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XI.—The Theory of the Mechanical Analysis of Sediments by
means of the Automatic Balance. By R. A. Fisher, M.A,,
and Professor Sven Odén. Communmicated by THE GENERAL
SECRETARY.

(MS. received January 18, 1924.  Read February 4, 1924.)

IN 1916, in a paper on the size of the particles in deep-sea deposits, Odén
showed that the distribution by mass of a suspension into classes of
particles of different size could be inferred from a study of the course of
sedimentation of such a suspension from a state of uniform dispersion in
water. The experimental data required constitute the “sedimentation
curve” of the suspension, showing the total weight deposited, at a fixed
depth, at the end of any assigned length of time. |

In a note appended to the above communication Professor Knott
presented in a simplified form the mathematical theory of the derivation
of the distribution, emphasising that if we use as abscissa of the distribu-
tion curve the time taken to fall through a given height, or the welocity
of subsidence, then the experimental data may be interpreted without
assuming the validity of Stokes’ law. _

The progress which has since been made in the development of the
method, and the prospect that in the near future accurate sedimentation
curves may be obtainable without great labour, makes it desirable to set
forth, in a more complete form than has hitherto been attempted, the
theory of the derivation of the distribution curve and the statistical
methods appropriate for its deduction from the physical data. We shall
follow Knott in using the velocity of subsidence, or rather its logarithm,
as the variate of the distribution, and shall treat the use of Stokes law
and the effects of varying the viscosity and density of the fluid as an
altogether separate problem.

1. THE THEORY oF CHANGES DURING SEDIMENTATION.

If v is the velocity of subsidence of any class of particles, then the
constitution of the sediment in respect of sedimentation is specitied by P, a
function of v, representing the fraction by weight (in water) of the whole
which has a velocity of subsidence less than v. If

dP
‘ F=v 7
then dP = Fd (log v),

Proceedings of the Royal Society of Edinburgh, 44: 98-115, (1924).
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so that F will represent the ordinate of the distribution curve, of which
the variate log v is the abscissa. It is required to tind the value of F for
any value of v.
We shall suppose that the following experimental conditions have been
fulfilled :—
(i) Complete dispersion of the sediment particles and prevention of
any tendency to coagulation. -
(i1) Uniform distribution of every class of particles at the starting time
t=0. ,
(ii1) Constant and uniform temperatures so that no convection currents
or other disturbances occur during the sedimentation.
(iv) A sufficiently dilute concentration so that the particles may fall
independently, and that the density of the fluid displaced by
any particle is not appreciably ditferent from that of water.

At time ¢ from the commencement of sedimentation, the class of
particles with velocity v will have completely disappeared from the layer
of fluid to a depth vt from the surface; below that depth it will be
uniformly distributed as at the start. Consequently, at any depth » the
fluid will be occupied with the initial concentration of particles with
velocities less than » =uft, but with none with higher velocities, so that the
density of the suspension at this depth will be

T:l-{-(}l) . . . . . . ([)

where ¢ is a constant depending upon the original concentration, and P is
the fraction by weight of the particles with velocities less than ».

A. Variation of Density with Depth at « Constant Timne.—Diter-
entiating equation I with respect to ., we have

or _ v Al e

f A ‘
Each value of & corresponds to a distinet velocity v, and to a distinct rate
of increase of density with depth. KEquation II enables us to find the
value of I corresponding to each value of », and to construct the
distribution curve.

B. Rate of Change of Density at o Constant Depth.—Difterentiating
equation I with respect to ¢, we have

or dv P ':F . . . . . (U.I)

E TR

At a given depth, each value of ¢ corresponds to a distinet velocity v, and
to o distinct rate of decrease of the density; so that from observations of
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the density at a constant depth also we may construct the distribution
curve; : .

C. Variation of the Hydrostatic Pressure with Depth at Constant
Time—~If = is the hydrostatic pressure at any depth, then using the
appropriate units, we may write

= S 1V)
and thence find by (II)
O
-?2 = '%F 5 . . . . . (V)

observations of the hydrostatic pressure at different depths, at a constant
time, will therefore also provide the values of F corresponding to each
value of v, and enable the distribution curves to be constructed.

