer does improve the overall
val_loss of the DAE from 0.02292 (Table 5) to 0.022079
(Table 7). Results from the four-layer DAE are shown in
Fig. 18, which validates that reducing dimensionality
below 8 channels is not feasible with a D.A.E. Hence, our
final DAE configuration is /6 x 16x8 x & for reducing the
time-series heatmaps from 6912 pixels (48 x 48x3) to 8
dimensions.

4.1.2 ii. Convolutional auto-encoder

To see if the val_loss and dimensions can be reduced
further, we will use a four-layer convolutional auto-en-
coder (CAE) architecture. Table 8 shows the Sweep
experiment parameters that are investigated using a four-
layer architecture to see if the CAE can reduce the image to
8 or fewer dimensions while improving val_loss.As shown
in Fig. 19, CAE, val_loss for less than 8 dimensions in the
fourth layer is relatively high versus 4 or 2 dimensions.
However, the 76 x 16x8 x 8 CAE configuration further
reduces the val_loss compared to the DAE. Table 9 shows
the comparison between the DAE and CAE val_loss. Based
on this result, we will use a /6 x /6x8 x 8 CAE to encode
the 48 x 48x3 major and anomaly event images to 8
dimensions. The final CAE architecture to encode the
images is shown in Fig. 20.

loss val_loss
0.085
0.080
0.075.
0.070
0.065
0.060
0.055
0.050
0.045
0.040
0.035
0.030
0.025
0.020
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Input Layer (6912) Encoder (16 X 16 X 8)

Output (Code)

Decoder (8 X 16 X 16) Decoded Image (6912)

Fig. 16 Result of /6 x 16x8 DAE showing the decoded image versus the input image

Table 5 val_loss results from the 3-layer DAE sweep run

Name layerl layer2 layer3 loss val_loss

sweep-3 16 16 2 0.067277 0.074296
sweep-2 16 16 4 0.057862 0.084062
sweep-1 16 16 8 0.022665 0.022379

Table 6 Parameter settings for a 4-layer DAE sweep experiment

Parameter Settings

Layer 1 [16]

Layer 2 [16]

Layer 3 [8]

Layer 4 12, 4. 8]

Train images 134,346

Test images 33,587

Loss function Binary cross entropy
Epochs 100

4.2 |l. High-density dimensionality reduction

We have demonstrated that the time-series-based images
can be reduced to a latent size of eight (8) dimensions with
a convolutional autoencoder. However, to provide a visual
distribution context to time-series image clustering, we
need to reduce the number of dimensions to two (2), and
this can be achieved by utilizing high-density dimension-
ality reduction techniques. For this paper, we will experi-
ment with three (3) methods which are t-distributed
stochastic neighbour embedding (+-SNE) [31], uniform
manifold approximation and project (UMAP) [32], and the
minimum-distortion embedding (MDE) [33] method.
These methods take high-density multi-dimensional points
and assign them to a two-dimensional map.

4.2.1 i t-Distributed stochastic neighbour embedding (t-
SNE)

t-SNE determines the conditional probability of high-di-
mensional data points by computing the Euclidean distance
between the points. The probability represents similarities
between two points and determines if these points could be
picked as neighbours [31]. The probability p;; is repre-
sented by Eq. (3) [31], where x; and x; are the data points
being compared for similarity. Figure 21 depicts the t-SNE
distribution for various numbers of major heatmap images.
This distribution provides abstract localization with no
recognizable high-density areas for the images.

exp (_" ||-“'é;;-"1||“)
PO =S T\ 3)
Sewp(H5E)
where p;; = conditional probability.

4.2.2 ii. Uniform manifold approximation and projection
(UMAP)

Although -SNE and UMAP share some clustering simi-
larities [32], UMAP differentiates itself by creating high-
and low-dimensional similarities for the distances between
two points. Equations (4) and (5) [32] provide an overview
of how these dimensionalities are calculated.
(i) =)

ai

Vi = GXP[ 4)

where v;;= high dimensional similarities, ¢; = normalizing
factor, p; = distance to the nearest neighbour

26\ —1
wi = (1+al yi—y3) (5)

where W;; = low-dimensional similarities.
Figure 22 shows the UMAP distribution of various
number of heatmap images. As highlighted in Fig. 23, the
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layer1 layer2

layer3

Fig. 17 Results showing the val_loss from a 4-layer DAE sweep run

Table 7 val_loss results from the 4-layer DAE sweep run

Name layerl layer2 layer3 layer4 loss val_loss

sweep-3 16 16 8 2 0.05247  0.068188
sweep-2 16 16 8 4 0.056899  0.069199
sweep-1 16 16 8 8 0.020568  0.022079

high-density groupings are visible within the overall high-
dimensional structure.

4.2.3 iii. Minimum-distortion embedding (MDE)

As the name suggests, the MDE dimensionality reduction
method (DRM) pairs items based on vectors calculated
from distortion functions. Equation (6) [32] shows the
equation to calculate the embedding for vectors, aiming to
minimize the average distortion. Like UMAP, similar items

Input Layer (6912) Encoder (16 X 16 X 8 X 8)

Output (Code)

layer4 loss
0.060

val_loss

0.075
0.070
0.055
0.065

0.050 — 0.060

0.045 — 0.055
0.050
0.040
0.045

0.035

0.040

4.0

Gial 0.035
3.0 0.030
2.5 0.025
2.0 0.020 = 0.020

will have vectors near each other, and different items will
have far apart vectors.

(X) = 2, Z ii(dyj) (6)
€]

ij)e€

where E = embedding, d;; = ||x,- —x_,-||2 = set of allowable
embeddings, f; = distortion functions, £ = set of vector
pairs.

Figure 24 depicts the distribution of the embeddings for
various number of major heatmap images. Again, a con-
centrated mass in the centre represents similar vectors, and
dissimilar vectors are spread around the concentrated
group.

Figure 25b shows a zoomed-in view of the concentrated
mass of the similar vectors, and Fig. 25¢ shows how this
mass further consists of neighbourhoods of high-density
areas.

Decoder (8 X8X16X16)  Decoded Image (6912)

Fig. 18 Result of /6 x 16x8 x 8 DAE showing the decoded image versus the input image
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Table 8 Parameter settings for a 4-layer CAE sweep experiment

Parameter Settings
Layer 1 [16]
Layer 2 [16]
Layer 3 [81
Layer 4 2.4, 8]
Train Images 134, 346
Test images 33, 587

Loss function

Binary cross entropy

Epochs 100
layer1 layer2 layer3
16 46 &

4.3 lll. Hierarchical density-based spatial
clustering (HDBSCAN)

In this step, we will use HDBSCAN to conduct unsuper-
vised clustering of the major heatmap images. The
HDBSCAN algorithm is a density-based clustering
method, where a simplified cluster tree is produced from
which significant clusters are extracted [34].

Based on the experiment run, we see that t-SNE 2-d
dimensions produced increasing clusters as the image
numbers increased. However, UMAP and MDE have very

layerd loss

8.0

val_loss

0.038

] 0.036

7.0
0.034
0.032
0.030

0.028

4.0 0.026
B 0.024
3.0 -
2.5
2.0- 0.020 — 0.020

Fig. 19 Sweep run confirming that /6 x 716x8 x 8 CAE architecture produces the best val_loss for a 4 Layer CAE

Table 9 Parameter settings for a

3 5§ s
4layer CAE sweep experiment Encoder type layerl layer2 layer layerd loss val_loss
DAE 16 16 8 8 0.020568 0.022079
CAE 16 16 8 8 0.0215 0.02042
16@48x48 Jc@nkian
s@ases i I B . 8@24x24  g@12x12 8@5x6 8@3x3 8@2x2 8@1x1
I "a . .. T o 18
j ::'L_I . 3
™~ iwml I " "
. ‘ t- —=
-~ I |
\ -
Fig. 20 16 x 16x8 x 8 Convolutional auto-encoder
ringer
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a b

c

Fig. 21 a(-SNE distribution for 172,193 major heatmap images, b -SNE distribution for 554,436 major heatmap images, ¢ -SNE distribution for

817,475 major heatmap images

a ' b

c

Fig. 22 a UMAP distribution for 172,193 major heatmap images, b UMAP distribution for 554,436 major heatmap images, c UMAP distribution

for 817,475 major heatmap images

similar cluster numbers with the increase in image num-
bers. These results are shown in Fig. 26.

The experiment parameters are set as per Table 10. The
cluster size determines the minimum samples in a cluster
for it to be considered unique, and the sample size deter-
mines the critical mass within the cluster neighbourhood
[35]. As per Table 10, our cluster size is 5, and the sample
size is 200, which means that our clusters should have a
minimum of 5 points, and if that cluster grows beyond 200
points, then that cluster becomes a core point.

Figure 27 shows the minimum and maximum clusters
produced by each DRM method. Based on this experiment
run, we will discard -SNE for any further assessment.
Also, the UMAP clustering with HDBSCAN provides the
narrowest distribution of clusters across the number of
images used in this experiment. Based on this information,
we will have an in-depth look at UMAP and MDE clusters
to understand how the images are sorted in the 2D plane

@ Springer

and confirm which DRM methods provide us with a use-
able cluster distribution.

4.3.1 i. Clustering analysis

To understand the cluster formation in the MDE and
UMAP reduction methods, we need to look at how the
number of clusters and outliers varies with different com-
binations of cluster size and sample size parameters in
HDBSCAN. To do this, we will run a clustering experi-
ment with the parameters shown in Table 11.

Figure 28 shows how cluster size and sample size
impact the cluster and outlier count in the MDE and UMAP
reduction methods. Clustering the UMAP distribution
provides consistent cluster counts, with zero outliers in
most cases. Moreover, running an independent UMAP
clustering experiment as per Table 12 shows that the
sample size of less than 30 produces the most consistent
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Fig. 23 a UMAP distribution of major heatmaps (554,436 Images), b observations of high-density areas in the UMAP distributions, which are

separated from low-density areas

a b

[

Fig. 24 a MDE distribution for 172,193 major heatmap images, b MDE distribution for 554,436 major heatmap images, ¢ MDE distribution for

817,475 major heatmap images

results where the outliers are minimised and the number
of clusters is below 1000. The details of the independent
UMAP clustering experiment are shown in Table 13
and Fig. 29. In Fig. 30a, we see that the MDE method
produces a large spread of outliers beyond the core cluster
area when the sample size is 5 and the cluster size is
2. However, in Fig. 30b we observe that the UMAP
method produces 996 clusters with 0 outliers with the same
sample and cluster size settings. Hence, it is clear that

the UMAP DRM produces the most consistent number of
HDBSCAN-derived clusters when the sample size is set
to 5.

The 996 clusters and 0 outliers from the UMAP clus-
ters will be used to identify time-series events. Although
we have 996 clusters identified in the UMAP distribution,
we will use the time-series labelling methodology to gen-
eralize the cluster grouping.

