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Abstract

Differential equations are an invaluable tool for predicting and understanding phenomena across
many fields. These models are inevitably subject to uncertainties, including because of measure-
ment error, unresolved components, and resolution limitations. Accounting for these uncertainties
can improve models, but this endeavour is analytically challenging and often requires computa-
tionally expensive Monte Carlo simulation. In this thesis, we consider Itô stochastic differential
equations, which extend ordinary differential equations to include stochastic terms and provide
a rich framework for explicitly parameterising uncertainties in the model. We look to address
the need for computationally efficient characterisations of uncertainty that do not require bulk
simulation.

We first build upon previous small-noise studies to provide an explicit bound for the error
between stochastic differential equations and corresponding linearisations written in terms of a
deterministic system. Our framework accounts for non-autonomous coefficients, multiplicative
noise, and uncertain initial conditions. These linearisations are solvable and efficient to compute
and so can serve as an approximate solution to the stochastic differential equation. We demonstrate
the predictive power of our bound on several toy examples, providing, for the first time, a numerical
validation of linearisation approximations of stochastic differential equations. In characterising
this relationship, we are also able to extend stochastic sensitivity (Balasuriya, SIAM Review,
2020:781-816), a recently introduced tool for characterising the impact of uncertainty on differential
equation solutions. Stochastic sensitivity was previously restricted to 2-dimensional flows and we
overcome this limitation to empower the use of these tools on models of arbitrary dimension.

Furthering the linearisation framework, we also propose an ad hoc algorithm for approximating
a stochastic differential equation solution with a Gaussian mixture model constructed from many
different linearisations. This algorithm is computationally efficient and provides an analytic
probability density function, unlike stochastic samples. Critically, the algorithm can capture non-
Gaussian features in the stochastic solution that a single linearisation cannot. Our investigation
into this algorithm, using a data-driven model of a drifter in the North Atlantic Ocean, yielded
promising results in approximating a highly non-Gaussian distribution.

Our work provides many avenues for further development. These possibilities include establish-
ing connections with the Fokker-Planck equation and the theoretical extension of our framework
to account for different types of driving stochastic noise. We also anticipate applications of
both our theoretical contributions and computational tools within the fields of data assimilation,
stochastic parameterisation, and mathematical epidemiology.
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Chapter 1

Introduction

Many phenomena across geophysical, biological and socio-economic applications can be
modelled using ordinary differential equations (ODEs). Given an initial condition, these
models can be solved, either analytically or numerically, to predict the behaviour at a
future time. These models are usually specified in a purely deterministic fashion, in that
each component is treated as being known exactly. The model consequently provides
a single prediction of the future state for any given initial condition. However, in any
modelling scenario, there will inevitably be uncertainty in the model specification which
can arise from:

• the model being sourced from measured data, which itself includes observational
error

• information only being available on a spatiotemporal grid (resolution error), either
due to data availability or discretisation of the model

• a lack of a complete understanding of all the processes involved in the system

• unknown values for any parameters in the model

• imperfect knowledge of the initial conditions.

Without appropriately accounting for these many manifestations of uncertainty, any pre-
dictions and inferences from the deterministic model may be inaccurate or even misleading.
This is not a trivial problem to resolve, however, as this uncertainty is inherently un-
knowable. Even when the uncertainty cannot be directly encoded into the model, an
understanding of how reliable the predictions of the model are in the presence of this
uncertainty is extremely valuable.

This problem of uncertainty plague every field, but has received particular attention in
climate modelling and weather prediction. For example, resolution issues pose a significant
challenge in producing accurate predictions from a high-dimensional climate model. Many

1



2 Chapter 1. Introduction

such models rely upon a spatial discretisation for tractable analysis and simulation, which
often requires an extremely high resolution to produce accurate simulations that correctly
capture all relevant processes (Dawson, Palmer, and Corti, 2012). Without even considering
the plethora of other sources of uncertainty in climate modelling, the discretisation of the
model that is necessary for tractability introduces resolution issues that require a high
computational load to overcome.

One approach to account systematically for uncertainty is by replacing the deterministic
model with a stochastic one, where the uncertainty is introduced as an inherent part of
the model and the solutions are treated as random quantities. The formal introduction
of stochastic terms to account for unknown and unresolved processes into an otherwise
deterministic model is known as stochastic parameterisation in scientific circles (Berner
et al., 2017; Palmer, 2019). Stochastic parameterisation has been shown to both lead to the
same performance as higher-resolution models—Dawson and Palmer (2015) showed through
simulation studies that the performance of a high-resolution purely deterministic model can
be matched by a lower-resolution stochastic model—and to improve the predictive power
of forecasts (Mitchell and Gottwald, 2012; Ha et al., 2015). More broadly, introducing
stochastic terms can improve upon a deterministic model by accounting for the otherwise
unknowable sources of uncertainty in the model specification. This provides a new model
to generate (now probabilistic) predictions and perform analysis or even evaluate the
reliability of the original deterministic model itself (Balasuriya, 2020b).

Although stochastic models can improve upon their deterministic counterparts, there is
a significant compromise: stochastic models are more often intractable to solve analytically
and difficult to analyse than the deterministic counterparts, instead requiring numerical
solutions. However, capturing the stochasticity of the model requires taking many reali-
sations of the solution. In general, a large number of samples is required for convergent
statistics and accurate inference (Feppon and Lermusiaux, 2018; Leutbecher, 2019) and
so generating representative realisations often reaches the limit of our computational
capabilities. Nonetheless, this bulk simulation approach is the gold standard in many
applications (Collins, 2007; Leutbecher et al., 2017, e.g.). Overcoming this computational
expense is an area of ongoing research in every field in which such stochastic models are
used. In the climate context, the recent review by Leutbecher et al. (2017) highlights the
need to develop computationally efficient schemes for quantifying stochasticity in weather
and climate forecast models. In particular, the authors state that “the aim of current
and future developments in stochastic representations of model uncertainty is to develop
schemes that are computationally highly efficient and contribute only moderately to the
overall computational cost...”. The overall aim of this thesis is to address this problem by
developing computationally efficient schemes to approximate and characterise the impact
of uncertainty on the solutions to differential equations. We focus our attention on one
particular class of stochastic models: stochastic differential equations, which are a natural
extension of ordinary differential equations.



1.1. Stochastic differential equations 3

1.1 Stochastic differential equations

Stochastic differential equations (SDEs) are a natural framework for introducing uncertainty
into the continuous time evolution of a variable (Øksendal, 2003; Penland, 2003; Kallianpur
and Sundar, 2014; Särkkä and Solin, 2019). The uncertainty is introduced as a (possibly
time- and state-dependent) stochastic process that contributes to the vector field (rate
of change) of the differential equation for the ongoing evolution of the state variable.
Although an SDE allows us to account for sources of uncertainty in a differential equation
model, the usage of such presents new challenges, first requiring an entirely new type of
calculus to formulate (Itô, 1944, 1946). The solution is now a stochastic process evolving
through time, and the analytic solution must be expressed in terms of a time-dependent
probability distribution over the state space. Finding these exact solutions is almost always
impossible, however, and working with the equations and their solutions analytically is
more difficult than for the deterministic counterparts. Nevertheless, stochastic differential
equations provide a rich and flexible modelling framework and are consequently used
across a range of fields, including financial mathematics (Kabanov et al., 2006), biological
modelling (Preisler et al., 2004; Bachar et al., 2013, e.g.), physics (Gardiner et al., 1992;
Strauss and Effenberger, 2017, e.g.), atmospheric modelling (Wilson and Sawford, 1996),
and oceanography (Berloff and McWilliams, 2002). Although analytic solutions are usually
unavailable, SDEs can be solved numerically to generate ensembles of approximation
solution realisations (Kloeden and Platen, 1992), which can then be used in Monte Carlo-
type inferences. There are further complications to even this, however. Generally, in
modelling situations, the dynamics are highly nonlinear and one expects the noise to
vary with both time and state (i.e. the noise can be multiplicative), e.g. in atmospheric
(Sura, 2003; Sura et al., 2005) and oceanic (Kamenkovich et al., 2015) systems and from
experimental and observational considerations. This further complicates the usage of
the model for prediction and analysis; such SDEs are intractable to solve analytically
and more difficult to approximate accurately (Sancho et al., 1982; Mora et al., 2017).
Data-based models—that is, models possessing terms in the equations that are driven
by data rather than by explicitly specified functions—and uncertainty in the initial state
renders additional problems in obtaining a theoretical understanding of the stochastic
system.

Let us consider this problem from a purely mathematical perspective; we are given a
possibly highly nonlinear SDE with non-trivial noise components. We cannot solve such
equations analytically, and numerical simulation is computationally expensive. Motivated
by the need for efficient schemes across applications, we specifically look to develop
characterisations of the solutions to such SDE and algorithms for approximating the
resulting probability distributions.
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1.2 Linearisations of SDEs

In lieu of an exact solution, a common approach to characterising and approximating the
solution of nonlinear SDEs is via a “linearisation” through time about a single deterministic
trajectory. A linearised stochastic differential equation, obtained by truncating Taylor
expansions of each coefficient (Blagoveshchenskii, 1962; Jazwinski, 2014, e.g.), can be
solved analytically and is accordingly used across a diversity of literature and applications
(Jazwinski, 2014; Sanz-Alonso and Stuart, 2017; Särkkä and Solin, 2019; Kaszás and Haller,
2020, e.g.). In filtering theory and data assimilation (Law et al., 2015; Reich and Cotter,
2015; Budhiraja et al., 2019), one looks to improve predictions from a mathematical
model by including ongoing measurement. When the underlying equations are stochastic
differential equations (as can be the case in a continuous-time continuous state-space
scenario), linearising these SDEs provides analytically tractable expressions for the updated
state, leading to tractable and efficient filtering schemes (Jazwinski, 2014). More generally,
linearisations can serve as approximations of the solutions to nonlinear SDEs in any
application (Särkkä and Solin, 2019). However, often these linearisations are applied
without rigorous justification and a clear understanding of how the linearisation relates to
the nonlinear SDE. This is particularly the case when the noise is multiplicative, which
is a situation that is often ignored but necessary in practice. In addition, there is little
understanding of the impact of the choice of initialisation of the deterministic trajectory
on the validity of the linearisation. We first look to address this in this thesis by providing
a fully justified linearisation framework.

Much is already known theoretically about these linearisations; classical results in the
context of small-noise series expansions (Blagoveshchenskii, 1962) and large deviations
theory (Freidlin and Wentzell, 1998) show that the strong error between SDE solution with
a fixed initial condition and that of an appropriate linearisation is bounded. Sanz-Alonso
and Stuart (2017) establish a strong result, bounding the Kullback-Leibler divergence
between the solutions of autonomous SDEs with additive stationary noise and a linearised
equivalent. Their result considers both an uncertain initial condition, and the evolving
error due to the discrepancy between the models. We aim to build upon these studies
by considering a general linearisation framework in which the original SDE we look to
approximate is multidimensional, fully non-autonomous, and equipped with multiplicative
noise.

When the initial state is known exactly, the solution of a linearised SDE is a Gaussian
process, which is both efficient to sample from and can allow for analytically tractable
expressions in later inference. The simplicity of this Gaussian process can be a drawback,
however; the unimodal Gaussian density is limited in the features that it can capture.
Multimodality, skewness, nonlinear correlations, and other departures from Gaussianity
are commonly observed in practice (del-Castillo-Negrete, 1998; Bracco et al., 2000; Sura
et al., 2005), but cannot be captured by a single Gaussian component alone. We also
look to address this difficulty by proposing an ad hoc algorithm that combines multiple
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linearisations into a Gaussian mixture model. Such an algorithm lies between the com-
putational efficiency of the linearisation approximation and the accuracy of stochastic
samples, improving upon a single Gaussian without compromising numerical speed.

1.3 Stochastic sensitivity

Even when solutions to the stochastic system are not available, one may be interested
in calculating properties of the system that offer qualitative insight into the behaviour
of these solutions. Balasuriya (2020b) introduced “stochastic sensitivity” to quantify
the impact of velocity field uncertainty on Lagrangian (‘following-the-flow’) trajectories
in a 2-dimensional fluid flow. These trajectories solve an ODE involving the velocity
field, which is inevitably subject to uncertainty from all the aforementioned sources. By
considering a small-noise stochastic differential equation that introduces noise to the
governing ordinary differential equation, Balasuriya (2020b) defined and formally derived
computable expressions for the mean and variance (in the limit of small noise) of a certain
quantity measuring the deviation between the ODE and the SDE solutions. The result is
a single number, termed stochastic sensitivity, that is computable for any initial condition
and measures the uncertainty in the resulting trajectory. Rather than attempting to
solve the SDE, stochastic sensitivity evaluates the reliability of the ODE, seen as a ‘best
available’ deterministic model, in the presence of uncertainty. We summarise these results
in Section 2.5.

By providing a scalar field across initial conditions, stochastic sensitivity was immedi-
ately applied to extract so-called “Lagrangian coherent structures” (LCSs) from a fluid
flow. These coherent structures are spatial regions that persist through the time-evolution
of the flow and have a significant impact on the transport properties of the fluid (Peacock
and Dabiri, 2010; Hadjighasem et al., 2017; Balasuriya, Ouellette, et al., 2018). In the LCS
community, there has been an emerging interest in understanding the impact of velocity
field stochasticity on the resulting Lagrangian analysis (Denner et al., 2016; Balasuriya,
2017; Balasuriya and Gottwald, 2018; Haller et al., 2018; Balasuriya, 2020a; Kaszás and
Haller, 2020; You and Leung, 2021), but until recently there was no extraction scheme that
explicitly accounted for ongoing velocity field uncertainties. Balasuriya (2020b) addressed
this deficiency by proposing that stochastic sensitivity can extract spatially coherent
regions that remain robust under velocity field fluctuations.

However, the original formulation of stochastic sensitivity (Balasuriya, 2020b)—and
therefore the subsequent applications (Balasuriya, 2020c; Fang, Balasuriya, et al., 2020;
Fang and Ouellette, 2021; Badza et al., 2023)—is limited to 2-dimensions with no clear
extension to higher-dimensions. Moreover, Balasuriya (2020b) was only able to provide
expressions for the mean and variance of the limiting quantity with no understanding of
the distributions involved or exactly how this work fits within broader SDE theory. We
also look to address this deficiency in this thesis by providing a new definition of stochastic
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sensitivity and furthering the theory to gain a clearer understanding of the distributions
involved. This generalisation would have the additional advantage of extending stochastic
sensitivity beyond the fluid context to any n-dimensional differential equation model,
opening up a wealth of new applications.

1.4 Contributions and structure of this thesis
In Chapter 2, we provide a brief background on stochastic differential equations and the
tools we will use. The remainder of the thesis, and the contributions each chapter provides,
are as follows.

• In Chapter 3, we address a deficiency in the theory of SDE linearisations. The
aim here is to provide a rigorously justified framework for computing linearisation
approximations of nonlinear stochastic differential equations, subject to arbitrary
and random initial conditions. Much of the content in this chapter and the following
Chapter 4 has been submitted for review as a research article to Communications in
Mathematical Sciences (Blake et al., 2023). This chapter is the primary theoretical
contribution of this thesis.

– We first build upon previous studies of small-noise expansions (Blagovesh-
chenskii, 1962; Freidlin and Wentzell, 1998; Sanz-Alonso and Stuart, 2017) to
provide a direct proof of a bound on the error between the solution to an SDE
and a corresponding linearisation about a deterministic trajectory. Our result
holds for a multidimensional and fully nonautonomous SDE with multiplicative
noise subject to an arbitrary initial condition, and the bound itself is written
explicitly in terms of the scales of the uncertainty in the initial condition and
the ongoing noise.

– By finding explicit solutions to the linearised SDE, we provide in a single
place a framework for efficiently computing the solution to enable efficient
approximation and characterisation of the nonlinear SDE without resorting to
bulk Monte Carlo simulation. Such an approximation is used across a range
of literature and applications (Archambeau et al., 2007; Jazwinski, 2014; Law
et al., 2015; Reich and Cotter, 2015; Sanz-Alonso and Stuart, 2017; Budhiraja
et al., 2019; Särkkä and Solin, 2019; Kaszás and Haller, 2020) but is dispersed
across many different sources and often stated without an explicit justification.

– We use the linearisation framework to extend the notion of stochastic sensitivity
(Balasuriya, 2020b), which seeks to quantify explicitly the impact of vector field
uncertainty on the solution trajectories of dynamical systems (Balibrea-Iniesta
et al., 2016; Kaszás and Haller, 2020; Branicki and Uda, 2021, 2023). Whereas
previously the definition of stochastic sensitivity was restricted to 2-dimensions
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(Balasuriya, 2020b), we provide a new definition in arbitrary dimensions and
prove a convenient expression for computation. This is the second significant
theoretical contribution of this work, enabling this tool to be applied to a much
broader class of models.

• In Chapter 4, we numerically validate the results of Chapter 3 using stochastic
simulations from 1- and 2-dimensional models. In particular, we show that the
first four moments of the distance between the realisations and the Gaussian limit
follow the predicted bound. This, to the author’s knowledge, is the first time that
the validity of the linearisation approximation to an SDE has been systematically
verified. We also illustrate our new computation of stochastic sensitivity on the
2-dimensional example and compute the field in 3-dimensions for the first time.

• In Chapter 5, we outline an algorithm that employs the linearisation approximation
to construct a Gaussian mixture model for the solution to a stochastic differential
equation, which can capture non-Gaussianity while still maintaining computational
efficiency. The algorithm is preliminary, with several implementation details deliber-
ately left unspecified and warranting further development. However, we demonstrate
the potential of such an approach with the example of the following chapter.

• In Chapter 6, we apply the tools developed in Chapters 3 and 5 to an example
constructed from observed data: the position of a drifter on the surface of the
North Atlantic Ocean. The aim here is to demonstrate the computability of the
linearisation framework and stochastic sensitivity and to illustrate that even a simple
implementation of the mixture model algorithm of Chapter 5 can produce a close
approximation of the challenging drifter position distribution.

• In Chapter 7, we conclude this thesis by discussing the possible future extensions
of our work. Since our theory is reasonably general, and we have only outlined
a mixture model algorithm, there is much scope for theoretical extension, further
numerical investigation, and application to a range of models. We also highlight
how an analogous result in a different modelling context—stochastic models on a
discrete state space—where linearised stochastic differential equations arise from
large-population limits (Kurtz, 1970, 1971). To demonstrate our computations, we
briefly consider two examples of discrete models for the spread of an infectious disease
in a population: a simple susceptible-infected-recovered model and a 5-dimensional
process modelling an outbreak of Ebola (Legrand et al., 2007). We then explain
how these connections imply that the theory we develop for stochastic differential
equations can apply to these models, opening up a whole new range of applications,
particularly in mathematical biology and epidemiology.
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Chapter 2

Background

We begin this thesis by introducing the required technical back, most notably defining the
flow map of a deterministic system and building up to Itô stochastic differential equations
to incorporating uncertainty into these models. Further details on the technical results and
tools employed later are provided in Appendix A. The chapter is concluded by summarising
stochastic sensitivity (Balasuriya, 2020b), which provided initial tools for characterising
uncertainty in a computationally efficient manner and was the primary motivation for this
work.

2.1 Notation
We adopt several notational conventions throughout this thesis, which are summarised
here. The set of n×m matrices with real-valued entries is denoted as Rn×m. The norm
symbol ∥·∥ with no additional qualifiers denotes the standard Euclidean norm for a vector
and the spectral (operator) norm induced by the Euclidean norm, i.e. for an n× n matrix
A

∥A∥ = sup

{∥Av∥
∥v∥

∣∣∣∣ v ∈ Rn, ∥v∥ ≠ 0

}
.

For a random variable X, we use E[X] to denote the expectation of X and V[X] to denote
the variance. For a n-dimensional vector-valued random variable Y , E[Y ] again denotes
the (now vector-valued) expectation of Y , and V[Y ] denotes the covariance matrix of Y .
That is, V[Y ] is the symmetric n× n matrix with (i, j)th component

[
V[Y ]

]
ij
= E

[
YiYj

]
− E[Yi]E

[
Yj

]
= cov

(
Yi, Yj

)
=

{
V[Yi] , if i = j,

cov
(
Yi, Yj

)
, otherwise,

where
cov
(
Yi, Yj

)
= E

[(
Yi − E[Yi]

) (
Yj − E

[
Yj

])]

9
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Convergence almost surely

Convergence in probability Convergence in rth mean, r > 0

Convergence in qth mean, q > r

Convergence in distribution

Figure 2.1: The strength of each notion of convergence for random variables, where each
directed arrow corresponds to an implication. These results are stated and proven in
Brémaud (2020), for instance.

denotes the (scalar) covariance between Yi and Yj.
There are several notions of convergence for a sequence of random variables, which we

briefly recall here. Consider a sequence of m-dimensional random vectors X1, X2, . . . and
an m-dimensional random vector X. We say that:

• The sequence X1, X2, . . . converges in distribution to X if

lim
n→∞

Fn (x) = F (x),

where Fn is the cumulative distribution function for Xn and F is the cumulative
distribution function for X, for every point x ∈ Rm where F is continuous. If this is
the case, we write

Xn −−−−−−→
distribution

X, as n → ∞.

Note that the limiting random vector X need not be defined on the same probability
space as the terms in the sequence X1, X2, . . .; convergence in distribution is the
only notion of convergence for which this is the case.

• The sequence X1, X2, . . . converges in probability to X if for every δ > 0

lim
n→∞

P
(
∥Xn −X∥ < δ

)
= 0,

in which case we write

Xn −−−−−−→
probability

X, as n → ∞.

• The sequence X1, X2, . . . converges almost surely to X if

P

(
lim
n→∞

Xn = X

)
= 1,
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in which case we write

Xn −−−−−−−→
almost surely

X, as n → ∞.

• For r > 0, the sequence X1, X2, . . . converges in rth mean to X if

lim
n→∞

E
[
∥Xn −X∥r

]
= 0,

in which case we write
Xn −−−−−→

rth mean
X, as n → ∞.

This type of convergence is also known as Lr-convergence, as it corresponds to
convergence in the Lr norm on the probability space on which X1, . . . , Xn and X
are defined.

There are implications between each notion of convergence, with convergence almost surely
being the strongest and convergence in distribution the weakest. These implications are
summarised in Figure 2.1.

We often work with stochastic processes that evolve through time, for example, the
Wiener process or the solution to a stochastic differential equation. We generically use the
notation yt, for instance, to denote the stochastic process, where t refers to time and y is
a label. The index set of the process is always a finite time interval, typically initialised at
0. In almost all cases where we are working with yt mathematically, yt refers to the state
of the process at the fixed time t. When discussing a stochastic process in our prose, we
also use yt to refer to the full solution path (where the possible values of t are known in
context); this is an abuse of notation, but has no impact on the rigour of our mathematical
results.

2.2 The flow map
Ordinary differential equations are used to model many different phenomena across a range
of fields and applications. Specifically, the continuous time evolution of a multi-dimensional
state variable is governed by a system of first-order differential equations of the form

dwt

dt
= u(wt, t) , (2.1)

where wt ∈ Rn is the time-evolving variable of interest and u is the vector field specified at
each relevant state and time t. The vector field u may be derived from a specified model or
may be driven or supplemented by observed data. Since data has a finite-time limitation,
we typically consider the evolution of (2.1) over a finite time interval [0, T ]. We can solve
(3.2) analytically, or, as is often required in practice, numerically to generate trajectories,
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which can inform future predictions or be used to reconstruct past behaviour. The flow
map of (2.1) provides a convenient way of summarising the trajectories that solve (2.1)
and working with these solutions analytically. Formally, the flow map F t

s : Rn → Rn from
time s to t associated with (2.1) is the unique solution to

∂F τ
s (x)

∂τ
= u

(
F τ
s (x) , τ

)
, F s

s (x) = x, (2.2)

solved up to time τ = t. That is, the flow map is the operator mapping initial conditions
at time t to their corresponding positions at time s, under the continuous-time evolution
of (2.1). Equivalently, the flow map satisfies the integral form of (2.1):

F t
s(x) = x+

∫ t

s

u
(
F τ
s (x) , τ

)
dτ .

We use the flow map to represent all solutions of the deterministic differential equation
(2.1), understanding that for any relevant initial condition, the flow map at that point
can be readily computed by solving the ODE either analytically or numerically. For a
well-defined flow, the flow map F t

s is reversible, in that we could have t < s, with the
property

F t
s

(
F s
t (x)

)
= x,

for any times s and t. We view the flow map primarily as a function of the initial condition,
so that it quantifies the impact of changes in the initial condition on future predictions.
Accordingly, the gradient ∇F t

s of the flow map (with respect to the initial condition)
provides insight into the local behaviour of the dynamical system (V. I. Arnold, 1973;
Truesdell and Noll, 2004). For any times s, t ∈ [0, T ], this gradient ∇F t

s satisfies a useful
property:

∂∇F t
s(x)

∂t
= ∇u

(
F t
s(x) , t

)
∇F t

s(x) , (2.3)

which is the equation of variations corresponding to (2.1). This result can be shown by
taking the gradient of both sides in (2.2) and using the chain rule.

2.3 From ODEs to SDEs
Differential equations are well-studied and ubiquitously employed across many fields. These
models are deterministic, in that, given an initial condition, an ODE provides a single
prediction of the future state. However, as discussed in the introduction, any such model
will be subject to unavoidable uncertainty, which can arise from a range of sources. By
accounting for any of these in our model, we expect to improve the power and accuracy
of our predictions. However, the true nature of this uncertainty is unknowable, so it
is common to model it as a random process. We extend our deterministic model to a
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stochastic one, where the solution (and therefore our predictions of the future state) is
now a random variable with a probability distribution defined over the state space. There
are several approaches to establishing such a framework, the most general of which is a
random dynamical system (L. Arnold, 1998; Neckel and Rupp, 2013). When working
in a continuous-time and continuous-state modelling scenario, a natural extension of an
ordinary differential equation to account for this uncertainty is a stochastic differential
equation (SDE) (Øksendal, 2003; Kallianpur and Sundar, 2014), where the uncertainty
is modelled with an additional term. Although an SDE is an “improvement” over the
deterministic ODE, in the sense that uncertainty can be encoded in the model itself, the
compromise is that solutions are no longer straightforward to obtain or even analyse. In
fact, the formal treatment of SDEs requires an entirely new notion of integration, as we
shall discuss. Nonetheless, SDEs provide a rich framework for modelling and are used
as predictive tools in a range of applications and fields. There are several distinct ways
to construct stochastic differential equations from deterministic dynamics; the following
motivation of stochastic differential equations loosely follows a similar one available in
Øksendal (2003), but other formulations of SDEs are available, e.g. using rough path
theory (Friz and Victoir, 2010) or by averaging the ‘fast’ dynamics in a multiscale system
(Pavliotis and Stuart, 2008; Melbourne and Stuart, 2011; Gottwald and Melbourne, 2013).

Suppose that we have a deterministic ordinary differential equation, i.e. (3.2), and aim
to account for uncertainty in the vector field u. In lieu of any additional understanding
of this uncertainty, we model it as a stochastic noise. Ideally, we would parameterise the
uncertainty with some continuous-time stochastic process ξt, and write

dyt
dt

= u (xt, t) + σ(xt, t) ξt, (2.4)

where σ is a specified part of the model that modulates how the magnitude and structure
of the uncertainty varies with state and time. Since we are modelling with a continuum,
the noise process ξt should be (with probability 1) continuous in time, and should, with no
additional prior knowledge, evolve independently of itself through time, follow a probability
distribution that does not depend on time, and have zero expectation. That is, xit should
be a white noise process in the absence of any additional knowledge of the nature of the
noise, beyond the specification of σ. However, there does not exist any process xt that
satisfies all of these properties simultaneously (Øksendal, 2003); continuity cannot be
enforced. This complication requires an alternative formulation, which leads to an entirely
new type of calculus built around the Itô integral and Itô stochastic differential equations,
which we introduce in Section 2.3.2 and Section 2.3.3 respectively.

2.3.1 The Wiener process

In the absence of any additional knowledge about the noise (such as skew or heavy-
tailedness), the canonical Wiener process is the standard choice as the driving stochastic



14 Chapter 2. Background

0.0 0.5 1.0 1.5 2.0
t

−2

−1

0

1

2

W
t

−0.75 −0.50 −0.25 0.00 0.25

W
(1)
t

−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6

W
(2

)
t

Figure 2.2: (Left) Several realisations of a 1-dimensional Wiener process Wt evolving
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process. The Wiener process is the definite integral of a white noise process and is,
therefore, an appropriate choice to ensure that the “solution” (the result after integration
through time) of (2.4) involves the idealised noise process ξt that we were initially after.
Defined formally, the (1-dimensional) canonical Wiener process is a stochastic process Bt

that takes values in R and satisfies the following properties (Kallianpur and Sundar, 2014):

(i) B0 = 0 almost surely,

(ii) for every s > 0, the increments Bs+t − Bs for t ≥ 0 are independent of Br for all
r < s,

(iii) Bs+t −Bt ∼ N (0, s) for all s, t > 0, and

(iv) Bt is continuous in t almost surely.

Remarkably, these properties uniquely define the Wiener process, with the additional result
that for any t > 0, Bt is distributed as N (0, t), a Gaussian distribution with mean zero and
variance t. The n-dimensional Wiener process is a stochastic process Wt that takes values
in Rn and is such that each component of Wt is a 1-dimensional Wiener process and the
components of Wt are mutually independent. It follows that for the n-dimensional Wiener
process Wt, at any time t > 0, Wt ∼ N (0, tI), an n-dimensional Gaussian distribution
with mean zero and covariance matrix tI. Figure 2.2 plots realisations of a 1-dimensional
and 2-dimensional Wiener process.
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2.3.2 The Itô integral

With probability 1, the path of a Wiener process is continuous, but differentiable nowhere,
so standard deterministic calculus is not sufficient to introduce continuous-time uncertainty
into a differential equation. Instead, this led to an entirely new definition of the integral
by Itô (1944, 1946) that allowed integration with respect to a broad class of stochastic
processes, laying the foundation for the formal framework of stochastic differential equations.
Here, we provide one definition of the Itô integral but do not go into technical detail. See
the textbooks by Kallianpur and Sundar (2014) and Øksendal (2003), for instance, for a
detailed introduction to and construction of the Itô integral and subsequent properties.
We only consider integrals with respect to canonical Wiener processes, but generalisations
of the driving process are possible (Applebaum, 2004). For our purposes, we can define
an Itô integral as the limit in probability of a sequence of sums: for a scalar but possibly
random-valued function f : [a, b] → R, the Itô integral of f with respect to the Wiener
process Wt is the limit

∑

[ti,ti+1]∈PN

f (ti)
(
Wti+1

−Wti

)
−−−−−−→
probability

∫ b

a

f(t) dWt, as N → ∞

where PN is a partition of [a, b] with limN→∞PN = [a, b], à la the definition of the
Riemann integral. The Itô integral is itself a random variable. It can be shown (Øksendal,
2003; Kallianpur and Sundar, 2014, e.g.) that this limit exists for a large class of both
deterministic- and random-valued functions, by constructing appropriate approximations
of the function f . There are several other definitions of the stochastic integral, the most
common alternative being the Stratonovich integral (Stratonovich, 1966), which results
from a different interpretation of the noise term in (2.4) and is often used in physics.
The Stratonovich integral in particular can be re-interpreted as an Itô integral with an
appropriate transformation of the integrand, so we focus our attention in this thesis solely
on the Itô formulation of stochastic calculus.

