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Abstract
In this research, we proposed a stereo visual simultaneous localisation and mapping (SLAM) system that efficiently works in
agricultural scenarios without compromising the performance and accuracy in contrast to the other state-of-the-art methods.
The proposed system is equipped with an image enhancement technique for the ORB point and LSD line features recovery,
which enables it to work in broader scenarios and gives extensive spatial information from the low-light and hazy agricultural
environment. Firstly, the method has been tested on the standard dataset, i.e., KITTI and EuRoC, to validate the localisation
accuracy by comparing it with the other state-of-the-art methods, namely VINS-SLAM, PL-SLAM, and ORB-SLAM2. The
experimental results evidence that the proposed method obtains superior localisation and mapping accuracy than the other
visual SLAM methods. Secondly, the proposed method is tested on the ROSARIO dataset, our low-light agricultural dataset,
and O-HAZE dataset to validate the performance in agricultural environments. In such cases, while other methods fail to
operate in such complex agricultural environments, our method successfully operates with high localisation and mapping
accuracy.

Keywords Stereo visual SLAM · Simultaneous localisation and mapping (SLAM) · Place recognition · Bundle adjustment

1 Introduction

In the last two decades, vision-based localisation and map-
ping has drawn much attention for its broader applications
in robotics and computer vision (Zhou et al., 2015; Mur-
Artal & Tardós, 2017; Cvisic, 2017; Qin et al., 2018; Bavle
et al., 2020; Jiao et al., 2021; Cao & Beltrame, 2021; Liang
& Wang, 2021; De Croce et al., 2019; Pire et al., 2020).
Visual simultaneous localisation and mapping (VSLAM) is
a key concept that emerges for mapping an unknown envi-
ronment while estimating camera pose in that environment.
SLAM technique is specially used in an occluded environ-
ment where GPS and any other wireless signals are mostly
unavailable. An autonomous agricultural robot navigating in

B Rafiqul Islam
md_rafiqul.islam@mymail.unisa.edu.au

Habibullah Habibullah
habibullah.habibullah@unisa.edu.au

Tagor Hossain
md_tagor.hossain@mymail.unisa.edu.au

1 UniSA STEM, University of South Australia, Mawson Lakes
Blvd, Adelaide, SA 5095, Australia

a shaded orchard can be an example of such a scenario.Many
SLAM methods have been proposed over time, and they are
mainly dissimilar by the usage of different sensors, i.e., cam-
era, lidar, etc. Mapping an unknown environment using a
camera sensor provides rich information about the environ-
ment compared to other available sensors, i.e., colour, texture
and depth information. Meanwhile, it is a cheap, compact,
noise-free, lifelong and sustainable device. Subsequently, a
SLAM system deployed with a camera has been a significant
interest in robotics and computer vision nowadays.

Visual SLAMmethods aremainly subdivided into twocat-
egories: Feature-based method (Mur-Artal & Tardós, 2017;
Quan et al., 2021) and direct method (Engel et al., 2014).
Feature-based methods solely rely on feature extraction both
for map point creation and accurate camera pose estima-
tion by minimising reprojection error. On the other hand,
the direct method utilises image pixel density for map point
creation and camera pose estimation by minimising photo-
metric error (Ma et al., 2019). Among these two methods
(Mur-Artal & Tardós, 2017; Engel et al., 2014), the feature-
based method (Mur-Artal & Tardós, 2017) is proven to be
more robust in illumination changes and geometric errors.
The feature-based SLAMmethods can produce very compet-
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Fig. 1 Sample image and detected features of a shaded macadamia orchard using the proposed method

itive accuracy similar to its rival laser range scanner precision
when abundant features are extracted. However, those meth-
ods very often fail due to inadequate feature extraction from
images of a scene. Inadequate feature extraction sometimes
causes a loss of tracking of a feature-based SLAM system
(Ma et al., 2019). The feature extraction and matching can
be reduced by many factors such as underexpose and hazy
images (Huang, 2001; Alismail et al., 2017). Nevertheless,
some applications, which require semi-dense mapping, can
still be benefited from the direct method.

In this paper, several improvements have been proposed
for a visual SLAM system—enhancing meaningful corre-
spondences from a pair of images in an extremely changing
environment is one of the main contributions. Figure1 shows
meaningful feature extraction using the proposed method.
The proposed method is deployed with image enhancement;
therefore, it potentially improves the visibility and colour
shift caused by the scattered light in the air. Moreover, the
image enhancement technique for a visual SLAM system
opens up a great possibility that enhances the machine’s
capability to recover sufficient information from an uncer-
tain environment. Therefore, localisation and mapping have
been potentially improved. On the flip side,most of the visual
SLAM algorithms assume that the input images are fine-
tuned scene radiance (Mur-Artal & Tardós, 2017; Engel et
al., 2014; Quan et al., 2021; Ma et al., 2019), and are mostly
evaluated using preprocessed datasets. However, the assump-
tion might not always be practical in real applications as the
raw images have to be processed onboard. Thus, the proposed
method can be applied to a variety of scenarios that suffers
from extremely changing environments.
The primary contributions of this research are as follows:

1. To the best of the author’s knowledge, the proposed
method is the first stereo-visual SLAM for highly shaded
and GPS-denied agricultural orchards.

2. A local point and line feature recovery technique has
beendevelopedusing a low-light image enhancement and
dehazingmethod for an agricultural stereo visual SLAM.

3. A low-light agricultural dataset has been recorded for the
first time from a Macadamia orchard for the evaluation
of visual SLAM methods in difficult and GPS-denied
agricultural orchards. The dataset is publicly available at
https://rafiqrana.github.io/low-light-dataset.

In the rest of the paper, the sections are discussed in
the following orders: related work in Sect. 2, discussion of
the proposed method in Sect. 3, presenting the experimental
result and discussion in Sect. 4 and 5 respectively, and finally
ends with a conclusion in Sect. 6.

2 RelatedWork

In recent years, remarkable progress has been achieved in the
development of stereo visual SLAM systems (Mur-Artal &
Tardós, 2017; Gomez et al., 2017; Cvisic, 2017; Sumikura et
al., 2019;Lemaire et al., 2007;Marks et al., 2008;Nalpantidis
et al., 2011; Wen et al., 2021). This particular area is becom-
ing promising for real-time operation, and researchers are
now striving to make the visual SLAM system adaptable for
different uncertainties and atmospheric conditions (Huang
& Liu, 2019; Lazaros et al., 2008). For instance, adverse
weather conditions, including low atmospheric light, motion
blur, and hazy atmosphere, are some relatively new short-
comings in visual SLAM systems (Zhu et al., 2015). As a
consequence, visual SLAM system, especially for low-light
environment, has recently gained significant research inter-
est. The robustness of the SLAM system is reduced by rapid
illumination change in the environment. Automatic camera
control is one of the common reasons for the illumination
change of an image (Alismail et al., 2017). Unfortunately, a
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vision-based system has little hope of tracking recovery if the
feature-based pipeline fails due to the illumination change.