@ Springer

Page 115



1264 Neural Computing and Applications (2023) 35:1247-1277
» [
4 ’ - @
.
: * = e
[ .
’
- ;
‘ a .
@
L ]
. 3 v ’
< : .
H - .
- @
a Tl NI :

Fig. 25 a MDE distribution for 554,436 major heatmap images, b zoomed view of the high-density area, ¢ zoomed view of the neighbourhoods

within the high-density MDE area
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60 —
55+
50 —
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SAMPLE SIZE DRM

Number of Clusters

t-SN 7,000
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35
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20 —
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10 - - .
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PYMDI

Fig. 26 Experiment results highlighting the progression of the number of clusters when running HDBSCAN clustering on different DRM

methods

Table 10 Parameter settings for the HDBSCAN unsupervised clus-
tering experiment

Parameter Settings

Wells [10, 20, 30, 40, 50, 60, 70]
Cluster size [5]

Sample size 1200]

Dimensionality Reduction [--SNE, UMAP, MDE]

4.3.2 ii. Analysing the UMAP and HDBSCAN clusters
for Performance Heatmap grouping

To understand the cluster formation in the UMAP reduc-
tion methods, we will investigate two cluster areas, as

@ Springer

shown in Fig. 31. The performance image grouping for
major heatmaps, as shown in Fig. 32a and b, depicts that
similar images are grouped in their respective high-density
areas. We will use the assigned cluster numbers to label
PCP performance events and identify any cluster repetition
patterns.

Using the experiment steps explained in the previous
sections, we get a UMAP and HDBSCAN cluster layout
for anomaly heatmaps, as shown in Fig. 33. For the
anomaly heatmaps, we get 98 clusters and 0 outliers.
Investigating Cluster Area 1, we see the groupings created
in the identified dense area. Like major heatmaps, we will
use these cluster numbers to identify abnormal and
anomalous PCP performance events.
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Number of Clusters

drm: PYMDE (Min: 335, Max:814)

drm: UMAP (Min: 960, Max:1080)

drm: t-SNE (Min: 1534, Max:6738)

\ I [ I \ I I I [
0 500 1,000 1,500 2,000 2,500 3,000 3,500 4,000 4,500 5,000 5,500 6,000 6,500

Fig. 27 Number of minimum and maximum clusters per DRM method. The minimum cluster number corresponds to images from 10 wells, and
the maximum cluster number corresponds to images from 70 wells

Table 11 Parameter Settings for the HDBSCAN unsupervised clus- Table 12 Parameter settings for the HDBSCAN unsupervised clus-

tering experiment tering experiment
Parameter Settings Parameter Settings
Wells [70] Wells [70]
Cluster size [2,:5;:10, 15,25] Cluster size [2, 5, 10, 15, 25]
Sample size [5, 10, 25, 50, 100, 200] Sample size [5, 10, 25, 50, 100, 200]
Dimensionality reduction [UMAP, MDE] Dimensionality reduction [UMAP]
WELLS CLUSTER SIZE SAMPLE SIZE DRM Number of Outliers ~ Number of Clusters
- 26 — UMAR 280,000 40,000
e 260,000 o
240,000 35,000
160 —
140 —
0 -
0 —

Fig. 28 Experiment run showing the effect of Cluster Size and Sample Size on UMAP and MDE cluster count
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CLUSTER SIZE
26 —

WELLS DRM

70 4

= UMA

Number of Clusters
1,080

Number of Outliers

SAMPLE SIZE

1,070

1,060

Fig. 29 Experiment run showing the effect of cluster size and sample size on UMAP cluster and outlier distribution

a

b

Fig. 30 a MDE clusters depicting 1055 clusters and 10082 outliers, b UMAP clusters representing 996 clusters and 0 outliers

4.4 IV Cluster labelling

After numbering the major and anomaly heatmap clusters
in the previous step, we will now use a cluster labelling
tool to add context to cluster numbers. The cluster labelling
tool, developed using PowerBI, provides an intuitive
approach to identifying clusters. As part of the cluster
labelling process, as depicted in Fig. 34, we will use pre-
identified event dates marked by production and Artificial

@ Springer

Lift engineers to label events of interest. Furthermore, we
will also discuss how cluster labelling can help identify the
progression of the majority of heatmaps over the lifetime of
a well and depict the degradation of a PCP.

4.4.1 i. Cluster labelling tool

The cluster labelling tool has three (3) areas shown in
Fig. 35. The major heatmap clusters and anomaly heatmap
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clusters areas, shown in Fig. 35a and b, respectively, show
the UMAP distribution of clusters for a particular well
being analysed for labelling the time-series data. Fig. 35¢
shows the time-series trend with a days filter to browse
various periods where abnormal or activity of interest may
have occurred during PCP operations. Such periods can
then be used to place clusters in categories that identify
abnormal or anomalous PCP behaviour.

In Fig. 36, we look at a flow disturbance event on Day
84 of PCP operation. Two major heatmap clusters (44, 240)
and two anomaly heatmap clusters (87, 90) were observed
on Day 83. Upon selecting the area of flow disturbance on
the time-series trend, we observed that both anomaly
heatmap clusters, 87 & 90, are prevalent and relate to the
flow column, as shown in Fig. 8. Furthermore, when the
petroleum engineer selects abnormal behaviour period (red
dotted area in Fig. 37), only major heatmap cluster 240 is
visible, which depicts that the pump is in a high flow and
high torque state. Hence, by looking at this grouping, we
can state that on Day 84, the PCP saw flow anomaly events
while in a high flow, high torque state. Using this

methodology, we can group the major and anomaly heat-
maps clusters into various states of PCP operations.

5 Results

This study aimed to demonstrate a streamlined and repro-
ducible method of labelling time-series data gathered from
CSG wells, so it may aid production engineers with iden-
tifying PCP performance profiles and abnormal production
events. Our end-to-end approach is shown in Fig. 38,
where saved cluster weights and labels help the streaming
analytics process and allow operators to manage PCP wells
by exception.

We will highlight in this section how our methodology
produces meaningful labelled cluster groups that can be
visualized as a coloured sequential bar chart against time-
series data. Moreover, the anomalous events detected by
our method were consistent among the two operators,
specifically the solids and gas through pump events which
are detrimental to PCP operational life. The streaming
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Fig. 32 a Major heatmap grouping in Cluster Area 1, b major grouping in Cluster Area 2
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Fig. 33 a Cluster grouping for anomaly heatmaps, b anomaly heatmap g
analytics approach was not only able to capture the

abnormal event amplitude but also the longevity of the
event.
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rouping in Cluster Area |
5.1 I. Grouping cluster labels

Based on the observations made with the cluster labelling
tool on 20 wells, the 996 major heatmap clusters and 98
anomaly heatmaps were segregated into groups, as shown
in Table 14. The group labels were defined based on the
experience of production and well surveillance engineers.
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Table 13 HDBSCAN clustering sweep results showing the effect of In Table 15, we see the groups with a sample set of
sample size and cluster size on UMAP clusters images they represent. For example, the major heatmap
Cluster size  Sample size  Number of clusters Number of outliers  group labelled erratic torque shows that images within this
group did not have a stable torque profile as no green box

4 3 2o 9 was recorded in the centre column. This depicts that the
13 3 93 0 torque fluctuated significantly in this period; hence, no
25 A v . SAX character existed long enough to record any symbol
5 5 996 0 count as a major event as per Table 1. Similarly, the image
10 s 996 0 grouping for anomaly heatmaps in Table 16 describes the
5 10 996 0 state that the PCP is in momentarily or may be considered
2 10 996 0 an abrupt change.
10 10 996 0 It is important to note that the characteristics of major or
25 10 994 0 the anomaly heatmap groups can provide a performance
15 10 995 0 profile for PCPs independently or in combination.
10 25 994 0
25 25 993 0 5.2 Il. Cluster sequencing and visual analytics
5 25 996 18
15 25 993 0 To understand how heatmap groups define the performance
2 25 996 18 of a PCP, we will use the colour code in Table 17 to
5 50 996 110 represent each image group. These colour codes are then
2 50 999 116 plotted along with the time-series data to understand the
25 50 989 128 cluster sequencing and identify patterns in PCP
15 50 993 69 performance.
10 50 995 115 In Fig. 39, we see the heatmap groups plotted with the
15 100 991 1179 time-series trend for a lifespan of PCP well. Figure 39a
25 100 977 1002 represents the major heatmap group, and Fig. 39¢ repre-
5 100 1005 1118 sents the anomaly heatmap group. As seen in the pro-
10 100 998 1096 gression of the major heatmap groups, it matches the state
2 100 1016 1136 of the PCP performance during the dewatering, stable-flow,
15 200 1006 4774 and high-torque pumping regimes.
10 200 1031 4541 If we look closer at a one-week PCP performance
5 200 1061 4414 window, as shown in Fig. 40, the details in the major and
25 200 972 4976 anomaly heatmap groups become more apparent. In this
’ 200 1078 4402 case, we see the major heatmap groups clearly marking the
areas of solids through the pump where the PCP torque
increases. At the same time, anomaly heatmap groups also
present markers of change (primarily high torque, high

MAJORITY HEATMAP CLUSTERS CLUSTER ANALYSIS TOOL

LABELLED MAJORITY HEATMAP CLUSTERS

B
@ Fiow @ Torque @ Spmed

LU Bt T A ML LABELLED ANOMALY HEATMAP CLUSTERS

Petroluem Engineer

ANOMALY HEATMAP CLUSTERS

Fig. 34 Cluster labelling process with human-in-the-loop
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Major Heatmap Clusters Anomaly Heatmap Clusters

c

Fig. 35 a Major heatmap cluster area, b Anomaly heatmap cluster area, ¢ Time-series trend area

Major Heatmap Clusters Anomaly Heatmap Clusters

>~ ® Flow @ Torque @ Speed

84 84

Fig. 36 Day 84 of PCP operations with the respective major and anomaly heatmap clusters
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Fig. 37 Day 84 of PCP operations with the selected abnormal behaviour and the respective major and anomaly heatmap clusters
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Fig. 38 Final method for labelling time-series data with the human-in-the-loop approach
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Table 14 Heatmap groups based on the observations made in the
cluster labelling tool

Major heatmap groups Anomaly heatmap groups

High torque High flow

High high torque Low flow
Erratic torque High torque
Low flow, low torque Low torque
Low low flow Flow and torque
Low low flow, low low torque

High high flow, high high torque

Erratic flow

Ideal

Shutdown

Table 15 Sample images of major heatmap groups

Major Heatmap Groups

flow, low flow) either during or before the solids through
pump events occur.

5.3 lll. Cluster group consistency for anomalous
events

Another finding during this study was the repeatability of
major and anomaly heatmap group sequencing for events
of interest. For example, in Fig. 41, we see the solids
through pump events on multiple wells, where the major
heatmap groups diverge from ideal to either high torque or
high high torque. The major heatmap sequencing is very
similar for all such events, regardless of the event’s
intensity or duration.