The extension of the Itô integral to vector- and matrix-valued functions is straight-
forward. Let g : [a, b] → Rn×m be a function giving possibly random n × m matrices
(take m = 1 to describe a vector-valued function). Then, we define the Itô integral of g
with respect to the m-dimensional Wiener process Wt over the time interval [a, b] as the
n-dimensional vector ∫ b

a

g(t) dWt := (I1, . . . , In)
⊤
,

where

Ii =
m∑

j=1

∫ b

a

gij (t) dW
(j)
t ,

for i = 1, . . . , n and where gij denotes the (i, j)th element of g and W
(j)
t is the jth

component of Wt.
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The Itô integral behaves similarly to classical notions of the integral, including acting
as a linear operator. For any Itô-integrable functions f, g : [a, b] → R and values α, β ∈ R,
which may be random but are constant with respect to t:

1. Linearity:
∫ b

a

[
αf(t) + βg(t)

]
dWt = α

∫ b

a

f(t) dWt + β

∫ b

a

g(t) dWt.

2. Zero expectation:

E

[∫ b

a

f(t) dWt

]
= 0.

3. The Itô isometry:

E



(∫ b

a

f(t) dWt

)2

 =

∫ b

a

E
[
f(t)2

]
dt.

The first two of these properties immediately extend to Itô integrals of vector- and matrix-
valued functions. The third property, the Itô isometry, is a fundamental result that enables
the calculation of the variance of an Itô integral.

2.3.3 Itô stochastic differential equations

Equipped with the Itô integral as a formal definition of an integral with respect to a
stochastic process, we can now extend the notion of an ordinary differential equation to
include stochasticity. The differential form of an n-dimensional Itô stochastic differential
equation is

dyt = u(yt, t) dt+ σ(yt, t) dWt, (2.6)

where the solution yt is a stochastic process taking values in Rn, u : Rn × R → Rn is the
drift and σ : Rn×R → Rn×m is the diffusivity (or sometimes diffusion) matrix. The driving
process Wt is the m-dimensional Wiener process. There is a heuristic interpretation of (2.6):
over a small time interval (t, t+ δt), the value of yt changes by a Gaussian increment with
expected value u(yt, t) δt and variance σ(yt, t)σ(yt, t)

⊤
δt. The product σσ

⊤ can therefore
be informally seen as the variance of the noise term. In the most general case, the drift u
and diffusivity σ are permitted to be random functions (Kallianpur and Sundar, 2014),
but in this thesis, we assume that both are deterministic. The notation in (2.6) is not
rigorously defined, but rather taken as equivalent to the integral form

yt = y0 +

∫ t

0

u (yτ , τ) dτ +

∫ t

0

σ (yτ , τ) dWτ . (2.7)
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where y0 is the possibly random initial condition. The integral form (2.7) provides the
rigorous foundation of the stochastic differential equation, overcoming the difficulties of
working with Wiener processes by introducing the Itô integral to compute the ongoing
contributions from the stochastic terms in the equation. As with ordinary differential
equations, under certain conditions on the drift u and diffusivity σ there exist solutions to
the SDE (2.6) that are unique in some sense—see Theorem 6.2.1 of Kallianpur and Sundar
(2014), for instance.

There are many analytic tools available for working with stochastic differential equations,
such as Itô’s Lemma, an analogy of the chain rule. The results that are used in this thesis
(most notably in the proofs presented in Chapter 3) are summarised in Appendix A.2.

The diffusivity matrix σ characterises the spatiotemporal structure of the noise. When
σ does not depend on the solution yt, the noise is termed additive, whereas if σ depends
on the solution, then the noise is multiplicative. SDEs with additive noise are typically
easier to solve and analyse than those with multiplicative noise (Sancho et al., 1982), but
multiplicative noise is often required in practice to capture uncertainty that varies with
state.

As an example, in Figure 2.3 we show 10 realisations of the solution to the SDE
dxt = sin(xt) dt+dWt. At any fixed time t, the solution xt follows a probability distribution
over R, the (numerically estimated—see Section 2.3.4) probability density function of
which is shown at t = π on the right-hand side of Figure 2.3. Although the deterministic
dynamics can give a loose indication of the behaviour of the stochastic samples, even
additive noise can result in complicated behaviour in the stochastic system and departures
from the deterministic solutions when the drift is nonlinear, evidenced by the trajectory
(in orange) that deviates from the deterministic one.

2.3.4 Numerical schemes for approximating SDEs

In general, solving a stochastic differential equation analytically is not possible, and
so as with ordinary differential equations, we instead look to use numerical schemes to
approximate solutions. However, the solution to a stochastic differential equation is itself
a random variable, so a single sample path is not sufficient. Instead, a numerical SDE
scheme involves random sampling (typically of the driving noise process) and produces
approximate realisations of the solution. With a large number of these Monte Carlo
realisations, one can estimate statistical properties and approximate the distribution of
the solution. The stochastic sampling approach is the gold standard in many applications,
most notably climate and weather modelling (Collins, 2007).

The simplest scheme for numerically solving SDEs is the Euler-Maruyama (EM) method,
which is analogous to the Euler method for ODEs (Kloeden and Platen, 1992). The update
step of the EM scheme, with step size δt, is

x̂t+δt = x̂t + δtu(x̂t, t) +
√
δtσ(x̂t, t)Zt, (2.8)
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Figure 2.3: (Left) Sample paths of the solution to the stochastic differential equation
dxt = sin(xt) dt+ dWt, from the initial condition x0 = 1 and over the time interval (0, π).
The solution to the corresponding deterministic system dwt

dt
= sin(wt) with the same initial

condition is in black. (Right) The numerically estimated probability density function of
the solution xπ, using 10000 samples.

where Zt is sampled from the standard Gaussian N (0, I), and the scheme is initialised
as x̂0 = x0. When the initial condition is random, one samples x̂0 from that distribution.
There are many other schemes for generating approximate samples of a stochastic differ-
ential equation, of varying precision and computational complexity, many of which are
given in Kloeden and Platen (1992). Numerical schemes give us access to approximate
solutions to otherwise intractable SDEs. However, this comes at a computational cost: a
large number of sample paths is often required to generate convergent statistics and make
accurate inferences. One of the primary aims of this thesis is to overcome this expense
by devising alternative ways of approximating and characterising SDE solutions that are
computationally cheaper.

2.4 Lagrangian coherent structures

In this section, we take a brief sojourn into the field of Lagrangian coherent structures
(LCSs), which provide qualitative insight into the behaviour of a dynamical system,
particularly in the context of fluid flows. Although LCSs are not the primary focus of
this work, the field provides potential applications for our uncertainty quantification, that
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(a) An oil slick from the Deepwater Horizon oil
spill in 2010 (NASA Image of the Day, May 19,
2010). The southwards extension of the slick
appeared unexpectedly.

(b) Phytoplankton blooms in the Baltic Sea
(NASA Earth Observatory, July 18, 2018). The
structure of these blooms reflect the underlying
flow of the Sea.

(c) Jupiter’s Great Red Spot, as photographed by the Voyager 1 probe (NASA/JPL-Caltech and
processed by Björn Jónsson, March 5, 1979). The storm is an example of a vortex or eddy within
the atmospheric flow of the planet.

Figure 2.4: Examples of coherent patterns emerging in fluid flows observed in nature.
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builds upon preliminary work by Balasuriya (2020b,c) and Badza et al. (2023). There is no
universally accepted definition of a coherent structure, but typically these are structures
within a flow that remain together over the time-evolution of the system and separate the
spatial domain into regions with qualitatively different behaviour (Balasuriya, Ouellette,
et al., 2018). Figure 2.4 shows examples of coherent structures in observed fluid flows,
which can be considered LCSs. These are structures such as vortices, eddies, and jets that
influence the transport of material within the fluid. For instance, in Figures 2.4a and 2.4b,
the observed patterns of the oil slick and phytoplankton blooms respectively reflect the
behaviour of the underlying ocean flow and are influenced by jet- and eddy-like structures.

In a steady system (that is, the vector field u in (2.1) is independent of time), we
can gain this insight by using classical methods in dynamical systems, such as phase
portrait analysis and identifying unstable and stable manifolds. For example, solution
trajectories cannot intersect unstable and stable manifolds, and so these manifolds can
act as barriers for the transport of material within a flow. However, when the system is
non-autonomous (that is, the vector field explicitly depends on time t), these structures
can themselves vary with time and the problem of identifying them is far more non-trivial.
Another complication is that in practice, the data driving a system is only available over
a finite timeframe, whereas classical dynamical systems techniques often tell us about
the long-term (in the infinite time limit) behaviour of solutions. Lagrangian coherent
structure theory provides a mathematical framework for defining and identifying such
structures within a flow (Balasuriya, Ouellette, et al., 2018). There are many procedures
and heuristics for extracting these regions from a given flow, which draw upon different
mathematical techniques, including classical dynamical system theory, variational calculus,
transfer operators, and statistical clustering. Detailed reviews of approaches to Lagrangian
coherent structure extraction are provided by Peacock and Dabiri (2010), Hadjighasem
et al. (2017), and Balasuriya, Ouellette, et al. (2018).

Coherent structures can provide valuable qualitative insight into the behaviour of a
flow, by providing an outline of the transport properties and underlying dynamics. An
example is in the study of the spread of the oil slick resulting from the 2010 Deepwater
Horizon disaster in the Gulf of Mexico (see Figure 2.4a). Investigations showed that the
behaviour of the slick, including a sudden and unexpected extension of the slick, could be
understood and therefore predicted in future cases by using Lagrangian coherent structures
and the insight they provide (Mezić et al., 2010; Olascoaga and Haller, 2012; Olascoaga,
Beron-Vera, et al., 2013). This approach explained dynamics that were otherwise poorly
understood because of the time-varying and complex nature of the flow.

One of the most well-studied and frequently used procedures for extracting Lagrangian
coherent structures is via the finite-time Lyapunov exponent (FTLE), which is a measure
quantifying the stretching of infinitesimal regions of the flow over a time period. The
FTLE can be computed as a scalar field over a set of initial conditions, from which the
maximising ridges can correspond to flow barriers (Shadden et al., 2005). Importantly,
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the finite-time Lyapunov exponent can be computed only using the gradients of the flow
map, which ensures a highly practical and flexible procedure that can be used across many
different contexts. The FTLE is an example of a common class of LCS methods that first
compute a field over a set of initial conditions and then extract coherent structures based
on that field.

Most well-established LCS frameworks and extraction procedures are purely deter-
ministic, in that they are defined and computed solely in terms of the behaviour of
the underlying ordinary differential equation. However, uncertainty in such systems is
inevitable in practice and these methods fail to account explicitly for this. Accordingly,
there is an emerging interest (Balasuriya, 2020a) in extending LCS theory to stochastic
settings. There are two primary ways in which stochastic has been recently investigated in
the LCS community:

(i) in creating novel procedures that explicitly account for such ongoing uncertainty,
such as by using properties of corresponding stochastic systems. For example,
see (in Section 2.5) stochastic sensitivity introduced by Balasuriya (2020b), model
sensitivity introduced by Kaszás and Haller (2020), and the finite-time divergence
rate by Branicki and Uda (2023). These are scalar fields defined on initial conditions
that measure the certainty in the corresponding deterministic trajectories and can
distinguish coherent regions in similar ways to deterministic methods. As another
example, Denner et al. (2016) directly compute coherent sets by working with a
discretised Fokker-Planck equation, which is a partial differential equation that
governs the probability density function of an SDE solution (an overview is provided
in Section 7.3). This Fokker-Planck approach extends the transfer operator method
of Froyland (2013), which is a popular method for LCS detection and extraction
by encoding how densities are pushed forward by the flow. Until recently, the
transfer operator, at least in the context of Lagrangian analysis, has been viewed as
purely deterministic but provides a framework for naturally including velocity field
uncertainties (Balasuriya, 2020a).

(ii) in understanding the direct impact of velocity uncertainty on well-established de-
terministic LCS measures. Badza et al. (2023) provide a systematic analysis, using
Monte Carlo simulation and summary statistics to evaluate the robustness of several
common LCS extraction schemes to velocity uncertainty. The finite-time Lyapunov
exponent has received particular attention, with recent studies aiming to quantify the
impact of velocity field uncertainty on the FTLE computation: Guo et al. (2016) use
stochastic simulation and statistical analysis, Balasuriya (2020c) provides theoretical
error bounds on the FTLE computation, and You and Leung (2021) propose an
approach for computing the (statistically) expected FTLE field.

In this thesis, we are primarily interested in point (i), by exploring how our characterisations
of uncertainty can be applied to extract coherent structures. This is directly extending
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the stochastic sensitivity of Balasuriya (2020b), which is summarised in Section 2.5. We
will also discuss (in Section 7.6) how we anticipate our work could be applied to point (ii),
as a quantification of uncertainty in computations involving the flow map in other LCS
schemes.

2.5 Stochastic sensitivity
To conclude our background and motivation, this section summarises stochastic sensitivity,
a measure of uncertainty in differential equations introduced by Balasuriya (2020b). These
tools are computable given only velocity data, which enables an efficient quantification of
uncertainty in a stochastic system with no need for bulk simulation. Stochastic sensitivity
(also termed S2 in both notation and prose) was originally provided for 2-dimensional
systems only, and the primary motivation was to understand the impact of velocity field
uncertainty on fluid flows. Given possibly time-dependent velocity data u : R2×[0, T ] → R2,
Balasuriya (2020b) considers the evolution of solutions to the ordinary differential equation

dxt

dt
= u(xt, t) , (2.9)

subject to some fixed initial condition x0. The velocity field u is Eulerian, in that it
describes the fluid velocity at a given point in space and time. The trajectories that solve
(2.9) are Lagrangian and correspond to the movement of idealised infinitesimal particles
within the flow. These Lagrangian trajectories are summarised by the flow map F t

s of (2.9).
As we have continued to emphasise, the velocity field u is in practice subject to unavoidable
uncertainties. Balasuriya (2020b) aims to quantify the impact of this Eulerian uncertainty,
directly attributed to u, on the Lagrangian trajectories arising from integrating the velocity
field.

To directly account for these unresolved sources of uncertainty, the ‘true’ Lagrangian
trajectories evolve as solutions to the stochastic differential equation

dyt = u(yt, t) dt+ εσ(yt, t) dWt, y0 = x0, (2.10)

where 0 < ε ≪ 1 is a parameter quantifying the scale of the noise, σ : R2 × [0, T ] → R2×2

is the 2× 2 diffusion matrix, and Wt is the canonical 2-dimensional Wiener process. In
the original formulation (Balasuriya, 2020b), ε is a dimensionless parameter and σ is
dimensional, but an alternative scaling technique relates ε to spatial and velocity uncertainty
scales in the data (see the follow-up work by Balasuriya (2020c), Fang, Balasuriya, et al.
(2020), and Badza et al. (2023) for example). Since σ can vary by both space and time, the
noise is permitted to be multiplicative. The diffusion matrix σ is specified a priori, based
on any knowledge of how uncertainty varies with space and time, e.g. from experimental
considerations, observation error estimates, physics-informed models, etc. If no such prior
information is known, then σ ≡ I, the 2× 2 identity matrix, is the default choice.
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Next, to quantify uncertainty at a time t, Balasuriya (2020b) defined the random
variable zε (x0) as

zε(x0) :=
yt − F t

0(x0)

ε
,

which captures the random deviation between the “true” stochastic trajectories and the
deterministic flow map. The aim was to compute certain statistics of zε. To derive such
quantities that can be computed in practice, Balasuriya (2020b) considers the signed
projection of zε(x0) onto a ray emanating from the deterministic position F t

0(x0) in the
direction θ, defining

Pε(x0, θ) := n̂
⊤
(θ) zε(x0), n̂(θ) =

[
cos θ
sin θ

]
.

where θ ∈
[
−π/2, π/2

)
. The statistics of zε(x0) and Pε(x0, θ) are considered in the limit as

ε ↓ 0, which provides a characterisation of the uncertainty of the model that is independent
of the scale of the noise. Balasuriya (2020b) defines two measures of uncertainty from the
variance of Pε in this limit:

Definition 2.1 (Balasuriya 2020b) a) The anisotropic uncertainty is a scalar
field A : R2 ×

[
−π/2, π/2

)
→ [0,∞) defined by

A(x0, θ) :=
√

lim
ε↓0
V
[
Pε(x0, θ)

]
.

b) The stochastic sensitivity is a scalar field S : R2 → [0,∞) defined by

S2(x0) := lim
ε↓0

sup
θ
V
[
Pε(x0, θ)

]
.

The anisotropic uncertainty is a measure of the uncertainty in a specified direction θ,
whereas stochastic sensitivity is a scalar field which, for a given initial condition measures
the uncertainty in the corresponding Lagrangian trajectory. Figure 2.5 shows a pictorial
representation of the set-up in two dimensions: the deterministic flow (2.9) (in black)
takes the initial condition and provides a computable prediction of the state at time t.
Simultaneously, the solution to the stochastic system (2.10) (in green) gives a different,
random value yt for the true position at time t. We take the difference (in blue) between the
deterministic position and the stochastic and project (in red) this vector onto a ray of angle
θ. The anisotropic uncertainty in the direction of θ is then calculated by computing the
variance of Pε(x, θ) and taking the ε ↓ 0 limit. By maximising this limiting variance across
all angles θ, we get the stochastic sensitivity value, a single scalar number associated with
the initial condition x. Using techniques from both deterministic and stochastic calculus,
Balasuriya (2020b) further established expressions for both the anisotropic uncertainty
and the stochastic sensitivity that are computable given only the flow map and velocity
data.
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εzε(x0)

εPε(x0, θ)

θ

x0

F t
0(x0)

yt

Figure 2.5: The entities used in the definition of stochastic sensitivity, including the
mapping (in black) from the deterministic flow map solving (2.9) and the ‘true’, but
random, trajectory that solves the stochastic equation (2.10) (in green).

Theorem 2.1 (Balasuriya 2020b) For x0 ∈ R2, set w := F t
0(x0) and fix t ∈ [0, T ].

Then, for any θ ∈
[
−π/2, π/2

)
,

A(x0, θ) =

(∫ t

0

∥∥Λ(x0, τ) Jn̂(θ)
∥∥ dτ

)1/2

,

where

Λ(x0, τ) := e
∫ t
τ [∇·u]

(
F ξ
τ(x0),ξ

)
dξ
σ
(
F τ
0 (x) , τ

)⊤
J∇wF

τ
t (w) ,

with the gradient ∇w of the flow map taken with respect to the mapped position w, and

J :=

[
0 −1
1 0

]

Additionally, stochastic sensitivity is computed as

S2(x0) = P (x0) +N(x0) ,
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with

L(x0) :=
1

2

2∑

i=1

∫ T

0

[
Λi2(x0, τ)

2 − Λi1(x0, τ)
2
]
dτ

M(x0) :=
2∑

i=1

∫ T

0

Λi1(x0, τ) Λi2(x0, τ) dt

N(x0) :=
√

L2(x0) +M2(x)

P (x0) :=

∣∣∣∣∣∣
1

2

2∑

i=1

2∑

j=1

∫ T

0

Λij(x0, τ)
2 dt

∣∣∣∣∣∣
,

where Λij is the (i, j)-element of Λ.

Proof. See the appendices of Balasuriya (2020b). □
Balasuriya (2020b) also provides nonlinear scalings of stochastic sensitivity that are

informed by the spatial resolution and diffusivity scale in the specific model. However,
stochastic sensitivity provides a theoretical field that needs no reference to any of these
physical considerations, and in this thesis, we will only consider the unscaled field. We do
note that taking the logarithm of the stochastic sensitivity field has often proved useful
for visualisation (Badza et al., 2023, e.g.).

Since stochastic sensitivity provides a scalar field on the set of initial conditions to
(2.9), Balasuriya (2020b) also proposes that stochastic sensitivity can distinguish spatial
regions of interest within the flow in the spirit of Lagrangian coherent structure analysis.
A robust set is a subset of initial conditions such that the stochastic sensitivity is below a
specified threshold. That is, a robust set comprises those initial conditions for which the
uncertainty in the corresponding flow trajectory, as measured by stochastic sensitivity, is
small enough. Given a threshold R, a robust set is defined as

RS(R) :=
{
x ∈ Ω0

∣∣S2(x) < R
}
,

where Ω0 ⊂ R2 is the domain of initial conditions of interest. Numerical experiments by
Balasuriya (2020b), and Badza et al. (2023) suggest that such sets can correspond to
coherent structures within the flow. Unlike a majority of previous methods for identifying
LCSs which treat the dynamical system as fully deterministic and ignore any uncertainty,
stochastic sensitivity, and therefore the extracted robust sets, explicitly accounts for
stochasticity and is therefore highly novel within the LCS community. The threshold R
can be informed by lengthscales from the resolution (e.g. the resolution of the underlying
velocity data, if the noise in (2.10) is thought of as accounting for subgrid effects) and
advective and diffusivity properties of the flow (such as the Péclet number)—see Balasuriya
(2020b) for details on this. However, when we later use a similar idea to extract robust sets,
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we select R with no prior knowledge and instead choose a value that results in coherent
structures that match our qualitative expectations.

Since stochastic sensitivity is only a recent development, it has only been applied in a
limited number of places so far:

• Balasuriya (2020c) uses stochastic sensitivity to compute an error bound for the
finite-time Lyapunov (FTLE) computation. The computable S2 value is used as an
estimate of the standard deviation of the deviation between the deterministic and
“true” (stochastic) trajectories, leading to a computable error bound on the FTLE
value.

• Fang, Balasuriya, et al. (2020) use stochastic sensitivity in an investigation of the
interplay between three different sources of error in dynamical systems: errors from
unresolved processes because of limited resolution, errors from limited precision, and
the inherent stochasticity in the dynamical behaviour of the system.

• Fang and Ouellette (2021), extending previous work by Fang, Balasuriya, et al. (2019),
use stochastic sensitivity to construct spatial objects that assess the information
content (in an information-theoretic sense) of a dynamical system. Stochastic
sensitivity is used to provide a state-dependent lengthscale to assess whether the
inherent stochasticity in the system dominates over resolution and linearisation
errors.

• Badza et al. (2023) investigate the impact of velocity uncertainty on Lagrangian
coherent structures extracted as robust sets with stochastic sensitivity. The stochastic
model (2.10) is used to generate realisations of Lagrangian trajectories subject to
noise on the velocity field, and summary statistics are used to evaluate the stability
of a range of coherent structure techniques to this noise. By directly capturing such
uncertainty as a means of coherent set Badza et al. (2023) showed that robust sets
extracted with stochastic sensitivity typically remain stable under perturbations,
since the framework directly accounts for this stochasticity unlike other LCS methods.

However, as stochastic sensitivity has only been defined in 2-dimensions, these studies
are also all restricted to 2-dimensional systems. This is a significant limitation of the
original work, and one we will overcome; in Chapter 3, our primary theoretical chapter, we
will present a new definition of stochastic sensitivity in n-dimensions that maintains the
computability of the measure. Extending stochastic sensitivity to n-dimensions will enable
application to a much broader class of models beyond the fluid flow context, including
high-dimensional climate models, and accordingly, the extension of all the aforementioned
studies and applications. Moreover, Balasuriya (2020b) only computes the expectation and
variance of the projections Pε(x, θ), which does not describe the full distribution under
the ε ↓ 0 limit. The computational formula for the anisotropic uncertainty and stochastic
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sensitivity in Theorem 2.1 requires knowledge of the divergence ∇ · u of the velocity field,
and the computation of several integrals. While these expressions are computable given
only velocity data, they are cumbersome. We also address these difficulties by directly
relating stochastic sensitivity to the theory of stochastic differential equation linearisations
and provide a computation for the value that only requires taking the operator norm of
the matrix solution to an ordinary differential equation.
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Chapter 3

Characterising SDE linearisations: the
theory

In general, stochastic differential equations cannot be solved analytically and instead
require computationally expensive numerical simulation. An alternative approach is to
approximate the SDE by a simplified one, which can be solved analytically. A linearisation
procedure is one such approach when the noise is small, in which the coefficients of the
SDE are replaced with first-order Taylor expansions. As we highlighted in the introduction
(Chapter 1), this linearisation scheme provides a practical approach to using SDEs and
is accordingly used across a range of literature and applications (LeGland and Wang,
2002; Archambeau et al., 2007; Jazwinski, 2014; Law et al., 2015; Reich and Cotter, 2015;
Sanz-Alonso and Stuart, 2017; Budhiraja et al., 2019; Särkkä and Solin, 2019; Kaszás and
Haller, 2020).

In this chapter, we build upon previous small-noise studies of SDE linearisations
(Blagoveshchenskii, 1962; Freidlin and Wentzell, 1998; Sanz-Alonso and Stuart, 2017) to
provide an explicit bound for the error between a general class of stochastic differential
equations and linearisations thereof about trajectories of a corresponding deterministic
system. Our framework accounts for non-autonomous coefficients, multiplicative noise, and
uncertain initial conditions in a stochastic differential equation of arbitrary dimension—a
more general situation than that considered by any of Blagoveshchenskii (1962), Freidlin
and Wentzell (1998), or Sanz-Alonso and Stuart (2017). In Section 3.1, we state the bound,
written in terms of scales of the initial and the ongoing uncertainty, and provide an explicit
characterisation of the solution to the linearised SDE including computations for the first
two moments. We directly compare our newly derived bound in Section 3.1.1 to that on
the KL-divergence by Sanz-Alonso and Stuart (2017) and postulate that our bound is
tighter.

The second contribution of this chapter is to extend the original formulation of stochastic
sensitivity by Balasuriya (2020b), in Section 3.2. We provide a new definition of stochastic
sensitivity for n-dimensions and establish that the value can be computed from the solution

29
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of a linearised SDE.
Much of the content in this chapter and the following (Chapter 4) has been submitted

as a research article to Communications in Mathematical Sciences (Blake et al., 2023),
and is currently under review. The preprint is available on arXiv at arXiv:2309.16334.
Section 3.2.1, which discusses the connections between stochastic sensitivity and the
finite-time Lyapunov exponent, does not appear in the submitted article and is instead a
new contribution in this thesis.

3.1 Convergence of a SDE to a linearisation
Suppose we are interested in the evolution of a Rn-valued state variable yt over a finite time
interval [0, T ]. Our model, accounting for uncertainties arising from a range of sources, for
the evolution of this variable is the Itô stochastic differential equation

dy
(ε)
t = u

(
y
(ε)
t , t

)
dt+ ε σ

(
y
(ε)
t , t

)
dWt, y

(ε)
0 = x (3.1)

where u : Rn × [0, T ] → Rn is the governing reference vector field. The canonical m-
dimensional Wiener process Wt is a continuous white-noise stochastic process with inde-
pendent Gaussian increments. The scale of the ongoing noise is assumed to be small and
is parameterised as 0 < ε ≪ 1. The noise in (3.1) is multiplicative, in that the diffusion
matrix σ : Rn × [0, T ] → Rn×m can vary with state x, as well as with time t. We assume
that σ is specified a priori, or if no such information is known, then σ ≡ I, the n ×m
identity matrix, is a default modelling choice. We consider (3.1) subject to the general
uncertain initial condition y

(ε)
0 = x, where x is an n-dimensional random vector with some

given distribution. The two sources of randomness, x and Wt, are assumed independent
from each other.

In the absence of any uncertainty (i.e. ε = 0 and the initial condition is a known
deterministic quantity), (3.1) reduces to the ordinary differential equation

dy
(0)
t

dt
= u

(
y
(0)
t , t

)
, y

(0)
0 = x0. (3.2)

where the initial condition x0 ∈ Rn is fixed. The formal convergence of the stochastic
solution y

(ε)
t (under certain conditions on the initial condition) to the deterministic y

(0)
t in

the limit as ε → 0 is well-established using the large deviations principle (Freidlin and
Wentzell, 1998, e.g). We refer to (3.2) as the reference deterministic model associated
with (3.1). Solutions to the reference deterministic model are more readily available, e.g.
in terms of computational efficiency when solving numerically, than those of the stochastic
model, but do not account for inevitable uncertainty. Let the flow map F t

0 : Rn → Rn be
the function which evolves an initial condition from time 0 to time t according to the flow
of (3.2), i.e. F t

0(x0) = y
(0)
t .

https://arxiv.org/abs/2309.16334
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We assume certain smoothness and boundedness conditions on the various terms
outlined, which are stated explicitly in Hypothesis H. Throughout this article, we use the
norm symbol ∥·∥ to denote (i) for a vector, the standard Euclidean vector norm, (ii) for a
matrix, the spectral norm induced by the Euclidean norm, and (iii) for a 3rd-order tensor,
the spectral norm induced by the matrix norm. The gradient symbol ∇ generically refers
to derivatives with respect to the state variable.

Hypothesis H Let the deterministic functions u : Rn× [0, T ] → Rn and σ : Rn× [0, T ] →
Rn×m, and the random initial condition x be such that:

(H.1) For all t ∈ [0, T ] flow map F t
0 : Rn → Rn is well-defined, and continuously differen-

tiable (with respect to the initial condition) with invertible derivative.

(H.2) For each t ∈ [0, T ], the function u(·, t) : Rn → Rn given by u(x, t) is twice continu-
ously differentiable on Rn, and each component of the function σ(·, t) : Rn → Rn×m

given by σ(x, t) is differentiable on Rn.

(H.3) There exists a constant K∇u ≥ 0 such that for any t ∈ [0, T ] and x ∈ Rn,
∥∥∇u(x, t)

∥∥ ≤ K∇u.

Equivalently, for all t ∈ [0, T ], the function u(·, t) is Lipschitz continuous with
Lipschitz constant K∇u.

(H.4) For each x ∈ Rn, the function u(x, ·) : [0, T ] → Rn and each component of the
function σ(x, ·) : [0, T ] → Rn×m are Borel-measurable on [0, T ].

(H.5) There exists a constant KL such that for any t ∈ [0, T ] and x ∈ Rn,
∥∥u (x, t)

∥∥+
∥∥σ (x, t)

∥∥ ≤ KL

(
1 +∥x∥

)
.

(H.6) There exists a constant K∇σ ≥ 0 such that for any t ∈ [0, T ] and x ∈ Rn,
∥∥∇σ(x, t)

∥∥ ≤ K∇σ,

and we take K∇σ = 0 if there is no spatial dependence in σ. Equivalently, for all
t ∈ [0, T ], the function σ(x, ·) is Lipschitz continuous with Lipschitz constant K∇σ.

(H.7) The initial condition x is defined on the same probability space as Wt, and is
independent of Wt for all t ∈ [0, T ].

(H.8) There exists a constant K∇∇u ≥ 0 such that for any t ∈ [0, T ] and x ∈ Rn,
∥∥∇∇u(x, t)

∥∥ ≤ K∇∇u,

and we take K∇∇ = 0 if the second spatial derivatives of u are all zero.
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(H.9) There exists a constant Kσ ≥ 0 such that for any t ∈ [0, T ] and x ∈ Rn,
∥∥σ(x, t)

∥∥ ≤ Kσ.

The conditions H.2 to H.7 guarantee that (3.1) with the initial condition y0 = x has a
unique strong solution (Kallianpur and Sundar, 2014). The bound K∇∇u placed on the
second derivatives of u in H.8 quantifies exactly when the deterministic dynamics (that
is, u) of (3.1) are linear. Similarly, the bound K∇σ on the spatial derivatives of σ in H.6
allows us to distinguish when the noise in (3.1) is multiplicative.