While extended Kalman filter-based SLAM was the ear-
lier convention to work in a large working environment,
visual-inertial SLAM and pure feature-based visual SLAM
systems are becoming more robust and popular nowadays
(Mur-Artal & Tardós, 2017; Gomez et al., 2017; Kerl et al.,
2013; Zhong & Chirarattananon, 2021; Chen et al., 2019).
Visual-inertial SLAM is also a popular research stream
nowadays for its cheap and simple hardware requirements.
VI-SLAM has now been used in many applications in the
field of localisation and mapping, such as autonomous nav-
igation systems, augmented reality and virtual reality (Chen
et al., 2018; Liu et al., 2018). The pure feature-based algo-
rithms entirely rely on correspondences to estimate the ego
motion of the camera sensor and map the surroundings.
Therefore, sufficient features need to be extracted from the
environment. However, some algorithms that solely rely on
key-points are failed to extract meaningful features from a
low-textured environment (Huang&Liu, 2019;Yang&Zhai,
2019; Gomez et al., 2017; Alismail et al., 2017). The authors
of PL-SLAM tried to solve the problem by appending line-
segment features with point features, which comparatively
gives better results compared to ORB-SLAM2 in such a
scenario (Mur-Artal & Tardós, 2017; Gomez et al., 2017).
Unfortunately, non of these algorithms produce a good result
in the low-light and hazy environments. Moreover, insuf-
ficient feature extraction leads to a high reprojection error
which results in a high ego-motion error and sometimes
causes a loss of tracking of visual SLAM systems. In addi-
tion to that, insufficient correspondences reduce the place
recognition performance of the visual SLAM system while
it plays a vital role in the loop detection and loop closure
of the system (Milford &Wyeth, 2012; Islam & Habibullah,
2022).

Visual SLAM system with the fine-vocabulary technique
was introduced to work in an invariant image lighting condi-
tion (Ranganathan et al., 2013;Mikulík et al., 2010; Schubert
et al., 2021). The authors focus on light-invariant feature
descriptors; in other words, the descriptors of features are
expected to be invariant even the illumination of the image
of a scene changes. This approach improves the performance
of the visual SLAM system to some extent in low-light imag-
ing conditions. However, this method assumes that sufficient
features are extracted from the low-light images. But detect-
ing features in a low-light environment is very challenging as
most feature detection algorithms are highly sensitive to pixel
density value. Therefore, such methods can not compensate
for the overall performance of the visual SLAM system.
Similarly, A binary feature descriptor has been proposed to
tackle such a low-textured environment due to illumination
changes in a direct method (Alismail et al., 2017). But the
main challenge of a direct method is to cope with a large

number of mismatched feature points efficiently in real-time
(Tykkälä &Comport, 2011). Therefore, the current state-of-
the-art feature-based method, which is very forthcoming for
real-time operation, does not have any effective solutions for
changing the imaging environment.

In agricultural robotics and precision agriculture, the
vision-basednavigation systemhasbeenpavedwith advances
in Technology (Rovira-Más et al., 2008; Ball et al., 2016;
Paturkar et al., 2017; Chen et al., 2018; Shu et al., 2020;
Islam & Habibullah, 2021). In (Paturkar et al., 2017; Chen
et al., 2018), the authors investigated potential works of the
vision-based systems in the agricultural context and reported
challenges and limitations in current progress. It is found
that major limiting factors are changing illumination and
low-light condition in agricultural scenarios. In another work
(Ball et al., 2016), a global positioning system (GPS), an iner-
tial measurement unit (IMU) and a stereo vision system have
been used for obstacle detection and navigation of a mobile
agricultural robot. The system has been tested for numerous
weeks of field trials during the day and night, and it was
found from the experiment that the robot was able to operate
for only 5 min without any GPS data. Therefore, such sys-
tems, that rely on additional sensor information, i.e., GPS,
are not operational in the shaded orchard. For solving SLAM
in an agricultural olive groves environment, Extended Infor-
mation Filter (EIF) was proposed (Cheeín et al., 2011; Shu
et al., 2021), and the map was constructed by detecting olive
stems from a larger range sensor and a monocular camera.
The Support Vector Machine (SVM) is used to detect olive
stems from the captured image of the environment (Cheeín
et al., 2011). In other works (Cheeín & Guivant, 2014; Mat-
suzaki et al., 2018), A SLAMmethod with GPS localization
is utilised for determining the treetops volume information,
and semantic mapping is also introduced to deal with the
contextual navigation in greenhouses for agricultural robot
navigation (Matsuzaki et al., 2018). SLAM for agricultural
applications is proposed by generating a map in the simu-
lated agricultural environment (Habibie et al., 2017), and the
map was constructed from grid-based/volumetric using fine-
tune SLAM-GMapping algorithm. However, the simulated
environment is well constructed and does not change over
time; on the flip side, a real agricultural environment is very
uncertain where the camera frames and other sensory data
fed to the system change instantaneously due to uncertain
atmospheric conditions. (Aguiar et al., 2020; Huang & Liu,
2019).

Finally, we found a few analogous works to our proposed
method where the authors attempted to solve the flaws of a
visual SLAM system for the low-light environment (Huang
&Liu, 2019; Yang&Zhai, 2019; Kim et al., 2021). In Huang
and Liu (2019), the authors employed a simple histogram
equalisation technique that is intended to work as a frontend
of theORB-SLAM2system for preprocessing low-light input
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Fig. 2 Proposed system
architecture
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image stream. Although their method reasonably improves
image visibility and subsequent feature extraction to some
extent, they did not address haze in the image even when
it is a common issue found in sudden illumination changes.
Moreover, their implementation was only tested on a point
feature-based SLAM system, which suffers in a low-textured
environment (Gomez et al., 2017). In anothermethod (Kim et
al., 2021), the variation of the illumination has been improved
by selecting the seed low dynamic range (LDR) image for
high dynamic range (HDR) fusion to secure inter-frame con-
sistency. Then they exploited the camera response function
(CRF) to synthesise HDR images. However, point and line
features based on visual SLAM systems for the low-textured,
low-light and hazy environment are still left undeveloped.

3 System overview

A structural overview of the proposed SLAM system is
illustrated in Fig. 2. This system comprises mainly four sub-
systems - image enhancement, tracking, local mapping and
finally loop closure. The goal of these four subsystems is to
construct a 3Dmap of a stereo camera recorded environment
and track a camera location in that environment. The oper-
ation of the SLAM system is described here considering a
single pair of stereo images. Therefore, the whole process
needs to be placed in a loop in order to simultaneously map
and localise the sensor in the 3D-constructed map.