Images

High Torque

High High Torque

Erratic Torque

Low Flow, Low Torque

Low Low Flow

Low Low Flow, Low Low Torque

High High Flow, High High Torque

Erratic Flow

Ideal

Shutdown
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Table 16 Sample images of anomaly heatmap groups

Anomaly Heatmap Groups Images

H B 0 0
Low Flow . .
H B B B
Low Torque . . .
AN EENN

Table 17 Color codes for major and anomaly heatmap groups

Major Heatmap Groups Anomaly Heatmap Groups
High Torque High Flow
High High Torque Low Flow
Erratic Torque High Torque
Low Flow, Low Torque - Low Torque
Low Low Flow Flow and Torque

Low Low Flow, Low Low Torque
High High Flow, High High Torque
Erratic Flow

Ideal

Shutdown

Similarly, in Fig. 42, we see gas through pump events. 5.4 IV. Streaming analytics application for PCP

In this case, the major heatmap groups fluctuate between performance analysis

Ideal and Erratic Torque, whereas the anomaly heatmap

groups consistently present with low flow and flow and  Putting the previous steps together, we provided two nat-

tforque events. ural gas operators with a streaming analytics tool, which
assists them with identifying early PCP performance issues
and alerts when critical anomalous events are detected. An
overview of the application is shown in Fig. 43.
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@ Flow @ Torque @ Speed

c

Fig. 39 a Major heatmap group plotted with the time-series data, b time-series trend for a sample well, ¢ anomaly Heatmap group plotted with
the time-series data

@ Flow @ Torque @ Speed

Fig. 40 PCP performance profile over one-week showing regions of abnormal activity

@ Springer

Page 126



Neural Computing and Applications (2023) 35:1247-1277

1275

I i

-

Fig. 41 Solids through pump profile for different wells

i
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| B

Fig. 42 Gas through pump profile for different wells

6 Conclusion and future works

Based on the above methodology, we demonstrated that the
human-in-the-loop cluster labelling method and the
streaming analytics tools developed as part of this research

provide a reliable and scalable approach to determining and
evaluating the performance of PCP-operated wells.

We have shown that various performance patterns can
be detected with this approach, and the repeatability of the
heatmap patterns provides a better understanding of
changing PCP behaviour. Furthermore, notification of
changes in performance profile and anomaly markers can
be automated, where only events that require immediate
attention can be reported in real time. By doing so, pro-
duction and surveillance engineers can manage their wells
by exception, aided by informed insights by the method
proposed in this study.

Most importantly, by allowing petroleum engineers to
aid with the labelling of time-series data, we could gain
their trust in a machine learning-driven approach and, in
turn, capture their knowledge of assessing Artificial Lift
systems.

During this study, it became evident that the level of
granularity to detect performance changes could be
improved with smaller expansion stride lengths. In a
forthcoming paper, we will present the effect of expansion
stride length on cluster groups. Moreover, there is work in
progress to apply this method to electric submersible
pumps, which are centrifugal pumps used as an Artificial
Lift method in conventional oil reservoirs.

@ Springer

Page 127



1276

Neural Computing and Applications (2023) 35:1247-1277
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Fig. 43 Streaming analytics application deployment architecture
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8. Paper 6: Performance analysis of artificial lift systems deployed in
natural gas wells: A time-series analytics approach

The culmination of this research is presented in the final paper, which consolidates all the
methods and procedures detailed in the preceding publications. It introduces the Artificial Lift
Systems Analytics Application (ALSAA), a pivotal development for addressing the CSG
industry's real-time monitoring and data annotation process. ALSAA exemplifies how multiple
wells can be efficiently monitored through exception-based surveillance. Additionally, this
paper illustrates the versatility of performance heatmap images, demonstrating their
application to other forms of Artificial Lift Systems (ALS), including Electrical Submersible

Pumps (ESPs) and Electrical Submersible Progressive Cavity Pumps (ESPCPs).

The paper offers a comprehensive view of how the ALSAA is harnessed by petroleum and
surveillance engineers for labelling ALS performance using a data annotation toolbar and
applying these results to streaming data. It details the complete workflow involved in the data
annotation process. Additionally, the paper delves into the concepts of events and sequences.
Events signify notable changes or anomalies within the ALS performance, such as variations
in downhole pressure or the occurrence of specific operational issues. Conversely, sequences
are combinations of events that transpire in a particular order or pattern. Through the
identification and analysis of these events and sequences, engineers can gain valuable insights
into the performance of the ALS and take proactive measures to address potential issues or

failures.

The paper demonstrates how live monitoring dashboards and ALS analysis tools can detect
early signs of issues, such as gas intake, and end-of-life for an ALS. Overall, the paper
addresses two crucial research gaps in the field of artificial lift system management. Firstly, it
focuses on the accurate labeling of ALS data and, secondly, on the capacity to monitor a
significant number of wells on an exception basis. ALSAA overcomes these challenges and
showcases how they are addressed, significantly contributing to the broader field of ALS

operations in CSG wells.
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In Coal Seam Gas (CSG) production, Artificial Lift (AL) systems comprising various downhole pumps produce
coal-fine-laden water. Over time, the accumulation of coal fines results in mechanical failures of such pumps,
which leads to a loss in natural gas production. This problem is exacerbated by CSG operators having to manage
thousands of wells in their day-to-day operations. The reason for having such an exuberant number of natural gas
wells is due to the fact that CSG reservoirs have a short production cycle when compared to conventional res-

ESP ervoirs. Therefore, thousands of CSG wells must operate simultaneously to sustain natural gas volumes that
ESPCP satisfy domestic energy demand, and help meet contractual export obligations.
PCP To manage a large fleet of CSG wells, operators rely on Petroleum and Surveillance Engineers to mitigate

production issues and advise timely corrective actions. Current methods of monitoring CSG wells involve
observing real-time trends and alarms from Supervisory Control and Data Acquisition (SCADA) systems. How-
ever, managing a large fleet of wells with a monitoring-only approach can be detrimental to AL operations.
Methods such as Exception Based Surveillance have been used to improve engineers’ workload, but such methods
are informative at best. In addition, they do not provide early indications of changed downhole pump perfor-
mance. To improve how AL systems are monitored in CSG operation, we propose a novel well surveillance
method that can help mitigate pump failure and provide engineers with insightful information to take corrective
actions.

In this work, we will present an innovative time-series analytics approach that examines the performance of AL
systems in near real-time and helps Well Surveillance and Production Engineers make timely decisions that aid in
mitigating pump failures. We used time-series data from 448 CSG wells to build the streaming analytics meth-
odology that autonomously detects various performance states of downhole pumps during CSG production.
Furthermore, we successfully detected the onset of AL systems failures, such as solids build-up, gas intake, high
torque and pump degradation. We validated our solution on a separate set of 428 wells and were able to show
reliable detection of detrimental events on live data from producing natural gas wells. This solution is currently
deployed by 2 CSG operators where real-time notifications aid Petroleum and Well Surveillance Engineers with
proactively managing AL systems across multiple CSG assets.

1. Introduction

The state of Queensland in Eastern Australia is responsible for pro-
ducing 5513 TJ of natural gas derived energy per day (Queensland
borehole series metadata record, 2022), which is utilized for domestic
utilization and international export. To maintain an uninterrupted nat-
ural gas supply, energy companies rely on AL systems to deliver reliable
performance for displacing water from coal cleats. Typically,

* Corresponding author.

Progressive Cavity Pumps (PCPs) are used for displacing water from coal
seams. However, with the recent introduction of horizontal wells,
traditional Electric Submersible Pumps (ESPs) and Electric Submersible
Progressive Cavity Pumps (ESPCPs) have become popular artificial lift
pump choices amongst natural gas producers in Queensland (Rajora
et al., 2019).

The process of producing natural gas from CSG wells involves the
depressurization of coal cleats through the production of reservoir
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Fig. 2. Components of an electric submersible progressive cavity pump (ESPCP).

water, which causes an intake of disintegrated solids and coal fines into
the Artificial Lift Systems. Fig. 1 shows an overview of a CSG well, along
with the surface and downhole equipment of a PCP (Commonwealth of
Australia, 2014, 2014; Matthews et al., 2007). The components for the
ESPCP and ESP systems are shown in Figs. 2 and 3, respectively.

PCP and ESPCP are positive displacement pumps that use a metallic
rotor and elastomer stator to move fluids. The main difference between
the two is the location of the motor - PCP has the motor at the surface

and uses rod strings to transfer energy to the downhole pump. In
contrast, ESPCP has the entire motor and pump assembly downhole,
eliminating the need for rod strings. As a result, ESPCPs are more effi-
cient, but the choice between the two depends on the economics and
well-completion strategy of the operator. ESPs are a type of centrifugal
pump that, like an ESPCP, consists of a motor and a pump, which are
placed downhole and are used to lift fluids from the wellbore to the
surface. The main advantage of ESPs is that they can pump large
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Fig. 4. Data from the Queensland Government showing number of wells & cumulative gas production from 2015 to 2020 (Queensland borehole series metadata
record, 2022).

volumes of fluids and are relatively efficient, as they do not require rod
strings similar to PCPs. The choice between ESPs and other types of
pumps depends on the water flow rate CSG operators try to achieve.
For each AL system, intake of produced water mixed with solids can
be detrimental to the performance of pumps, often resulting in un-
wanted shutdowns and, in some cases, pump failure. In addition, each
pump failure initiates a well workover, which is expensive and results in

deferred production. Hence, assessing the real-time performance of AL
systems is critical to managing and efficiently operating CSG wells.

To effectively manage CSG production and address any potential
problems related to the downhole pumps, real-time data from CSG wells
is collected using Supervisory Control and Data Acquisition (SCADA)
systems. This data is then made available to central control rooms and
company headquarters, where Well Surveillance and Petroleum
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Engineers analyze it. These professionals are responsible for monitoring
the performance of AL systems and providing recommendations for
corrective actions that will help extend the production life of the wells.
Companies can ensure that their CSG operations are running smoothly
and efficiently by using SCADA and having dedicated experts to review
the data.

However, the CSG industry faces a unique challenge in continuously
monitoring the performance of its wells, due in large part to the sheer
number of wells in operation. As shown in Fig. 4, the number of wells in
production has remained consistently high since 2015, with thousands
of new wells brought online in 2017 to meet domestic and international
energy demands. Although official figures for 2021 have yet to be
published, the number of production wells is expected to surpass 10,000
due to new drilling programs initiated by CSG operators in Queensland.

Fig. 5 illustrates the different stages of production for a typical CSG
well, which can produce natural gas for up to 10 years but typically
reaches peak production within the first 2-3 years. To maintain a steady
supply of natural gas, it is necessary to drill a large number of wells and
bring them online quickly. However, managing a large number of wells
can take time and effort, especially when providing timely input to
address performance issues and optimize production.

. .