Our aim is to construct and formally justify a computable linearisation of (3.1) about
a trajectory solving the deterministic system (3.2). To that end, we take a fixed initial
condition x0 ∈ Rn to the reference deterministic model (3.2) and consider linearising
the SDE (3.1) about the corresponding trajectory F t

0(x0). We consider the following
linearisation of (3.1):

dl
(ε)
t =

[
u
(
F t
0(x0) , t

)
+∇u

(
F t
0(x0) , t

) (
l
(ε)
t − F t

0(x0)
)]

dt+ εσ
(
F t
0(x0) , t

)
dWt, l

(ε)
0 = x,

(3.3)
where the initial condition x is still permitted to be random. Informally, we can arrive
at (3.3) by performing a Taylor expansion of the coefficient u up to first-order and σ to
zeroth-order about the time-varying trajectory F t

0(x0). Such a linearisation is advantageous
over the nonlinear SDE (3.1), since (3.3) can be solved analytically. We will later (see
Corollary 3.1) provide explicit expressions for computing the distribution of the solution
l
(ε)
t solely in terms of the solution dynamics of the deterministic system (3.2), the specified
diffusion matrix σ, and the distribution of x.

In order to quantify the error arising from the choice of reference point x0, we define

δr := E
[
∥x− x0∥r

]1/r
,

i.e. δr is the Lr distance between x and the deterministic point x0. We can think of δr as a
scalar measure of the uncertainty in the initial condition, relative to the choice of reference
point x0. Alternatively, the limit as δr approaches zero is equivalent to convergence in rth
mean of x to the fixed point x0. We can therefore distinguish two sources of uncertainty
in our model; that arising from the initial condition, quantified by δr, and the ongoing
uncertainty driven by the Wiener process Wt as measured by ε.

Our first and primary result, Theorem 3.1, provides an explicit bound on the rth
moment of the error between the SDE solution y

(ε)
t and the linearised solution l

(ε)
t .

Theorem 3.1 (Linearisation error is bounded) Let y(ε)t be the strong solution to the
SDE (3.1) and l

(ε)
t be the strong solution to the corresponding linearisation (3.3), both
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driven by the same Wiener process Wt and subject to the same random initial condition
y
(ε)
0 = l

(ε)
0 = x. Then, for any r ≥ 1 such that δ2r < ∞ and t ∈ [0, T ], there exist constants

D1(r, t,K∇u, Kσ) , D2(r, t,K∇u) , D3(r, t,K∇u) ∈ [0,∞)

independent of x and x0 such that for all ε > 0,

E

[∥∥∥y(ε)t − l
(ε)
t

∥∥∥
r
]
≤ (Kr

∇∇u +Kr
∇σ)D1(r, t,K∇u, Kσ) ε

2r

+Kr
∇∇uD2(r, t,K∇u) δ

2r
2r +Kr

∇σD3(r, t,K∇u) δ
r
rε

r.

(3.4)

Proof. See Section 3.3.2. Our proof employs the Burkholder-Davis-Gundy inequality,
Grönwall’s inequality, and Taylor’s theorem to explicitly construct the bounding coefficients
in terms of the conditions on the SDE coefficients set out in Hypothesis H. The bounding
coefficients D1, D2, and D3 are given explicitly in (3.33). □

In (3.4), we have an explicit scaling of the error in terms of ε and δr. The three terms
can be informally considered as: a contribution purely from the ongoing linearisation error,
a contribution purely from the initial uncertainty, and a term resulting from the interaction
between the initial and ongoing uncertainties. By explicitly identifying the dependence
of the bound on K∇∇u and K∇σ, we note three special cases that are summarised by
Remarks 3.1 to 3.3.

Remark 3.1 (Linear drift) When the deterministic dynamics are linear, we can set
K∇∇u = 0 and (3.4) becomes

E

[∥∥∥y(ε)t − l
(ε)
t

∥∥∥
r
]
≤ Kr

∇σD1(r, t,K∇u, Kσ) ε
2r +Kr

∇σD3(r, t,K∇u) δ
r
rε

r.

The linearisation of the drift term u is exact, so the error is purely due to the spatial
dependency of the diffusion term σ.

Remark 3.2 (Additive noise) When the noise in (3.1) is additive, we can set K∇σ = 0
and (3.4) becomes

E

[∥∥∥y(ε)t − l
(ε)
t

∥∥∥
r
]
≤ Kr

∇∇uD1(r, t,K∇u, Kσ) ε
2r +Kr

∇∇uD2(r, t,K∇u) δ
2r
2r .

The error is then purely due to the linearisation of the drift term u, and as expected is of
second order in both the initial condition uncertainty δ2r and the ongoing uncertainty ε.

Remark 3.3 (Exact linearisation) When the deterministic dynamics are linear and
the noise in (3.1) is additive (non-multiplicative), the linearisation (3.3) should be exact.
Accordingly, we can set K∇∇u = K∇σ = 0 and (3.4) becomes

E

[∥∥∥y(ε)t − l
(ε)
t

∥∥∥
r
]
= 0.

In turn, this implies that y(ε)t = l
(ε)
t almost surely, for any choice of reference point x0.



34 Chapter 3. Characterising SDE linearisations: the theory

We postpone a discussion of an additional special case—where the initial condition
is fixed or Gaussian—to a later section. For the general situation, we next explicitly
establish the solution to the linearisation (3.3), in terms of the initial condition and the
deterministic evolution of (3.2).

Theorem 3.2 (Solution of the linearised SDE) The linearised SDE (3.3) has the
strong solution

l
(ε)
t = ∇F t

0(x0) (x− x0) + F t
0(x0) + ε∇F t

0(x0)

∫ t

0

L(x0, τ) dWτ . (3.5)

where the term involving the uncertain initial condition x and the Itô integral are indepen-
dent, and

L(x0, τ) :=
[
∇F τ

0 (x0)
]−1

σ
(
F τ
0 (x0), τ

)
. (3.6)

Proof. See Section 3.3.3. □
The representation of the linearised solution as an independent sum in (3.5) can be

seen as a decomposition into contributions from the initial uncertainty (the transformation
of initial condition x), a deterministic prediction (the flow map F t

0(x0)) and the ongoing
uncertainty in u (the remaining Itô integral term).

We can further show that the Itô integral term follows a Gaussian random variable,
which ensures that the independent sum in (3.5) is a convenient expression for both
theoretical analysis and numerical computation. We also provide explicit expressions
for the mean and covariance matrix of the linearised solution, written in terms of the
deterministic dynamics and σ.

Corollary 3.1 (Distribution of the linearisation solution) The Itô integral term in
the linearised solution (3.5) follows a Gaussian distribution independently of x, namely

∫ t

0

L(x0, τ) dWτ ∼ N
(
0,

∫ t

0

L(x0, τ)L(x0, τ)
⊤
dτ

)
.

The mean of the linearisation solution is

E
[
l
(ε)
t

]
= F t

0(x0) +∇F t
0(x0)E[x− x0] . (3.7)

The n× n covariance matrix of the linearisation solution is given explicitly by

V
[
l
(ε)
t

]
= ∇F t

0(x0)

(
V[x] + ε2

∫ t

0

L(x0, τ)L(x0, τ)
⊤
dτ

)
[
∇F t

0(x0)
]⊤

(3.8)

where L(x0, τ) is as defined in (3.6) and the integral is taken in the elementwise sense.
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Proof. See Section 3.3.4. The expressions follow from the representation of the linearised
solution as an independent sum in (3.5). □

In Theorem 3.2, we have provided expressions for the distribution of the solution l
(ε)
t

to the linearised SDE (3.3) written solely in terms of the behaviour of the deterministic
system (3.2), the specified diffusion matrix σ, and the distribution of the initial condition
x. This describes a method for approximating the solution to the nonlinear SDE (3.1), or
for characterising the impact of uncertainty in a dynamical system (3.2), that circumvents
the need for expensive stochastic simulation.

Thus far, we have stated our results in terms of a general initial condition x, and
provided expressions for the linearised solution in terms of this otherwise arbitrary dis-
tribution. However, we later consider two special cases for the initial condition x, a
fixed (deterministic) initial condition in Section 3.1.3, and a Gaussian initial condition
in Section 3.1.2. In both these cases, the linearised solution also follows a Gaussian
distribution which is characterised entirely by the mean and covariance described in
Corollary 3.1, allowing for easy computation. We also relate these results directly to
other literature (Blagoveshchenskii, 1962; Freidlin and Wentzell, 1998; Jazwinski, 2014;
Sanz-Alonso and Stuart, 2017; Särkkä and Solin, 2019; Balasuriya, 2020b) which uses
linearisation procedures and Gaussian process approximations for nonlinear SDEs in these
situations.

Next, we establish the ordinary differential equation satisfied by the covariance ma-
trix, which is an expression consistent with linearisations schemes described elsewhere
(Archambeau et al., 2007; Jazwinski, 2014; Sanz-Alonso and Stuart, 2017; Särkkä and
Solin, 2019). This ODE enables rapid computation of the mean and covariance of the
linearised solutions by solving a system of ODEs, i.e. (3.2) and (3.9).

Remark 3.4 The n× n covariance matrix V
[
l
(ε)
t

]
of the linearised solution is the sym-

metric positive-semidefinite n× n matrix solution to the ordinary differential equation

dΠ(t)

dt
= ∇u

(
F t
0(x0) , t

)
Π(t) + Π(t)

[
∇u
(
F t
0(x0) , t

)]⊤
+ ε2σ

(
F t
0(x0) , t

)
σ
(
F t
0(x0) , t

)⊤
,

(3.9)
subject to the initial condition Π(0) = V[x]. We show that the variance satisfies (3.9) in
Section 3.3.4.

3.1.1 Comparison to existing results

In this section we connect our work to the cognate bound derived by Sanz-Alonso and
Stuart (2017). That paper considers the following SDE:

dy
(ε)
t = u

(
y
(ε)
t

)
dt+ ε σ̃ dWt, (3.10)
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where the diffusion coefficient σ̃ is a constant matrix, which is a special case of (3.1). In
this section, we apply our results to (3.10) to enable both bounds to be compared. Note
that ε in our article is written as

√
ε in Sanz-Alonso and Stuart (2017); we will translate

results from Sanz-Alonso and Stuart (2017) to use our notation, so that all results in
this article are directly comparable. In the following, c denotes an arbitrary finite and
non-negative constant that can vary between inequalities.

Theorem 2.2 of Sanz-Alonso and Stuart (2017), summarised, is as follows. Let ξ
(ε)
t

be the probability measure associated with y
(ε)
t (as defined in (3.10)), and let ν

(ε)
t be

the probability measure associated with the corresponding linearisation l
(ε)
t (as defined

in Section 3.1). Then there exists a constant c such that the Kullback–Leibler (KL)
divergence DKL between ξ

(ε)
t and ν

(ε)
t is bounded;

DKL

(
ξ
(ε)
t

∣∣∣
∣∣∣ ν(ε)

t

)
≤ DKL

(
ξ
(ε)
0

∣∣∣
∣∣∣ ν(ε)

0

)
+ c ε2 . (3.11)

To focus on the scaling with ε, assume a fixed initial condition with DKL

(
ξ
(ε)
0

∣∣∣
∣∣∣ ν(ε)

0

)
= 0

(and δr = 0 in our bound (3.4)). Then, employing the Hellinger distance DH, (3.11) implies
∥∥∥∥E
[
y
(ε)
t − l

(ε)
t

]∥∥∥∥ ≤ cDH

(
ξ
(ε)
t , ν

(ε)
t

)
≤ c

√
DKL

(
ξ
(ε)
t

∣∣∣
∣∣∣ ν(ε)

t

)
≤ c ε , (3.12)

while our result (3.4) and Jensen’s inequality imply
∥∥∥∥E
[
y
(ε)
t − l

(ε)
t

]∥∥∥∥ ≤ E

[∥∥∥y(ε)t − l
(ε)
t

∥∥∥
]
≤ c ε2 .

Thus, our bound on the moments is quadratic in ε rather than linear. If our conversion
in (3.12) was optimal, then our approach in this article provides a sharper bound on∥∥∥∥E
[
y
(ε)
t − l

(ε)
t

]∥∥∥∥ that the results of Sanz-Alonso and Stuart (2017) imply, and do so for

a more general σ. The results in Sanz-Alonso and Stuart (2017) on the KL divergence
would be more natural in information-theoretic contexts, and our hope is that our explicit
bound on the moments would be similarly preferred in other contexts.

3.1.2 Gaussian initial condition

We now briefly consider the case when the initial condition follows a Gaussian distribution,
i.e. x ∼ N (µ0,Σ0), where µ0 ∈ Rn and Σ0 ∈ Rn×n are fixed and specified. The linearisation
then follows a Gaussian distribution itself, which is entirely characterised by the mean
and covariance matrix described in Corollary 3.1. Alternatively, these moments can be
conveniently computed by simultaneously solving (3.2) for the state variable and (3.9) for
the linearised covariance.
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A natural choice of reference point x0 is the mean of the initial Gaussian density, i.e.
x0 = µ0. The Lr distance between x and the mean µ0 can be bounded by the trace of Σ0;
for example, one such bound is

δrr ≤ n3r/2−1Mrtr (Σ0)
r/2 , Mr :=

2r/2Γ
(
r+1
2

)
√
π

, (3.13)

where Γ denotes the Gamma function, with equality when n = 1. The initial covariance
Σ0 directly measures the uncertainty in the initial condition, and we see through (3.13)
that as the components of Σ0 approach zero, the contribution of the initial uncertainty to
the linearisation error in (3.4) approaches zero also. The linearised solution is then

l
(ε)
t ∼ N

(
F t
0(x0) , ∇F t

0(x0) Σ0

[
∇F t

0(x0)
]⊤

+ ε2Σt
0(x0)

)
,

where Σt
0(x0) is given explicitly by

Σt
0(x0) = ∇F t

0(x0)

(∫ t

0

L(x0, τ)L(x0, τ)
⊤
dτ

)
[
∇F t

0(x0)
]⊤

, (3.14)

and is the solution to the matrix differential equation (3.9) in Remark 3.4, subject to
Σ0

0(x0) = O, the n × n zero matrix. The covariance matrix Σt
0(x0) characterises the

contribution of the ongoing uncertainty in the stochastic system. The full covariance
matrix V

[
l
(ε)
t

]
is also the solution to (3.9) subject to the initial condition Π(0) = V[x].

By jointly solving (3.2) for the deterministic trajectory (the mean of l(ε)t ) and (3.9) for the
covariance matrix, one can easily compute the linearised solution, describing exactly the
assumed Gaussian approximation presented in Särkkä and Solin (2019), and the dynamics
linearisation used in the extended Kalman filter (Jazwinski, 2014).

3.1.3 Fixed initial condition

Consider when the initial condition x is itself a fixed and known deterministic value, in
which case we take x = x0 and δr = 0 for all r. In this situation, the bound (3.4) on the
linearisation error reduces to

E

[∥∥∥y(ε)t − l
(ε)
t

∥∥∥
r
]
≤ (Kr

∇∇u +Kr
∇σ)D1(r, t,K∇u, Kσ) ε

2r. (3.15)

We can consider the linearisation as equivalently arising from a first-order power series
expansion of y(ε)t in the noise-scale parameter ε, i.e.

y
(ε)
t = F t

0(x0) + εz
(ε)
t +R2 (x, t, ε) .
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where zε :=
(
l
(ε)
t − F t

0(x0)
)
/ε is the first order term and R2 is a random quantity capturing

the remaining deviation between y
(ε)
t and the linearisation. By rearranging and taking

r = 1 in (3.15), we therefore have the explicit Taylor-like bound

E
[∥∥R2 (x, t, ε)

∥∥
]

ε2
≤ (K∇∇u +K∇σ)D1(1, t,K∇u, Kσ) ,

This result is consistent in formulation with the error bounds of Blagoveshchenskii (1962)
and Freidlin and Wentzell (1998), for instance. Moreover, the distribution of the lineari-
sation solution (3.5) is Gaussian, which through Corollary 3.1 we can again explicitly
characterise in terms of the deterministic system, namely

l
(ε)
t ∼ N

(
F t
0(x0) , ε

2Σt
0(x0)

)
, (3.16)

where Σt
0(x0) is defined in (3.14). The distribution can be computed entirely from the

solution behaviour of the deterministic equation (3.2) and prior specification of σ. In
Section 3.2, we demonstrate an application of these results to extend stochastic sensitivity
(Balasuriya, 2020b) to arbitrary dimension.

3.2 Extending stochastic sensitivity
The results of Section 3.1.3 for a fixed initial condition provide a direct extension of the
stochastic sensitivity tools first introduced by Balasuriya (2020b) for the fluid flow context.
Here, the deterministic model (3.2) is seen as a “best-available” model for the evolution of
Lagrangian trajectories, and the driving vector field u is the Eulerian velocity of the fluid.
Stochastic sensitivity ascribes a scalar value to each deterministic trajectory by computing
a maximum variance of projected deviation (Balasuriya, 2020b). The aim is to provide
a single computable number for each deterministic trajectory quantifying the impact of
uncertainty in the velocity, independent of the scale (ε) of the noise. The natural restating
of this original definition of stochastic sensitivity (Balasuriya, 2020b) in the n-dimensional
setting is as follows:

Definition 3.1 (Stochastic sensitivity in Rn) The stochastic sensitivity is the scalar
field S2 : Rn × [0, T ] → [0,∞) given by

S2(x0, t) := lim
ε↓0

sup

{
V

[
1

ε
p
⊤
(
y
(ε)
t − F t

0(x0)
)]

: p ∈ Rn, ∥p∥ = 1

}
.

Figure 3.1 illustrates the quantities involved in Definition 3.1, to be compared directly
to Figure 2.5 which represented the original definition of stochastic sensitivity. The ray
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y
(ε)
t − F t

0(x0)

p

x0

F t
0(x0)

y
(ε)
t

Figure 3.1: The entities used in Definition 3.1 of stochastic sensitivity in arbitrary
dimensions. This diagram should be compared to Figure 2.5.

of angle θ in the original definition has been replaced with an arbitrary unit vector p.
We compute the projection (in red) of the deviation (in blue) between the deterministic
(in black) and stochastic (in green) predictions and then maximise over all possible unit
vectors p to obtain the stochastic sensitivity value. Definition 3.1 is in the spirit of principal
components analysis (Jolliffe, 2002), performing a dimension reduction by projecting onto
the direction in which the variance is maximised, thus capturing the most uncertainty in
the data with a scalar value. The anisotropic uncertainty in 2-dimensions (Balasuriya,
2020b) is the direction-dependent projection (before optimising over all directions in
Definition 3.1). Explicit theoretical expressions for both the stochastic sensitivity and
the anisotropic sensitivity in two dimensions were obtained by Balasuriya (2020b); these
allowed for quantifying certainty in eventual trajectory locations without having to perform
stochastic simulations. We show here that our results in n-dimensions are a generalisation
of the 2-dimensional ones by Balasuriya (2020b), which moreover establishes Gaussianity
as well as an explicit expression for the uncertainty measure. A theoretically pleasing and
computable expression for the stochastic sensitivity is obtainable:

Theorem 3.3 (Computation of S2) For any x0 ∈ Rn and t ∈ [0, T ],

S2(x0, t) =
∥∥Σt

0(x0)
∥∥ , (3.17)

where the covariance matrix Σt
0 is defined in (3.14). Equivalently, S2(x0, t) is given by the

maximum eigenvalue of Σt
0(x0).

Proof. See Section 3.3.5. This result uses Theorem 3.1 to establish the convergence of the
covariance matrices, and then the properties of the spectral norm to establish (3.17). □
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Independent of the fluid mechanics context, Theorem 3.3 indicates that even for general
systems, the matrix norm of Σt

0(x), i.e. the stochastic sensitivity S2(x, t), can be used as
one number which encapsulates the uncertainty of an initial state x after t time units.
The significance of this result is that the stochastic sensitivity has here been recovered
as the maximal eigenvalue of a covariance matrix that is ubiquitous in the literature.
Stochastic sensitivity was formerly defined by Balasuriya (2020b) as the maximal value
of the anisotropic uncertainty of a particular stochastic flow, and the connection to a
linearisation was not apparent.

The stochastic sensitivity field can be calculated given any velocity data u, and through
the explicit expression (3.14) for Σt

0 can even be computed from only flow map data.
Computation does not require knowledge of the noise scale ε, so the S2 field is intrinsic in
capturing the impact of the model dynamics on uncertainty, and any specified non-uniform
diffusivity. It has already been shown that, in the fluid flow context, stochastic sensitivity
can identify coherent regions in 2-dimensions (Balasuriya, 2020b; Badza et al., 2023). A
simple approach is to define robust sets, which are those initial conditions for which the
corresponding S2 value, i.e. the uncertainty in eventual location, are below some specified
threshold. This threshold can be defined precisely in terms of a spatial lengthscale of
interest and the advective and diffusive characteristics of the flow, as Definition 2.9 of
Balasuriya (2020b). Such a definition extends to the n-dimensional case as presented here,
moreover establishing an easily computable method for determining coherent sets from
the covariance matrix Σt

0.

3.2.1 Connections to the finite-time Lyapunov exponent

We briefly consider the implications of our results on uncertain initial conditions from
Section 3.1 on stochastic sensitivity, which suggests a connection between this measure
and the finite-time Lyapunov exponent. The finite-time Lyapunov exponent (FTLE) is a
measure of the local stretching in a dynamical system and is one of the most commonly
used tools for identifying Lagrangian coherent structures in fluid flow (Shadden et al.,
2005). In a particular direction p from the initial condition x0, the stretching due to the
evolution of the ODE (2.1) is measured as

s(x0, p) =

∥∥F t
0(x0 + p)− F t

0(x0)
∥∥

∥x0∥
≈
∥∥F t

0(x0) p
∥∥

∥p∥

assuming the perturbation p is small so that O
(
∥p∥2

)
terms can be neglected. The FTLE

is then computed by finding the direction in which the stretching is maximised, leading to
the operator norm computation

sup
p∈Rn, p ̸=0

s(x, p) =
∥∥∇F t

0(x0)
∥∥ =

√∥∥∥
[
∇F t

0(x0)
]⊤

∇F t
0(x0)

∥∥∥.
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The stochastic sensitivity definition in Definition 3.1 is analogous to this formation of
the FTLE. We consider a small stochastic perturbation (the solution to the SDE (3.1))
to a deterministic model (the corresponding deterministic system (2.1)). The size of
the perturbation is parameterised by ε, and the notion that this perturbation is ‘small’
is formalised by considering the limit as ε approaches zero. Since we are now dealing
with stochastic quantities, we take the direction in which the variance of the mapped
perturbation is maximised. Theorem 3.3 further establishes that stochastic sensitivity can
be computed by taking the operator norm of the covariance matrix of the linearised SDE
with a fixed initial condition. That is, stochastic sensitivity is the operator norm of

1

ε2
V
[
l
(ε)
t

]
= Σt

0(x0) .

This matrix captures (up to leading order in ε) the impact of the ongoing uncertainty.
However, the theory of Section 3.1 allows for uncertain initial conditions, so suppose
that we instead consider the perturbation SDE (3.1) initial condition x with expectation
E[x] = x0 and variance V[x] = ε2I. If there was no ongoing uncertainty (σ ≡ O), then
any uncertainty in the system arises purely from the initial condition x. Then from (3.8),
the variance of the small noise linearisation is

1

ε2
V
[
l
(ε)
t

]
= ∇F t

0(x0)
[
∇F t

0(x0)
]⊤

,

resulting only from the first term in (3.8). Thus, if we compute stochastic sensitivity in
the same way as in Definition 3.1 and Theorem 3.3 we get

S̃2(x0, t) =

∥∥∥∥∇F t
0(x0)

[
∇F t

0(x0)
]⊤∥∥∥∥ = sup

p∈Rn, p ̸=0
s(x0, p)

2

By maximising the projection of this variance over all directions, as in (3.17) to compute
stochastic sensitivity, we perform exactly the computation to determine the maximal
stretching rate in the computation of the finite-time Lyapunov exponent. The finite-time
Lyapunov exponent (FTLE) quantifies the sensitivity of a dynamical system to initial
conditions (Shadden et al., 2005), and can be equivalently considered a measure of the
impact of an uncertain initial condition on the deterministic evolution of trajectories.
The construction of S̃2 is completely consistent with this idea. Thus, while the original
formulation of stochastic sensitivity with a fixed initial condition captures only the impact
of ongoing uncertainty, by including an uncertain initial condition in the computation
we can also account for the information on the impact of initial condition uncertainty
provided by the FTLE. There has been recent interest in extending the FTLE for systems
with ongoing uncertainty (Guo et al., 2016; Balasuriya, 2020c; You and Leung, 2021), but
no established approach as of yet. A framework that computes stochastic sensitivity with
uncertain initial conditions can be seen as such an extension of the FTLE, in the sense
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that the measure would characterise the sensitivity of a dynamical system to both initial
conditions and ongoing uncertainty. Formalising this connection (e.g. by considering the
appropriate limits and justifying the choice of initial variance) is a matter for future work.

3.3 Proofs of results
In this section, we provide proofs of all the results in this chapter. We use several results
from deterministic and Itô calculus, which are stated in Appendix A for reference.

3.3.1 Preliminaries for proofs

There are several generic results and inequalities that we use several times throughout our

proofs, which we state here for completeness. We write Wt =
(
W

(1)
t , . . . ,W

(m)
t

)⊤
as the

components of the canonical m-dimensional Wiener process, where each W
(i)
t are mutually

independent 1-dimensional Wiener processes. The flow map F t
0 : Rn → Rn summarises

solutions of the deterministic model (3.2) and is given by

F t
0(x) = x+

∫ t

0

u
(
F τ
0 (x), τ

)
dτ , (3.18)

for an initial condition x ∈ Rn. The spatial gradient (with respect to the initial condition)
of the flow map solves the equation of variations associated with (3.2), i.e. recall (2.3):

∂

∂t
∇F t

0(x) = ∇u
(
F t
0(x), t

)
∇F t

0(x).

For any real numbers x1, . . . , xp ≥ 0 and r ≥ 1,



p∑

i=1

xi




r

≤ pr−1

p∑

i=1

xr
i . (3.19)

This results from an application of the finite form of Jensen’s inequality. An implication
of the equivalence of the L1 and Euclidean norms and (3.19) is that for any z ∈ Rn and
r ≥ 1,

∥z∥r ≤




n∑

i=1

|zi|




r

≤ nr−1

n∑

i=1

|zi|r, (3.20)

where zi denotes the ith component of z. If each component zi of a vector z is bounded
by a constant K, then

∥z∥ ≤ √
nK. (3.21)
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Similarly, if f : R → Rn is a vector-valued function such that each component of f is
integrable over an interval [0, t], then for all r ≥ 1,

∥∥∥∥∥

∫ t

0

f (τ) dτ

∥∥∥∥∥

r

≤ tr−1

∫ t

0

∥∥f (τ)
∥∥r dτ . (3.22)

This inequality results from an application of Hölder’s inequality.

3.3.2 Proof of Theorem 3.1

To prove the main result, we first require a lemma establishing a bound on the time
integral of the expectation of the distance between the SDE solution and the reference
deterministic trajectory.

Lemma 3.1 Let q ≥ 1 be such that δq < ∞, then for all ε > 0 and τ ∈ [0, T ]

E

[∫ t

0

∥∥∥y(ε)τ − F t
0(x0)

∥∥∥
q

dτ

]
≤ H1(q, t,K∇u, Kσ) ε

q +H2(q, t,K∇u) δ
q
q ,

where

H1(q, t,K∇u, Kσ) := 3q−1n3q/2Kq/2
σ Gq/2t

q/2+1 exp
(
3q−1Kq

∇ut
q
)
,

H2(q, t,K∇u) := 3q−1t exp
(
3q−1Kq

∇ut
q
)
.

Proof. Consider the integral form of (3.1),

y
(ε)
t = x+

∫ t

0

u
(
y(ε)τ , τ

)
dτ + ε

∫ t

0

σ
(
y(ε)τ , τ

)
dWτ .

Using (3.18),

y
(ε)
t − F t

0(x0) = x− x0 +

∫ t

0

(
u
(
y(ε)τ , τ

)
− u

(
F τ
0 (x0) , τ

))
dτ + ε

∫ t

0

σ
(
y(ε)τ , τ

)
dWτ ,

and so

E

[∥∥∥y(ε)t − F t
0(x0)

∥∥∥
q
]
≤ 3q−1E

[
∥x− x0∥q

]

+ 3q−1tq−1E

[∫ t

0

∥∥∥∥u
(
y(ε)τ , τ

)
− u

(
F τ
0 (x0) , τ

)∥∥∥∥
q

dτ

]

+ 3q−1εqE



∥∥∥∥∥

∫ t

0

σ
(
y(ε)τ , τ

)
dWτ

∥∥∥∥∥

q

 ,

(3.23)
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using (3.19) followed by (3.22), and taking the expectation on both sides.
Next, we establish a bound on the Itô integral term in (3.23). For i ∈ {1, . . . , n}, let

σi· denote the ith row of σ. Define the stochastic process

M (i)
τ := σi·

(
y(ε)τ , τ

)

for τ ∈ [0, t], so that [∫ t

0

σ
(
y(ε)τ , τ

)
dWτ

]

i

=

∫ t

0

M (i)
τ dWτ .

Since y
(ε)
t is a strong solution to (3.1), we have that (e.g. see Definition 6.1.1 of Kallianpur

and Sundar (2014))
∫ t

0

∥∥∥M (i)
τ

∥∥∥
2

dτ ≤
∫ t

0

nK2
σ dτ < ∞, almost surely,

so we can apply the Burkholder-Davis-Gundy inequality (see Theorem A.4) to Mτ , which
asserts that there exists a constant Gq/2 > 0 depending only on q such that

E



∣∣∣∣∣

∫ t

0

M (i)
τ dWτ

∣∣∣∣∣

q

 ≤ Gq/2E



(∫ t

0

∥∥∥∥σi·
(
y(ε)τ , τ

)∥∥∥∥
2

dτ

)q/2



≤ Gq/2n
pKq/2

σ tq/2,

where the second inequality uses H.9. Then,

E



∥∥∥∥∥

∫ t

0

σ
(
y(ε)τ , τ

)
dWτ

∥∥∥∥∥

q

 ≤ n3q/2Kq/2

σ Gq/2t
q/2, (3.24)

using (3.20).
Applying the bound (3.24) to (3.23), we have

E

[∥∥∥y(ε)t −F t
0(x0)

∥∥∥
q
]
≤ 3q−1δqq + 3q−1εqn3q/2Kq/2

σ Gq/2t
q/2

+ 3q−1tq−1E

[∫ t

0

∥∥∥∥u
(
y(ε)τ , τ

)
− u
(
F τ
0 (x0) , τ

)∥∥∥∥
q

dτ

]
.

(3.25)

We note that E
[∥∥∥y(ε)t − F t

0(x)
∥∥∥
q
]
< ∞ from H.3, so by Tonelli’s theorem (e.g. Brémaud

(2020, Thm. 2.3.9)),

E

[∫ t

0

∥∥∥y(ε)τ − F τ
0 (x0)

∥∥∥
q

dτ

]
=

∫ t

0

E

[∥∥∥y(ε)τ − F τ
0 (x0)

∥∥∥
q
]
dτ .
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Now, using the Lipschitz continuity of u from H.6 on (3.25) and interchanging the
expectation and integral,

E

[∥∥∥y(ε)t − F t
0(x0)

∥∥∥
q
]
≤ 3q−1δqq + 3q−1Kq

∇ut
q−1

∫ t

0

E

[∥∥∥y(ε)τ − F τ
0 (x0)

∥∥∥
q
]
dτ

+ 3q−1εqn3q/2Kq/2
σ Gq/2t

q/2.

Applying Grönwall’s inequality and using the monotonicity of the resulting bound in t, we
have that for any τ ∈ [0, t],

E

[∥∥∥y(ε)τ − F τ
0 (x0)

∥∥∥
q
]
≤ 3q−1εqn3q/2Sq/2Gq/2t

q/2 exp
(
3q−1Kq

∇ut
q
)

+ 3q−1 exp
(
3q−1Kq

∇ut
q
)
δqq .