3.1 Image enhancementmodel

Colour inversion, which is also known as the negative effect,
has been utilised here to determine haze in low-light images
(Dong et al., 2011). Assuming the input is an 8-bit RGB
colour image, the colour components can take values rang-

ing from 0 to 255. Therefore, the inversion mapping can be
defined as:

Qc(m, n) = 255 − Pc(m, n), (1)

where c is the index of the colour channel, (m, n) is the
index of the pixel in m-th row and n-th column, Pc(m, n)

is the pixel intensity of input image P , and Qc(m, n) is the
pixel intensity of the inverted image Q.
In image processing and computer vision, the atmospheric
scattering model (Lee et al., 2016; Dong et al., 2011) can be
expressed as follows:

Qc(m, n) = J c(m, n)t(m, n) + Ac(1 − t(m, n)), (2)

where (m, n) is the indexof the pixel, Q(m, n) is the observed
inverse intensity of the low-light hazy pixel, which is deter-
mined in Equ. 1. In this case, J (m, n) is the radiance of
the scene that represents the de-hazed image, t(m, n) is the
medium of transmission that describes the amount of light
enters to camera sensor without being scattered, and A is the
light in the atmosphere during image capture and a global
constant. A, P and J are three-dimensional arrays as the
input image is in RGB space. The medium of transmission
t(m, n) (Long et al., 2014; Xu et al., 2012; Shuai et al., 2012)
for min operation of normalised haze image is determined as:

t(m, n) = 1 − ω min
c∈{r ,g,b}(min

y∈�

Qc(y)

Ac
), (3)

where� is a local block centred at (m,n) having a size of 9 in
this paper. ω is the parameter that tunes the amount of haze
to preserve the optimal depth of the scene. The value of ω

is set to 0.8 in this paper, which produces a good result. The
global atmospheric light A has been calculated by selecting
200 pixels with the lowest intensities in all colour channels.
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Fig. 3 Process of low-light and
hazy image enhancement

Among them, a single pixel has been chosen to have the
highest value for the sum of all channels. As P is given, J
can be restored by substituting t and A into Equ. 2 as:

J c(m, n) = Qc(m, n) − Ac

t(m, n)
+ Ac (4)

Once the dehazed image J is obtained, the enhanced image
can be produced by performing an inverse operation as fol-
lows:

I cenhanced(m, n) = 255 − J c(m, n). (5)

The process is conceptually shown in Fig. 3, which
presents a surprising image enhancement.

3.2 Feature tracking

Feature tracking subsystem leverages the enhanced images,
where feature extraction, stereo matching and local map
tracking operation are actioned. This subsystemmainly deals
with visual odometry estimation between consecutive frames
and the new keyframe insertion policy.

3.2.1 Point and line features

In the proposed method, the well-known Oriented FAST
and Rotated BRIEF (ORB) method for point feature and
Line-segment Detector (LSD) for line feature have been
employed to detect sufficient features from wide imaging
scenario (Rublee et al., 2011; Von Gioi et al., 2008). ORB
feature has been chosen for its fast feature detection perfor-
mance while LSD has also been chosen for its superiority
to detect features from low-texture environments. Moreover,
the line segment givesmoremeaningful geometrical and spa-
tial information about the environment that might be later
used for trajectory planning from the 3D reconstructed map.
Both ORB and LSD methods provide the binary nature of
the descriptor that allows fast and efficient feature matching
so that the binary bag of words (DBoW3) method can utilise
the binary descriptor for fast and efficient place recognition.
Finally, employing both feature detection methods ensures
a high magnitude of correspondences from the image of a
scene which results in a precise camera pose estimation in
the proposed method.

3.2.2 Stereo matching and finding correspondences

For stereo matching and correspondence problems, image
rectification is a useful technique that reduced the 2-D stereo
correspondence problem into a 1D problem. Image rectifi-
cation works in such a way that the corresponding points
always lie on the same row coordinates, i.e., parallel with the
x-axis and match up between views (Hartley & Zisserman,
2004). Consequently, disparities between the images are in
the x-direction only. We extract ORB and LSD features in
both images and for every feature in the left image, we search
for a match in the right image. This way, the point and line
correspondences are determined. For the stereomatching and
finding correspondences, we used open-source implementa-
tions from the OpenCV library.

3.2.3 Motion estimation

The camera motion estimation is a fundamental problem in
the visual SLAMsystem.The goal of the camera pose estima-
tion is to find the camera pose T from point and line features.
The camera pose consists of 3D rotation (roll, pitch, and
yaw) and 3D translation (x, y and z) of a total 6D pose in
the world coordinate system. To solve the problem, camera
intrinsic parameters are determined by calibrating the cam-
era, and an essential matrix has been determined using the
corresponding points and lines of stereo image pairs. Once
the essentialmatrix and camera intrinsic from the camera cal-
ibration are known, the camera motion has been solved by
the perspective-n-point (PnP) method (Lepetit et al., 2008).
The resultant camera pose is, therefore, the composition of
rotationmatrix (r) and translation vector (t) in homogeneous
coordinates.

3.2.4 Keyframe selection

Keyframe selection has significant importance for local map-
ping because it reduces unnecessary and repetitive keyframe
insertion into a map. Therefore, a new keyframe is inserted
depending on howmuch the current image ismatched the last
image. There are several strategies available for keyframe
selection. One of the most common strategies is: for every
n frame, at a particular camera pose displacement when the
number of matched features in both images is less than a cer-
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Fig. 4 A camera projection
model and reprojection error: a
A stereo camera projection
model, and b projection error of
point and line-segment features
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tain threshold, a new keyframe is required to be inserted. In
our approach, we employ the strategy for keyframe selection
as proposed in Kerl et al. (2013), where user define parame-
ters are reduced in the following ways:
The differential entropy of gaussian x � N (μ,�) with m
dimensions is define as:

h(x) = 3(1 + ln(2π) + 0.5ln(|�|)), (6)

where � is the scale of the error distribution. Since the
entropy changes as the scene of the trajectory changes, i.e,
H(x) ∝ ln(|�|), the uncertainty of the covariance matrix is
shifted into a scalar form.
Then, the entropy ratio between motion estimation is as fol-
lows:

α = H(Tk:k+1)

H(Tk:k+ j )
. (7)

where the entropy ratio α has been calculated from the esti-
mated motion of the last keyframe k to the current keyframe
k + j . The estimated movement from the last keyframe k to
the immediate next frame k + 1. The entropy ratio decreases
upon the increase in distance between the last keyframe and
the current frame. In the proposed approach, we empirically
get the best result for α = 0.8. Finally, a new keyframe is
selected when the current frame k + j lies below the prede-
fined threshold.

3.3 Local mapping

The local mapping thread is responsible for performing bun-
dle adjustment when a new keyframe is inserted. Moreover,
local mapping is also responsible for optimising the position
of the triangulated landmarks from different camera view-
points. Local bundle adjustment is used to refine the 3D
coordinates of inconsistently constructed 3D landmarks in
the local map. Therefore, the actions of the subsystem are
described as follows:

3.3.1 Keyframe insertion

Every time when a new keyframe is chosen from the tracking
thread as described in Sect. 3.2.4, it has to be inserted into the
local map. For the keyframe insertion, a similar approach has
been used in other V-SLAM methods (Gomez et al., 2017;
Mur-Artal & Tardós, 2017; Qin et al., 2018). Estimating the
camera poses inevitably results in errors, which accumulate
over time, and this effect is called the drift error. The esti-
mation of the relative camera pose between the current and
previous keyframes is therefore needed to be refined. This is
essentially comprised of performing the bundle adjustment
on the local map. Since all the keyframes are connected with
the current one by the visibility graph and the landmarks
observed by those local keyframes. Therefore, we employ
local bundle adjustment to optimise the local map which has
been discussed broadly in Sect. 3.3.2.