Separator

|

,_/
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While improved methods for monitoring Artificial Lift Systems have
been discussed and demonstrated extensively through publications,
there is minimal work discussing real-time performance analysis of AL
pumps deployed in CSG wells. For CSG wells, Knafl et al. (2013) defined
an Exception Based Surveillance (EBS) methodology for diagnosing PCP
failure characteristics. The method used in the EBS approach calculates
displacement and friction variables (derived from existing sensors) to
analyze PCP behaviour. Of the multiple sensors used to calculate the
displacement and friction variables, the downhole pressure sensor is
essential to derive both these measurements. Unfortunately, downhole
pressure sensors are prone to consistent failure in CSG operations
(Rathnayake et al., 2022); hence, relying on this EBS approach is
impractical.

A recent study by Rathnayake et al. (Rathnayake and Firouzi, 2021)
proposes a statistical method to detect early PCP failures; however, the
authors indicate that this method produces extensive periods of false
alarms. If these periods are removed from the training data, the overall
accuracy of the predictive model depreciates significantly. They suggest
that the model can be improved by providing guidelines to select
appropriate training data and including longer observation times prior
to pump failure. The limitation of this method also renders it unfeasible
to conduct real-time performance analysis of Artificial Lift Systems.
Additionally, our research found no existing publications on proactive
surveillance methods for ESPs and ESPCPs in CSG operations. This lack
of research is likely because these advanced lifting systems were only
recently introduced to Australian CSG operations in 2019, and operators
are still gaining experience in their use and maintenance (Rajora et al.,
2019). As a result, there is a gap in knowledge and understanding when
it comes to proactive surveillance methods for these systems in the CSG
industry.

In summary, our study proposes using a novel time-series analytics
method in combination with real-time monitoring as a way for CSG
operators to effectively monitor and analyze the performance of their
Artificial Lift (AL) systems. Our approach uses human-labelled time-
series data, offering a practical and insightful way to determine real-
time AL system performance. We offer examples and case studies
demonstrating how our system can assist Well Surveillance and Petro-
leum Engineers in proactively identifying and resolving potential issues
that may result in AL system failure. By combining our time-series an-
alytics method with real-time monitoring, we aim to provide CSG op-
erators with an effective and practical Artificial Lift surveillance system

Radio Mast

Variable Speed Drive + RTU Panel

//

Fig. 6. Typical layout of a coal seam gas well.
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Fig. 8. Data measurement points for the parameters used for each well type.

for determining real-time AL system performance and mitigating issues
that may lead to failure.

2. Literature review
2.1. Performance analytics for artificial lift systems

Over the past decade, several papers have discussed time-series an-
alytics related to Artificial Lift Systems. Especially in the past three (3)
years, we have seen an influx of such papers published in notable
journals or presented at conferences. During our research, we conducted
a comprehensive literature review of the papers published in the past

decade, and identified two (2) distinct categories to classify the papers.
These categories include machine-learning-based and hybrid-based an-
alytics models (combining machine learning and physics-based ap-
proaches). However, most of these papers are dedicated to ESPs (Silvia
et al., 2023; Cardona et al., 2023; Brasil et al., 2023; Al-Ballam et al.,
2023; Sharma et al., 2022; Iranzi et al., 2022; Abdalla et al., 2022;
Andrade Marin et al., 2021; Ambade et al., 2021; Alamu et al., 2020;
Takacs and Takacs, 2018; Abdelaziz et al., 2017; Awaid et al., 2014;
Camilleri, 2013; Thornhill and Zhu, 2009; Ocanto and Rojas, 2001), and
very limited work is presented on using Machine Learning models for
PCPs (Knafl et al., 2013; Rathnayake and Firouzi, 2021; Tan et al.,
2021). We have discussed the shortcomings of these approaches in our
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past papers (Saghir et al., 2019a, 2019b, 2020, 2023), and below, we machine learning models work well within the dataset they have been

will briefly discuss limitations in each of the categories mentioned trained for. Moreover, machine learning models have an extensive data
above. management pipeline which entails data pre-processing and quality
checks. The process of data pipeline is quite intricate. Any error that
2.1.1. Limitations with machine learning based models for artificial lift occurs during the preprocessing steps is carried forward to the inference
systems of the machine learning model that has already been trained. We also
In the papers analysed during our research, we noticed that the discovered that the machine learning approach has a noticeable

6
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Fig. 12. An Example of converting univariate time-series data to SAX symbols.

limitation: the models need to be tailored for every Artificial Lift type. In
some cases, the models even have to be specific to the operator, reser-
voir, and pump type. One of the most apparent restrictions of machine
learning models is their dependence on data frequency. If a model was
trained on a 10-s frequency, any deviation from this frequency would
necessitate the model being retrained. In SCADA systems that rely on
radio telemetry, maintaining a consistent data transmission rate can be

ensitiv
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Fig. 13. High sensitivity SAX array (left), medium sensitivity SAX array
(centre), low sensitivity SAX array (right).

difficult due to fluctuating connectivity rates and potential failures. To
summarise, Machine Learning models work well with Artificial Lift
Systems but require effort to maintain. They are highly dependent on
data quality and need regular re-training to adapt to varying scenarios
related to data collection.

2.1.2. Limitations with hybrid based models for artificial lift systems
Although hybrid models are more accurate than machine learning
models, they share the same limitations as mentioned in the previous
section. Additionally, setting up physics-based simulations to act as
error correction for machine learning models requires significant effort
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and time as these simulations are computationally intensive. Moreover,
creating hybrid models requires end-users to rely on expensive software
licenses for simulation software provided by technology service
companies.

2.2. Symbolic approximation aggregation and time-series performance
heatmaps

After thorough analysis and careful consideration of the key points
highlighted in the preceding sub-section, it became abundantly clear
that machine learning models developed for AL systems were con-
strained by certain limitations. In order to overcome the challenges
posed by different types of Artificial Lift systems and varying frequencies
of data, we needed to find an innovative and all-encompassing solution.
After rigorous investigation and extensive research efforts, we decided
to proceed with the Symbolic Aggregation Approximation (SAX) method
— a breakthrough approach renowned for its ability in analyzing time-
series data (Lin et al., 2003). The SAX methodology encompasses two
primary steps: symbolic representation and approximation. In the
symbolic representation step, time-series data is discretized into a set of
symbols, effectively reducing dimensionality and capturing essential
features. The approximation step then involves matching symbol se-
quences with predefined distributions to extract valuable patterns and
trends (Keogh et al., 2005).

The inherent variability and complexity introduced by distinct types
of AL systems demanded a technique capable of seamlessly integrating
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and adapting to these dissimilarities. Furthermore, the importance of
handling data with varying frequencies cannot be overstated. In oil and
gas production, data collection intervals often differ, making it arduous
for machine learning models to maintain consistent performance across
all datasets. In our earlier research we identified that disparity in data
frequency was a major roadblock, hindering our ability to deploy uni-
form and efficient solutions across the board.

Hence our approach of using expanding window with SAX derived
time-series performance heatmaps offered a unique advantage in
handling data of various intervals simultanouelsy (Saghir et al., 2019b).
By transforming time-series data into performance heatmaps, SAX also
allowed us to abstract the essential characteristics of each dataset,
effectively mitigating the disparities arising from different Artificial Lift
systems (Saghir et al., 2020, 2023). In the later section of this paper, we
discuss SAX based performance heatmaps in details, and how they
provide a usefule tool for AL system analysis.

3. Methodology
3.1. Data

We developed our analytics method using raw time-series data from
428 CSG wells. The data comprised 8 years of AL operations, included all
CSG production stages and covered typical pump degradation behaviour
and failures. A typical layout of a CSG well is shown in Fig. 6.

3.1.1. Data aggregation from CSG wells

To gather data from CSG wells, natural gas operators utilize Remote
Telemetry Units (RTUs) in tandem with SCADA systems to push the data
to the Company’s head office, and this data flow is depicted in Fig. 7. An
RTU serves two purposes at the CSG well site; firstly, it gathers data from
local sensors to provide primary control of the AL system. Secondly, it
stores and forwards the data to the SCADA Historian in the local control
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Fig. 20. User Interface created for Data Annotation.

room. The SCADA Historian then pushes the data to the Corporate
Historian, making it available to end-users, including Well Surveillance
and Petroleum Engineers.

For our study, we utilized unfiltered data from the Corporate His-
torian. We built our real-time analysis methodology on unfiltered data,
which assisted us with addressing conditions where data from CSG wells
would show drift due to sensor calibration issues. Furthermore, as data
collected from CSG wells is primarily asynchronous (i.e., data not
measured at a fixed interval), we spent considerable time ensuring that
the data ingestion pipeline could handle streaming data of various

10

lengths.

3.1.2. Data parameters

Our study used three parameters, namely, Pump Speed, Pump
Torque and Water Flow Rate, to analyze PCP wells. From a mechanical
performance and reservoir behaviour perspective, these three parame-
ters have a high co-relation across PCP-operated wells (Rathnayake
et al., 2022; Saghir et al., 2019c). For ESPCPs and ESPs, we used six
parameters: Pump Speed, Pump Torque, Water Flow Rate, Down-
hole Pressure, Discharge Pressure and Motor Temperature. The
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location of these data parameters is shown in Fig. 8.
Equations (1) and (2) demonstrate the correlation between the three
PCP parameters, Pump Speed, Pump Torque and Water Flow Rate.

(€]

qn =8 @

Where,
Qi = theoretical flow (m®/d), s = pump displacement (m®/d/rpm),
® = rotational speed (rpm)

_ PonoE
"7 Co

(2)

Where,

Tpr = polished rod torque (Nm), Py, = prime mover power (kW),

E,; = power transmission efficiency (unitless),

C = constant (unitless), w = rotational speed (rpm).

Equations (1) and (2) are also valid for ESPCPs. However, as ESPCPs
and ESPs have downhole sensors that measure Downhole Pressure,
Discharge Pressure and Motor Temperature, we added these param-
eters to our list based on previous failure diagnostic studies of downhole
motor-driven pumps.

Equation (3) shows the relationship between torque and speed for

12

ESP wells.
The correlation between torque and speed for ESPs is shown in
equation (3) (Takacs and Takacs, 2018).

5252 X Py,

up N (3)

Where,

Typ = motor nameplate torque (Nm), Py, = mechanical power (kW),
N = motor speed (rpm).

The correlation between motor current, motor voltage (both of
which affect speed proportionally) and flow for ESPs is shown in
equation (4) (Camilleri, 2013). The pump differential pressure mea-
surement is the difference between the pump discharge and downhole
pressure.

 VaxIxPFxq, xV3 1
_TXAquPXSS&ﬂ

Q, 4
Where,

Qp = flow rate (m3/d), V;, = motor voltage (V), I = motor current
(&),

Nm = motor efficiency (unitless),
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Fig. 25. ESP parameters plotted with the SAX Sensitivity of Medium (Flow), Medium (Torque), High (Speed), Medium (Discharge Pressure), Medium (Downhole

Pressure), and High (Motor Temperature).

np = pump efficiency (unitless), AP = pump differential pressure
(PSI).