Integrating both sides with respect to time and again using Tonelli’s theorem, we have

E

[∫ t

0

∥∥∥y(ε)τ − F τ
0 (x0)

∥∥∥
q

dτ

]
≤ 3q−1n3q/2Sq/2Gq/2t

q/2+1 exp
(
3q−1Kq

∇ut
q
)
εq

+ 3q−1t exp
(
3q−1Kq

∇ut
q
)
δqq ,

as desired. □
With these bounds established, we can now prove Theorem 3.1. Subtracting the

integral forms of (3.3) and (3.1) gives

y
(ε)
t − l

(ε)
t =

∫ t

0

[
u
(
y(ε)τ , τ

)
− u
(
F τ
0 (x0) , τ

)
−∇u

(
F τ
0 (x0)

) (
l(ε)τ − F τ

0 (x0)
)]

dτ

+

∫ t

0

[
εσ
(
y(ε)τ , τ

)
− εσ

(
F τ
0 (x0) , τ

)]
dWτ

=

∫ t

0

[
u
(
y(ε)τ , τ

)
−
(
u
(
F τ
0 (x0) , τ

)
+∇u

(
F τ
0 (x0)

) (
y(ε)τ − F τ

0 (x0)
))]

dτ

+

∫ t

0

∇u
(
F τ
0 (x0) , τ

) [
y(ε)τ − l(ε)τ

]
dτ

+ ε

∫ t

0

[
σ
(
y(ε)τ , τ

)
− σ

(
F τ
0 (x0) , τ

)]
dWτ

= A(t) +B(t) + εC(t),

where

A(t) :=

∫ t

0

[
u
(
y(ε)τ , τ

)
−
(
u
(
F τ
0 (x0) , τ

)
+∇u

(
F τ
0 (x0)

) (
y(ε)τ − F τ

0 (x0)
))]

dτ

B(t) :=

∫ t

0

∇u
(
F τ
0 (x0) , τ

) [
y(ε)τ − l(ε)τ

]
dτ

C(t) :=

∫ t

0

[
σ
(
y(ε)τ , τ

)
− σ

(
F τ
0 (x0) , τ

)]
dWτ .
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Then, using (3.19) and taking expectation,

E

[∥∥∥y(ε)t − l
(ε)
t

∥∥∥
r
]
≤ 3r−1

(
E
[∥∥A(t)

∥∥r
]
+ E

[∥∥B(t)
∥∥r
]
+ εrE

[∥∥C(t)
∥∥r
])

. (3.26)

First consider A(t), for which the integrand is the expected difference between the drift u
evaluated along SDE solution and the first-order Taylor expansion of u about the reference
deterministic trajectory. Since for any t ∈ [0, T ], u (·, t) is twice continuously differentiable
under H.2, for each i = 1, . . . , n there exists by Taylor’s theorem (e.g. see J. H. Hubbard
and B. B. Hubbard (2009, Cor. A9.3.)) a function Ri : Rn × [0, T ] → R such that

ui(z, τ) = ui

(
F τ
0 (x0) , τ

)
+
[
∇ui

(
F τ
0 (x0) , τ

)] (
z − F τ

0 (x0)
)
+Ri(z, τ) (3.27)

for any z ∈ Rn, where ui denotes the ith component of u. The function Ri satisfies

∣∣Ri(z, τ)
∣∣ ≤ 1

2

∥∥∥∇∇ui

(
F τ
0 (x), t

)∥∥∥
∥∥z − F τ

0 (x0)
∥∥2 ≤ K∇∇u

2

∥∥z − F τ
0 (x0)

∥∥2 . (3.28)

Let R(z, τ) :=
(
R1(z, τ) , . . . , Rn(z, τ)

)⊤
, then

A(t) =

∫ t

0

R
(
y
(ε)
t , τ

)
dτ ,

and since each component of R is bounded as in (3.28), using (3.21)
∥∥∥∥R
(
y
(ε)
t , τ

)∥∥∥∥ ≤
√
nK∇∇u

2

∥∥∥y(ε)t − F τ
0 (x0)

∥∥∥
2

.

Taking the norm and expectation then gives

E
[∥∥A(t)

∥∥r
]
= E



∥∥∥∥∥

∫ t

0

R
(
y
(ε)
t , τ

)
dτ

∥∥∥∥∥

r



≤ tr−1E

[∫ t

0

∥∥∥∥R
(
y(ε)τ , τ

)∥∥∥∥
r

dτ

]

≤ tr−1nr/2Kr
∇∇u

2r
E

[∫ t

0

∥∥∥y(ε)τ − F τ
0 (x0)

∥∥∥
2r

dτ

]

≤ tr−1nr/2Kr
∇∇uH1(2r, t,K∇u, Kσ)

2r
ε2r

+
tr−1nr/2Kr

∇∇uH2(2r, t,K∇u)

2r
δ2r2r ,

(3.29)



3.3. Proofs of results 47

where the first inequality uses (3.22), and H1 and H2 are obtained from Lemma 3.1.
Next, consider B(t), for which

E
[∥∥B(t)

∥∥r
]
≤
∫ t

0

tr−1Kr
∇uE

[∥∥∥y(ε)τ − l
(ε)
t

∥∥∥
r
]
dτ . (3.30)

using (3.22) and then H.3, and interchanging the expectation and the integral uses the

fact that that E
[∥∥∥y(ε)τ

∥∥∥
]
< ∞ and E

[∥∥∥l(ε)τ

∥∥∥
]
< ∞.

Finally, consider C(t). For each i ∈ {1, . . . , n}, define the stochastic process

N (i)
τ := σi·

(
y(ε)τ , τ

)
− σi·

(
F τ
0 (x0) , τ

)
.

Then, the ith component of C(t) is

[
C(t)

]
i
=

∫ t

0

N (i)
τ dWτ .

From H.9 and using (3.21),
∫ t

0

∥∥∥N (i)
τ

∥∥∥
2

dτ ≤
∫ t

0

4nK2
σ dτ < ∞,

so we can apply the Burkholder-Davis-Gundy inequality on N
(i)
τ to write

E

[∣∣∣
[
C(t)

]
i

∣∣∣
r
]
≤ Gr/2E



(∫ t

0

∥∥∥∥σi·
(
y(ε)τ , τ

)
− σi·

(
F τ
0 (x0) , τ

)∥∥∥∥
2

dτ

)r/2



≤ Gr/2E



(∫ t

0

K2
∇σ

∥∥∥y(ε)τ − F τ
0 (x0)

∥∥∥
2

dτ

)r/2



≤ Gr/2K
r
∇σt

r/2−1E

[∫ t

0

∥∥∥y(ε)τ − F τ
0 (x0)

∥∥∥
r

dτ

]

≤ Gr/2K
r
∇σt

r/2−1H1(r, t,K∇u, Kσ) ε
r

+Gr/2K
r
∇σt

r/2−1H2(r, t,K∇u) δ
r
r ,

(3.31)

where the second inequality uses the Lipschitz condition on σ in H.6, the third inequality
uses (3.22), and the fourth inequality uses Lemma 3.1 with q = r. Then, we have

E
[∥∥C(t)

∥∥r
]
≤ nrGr/2K

r
∇σt

r/2−1H1(r, t,K∇u, Kσ) ε
r

+ nrGr/2K
r
∇σt

r/2−1H2(r, t,K∇u) δ
r
r ,

(3.32)
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using (3.20), and then (3.31).
Combining (3.29), (3.30) and (3.32) into (3.26), we have

E

[∥∥∥y(ε)t − l
(ε)
t

∥∥∥
r
]
≤ 3r−1tr−1nr/2Kr

∇∇uH1(2r, t,K∇u, Kσ)

2r
ε2r

+
3r−1tr−1nr/2Kr

∇∇uH2(2r, t,K∇u)

2r
δ2r2r

+

∫ t

0

3r−1tr−1Kr
∇uE

[∥∥∥y(ε)t − l
(ε)
t

∥∥∥
r
]
dτ

+ 3r−1Gr/2K
r
∇σt

r/2−1H1(r, t,K∇u, Kσ) ε
2r

+ 3r−1Gr/2K
r
∇σt

r/2−1H2(r, t,K∇u) ε
rδrr .

Applying Grönwall’s inequality, noting that H1 and H2 are non-decreasing in t, we have

E

[∥∥∥y(ε)t − l
(ε)
t

∥∥∥
r
]
≤ 3r−1tr−1nr/2Kr

∇∇uH1(2r, t,K∇u, Kσ)

2r
exp

(
3r−1trKr

∇u

)
ε2r

+
3r−1tr−1nr/2Kr

∇∇uH2(2r, t,K∇u)

2r
exp

(
3r−1trKr

∇u

)
δ2r2r

+ 3r−1Gr/2K
r
∇σt

r/2−1 exp
(
3r−1trKr

∇u

)
H1(r, t,K∇u, Kσ) ε

2r

+ 3r−1Gr/2K
r
∇σt

r/2−1 exp
(
3r−1trKr

∇u

)
H2(r, t,K∇u) ε

rδrr .

Set

D1(r, t,K∇u, Kσ) := 3r−1 exp
(
3r−1trKr

∇u

)
KM(r, t,K∇u, Kσ) (3.33a)

D2(r, t,K∇u) := 3r−1tr−1nr/2H2(2r, t,K∇u) exp
(
3r−1trKr

∇u

)
(3.33b)

D3(r, t,K∇u) := 3r−1Gr/2t
r/2−1H2(r, t,K∇u) exp

(
3r−1trKr

∇u

)
, (3.33c)

where

KM(r, t,K∇u, Kσ) := max

{
tr−1nr/2H1(2r, t,K∇u, Kσ)

2r
, Gr/2t

r/2−1H1(r, t,K∇u, Kσ)

}
,

then we have shown the desired result.

3.3.3 Proof of Theorem 3.2

Next, we show that the strong solution to the linearised SDE (3.3) can be written as the
independent sum (3.5). Let

Mt = h
(
l
(ε)
t , t

)
:=

1

ε

[
∇F t

0(x0)
]−1
(
l
(ε)
t − F t

0(x0)
)
,
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where l
(ε)
t is the strong solution to (3.3). Then, the required derivatives for applying Itô’s

Lemma (see Theorem A.3) are

M0 = h
(
l
(ε)
0 , 0

)
=

1

ε
(x− x0)

∂h

∂t
= − 1

ε

[
∇F t

0(x0)
]−1 ∂∇F t

0(x0)

∂t

[
∇F t

0(x0)
]−1
(
l
(ε)
t − F t

0(x0)
)

− 1

ε

[
∇F t

0(x0)
]−1

u
(
F t
0(x0) , t

)

∇h
(
l
(ε)
t , t

)
=

1

ε

[
∇F t

0(x0)
]−1

∇∇h
(
l
(ε)
t , t

)
= O,

where in computing the t derivative we have used the fact that F t
0(x0) solves the deter-

ministic ODE (3.2). Thus,

Mt =
1

ε
(x− x0) +

1

ε

∫ t

0

(
−
[
∇F τ

0 (x0)
]−1 ∂∇F τ

0 (x0)

∂τ

[
∇F τ

0 (x0)
]−1
(
l(ε)τ − F τ

0 (x0)
)

−
[
∇F τ

0 (x0)
]−1

u
(
F τ
0 (x0) , τ

)

+
[
∇F τ

0 (x0)
]−1
[
u
(
F τ
0 (x0) , τ

)
+∇u

(
F τ
0 (x0) , τ

) (
l(ε)τ − F τ

0 (x0)
)])

dτ

+

∫ t

0

[
∇F τ

0 (x0)
]−1

σ
(
F τ
0 (x0) , τ

)
dWτ

=
1

ε
(x− x0) +

1

ε

∫ t

0

(
−
[
∇F τ

0 (x0)
]−1∇u

(
F τ
0 (x0) , τ

) (
l(ε)τ − F τ

0 (x0)
)

+
[
∇F τ

0 (x0)
]−1∇u

(
F τ
0 (x0) , τ

) (
l(ε)τ − F τ

0 (x0)
))

dτ

+

∫ t

0

[
∇F τ

0 (x0)
]−1

σ
(
F τ
0 (x0) , τ

)
dWτ

=
1

ε
(x− x0) +

∫ t

0

[
∇F τ

0 (x0)
]−1

σ
(
F τ
0 (x0) , τ

)
dWτ ,

where we reach the second line by using the equation of variations (2.3) satisfied by
∇F τ

0 (x0). It follows that the expression (3.5), i.e.

l
(ε)
t = ∇F t

0(x0) (x− x0) + F t
0(x0) + ε

∫ t

0

∇F t
0(x0)

[
∇F τ

0 (x0)
]−1

σ
(
F τ
0 (x0) , τ

)
dτ ,

is a strong solution to (3.3).
Finally, under H.7, x is independent of the Wiener process Wt, and since independence

is preserved under limits and linear transformations, it follows that the two random terms
in (3.5) are independent.



50 Chapter 3. Characterising SDE linearisations: the theory

3.3.4 Proof of Corollary 3.1

We first establish that the Itô integral of a matrix-valued deterministic function with
respect to a multidimensional Wiener process is a multidimensional Gaussian process. This
is a well-known result in the scalar case, and the extension to our case is straightforward.

Lemma 3.2 Let a, b ∈ R and let g : [a, b] → Rn×n be a matrix-valued deterministic
function such that each element of g is Itô-integrable. Consider the Itô integral

I[g] :=
∫ b

a

g(t) dWt,

Then, the integral I[g] is a n-dimensional multivariate Gaussian random variable.

Proof. For i, j ∈ {1, . . . , n}, let gij : [a, b] → R be the (i, j)th element of g. Then, let

I[gij] :=
∫ b

a

gij(t) dW
(i)
t ,

so that the ith element of I[g] is

I[g]i =
n∑

j=1

I
[
gij
]
.

Each I[gij] is an Itô integral of a deterministic, scalar-valued function with respect to
a 1-dimensional Brownian motion, which is well-known to be a Gaussian process (e.g.
see Lemma 4.3 of Applebaum (2004)). Moreover, each element of I[g] is the sum of
independent Gaussian random variables and is therefore itself Gaussian. Hence, I[g]
follows a multivariate Gaussian distribution. □

Now, we move onto showing Corollary 3.1. Consider the Itô integral

I[L] =
∫ t

0

L(x0, τ) dWτ .

For any fixed t ∈ [0, T ], the integrand is a deterministic, matrix-valued function, and is
therefore follows a n-dimensional Gaussian distribution. Moreover (Kallianpur and Sundar,
2014),

E
[
I[L]

]
= 0,

and

V
[
I[L]

]
= E



(∫ t

0

L(x0, τ) dWτ

)(∫ t

0

L(x0, τ) dWτ

)⊤

 .
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Let Lij denote the (i, j)th element of L, then the (i, j)th element of the variance is

[
V
[
I[L]

]]
ij
=

m∑

k=1

m∑

l=1

E



(∫ t

0

Lik(x0, τ) dW
(k)
τ

)(∫ t

0

Ljl(x0, τ) dW
(l)
τ

)


=
m∑

k=1

E



(∫ t

0

Lik(x0, τ) dW
(k)
τ

)(∫ t

0

Ljk(x0, τ) dW
(k)
τ

)


+
m∑

k=1

m∑

l=1
l ̸=k

E



(∫ t

0

Lik(x0, τ) dW
(k)
τ

)
E



(∫ t

0

Ljl(x0, τ) dW
(l)
τ

)


=
m∑

k=1

∫ t

0

Lik(x0, τ)Ljk(x0, τ) dτ ,

where the second equality the fact that W
(k)
t is independent of W (l)

t for k ̸= l and the
third equality uses Itô’s isometry (Kallianpur and Sundar, 2014). Hence, we have that

∫ t

0

L(x0, τ) dτ ∼ N
(
0,

∫ t

0

L(x0, τ)L(x0, τ)
⊤
dτ

)
,

completing the proof of Theorem 3.2. Next, we show that the mean and covariance of l(ε)t

are given explicitly by (3.7) and (3.8) respectively. It follows immediately from (3.5) that
the mean of l(ε)t is

E
[
l
(ε)
t

]
= E

[
∇F t

0(x0) (x− x0)
]
+ F t

0(x0) + ε∇F t
0(x0)E

[∫ t

0

L (x0, τ) dτ

]

= ∇F t
0(x)

(
E[x]− x0

)
+ F t

0(x0) ,

thus showing (3.7).
Since the two summands in (3.5) are independent, the variance of l(ε)t is

V
[
l
(ε)
t

]
= V

[
∇F t

0(x0) (x− x0)
]
+V

[
ε∇F t

0(x0)

∫ t

0

L(x0, τ) dWτ

]

= ∇F t
0(x0)

(
V[x] + ε2

∫ t

0

L(x0, τ)L(x0, τ)
⊤
dτ

)
[
∇F t

0(x0)
]⊤

where the variance of the Itô integral was established in Section 3.3.3.
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Finally, we show Remark 3.4, i.e. that V
[
l
(ε)
t

]
is the solution to the matrix differential

equation (3.9). Directly differentiating the expression (3.8)

dV
[
l
(ε)
t

]

dt
=

∂∇F t
0(x0)

∂t

(
V[x] + ε2

∫ t

0

L(x0, τ)L(x0, τ)
⊤
dτ

)
[
∇F t

0(x0)
]⊤

+∇F t
0(x0)

(
V[x] + ε2

∫ t

0

L(x0, τ)L(x0, τ)
⊤
dτ

)[
∂∇F t

0(x0)

∂t

]⊤

+ ε2∇F t
0(x0)L(x0, t)L(x0, t)

⊤ [∇F t
0(x0)

]⊤

= ∇u
(
F t
0(x0) , t

)
∇F t

0(x0)

(
V[x] + ε2

∫ t

0

L(x0, τ)L(x0, τ)
⊤
dτ

)
[
∇F t

0(x0)
]⊤

+∇F t
0(x0)

(
V[x] + ε2

∫ t

0

L(x0, τ)L(x0, τ)
⊤
dτ

)
[
∇F t

0(x0)
]⊤[

∇u
(
F t
0(x0) , t

)]⊤

+ ε2σ
(
F t
0(x0) , t

)
σ
(
F t
0(x0) , t

)⊤

= ∇u
(
F t
0(x0) , t

)
V
[
l
(ε)
t

]
+V

[
l
(ε)
t

] [
∇u
(
F t
0(x0) , t

)]⊤

+ ε2σ
(
F t
0(x0) , t

)
σ
(
F t
0(x0) , t

)⊤
,

where the second inequality has used the equation of variations (2.3).

3.3.5 Proof of Theorem 3.3

Let t ∈ [0, T ] and consider the solutions y
(ε)
t to (3.1) and l

(ε)
t to (3.3) subject to the fixed

initial condition x0 ∈ Rn. On the vector space of n-dimensional random vectors with each
component having finite expectation and variance, define the function ρ as

ρ(z) :=
∥∥V[z]

∥∥ 1
2 .

Then, ρ is a semi-norm, which can be verified using properties of the spectral norm and
the Cauchy-Schwarz inequality. This proof is provided in the supplementary materials.
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Then,

∣∣∣∣∣∣

∥∥∥∥V
[
y
(ε)
t

]∥∥∥∥
1
2

−
∥∥∥∥V
[
l
(ε)
t

]∥∥∥∥
1
2

∣∣∣∣∣∣
=

∣∣∣∣ρ
(
y
(ε)
t

)
− ρ
(
l
(ε)
t

)∣∣∣∣

≤ ρ
(
y
(ε)
t − l

(ε)
t

)

=

∥∥∥∥∥∥
E

[(
y
(ε)
t − l

(ε)
t

)(
y
(ε)
t − l

(ε)
t

)⊤]
−E
[
y
(ε)
t − l

(ε)
t

]
E
[
y
(ε)
t − l

(ε)
t

]⊤
∥∥∥∥∥∥

1
2

≤
(
E

[∥∥∥y(ε)t − l
(ε)
t

∥∥∥
2
]
+ E

[∥∥∥y(ε)t − l
(ε)
t

∥∥∥
]2) 1

2

≤
(
(K∇∇u +K∇σ)D1(2, t) + (K∇∇u +K∇σ)

2D1(1, t)
2
)1/2

ε2

where the first inequality uses the reverse triangle inequality, the second inequality uses the
Jensen’s inequality and properties of the spectral norm, and the third inequality results
from Theorem 3.1. Thus,

∣∣∣∣∣∣

∥∥∥∥
1

ε2
V
[
y
(ε)
t

]∥∥∥∥
1
2

−
∥∥∥∥
1

ε2
V
[
l
(ε)
t

]∥∥∥∥
1
2

∣∣∣∣∣∣
≤
(
(K∇∇u +K∇σ)D1(2, t)

+ (K∇∇u +K∇σ)
2D1(1, t)

2
) 1

2
ε,

and so taking the limit of ε to zero and squaring both sides,

lim
ε↓0

∥∥∥∥
1

ε2
V
[
y
(ε)
t

]∥∥∥∥ = lim
ε↓0

∥∥∥∥
1

ε2
V
[
l
(ε)
t

]∥∥∥∥ . (3.34)

Now, for ε > 0, define

S2
(ε)(x0, t) := sup

{
V

[
1

ε
p
⊤
(
y
(ε)
t − F t

0(x0)
)] ∣∣∣∣∣ p ∈ Rn, ∥p∥ = 1

}

=
1

ε2
sup

{
p
⊤
V
[
y
(ε)
t

]
p

∣∣∣∣ p ∈ Rn, ∥p∥ = 1

}
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Since V
[
y
(ε)
t

]
is symmetric and positive definite, the Cholesky decomposition provides a

lower triangular n× n matrix Π(ε) such that V
[
y
(ε)
t

]
= Π(ε)

[
Π(ε)

]⊤
, allowing us to write

S2
(ε)(x0, t) =

1

ε2
sup

{∥∥∥Π(ε)p
∥∥∥
2
∣∣∣∣ p ∈ Rn, ∥p∥ = 1

}

=
1

ε2

∥∥∥Π(ε)
∥∥∥
2

=
1

ε2

∥∥∥∥V
[
y
(ε)
t (x)

]∥∥∥∥ ,

using properties of the spectral norm. Taking the limit as ε approaches zero and using
(3.34),

S2(x0, t) = lim
ε↓0

S2
(ε)(x0, t) = lim

ε↓0

∥∥∥∥
1

ε2
V
[
y
(ε)
t

]∥∥∥∥ =
∥∥Σt

0(x0)
∥∥ ,

where Σt
0 is defined in (3.14). Since Σt

0(x0) is symmetric and positive definite, the operator
norm, and therefore S2(x0, t), is given by the largest eigenvalue of Σt

0(x0).



Chapter 4

Characterising SDE linearisations: the
numerics

We now provide numerical validation of the results in Chapter 3 on four different example
stochastic differential equations in 1-, 2-, and 3-dimensions. A majority of the content
in this chapter again appears in the submitted article (Blake et al., 2023). However,
the overview in Section 4.1 of an algorithm (Mazzoni, 2008) for efficiently solving the
mean-covariance equations for the linearisation approximation and Section 4.3.2, where
we provide an example of stochastic sensitivity computed for a 3-dimensional system, do
not appear in the submitted article.

4.1 The Mazzoni method

In Corollary 3.1, we established expressions for the first two moments of the solution
l
(ε)
t of the solution l

(ε)
t to the linearisation (3.3) of the SDE (3.1). When the initial

condition of the SDE is fixed or Gaussian—a case often used in practice and one which
we restrict ourselves to in this chapter—the linearisation solution l

(ε)
t is also Gaussian

and characterised entirely by those two moments. The mean is given by the deterministic
trajectory F t

0(x0) about which (3.1) was linearised and the variance can be computed by
solving the matrix differential equation (3.9) in Remark 3.4. The deterministic trajectory
F t
0(x0) is obtained by solving the deterministic equation (2.1), so we can re-frame the

computation of l(ε)t as the joint solving of a pair of differential equations. Suppose that
the initial condition y

(ε)
0 = l

(ε)
t is Gaussian with mean x0 and covariance matrix Σ0. For

notational brevity, set wt := F t
0(x0) and Πt := V[lt], so that at any time t

l
(ε)
t ∼ N (wt, Πt) .

55
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We can then compute wt and Πt by solving the system of ordinary differential equation

dwt

dt
= u(wt, t) , w0 = x0 (4.1a)

dΠt

dt
= ∇u(wt, t)Πt +Πt

[
∇u (wt, t)

]⊤
+ εσ (wt, t)σ (wt, t)

⊤
, Π0 = Σ0. (4.1b)

where (4.1a) is (2.1) and (4.1b) comes from (3.9). Solving (4.1) jointly can provide a more
convenient computation to obtain the distribution of the linearisation solution in practice
than evaluating (3.7) and (3.8) directly.

An important consideration when solving (4.1) numerically is that Πt represents a
covariance matrix and must remain symmetric and positive semi-definite. However, many
standard numerical ODE schemes do not take this into account, so a specialised scheme is
required. Similar equations of the form (4.1) (although often without explicit dependence
on both time and the state in the σ term) are solved numerically in other applications,
notably when implementing the extended Kalman filter (Jazwinski, 2014; Kulikova and
Kulikov, 2014). Kulikova and Kulikov (2014) identify that that the two most significant
sources of numerical error when solving equations of this form are a) the estimate of the
covariance matrix Σt

s violating the requirement of positive semi-definiteness, and b) local
error propagation in the state equation. Moreover, a computationally efficient algorithm is
critical to ensure that the linearisation approximation has an advantage over bulk Monte
Carlo simulation.

Mazzoni (2008) proposes an efficient hybrid method for solving (4.1) which addresses
both difficulties a) and b) and takes advantage of the availability of the Jacobian ∇u. This
method, which we shall term the Mazzoni method, combines a Taylor-Heun approximation
for (4.1a) and a Gauss-Legendre step for (4.1b). With a step size of δτ , integration for both
the state variable and the covariance matrix are convergent with order O

(
δτ 2
)
. Moreover,

Mazzoni (2008) shows through numerical simulations that the algorithm is computationally
efficient when compared to alternatives with moderate precision, and since the algorithm
relies on matrix operations, it scales well with the dimension of the model. We therefore
employ the Mazzoni method for all subsequent computations of the linearisation solution.

We summarise the algorithm in the following and provide a diagram of the full
implementation in Figure 4.1. Further details on the derivation of these equations are
available in the original article (Mazzoni, 2008). The Taylor-Heun formula for the update
of the state over the interval [τ, τ + δτ ] is

wτ+δτ ≈ wτ +

(
I − δτ

2
∇u(wτ , τ)

)−1

. (4.2a)

The Gauss-Legendre update of the covariance matrix is

Πτ+δτ ≈ MιΠτM
⊤

ι + δτKισ

(
wι, τ +

δτ

2

)
σ

(
wι, τ +

δτ

2

)⊤

K
⊤

ι , (4.2b)
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Start
Given t, x0,Σ0

Specify δτmin, β, γ

Set τ0 = 0
Set wτ0 = x0

Set Πτ0 = Σ0 Set δτ = δτmin

Set k = 0

Set τk+1 = τk + δτ
Compute wτk+1

with (4.2a)
Compute e with (4.2f)

Set δτnew = max

{
δτmin, βδτ

√
γ
γ̂

}

γ̂ ≤ γ or
δτ ≤ δτmin?

Set δτ = δτnew

Compute Πτk+1
with (4.2c) to (4.2e)

Set k = k + 1

τk = t?Stop δτ = min {δτnew, t− τk}

no

yes

yes no

Figure 4.1: A flowchart of the Mazzoni algorithm with adaptive time stepping to solve
(4.1) over the time interval [0, t]. The minimum step size δτmin is specified and enforced
to ensure that the step size does not become too small to compromise computationally
efficiency. Recreated from Figure 2 of Mazzoni (2008).
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where

wι =
1

2

(
wτ + wτ+δτ −

δτ 2

4
∇u(wτ , τ)u(wτ , τ)

)
(4.2c)

Kι =

[
I − δτ

2
∇u

(
wι, τ +

δτ

2

)]−1

(4.2d)

Mι = Kι

[
I +

δτ

2
∇u

(
wι, τ +

δτ

2

)]
. (4.2e)

The vector wι serves as an interpolation between wτ and wt+δτ for the state at time
τ + δτ/2, which is used to provide a more accurate approximation of the covariance matrix.
Mazzoni (2008) also provides the option of an adaptive time step to fix the numerical
precision while ensuring a computationally efficient algorithm. The step size is adjusted by
monitoring the error in the estimation of the state variable, aiming to maintain a specified
tolerance level γ > 0. Given the error vector E of the state approximation, the maximum
total-relative error is

γ̂ = max
i=1,...,n

∣∣∣E (i)
∣∣∣

∣∣∣w(i)
τ+δτ

∣∣∣+ 1
(4.2f)

where E (i) and w
(i)
τ+δτ denote the respective ith elements of E and wτ+δτ . The resulting

adjustment factor for the time step is

δτnew = βδτ

√
γ

γ̂
. (4.2g)

The factor β is a control parameter inserted to avoid frequent recalculations of the step
size and is specified prior. Mazzoni (2008) suggests setting β = 0.8. By again taking
advantage of the availability of the Jacobian ∇u, the error vector is approximated as

E ≈ δτ 2

2

[
1

3δt

(
∇u(wτ+δτ , τ + δτ)−∇u(wτ , τ)

)
− 1

6
∇u(wτ , τ)

2

]
u(wτ , τ) . (4.2h)

The set of equations (4.2) describe the Mazzoni algorithm with an adaptive step size.

4.2 Numerical validation & examples
This section will validate the theory presented in Sections 3.1 and 3.2, by considering
three example SDEs, each leading to a different form of the strong error bound (3.4).
For each example, we first demonstrate heuristically that the solution converges to the
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limiting distribution described by Theorem 3.2. We then verify the error bound in
Theorem 3.1 directly by considering a range of values for the noise scale ε and initial
condition uncertainty δr. In doing so, we demonstrate numerically that the form of the
bound on the linearisation error predicted by Theorem 3.1 is sharp, in the sense that
estimates of the error scale exactly with the initial uncertainty δr and ongoing uncertainty
ε as predicted.

All simulations in this section were generated using the Julia programming language
(Bezanson et al., 2017), with the implementations of numerical ODE and SDE solvers
provided by the DifferentialEquations.jl package (Rackauckas and Nie, 2017b). The code
is available at github.com/liamblake/explicit-characterisation-sde-linearisation.

4.2.1 Nonlinear dynamics, additive noise

Consider the following SDE in 1D;

dy
(ε)
t = sin

(
y
(ε)
t

)
dt+ ε dWt. (4.3)

The deterministic system corresponding to (4.3) has solution

F t
0(x0) = 2 arctan

(
e−t tan

(
x0

2

))
.

Further details of this example, including computation of the derivatives required in the
linearisation, are provided in the supplementary material.

To explore the impact of initial condition uncertainty, we consider the univariate
Gaussian initial condition y0 = x ∼ N

(
µ, ρ2

)
, where the mean µ is specified and the

standard deviation ρ is a non-negative scaling parameter. We linearise (4.3) about the
deterministic trajectory F t

0(µ) originating from the mean, that is, µ is the chosen reference
point. This ensures that for any r ≥ 0

δrr = E
[
|x− µ|r

]
= Mrρ

r. (4.4)

where Mr is as defined in (3.13). This property of the univariate Gaussian distribution
allows us to easily control the uncertainty in the initial condition and verify the bounds;
by sending the parameter ρ to zero we ensure that δr approaches zero also.