3.3.2 Local bundle adjustment

Camera pose estimation from one viewpoint to the next
always contains some errors due to imprecise key-points and
line-segments in the images, incorrect matching in corre-
spondences, and imprecise camera calibration. These errors
accumulate as the number of camera views incremented. The
bundle adjustment is used to refine the camera poses and
3D landmarks’ position in the 3D constructed map. When
a new keyframe is inserted in the map, bundle adjustment
of the local map is performed. A stereo camera model has
been illustrated in Fig. 4a, which has been used to derive the
mathematical model of local bundle adjustment as follows:

Let Tkw ∈ SE(3) be the camera pose, where k stands for
keyframe and w stands for world coordinate, Xikw ∈ R

3

be the position of world 3D point in the i-th key-points.
x̂ik ∈ R

2 be the projected 2D key-points into the image
plane. A jkw, Bjkw ∈ R

3 be the world 3D endpoints of the
j-th line. and â jk , ̂b jk ∈ R

2 be their projected 2D line end-
points in the image plane. The detection of Xikw in the image
plane is xik ∈ R

2; Similarly, the detections of A jkw, Bjkw

in the image plane are ha jk,
hb jk ∈ R

3, where h stands for
homogeneous form. Thus, the re-projection error of the line
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feature is illustrated in Fig. 4b, where da jk , db jk are the pixel

distance from a jk, bbk to the projected line
−−−−→
â jk ,̂b jk .

Let π be the projection function of a stereo camera, and hπ

is its homogeneous form.

hπ =
⎡

⎢

⎣

fx
Xkw
Zkw

+ cx
fy

Ykw
Zkw

+ cy
fx

Xkw−b
Zkw

+ cx

⎤

⎥

⎦
, (8)

where, ( fx , fy) is the focal length, (cx , cy) is the princi-
pal point of the camera, and b is the baseline, and all those
parameters are known from camera calibration. The repro-
jection error of key-points and line-segment are respectively
epik and eljk :

epik = [

xik − π(Tkw, Xikw)
]

, (9)

eljk =
[

dpi,k
dqi,k

]

=
[

l jkπ(Tkw, A jkw)

l jkπ(Tkw, Bjkw)

]

, (10)

where l jk is the infinite line corresponding to the j-th line in
the k-th keyframe. Combining the points and line segment,
the loss function is:

L =
∑

i∈K

[

∑

i∈P (epik)
T�−1

ik epik + ∑

j∈L(eljk)
T�−1

jk e
l
jk

]

.

(11)

where the left and right parts of the loss function are residual
functions for the points and lines features, respectively.�−1

ik ,
�−1

jk are the inverse covariance matrices of points and lines,
K, P , L refers to the groups of a local keyframe, points and
lines, respectively.

Minimising the loss function L , the camera pose, as well
as the position of the point and line landmarks, gets their opti-
mal values. However, the optimisation problem requires the
derived Jacobianmatrices. The Jacobians for the reprojection
error of points epik and line e

l
jk are already deduced in Zhou et

al. (2015); Zuo et al. (2017); Mur-Artal and Tardós (2017).
Once all the Jacobians about the loss function are known,
the optimisation of camera pose, point and line landmarks is
solved using the Levenberg-Marquardt method implemented
in the open-source library g2o (Kümmerle et al., 2011).

3.4 Loop closing

The loop closure subsystem is assigned to recognise a loop
based on whether or not the sensor has already visited
the current scene. It is responsible for triggering a pose
graph optimisation (PGO)method to optimise the cumulative
error being distributed along the recognised loop (Fuentes-
Pacheco et al., 2015). In the case of tracking failure or
relocalisation in an alreadymapped scene, loop closure plays

an essential role. This subsystem includes two steps, as fol-
lows:

3.4.1 Loop closure detection

Loop detection simply involves searching a potential amount
of features of a currently being processed scene to the pre-
viously visited scene in the database. If the search returns
the desired threshold, the loop closure is considered to be
detected. However, a good loop closure detection technique
expects no false-positive and least false-negative loop detec-
tion, which is the fundamental requirement of a good loop
closure algorithm (Fuentes-Pacheco et al., 2015). The loop
is accurately detected by employing a newly developed bag
of words (DBoW3) approach (Muñoz-Salinas & Medina-
Carnicer, 2020), which is an improved version of theDBoW2
(Galvez-Lopez & Tardos, 2012). For the binary nature of
DBoW3, it is comparatively fast for such a problem. It was
initially developed for BRIEF binary descriptor only; how-
ever, it was later proposed to work with LSD as well (Gomez
et al., 2017). Therefore, at each time step, both ORB and
LSD features are compared and saved parallelly for accurate
loop closure detection. Searching for both images is motivat-
ing as some scenes might be described more precisely with
segments compare to key-points or vice versa.

3.4.2 Global bundle adjustment

The global bundle adjustment is the specific case of local
bundle adjustment, where all keyframes and landmarks are
optimised. The process optimises the overall map by adjust-
ing the distributed drift while fusing both sides of the loop.
This problem is well known as PGO, where all the nodes are
considered to be the keyframes within the detected loop and
edges are produced by the essential graph and spanning tree.
In the proposed method, a full bundle adjustment is incorpo-
rated after a pose graph to achieve an optimal solution. The
PGO problem is solved by employing an open-source imple-
mentation of g2o library (Kümmerle et al., 2011). The entire
trajectory is refined after the PGO operation is completed.