Moreover, pump manufacturers provide pump performance curves,
shown in Fig. 9, which can be used to deduce flow rate based on pump
operating frequency (speed).

13

3.2. Symbolic Aggregation Approximation (SAX) based Performance
Images

In this section, we will expand on the previously developed SAX
Performance Images method (Saghir et al., 2019a, 2019b, 2020) and
introduce additional steps that help with the streaming analysis of
time-series data. Most importantly, we will shed light on clustering SAX
Performance Images by utilizing the expertise of Well Surveillance and
Petroleum Engineers.
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Fig. 27. Csg well drawdown process.

3.2.1. Expanding window technique for time-series analysis

Time-series analytics predominantly relies on sliding window or
moving average techniques to examine changes in temporal behaviour
(Braverman and Kao, 2016). Our earlier work found two significant
drawbacks of this technique when applied to time-series data gathered
from PCP wells. Firstly, a sliding window does not analyze the
start-to-end performance of a PCP well; hence changes induced by me-
chanical and reservoir behaviour are missed. Second, as the Pump Speed
is manually controlled by operators or adjusted using control algo-
rithms, a sliding window of any time dimension provides only
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immediate information regarding changing pump behaviour due to
speed control. Fig. 10 depicts the shortcomings of a sliding window
method. This figure shows three time-series steps where SAX conversion
is applied to each step in isolation. Once the SAX conversion is applied to
the first window, the SAX symbols do not change when new data comes
through. Hence, the temporal information of preceding data is lost with
this method.

To overcome these drawbacks, we utilized the expanding window
technique. This method allows us to account for the effect of past ob-
servations on current and future observations. In this technique, a fixed-
size window is used to define a subset of the time series data, which is
gradually expanded over time as more data becomes available. The
expanding window technique allows for incorporating additional in-
formation as it becomes available, leading to more accurate predictions
and a better understanding of the underlying trends and patterns in the
data. In Fig. 11, we can see how the prior SAX symbols adjust based on
new information. Although we do not use the preceding information, it
is essential to note new data’s effect on previous SAX symbols. As new
data adjusts based on historical data, we can easily observe the effect of
mechanical degradation and reservoir behaviour via the adjusting SAX
symbols. This will be discussed in detail in the forthcoming sections.
Additionally, when a new pump was installed in a CSG well, we restarted
the expanding window analysis, which forced the SAX symbols to re-
adjust based on the new pump behaviour.

3.2.2. Multivariate time-series conversion to SAX sensitivity arrays

SAX was first introduced in 2003 b y Lin et al. as a dimensionality
reduction method to represent univariate time-series data as discrete
symbols (Lin et al., 2003), an example of which is shown in Fig. 12. Since
then, multiple papers have discussed using SAX for anomaly detection in
time-series data (Keogh et al., 2005; Lin et al., 2007; Kumar et al., 2005;
Keogh and Lin, 2005).

However, most of these papers have focused on its application to
univariate time-series data and did not provide a comprehensive method
to analyze multivariate time-series data.

Our approach to converting multivariate data to SAX involved
transforming each time-series parameter into nine (9) SAX symbols
using the expanding window technique (Saghir et al., 2020). With these
nine (9) symbols, we can individually set the sensitivity of each
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Fig. 29. Major and anomaly heatmap for ESP/ESPCP wells.

parameter, hence accounting for fast or slow-changing parameters. Our
research determined that three sensitivities adequately define the SAX
bins for the time-series parameters. Namely, these sensitivities are low,
medium, high, and their SAX symbol distribution are set as 9x1, 5x1 and
3x1 arrays, respectively. These sensitivities are depicted in Fig. 13.

Furthermore, in Fig. 14, we show how multivariate time-series data
is converted to SAX sensitivity arrays. The selection of SAX sensitivity
depends on a parameter’s influence on the performance of the AL sys-
tem. For example, the pump speed is set either manually or through an
automated control algorithm in the RTU; hence setting the speed to a
high sensitivity ensures that the model picks up any speed change in real-
time. On the other hand, flow and torque parameters are set to medium
as they do not change as abruptly as the speed parameter. It is important
to note that the Petroleum or Surveillance Engineers can dynamically set
the parameter sensitivity while analyzing the pump performance. We
will show this feature in the upcoming sections.

3.2.3. Converting SAX sensitivity arrays to Performance Heatmap Images

Our previous publications (Iranzi et al., 2022; Awaid et al., 2014)
provided a Performance Image Conversion methodology based on a 1-h
expanding window. However, once we engaged with other CSG opera-
tors, we realized that having a more robust heatmap conversion meth-
odology was required to cater for an expanding window of any size.
Fig. 15 shows how we colour-code Anomaly and Major heatmaps based
on the SAX sensitivity arrays.

The colour is dependent on the ngccurrence factor, which can be
calculated using the following equation:

(5)

Noccurence =

Where,

Ngymbol = count of SAX symbol in the expanding window,

Nobservations = number of recorded observations in the expanding
window.

Fig. 16 shows how the colour code is applied to the speed parameter.
In this observation, we have assumed that there are ten readings (ngp
servations) 1D the texpanding Window of size 10 min. Based on the number of
SAX occurrences, the SAX sensitivity array is coloured accordingly.
Anomaly Heatmaps identify abrupt changes that occur in the expanding
window period. Likewise, Major Heatmaps identify the change in the
overall performance of the AL system. In the later sections of this paper,
we will discuss in detail how these heatmaps aid in creating events of
interest and assist Petroleum and Surveillance Engineers in labelling
time-series data. Finally, in Fig. 17, we elaborate on how the colour code
is applied to individual parameters to create the SAX Performance
Heatmap Images.

3.3. Time series data annotation with the aid of SAX heatmap images

As stated earlier in the paper, there is a significant lack of labelled
time-series data for AL systems operated in CSG wells. This presents a
considerable challenge in assessing the performance of these systems
methodically. To have any meaningful impact on how the performance
of these systems can be evaluated, it is essential to have a thorough data
annotation process in place.
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Fig. 31. Major and anomaly heatmap for PCP wells.

The SAX Heatmap Images are a powerful tool that can significantly
reduce the effort and time required for annotating time series data. In
addition, as the heatmap images are much more compact than the
original time series data, they significantly reduce the amount of data
that needs to be annotated.

During our research, we relied on the expertise of experienced Well
Surveillance and Petroleum engineers to help with the time-series
labelling process. These engineers were able to provide valuable in-
sights into the data and were able to identify patterns and anomalies that
would have been difficult to detect otherwise. This helped us ensure that
the data annotation process was accurate and reliable.

The data annotation process was carried out in multiple stages. In the
first stage, the engineers were asked to combine the Major and Anomaly

heatmap images based on their expertise and experience and create
events and sequences that define the performance of the AL system. In the
second stage, the engineers were asked to review and validate the events
and sequences of historical data not used in the first stage. In the final
stage, the engineers were asked to evaluate the events and sequences on
pseudo-live data (historical data ingested as a live data feed) to under-
stand how they would respond to real-time alerts. A methodology to
respond to alerts was also formalized during this stage.

Once the data annotation phase was completed, a real-time data
ingestion engine was created to automate the detection of events via a
machine learning model. The end-to-end process from data annotation
to solution deployment was completed in six months. In the coming sub-
sections, we will provide an overview of the data annotation process and
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Fig. 33. (Left) User Interface to add sub-events under events, (Right) User Interface to add sub-sequence under sequences.

show a User Interface was specifically developed to aid engineers with
labelling time series data.

3.3.1. Labelling SAX images

Before initiating the annotation process, it is essential to establish a
logical grouping of heatmaps as the foundation for event labelling. In
our past research, we employed a Convolutional Auto-Encoder (CAE)
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based clustering technique to label SAX images (Saghir et al., 2020,
2022). Our previous work focused only on PCPs with one set of SAX
Array sensitivity.

However, the pre-labelling process utilizing CAE-based clustering
became increasingly complex as we collaborated with additional CSG
operators who utilized ESPs, ESPCPs, and conventional PCPs. The
increased complexity was due to the additional parameters and SAX
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Fig. 34. —Multiple sub-events combined to create the Drawdown event.

array sensitivities used for ESPs and ESPCPs.

Hence, we developed a simple yet effective method to automatically
pre-label SAX images to overcome these additional complexities. With
this new approach, the SAX images were automatically labelled based on
the position of the colour markers within the SAX sensitivity arrays. The
label coding schema is presented in Fig. 18, and the application of this
schema is shown in Fig. 19. An empty SAX sensitivity array is labelled X,
and an array with more than one coloured block is labelled E.

3.3.2. User Interface for time series data annotation

Our initial implementation of the data annotation User Interface (UI)
was based on PowerBI and was designed to cater solely to PCP wells
(Saghir et al., 2019¢). However, this design had a limitation: it could
only function with a single set of sensitivity levels for PCP parameters.
As the requirement expanded to include ESP and ESPCP wells, and the
need for adjustable sensitivities arose, it became necessary to rebuild the
data annotation tool. In the new iteration of the UI, we used JavaScript
to create a customized dashboard, which allowed for a simplified data
annotation process involving the three types of Artificial Lift systems.
The Ul design was based on feedback received from Petroleum and Well
Surveillance Engineers.

The resulting interface greatly simplified the data annotation pro-
cess, allowing for more efficient use of resources, as the annotation
process could be completed with fewer personnel or in a shorter amount
of time. Also, the re-designed UI reduced the risk of errors and in-
consistencies, resulting in a more accurate and reliable data annotation
process.

The resulting User Interface (UI) for Data Annotation is shown in
Fig. 20. Breaking down the interface, two areas above and below the
Time Series Trends show the progression of Major and Anomaly Heat-
maps. The different colours correspond to the Major and Anomaly
Heatmap labels as processed by the label coding schema. On the right,
we have the Data Annotation Toolbar (DAT) that is used by Production
and Well Surveillance engineers to examine and annotate the time-series
data. The various selectable options in the DAT are shown in Fig. 21.
Each bar in the Major and Anomaly bar chart window is designed as a
filter. Clicking on any of the labels on the bar chart will only show that
particular label in the respective progression bar chart, as shown in
Fig. 22. This filter allows users to easily select areas of interest and use
this information to create events and sequences that can be used to assess
AL system performance to look at early failure trends and identify
abnormal system behaviour.

3.3.3. Time series data annotation process

The data annotation process aims to capture events & sequences
deemed necessary to Petroleum and Well Surveillance Engineers. In
addition, the DAT helps facilitate the knowledge capture process from
these experts to improve the events and sequences database over time.
Each stage of the data annotation process is covered in detail in Fig. 23.