The linearised equation is then

dl
(ε)
t =

[
F t
0(µ) + cos

(
F t
0(µ)

) (
l
(ε)
t − F t

0(µ)
)]

dt+ ε dWt, l
(ε)
0 ∼ N

(
µ, ρ2

)
. (4.5)

and the solution follows a Gaussian distribution, specifically

l
(ε)
t ∼ N

(
F t
0(µ) , ρ

2∇F t
0(µ)

2 + ε2Σt
0(µ)

)
. (4.6)

https://github.com/liamblake/explicit-characterisation-sde-linearisation
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where Σt
0(µ) is computed by solving (3.9) numerically subject to a zero initial condition.

In this example, we take µ0 = 0.5 and consider the solutions of (4.3) and (4.5) at
time t = 1.5. We generate accurate samples of (4.3) and (4.5) jointly (i.e. using the same
numerical realisations of the Wiener process Wt) using the stochastic Runge-Kutta scheme
SRI (Rößler, 2010) with an adaptive step size (Rackauckas and Nie, 2017a).

In Figure 4.2, we show histograms of N = 10000 samples of the solution to nonlinear
SDE (4.3) and the corresponding probability density function of the linearised solution
(4.6), for different combinations of ε and ρ. Even when the ongoing noise is small, the
nonlinearity of the drift term means that a large initial uncertainty results in a non-Gaussian
distribution. However, in situations where both the initial and ongoing uncertainties are
small, the Gaussian solution to the linearised equation provides a reasonable approximation.
In the limit of both small initial (ρ → 0) and small ongoing (ε → 0) uncertainty (towards
the bottom right), we see that the distribution of the samples approach the Gaussian
density of the linearisation solution, matching the understanding that the linearisation
approximation is “reasonable” for small noise regimes.

Since the drift term is nonlinear and the noise is additive in (4.3), the bound predicted
by Theorem 3.1 has the form

E

[∥∥∥y(ε)t − l
(ε)
t

∥∥∥
r
]
≤ D1(r, t,K∇u, Kσ) ε

2r +M2rD2(r, t,K∇u) ρ
2r.

where we have taken K∇∇u = 1 and K∇σ = 0. To numerically validate this bound under
the Gaussian initial condition (4.4), define for r ≥ 1 the error measure

Er(ε, ρ) :=
1

N

N∑

i=1

∥∥∥ŷ(ε)i − l̂
(ε)
i

∥∥∥
r

, (4.7)

which is a Monte Carlo estimator of the right-hand side of (3.4), where ŷ
(ε)
1 , . . . , ŷ

(ε)
N and

l̂
(ε)
1 , . . . , l̂

(ε)
N are N numerical samples of the solutions to SDE (3.1) and the linearisation

(3.3) respectively.
We directly validate the form of the error bound (as a function of ε and ρ) in Figure 4.3,

by computing E1 using samples for each pair of ε and ρ values. In Figure 4.3a, we
demonstrate the relationship between E1 and the ongoing uncertainty ε for several different
fixed values of ρ, each corresponding to a different colour. A least squares estimate of a
line of best fit of the form E1 = β0 + β1ε

2, for fixed coefficients β0 and β1, is fitted to the
observed errors (in untransformed space) to verify the scaling of our bound in Theorem 3.1.
We see that the line of best fit accurately matches the observed values of E1, verifying that
E1 is in fact scaling with ε2 as predicted. Figure 4.3b provides a similar demonstration
between E1 and the initial uncertainty ρ, where now each colour corresponds to a different
fixed value of ε. We again fit lines of the form E1 = β0 + β1ρ

2 to verify the scaling of
the bound, and see that the lines match the observed values of E2. Thus, we have also
validated that E1 scales with ρ2, as expected from Theorem 3.1.
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Figure 4.2: Histograms of stochastic samples of (4.3), subject to the Gaussian initial
condition (4.4), for varying initial uncertainty scale ρ and ongoing uncertainty scale ε. The
distribution of the corresponding solution (4.6) to the linearised equation is overlaid in
black.
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parameter ρ. A (least squares) line of best fit of the form β0+β1ε
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(b) Estimates of the strong error (with r = 1) for varying initial uncertainty parameter ρ. Each
colour corresponds to a different value of the ongoing uncertainty parameter ε. A (least squares)
line of best fit of the form β0 + β1ρ

2 is included in the corresponding colour.

Figure 4.3: Validation of the theoretical bound predicted by Theorem 3.1, when r = 1, on
numerical realisations of the solution to the 1D example (4.3).
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4.2.2 Linear dynamics, multiplicative noise

Now consider the following SDE with multiplicative noise in 1D;

dy
(ε)
t =

1

2
y
(ε)
t dt+ ε cos

(
y
(ε)
t

)
dWt. (4.8)

The corresponding deterministic system is linear and has solution

F t
0(x0) = exp

(
t

2

)
x0, (4.9)

with additional details provided in the supplementary materials. As with the previous
example in Section 4.2.1, we take the Gaussian initial condition (4.4) with variance ρ2 and
linearised (4.8) about the initial mean µ. The linearised equation is then

dl
(ε)
t =

1

2
l
(ε)
t dt+ ε cos

(
exp

(
t

2

)
µ

)
dWt, l

(ε)
0 ∼ N

(
µ, ρ2

)
, (4.10)

with Gaussian solution (4.6). We take the initial point µ = 2 and consider the solutions at
time t = 1. To generate numerical realisations of the solutions to (4.8) and (4.10) with the
same realisations of Wt, we use the same set-up as in the previous example.

In Figure 4.4, we show histograms of N = 10000 samples of the multiplicative noise
SDE (4.8) and the corresponding probability density function of the linearised solution,
for different combinations of ε and ρ. We again see that in the limit of both small initial
and small ongoing uncertainty (towards the bottom right), we see that the distribution of
the samples approach the Gaussian density of the linearisation solution.

Since the drift term is linear and the noise multiplicative in (4.8), the bound predicted
by Theorem 3.1 has the form

E

[∥∥∥y(ε)t − l
(ε)
t

∥∥∥
r
]
≤ D1(r, t,K∇u, Kσ) ε

2r +MrD3(r, t,K∇u) ε
rρr,

where we have K∇∇u = 0 and K∇σ = 1. In Figure 4.5, we again validate the form of this
bound (for r = 1; results for additional values of r are provided in the supplementary
material) by approximating the left-hand side with E1 computed from realisations of the
solution to (4.8) and the linearisation (4.10). For each fixed value of the initial uncertainty
ρ, in Figure 4.5a, we fit a line of best fit of the form β1ε+ β2ε

2 to validate that the strong
error scales as predicted. Similarly, in Figure 4.5a we fit a line of best fit of the form
β0 + β1ρ and confirm that the linearisation error follows this scaling.

4.2.3 Fixed initial condition

In this example, we consider a 2-dimensional model and a fixed initial condition, to validate
the results presented in Section 3.1.3. Following the example in Chapter 5 of Samelson
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Figure 4.4: The same arrangement as Figure 4.2, but for the 1D multiplicative noise SDE
(4.8).
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(b) Estimates of the strong order (with r = 1) for varying initial uncertainty parameter ρ. Each
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Figure 4.5: Validation of the theoretical bound predicted by Theorem 3.1, when r = 1, on
numerical realisations of the solution to the 1D example (4.8).
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and Wiggins (2006), we consider an unsteady meandering jet in two dimensions, which
may serve as an idealised model of geophysical Rossby waves (Pierrehumbert, 1991). The
velocity field for y ≡ (y1, y2)

⊤
is given by

u(y, t) =

[
c− A sin(Ky1) cos(y2) + ϵmjl1 sin

(
k1 (y1 − c1t)

)
cos(l1y2)

AK cos(Ky1) sin(y2) + ϵmjk1 cos
(
k1 (y1 − c1t)

)
sin(l1y2)

]
. (4.11)

The velocity field describes a kinematic travelling wave with deterministic oscillatory
perturbations in a co-moving frame. Here, A is the amplitude and c is the phase speed
of the primary wave, and K is the wavenumber in the y1-direction. The oscillatory
perturbation has amplitude ϵmj, phase speed c1 (in the co-moving frame), and wavenumbers
k1 and l1 in the y1- and y2-directions respectively. Throughout, we take the parameter
values c = 0.5, A = 1, K = 4, l1 = 2, k1 = 1, c1 = π, and ϵmj = 0.3. For these values,
the flow consists of a meandering jet with vortex structures within the meanders, and a
chaotic zone which influences the fluid transfer between the jet and the vortices.

We introduce multiplicative noise by considering stochastic perturbations to the phase
speed c and the primary amplitude A, which we model with the respective components of

a 2-dimensional Wiener process Wt =
(
W

(1)
t ,W

(2)
t

)⊤
. Then, we specify the diffusion term

as

σ(y, t) =

[
1 sin(Ky1) cos(y2)
0 K cos(Ky1) sin(y2)

]
. (4.12)

We consider the fixed initial condition x0 = (0, 1) and the prediction of the model at
time t = 1. We then consider a linearisation of the SDE about the deterministic trajectory
F t
0(x0), where F t

0 is the deterministic flow map corresponding to the vector field (4.11).
To compute the Gaussian distribution (3.16) of the linearised solution, we again solve (3.9)
numerically with initial condition Σt

0(x0) = O. Specifically, (3.9) is solved jointly with the
deterministic state equation (3.2) using the hybrid method proposed by Mazzoni (2008).
This hybrid method combines a Taylor-Heun approximation with a Gauss-Legendre one
and ensures that the numerical solution of the covariance equation is symmetric and
positive semi-definite while maintaining both accuracy and computational efficiency.

Figure 4.6 shows the resulting simulations of y(ε)t for four different values of ε. The
realisations are binned as a histogram and bin counts are normalised, to provide an
empirical estimate of the probability density function of y

(ε)
t . Superimposed (in solid

black) are the first, second and third standard-deviation contours of the probability density
function of the Gaussian distribution that solves the linearised equation. The first three
standard-deviation levels of the 2× 2 sample covariance matrix of the realisations of y(ε)t ,
are also overlaid (in dashed blue). As ε decreases towards 0, the samples increasingly
resemble a Gaussian distribution, and both the mean and covariance coincide with the
corresponding limits.



4.2. Numerical validation & examples 67

0.4 0.6 0.8 1.0 1.2 1.4
y1

0.5

1.0

1.5

2.0

2.5

3.0

y 2

0 1 2 3 4 5 6

(a) ε = 10−1

0.85 0.90 0.95 1.00 1.05 1.10
y1

0.4

0.6

0.8

1.0

1.2

y 2

0 10 20 30 40 50 60 70

(b) ε = 10−1.5

0.96 0.98 1.00 1.02
y1

0.55

0.60

0.65

0.70

0.75

y 2

0 100 200 300 400 500 600

(c) ε = 10−2

0.988 0.990 0.992 0.994 0.996
y1

0.650

0.655

0.660

0.665

0.670

y 2

0 10000 20000 30000 40000 50000 60000 70000

(d) ε = 10−3

Figure 4.6: Histograms of y(ε)t from direct simulation of the SDE with drift (4.11) and
diffusivity (4.12) subject to the fixed initial condition, for four different ε values. Overlaid
in black are contours of the Gaussian solution (3.16) of the linearised SDE (3.3), which
correspond to the first three standard deviation levels centred at the mean F t

0(x). In
dashed blue are corresponding contours computed from the sample covariance matrix of
the realisations.
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Figure 4.7: Validation of Theorem 3.1, by plotting the sample rth raw moment distance
(the error metric Er(ε)) between 10000 realisations of the meandering jet SDE and a
corresponding linearisation, for decreasing values of ε. A line of best fit (in red) is placed
on each, and the resulting slope indicated.
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For a fixed initial condition, (3.4) predicts that the expected distance between the
original SDE solution and that of a linearisation satisfies

E

[∥∥∥y(ε)t − l
(ε)
t

∥∥∥
r
]
≤ (K∇∇u +K∇σ)D1(r, t,K∇u, Kσ) ε

2r.

To numerically estimate the left-hand side of (3.4), we again use a Monte Carlo estimator;

Er(ε) :=
1

N

N∑

i=1

∥∥∥ŷ(ε)i − l̂
(ε)
i

∥∥∥
r

.

For r = 1, 2, 3, 4, Er(ε) is shown (in a logarithmic scale) for decreasing values of ε in
Figure 4.7. Theorem 3.1 predicts that log10

(
Er(ε)

)
should decay linearly with a slope

greater than 2r as ε decreases to zero. The least squares lines of best fit for each value of
r in Figure 4.7 show this behaviour, and are therefore consistent with Theorem 3.1.

4.3 Computing stochastic sensitivity
In this section, we illustrate the computability of stochastic sensitivity as described in
Theorem 3.3. These computations are primarily demonstrative, so we keep the analysis of
the results to a minimum and instead refer the reader to the works of Balasuriya (2020b),
Fang, Balasuriya, et al. (2020), and Badza et al. (2023), where stochastic sensitivity has
been calculated and interpreted in context.

4.3.1 In 2-dimensions

We again consider the meandering jet (4.11) with multiplicative noise described by (4.12)
and take the same choice of parameters as in Section 4.2.3, except for the perturbation
amplitude ϵmj, which is varied to obtain qualitatively different behaviour in the system.
For each initial condition x0 in a 400× 400 uniform grid on [0, π]× [0, π], the S2 value is
calculated by first computing (by solving (4.1b)) the covariance matrix Σt

0(x0) of the fixed
initial condition linearisation and then taking the operator norm per (3.17). Figure 4.8
shows the resulting S2 field from time 0 to t = 1, for two different values of ϵmj. We also
extract robust sets from each field, by highlighting in cyan on the right side of Figure 4.8
those initial conditions with a stochastic sensitivity value less than the specified threshold
of 10. That is, cyan corresponds to the set

RS(10) =
{
x0 ∈ [0, π]× [0, π]

∣∣S2(x0, t) < 10
}
.

When ϵmj = 0.3 (Figure 4.8a), the S2 field is largest in the elongated gyre regions outside
of the meandering jet, where the flow exhibits chaotic behaviour (Pierrehumbert, 1991)
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Figure 4.8: (Left) The S2 field of the meandering jet flow (4.11) over the time interval
[0, 1], for two different sets of parameters with qualitatively different behaviour. (Right)
Robust sets RS(10) extracted from the stochastic sensitivity fields, by taking the initial
conditions with a stochastic sensitivity value about a threshold of 10.
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and we accordingly expect larger uncertainty due to the model dynamics. As a region of
small S2 value, the meandering jet emerges as a robust set, consisting of initial points
whose eventual fate is significantly more certain than in other regions. When ϵmj = 1.0
(Figure 4.8b), the deterministic flow is dominated by oscillatory perturbation, which further
increases the chaotic nature of the solving trajectories and the boundaries between the
gyres and the meandering jet are no longer distinguishable (Crocker, 2021). Rotational
eddies begin to dominate the flow and we see this reflected in the stochastic sensitivity
field in Figure 4.8b: the eddies exhibit a smaller stochastic sensitivity, as even under
stochasticity trajectories, are inclined to remain within them. The resulting robust sets
consequently also highlight these eddies.

4.3.2 In 3-dimensions

In Definition 3.1, we have provided a new definition for stochastic sensitivity in arbitrary
dimensions, whereas previously, the definition and computation (Balasuriya, 2020b) were
limited to only two. This is the second main contribution of this thesis and so we shall
demonstrate this extension on an example toy model in 3-dimensions. Consider the
Gromeka-Arnold-Beltrami-Childress flow (Dombre et al., 1986):

u(y) =



A sin(y3) + C cos(y2)
B sin(y1) + A cos(y3)
C sin(y2) +B cos(y1)


 , (4.13)

where A,B,C > 0 are constants and y ≡ (y1, y2, y3)
⊤
. The flow arises as an exact solution

to Euler’s equation and is often used as a testbed for Lagrangian analysis in 3-dimensions
(Haller, 2001; Brunton and Rowley, 2010; Sulman et al., 2013; Nelson and Jacobs, 2016,
e.g.). We take the parameter values A =

√
3, B =

√
2, and C = 1, for which the flow is

spatially periodic in the cube [0, 2π]× [0, 2π]× [0, 2π]. The flow then comprises a network
of vortex structures and homoclinic orbits that cause distinct regions of ‘order’ and chaos
to emerge (Dombre et al., 1986).

To introduce 3-dimensional noise to the system, we set σ = I, the 3 × 3 identity
matrix, and compute stochastic sensitivity for a 200× 200× 200 grid of initial conditions
within the cube [0, 2π] × [0, 2π] × [0, 2π]. As with the 2-dimensional example, for each
initial condition, we compute the 3 × 3 covariance matrix using the Mazzoni method.
The stochastic sensitivity value is then computed by taking the operator norm of this
covariance matrix. To visualise the three-dimensional structure of the field, in Figure 4.10
we plot the stochastic sensitivity field on slices of the cube [0, 2π]× [0, 2π]× [0, 2π] in the
arrangement given in Figure 4.9.

The stochastic sensitivity field highlights the 3-dimensional structure of the vortices—
compare Figure 4.10 to the Poincarè sections in Figure 7 of Dombre et al. (1986), which
show the structure of the vortices because of the deterministic dynamics. Smaller stochastic
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Figure 4.9: The arrangement of figures in Figure 4.10.

sensitivity values distinguish the interiors of most vortices, suggesting that even under
small stochasticity, these structures remain coherent. This matches conclusions from the
deterministic flow, where there interiors of the vortices are ‘ordered’ rather than chaotic;
the stochastic sensitivity field provides a similar qualitative insight. The boundaries of
these vortices are also highlighted by sharp ridges of large stochastic sensitivity values.
These narrow ridge-like structures correspond to the unstable manifolds within the flow
(Dombre et al., 1986); the repelling nature of these regions results in a ‘larger’ stochasticity.
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Chapter 5

A Gaussian mixture model

In Chapter 3, we described and justified a framework for computing approximations to
the solutions of nonlinear SDEs via linearisations about solutions to the corresponding
deterministic system. A key advantage of this approximation is the efficiency of computa-
tion; rather than having to generate a large number of realisations of the SDE solution
we can solve a smaller system of differential equations to obtain the first two moments.
When the initial condition is fixed or Gaussian, the resulting linearisation solution is a
Gaussian process, providing an approximation characterised entirely by these two moments
and an analytically available probability density function. A Gaussian approximation
has further practical advantages, leading to its use across many different applications
(Archambeau et al., 2007; Jazwinski, 2014; Sanz-Alonso and Stuart, 2017; Särkkä and
Solin, 2019; Kaszás and Haller, 2020). For example, even in inference requiring Monte
Carlo simulations, a Gaussian distribution with a specified mean and covariance is faster
to sample from than generating numerical solutions of the nonlinear SDE.

Recall that we are interested in approximating the solution at a time t to the nonlinear
stochastic differential equation

dyt = u(yt, t) dt+ εσ(yt, t) dWt, (5.1)

subject to some random initial condition ys = x, by using linearisations about solutions of
the corresponding deterministic system

dF t
s(x0)

dt
= u

(
F t
s(x0) , t

)
, F s

s (x0) = x0. (5.2)

The behaviour of the solution (5.1) over the time interval [s, t] for small ε can be approxi-
mated by the linearised SDE

dlt =
(
u
(
F t
s(x) , t

)
+∇u

(
F t
s(x) , t

) [
lt − F t

s(x)
])

dt+ εσ
(
F t
s(x) , t

)
dWt, (5.3)

subject to the initial condition ls = x. Chapter 3 considered the evolution of (5.1) over
a time interval [0, t] and subject to some initial condition at time 0. However, by using

75
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a simple time shift our theory can be applied to any finite time interval [s, t], where the
solution is specified at time s instead of 0, without loss of generality. Note that we have
now also dropped the dependence of ε in the notation yt and lt, as ε is now treated as a
fixed value specified as part of the model. Suppose that the random initial condition x
follows a Gaussian distribution with mean xs and a specified covariance matrix Σs. This
also permits the initial condition to be fixed as xs: we then set Σs = O, the n× n zero
matrix, and follow the convention that the resulting zero-variance Gaussian is a Dirac
delta centred at the mean xs. We will focus our attention on this case for the remainder
of this thesis, having already provided a general framework in Chapter 3 for other initial
conditions. By taking the mean xs as the initial condition to (5.2), we ensure that the
initial uncertainty (measured by the Lr-norm as in Chapter 3) scales with the trace of Σs

(recall (3.13)). The solution to (5.3) is then a Gaussian process characterised by the mean
F t
s(x0) and covariance matrix V[lt], for which explicit expressions are given in Corollary 3.1.

To recall the notation used in Section 4.1, set wt ≡ F t
s(xs) and Πt ≡ V[lt]. When the

Jacobian ∇u of the vector field u is available or can be approximated appropriately, the
moments of the Gaussian solution can be obtained by the system of ordinary differential
equations

dwt

dt
= u(wt, t) , ws = x0 (5.4a)

dΠt

dt
= ∇u(wt, t)Πt +Πt

[
∇u (wt, t)

]⊤
+ σ (wt, t)σ (wt, t)

⊤
, Πs = Σs. (5.4b)

In practice, (5.4) must be solved numerically, but can be more computationally efficient
than the alternative of generating many realisations of (5.1). Thus, we can efficiently
compute a Gaussian approximation N (wt,Σt) to the solution to the nonlinear SDE (5.1)
at time t by solving (5.4) only. The Mazzoni (2008) method, outlined in Section 4.1,
provides a computationally efficient algorithm for solving (5.4) jointly.

Despite the computational appeal, this Gaussian approximation is only ‘reasonable’
in the limit of small initial and ongoing uncertainty, which we quantified precisely with
the bound in Theorem 3.1, and demonstrated heuristically with examples in Figures 4.2,
4.4 and 4.6. In practice, the scale of the noise is an inherent part of a model and
there is no guarantee that it is sufficiently small for this Gaussian approximation to be
reasonable. When the noise scale is larger, we see non-Gaussianity emerge—the numerical
solutions in Figures 4.2, 4.4 and 4.6 exhibit skewness, bi-modality, and other departures
from Gaussianity. Non-Gaussianity is also often observed in statistical measurements
in practice, such as in atmospheric regimes (Sura et al., 2005), experimental fluid flows
(del-Castillo-Negrete, 1998), and oceanic flows (Bracco et al., 2000). Although the Gaussian
approximation can still provide qualitative insight into the behaviour of these solutions
(see stochastic sensitivity, for instance), to produce a reasonable approximation we need a
method that can capture these departures from Gaussianity.

To further illustrate this point, we consider another example of a 1-dimensional
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Figure 5.1: The probability density function (5.8) of the solution x5 (in black) to the Beneš
SDE (5.5), with fixed initial condition x0 = 1/2. The density function of the Gaussian
solution to the corresponding linearisation is overlaid in dashed red.

stochastic differential equation. The Beneš SDE (Särkkä and Solin, 2019) is

dxt = tanh(xt) dt+ dWt. (5.5)

We are implicitly taking ε = 1, which is a larger noise scale than we typically expect
to apply our results to. However, this example is purely demonstrative to highlight a
limitation of Gaussian approximations and show the potential of the algorithm we are
about to propose; later examples will involve smaller values of ε. The deterministic system
corresponding to (5.5) is

dF t
s(x)

dt
= tanh

(
F t
s(x)

)
, F s

s (x) = x, (5.6)

which includes an unstable fixed point at 0. The solution to (5.6) over the time interval
(s, t) is

F t
s(x) = arcsinh

(
et−s sinh(x)

)
. (5.7)

The probability density function of the weak solution to (5.5) can be derived using an
appropriate change of measure with Girsanov’s theorem (see Section 7.3 of Särkkä and
Solin (2019)). The solution xt at time t has the probability density function

p(x, t) =
1√
2πt

cosh(x)

cosh(x0)
exp

[
− t

2
− 1

2t
(x− x0)

2

]
, (5.8)
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where x0 is the fixed initial condition. In this example, we consider the solution to (5.5)
subject to the fixed initial condition x0 = 1/2 and at time t = 5 and plot the resulting
PDF of the solution (5.8) in black in Figure 5.1. The density is not symmetric with two
distinct modes that result from the unstable fixed point of (5.6) at x = 0. Many stochastic
trajectories are driven away from zero, resulting in the predominant mode centred at
x = 11/2. However, when the stochastic perturbations force a trajectory through the
fixed point and into negative values, they are pushed further in the negative direction,
leading to the second mode at x = −9/2. Nonetheless, we can linearise (5.5) about the
deterministic trajectory F t

0

(
1/2
)

solving (5.6) to obtain a Gaussian approximation. In
general, if we linearise (5.5) over the time interval [s, t] about the trajectory F t

s(xs), we
are considering the equation

dlt =
(
tanh

(
F t
s(xs)

)
+ arcsech

(
F t
0(xs)

) [
lt − F t

s(xs)
])

dt+ dWt,

where the deterministic flow map F t
s given by (5.7). Since the deterministic flow map is

available analytically in (5.7), we can determine the variance of the solution to the linearised
SDE exactly by evaluating (3.8). The solution to (5.5) at time t is then approximated by
the Gaussian distribution

lt ∼ N
(
arcsinh

(
et−s sinh(xs)

)
,
2 sinh2(xs) t+ e2t−2s − 1

2 sinh2(xs) + 2e−2s−2t

)
.

Returning to our specific example (x0 = 1/2, s = 0, and t = 5), we plot the density of
the Gaussian approximation l5 in dashed red in Figure 5.1. The Gaussian approximation
cannot capture the bimodality of the true solution, and so only a single mode is captured.
This is a significant limitation of using a single linearisation approximation.

To improve upon the single linearisation approximation, we seek a scheme that can
capture departures from Gaussianity in the SDE solution, while still taking advantage of
the efficient computation of the linearisation solution. An alternative perspective is that
the linearised SDE captures the behaviour of stochastic fluctuations close to a deterministic
trajectory, in a similar sense to how a Taylor polynomial captures the local behaviour of
a nonlinear function. By ‘piecing’ together several of these approximations together we
can capture the stochastic behaviour in different regions of the state space. A Gaussian
mixture model (GMM) provides a framework for combining multiple Gaussian densities
into a single distribution and is thus the obvious choice for constructing non-Gaussian
densities out of our Gaussian approximations. In this chapter, we outline an algorithm
that uses multiple linearisation approximations to construct a Gaussian mixture model
that approximates the nonlinear SDE solution.

In general, a Gaussian mixture model with K components is a probability density
function of the form

p(z) =
K∑

k=1

ωkN
(
z; µ(k),Σ(k)

)
,
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(a) Skewness (b) Bimodality

Figure 5.2: The probability density functions of two Gaussian mixture models in 1-
dimension both using two equally weighted components. When individual components
(dashed) are combined to produce non-Gaussian mixture densities (solid), they can exhibit
both (a) skewness and (b) bimodality.

consisting of K Gaussian components N
(
µ(k),Σ(k)

)
with respective weights ω1, . . . , ωK ≥ 0

that satisfy
∑K

k=1 ωk = 1. With sufficient components, a Gaussian mixture model can
recreate any probability distribution in Rn while having many of the properties that
make Gaussian distributions appealing in practice (McLachlan et al., 2019). Figure 5.2
shows two examples of Gaussian mixture models in 1-dimension, where departures from
Gaussianity such as multimodality and skewness can be captured with an appropriate
combination of components.

5.1 The GMM algorithm
We will now outline our algorithm to approximate the SDE solution with a Gaussian
mixture model while taking advantage of the computational efficiency of the Gaussian
linearisation approximation. Given a Gaussian component at a time s, we can ‘propagate’
the component forward to a later time t by solving (5.4) initialised with the component
mean and covariance matrix. Given a mixture model with multiple Gaussian components,
we can propagate each component separately to update the full model through time in
a computationally efficient manner. Each component is propagated by approximating
the original SDE (5.1) with a different linearisation, about the deterministic trajectory
resulting from the component mean.

Our proposed method is ad hoc and based on an intuition: the Gaussian solution
provides a reasonable approximation for the local behaviour of the true SDE solution over
a short timeframe, but once this is no longer the case, we can capture departures from
Gaussianity by introducing more components in the mixture model. We expect heuristically
that as the number of components increases, the full mixture model should provide a closer
approximation of the SDE solution density, provided that the components are appropriately
placed. However, our goal is to provide a numerically efficient algorithm, so we wish
to minimise the number of components and use the Gaussian approximation wherever
possible. We therefore propose propagating Gaussian components forward through the
linearisation model until are no longer reasonable approximations of the local solution
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behaviour. Then, we replace the violating component with several smaller judiciously
chosen components and propagate each new component individually. We term this the
splitting step, where a Gaussian component is split into several smaller ones. The new
components should be chosen in such a way as to ‘preserve’ the original component, which
can be achieved in one sense as follows. Let Ξ follow a Gaussian mixture density with N
components, with respective weights w(1), . . . , w(N), means µ(1), . . . , µ(N), and covariance
matrices Σ(1), . . . ,Σ(N). The variance of the mixture model is then

V[Ξ] =
N∑

i=1

w(i)Σ(i) +
N∑

i=1

w(i)
(
µ(i) − µ̄

)(
µ(i) − µ̄

)⊤

= Mean of covariances + Covariance of means,

where µ̄ = E[Ξ] =
∑N

i=1w
(i)µ(i) is the overall mean. This decomposition suggests, at least

heuristically, that we can include additional uncertainty (in the form of contributions to the
overall variance) within the component means themselves. By replacing a single component
with points, we can preserve the mean and covariance of the component while introducing
additional components that can closely match the non-Gaussian target distribution. This
leads to the following condition: the K splitting points (the new component means)
x(1), . . . , x(K) that replace x should be chosen so that

K∑

i=1

ŵkx
(k) = x,

K∑

i=1

ŵk

(
x(k) − x

)(
x(k) − x

)⊤
= Σ0. (5.9)

with weights ŵ1, . . . , ŵK > 0 satisfying
∑K

k=1 ŵk = 1. Each new component is assigned a
zero variance in this formulation, but with an appropriate adjustment of (5.9) each can have
a specified variance. This ensures that the mean and covariance of the original Gaussian
are preserved within the (sample) mean and covariance of the new points themselves.
Note that at least K = n+ 1 points are necessary for (5.9) to be satisfied. The selection
of splitting points is similar to the notion of ‘sigma points’, employed in the unscented
transform to encode an initial mean and covariance (Uhlmann, 1995; Julier et al., 2000).
Any such sigma points satisfy (5.9)—Table I in Menegaz et al. (2015) provides a list of
sigma points and their weightings used across other literature (and reviewed in the context
of Kalman filtering)—and therefore can be used in our algorithm.

The canonical set of sigma points originally proposed by Uhlmann (1995), which we
use to apply the GMM algorithm in Chapter 6, are

x(1) = x, (5.10a)

x(1+i) = x+

√
n+

1

2

[√
Σ
]
·i
, (5.10b)

x(1+n+i) = x−
√

n+
1

2

[√
Σ
]
·i
, (5.10c)
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Σ0x = x(1)

x(2)

x(3)

x(4)

x(5)

Figure 5.3: The splitting of a 2-dimensional mean x and 2× 2 covariance matrix Σ (in
black) into 5 sigma points x(1), . . . , x(5) (in blue), using the canonical set (5.10). The mean
x is preserved as one of the points, and the four others are placed at the vertices and
co-vertices of the first standard deviation ellipse of Σ.

for i = 1, . . . , n, where
√
Σ denotes the symmetric square root of Σ, and

[√
Σ
]
·i

denotes

the ith column of
√
Σ. The points are uniformly weighted, i.e. ŵk = 1/(2n+1). Figure 5.3

depicts the splitting of a mean and covariance matrix pair into 5 sigma points in 2-
dimensions, using the canonical set (5.10). By perturbing the mean by the columns of
the square root of the covariance matrix, the sigma points are placed at the vertices of
the ellipse representing the matrix. However, we do not enforce a particular approach for
selecting these points and leave this to be investigated further as future work.