4 Experimental validation

The proposed method’s performance has been evaluated
using standard datasets and evaluation metrics. The evalu-
ation metrics include relative pose error (RPE) and absolute
pose error (APE) of a visual SLAM system that is accumu-
lated over the distance travelled by the camera sensor. The
RPE is a standard metric for evaluating the local consistency
of a SLAM trajectory. It compares the relative poses along
with the estimated and the reference trajectories (ground
truth). This is based on the delta pose difference between
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Table 1 Properties of different datasets used for the experimental validation

Datasets KITTI EuROC Low light agri.
dataset

O-haze

Cameras Stereo gray 2 ×
∼1242 × 376
(global shutter)

Stereo gray 2 × 752
× 480 @20Hz
(global shutter)

Stereo RGB 2 ×
1920 × 1080
@30Hz (electronic
synchronized
rolling shutter)

Mono RGB 5456 × 3632

IMUs OXTS RT3003 IMU
& GPS, 6 axis,
@100 Hz

ADIS16488 3-axis
acc/gyro @200Hz

– –

Environment Outdoor/street Indoor Outdoor/agricultural Outdoor

them. The detailed formulations of the evaluation metrics
have been included in Appendix B. The formulations for
these evaluation metrics were implemented in EVO evalua-
tion tool (Grupp, 2017). Therefore, this tool has been used
to evaluate all those metrics. The proposed method has been
experimented upon four different datasets and comparedwith
three different state-of-the-art visual SLAM methods to val-
idate the performance in different environmental conditions.
In the experiments, the feature selection threshold has been
set to 3k for each of the compared systems. Firstly, the results
of the proposed method are compared with VINS-Fusion
(Qin et al., 2019), PL-SLAM (Gomez et al., 2017) and ORB-
SLAM2 (Mur-Artal & Tardós, 2017) by experimenting with
their open-source software in KITTI (Geiger et al., 2013)
and EuRoC Micro Aerial Vehicle (MAV) datasets (Burri et
al., 2016). Secondly, the proposed method has been experi-
mented on ROSARIO (Pire et al., 2019) agricultural dataset.
Thirdly, the proposed method has been experimented on our
low-light agriculture dataset of a macadamia orchard and
compared with other methods to test the tracking loss or suc-
cess in such a low-light condition. Finally, the performance of
the proposedmethod has been tested on the outdoor hazy (O-
HAZE) dataset (Ancuti et al., 2018) to check the operability
of the proposed method in hazy conditions. The properties of
different datasets used for the experimental validation have
been included in Table 1

Additionally, the application runtime has also been eval-
uated for the real-time operation of the system by changing
different parameters and settings. All the experiments have
been computed on a DELL Latitude 5490 having Intel
Core i5-8250U quad-core 3.38GHz, Intel HD Graphics 620
and 16GB DDR4 RAM (2400MHz). Each sequence of the
datasets was run five times because of the non-deterministic
nature of the multithreading system (Mur-Artal & Tardós,
2017). Finally, we median the results for an accurate evalu-
ation of the estimated trajectories from the proposed visual
SLAM system. In the following four subsections, the exper-
imental results have been presented for the KITTI dataset,

EuRoC MAV dataset, Low-light Agricultural dataset of a
Macadamia Orchard, and O-Haze Dataset, respectively.

4.1 KITTI dataset

The KITTI dataset comprises high-resolution colour and
grayscale stereo sequences filmed from a standard station
wagon around Karlsruhe, in motorways and rural areas.
A GPS and a Velodyne laser scanner were employed to
ensure accurate ground truth of the sequences. Some of the
sequences contain underexposed scenes in the pathway, and
the proposed method applies image enhancement on those
frames to recover enough features from the low-light area.
Many sequences such as 00, 02, 05, 06, 07, and 09 contain
loops; please refer to Table 2 to see the KITTI sequences
that have been used in the experiment. Thus, the proposed
method performs place recognition and bundle adjustment
on these sequences to reduce the localisation and mapping
error.

The estimated trajectories of the proposed method and
othermethods are illustrated in Fig. 5 for KITTI 00 sequence.
In Fig. 5a, the trajectories are shown in the xz camera
axis. The KITTI 00 sequence has a sufficient loop and
close features and was recorded in a highly textured envi-
ronment. In such an environment, both keypoint-based and
line-segment-based approaches perform very similarly. For
example, almost all tested methods produce similar results
in the KITTI 00 sequence, and yet the proposed method
yields a slightly superior result in trajectory estimation than
the other visual SLAM methods. Additionally, each com-
ponent of translation errors (x, y, z) are individually shown
in Fig. 5b that gives a thorough overview of the error rate
in each frame index along the pathways. Only a rapid vari-
ation in the y component is found for all tested methods.
Here the proposed method was too close to the ground truth
trajectory. Similarly, the rotation part (roll, pitch, yaw) of
the RPE is shown in Fig. 5c. It can be seen that there is
almost no variation in the estimation of the pitch component
of the (roll, pitch, yaw) because a ground vehicle usually
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(a) (b) (c)

Fig. 5 Estimated trajectory and ground truth comparison, where, a The accuracy of the estimated trajectory from the top view, and b The accuracy
of XY Z coordinates, respectively, with respect to distance travelled. c The accuracy of the roll, pitch and yaw relative to distance travelled
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Fig. 6 RPE of the proposed method, PL-SLAM and ORB-SLAM2 on
KITTI 00. a–c are illustrating the RPE, RMSE, median, and standard
deviation respectively for the proposed method, PL-SLAM and ORB-

SLAM2. Note that, the RPE in the y-axis has been updated for every
100m of camera travel up to 3500m (35×100 m) of total trajectory
length

faces little pitch variation on the plain surface, and the KITTI
dataset was captured in similar terrain.

The relative pose error (RPE) is presented in different
statistical forms in Fig. 6 that shows the root mean square
error (RMSE), median, mean and standard deviation (SD)
of the RPE among the proposed method and other meth-
ods in KITTI-00 sequence. It is illustrated in Fig. 6 how
much the proposedmethods and other methods disagree with
the ground truth data. For the evaluation of pose estimation
error, RMSE is considered to be a standard evaluation met-
ric among all other forms. The lower the value of RMSE,
the more it is accurate in pose estimation, see Fig. 6 for the
observation. From the evaluation, it is found that the pro-
posed method reduces around 3% RMSE of the translation
part in the KITTI-00 sequence. Figure 6a, 6b and 6c show
RPE of the proposed method, PL-SLAM, and ORB-SLAM2
respectively. The RPE for the VINS-Fusion method was not
illustrated as there was a tracking loss during the test. The

standard deviation represents how the estimated pose error is
dispersed from itsmean value alongwith the range of frames.

The comparisons of estimated trajectories by the proposed
method and the other methods have been shown in Fig. 7
for KITTI 01, 08, and 09 sequences. The keypoint-based
method, i.e., ORB-SLAM2, is very error-pronewhen no loop
closure is detected. The errors are accumulated until any
loop closures are detected, which finally results in a large
estimation error, see Fig. 7a around x,z (1700,-1200), and
Fig. 7b around x,z (400,400). Such keypoint-based methods
are very fragile in finding sufficient correspondences in a
sharp turning around, and they start to deviate from the actual
path, see Fig. 7a approximately between x,z (900,-500), and
x,z (1700,-1200). Similarly, in and Fig. 7b approximately
between x,z (100,350), and x,z (400,400). However, fusing
inertial measurement unit (IMU) data with such a keypoint-
based method reduces rotation error in such sharp turning
around, i.e., VINS-Fusion (Qin et al., 2019) utilises the IMU
data and produces a better result in such scenario, shown in
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(a) (b) (c)

Fig. 7 Comparison of the estimated trajectories of the proposed method, VINS-Fusion, PL-SLAM, and ORB-SLAM2 with ground truth in KITTI
a 01, b 08 and c 09 sequences

Table 2 The accuracy of the
proposed method is compared
with VINS-fusion, PL-SLAM
and ORB-SLAM2 in the KITTI
Dataset