The research team was involved daily with the engineers during
Stage 1 of the data annotation process. This level of collaboration
allowed for real-time feedback and adjustments to be made to the data
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annotation process as it was being carried out. The research team was
able to provide guidance and address any issues that arose during the
annotation process, ensuring that the data annotation process remained
on track. In Stages 2 and 3 of the data annotation process, the level of
collaboration between the research team and engineers was reduced.
However, meetings were still held to discuss procedural matters and
make minor adjustments to the DAT. These meetings were essential to
ensure that the data annotation process continued to be improved and
optimized.

4. Results

4.1. Observations made during the data annotation process

The six months spent annotating the data gave us insights into how
engineers engaged with the labelled Major and Anomaly heatmaps. This
section covers valuable observations that helped us develop a useful
time-series analysis tool for monitoring AL system performance with
streaming data.

4.1.1. Observation 1: dynamically adjusting SAX array sensitivities

During Stage 2, it was observed that the real-time parameters for
horizontal ESP and ESPCP wells were not changing as dynamically as
they were in vertically installed PCP wells, which led to a need for
adjusting the SAX array sensitivities. In response to this issue, we
developed a feature in the DAT that allowed engineers to adjust the SAX
array sensitivities dynamically. By doing so, the engineers had higher
confidence when creating events and sequences.

Fig. 24 shows the Sensitivity Selector feature, where engineers can
select the sensitivity of any plotted parameters. This feature adjusts la-
bels based on the pre-computed SAX symbols. By adjusting the sensi-
tivity dynamically, engineers could understand which parameters
impacted the Major and Anomaly heatmap labels most. Figs. 25 and 26
show ESP trends with two different SAX sensitivity settings.

In Fig. 25, the parameters for an ESP well are plotted with the SAX
sensitivity of Medium (Flow), Medium (Torque), High (Speed), Medium
(Discharge Pressure), Medium (Downhole Pressure), and High (Motor
Temperature). In Fig. 26, the same parameters are plotted with the SAX
sensitivity of Medium (Flow), High (Torque), High (Speed), Medium
(Discharge Pressure), High (Downhole Pressure), and High (Motor
Temperature). Over the plotted period, Fig. 25 has four (4) Major labels
and nine (9) Anomaly labels.

Whereas Fig. 26 has six (6) Major labels and thirteen (13) Anomaly
labels. The adjusted SAX sensitivity in Fig. 26 can distinctly identify the
effect of changing Downhole Pressure. By adjusting the SAX sensitiv-
ities, engineers could ascertain which parameters impacted the SAX
images most, providing labels that could easily be used to create
meaningful events and sequences.

4.1.2. Observation 2: reset expanding window after PCP shutdown

When a vertical PCP commences de-watering of a CSG well, the
water column in the casing is pumped out via the tubing to expose the
coal formations that release gas into the casing. This process is known as
water drawdown and is shown in Fig. 27. However, when a pump shuts
down, the water column rises back into the casing, so the drawdown
process must be commenced again.

During the data annotation process, it was observed that re-
commencing the drawdown produced SAX images that were not repre-
sentative of the pump performance. This happened due to the pump
efficiency loss caused by the stator’s wear and tear. Hence, a modifica-
tion was made to the SAX pipeline, where the expanding window was
reset whenever a pump restarted after a period of 24 h. By doing so, the
SAX images would adjust to represent the drawdown process based on
the lower pump efficiency. For example, in Fig. 28, we show the shut-
down periods that are greater than 24 h, after which the expanding
window was reset to calculate SAX symbols based on adjusted pump

Page 149



F. Saghir et al.

Geoenergy Science and Engineering 230 (2023) 212238

Low Efficiency Ideal

Erratic Torque Shutdown

High Torque

Drawdown

Low Flow High Torque

Fig. 35. PCP Events stored in the Events and Sequence Library.

efficiency.

4.1.3. Observation 3: detecting early onset of abnormal AL behaviour

To gauge changes in AL performance, the engineers tracked how the
Major and Anomaly heatmap labels changed prior to a particular
abnormal AL behaviour. The change in labels was beneficial in identi-
fying changes in both the mechanical and reservoir behaviour associated
with AL-operated wells. Fig. 29 shows the SAX Major and Anomaly
Heatmaps for an ESP well with six parameters. Fig. 30 shows how Major
and Anomaly label changes progress to a Gas Intake event. It can be seen
that before the erratic behaviour of the ESP, there was a drop in
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downhole pressure (shown in the Major Heatmap labels), and there was
also an increase in the frequency of downhole pressure anomalies (as
shown in the Anomaly Heatmap labels).

Similarly, before a PCP failure due to pump end-of-life, it can be
observed in Fig. 31 that there is a drop in flow as depicted by the
changing Major Heatmaps. Simultaneously, there is an increase in the
number of Low Flow Anomaly Heatmaps. Hence, to pre-empt failure due
to end-of-life behaviour, it is vital to observe the behaviour of the PCP
when it enters the Low Flow condition Fig. 32. In the upcoming section,
we will cover critical events and sequences that are considered early in-
dicators of abnormal AL behaviour.
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Fig. 36. PCP Sequences stored in the Events and Sequence Library.

4.1.4. Observation 4: grouping similar performance characteristics

During the data annotation process, engineers recognized that
various Major and Anomaly pairs could be grouped collectively to form
the same event or sequence. By doing so, similar performance charac-
teristics could be grouped to reduce the overall number of events and
sequences.

Fig. 33shows the User Interface developed for grouping multiple
combinations of sub-events and sub-sequences into single events and
sequences. In Fig. 34, we show an example where three combinations of
sub-events (Major and Anomaly pairs) are combined to detect a draw-
down event. If any Major and Anomaly sub-event pairs occur in the time-
series data, it is designated as a drawdown event.

4.1.5. Observation 5: events and Sequences Library

The events and sequences library had 18 entries after Stage 3 of the
data annotation process. The events and sequences shown in Fig. 35,
Fig. 36, Figs. 37 and 38 were classified as must-have by Petroleum and
Surveillance engineers to assist with exception-based surveillance.

4.2. Artificial Lift System Analytics Application

To understand the effectiveness of the data annotation process and
how the resulting events and sequences impact the performance analysis
of the AL systems, we created an Artificial Lift System Analytics Appli-
cation (ALSAA) to facilitate the work for engineers. In this section, we
will showcase how ALSAA, facilitated by the events and sequences li-
brary, improved the management of AL systems. In addition, the
application also provided the operators with previously unseen insights,
which helped improve the overall performance of these systems.

4.2.1. Artificial Lift System Analytics Application (ALSAA)

ALSAA comprises of three main components: data ingestion, SAX
processing and the application dashboard. The data flow architecture for
ALSAA is shown in Fig. 39. The data ingestion and SAX processing
components are invoked every 5 min, and they update the time series
database. Anomaly and Major labels are passed to the events and se-
quences library, where they are checked against entries in the library. Ifa
match exists, the alert database is updated, and notifications are pushed
to the application dashboard. As part of the application, we allowed
specific users to edit the events and sequences library through the dash-
board. This feature was added in-case engineers wanted to add a new
event or sequence of interest that may not have been recorded or
observed during the data annotation process.

4.2.2. Exception-based surveillance dashboard
The exception-based surveillance dashboard is the home page of
ALSAA. The dashboard is split into four (4) areas shown in Fig. 40.

4.2.2.1. Dashboard area 1. The dashboard Area 1, shows various menu
options for ALSAA. The detail of each menu option is shown in Fig. 41.
These options will be discussed in more detail in the forthcoming
sections.
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4.2.2.2. Dashboard area 2. As shown in Fig. 42, Dashboard Area 2 de-
picts live cards which provide a quick summary to the engineers for
various wells. Most importantly, the number of wells under observation,
low-efficiency wells and drawdown wells are critical in tracking
abnormal AL behaviour.

4.2.2.3. Dashboard area 3. Dashboard Area 3 summarises the wells
covered in Dashboard Area 2. The summary aims to provide engineers
with the ability to track wells of interest proactively. For example,
Fig. 43 shows an overview of Under Observation wells. This summary
provides an overview of the event being tracked for each well, their
Activity trend, and which cause is being tracked. Wells are added to the
Under Observation card through the Live Alerts page, details of which
are covered in the next section.

4.2.2.4. Dashboard area 4. The Live Map gives engineers an overview of
the well conditions based on various filters in Dashboard Area 4. As
shown in Fig. 44, users can filter wells based on labels, events and se-
quences. They can further see the behaviour of the screened wells based
on the time-period selection. The selected filter can be applied to all
dashboard areas. The map-based filter selection is a quick way for en-
gineers to find wells with issues they may be interested in investigating
further.

4.2.3. Automated real-time alerts

In our previous approach, where we assessed only PCPs with per-
formance heatmaps (Saghir et al., 2022), we used an image clustering
approach to label the images and produce necessary alerts. However,
this approach depended highly on engineers supervising cluster label-
ling and ensuring efficient output of automated alerts. In our current
approach, the auto-labelled heatmap images provided a more stream-
lined and efficient automated alert method, requiring minimum engi-
neers’ supervision. Fig. 45 shows how the alerts are processed once the
image labels are processed in the events and sequences Library.

The Alerts Logic Processor (ALP) assesses the streaming events and
sequences and puts them into categories to be displayed in the Applica-
tion Dashboard. The application has three alert types: Notification,
Warning and Critical Alarm. The ALP also calculates the cumulative
time of each category and records any necessary action the engineers
took. The Alert View on the Application Dashboard is shown in Fig. 46.

4.3. Additional analytics tools based on heatmap labels, events and
sequences

As part of ALSAA, five visual analytics tools were developed to assist
engineers with further analyzing AL performance. These tools and their
functionalities are listed below.

4.3.1. Unique label analysis

This tool aims to monitor Unique Major and Anomaly labels and
identify if an AL system behaves differently from similar AL system
types. Fig. 47 shows the tracking of unique events over three days for a
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Fig. 37. ESP Events stored in the Events and Sequence Library.
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DHP Drop Motor Temperature Increase

Fig. 38. ESP Sequences stored in the Events and Sequence Library.
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Fig. 39. — Data flow architecture: Artificial lift systems analytics application.
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| &
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Fig. 40. Surveillance Dashboard. Area 1: Selection Menu and Alerts Notifications. Area 2: Display Cards for Live Wells, Under Observation Wells, Low-Efficiency
Wells and Drawdown Wells. Area 3: Tabs showing details of wells mentioned on the display cards in Area 2. Area 4: Live Well Filter allows users to filter wells
based on Labels, Events and Sequences.

particular well. On day 1, the tool recorded one label out of seven which systems and identify an opportunity to create new events or sequences.
did not exist in the same or similar wells to that date. By monitoring
these unique labels, engineers could identify new behaviour of AL
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Fig. 41. Dashboard area 1: Menu options in the artificial lift systems analytics application.
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Fig. 43. — Dashboard Area 3: Live Cards displaying the number of various wells to track Artificial Lift performance.