The two critical steps of the algorithm are when to split, a criterion that should decide
when the Gaussian approximation is no longer a reasonable representation of the nearby
solution behaviour, and how to split, with the appropriate method that ensures the new
components satisfy (5.9). We do not provide specific choices for either step and save a
thorough investigation for future work. In Section 5.2, we do however include a brief
discussion of some options for the splitting criterion.

The mixture model algorithm is as follows:

1. Initialise a Gaussian mixture model with N components, setting x(1), . . . , x(N) to
be the component means, Σ(1), . . . ,Σ(N) to be the component covariance matrices,
and w(1), . . . , w(N) to be the component weights. For a fixed initial condition x0, set
N = 1, x(1) = x0, Σ(1) = O and ω(1). Otherwise, the components and weights are
represent the random initial distribution. Set τ (1) = · · · = τ (N).

2. While τ (i) < t for any i = 1, . . . , N , iterate the following;

(a) Set j to be any i for which τ (i) < T .
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(b) Update x(j) and Σ(j) by solving the joint system (5.4) with initial state x(j) and
covariance Σ(j), terminating when a split condition is met or the final time T is
reached. Set τ (j) to the time at which this solution terminates.

(c) If τ (j) = t, then complete this branch of the algorithm.

(d) Otherwise, if τ (j) < t, construct K points x̂(1), . . . , x̂(K) with corresponding
weights ŵ(1), . . . , ŵ(K) that preserve the propagated mean and covariance (i.e.
satisfying (5.9)). Set x(j) = x̂(1) and Σ(j) = O, and for each k = 2, . . . , K:

Σ(N+k−1) = O

w(N+k−1) = ŵ(k)w(j)

τ (N+k−1) = τ (j).

Update the weight of the first sigma point as w(j) = ŵ(1)w(j), and set N =
N +K − 1.

3. Construct the final mixture model with density function

G(x) =
N∑

i=1

w(i)N
(
x; x(i),Σ(i)

)
.

Figure 5.4 provides a pictorial representation of the propagation and splitting of a
single component in the mixture model. The algorithm is fully deterministic, up to the
choices for criterion and splitting, and since each component evolves and is monitored
independently of the others can be implemented in parallel. Thus, the algorithm would
present a significant computational improvement over bulk stochastic simulation.

There are several options for initialising the mixture model, depending on the initial
condition at time 0. For a fixed initial condition, we can take the degenerate mixture
model with a single component and zero variance; this implementation is summarised with
an algorithm flow chart in Figure 5.5, which also describes the main propagation-splitting
loop (indicated by red). If the initial condition is Gaussian, this can be used as a single
component mixture model and propagated forward with (5.4) by including the initial
covariance matrix as the initial condition to (5.4b). For a non-Gaussian initial condition,
if this distribution can be represented, at least approximately, with a Gaussian mixture
model, then this can be used immediately in the algorithm. The components and weights
of the initial condition are updated in Step 2 of the algorithm.

The number of components in the final mixture is determined by the splitting procedure
and in general may not be known in advance. This may lead to computational difficulties:
many splits can result in an unbounded increase in the number of components. Each
component requires the computation of a mean and covariance matrix to propagate forward
in time, and so it would be ideal to keep the number of components low. One can easily
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x

Σ
wt

Σ

Πt

(a) The mean x and covariance matrix Σ of the component is propagated forward by solving (5.4)
to obtain wt and Πt respectively.

x

(b) Once the splitting criterion is met, the mapped component is split into K new components
with corresponding means (in blue) satisfying (5.9).

x

(c) Each new component is propagated forward with (5.4) and the process is repeated for each
component individually until the final time is reached.

Figure 5.4: The propagation and splitting of a component in the Gaussian mixture model
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Start
Given x0, t

Initialise
Set K = 1

Set x(1) = x0

Set Σ(1) = O
Set w(1) = 1
Set τ (1) = 0

Any i for
which τ (i) < t?

Propagate
Update x(i),Σ(i) by solving
(5.4) from time τ (i) until
time t or the splitting
criterion is reached.

Set τ (i) to the propagated time

τ (i) = t?

Split
Use the splitting method (i.e. (5.9))
to set x(i) and x(N+1), . . . , x(N+K−1)

and the corresponding weights w(i)

and w(N+1), . . . w(N+K−1).
Set Σ(N+1) = · · · = Σ(N+K−1) = Σ(i)

Set τ (N+1) = · · · = τ (N+K−1) = τ (i)

Set N = N +K − 1

Stop

yes

no

yes

no

Figure 5.5: An algorithm flow chart of one particular implementation of the Gaussian
mixture model with a certain initial condition. The main propagation-splitting loop is
highlighted by the outlined area.
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Figure 5.6: The mixture model algorithm implemented on the Beneš SDE (5.5) with
fixed initial condition x0 = 0.5 and over the time interval (0, 5). The probability density
function of the true solution is shown in solid black and the corresponding linearisation
solution in dashed red (as in Figure 5.1). The Gaussian mixture model density is overlaid
in blue, constructed using a single split into three canonical sigma points (using (5.10)) at
time τ = 0.8).

enforce an upper limit on the number of components, by preventing any further splitting
once this threshold is reached.

As a simple example, we apply the algorithm to the Beneš SDE (5.5), subject again
to the initial condition x0 = 1/2 and considered at the final time of t = 5. Recall from
(5.8) and Figure 5.1 that the true solution has a bimodal density, which the Gaussian
distribution resulting from a single linearisation is unable to capture. We implement the
Gaussian mixture model with a single split, manually chosen to be at time t = 0.8, with the
resulting mixture density shown in Figure 5.6. The algorithm is initialised with x(1) = 1/2,
Σ(1) = 0 and w(1). After propagating the initial condition by solving (4.1) to the splitting
time t = 0.8, we use the canonical sigma points ((5.10)) to replace the Gaussian density
with three points x(1), x(2), x(3), preserving the mean and covariance. We then propagate
these three points forward separately, in that for each one we take the deterministic
trajectory F 5

0.8

(
x(i)
)

and compute the solution to the SDE (5.5) linearised about this
trajectory. The result is three Gaussian distributions at t = 5, which we then combine
as an equally weighted sum to produce a Gaussian mixture model approximating the
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SDE solution. In Figure 5.6, we compare the probability density function of the resulting
Gaussian mixture model to the true solution density and the Gaussian approximation
from a single linearisation. Importantly, the mixture model density includes two modes
that resemble those of the true solution, which is an important feature of the solution that
was not captured by the single linearisation. Further configuration of the algorithm may
result in a better fit; this was a simple and contrived example implemented to demonstrate
the potential of the mixture model algorithm in overcoming the limitations of a single
Gaussian approximation. Computing the mixture model only required the propagation of
6 values—the three means and covariance values—by solving the pair (5.4) of differential
equations three times. We can capture the bimodality, an important feature of the solution,
with only a small number of calculations. This would be particularly advantageous in a
situation where the true solution is not analytically available (as in a majority of practical
scenarios) and we would have to otherwise rely on bulk simulation to observe these features.

5.2 The splitting criterion
In the implementation of our algorithm on the Beneš SDE, we manually chose a single split
time. However, in general, the algorithm requires a choice of criterion for when to split a
Gaussian component, for which there are several choices. A given Gaussian component
should be split when the linearised SDE is no longer a reasonable approximation for the
original SDE about the deterministic trajectory corresponding to the component. This
requires an ongoing evaluation of the error in using the approximation. Some possibilities
include:

• Alongside the propagation of the mixture model, one can also compute a small
number of stochastic samples that solve the original SDE (5.1). These stochastic
samples can be compared to the ongoing Gaussian evolutions, for instance using a
probabilistic distance measure. However, this would increase the computational load
of the algorithm and may require many samples to accurately quantify departures
from Gaussianity. The Gaussian mixture model does provide an analytic probability
density function that can lend itself to further inference, as opposed to solely stochas-
tic samples that require an additional step to compute a density function. There
may be a trade-off between the number of samples and the desired computational
efficiency.

• A diagnostic based purely on the deterministic model will be computationally
efficient, not requiring any stochastic simulation. Stochastic sensitivity (introduced
by Balasuriya (2020b) and extended in Section 3.2) is a scalar value that is computed
directly from the covariance matrix of the Gaussian approximation and quantifies
the magnitude and direction of maximum uncertainty. In highly nonlinear systems,
stochastic sensitivity may provide a measure for evaluating non-Gaussianity. This can
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be computed from each Gaussian component with minimal additional computational
cost, by simply taking the operator norm of the component covariance matrix.
However, in regions of linearity and non-multiplicative noise, the solution to the
SDE can be Gaussian, but stochastic sensitivity, being the magnitude of the noise,
can increase. A large value of stochastic sensitivity needs to imply non-Gaussianity
in these cases.

• DeMars et al. (2013) propose an algorithm for propagating an initial uncertainty
through a nonlinear time-varying mapping, by using a Gaussian mixture model
and a similar splitting algorithm. The principle is similar to ours; the uncertainty
is propagated forward using a linearisation of the model until this is no longer a
reasonable approximation. A split occurs when nonlinearity in the mapping, which
would result in non-Gaussianity, is detected via an entropy-based measure. This
measure uses the sigma point method to evaluate the mapping of a covariance
matrix, which is compared to the ongoing propagation of a Gaussian component.
The sigma point method provides an exact computation for the covariance matrix of
a deterministic nonlinear transformation of a random variable, provided that the
transformation can be evaluated exactly. In our case, however, there is ongoing
uncertainty from the multiplicative noise and the SDE cannot be solved exactly, so
we cannot evaluate the mapping required for the sigma point method. Nonetheless,
this previous work may suggest a direction for further tuning the implementation of
our method, including the selection of points when splitting a component.

We leave further development of this step of the algorithm for future work.
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Chapter 6

An application: drifter in the Gulf
Stream

We now apply the theoretical developments of Chapter 3 and the mixture model algorithm
of Chapter 5 to a data-driven model. Using altimetry-derived velocity data, we model
the motion of a drifter on the surface of the Gulf Stream, a climatically important part
of the North Atlantic Ocean. We construct a pair of 2-dimensional models: an ordinary
differential equation treating the measurements as known exactly and an ‘improved’
stochastic differential equation that accounts for measurement error and unresolved effects.
Our tools then provide both qualitative and quantitative insight into the behaviour of the
stochastic model and, consequently, the impact of uncertainty on the predictions of the
deterministic one.

6.1 The Hellinger distance

Before moving on to the example, we first provide a measure that quantitatively evaluates
the performance of the Gaussian approximation and our mixture model as estimators of
SDE solutions. We will use the Hellinger distance, which measures the distance between
probability distributions. For two continuous probability distributions in Rn with respective
probability density functions p and q, the Hellinger distance between the two is (Le Cam
and Lo Yang, 2000)

DH(p, q) =

√
1

2

∫

Rn

(√
p(x)−

√
q(x)

)2
dx =

√
1−

∫

Rn

√
p(x)q(x) dx. (6.1)

We previously discussed (in Section 3.1.1) the Kullback-Leibler divergence—Sanz-Alonso
and Stuart (2017) used this measure to quantify the performance of Gaussian approxima-
tions to SDE solutions—but opt now to use the Hellinger distance. There are attractive

89
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properties of the Hellinger distance: the Hellinger distance is a metric on the space of
probability measures and always takes values in the interval [0, 1], unlike the KL-divergence,
which is not a formal metric and can become infinite.

We cannot solve the stochastic model analytically, so we will use stochastic samples as
our ground ‘truth‘, obtained by numerically solving the SDE. That is, without access to
the true solutions to our model, we instead take many stochastic samples and compare our
methods to those. This fits in with the philosophy of our approach; stochastic sampling
is the standard in practical settings, and we seek approximations that give the same
conclusions without the computational expense.

However, using stochastic samples presents a complication when using the Hellinger
distance: the calculation of (6.1) requires evaluating the probability density function from
which these realisations were sampled. This would require a choice for how to approximate
the density function and then compute the integral in (6.1). One option is to construct a
kernel density estimator, where a certain known distribution (usually a Gaussian with a
small variance) is placed at each realisation and then combined into a mixture density
(Silverman, 2017). To avoid the need to make such a choice here, we will instead use
an empirical estimator that approximates (6.1) only using samples and without having
to evaluate either probability density function directly. Although we will compare the
numerical realisations to analytically available probability density functions (from either a
single Gaussian approximation of the mixture model algorithm), we will generate samples
from both distributions to use a purely empirical estimator. We will employ the empirical
estimator recently proposed by Ding and Mullhaupt (2023), which extends a similar
estimator for the KL-divergence by Perez-Cruz (2008). Let {x̂1, . . . , x̂N} and {ŷ1, . . . , ŷN}
denote the two sets of N realisations sampled from the probability density functions p
and q respectively. The estimator is first computed as

Ĥ2
a(p, q) = 1−

√
N − 1 Γ(k)2

N3/2 Γ
(
k − 1

2

)
Γ
(
k + 1

2

)
N∑

i=1

rk(xi)
n/2

sk(x̂i)
n/2

, (6.2)

where Γ denotes the Gamma function, and rk(x̂i) and sk(x̂i) denote the Euclidean distance
to the kth nearest neighbour of x̂i in {x̂1, . . . , x̂N} \ {x̂i} and {ŷ1, . . . , ŷN} respectively.
The pre-specified parameter k is the number of neighbouring points used to construct a
k-nearest-neighbour density estimate as an intermediate step in the calculation. We set
k = 5 throughout to ensure a reasonable computation time. This provides a consistent
(in the sense of almost sure convergence as N → ∞) statistical estimator of the squared
Hellinger distance (Ding and Mullhaupt, 2023). However, (6.2) is not symmetric in p
and q, i.e. Ĥ2

a(p, q) ̸= Ĥ2
a(q, p) with the asymmetry arising in the distances rk and sk. In

practice, one direction can provide a more accurate estimator depending on the underlying
distributions. To ensure symmetry in the final estimate and find a ‘middle ground‘ between
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the two asymmetric estimators, Ding and Mullhaupt (2023) propose taking the average:

Ĥ(p, q) =

√
Ĥ2

a(p, q) + Ĥ2
a(q, p)

2
, (6.3)

which still exhibits the same convergence properties as Ĥa. Note that this estimator
is random, as it relies upon samples from both densities. We therefore take multiple
realisations of Ĥ, each using a new set of samples, and use the average to reduce the
variance in the estimator.

6.2 Model setup

The Gulf Stream is a warm water current that originates in the Gulf of Mexico, travels
through the North Atlantic Ocean, and plays a vital role in the climate patterns of the
Northern and Western hemispheres (Palter, 2015). The stream itself consists of a rapidly
moving jet which varies dramatically with time, and small eddies of warm and cold water
that are formed and shed from the stream (Kang and Curchitser, 2013). The Gulf Stream
is a well-studied region of the ocean, due to this climatic importance and the interesting
dynamical behaviour exhibited by the flow.

Consider tracking the longitudinal and latitudinal position of a drifter moving on the
surface of the ocean. We first construct an ordinary differential equation for the time
evolution of the drifter position from geostrophic velocity data inferred from altimetry (sea
surface height) observations by satellite. The dataset is supplied by the E.U. Copernicus
Marine Service (CMEMS) (2020) and has been processed by the Data Unification and
Altimeter Combination System (DUACS). The sea surface height is proportional to the
streamfunction of the surface flow, provided that the flow is treated as 2-dimensional,
with a constant of proportionality that varies with latitude (Park, 2004; Doglioni et al.,
2021). This enables approximation of the zonal (eastwards) and meridional (northwards)
geostrophic velocities, which are originally given in metres per second. These measurements
are taken hourly and available on a 0.25◦ × 0.25◦ spatial grid. We convert the measured
velocities to degrees per day via the following transformation: at longitude λ and latitude
ϕ (both in degrees), the components um and vm in metres per second are transformed as
(Capderou, 2014)

u(λ, ϕ, t) =
1−

(
2f − f 2

)2

a

(
1−

(
2f − f 2

)2
sin2(ϕ)

)3/2
um(λ, ϕ, t) (6.4a)

v(λ, ϕ, t) =
1

a cos(ϕ)

(
1−

(
2f − f 2

)2
sin2(ϕ)

)1/2
vm(λ, ϕ, t) , (6.4b)

where a is the semi-major axis and f is the flattening of an ellipsoid model of the Earth.
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Figure 6.1: Several trajectories (in heavy black) that solve (6.5) and describe the motion
of drifters on the surface of the Gulf Stream. Each trajectory is initialised at a coloured
point at t = 0 (midnight 01/01/2020), and evolved by numerically solving (6.5) up to
midnight t = 7 (midnight 08/01/2020). Instantaneous streamlines at the final time t = 7
are displayed in grey.

We use the World Geodesic System 84, which gives the values (Capderou, 2014)

a = 6378137m, f = 1/(298.257223563).

Although the dataset provides global coverage, we focus our attention on longitudes
between −66◦E and −52◦E and latitudes between 34◦N and 46◦N, and measurements
starting from midnight 01/01/2020. We use a larger spatial subset for calculations, however,
to prevent issues at the boundaries of the spatial domain. There is a region of land—a
small part of the southeast coast of Canada—in the dataset, where velocity data is missing.
We set the velocity to zero in this region, as we know from physical considerations that
the drifter could not travel on land, and all the following figures indicate this region with
black.

The velocity data is Eulerian and unsteady (varying with time), so to predict the
position of a drifter we must solve for a Lagrangian trajectory. This requires interpolating
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(b) Meridional component

Figure 6.2: The mapping error in the (a) zonal (longitudinal) and (b) meridional (latitudi-
nal) velocity components at midnight 01/01/2020 (t = 0).

the velocity data between the spatial and temporal gridpoints, for which we use a linear
interpolate. Let

xt =
(
x
(lon)
t , x

(lat)
t

)⊤

denote the longitudinal (in degrees east) and latitudinal (in degrees north) position of
the drifter t days after midnight 01/01/2020. The deterministic model for xt, constructed
purely from the interpolated velocity data, is

d

dt

[
x
(lon)
t

x
(lat)
t

]
=



ũ
(
x
(lon)
t , x

(lat)
t , t

)

ṽ
(
x
(lon)
t , x

(lat)
t , t

)


 , (6.5)

where ũ and ṽ are the interpolated zonal and meridional velocities respectively. Figure 6.1
shows some example trajectories that solve (6.5), evolving over the span of a week. Contours
of the sea surface height at t = 7 are also shown in grey, which corresponds to those of
the instantaneous streamfunction and provides an indication of the flow structure. The
stream itself is fast-moving and a prominent feature of the flow, and drifters starting
within the stream (i.e. the blue and red points) are accordingly transported along it. Along
the stream, eddies form and break off (roughly indicated by the circular regions in the
sea-surface height contour map), and trajectories that start within an eddy (i.e. orange
and purple points) typically remain there. Away from the stream and the eddies, the flow
is relatively isotropic and slow-moving, resulting in the short and unremarkable trajectory
starting from the green point.
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We may think of (6.5) as our “best available” deterministic model for the time evolution
of the drifter position; if the data (and the subsequent interpolation) were correct, then
(6.5) would provide accurate predictions. However, this is certainly not the case and there
are many sources of uncertainty not accounted for by (6.5), including measurement error
and the unresolved flow behaviour between gridpoints. The dataset additionally includes
estimates for the mapping error (an estimate of the variance) in the zonal and meridional
velocity measurements, which indicates measurement error. The mapping error in each
velocity component at t = 0 is shown in Figure 6.2, as an example of the structure of the
field, along with contours of the sea surface height. The error varies with time but retains
the main structure where it is largest along the Gulf Stream and features a stratified
appearance because satellite measurements are more accurate directly under the tracks
followed by the instruments, which is not unexpected as this region contains the most
complicated part of the flow. We can capture the spatial and temporal variation in this
mapping error by adding multiplicative noise to the deterministic model (6.5). We use the
following stochastic model:

d

[
x
(lon)
t

x
(lat)
t

]
=



ũ
(
x
(lon)
t , x

(lat)
t , t

)

ṽ
(
x
(lon)
t , x

(lat)
t , t

)


 dt

+
√

Lr




√
ũerr

(
x
(lon)
t , x

(lat)
t , t

)
0

0

√
ṽerr

(
x
(lon)
t , x

(lat)
t , t

)


 dWt,

(6.6)

where ũerr and ṽerr are the linearly interpolated error estimates for the zonal and meridional
velocities (converted to degrees per day using the same transformation (6.4) as was done
on the velocity data), and Lr = 0.25◦ is the spatial resolution of the data. Our choice for
the diffusion matrix σ comes from the intuition that Lrσσ

⊤ represents the instantaneous
variance of the noise in our stochastic differential equation and to ensure that the units
in (6.6) are consistent with the convention that dWt ∼

√
days (Øksendal, 2003). Both

coefficients depend on time and the noise is multiplicative, making (6.6) the most general
type of SDE that our theory is equipped to handle. In the framework of Chapter 3, the
noise scale is ε =

√
Lr =

√
0.25◦ and we treat this value as being fixed by the data and

model. The introduction of noise in (6.6) can improve over (6.5) by accounting for both
the data-informed measurement error and unresolved behaviours between gridpoints, in
the fashion of stochastic parameterisation. This is, however, only one choice for such a
model; the following analysis could be applied to a better-informed stochastic model.
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6.3 Stochastic sensitivity

We first compute the stochastic sensitivity field to evaluate the impact of uncertainty
(formulated by the SDE (6.6)) on the predictions of the deterministic model (6.5). As
in Section 4.3, this example demonstrates the computation of stochastic sensitivity from
the covariance matrix, rather than provide any new insight. Badza et al. (2023) provide
a similar example of computing the stochastic sensitivity field for a similar sea-surface
dataset of the Gulf Stream, albeit using the original method of calculation (Balasuriya,
2020b).

Figure 6.3a plots the stochastic sensitivity field for a grid of initial conditions at the
0.25◦ × 0.25◦ resolution of the velocity data, over the timespan of a week, from midnight
01/01/2020 (t = 0) to midnight 08/01/2020 (t = 7). Each initial condition corresponds to
a point at which the surface velocity data was available. Although the resolution of the
velocity data is low, we can still distinguish the stream itself as a region of high uncertainty.
Away from the stream (either north or south of it), the flow is reasonably isotropic and
the level of noise from measurement error is small, so there are relatively small S2 values.
The S2 field also highlights an eddy-like structure, centred around 57◦W and 38◦N, with a
larger uncertainty on the boundary and a smaller within.

Balasuriya (2020b) provided a simple method for extracting possibly coherent sets from
the stochastic sensitivity field, by taking the initial conditions for which the S2 value is
under a certain threshold. Using a threshold of R = 2◦, the right-hand side of Figure 6.3a
shows in cyan the initial conditions which correspond to a robust set. We see that the
regions away from the stream emerge as robust sets. These sets do not include parts of
the stream, because of the larger uncertainty. However, the low resolution of the data
means we cannot make any further conclusions, as the finer structure is unresolved.

The resolution of the data is a significant limitation of the deterministic model; since
the velocity data has been interpolated between gridpoints, any conclusions relying on
the deterministic model alone cannot be trusted at higher resolutions. Although the
stochastic model also uses this interpolated data, the model is in some sense accounting
for the uncertainty introduced by the interpolation. We are resolving the behaviour
of the system between the gridpoints by introducing stochastic noise. Since stochastic
sensitivity is a property of the stochastic system and not just the deterministic one, we
are permitted to investigate and make conclusions from this field at a higher resolution
than that prescribed by the data. This is an advantage of stochastic sensitivity over
other deterministic measures, such as the finite-time Lyapunov exponent, which do not
account for unresolved effects. Figure 6.3b show the stochastic sensitivity field computed
on a 0.025◦ × 0.025 grid of initial conditions, at a higher resolution than the velocity
data. We see several eddy-like structures highlighted above and below the stream, where
uncertainty is large on the boundaries of the eddies and smaller within. These eddies
were not all apparent in the lower-resolution S2 field or in the corresponding robust sets.
The complicated structure of the stream is better resolved in the higher-resolution field
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(a) At the 0.25◦ × 0.25◦ resolution of the velocity data.
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(b) At the higher resolution of 0.025◦ × 0.025◦.

Figure 6.3: (Left) The stochastic sensitivity fields computed from the linearisation covari-
ance matrix on a grid of initial conditions, at two different resolutions. (Right) From each
field, robust sets are extracted with a threshold of R = 2◦ and shown in cyan.
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and emerges as regions of non-robustness (that is, not contained in the robust sets). The
centres of the eddies, where we expect coherency in the deterministic system, are also
included in the robust set. By increasing the resolution, we can therefore identify regions
of low uncertainty and distinguish finer structures within the flow.

6.4 Exploring a single trajectory

We now focus our attention on a fixed initial condition for the drifter. Suppose that,
at midnight 01/01/2021, the drifter is located within the stream at longitude 60.5◦W
and latitude 39◦N. We accordingly consider the evolution of the two models (6.5) and
(6.6) with the initial condition x0 = (−60.5, 39)

⊤ . By solving the deterministic model
(6.5) numerically, we predict the position of the drifter after t = 7 days (at midnight
08/01/2021) and show the time evolution of this solution trajectory in Figure 6.4a. The
jet stream transports the drifter. This is the only prediction of the deterministic model
(6.5), but when accounting for uncertainty with the stochastic model (6.6), we get a more
complicated picture. Figure 6.4b shows the result of 2500 numerical realisations (obtained
via Euler-Maruyama integration with a step size of 1/24 days) of the stochastic model
(6.6), starting from the fixed initial condition x0 and evolved over the same week-long
timeframe. Each red point corresponds to a single realisation of the stochastic solution at
midnight 08/01/2021 (t = 7). Although many of the realisations are transported along the
stream, many break off in eddies, resulting in several clusters of realisations. Thus, with
uncertainty in the model, the drifter may end up following distinctly different qualitative
behaviour. This example highlights the importance of stochastic models; the deterministic
model provides a single prediction, but the dynamic behaviour of the flow means that any
uncertainty can lead to vastly different predictions of the future state of the system.

To further understand the impact of the deterministic flow dynamics on the behaviour
of the stochastic solution, Figure 6.5 plots the evolution, as histograms, of now 10000 EM
samples up to midnight 08/01/2021 (t = 7). The figure also includes contours of the sea
surface height at each time to give some indication of the deterministic dynamics. The
stream propagates a majority of the stochastic realisations, but we see several trajectories
leave the stream early and move westwards, creating an arc-like structure of smaller density
in the empirical distribution. A second cluster of realisations departs the stream starting
around t = 4 and moves northwards, likely due to the formation and break off of an
eddy from the stream in the region. The final distribution of realisations is therefore
complicated, comprising numerous realisations that remained in the stream, a second
cluster that is transported northwards by an eddy, and a small number that are scattered
westwards.

The SDE (6.6) is highly nonlinear and data-driven, so analytical solutions are not
available. However, we can compute a Gaussian approximation by linearising (6.6)
about the corresponding deterministic trajectory solving (6.5) (with the same fixed initial
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(a) The solution to the deterministic model (6.5).
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(b) Realisations of the solution to the stochastic model (6.6).

Figure 6.4: Solutions to the (a) deterministic model (6.5) and (b) stochastic model (6.6)
for fixed initial condition (−60.5, 39)

⊤ from midnight 01/01/2021 (t = 0) to midnight
08/01/2021 (t = 7), corresponding to a drifter on the surface of the Gulf Stream. The
deterministic prediction at t = 7 is indicated in blue in both figures, with the time evolution
of the deterministic trajectory in black in (a). In (b), each red point corresponds to one of
2500 EM realisations of the stochastic solution at midnight 08/01/2021. Contours of the
sea surface height at t = 7 are included in grey.
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(c) Midnight 05/01/2021 (t = 4).
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(d) Midnight 06/01/2021 (t = 5).

66 64 62 60 58 56 54
°W

39

40

41

42

°N

(e) Midnight 07/01/2021 (t = 6).
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(f) Midnight 08/01/2021 (t = 7).

Figure 6.5: Histograms representing the empirical distribution of the solution to (6.6),
constructed from 10000 Euler-Maruyama samples, with darker colours indicating higher
density. In grey are contours of the sea surface height which correspond to the instantaneous
streamlines at time t.
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Figure 6.6: The time evolution of 10000 Euler-Maruyama realisations of the solution to
(6.6), with the Gaussian density arising from a linearisation of (6.6) about the deterministic
trajectory overlaid in red. The bivariate plot shows contours of the probability density
function (or equivalently standard deviation bounds) of the Gaussian approximation,
whereas each marginal plot on the longitudinal and latitudinal axis show the PDFs
themselves of the Gaussian marginals.
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Figure 6.7: The estimated Hellinger distance between 10000 Euler-Maruyama samples
of (6.6) and the Gaussian process solution to the linearisation, t days after midnight
01/01/2021.

condition), and employing the theory and computations of Chapter 3. In Figure 6.6,
we again plot histograms of the 10000 Euler-Maruyama realisations of the solution, and
include marginal distributions in the longitudinal and latitudinal directions on each axis.
Overlaid in red is the Gaussian solution to the linearisation of (6.6). The deterministic
trajectory and covariance matrix are computed simultaneously using the Mazzoni method
outlined in Section 4.1. This computation requires the gradient of the velocity field, which
we approximate with a centred finite difference. In Figure 6.6, on each joint histogram, we
have plotted contours of the bivariate Gaussian solution. On each marginal histogram, we
have plotted the probability density function of the marginal Gaussian corresponding to
that component. After a single day (t = 1), the numerical realisations match the Gaussian
approximation, but the distribution of the realisations quickly becomes non-Gaussian due
to both the nonlinearity of the flow and the multiplicative noise of the stochastic model.
While the large number of realisations that remain in the stream maintain a Gaussian-like
shape with a single model, the scatter of trajectories leaving the stream results in a highly
non-Gaussian distribution. To account for this, the variance of the Gaussian approximation
grows larger over time, particularly in the longitudinal direction.

To quantitatively evaluate the quality of the Gaussian approximation over time, Fig-
ure 6.7 plots the estimated Hellinger distance between the Gaussian approximation and
Euler-Maruyama samples solving (6.6). We use 100 realisations of the Hellinger distance—
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that is, for each of those 100 calculations, we take 10000 new EM samples and 10000
samples of the Gaussian approximation and compute the empirical Hellinger distance with
(6.3)—and plot the average of these in Figure 6.7. The sample variance in this calculation
is approximately O

(
10−4

)
, so we do not include error bars in Figure 6.7 as they would

be negligible. As expected, the distance increases over time, as the numerical solution to
(6.6) quickly becomes non-Gaussian. However, there are two times where the Gaussian
approximation improves: at t ≈ 3.3 and t ≈ 6. This improvement may be because of
contracting dynamics within the Gulf Stream, such as when the trajectories pass through
the ‘bend’ in the stream (evident around t = 3 and t = 4 in Figure 6.5) which advect some
realisations back towards each other.

The Gaussian solution to the linearisation can provide a reasonable representation of
the drifter position distribution over short timeframes. This linearisation solution still
provides valuable insight into the stochastic system over longer periods of time, as we saw
when computing the stochastic sensitivity field. However, the highly non-linear dynamics
of the system quickly drive the distribution away from the Gaussian distribution, and the
aforementioned limitations of a Gaussian approximation, such as the inability to capture
multiple modes and skew, become apparent. The Gaussian approximation is still efficient
to compute, however, so we will look to employ the Gaussian mixture model algorithm we
described in Chapter 5.