Seq. Proposed method VINS-fusion PL-SLAM ORB-SLAM2
trel rrel trel rrel trel rrel trel rrel

00 1.154 0.707 – – 1.456 0.803 2.346 1.158

01 1.601 0.403 1.706 0.375 2.633 2.075 1.786 0.442

02 1.142 0.536 1.124 0.491 1.121 0.618 1.129 0.517

03 1.932 0.416 1.950 0.6548 2.123 1.251 1.627 0.708

04 1.742 0.201 1.793 0.146 1.842 0.264 1.798 0.152

05 0.017 0.001 0.025 0.003 0.020 0.001 0.027 0.003

06 1.227 0.697 0.529 0.396 1.082 0.475 0.595 0.395

07 0.634 0.397 1.086 0.274 1.193 0.537 1.678 0.440

08 1.318 0.678 – – 1.798 1.812 2.277 0.826

09 1.088 0.628 – – 1.120 0.507 1.224 0.521

10 0.880 0.479 1.426 0.853 1.054 0.654 1.703 1.047

The RMSE of translation and rotation parts of relative pose error (RPE) is presented, where the translation
errors are expressed in (m/100m) and the rotation errors are expressed in (deg/100m). Dash (–) indicates that
there was a tracking loss during the experiment
Bold values highlight the method with the lowest error

Fig. 7. But VINS-Fusion is unable to reduce overall trans-
lation error, which has been discussed in the subsequent
paragraph using Table 2. On the other hand, the proposed
system, which is a key-point and line segment-based method
equipped with a low-light image enhancement technique,
does not suffer from the number of correspondences in the
relatively low-textured environment. Therefore, it produces
good ego-motion estimation without any additional sensors.

Illustrating the accuracy of a systemwith figures’ informa-
tion only might not be enough for precise evaluation because
of the subtle variation in results among different methods.
Additionally, the scaling of a figure is limited by paperwork.
Therefore, the RMSE has been presented in Table 2 to sum-
marise the overall performance of the proposed method and
other state-of-the-art methods in KITTI 00 - 10 sequences.
In Table 2, trel = translation part of RMSE error in meter
per 100m camera movement, and rrel = rotation part of
RMSE error in degrees per 100-meter camera movement.

The highlighted values represent the lowest error among all
the experiments done on the sequence. It is noticeable that
the proposed method achieves higher accuracy (low trel and
rrel ) in most of the sequences. In other words, the proposed
method outperforms other methods by reducing error inmost
of the sequences (e.g., on 00, 05, 08, 10).

4.2 EuRoC dataset

The EuRoC dataset (Burri et al., 2016) offered eleven stereo
colour sequences filmed by a Micro Aerial Vehicle (MAV)
which was flying in two large rooms and a big industrial
setting. The sequences are categorised based on different
challenges - easy,mediumanddifficult basedon theMAVlin-
ear velocity, orientation, angular velocity, illumination and
scene texture. The difficulty level of the scene texture and
illumination has been illustrated by the sample frames from
the EuRoC dataset as shown in Fig. 8, and the orientation
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Fig. 8 Sample frames of the EuRoC dataset that represent the difficulty level of the sequences a EuRoC MH-01-Easy, having sufficient texture, b
EuRoC V1-03-Difficult, having low-light image, c EuRoC V2-03- Very Difficult, having inadequate texture information

(a) (b) (c)

Fig. 9 Trajectores of a EuRoC MH-03-medium, b EuRoC MH-04 difficult, c EuRoC V2-03-very-difficult

and camera movement have been illustrated by the ground
truth trajectories as shown in Fig. 9. Since the MAV revisits
the same place several times, the proposed SLAM reuses the
existing map and closes the loops when it detects. Moreover,
the proposed method successfully tracks the camera pose
with high accuracy in the dark frames of the sequences.

A comparison of trajectories of the proposed method and
the other state-of-the-art methods is shown in Fig. 9. Each
sub-figure is presented in a top to bottom order, where the
bottom one represents the scaled version of the top one for
showing subtle differences in the trajectory estimation. If we
notice the trajectories in Fig. 9a and 9c, it can be seen that the
estimated trajectories of the proposed method are relatively
better than the other methods. However, The differences are

pretty close because those sequences are comparatively well-
exposed andhave less cameramotion.The accuracyofVINS-
Fusion (Qin et al., 2019) and ORB-SLAM2 (Mur-Artal &
Tardós, 2017) is abruptly reduced if the texture of the images
is low, and the camera motion is high, i.e., the EuRoC v2-
03-difficult sequence shown in Fig. 8c. PL-SLAM (Gomez
et al., 2017) on the other hand, work slightly better in low-
light and low-texture environment. But in every condition,
the proposed method produces the best results.

Finally, a summary of the relative RMSE of the trans-
lation part has been presented in Table 3. The highlighted
values represent better accuracy and lower values. PL-SLAM
achieves better accuracy in two sequences, and VINS-Fusion
in one sequence. On the other hand, the proposed method
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Table 3 The comparison of the
accuracy of the translation error
of the proposed method,
VINS-Fusion, PL-SLAM and
ORB-SLAM2 on the EuRoC
dataset

Seq. Proposed SLAM VINS-fusion PL-SLAM ORB-SLAM2
trel trel trel trel

MH-01-easy 0.9014 0.9020 0.9246 0.9036

MH-02-easy 0.8404 0.8017 0.8839 0.8389

MH-03-med 1.1409 1.1469 1.1425 1.1521

MH-04-diff 1.1030 1.1840 1.1853 1.2735

MH-05-diff 1.0148 1.1075 1.3265 1.1322

V1-01-easy 0.9232 0.9013 0.8835 0.9080

V1-02-med 0.9873 0.9899 0.9959 0.9993

V1-03-diff 0.8446 – 0.9146 0.8912

V2-01-easy 0.7221 0.7822 0.7834 0.7657

V2-02-med 0.9030 0.9070 0.8984 0.9091

V2-03-diff 0.9838 – 1.0943 1.1211

The root mean square error (RMSE) of the translation part is presented, where Delta = 1m. Dash (–) indicates
that there was a tracking loss during the experiment
Bold values highlight the method with the lowest error

achieved higher accuracy inmost of the sequences, especially
in the EuRoCmedium and difficult sequences. VINS-Fusion
was also found to be in a state of tracking loss in a few
sequences, i.e., V1-03-difficult and V2-03-difficult. There-
fore, it can be concluded that the proposedmethod succeeded
in achieving superior trajectory estimation in more robust
conditions.

4.3 Rosario dataset

The ROSARIO (Pire et al., 2019) is a multisensory dataset
recorded using a weeding robot in an agricultural environ-
ment. It offers six sequences from soybean fields, and it
contains time-synchronised sensory from a wheel encoder,
IMU, stereo cameras andGPS-RTK. The stereo frames cover
repetitive scenes, reflection, and rough terrain; and thus put
the visual SLAM in a challenge.