4.3.2. End-of-life analysis Label Type (Major or Anomaly) and Count Type. There are three Count
As the pumps age, their efficiency decreases depending on the wear Types a user can choose from.

and tear of internal components. Hence, it is important for engineers to

understand how efficiency behaves over time based on the Major - Minimum: Display the labels which had a minimum count for a day

Heatmap labels. Each Major Heatmap label was given a pre-determined - Maximum: Display the labels which had the maximum count for a

score, and the value was plotted as a heatmap over time. Fig. 48 shows day

the end-of-life heatmap laid over a live well plot. The various stages - Difference: Display the number of times a label has changed during a

during the pump life are shown in the heatmap plot, with a clear indi- day

cation of when the pump enters the low-efficiency stage, followed by the

end-of-life stage. In Fig. 49, we see the Label Analysis Tool, where both the heatmap

calendars show Major Heatmap Labels. The calendar on the left shows

4.3.3. Label analysis the Major Labels with the maximum count for each calendar day. The
The Label Analysis tools allow engineers to see trends in Major and calendar on the right shows the difference in Major Labels for each

Anomaly Labels in a calendar heatmap format. The Label Analysis has calendar day. The label analysis tool shows the performance trend over

two side-by-side calendars; for each calendar, the user can select the the calendar year as seen in the figure. By selecting various
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Fig. 44. Dashboard Area 4cx: Live map with filters.

combinations of Label and Count Type, engineers can analyze data
based on the AL system’s behaviour change.

4.3.4. Events analysis

Similar to the Label Analysis tool, the Events Analysis Tool is a
calendar-based heatmap which shows the occurrence of the events count
in a calendar year. In addition, this tool allows the user to understand
event occurrence trends and enables engineers to see how often an event
can impact a particular AL type. Fig. 50 shows the Event Analysis
Heatmap for a PCP well with the Erratic Torque event over a calendar
year.

4.3.5. Sequence Analysis Tool

The Sequence Analysis Tool shares the same layout as the Event
Analysis Tool but with the feature of a heatmap that highlights the re-
gions where selected sequences of interest have occurred. This assists
engineers in analyzing changes in performance behaviour more effec-
tively. Fig. 51 shows the Sequence Analysis Heatmap for a PCP well with

24

the Flow Drop sequence over a calendar year.

5. Conclusion and future works

This paper presented an innovative time-series analytics approach
that autonomously detects various performance states of downhole
pumps during CSG production. Our proposed solution provides engi-
neers with real-time notifications that aid in proactively managing AL
systems across multiple CSG assets. This is a significant improvement
over traditional surveillance methods as it allows engineers to take
corrective actions before mechanical failures occur, which leads to a loss
in natural gas production.

The detailed methodology, results, and observations presented in
this paper demonstrate the efficacy of the proposed approach in
detecting various performance states of downhole pumps during CSG
production. One of the key advantages of our approach is the ability to
analyze time-series data from multiple CSG wells in near real-time. In
addition, the analytics application developed in this work allows
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Fig. 51. Sequence analysis tool.

engineers to see real-time results from live wells, providing an auto-
mated system to assess any abnormal AL system behaviour and inves-
tigate further factors to foresee any impending failure.

The Analysis Tools discussed in this paper have the potential to
provide engineers with additional capabilities to conduct detailed in-
vestigations of different performance parameters. For example, the
Events Analysis Tool can help engineers identify the impact of certain
events on overall pump life. Furthermore, the events and sequences library
developed during the data annotation stage proved critical for real-time
analysis, providing engineers with clear insights into why changes in
behaviour occurred during CSG operations.

Although the time-series analytics method was developed using data
from CSG-operated wells, we are highly confident that a similar
approach can be applied to other rotating equipment operated in Oil and

27

Gas and other industrial applications. For example, this application can
be highly beneficial for mud motors used in directional drilling opera-
tions within Oil and Gas. Mud motors are essentially PCPs, but rather
than having a motor drive the rotor, the force generated by drilling mud
is used to drive the rotor, which helps to transfer energy to the drill bit.
The mud motor, also commonly known as the power section, is shown in
Fig. 52. Also, we are currently discussing with an operator from the
Middle East to test the method on AL systems operating in conventional
oil and gas reservoirs.

Additionally, to enhance the user experience, we are presently
developing a search engine based on time-series data, which will allow
users to easily search for specific events and sequences by typing various
states into a search bar. The search engine will then generate a table of
wells with the desired events and sequences listed, making it easier for
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Stator

Rotor

Elastomer

Fig. 52. Various components of the Bottom Hole Assembly along with the mud motor (power section) cut out showing the rotor and stator similar to a PCP. (SLB).

users to locate the information they need quickly and efficiently.
Declaration of competing interest

The authors would like to provide the following Declaration of Interest
statement.

Two natural gas producers based in Queensland provided financial
compensation to the research project’s lead author for deploying pre-
developed time-series analytics models and the Artificial Lift Systems
Analytics Application within their respective cloud platforms.

It is important to note that the lead author had already completed the
required research and development work for the time-series models,
methods, Data Annotation Tool, and the Artificial Lift Systems Analytics
Application before commencing work with these companies.

The provided compensation was used to customize the data ingestion
pipeline and improve the Analytics Application dashboards based on
each company’s specific requirements. However, these customizations
are not discussed in the paper, and the necessary data has been anony-
mized due to the Confidentiality Agreement with the companies.
Furthermore, as mentioned in the manuscript, the companies assisted
with the data annotation process, which helped create the events &
sequences database used for Artificial System performance tracking.

The co-authors of this manuscript have no conflicts of interest to
disclose. Furthermore, all authors have approved the final version of the
manuscript and agree to its submission to the Engineering Applications
of Artificial Intelligence Journal.

Data availability
The authors do not have permission to share data.

References

Abdalla, R., et al., 2022. Machine learning approach for predictive maintenance of the
electrical submersible pumps (ESPs). ACS Omega 7 (21), 17641-17651.

Abdelaziz, M., Lastra, R., Xiao, J.J., 2017. ESP data analytics: predicting failures for
improved production performance. In: Abu Dhabi International Petroleum
Exhibition & Conference. Society of Petroleum Engineers, Abu Dhabi, UAE, p. 17.

Al-Ballam, S., Karami, H., Devegowda, D., 2023. A hybrid physical and machine learning
model to diagnose failures in electrical submersible pumps. In: SPE/IADC Middle
East Drilling Technology Conference and Exhibition.

Alamu, O.A., et al., 2020. ESP dala analytics: use of deep autoencoders for intelligent
surveillance of electric submersible pumps. In: Offshore Technology Conference.
Ambade, A., et al., 2021. Electrical submersible pump prognostics and health monitoring
using machine learning and natural language processing. In: SPE Symposium:

Artificial Intelligence - towards a Resilient and Efficient Energy Industry.

Andrade Marin, A., et al., 2021. Real time implementation of ESP predictive analytics -
towards value realization from data science. In: Abu Dhabi International Petroleum
Exhibition & Conference.

Awaid, A., et al., 2014. ESP well surveillance using pattern recognition analysis, oil wells,
Petroleum development Oman. In: International Petroleum Technology Conference.
International Petroleum Technology Conference, Doha, Qatar, p. 22.

Brasil, J., et al., 2023. Diagnosis of operating conditions of the electrical submersible
pump via machine learning. Sensors 23 (1), 279.

Braverman, V., 2016. Sliding window algorithms. In: Kao, M.-Y. (Ed.), Encyclopedia of
Algorithms. Springer, New York: New York, NY, pp. 2006-2011.

Camilleri, L., 2013. System, Method, and Computer Readable Medium for Calculating
Well Flow Rates Produced with Electrical Submersible Pumps. USPTO, United States.
Sensia LLC.

Cardona, ., Vivas Sanchez, P.
ESP and operational behavior.
Engineering Conference,

Commonwealth of Australia 2014, 2014. Coal Seam Gas Extraction: Modelling
Groundwater Impacts. Department of the Environment.

Iranzi, J., et al., 2022. A nodal analysis based monitoring of an electric submersible pump
operation in multiphase flow. Appl. Sci. 12 (6), 2825.

Keogh, E., Lin, J., 2005. Clustering of time-series subsequences is meaningless:
implications for previous and future research. Knowl. Inf. Syst. 8 (2), 154-177.

Keogh, E., Lin, J., Fu, A., Hot, S.A.X., 2005. Efficiently finding the most unusual time
series subsequence. In: Fifth IEEE International Conference on Data Mining.
ICDM'05).

Knafl, M., et al., 2013. Diagnosing PCP failure characteristics using exception based
surveillance in CSG. In: SPE Progressing Cavity Pumps Conference.

Kumar, N., et al., 2005. Time series Bitmaps: a Practical Visualization Tool for Working
with Large Time Series Databases.

Lin, J., et al., 2003. A Symbolic Representation of Time Series, with Implications for
Streaming Algorithms, pp. 2-11.

Lin, J., et al., 2007. Experiencing SAX: a novel symbolic representation of time series.
Data Min. Knowl. Discov. 15 (2), 107-144.

Matthews, C.M., et al., 2007. Petroleum engineering handbook. In: Production
Operations Engineering. Society of Petroleum Engineers.

Ocanto, L., Rojas, A., 2001. Artificial-lift systems pattern recognition using neural
networks. In: SPE Latin American and Caribbean Petroleum Engineering Conference.
Society of Petroleum Engineers, Buenos Aires, Argentina, p. 6.

Queensland borehole series metadata record. Available from: hitps://www.data.gld.gov.
au/dataset/queensland-borehole-series.

Rajora, A., et al., 2019. Deviated pad wells in surat: journey so far. In: SPE/AAPG/SEG
Asia Pacific Unconventional Resources Technology Conference.,

Rathnayake, S.1., Firouzi, M., 2021. Statistical process control for early detection of
progressive cavity pump failures in vertical unconventional gas wells. In: SPE/
AAPG/SEG Asia Pacific Unconventional Resources Technology Conference.

Rathnayake, S., Rajora, A., Firouzi, M., 2022. A machine learning-based predictive model
for real-time monitoring of flowing bottom-hole pressure of gas wells. Fuel 317,
123524.

Saghir, F., Perdomo, M.G., Behrenbruch, P., 2019a. Machine learning for progressive
cavity pump performance analys) coal seam gas case study. In: SPE/AAPG/SEG
Asia Pacific Unconventional Resources Technology Conference. Society of Petroleum
Engineers, Brisbane, Australia.

Saghir, F., Gonzalez Perdomo, M.E., Behrenbruch, P., 2019b. Converting time series data
into images: an innovative approach to detect abnormal behavior of progressive
cavity pumps deployed in coal seam gas wells. In: SPE Annual Technical Conference
and Exhibition. Society of Petroleum Engineers, Calgary, Alberta, Canada, p. 14.

Saghir, F., Gonzalez Perdomo, M.E., Behrenbruch, P., 2019¢. Application of exploratory
data analytics EDA in coal seam gas wells with progressive cavity pumps PCPs. In:

Joya, B., 2023. Failure prediction methodology for
In: SPE Latin American and Caribbean Petroleum

Page 159



F. Saghir et al.

SPE/IATMI Asia Pacific Oil & Gas Conference and Exhibition. Society of Petroleum
Engineers, Bali, Indonesia, p. 10.