6.5 The mixture model

We will explore a simple implementation of the mixture model algorithm described in
Chapter 5 to predict the distribution of stochastic solutions about the single trajectory in
Section 6.4. As discussed in Chapter 5, we expect that the mixture model approach will
work best in moderate noise models and over reasonably short timeframes. We take the
same fixed initial condition x0 = (−60.5, 39)

⊤
but consider the position of the drifter at

t = 3, so at midnight 04/01/2021. The distribution of numerical samples at this time is
given in Figure 6.6c; the aim here is to use the mixture model algorithm to approximate this
non-Gaussian distribution with a small number of Gaussian components, each constructed
as solutions to the linearised SDE. The two marginal distributions (in the longitudinal
and latitudinal directions) in Figure 6.6c demonstrate the qualitative departures from
Gaussianity mentioned previously: in the longitudinal direction, the distribution of samples
is bimodal, whereas in the latitudinal direction we see skew in the southern direction. The
distribution is 2-dimensional, however, so there are aspects of the joint density that are
not reflected by the two marginal distributions, such as the curved structure of the density
function. This is a highly non-Gaussian distribution with distinct features that we would
like to capture with a mixture model approximation.

First, we shall implement the GMM algorithm with a single manually specified split,
for which we use the canonical sigma points (5.10) to split the covariance matrix at the
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Figure 6.8: The Hellinger distance between the mixture model implemented with a single
split at time ts and 10000 Euler-Maruyama samples of the solution to (6.6) at t = 3. The
green line indicates the Hellinger distance between the single Gaussian component and
the samples.

specified time into 4 additional points. With a single split, the mixture model comprises 5
equally weighted components: the original Gaussian component evolved from the initial
condition, and the 4 additional components resulting from the splitting step. For each
splitting time, we can use the Hellinger distance between the resulting mixture model and
the 10000 Euler-Maruyama realisations of the true solution to evaluate that choice of time.
This allows us to ‘tune’ the choice of splitting time by finding that which results in the
smallest distance. This method, of course, relies upon us having already obtained the
numerical samples over which we are trying to improve computational efficiency. However,
the purpose of this example is to demonstrate that such an optimal time can be found
and to suggest that, once equipped with an appropriate online splitting criterion, the
mixture model algorithm provides an efficient ad hoc method for capturing key features of
the distribution. As a benchmark, the single Gaussian component (shown in Figure 6.6c
overlaid on the histograms of samples) gave a Hellinger distance of approximately 0.48761.
Figure 6.8 plots, against the split time ts, the Hellinger distance (averaged over 100
calculations) between each mixture model and a set of 10000 EM samples. We can see
that a split time earlier than ts = 2 results in a mixture model that improves over the
single Gaussian approximation. When the split occurs later, the quality of the resulting
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Figure 6.9: The best-fitting mixture model with a single split at ts = 33/24 (9am
02/01/2021). The joint histogram (centre) includes contours of the mixture probability
density function. Each axis provides marginal histograms of the numerical samples, with
the corresponding marginal PDFs of the mixture density in red.

mixture model worsens. The minimum Hellinger distance of approximately 0.30191 occurs
with a split at ts = 33/24 days, or at 9am 02/01/2021, which we take as our ‘best’ fit.

We compare the resulting mixture model against the numerical samples in Figure 6.9,
in the same fashion as Figure 6.6 where contours of the mixture probability density
function are shown on the joint histogram and the marginal PDFs on each marginal
histogram. The mixture model captures several important qualitative features of the
empirical distribution, including the bimodality in the longitudinal marginal and part of
the ‘curved’ shape of the joint distribution. Comparing directly to the single Gaussian in
Figure 6.6c, the latitudinal marginal, with a smaller variance, more closely matches the
spread of the samples. However, the mixture fails to capture the full scatter of samples in
the southern direction, even though this only corresponds to a small proportion of the
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Figure 6.10: The Hellinger distance between the mixture model implemented with two
splits—the first at ts,1 days, and the second at ts,2 > ts,1 days—and 10000 Euler-Maruyama
samples of the solution to (6.6) at t = 3. When ts,1 = ts,2, the result for a single split at
that time (from Figure 6.8) is shown for comparison. The minimising value is indicated by
the black box.

samples. Regardless, this result is promising, as with only a single split and four more
components, we have improved over the single Gaussian approximation.

Five components may not be sufficient to fully capture the shape and spread of the
empirical distribution, so we now consider adding an additional splitting step to each
component. After the first split at time ts,1, we will split each new trajectory at a later
time ts,2. For simplicity, each of the five trajectories is split at the same time ts,2, but
the algorithm allows for each trajectory to be split at different times as some regions
may exhibit more Gaussianity than others. Each component pair is split at time ts,2
into four additional points, again using the canonical sigma points (5.10) to preserve
the mean and covariance. We consider a range of times for ts,1 and ts,2, construct the
mixture model using each pair of times, and compute the empirical Hellinger distance
(again averaged over 100 calculations) between the mixture density and the EM samples
to find the best configuration. The resulting Hellinger distances are shown in Figure 6.10.
The optimal configuration with two splits has the first at ts,1 = 3/4 (at 6pm 01/01/2021)
and the second at ts,2 = 43/24 (at 7pm 02/01/2021), and results in a Hellinger distance of
approximately 0.14684. This distance is a substantial improvement over both the single
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Gaussian component and the mixture model with a single split.
In Figure 6.11, we compare this mixture density against the stochastic samples. The

mixture model captures the shape of the empirical distribution, including the scatter of
points leaving the stream in the westward direction. The bimodality in the longitudinal
marginal and the skew in the latitudinal are captured by the mixture model. The 25-
component mixture model provides a close representation of the empirical distribution,
both heuristically (by capturing qualitative departures from Gaussianity) and supported
by the small Hellinger distance of 0.14684. Whereas we propagated 10000 Euler-Maruyama
samples to construct the empirical distribution, the mixture model comprises only 25 mean-
covariance pairs, the computation of which can be thought of as requiring the propagation
of only 125 values (the two components of each mean and the three components of each
symmetric covariance matrix). A mixture model with fewer components (by having
fewer splits in total) may also provide the same quality of approximation, which would
be even more computationally efficient. Estimating the true solution distribution is a
difficult problem, as the deterministic dynamics are complicated and highly non-linear,
and the non-uniformity of error in the observations used to construct it means that
the noise is multiplicative. With a simple implementation of the mixture model, we
can capture key features and provide a close approximation of the distribution of the
solution at t = 3. Evaluating the mixture model and finding the best splitting times
required a set of numerical realisations of the SDE solution when our overall aim is to
avoid this computational cost. However, we continue to emphasise that this example is
demonstrative and the mixture model has only been proposed as an outline of an algorithm.
Nonetheless, the results of this section are encouraging and motivate further development
and investigation of the algorithm. Once equipped with an appropriate splitting criterion,
the mixture model algorithm could become a highly effective method for circumventing
bulk simulation in stochastic systems. Even without this splitting criterion, the mixture
model provides an explicit form for the probability density function, which may lend itself
to further applications.
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Figure 6.11: The best-fitting mixture model (in red) with two splits on each component,
over histograms of 10000 Euler-Maruyama samples. The central joint histogram shows
contours of the mixture probability density function. On the longitudinal and latitudinal
marginals on each axis, the probability density functions of the corresponding marginals
of the mixture model are shown.
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Chapter 7

Discussion and future outlook

To conclude this thesis, we shall summarise the results we have presented and raise several
discussion points on the implications and extensions of our work. This is by no means an
exhaustive list; since we have provided results for a general class of stochastic differential
equations, our results have the potential to be applied across a wide range of fields, well
beyond the scope of this thesis. Broadly speaking, our theoretical work (namely the error
bound in Theorem 3.1) may be useful to investigate the validity of SDE linearisations in
application domains such as Stochastic Parameterisation (Berner et al., 2017; Leutbecher
et al., 2017; Palmer, 2019) or Data Assimilation (Law et al., 2015; Reich and Cotter,
2015; Budhiraja et al., 2019), or to improve such linearisations by monitoring the skew or
kurtosis.

The later sections of this chapter cover:

• In Section 7.1, we discuss approaches to selecting the diffusivity matrix σ.

• In Section 7.2, we discuss the difficulties that boundary conditions can present to
both the formulation of an SDE and our methods.

• In Section 7.3, we introduce the Fokker-Planck equation, which provides an alternative
view of the solution of a stochastic differential equation, and discuss how this
perspective can further our theoretical understanding.

• In Section 7.4, we discuss the possibility of replacing the Wiener process in the
driving stochastic differential equation with a more general Lévy process.

• In Section 7.5, we discuss the extension of our theory in Chapter 3 to include
higher-order terms in the small-noise expansion of the SDE.

• In Section 7.6, we discuss the implications of our extension to stochastic sensitivity
and the applications thereof.

109
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• In Section 7.7, we draw analogies between our theoretical work and results for the
limits of population processes, a class of stochastic models evolving on a discrete state
space. This suggests that our tools can be applied to a broader class of stochastic
models. The section culminates in a 5-dimensional implementation of the Gaussian
computation outlined in Chapter 4 on a data-informed model for the spread of Ebola.

We began the main contribution of this thesis in Chapter 3, where we provided and
justified a framework for computing linearisations of stochastic differential equations.
We provided in Theorem 3.1 an explicit bound on the error between the solution of a
small-noise nonlinear stochastic differential equation and an easily computable linearisation
approximation, building upon previous studies (Blagoveshchenskii, 1962; Freidlin and
Wentzell, 1998; Sanz-Alonso and Stuart, 2017). The linearisation approximation is
used across many applications and contexts (Archambeau et al., 2007; Jazwinski, 2014;
Sanz-Alonso and Stuart, 2017; Kaszás and Haller, 2020, e.g.), but often without a clear
mathematical justification. The theory applies to fully non-autonomous SDEs with
multiplicative noise and a random initial condition. Our bound is written in terms of a
scaling of the diffusivity matrix and a measure of the uncertainty in the initial condition
using the Lr-norm. A comparison in Section 3.1.1 suggests that our bound on the moments
is tighter than implied by the gold standard in the literature (a comparable bound on
the Kullback-Leibler divergence by Sanz-Alonso and Stuart (2017)). We also provided in
Theorem 3.2 and Corollary 3.1 an explicit characterisation of the distribution of the solution
to the linearised SDE, enabling efficient approximation of the original nonlinear SDE using
solutions to the corresponding deterministic equation, whereas previously special cases of
these computations were dispersed across other literature (Jazwinski, 2014; Sanz-Alonso
and Stuart, 2017; Särkkä and Solin, 2019, e.g.). In Section 3.1.3 and Section 3.1.2 we
highlighted two application-relevant special cases: when the initial condition is fixed and
when it is Gaussian, respectively. Coupled with the efficient Mazzoni (2008) method
(summarised in Section 4.1) to compute the moments of the linearisation solution, we have
provided a rigorous and practical framework for approximating small-noise SDEs with
linearisations about the solutions of their corresponding deterministic systems.

Our next contribution was to extend the stochastic sensitivity tools introduced by
Balasuriya (2020b). Stochastic sensitivity was hitherto derived as the variance of an
unknown limiting distribution and could only be computed in two spatial dimensions. We
provided a new definition of stochastic sensitivity that extends the original to any number
of dimensions and is computable as the operator norm of the covariance matrix of the
linearised SDE (for which we outlined the computation in Theorem 3.2 and Corollary 3.1).
We have also established that the limiting distribution in question is Gaussian, as the
computation is related directly to a linearised SDE with a fixed initial condition. This
may provide insight into properties of stochastic sensitivity as a means of uncertainty
quantification in any model (not just in the fluids context) where an n-dimensional state
variable evolves according to a “best available” deterministic model.
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With three example SDEs in 1- and 2-dimensions in Chapter 4, we validated the form
of our theoretical error bound and showed heuristically that the solutions approach that
of their respective linearisations in the limit of small noise. In particular, we found that
the strong error scales with the initial uncertainty and ongoing uncertainty exactly as
predicted. We also demonstrated the new computation of stochastic sensitivity in two
dimensions (in Section 4.3.1) and, for the first time, in 3-dimensions (in Section 4.3.2).

Although linearisation approximations of SDEs have proven to be useful in both applica-
tions and as a theoretical tool (e.g. stochastic sensitivity), in Chapter 5 we highlighted that
the limitations of using such approximations, particularly when the linearisation solution is
a Gaussian process. A Gaussian approximation cannot capture features such as skew and
multimodality, despite these distinctly non-Gaussian attributes arising both in the solutions
of nonlinear and multiplicative noise SDEs and observed statistics (del-Castillo-Negrete,
1998; Bracco et al., 2000; Sura et al., 2005). To overcome these limitations while still taking
advantage of the computationally efficient linearisation approximation, we proposed an ad
hoc algorithm that uses a splitting process to approximate SDE solutions with a Gaussian
mixture model. Each component of the mixture model arises from a solution of the SDE
linearised about a different deterministic trajectory, which can capture uncertainty in
different regions of the state space. With a simple propagation-splitting procedure, the
algorithm can capture multimodality, skewness, and other departures from Gaussianity to
improve upon a single Gaussian component. Another advantage of this algorithm is that
it provides an analytically available probability density function, as opposed to stochastic
samples, which require an additional step to estimate the density function. Our aim
throughout was to outline the algorithm and demonstrate its potential on several simple
implementations, rather than explore the specifics of each step or perform a mathematical
analysis. Instead, we briefly discussed some suggestions for these specifics throughout
Chapter 5 while leaving a thorough investigation further as future work.

In Chapter 6, we applied the developments of the previous chapters to a data-driven
model. Using satellite-measured velocity data, we constructed two 2-dimensional models
for the motion of a drifter on the surface of the Gulf Stream in the North Atlantic
Ocean. The first was a purely deterministic ordinary differential equation, using only
the interpolated velocity data. The second was a stochastic differential equation that
‘improved’ upon the ODE by accounting for measurement errors in the velocity data and
unresolved effects due to the spatial resolution of the data. By computing stochastic
sensitivity, we used the stochastic model to diagnose the reliability of the deterministic
model over the spatial domain of the data. We then focussed our attention on a single
solution trajectory, corresponding to the motion of the drifter starting from a fixed initial
condition. The stochastic model produced a highly non-Gaussian distribution (estimated
from Euler-Maruyama samples) for the position of the drifter at a later time. We compared
to this empirical distribution the Gaussian approximation arising from a linearisation
of the stochastic model about the deterministic trajectory but found that the Gaussian
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density was limited in representing the key features of this distribution. Motivated by
this, we explored two simple implementations of the mixture model algorithm, using the
Hellinger distance to ‘tune’ the splitting times with reference to the stochastic samples.
The mixture model showed highly promising results on this example trajectory; with only
2 splits and 25 components, the algorithm could closely recreate the highly non-Gaussian
distribution (in Figure 6.11).

7.1 Selecting the diffusivity matrix

A powerful advantage of our framework is that the diffusivity matrix σ may vary spatiotem-
porally, allowing for multiplicative noise. Multiplicative noise is often ignored in practice,
because of difficulties in analytic work (Sancho et al., 1982) and generating numerical
realisations efficiently (Mora et al., 2017). Despite these challenges, multiplicative noise is
often necessary in practice (Sura, 2003; Kamenkovich et al., 2015, e.g.). Such noise can
also arise from experimental and observational considerations that are otherwise ignored
in the deterministic model, such as cloud cover when using satellite measurements or
nonuniformity across the field of view of a camera. This raises the question of exactly
how to specify σ, particularly when the aim is to measure uncertainty in a model that
is only initially specified deterministically. If there is no a priori knowledge about the
spatiotemporal structure of the noise, then the default choice of σ = I addresses a generic
situation in which noise is uniformly ascribed to each component of the state. In Chapter 6,
we took a naïve approach to include measurement error estimates in our model by selecting
σ so that σσ⊤ corresponded to a variance. However, there is potential for a more informed
construction of σ that accounts for the many limitations of the deterministic model. For
instance, the velocity field in the deterministic ODE was constructed by interpolating
the observed data, which was only available on a finite spatiotemporal grid. One could
encode in σ the error introduced by using this interpolant, for example, reducing the
magnitude of the diffusivity at gridpoints and increasing it further away. The impact of
interpolation, quantified by a multiplicative noise SDE, warrants a full investigation, in
which stochastic sensitivity could provide a computable quantification of the impact of
this introduced uncertainty (Fang, Balasuriya, et al., 2020; Fang and Ouellette, 2021).
It is also pertinent to note that the driving Wiener process in the SDE model need not
have the same dimension as the state variable. The model can thus account for different
sources of uncertainty that do not need to be attributed directly to the components of the
velocity field. This was an implicit limitation of the original stochastic sensitivity work
(Balasuriya, 2020b), where the Wiener process could only be 1- or 2-dimensional. For
instance, in a model containing several unknown or estimated parameters, we could encode
the uncertainty in these parameters with the components of a Wiener process. This would
lead to a certain construction of σ from the relationship between those parameters and the
vector field of the ODE model—we provided a simple example of this in our 2-dimensional
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toy model in Chapter 4, where we devised a spatially varying diffusion matrix (4.12) by
attributing the uncertainty to two of the model parameters.

There are many application-specific methods available for estimating σ directly from
observed data, e.g. via statistical estimation (Cotter and Pavliotis, 2009) or the Bayesian
inference approach of Ying et al. (2019) in the context of ocean modelling. For a review of
the statistical estimation of the diffusion matrix from noisy data, see Nielsen et al. (2000).
Coupling these approaches with our methods could provide a complete and practical
framework for characterising uncertainty using only observed trajectory data, without
the need to specify directly the diffusion matrix as part of the model. In oceanography,
a common approach is to specify the diffusion term as part of a physics-informed model
(Berloff and McWilliams, 2002). For example (van Sebille et al., 2018; L. Li et al., 2023), in
modelling Lagrangian particles, the movement of material via unresolved subgrid processes
is quantified as diffusive transport. This then leads to the specification of an advection-
diffusion equation with a spatially varying diffusivity that specifies the time-evolution of
the spatial distribution of Lagrangian particles. Via the Fokker-Planck equation (to be
introduced in Section 7.3), this purely deterministic formulation is equivalent to a stochastic
differential equation with a drift and diffusion matrix relating to the terms of the advection-
diffusion equation. A similar approach is employed in stochastic parameterisations of
atmospheric convection (Wilson and Sawford, 1996). We must emphasise, however, that
the specification of the diffusion term is an open question and depends on the specifics of
the situation and modelling choices. Our theory is general enough to cover all of these
aforementioned cases.

7.2 Boundary conditions

In many practical situations, we can enforce boundary conditions on the evolution of our
state variable. These conditions are typically informed by physical aspects of the model,
such as expecting that a variable of interest is non-negative, the presence of impermeable
boundaries, or limitations of the underlying data. The Gulf Stream example in Chapter 6
provided one such situation. Firstly, the subset of altimetry data that we used was only
available on a finite spatial region, which is almost always the case in data-driven models.
Outside of this region, we have no data and so there is an implicit boundary: once a
trajectory leaves the data domain we can no longer propagate it forward or make further
inferences. We also expected, from physical considerations, that drifter trajectories cannot
move onto the regions of land within the dataset, creating impermeable boundaries. For
an ordinary differential equation, boundary conditions usually do not pose a significant
problem. However, the treatment of these boundaries in stochastic differential equations
can be more complicated, requiring adjustments to both the drift and diffusion. There are
two primary types of boundary conditions: absorbing, which acts as a set of fixed points,
and reflecting, where the trajectories are ‘pushed away’ from the boundary. Reflecting
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boundary conditions can be enforced with a modification of the drift—see Pilipenko (2014)
for an introduction. An absorbing boundary condition presents a more difficult proposition,
such as requiring specialised numerical schemes (Mannella, 1999), causing a breakdown in
the Markovian behaviour of the solution (Muñoz, 1998), and even causing ambiguity in
the interpretation of the driving noise (Correales and Escudero, 2019).

Even without considering these technical modifications, there are difficulties in using
our tools in the presence of boundaries. An n-dimensional Gaussian density has support
on the entirety of Rn, meaning that for any sensible non-empty region in Rn, there is a non-
zero probability that a random variable following a non-degenerate Gaussian distribution
takes a value in that region. This property means that a Gaussian approximation, such as
that arising from the linearisation, cannot capture boundary behaviour. Our Gaussian
mixture model consequently suffers from the same limitation. A further difficulty in the
mixture model algorithm is the selection of new components when splitting; without
adjustment, the new components may be placed across boundaries and violate conditions
on the state. This can be avoided by appropriately adjusting the new components and
their weights, for instance, but is another practical issue that needs further consideration.
We avoided complications in our Gulf Stream example by ensuring that the target densities
and the evolution of solution trajectories were sufficiently far from the boundaries. The
probability that a solution or the resulting approximations were close to the boundaries was
then negligible. Without these considerations, however, the boundaries pose a significant
problem—any inferences that use the SDE linearisation, notably stochastic sensitivity,
cannot be trusted near those boundaries. When generating realisations, a naïve approach
to handling these boundaries is to discard any trajectories that leave the spatial domain.
In a similar vein, one may adjust the approximate probability density functions obtained
by our techniques by discarding probability mass that violates the boundary conditions
and renormalising the function. This approach is not supported with a mathematical
justification, however, and would not account for the behaviour of the solution at the
boundary (e.g. absorbing versus reflecting). A more intriguing prospect is to adjust the
linearised SDEs themselves to include these boundary conditions and attempt to find an
appropriate solution. This is not easy, however, due to the aforementioned theoretical
modifications that must be made to the formulation and solution approach to a stochastic
differential equation in the presence of boundaries. Any headway in this direction could
overcome one of the most significant limitations of Gaussian/linearisation approximations
of stochastic differential equations.

7.3 The Fokker-Planck equation

The Fokker-Planck equation is a partial differential equation that describes the time
evolution of the probability density function of the solution to a stochastic differential
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equation. Given an SDE

dxt = u(xt, t) dt+ σ(xt, t) dWt, (7.1)

the probability density function ρ for the solution to (7.1) at time t solves the corresponding
Fokker-Planck (FP) equation (Risken, 2012)

∂ρ(x, t)

∂t
=

1

2
∇ · ∇ ·

(
ρ(x, t)σ(x, t)σ(x, t)

⊤
)
−∇ ·

(
ρ(x, t)u(x, t)

)
(7.2)

subject to some initial density ρ(x, 0) given by the distribution of the initial condition
to (7.1). Solving the Fokker-Planck equation provides an alternative method for finding
the solution to a stochastic differential equation; rather than working directly with the
stochastic trajectories that solve (7.1), we instead seek solutions to a partial differential
equation. Our work could both contribute to understanding the Fokker-Planck equation
and conversely, make use of this alternative view on SDEs. We could extend our theoretical
work on SDE linearisations to consider the corresponding Fokker-Planck equations. We
presented the solution to the linearised SDE in Theorem 3.2, for which we can derive an
expression for the probability density function—the PDF is a Gaussian density or can
otherwise be computed as the convolution between a Gaussian and the initial condition
PDF. Therefore, we have solutions available to the Fokker-Planck equation corresponding
to the linearised SDE. If we could understand the relationship between the Fokker-Planck
equations of the original SDE and the linearisation, this would accordingly offer insight
into the relationship between the probability density functions of the respective SDE
solutions. Such understanding cannot be inferred from our bound on the expectation in
Theorem 3.1 alone.

Secondly, the Fokker-Planck equation cannot be solved analytically except for simple
cases and so is typically approximated. There are two approaches to numerically solving the
Fokker-Planck equation: either by generating many stochastic realisations by solving the
corresponding SDE (2.6) numerically and using a density estimation method (Silverman,
2017), or by directly solving the Fokker-Planck equation with a finite-difference or finite-
element scheme (Pichler et al., 2013). Both approaches have practical difficulties, including
poor scaling with dimensionality and the enforcement of boundary conditions. These
difficulties mean that the computational cost of solving the Fokker-Planck equation is
considered impractical in 3- or higher dimensions (Allawala and Marston, 2016; Y. Li, 2019;
Zhai et al., 2022; W. Anderson and Farazmand, 2024). The linearisation approximation and
our Gaussian mixture model algorithm both provide analytic probability density functions
and are both efficient methods that scale reasonably with dimension. These methods
may therefore be viewed as approximate solution methods to the Fokker-Planck equation
that overcome the computational limitations of numerical solutions. Understanding the
relationship between SDE linearisations and the Fokker-Planck equation may provide
an avenue for further developing the mixture model algorithm. The aim of the mixture
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model is to approximate the probability density function of the solution to the SDE, so
the Fokker-Planck equation may be a more appropriate framework for investigating this
algorithm, as opposed to the solution-trajectory focus of the theory in Chapter 3.

7.4 Non-Gaussian noise processes
Throughout this thesis, we have considered Itô stochastic differential equations driven by
the canonical Wiener process, and so we assume that the noise in our system is white
(zero temporal correlation) and Gaussian. However, when modelling physical systems
there is observational evidence to suggest that in some modelling scenarios, the underlying
noise process may be better formulated as a more general Lévy process (Viecelli, 1998;
Ditlevsen, 1999). A Lévy process satisfies the same properties as the Wiener process but
without Gaussian increments and can therefore capture skew and heavy-tailedness in the
ongoing noise process. Many of the theoretical results for stochastic differential equations
hold for when the Wiener process is replaced by a Lévy process (Applebaum, 2004).

There is scope to determine whether the theory presented in Chapter 3, and impor-
tantly the computability of the linearisation solution, can be generalised to stochastic
differential equations driven by arbitrary Lévy processes. If we replace the Wiener process
in Theorem 3.1, the proof of Theorem 3.1 will still hold as it relies upon results for general
Itô integrals and square-integrable stochastic processes. This would show that such a
solution, for small noise, can be approximated by an expression involving an Itô integral of
a deterministic function (i.e. (3.5)) with respect to the driving process. The applicability of
this approximation then depends upon how this integral can be evaluated without having
to solve numerically the original stochastic differential equation. When the Wiener process
is replaced, Itô’s isometry does not hold and we will need a different characterisation of the
linearisation solution—the mean and variance that suffice to describe a Gaussian process
may not be enough. Regardless, a theoretical understanding of the linearisation of SDEs
driven by Lévy processes would be a significant contribution to the literature.

7.5 Pursuing higher-order terms
The linearisation approximation that underpins the work in this thesis equivalently arises
by considering a formal power-series expansion of the SDE solution. Given the solution
y
(ε)
t to a small-noise SDE

dy
(ε)
t = u

(
y
(ε)
t , t

)
dt+ εσ

(
y
(ε)
t , t

)
dWt, (7.3)

one can consider a power-series expansion in ε

y
(ε)
t = z

(0)
t + εz

(1)
t + ε2z

(2)
t + · · ·+ εmz

(m)
t + · · · , (7.4)
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where the coefficients z
(0)
t , z

(1)
t , z

(2)
t , . . . are themselves stochastic processes independent of

ε. Blagoveshchenskii (1962) considers such expansions and found generic bounds for the
expected distance between the solution to (7.3) and truncations of (7.4). The linearised
SDE we consider corresponds to truncating (7.4) to the m = 1 term. In finding the
linearisation solution l

(ε)
t we implicitly established that z

(0)
t = F t

0(x0), the deterministic
flow map and z

(1)
t can be expressed as the Itô integral of a deterministic function—compare

z
(0)
t + εz

(1)
t with (3.5). We expect that including more terms when truncating (7.4) will

result in a ‘better’ approximation of the original SDE solution, in the same fashion as
a Taylor expansion of a deterministic function. An obvious extension to our theoretical
results would therefore be to higher-order expansion, where we look to continue building
upon the work of Blagoveshchenskii (1962) to provide explicit bounds on the distance
between the SDE solution and truncations of (7.4). From a practical perspective, this
also raises the question of whether the higher-order terms can be computed to provide a
more accurate approximation of nonlinear SDE solutions. However, these higher-order
coefficients obey stochastic differential equations (Blagoveshchenskii, 1962), which cannot
in general be solved analytically. For instance, by performing Taylor expansions of the
coefficients of (7.3) and rearranging, the second-order term z

(2)
t is shown to solve
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Although linear in z
(2)
t , this equation must be viewed jointly with that satisfied by z

(1)
t ,

cannot be solved analytically and is even difficult to solve numerically due to the dependence
on the second derivatives of u. Thus, while there is potential to extend our theoretical
results to higher-order expansions, we expect that there would not be the same practicality
of computation that we relied upon later in the thesis. It remains to be seen, however,
if qualitative measures can be computed from the higher order terms, in the fashion in
which stochastic sensitivity was shown to be the variance of the first-order term z

(1)
t .

7.6 Applying stochastic sensitivity
As a recent development, stochastic sensitivity has only seen limited application (Balasuriya,
2020c; Fang, Balasuriya, et al., 2020; Fang and Ouellette, 2021; Badza et al., 2023), which
we reviewed in Section 2.5. We have presented a complete generalisation of these tools to
arbitrary dimensions and established the connection to SDE linearisation that empowers
a rapid computation. Equipped with this extension, one can now investigate stochastic
sensitivity as a Lagrangian diagnostic and a procedure to extract coherent structures via
robust sets in higher-dimensional flows, and in particular 3-dimensions. More broadly,
stochastic sensitivity can now be used as a theoretical and computational tool in any
differential equation model. There are consequently many possible applications of stochastic
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sensitivity, but in this short discussion, we focus on those related to Lagrangian coherent
structures. The work by Fang, Balasuriya, et al. (2020) and Fang and Ouellette (2021),
which used stochastic sensitivity as a dynamic lengthscale, can now immediately be
extended to dynamical systems of arbitrary dimension.

Balasuriya, Ouellette, et al. (2018) provide a framework that extends the notion of a
Lagrangian coherent structure to capture spatial “regions of interest” in the time-evolution
of other quantities that are transported by, but not fully locked to, a flow. Examples
of these quantities include the concentration of pollutants, the density of an organism
such as phytoplankton, temperature, and salinity in the fluid context. The Fokker-Planck
equation is a generalisation of the classical advection-diffusion equation that allows for a
spatiotemporally varying diffusivity tensor. The spread of a tracer under the advection-
diffusion equation can, through the Fokker-Planck formulation, be equivalently captured
by the solution to a stochastic differential equation. The spread of “uncertainty” in the
stochastic formulation corresponds to the movement and dispersion of the tracer, in the
sense that the probability density function of the stochastic solution is the normalised
tracer concentration. In describing the behaviour of the stochastic system and enabling the
extraction of coherent regions, stochastic sensitivity can offer insight into the spread of such
tracers and potentially be used to extract generalised Lagrangian coherent structures in a
broader framework. Hence, stochastic sensitivity is a far more general framework that can
apply to systems beyond the tracking of particles, particularly with the developments into
arbitrary dimensions provided by this thesis. Establishing a theoretical connection between
stochastic sensitivity and the Fokker-Planck equation would also be valuable (Balasuriya,
2020a) and many now be viable as we have established that stochastic sensitivity is
associated with a density function (the Gaussian solution to the linearised SDE) that itself
solves a Fokker-Planck equation.