Figure 10 shows the comparison of the estimated trajec-
tories for the proposed method and baseline methods in the
ROSARIO dataset. The trajectories are shown in the world
coordinate system similar to the ROSARIO ground truth. It
can be seen in Fig. 10 that the tested visual SLAM methods
produced relatively poor RMSE in the ROSARIO dataset
than in the KITTI and EuRoC datasets even for the small
distance dataset. It is because the ROSARIO contains high
repetitive patterns in the agricultural environment thanKITTI
and EuRoC which are recorded in mostly structural envi-
ronments. PL-SLAM incorporated with the proposed image
enhancement relatively works better than the original PL-
SLAM, ORB-SLAM2 and VINS-Fusion in the ROSARIO
dataset, and even it achieved better accuracy in sequence-
04 than the proposed method with a small difference. It is
also noticeable from the subfigures (a), (b) and (e), that the
baseline methods are error-prone at the sharp turning points.

However, the proposed method produces excellent trajectory
estimationwith the lowest RMSE in such difficult conditions.

Table 4 shows the relative pose error (RPE) of the pro-
posed method and the baseline V-SLAM methods in the
ROSARIO dataset. The measurement in bold text is the low-
est RMSE which is desirable. The RPE is presented for the
translation part only as theROSARIOdataset doesn’t provide
a rotational part in the ground truth data. From the pre-
sented RMSE, It can be observable that point feature-based
methods such as the ORB-SLAM2 and the VINS-Fusion
suffer from tracking loss in such an agricultural environ-
ment. The ORB-SLAM2 with image equalization method
produces better results than the only point feature-based
method like VINS-Fusion. However, in sequence-05, the
ORB-SLAM2 incorporated with the image equalization
method fails to track the complete trajectory. PL-SLAM and
PL-SLAM+Ehn. have also been tested to investigate the per-
formance compared to the proposedmethod. Itwas found that
PL-SLAM+Enh. produces slightly better results than only
with PL-SLAM but still suffers in the turning points causing
deviation from the actual trajectories, which can be noticed
from the Fig. 10 and Table 4. On the other side, the proposed
method produces superior results than the baseline methods
in most of the sequences, employing image enhancement,
haze removal, and point and line features.

4.4 Low-light agricultural dataset of a Macadamia
Orchard

The low-light dataset of a Macadamia Orchard was recorded
on a very sunny day in McLeans Ridges NSW 2480, Aus-
tralia, and yet the sequence was underexposed due to the
shade of the trees, as shown in Fig. 11b. There is no loop to
the sequence which made the sequence a little bit challeng-
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(a) (b)

(c) (d)

(e) (f)

Fig. 10 Trajectores of the proposed methods and baseline methods on ROSARIO dataset. a Sequence-01, b Sequence-02, c Sequence-03, d
Sequence-04, e Sequence-05, and f Sequence-06
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Table 4 The comparison of the
translation accuracy of the
proposed method, and baseline
methods on the ROSARIO
dataset

Seq. Proposed PL+Enh PL-SLAM ORB+Equ VINS
trel trel trel trel trel

Sequence 01 0.3759 1.1053 1.3785 1.3641 2.5758

Sequence 02 0.4154 0.8530 1.1550 2.4524 –

Sequence 03 0.1456 0.7562 1.1332 1.1253 2.0800

Sequence 04 0.8566 0.8491 1.2765 1.3893 2.3645

Sequence 05 1.0139 1.6834 1.9167 – 3.3812

Sequence 06 0.0162 0.5486 0.9251 1.0179 –

The root means square error (RMSE) of the translation part is presented, where Delta =1 frame. Dash (–)
indicates that there was a tracking loss during the experiment
Bold values highlight the method with the lowest error

ing. A TORO Timecutter Zero Turn Mower has been used
as the main framework to record the sequence. The mower
was retrofitted with a ZED camera from the STEREOLABS,
NVIDIA Jetson computational unit and other required hard-
ware as shown in Fig. 11a.

Figure 12 illustrates the constructedmap and the estimated
trajectory of the proposed method on the low-light sequence
of a macadamia orchard. A 3D colour map has been con-
structed to illustrate the spatial structure of the orchard. In the
experimental setting, the threshold was set to a short range,
which is why the 3D map from the next rows of trees did
not appear on the map. However, a relatively more area was
constructed when the camera direction was changed during
the turning of the mower at the end of the sequence.

During the attempt of capturing GPS data for ground
truth, the GPS signal was almost unreachable and was com-
pletely inconsistent even when it was available for a short
time. The inconsistent measurement sometimes located the
vehicle outside the orchard. Therefore, it was not possible
to provide ground truth data for RMSE measurement. How-
ever, a simple measure called tracking loss/success has been
taken into consideration for the evaluation of different tested
methods. A method is considered to be more successful
when it does not fail to track the complete trajectory. The
(%) loss/success has been measured based on the portion of
the successful tracking distance of the complete trajectory.
It can be seen from Fig. 12d that PL-SLAM comparatively
tracks better than theORB-SLAM2andVINS-Fusion in such
low-light conditions. PL-SLAM failed after approximately
59.2%of the sequence length,whereas theORB-SLAM2and
VINS-Fusion failed after 26.5% and 28.3% of the sequence
length. In low-light conditions, point and line feature-based
methods, i.e., the proposedmethod and PL-SLAM,work bet-
ter because they extract more features compared to point
feature-based methods, i.e., ORB-SLAM2, VINS-Fusion, in
a low-light environment. Based on this measurement, only
the proposed method successfully tracked the complete tra-
jectory and the baseline methods failed in such a difficult
environment.

Table 5 The comparison of tracking loss/success rate of the proposed
method and other state-of-the-art methods in a shaded macadamia
orchard sequence

Methods Tracking status % Success (Approx.)

Proposed method Success 100

VINS-fusion Lost 28.3

PL-SLAM Lost 59.2

ORB-SLAM2 Lost 26.5

Finally, the tracking loss and success have been sum-
marised in Table 5. It can be seen from Table 5 that the
proposedmethod successfully tracked 100%of the trajectory
while VINS-Fusion, PL-SLAM and ORB-SLAM2 partially
succeeded in map tracking. Therefore, it can be summarised
that point and line features-based methods might be promis-
ing in a well-lit environment, but the proposed method
achieves better trajectory tracking results in such a low-light
environment.

4.5 O-Haze dataset

TheO-HAZE dataset (Ancuti et al., 2018) was captured in an
outdoor environment. It contains pairs of real hazy and cor-
responding haze-free ground truth images. The hazy images
were captured in the presence of real haze, generated by a
professional haze machine producing high-fidelity real hazy
conditions. O-HAZE dataset contains 45 different outdoor
scenes, and someof themare very similar to agricultural envi-
ronments. The experimental results of the proposed method
and a state-of-the-art method have been illustrated in Fig. 13,
where the 1st -column shows the hazy images, 2nd -column
shows the results of Cai et al. (2016), 3rd column represents
the result of the proposed method, and finally 4th-column
shows ground truth images. From Fig. 13, it can be seen that
the proposed method substantially reduces the haze of the
hazy images and more close to the ground truth images.