Saghir, F., Gonzalez Perdomo, M.E., Behrenbruch, P., 2020. Application of machine
learning methods to assess progressive cavity pumps (PCPs) performance in coal
seam gas (CSG) wells. The APPEA Journal 60 (1), 197-214.

Saghir, F., Gonzalez Perdomo, M.E., Behrenbruch, P., 2022. Application of streaming
analytics for Artificial Lift systems: a human-in-the loop approach for analysing
clustered time-series data from progressive cavity pumps. Neural Comput. Appl. 35
(2), 1247-1277.

Saghir, F., Gonzalez Perdomo, M.E., Behrenbruch, P., 2023. Application of streaming
analytics for Artificial Lift systems: a human-in-the loop approach for analysing
clustered time-series data from progressive cavity pumps. Neural Comput. Appl. 35
(2), 1247-1277.

Sharma, A., Songchitruksa, P., Sinha, R.R., 2022. Integrating domain knowledge with
machine learning to optimize electrical submersible pump performance. In: SPE
Canadian Energy Technology Conference.

29

Geoenergy Science and Engineering 230 (2023) 212238

Silvia, S., et al., 2023, Case study: predicting electrical submersible pump failures using
artificial intelligence and physics-based hybrid models. In: SPE Symposium
Leveraging Artificial Intelligence to Shape the Future of the Energy Industry.

SLB. PowerPak steerable motors. Available from: https://www.slb.com/drilling/botto
mhole assemblies/directional drilling/powerpak-steerable motors.

Takacs, G., 2018. Chapter 4 - use of ESP equipment in special conditions. In: Takacs, G.
(Ed.), Electrical Submersible Pumps Manual, second ed. Gulf Professional
Publishing, pp. 153-240.

Tan, C., et al., 2021. The health index prediction model and application of PCP in CBM
wells based on deep learning. Geofluids 2021, 6641395.

Thornhill, D.G., Zhu, D., 2009. Fuzzy analysis of ESP system performance. In: SPE Annual
Technical Conference and Exhibition. Society of Petroleum Engineers, New Orleans,
Louisiana, p. 7.

Page 160



9. Conclusions and Recommendations

9.1. Conclusion
In conclusion, this thesis presents a groundbreaking approach to analyzing time-series data

using SAX-based Heatmap images for the purpose of ALS performance analysis in CSG
production. The results demonstrate the effectiveness of this methodology in providing
improved visualization of real-time trends and automating the detection of abnormal events
in the context of ALS operations. By allowing engineers to focus on wells requiring attention
and proactively managing ALS systems, this approach significantly enhances the efficiency of
CSG asset management and minimizes natural gas production losses due to mechanical

failures.

The detailed methodology, results, and observations presented in this research demonstrate
the efficacy of the proposed approach in detecting various performance states of ALS systems
during CSG production. One key advantage of the developed approach is the ability to analyze
time-series data from multiple CSG wells in near real-time. In addition, the analytics
application developed in this work allows engineers to see real-time results from live wells,
providing an automated system to assess any abnormal ALS system behavior and investigate

further factors to foresee any impending failure.

Moreover, the analysis tools discussed in this research have the potential to provide
engineers with additional capabilities to conduct detailed investigations of different
performance parameters. For example, the Events Analysis Tool can help engineers identify
the impact of certain events on overall pump life. Furthermore, the events and sequences
library developed during the data annotation stage proved critical for real-time analysis,
providing engineers with clear insights into why changes in behavior occurred during CSG

operations.

Chapters 7 and 8 showcase the practical application of the research work by two CSG
operators who gained valuable insights into their ALS operations. With the help of real-time
alerts, these operators can now manage a large number of wells with ease by identifying
exceptions that require immediate attention. Additionally, the analytics application
developed as part of this research work has the potential to evolve into a fully autonomous
control system, where parameters such as pump speed can be adjusted without human

intervention.

Page 161



9.2.Summary of Findings
The culmination of this research reveals remarkable findings, contributing to the

advancement of ALS performance analysis in CSG production. The following key outcomes

underscore the significance of the developed methodology:

a. Innovative Application of SAX
The study innovatively applies SAX to transform complex multivariate time-series data into

visual performance heatmaps. This novel approach serves to streamline the labeling process
for petroleum and surveillance engineers, providing a comprehensive and intuitive

representation of ALS dynamics.

b. Efficiency and Accuracy Through Labeling
The assignment of labels, encompassing events and sequences, to time-series images

emerges as a pivotal enhancement. This labeling strategy significantly augments the efficiency
and accuracy in detecting abnormal ALS performance. The structured labeling schema

facilitates swift and effective decision-making processes.

c. Confidence in Result Accuracy
Petroleum and surveillance engineers derive heightened confidence in the accuracy of

obtained results through the systematic labeling process. This meticulous organization of
pertinent data ensures a foundation for informed decision-making, fostering a robust

analytical framework.

d. Analytics Platform for Efficient Well Management
The research presents a user-friendly analytics platform that demonstrates the effectiveness

of streaming analytics. This platform empowers CSG operators to adeptly manage a
substantial number of wells. By leveraging real-time data, the platform contributes to the
efficient monitoring and optimization of ALS performance across diverse operational

scenarios.

e. Collaborative Approach for Early Detection
The collaborative approach advocated in this study empowers engineers to create events and

sequences. This collaborative effort is instrumental in the early detection of abnormal ALS

performance, allowing for proactive corrective actions and the prevention of downtime.
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f.  Real-time ALS Performance Analysis Framework
The developed real-time ALS performance analysis framework advocates a manage-by-

exception approach. This strategic framework streamlines ALS management practices within
the CSG industry. By focusing attention on wells requiring intervention, the framework

optimizes operational efficiency and minimizes production losses due to mechanical failures.

9.3. Summary of Results

a. Real-time identification of ALS-related issues
Starting in 2021, ALSAA was implemented with two (2) CSG operators who collectively

operated close to a thousand wells, and the live alerts enabled these operators to monitor
these large number of CSG wells by exception. The analytics tool proved to be efficient in
detecting issues with various ALS systems, significantly reducing the time needed to identify
and address problems. The tool provided engineers with real-time alerts and valuable insights
into specific performance behaviors, enabling them to quickly and accurately address any
issues that arose. This mitigated various unnecessary shutdowns, and possibly prevented ALS

failures due to undetected abnormal behavior.

b. Actionable Alerts
Operators have identified nine (9) actionable alerts for PCPs and eight (8) actionable alerts

for ESPs/ESPCPs. These actionable alerts have enabled the operators to carry out necessary
interventions and performance analysis to improve overall production from CSG wells.
Furthermore, the data annotation tool provided as part of ALSAA, provides operators with
the flexibility to modify and add alerts to meet their specific operational needs.
c. Labelled Time-series Data Repository

As the time-series data was automatically labelled based on the SAX-based heatmap clusters,
this provided operators with a host of advantages, including efficient data retrieval and the
development of additional analytics applications. In Chapter 8, it is demonstrated how
labelled time-series data facilitated the development of five (5) insightful applications. These
applications provided operators with valuable insights into PCP end-of-life analysis, tracking
and identification of unique labels, and deep-dive analysis tools to understand the patterns
of labels, sequences, and events. This immensely improved task efficiency, facilitating root-

cause analysis for certain PCP performance issues.
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d. Improved ALS workover management
The end-of-life heatmap analysis tool presented in Chapter 8 assists operators with planning

pump changeover activities well in advance versus waiting for pumps to fail. This insight helps
companies to streamline workover activities, and significantly minimize production
downtime. Furthermore, the tool enables operators to efficiently manage pump inventory
and assist with supply chain related decisions. By improving ALS workover management,
companies reduce operational costs and maintain undisrupted gas production levels, leading

to improved profits for CSG operators.

9.4. Recommendations
While the time-series analytics method was developed using data from CSG-operated wells,

a similar approach can be applied to other rotating equipment operated in the Oil and Gas
industry and other industrial applications. This research paves the way for transformative
advancements in real-time monitoring and predictive maintenance across multiple sectors,

potentially enhancing operational efficiency and reducing downtime.

Furthermore, the study highlights the versatility of SAX-based performance heatmap analysis,
as it can be applied to a wide range of rotating equipment in the QOil and Gas industry and
other industrial applications where ALS systems are employed. The innovative time-series
analytics tools and event analysis capabilities presented in this research offer engineers
valuable insights into performance parameters and the impact of events, making it a valuable

asset for various industries beyond CSG production.

The findings showcased in this research not only have implications for the Australian context
but also hold the potential to foster valuable collaborations with oil and gas operators in

countries like India and the USA, where CSG operations are prevalent.

Expanding the scope beyond CSG operations, potential collaborators for advancing the
domain of this research extend to any operator heavily reliant on ALS for hydrocarbon
production. The inherent adaptability of the presented methodology not only invites
collaboration but also signifies its potential for broader refinement, especially in the context
of global applicability. This adaptability positions the research as a versatile framework that
can be tailored to address the diverse needs and operational nuances of hydrocarbon
producers worldwide, thereby fostering collaborative efforts and advancements beyond the

realm of CSG operations.
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One notable avenue for further improvement is the prospect of leveraging labelled datasets
to pave the way for advanced time-series-based search engines. Such engines would
revolutionize data retrieval processes by allowing users to access specific information through
intuitive search prompts, significantly enhancing the efficiency of data retrieval and analysis.
This development could serve as a technological breakthrough, providing a versatile tool that

transcends to any time-series based application.

A particularly compelling avenue for further exploration in this research would be the
development of a fully autonomous control system. This system would possess the capability
to automatically regulate parameters, thereby adjusting the performance of mechanical
equipment in real-time to optimize production while concurrently extending equipment run
life. The foundation for such an autonomous control system could be established by
leveraging insights gained from engineers' responses to alerts generated by the current
analytics tool. By learning from and emulating the decision-making processes of engineers in
response to specific alerts, this autonomous system could offer a transformative approach to
enhancing operational efficiency and prolonging the life of mechanical equipment in dynamic

environments.
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APPENDIX

Letter from CSG operator acknowledging the use of Artificial Lift Analytics Application

_@seﬂexe"ergy.co'“"au>
-CC: fahd.saghir@adelaide.edu.au

To whomever it may concern,

[

In 2021, Senex introduced the Artificial Lift Analytics Application on its cloud platform for real-time monitoring of Coal Seam Gas wells across its operations. This tool enables Senex to efficiently
manage wells, identify exceptions, and track Artificial Lift performance.

The application is based on the time series analytics work that Fahd Saghir has undertaken as part of his PhD research at the University of Adelaide.

Kind regards,

]
Senexn’

Level 30, 180 Ann Street, Brisbane QLD 4000
GPO Box 2233, Brisbane QLD 4001

mmm
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