Stochastic sensitivity also has the potential as a theoretical quantity. Most traditional
Lagrangian coherent structure procedures are completely deterministic, not accounting
for any uncertainty in the driving velocity field. The robustness of several popular LCS
methods to stochastic noise has recently been explored by Badza et al. (2023) but via
stochastic simulation and summary statistics. Stochastic sensitivity can be used to perform
a purely theoretical analysis of such sensitivity in LCS computations. More generally,
the linearised covariance matrix and stochastic sensitivity values are computable using
the flow map gradient ∇F t

0, which is a quantity often used in LCS computation, and so
can enable a rapid computation to supplement an LCS extraction scheme. Balasuriya
(2020c) provides a preliminary derivation (using the previously 2-dimensional formulation
of stochastic sensitivity) of error bounds for the finite-time Lyapunov exponent, as an
example of how stochastic sensitivity can be used as a theoretical tool in LCS analysis.
In this work, stochastic sensitivity provided an estimate of the standard deviation in the
flow map, but with the extension of stochastic sensitivity to arbitrary dimensions and the
additional knowledge of Gaussianity in the relevant underlying distribution, this initial
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Transition Event Rate
1 Infection (S, I) → (S − 1, I + 1) βSI/M
2 Recovery (S, I) → (S, I − 1) γI

S I R
(1) (2)

Figure 7.1: A description of the SIR model formulated as a continuous-time Markov chain,
including (top) the transition rates and (bottom) the corresponding transitions between
states for an individual in a population.

work could be further formalised to provide a leading-order estimate for the error in FTLE
computations.

7.7 Applications to population processes

To conclude this thesis, we discuss results for stochastic systems evolving over discrete
state space that are analogous to ours. This suggests that the tools we have developed can
apply to a far broader range of modelling scenarios. A population process is a stochastic
process where each component of the process typically evolves over some subset of the
positive integers. As the name suggests, such a process is used to model the number of
individuals in a population (Kendall, 1949). These processes are used extensively across
many fields but most notably within epidemiological, biological, and ecological modelling
(Brauer, 2008). A classic application of population processes is in the modelling of the
spread of an infectious disease in a population, where the process counts the number of
individuals in each stage of the disease. For a well-mixed and homogeneous population, a
continuous time Markov chain (CTMC) is a natural choice to formulate mathematically
the evolution of a population process. A CTMC is a stochastic process evolving over a
discrete (but not necessarily finite) state space in continuous time, where the process moves
from one state to another. The process dynamics are characterised by these transition
rates, which give the instantaneous probability per unit time of the process transitioning
from one state to another at a specified rate. The term “Markov” refers to the assumption
that the behaviour of the process at a given time only depends on the current state and not
any of the preceding history. For a detailed introduction to CTMCs, see W. J. Anderson
(1991)—–the key properties for our purposes are that a CTMC is fully described by the
state space and transition rates and can be simulated numerically to generate realisations.

As a simple example, consider the susceptible-infected-recovered (SIR) model (Allen,
2017), which represents the spread of an infectious disease through a population where
each individual is one of susceptible (able to be infected), infected (infectious to susceptible
individuals), or recovered (no longer infectious and unable to be re-infected). The transition
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rates are listed in Figure 7.1, with the diagram showing how an individual in the population
moves through the three stages. In the table, S denotes the number of susceptible
individuals and I denotes the number of infected individuals. For a fixed population size
M , the number of recovered individuals R is given by R = M −S− I, so we can formulate
the stochastic model as 2-dimensional. Let Xt = (St, It)

⊤
be the stochastic process, where

St is the number of susceptible individuals and It is the number of infected at time t.
The state space of the process is then S =

{
(s, i)

∣∣ s, i ∈ {0, 1, . . . ,M} , s+ i ≤ M
}
. Two

possible events lead to a change in the state of the process: an infection of a susceptible
individual, which occurs with a rate of βStIt with St and It denoting the number of
susceptible and infected individuals respectively at the time t, and a recovery of an infected
individual, which occurs with rate γIt. This is sufficient to fully describe the CTMC
model.

As with stochastic differential equations, CTMC models cannot generally be solved
(in the sense of finding distributions across the state space at certain times, determining
the long-term behaviour, etc.) analytically, but can be simulated (Gillespie, 1977). We
summarise a method for simulating from a CTMC in Appendix B.2, which is used in
the two examples in this section. The need for stochastic simulation leads to the same
practical issues as with SDEs; for complicated models, this is numerically inefficient and a
large number of samples are needed for accurate inference. However, these are approaches
to approximating the behaviour of the CTMC that circumvent these computational
difficulties. Seminal work by Kurtz (1970, 1971) showed that the stochastic evolution of
certain CTMCs converges to the solutions to an ordinary and a stochastic differential
equation in the limit of infinite population size. These results hold when the process is
modelling a fixed population size and is density dependent. A CTMC population process
Xt with a fixed population size M is density dependent when the transition rates only
depend on 1

M
Xt and not Xt directly. Similar results for relaxations of these conditions

exist (Pollett, 1990), however. We briefly summarise these results here—Appendix B.1
provides further details—and can draw analogies with our work. Let X

(M)
t denote an

n-dimensional population process, with each component taking values on the discrete set
{0, 1, . . . ,M}. The density process is then Y

(M)
t = 1

M
X

(M)
t , which describes the proportion

of the population represented by each component. Kurtz (1970) showed that in the limit
of large population size, M → ∞, the density process Y

(M)
t converges in probability to

the deterministic trajectory Y
(∞)
t that solves the ODE (Kurtz, 1970)

dY
(∞)
t

dt
= Q

(
Y

(∞)
t

)
, Y

(∞)
0 = lim

M→∞

1

M
X

(M)
0 , (7.5)

where Q is determined by the transition rates of the CTMC and captures the average
(macroscopic) behaviour of the density process. The deterministic ODE (7.5) is known
as the fluid limit of the population process. Although the initial condition to (7.5) is
formally written as a limit, in practice Y

(M)
0 can be specified directly and independently of
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M . Kurtz (1971) then further establishes a stronger result; that the stochastic variation
of Y (M)

t for large M can be described by the solution to a stochastic differential equation.
The scaled process

Z
(M)
t =

√
M
(
Y

(M)
t − Y

(∞)
t

)
,

which captures the deviation between the density process and the fluid limit, converges in
distribution to the solution to the linear stochastic differential equation (Kurtz, 1971)

dZ
(∞)
t = ∇Q

(
Y

(∞)
t

)
Z

(∞)
t dt+G

(
Y

(∞)
t

)
dWt, Z

(M)
0 = 0, (7.6)

which is termed the diffusion limit. The n× n diffusion matrix G is also determined by
the transition rates of the Markov chain, and Wt is a canonical n-dimensional Wiener
process. In the initialisation of (7.6), it is assumed that the initial condition Y

(∞)
0 is fixed.

The diffusion term captures the microscopic behaviour resulting from individual transition
events, and the uncertainty in this is parameterised with Wt. The diffusion limit (7.6) is
equivalent to the unscaled SDE

dL
(N)
t =

[
Q
(
Y

(∞)
t

)
+

1√
N
∇Q

(
Y

(∞)
t

)(
L
(N)
t − Y

(∞)
t

)]
dt+

1√
N
G
(
Y

(∞)
t

)
dWt, (7.7)

which is then a linearisation of the nonlinear SDE

dŶ
(N)
t = Q

(
Ŷ

(N)
t

)
dt+

1√
N
G
(
Ŷ

(N)
t

)
dWt (7.8)

about the deterministic limit Y
(∞)
t . The diffusion limit (7.6) can be solved analytically

and follows a Gaussian distribution at any fixed time. For large populations, the diffusion
limit is used as an approximation to the population process that avoids the need for bulk
simulation (Pollett et al., 2010).

For example, the SIR model is a density dependent process, with the fluid limit

dY
(∞)
t

dt
=

[
−βY

(∞,1)
t Y

(∞,2)
t

βY
(∞,1)
t Y

(∞,2)
t − γY

(∞,2)
t

]
, (7.9)

where Y
(∞)
t =

(
Y

(∞,1)
t , Y

(∞,2)
t

)⊤
is the density process. Here, the components of the

density process are the proportion of the population that are susceptible and infected
respectively. The diffusion limit is the linear SDE

dZ
(∞)
t =

[
−βX

(∞,2)
t −βX

(∞,1)
t

βX
(∞,2)
t βX

(∞,1)
t − γ

]
Z

(∞)
t dt+




√
βX

(∞,1)
t X

(∞,2)
t 0

−
√

βX
(∞,1)
t X

(∞,2)
t

√
γX

(∞,2)
t


 dWt

(7.10)
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Solving (7.9) and (7.10) provides the approximation

Y
(M)
t ≈ Y

(∞)
t +

1√
M

Z
(∞)
t ,

that is valid in the sense of a limit for large M .
We can draw analogies between these results and the SDE linearisation procedure in

Chapter 3. The fluid limit (7.5) is parallel to the convergence of a small-noise SDE solution
to the corresponding deterministic ODE solution, i.e. y

(ε)
t → y

(0)
t as ε ↓ 0 in the notation

of Chapter 3. The diffusion limit in unscaled form (7.7) is then comparable to the general
linearisation (3.3) of a stochastic differential equation (3.1), with ε = 1/

√
M . However,

a key difference is that in the SDE linearisation procedure, we start from a continuous
state-space process and arrive at a continuous state-space process in the limit. Whereas,
in the diffusion limit, the converging process is on a discrete state space and the limit is
on a continuous one. However, we can see that the diffusion limit also arises from a similar
process: the unscaled diffusion limit (7.7) is a linearisation of (7.8) about the deterministic
fluid limit (7.5). The nonlinear SDE (7.8) may serve as an alternative approximation of
the density process (Allen, 2017). We have also proven a stronger notion of convergence
than in the original work of Kurtz (1970, 1971), by establishing bounds on the expectation
(thus implying convergence in rth mean) in Theorem 3.1. Regardless, our results and
the diffusion limit for population processes are built around the same underlying linear
stochastic differential equation, so our later practical results can be applied to characterise
and approximate the solutions to these discrete models. In particular, we expect that our
mixture model algorithm may find a place in models of moderate population size, where
the population is large enough to be “reasonably” approximated by the continuous SDE
equations but small enough to exhibit non-Gaussian behaviour.

We shall now demonstrate some of these calculations and postulate future applications of
stochastic sensitivity and our mixture model algorithm. In Figure 7.2, we show histograms
of 10000 realisations of the population-scaled SIR model for four different population
sizes. We set the parameters β = 1.2 and γ = 0.8, initialised each process with 10% of
the population infected and the remaining susceptible (so X

(M)
0 = (0.1M, 0.9M)

⊤
) and

show each realisation after t = 5 time units. We also compute the Gaussian solution to
the diffusion limit (7.10), using the Mazzoni (2008) method for rapid computation of the
moments of the solution, and show resulting density as contours on the joint histograms
and by plotting the marginal PDFs on each axis. As the population size M increases, the
Gaussian approximation provides a closer representation of the empirical distribution of
the samples. This should be compared with Figures 4.2, 4.4 and 4.6, where we verified
heuristically that the solutions to small-noise SDEs approached the Gaussian solutions
of their respective linearisation. It is also evident in Figure 7.2 that the boundaries limit
the validity of the Gaussian approximation: the density process is restricted to [0, 1]
with an absorbing state at 0 that results in the accumulation of probability mass seen in
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Figure 7.2: Histograms of Monte Carlo simulations of the density process for the SIR model
(with marginal plots on each axis), and the probability density function of the corresponding
solution to the diffusion limit (7.10) plotted in red. The parameters are β = 1.2 and
γ = 0.8, and each sample path is initialised with 10% of the population infected and
simulated up to t = 5. The bins are chosen to reflect the state-space

{
0, 1/M, 2/M, . . . , 1

}

of the density process.
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Figure 7.3: The stochastic sensitivity value (in black) of the SIR diffusion limit (7.10) at
time t = 5 and from the fixed initial condition of 10% of the population infected, for β = 1
and varying γ. The operator norm of the sample covariance matrix (in various colours) for
1000 stochastic simulations of the discrete population process over the same time interval
is included.

the histograms. Such boundary problems are common in epidemiological and biological
models—e.g. the early spread of a disease through a population is often of interest—and the
inability of the diffusion limit to account for these appropriately is a significant limitation.
We discussed in Section 7.2 the boundary complication in our SDE linearisation framework
and suggested that appropriately accounting for boundary conditions and absorbing states
would be a valuable avenue for future work. Any developments in this direction, whether
that be a modification to the linearised SDE itself or an adjustment to the solution PDF,
would also be useful for the diffusion limit of a CTMC.

Next, we compute stochastic sensitivity for the SIR CTMC using the diffusion limit
(7.10). We can compute the covariance matrix of the solution to any diffusion limit (7.6),
which satisfies the covariance differential equation (3.9) from Chapter 3 with Q in place
of u and g in place of σ. Then, the stochastic sensitivity value is calculated by taking
the operator norm, using this matrix in place of Σt

0 in Theorem 3.3. In Figure 7.3, we
plot the computed stochastic sensitivity for the SIR model and compare the values with
the corresponding empirical value (the operator norm of the sample covariance matrix)
from 1000 realisations of the population process, for varying population size M . We have
fixed β = 1 and varied γ. For each parameter value, we again initialised with 10% of the
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Transition Event Rate λi

(1) (S,E) → (S − 1, E + 1) (βISI + βHSH + βFSF ) /N
(2) (E, I) → (E − 1, I + 1) αE
(3) (I,H) → (I − 1, H + 1) γHθ1I
(4) (H,D) → (H − 1, D + 1) γdhδ2H
(5) (D) → (D − 1) γfD
(6) (I) → (I − 1) γi (1− θ1) (1− δ1) I
(7) (I,D) → (I − 1, D + 1) δ1 (1− θ1) γdI
(8) (H) → (H − 1) γih (1− δ2)H

S E I H D R
(1) (2) (3) (4) (5)

(6)

(7)

(8)

Figure 7.4: Transition probabilities of the Ebola model of Legrand et al. (2007).

population infected and considered the model up to t = 4. The variance is of the density
process but can be rescaled to that of the original population process by multiplying
by M2. Even for a small population size, the stochastic sensitivity provides a reliable
indication of the variation in the population process and, therefore, can serve as a tool in
analysing these models. This is not dissimilar to the work of Pollett et al. (2010), who
suggest that the covariance matrix of the solution to the diffusion limit measures the
‘unexplained variation’ in using the fluid limit alone to approximate the fully stochastic
process. One advantage of stochastic sensitivity is that it provides a single number, by
performing a dimension reduction, which avoids ambiguity in higher dimensions.

Finally, we will show the computation of the Gaussian approximation arising from
the diffusion limit on a 5-dimensional model. These approximations become particularly
useful in high dimensions, where the number of stochastic samples to make accurate
inferences scales poorly. We consider a 5-dimensional model for the spread of Ebola, used
in a case study by Legrand et al. (2007) on two particular outbreaks in the Democratic
Republic of Congo and Uganda. This model is far more complicated than the SIR
example; Figure 7.4 provide the transition events and a diagram corresponding to the
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evolution of an individual through the stages of the infection. Similar to the SIR model,
an individual in the population is in one of six stages: susceptible (S), exposed to the
infection but not yet infectious (E), infectious to susceptible individuals (I), hospitalised
(H), deceased with a traditional burial (D), and removed from the population and no
longer infectious or susceptible (R). We choose this model specifically as the study by
Legrand et al. (2007) provides values for all the involved parameters that are fitted using
an actual outbreak of Ebola in 1995 in the Democratic Republic of Congo, immediately
providing us with a physically relevant model. The population size is fixed at M = 200000
(Dowell et al., 1999) and the initial condition is X0 = (0, 0, 3, 0, 0) (Khan et al., 1999) in
accordance with the 1995 outbreak. The model by Legrand et al. (2007) is then formulated
as a 5-dimensional CTMC Xt ≡ (St, Et, It, Ht, Dt)

⊤
, where each component tracks the

number of individuals in each of the compartments and the number of removed individuals
is Rt = M − St − Et − It − Ht − Dt. Since we only provide a demonstration of the
computation involved, rather than exploring this example in detail, further details are left
to Appendix B.3. We take the parameter values from Legrand et al. (2007), who combined
values estimated from other studies (Bwaka et al., 1999; Dowell et al., 1999; Khan et al.,
1999; Ndambi et al., 1999; Rowe et al., 1999) with their own maximum likelihood estimates
using morbidity data. These parameter values are provided in Figure B.1 in Appendix B.3.

The CTMC with the rates described in Figure 7.4 is density dependent, meaning that
the fluid and diffusion limits hold. We provide the ODE and SDE in Appendix B.3, for
which we can solve jointly by again using the Mazzoni method, which scales well with the
increased dimension as the algorithm relies primarily on matrix calculations.

In Figure 7.5, we have generated 10000 realisations of the CTMC model after 20
weeks and plotted empirical histograms of the population-scaled counts. To visualise the
5-dimensional distribution of these realisations, we have plotted joint histograms of each
pair of components on the off-diagonals. On the diagonal, we have included histograms
of each component of the realisations. We also compute the Gaussian solution to the
diffusion limit and overlay contours of the joint marginal PDFs corresponding to each pair
of components, and the PDF itself on each single-variable marginal. Since the population
size in this example is large (M = 200000), the Gaussian approximation is reasonable even
in this high-dimensional setting. However, there are small departures from Gaussianity,
including skewness in the single-variable marginals and nonlinear correlations in the joint
density. The mixture model algorithm may have the potential to capture these features
and provide a more accurate approximation. This would require further development of
the algorithm, however, including appropriate handling of the boundary conditions (i.e.
note the proximity of the component distributions to 0). Nonetheless, we expect that the
mixture model will provide a computationally efficient alternative to stochastic simulation
of high dimensional CTMC models, and this has much potential in this area.

We have only summarised the diffusion limit, drawn analogies with our work, and
complemented this discussion with two examples. These connections are highly promising,
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however, and suggest that stochastic sensitivity and our mixture model have applications
across a far broader range of models than the stochastic differential equations we originally
worked with. The mixture model in particular could provide an approximate method for
solving complicated and high-dimensional stochastic models without simulation. Whereas
the diffusion limit and the inference on the model it provides are emploted across appli-
cations (Pollett, 1990; Pollett et al., 2010, e.g.), these ideas are novel in the dynamical
systems and stochastic differential equations settings. By establishing connections between
our results and those for discrete stochastic models, we can provide tools from either field
in new situations and contexts, bridging a gap between two otherwise disparate fields.
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Appendix A

Additional theoretical background

This appendix states several theoretical results from deterministic dynamical systems and
stochastic calculus which are used throughout this thesis, and in particular the proofs
presented in Section 3.3. These results are included for completeness, so we do not include
proofs and instead refer the reader to other sources.

A.1 Deterministic results

An important result for establishing bounds on a function given an integral inequality is
Grönwall’s inequality.

Theorem A.1 (Grönwall’s inequality) Let α, β, u : [a, b] → R be functions such that
β and u are continuous and that the negative part of α is integrable on every closed and
bounded subset of [a, b]. Then, if β is non-negative and for all t ∈ [a, b],

u(t) ≤ α(t) +

∫ t

a

β(τ)u(τ) dτ

then

u(t) ≤ α(t) +

∫ t

a

α(τ)β(τ) exp

(∫ t

τ

β(s) ds

)
dτ .

Additionally, if α is non-decreasing, then

u(t) ≤ α(t) exp

(∫ t

a

β(τ) dτ

)

Proof. The integral form of this result was first stated and proven by Bellman (1943). □

129
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A.2 Analytical tools for Itô calculus

There are several tools available for the analytic treatment of Itô integrals and solutions to
stochastic differential equations, which we make particular use of in the proofs presented
in Chapter 3. Let (Ω,F , P ) denote the probability space on which the Wiener process
Wt is defined—the sample space Ω is typically the space of all continuous real-valued
functions defined on [0, T ] (Kallianpur and Sundar, 2014). The Wiener process Wt has
an associated natural filtration of (Ω,F , P ), which we denote Ft. Let B(A) generically
denotes the Borel σ-algebra on the set A ⊆ Rq. A random function f : Ω× [0, T ] → R is
Itô integrable over the interval [s, t] ⊆ [0, T ] if (Øksendal, 2003; Kallianpur and Sundar,
2014)

(i) f is F ×B
(
[0, T ]

)
-measurable,

(ii) f is Ft-adapted, and

(iii)

E

[∫ t

s

f(ω, τ) dτ

]
< ∞.

The first tool is Itô’s isometry, which relates the expectation of an Itô integral to that
of a deterministic one and is useful for computing moments.

Theorem A.2 (Itô’s Isometry) Let f : Ω× [0, T ] → R be an Itô integrable stochastic
process. Then, for any t ∈ [0, T ]

E



(∫ t

0

f(ω, τ) dWτ

)2

 = E

[∫ t

0

f(ω, τ)2 dτ

]

Proof. Itô’s isometry typically arises in the formal construction of the Itô integral. For
example, see Section 5.1 of Kallianpur and Sundar (2014). □

Next, we have Itô’s Lemma (or the Itô Formula), which is a change-of-variables formula
in stochastic calculus and can be thought of as a generalisation of the chain rule from
deterministic calculus. We state and use the multidimensional form of the Lemma for
solutions to Itô stochastic differential equations, although more general forms exist (e.g.
see Theorem 5.4.1 of Kallianpur and Sundar (2014)).

Theorem A.3 (Itô’s Lemma) Let Xt be the strong solution to the stochastic differential
equation

dXt = a (Xt, t) dt+ b (Xt, t) dWt,
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where a : Rn× [0,∞) → Rn, b : Rn× [0,∞) → Rn×p and Wt is the canonical p-dimensional
Wiener process. If f : Rn × [0,∞) → Rm is twice continuously-differentiable, then the
stochastic process Yt := f (Xt, t) is a strong solution to the stochastic differential equation

dYt =

(
∂f

∂t
(Xt, t) +∇f (Xt, t) a (Xt, t) +

1

2
tr
[
b (Xt, t)

⊤ ∇∇f (Xt, t) b (Xt, t)
])

dt

+∇f (Xt, t) b (Xt, t) dWt.

Proof.
□

Our third and final result is the Burkholder-Davis-Gundy inequality, which when
applied to stochastic integrals provides bounds on the expected norm.

Theorem A.4 (Burkholder-Davis-Gundy Inequality) Let Mt be an Itô-integrable
stochastic process taking values in Rn. Then, for any p > 0 there exists constants cp, Cp > 0
independent of the stochastic process Mt such that

cpE



(∫ t

0

∥Mτ∥2 dτ
)p

 ≤ E

[
sup
τ∈[0,t]

∥∥∥∥
∫ τ

0

Ms dWs

∥∥∥∥
2p
]
≤ CpE



(∫ t

0

∥Mτ∥2 dτ
)p

 .

Proof. This result is stated and proven as Theorem 5.6.3 of Kallianpur and Sundar (2014).
□
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Appendix B

Details of population process models

In this appendix, we supplement the discussion on population processes and continuous
time Markov chains in Section 7.7 by providing further details on the theoretical results
by Kurtz (1970, 1971), the method for simulating from CTMCs, and the details of the
5-dimensional Ebola model by Legrand et al. (2007).

B.1 Coefficients of the fluid and diffusion limits
Let Xt denote the unscaled n-dimensional continuous-time Markov chain with state space
S ⊆ {0, 1, . . . ,M}n, so that the process is evolving with a fixed population size M . Let
q : S × S → [0,∞) denote the transition rates between two states of the Markov chain
The process Xt is termed density dependent (in the sense of Kurtz (1970)) if

q(x, x+ l) = Mf

(
x

M
, l

)
, (B.1)

where f is a suitable function and x, x + l ∈ S for l ∈ Rn. Let Y
(M)
t describe the

n-dimensional density process, i.e. Y
(M)
t = X

(M)
t /M . Theorem 3.1 of Kurtz (1970)

establishes that in the large population limit M → ∞, the density process Y (M)
t converges

in probability to a deterministic trajectory Y
(∞)
t solving the ODE

dY
(∞)
t

dt
= Q

(
Y

(∞)
t

)
, Y

(∞)
0 = lim

M→∞

1

M
X

(M)
0 , (B.2)

where
Q(y) =

∑

l∈Rn

l ̸=0, y+l∈S

lf(y, l).

For large M , the density process has small variation and is “close” to the deterministic
solution to (B.2). Kurtz (1971) then established a stronger result, showing that the

133
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variation of the density process about this deterministic limit is captured by an Itô
diffusion. Define the scaled process

Z
(M)
t =

√
M
(
Y

(M)
t − Y

(∞)
t

)
,

then Theorem 3.5 of Kurtz (1971) proves that Z(M)
t converges in distribution (weakly) to

an Itô diffusion Z
(∞)
t solving

dZ
(∞)
t = ∇Q

(
Y

(∞)
t

)
Z

(∞)
t dt+G

(
Y

(∞)
t

)
dWt, Z

(∞)
0 = 0, (B.3)

where Wt is an n-dimensional Wiener process and the n× n diffusion matrix G is such
that [

G(y)G(y)
⊤
]
ij
=

∑

l∈Rn

l ̸=0, y+l∈S

liljf(y, l) (B.4)

Any choice of diffusion matrix G such that (B.4) is satisfied will result in a statistically
identical stochastic process Z

(∞)
t .

B.2 Simulating from a continuous-time Markov chain
A sample path can be simulated from a continuous-time Markov chain using an algorithm
first given by Gillespie (1977). Suppose we are given a CTMC defined on a state space S
and with transition rates q : S × S → [0,∞). A single sample X from the CTMC at time
T can be simulated with the following procedure (Gillespie, 1977):

1. Initialise X = X0, the initial state of the process. If the initial state is uncertain,
sample X from the initial state distribution.

2. Sample the time τ to the next transition event as

τ ∼ Exp



∑

Y ∈S
Y ̸=X

q(X, Y )


 ,

where Exp(λ) denotes the exponential distribution with rate parameter λ. Set
t = t+ τ .

3. If t > T , terminate. Otherwise, sample the next state from the set of possible
transitions, where the probability of transitioning from X to a different state Y ∈
S \ {X} is given by

P (X → Y ) =
q(X, Y )∑
Z∈S
Z ̸=X

q(X,Z)
.

Set X to this sampled state.
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Parameter Value Source
M 200000 Dowell et al. (1999)
I0 3 Khan et al. (1999)
α 1 per week Bwaka et al. (1999), Dowell et al. (1999), and

Ndambi et al. (1999)
γh 7/5 per week Khan et al. (1999)
γi 7/10 per week Dowell et al. (1999) and Rowe et al. (1999)
γd 35/48 per week Khan et al. (1999)
θ1 0.67 Khan et al. (1999)
δ1 0.8 Khan et al. (1999)
δ2 0.8 Khan et al. (1999)
βI 0.588 per week Legrand et al. (2007)
βH 0.794 per week Legrand et al. (2007)
βF 7.653 per week Legrand et al. (2007)
γdh 35/23 per week Legrand et al. (2007)
γih 7/5 per week Legrand et al. (2007)

Figure B.1: Parameter values for the Ebola model, estimated from the 1995 outbreak in
the Democratic Republic of Congo. This table is adapted from Tables 3 and 4 of Legrand
et al. (2007), where values sourced directly from Legrand et al. (2007) have been estimated
from morbidity data. See the original paper for the interpretations of the parameters.

4. Repeat Steps 2 and 3 until the sample path is terminated.

The result is a single sample X of the population process at time T . To generate N
samples, the procedure is repeated N times. The sums are taken across all the possible
transitions from the current state, and typically most of the corresponding rates are zero,
so the sum does not need to be taken over the entire state space.

B.3 Details of 5-dimensional Ebola model

To conclude the discussion on population processes in Section 7.7, we considered the
5-dimensional model by Legrand et al. (2007) of the 1995 outbreak of Ebola in the
Democratic In this appendix, we provide further details on the model. Figure B.1 provides
parameter values for the model. These values are taken from a combination of previous
studies Bwaka et al. (1999), Dowell et al. (1999), Khan et al. (1999), and Ndambi et
al. (1999) and maximum likelihood estimates provided by Legrand et al. (2007). Let
Y

(M)
t =

(
St/M,Et/M, It/M,Ht/M,Dt/M

)⊤
denote the proportion of individuals in each
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stage after t weeks. The population process is density dependent, with

f
(
(s, e, i, h, d), l

)
=





βIsi+ βHsh+ βF sd, if l = (−1, 1, 0, 0, 0) ,

αe, if l = (0,−1, 1, 0, 0) ,

γhθ1i, if l = (0, 0,−1, 1, 0) ,

γdhδ2h, if l = (0, 0, 0,−1, 1) ,

γfd, if l = (0, 0, 0, 0,−1) ,

γi (1− θ1) (1− δ1) i, if l = (0, 0,−1, 0, 0) ,

δ1 (1− θ1) γdi, if l = (0, 0,−1, 0, 1) ,

γih (1− δ2)h, if l = (0, 0, 0,−1, 0) ,

0, otherwise.

The vector field of the fluid limit is

Q
(
Y

(∞)
t

)
=




−βIY
(∞,1)
t Y

(∞,3)
t − βHY

(∞,1)
t Y

(∞,4)
t − βFY

(∞,1)
t Y

(∞,5)
t

βIY
(∞,1)
t Y

(∞,3)
t + βHY

(∞,1)
t Y

(∞,4)
t + βFY

(∞,1)
t Y

(∞,5)
t − αY

(∞,2)
t

αY
(∞,2)
t −

(
γhθ1 + γi (1− θ1) (1− δ1) + δ1 (1− θ1) γd

)
Y

(∞,3)
t

γhθ1Y
(∞,3)
t −

(
γdhδ2 + γih (1− δ2)

)
Y

(∞,4)
t

γdhδ2Y
(∞,4)
t + δ1 (1− θ1) γdY

(∞,3)
t − γfY

(∞,5)
t



.

so that the differential equation is

dY
(∞)
t

dt
= Q

(
Y

(∞)
t

)
, Y

(∞)
0 =

1

200000
(0, 0, 3, 0, 0)

⊤
.

The diffusion limit is then

dZ
(∞)
t = ∇Q

(
Y

(∞)
t

)
Z

(∞)
t dt+ g

(
Y

(∞)
t

)
, Z

(∞)
0 = 0,

where the 5× 5 diffusion matrix g satisfies



B.3. Details of 5-dimensional Ebola model 137

[
g
(
Y

(∞)
t

)
g
(
Y

(∞)
t

)⊤]
11

= βIY
(∞,1)
t Y

(∞,3)
t + βHY

(∞,1)
t Y

(∞,4)
t + βFY

(∞,1)
t Y

(∞,5)
t[

g
(
Y

(∞)
t

)
g
(
Y

(∞)
t

)⊤]
12

=

[
g
(
Y

(∞)
t

)
g
(
Y

(∞)
t

)⊤]
21

= −βIY
(∞,1)
t Y

(∞,3)
t − βHY

(∞,1)
t Y

(∞,4)
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(∞,1)
t Y

(∞,5)
t[

g
(
Y

(∞)
t

)
g
(
Y

(∞)
t

)⊤]
22

= βIY
(∞,1)
t Y

(∞,3)
t + βHY

(∞,1)
t Y

(∞,4)
t + βFY

(∞,1)
t Y
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(
Y
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g
(
Y
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(
Y

(∞)
t
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(
Y
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t
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= −αY
(∞,2)
t[

g
(
Y

(∞)
t

)
g
(
Y

(∞)
t
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33

= αY
(∞,2)
t +

(
γHθ1 + γi(1− θ1)(1− δ1) + δ1(1− θ1)γd
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Y

(∞,1)
t[

g
(
Y
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Y
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= −δ1(1− θ1)γdY
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g
(
Y
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(
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44
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(
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(∞)
t
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(
Y

(∞)
t
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54

= −γdhδ2Y
(∞,4)
t[

g
(
Y

(∞)
t

)
g
(
Y

(∞)
t

)⊤]
55

= δ1(1− θ1)γdY
(∞,1)
t + γdhδ2Y

(∞,4)
t + γfY

(∞,5)
t

with all other entries zero. There are many choices of g such that the product gg
⊤ has

these entries, but to compute the Gaussian approximation with Mazzoni’s method, we

only need to evaluate g
(
Y

(∞)
t

)
g
(
Y

(∞)
t

)⊤
and therefore no not need to make such a choice.
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