123



Autonomous Robots (2023) 47:649–668 663

Fig. 11 Experimental setup and sequence properties. a A retrofitted lawn-mower equipped with a ZED camera and Jetson computational unit, and
b the image properties of the low light sequence
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Fig. 12 Estimated trajectory and map of the proposed method in macadamia orchard, a is a side view of the map and trajectory, b is the top view,
c is the front view, and finally, d shows the comparison of the estimated trajectory of the proposed method and other state-of-the-art methods from
the top view
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Fig. 13 Comperative dehazing results on O-Haze dataset (Ancuti et al., 2018). Where column a is hazy images, b is dehazed images of Cai et al.
(2016), c is dehazed image by the proposed method, and finally d is the ground truths

Table 6 Comparison of peak
signal-to-noise ratio (PSNR)
and structural similarity index
measure (SSIM) for dehazed
and hazy images against
reference images

Sets of images PSNR (higher is better) SSIM (higher is better)

Img 01 [Our] 19.5404 0.6800

Img 01 [Cai et al.] 15.6605 0.4830

Img 01 Hazy 14.9922 0.4113

Img 02 [Our] 17.2985 0.6061

Img 02 [Cai et al.] 12.5887 0.3903

Img 02 Hazy 11.6397 0.3012

Img 03 [Our] 27.1873 0.7823

Img 03 [Cai et al.] 13.0333 0.3927

Img 03 Hazy 11.6830 0.2888
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Table 6 shows the calculated Peak Signal-to-Noise Ratio
(PSNR) and Structural Similarity IndexMeasure (SSIM) val-
ues for a set of dehazed images against the corresponding
reference images. The PSNR and SSIM values are common
metrics used to evaluate the quality of hazy images (Wang et
al., 2004; Taubman et al., 2002). The PSNR value measures
the peak signal-to-noise ratio between the dehazed image
and the reference image, while the SSIM value measures the
structural similarity between the dehazed image and the ref-
erence image.

A higher PSNR value implies better image quality. Simi-
larly, a higher SSIMvalue indicates higher perceptual quality.
For example – looking at the table, the PSNR and SSIM val-
ues can be compared for the image pair “Img-01-Ours” and
“Img-01-Hazy”. The PSNR value for the “Img-01-Ours” is
19.5404, whereas for the “Img-01-Hazy”, it is 14.9922. This
suggests that the dehazed image has significantly better qual-
ity than the hazy image in terms of PSNR. Similarly, the
SSIM value for the “Img-01-Ours” image is 0.6800, while
for the “Img-01-Hazy”, it is 0.4113. Again, this indicates that
the dehazed image is considerably higher quality in terms of
SSIM. Overall, the table provides a quantitative analysis of
the quality of dehazed images using PSNR and SSIM val-
ues, and the presented data suggest that the proposed method
produces high-quality haze-free images than other methods.

5 Discussion

The proposed method is distinguishable in many ways from
other similar state-of-the-art methods (Huang & Liu, 2019;
Yang et al., 2013), where the authors employed a simple his-
togram equalisation technique that is intended to work as
a front-end of the ORB-SLAM2 system for preprocessing
low-light input image stream. Although their method rea-
sonably improves image visibility and subsequent feature
extraction to some extent, they did not address haze in the
image even when it is a common issue found in sudden illu-
mination changes. Moreover, their implementation was only
tested on a point feature-based SLAM system and in well-lit
standard datasets, which suffer in low textured environment
(Gomez et al., 2017).

The low-light dataset of a Macadamia orchard provides
the stereo sequence without any ground truth data; therefore,
it was not possible to compare the estimated trajectories of
the tested methods with the ground truth data. However, the
dataset was very effective in evaluating the tracking loss and
success rate of the visual SLAM methods in the low-light
condition in the real agricultural environment. Regarding the
trajectory estimation accuracy, the proposedmethod has been
tested in the KITTI, EuRoC and ROSARIO datasets.

6 Conclusion

In this paper, we have presented a novel stereo-visual SLAM
system, which is capable of working in a challenging agricul-
tural environment. The approach introduces a local point and
line features recovery technique, which enables the proposed
method to work in a variety of shaded and hazy agricultural
environments, i.e., working under tree canopies where GPS
single is unreachable or not reliable. For the performance
evaluation, firstly, the proposed method is tested on standard
benchmarking datasets such as KITTI, and EuRoC MAV.
The testing results have been compared with the state-of-
the-art methods, VINS-Fusion, PL-SLAM, ORB-SLAM2;
and our method presents superior results in most cases. Sec-
ondly, the proposed method has been tested on ROSARIO
and our low-light agricultural datasets and compared with
baseline methods. The proposed method achieved superior
RMSE results on the ROSARIO dataset. The low-light agri-
cultural dataset of a macadamia orchard has been used to
validate tracking success/failure in such a difficult environ-
ment, and our proposed method successfully keeps tracking
the complete trajectory while the other visual SLAM meth-
ods fail. Finally, the functionality of the proposedmethod has
been tested in hazy conditions using the O-HAZE dataset.
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Table 7 Approximate CPU and
RAM utilization statistics of
different VSLAM methods in
different datasets (LLAD stands
for, Low-light Agricultural
Dataset), where CPU utilization
in percent (%) @3.38GHz, and
RAM utilization in megabyte
(MB)

Datasets Proposed method PL-SLAM VINS-fusion ORB-SLAM2

CPU RAM CPU RAM CPU RAM CPU RAM

KITTI 33 560 35 580 25 502 27 530

EuRoC 32 542 34 553 22 505 25 523

LLAD 34 1154 36 1325 28 1039 30 1092

right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

A CPU and RAM utilization

The approximate CPU and RAM utilization are presented
in Table 7 according to different datasets and different tested
methods (Mur-Artal&Tardós, 2017;Gomez et al., 2017;Qin
et al., 2018).Note that it is found that therewas a subtle differ-
ence in CPU and RAM utilization for different sequences of
each dataset; therefore, approximate average measurements
have been taken for the given datasets.

B SLAM evaluationmetric

The relative pose error (RPE) is a standard evaluation metric
for measuring the local accuracy of the estimated trajectory.
The RPE is determined based on the delta pose difference
between the estimated trajectory Pi ∈ SE(3) and the ground
truth trajectory Gi ∈ SE(3). As per the standard (Grupp,
2017; Prokhorov et al., 2019), the RPE is defined as:

E�
i = (G−1

i Gi+�)−1(P−1
i Pi+�) (12)

The root mean square error (RMSE) for the RPEs is calcu-
lated as:

RMSEi,� =
√

√

√

√

1

n

n
∑

i=1

||Ei ||2 (13)

The parameter � determines the distance between the pose
pairs along the trajectories. For evaluating the proposed
method, � = 100 (m) is considered which means the pose
error is measured every 100m of camera movement.
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