D. Variation of the Hydrostatic Pressure with Time at a Constant
Depth.—Since = vanishes at the surface, we can obtain, by equations IV
and I, its value in the form

&/t
rm=x+ct| Pdv. . . . . (VI)
70
when differentiating with respect to ¢, we have
o _{/xﬂ P
SZecl| Pav Po}, A 1
and
& cr JdP\|  exy,
-aﬁz-;,z{P—P-v%}:-ﬁF, ... oI

this equation enables us to determine F, for the corresponding values of v,
from measurements of the hydrostatic pressure at a fixed depth.

If, instead of measuring the pressure at depth x, we measure the weight
in the fluid of a cylindrical body immersed to a depth « in the fluid, clearly
we shall have as in equation VIII

w Cx .
= -k .o (IX)
Finally, we may measure the weight of sediment (in water), accamulated

on a plate suspended at a depth z, the relation between the weight observed
and the constitution of the sediment being again given by equation IX.
Since in equation VI, =0 gives 7=x+cx, and t=cc gives ===, cx is the
total matter in suspension, so that if A is the matter accumulated in time ¢
2 0?A

Fa— e
A, Of

. (X)
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This is by far the simplest method in practice of obtaining values of
the distribution function F. The weight accumulated is automatically
counterpoised, and a continuous record is taken of the progress of the
weight with time.

Stokes’ formula
' v =§ ’%}f‘(/a”,
where v is the velocity of steady motion, p, the density of the falling
spherical particle, and a its radius, p the density of the fluid and u its
viscosity, may be used to translate the velocity distribution observed into
a distribution of “effective radius,” the latter term being defined as a
function of the velocity by the above equation. _

For spherical particles, subject to the limitation that vap is small
compared to u, we may expect the effective radius to agree with the actual
radius. This limitation is equivalent to making

2 (e =plpys

9

a small quantity ; if, for example, p,=27, p=1, u='0129, ¢=981, the
coefficient of a® is 2,227,000, and a can scarcely be larger than ‘005 cm.,
or 50 microns, As appears below, the experimental evidence does not deal
with particles coarser than this, and we cannot say if the concept of
“effective radius” can be consistently+used for coarser particles. An
increase of fiftyfold in the viscosity=weould, however, make Stokes’ law
applicable to particles of over thirteen times the above radius.

The transformation to “effective radius” is necessary if we wish to
compare the results of experiments carried out on the same soil with fluids
of different viscosity; for example, with water at different temperatures.
The velocity is calculated from the time by the equation, using natural
logarithms

log v =log h—logt; ‘
for example, in experiment A below, 2 =1705 cm., and the time is given
in minutes, so that # in cm. per sec. is given by

logw= ~ 12583 —log*.
With the values given above, we have by Stokes’ formula

log =14 log v - 51328
= —57619—-4%logt.

In studying a range from 14-2 minutes (log {=265) to 2209 minutes (log ¢
="770), we have therefore log o varying from —7:0869 to —9'6119, and o
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ranges from 84 to ‘67 microns. The above formulse show the advantage
of using the logarithms of the quantities concerned as abscissa of the
frequency curve, for the same curve may be interpreted simultaneously as
a distribution in time, in velocity, and in “ effective radius.”

2. SCHLOESING’S METHOD.

In 1903 a theory of sedimentation was put forward by M. Th.
Schloesing (Comptes Rendus, vol. cxxxvi, pp. 1608-1613). Schloesing

imagines the soil made up of parts of weights S,,. . . S, sinking through
a given depth in times ¢,, . . . ¢, The successive increments accumulated
in time t,, . . . ¢, will then be '
- S1 SZ Sn>
D1_<_t1+t_2+. ST ¢,
) S2 SS Sn [
D2—<-t-2+?;+ .. Tr-z>(2 t1>9

and so on. From these equations the values of S may be found easily
from the observed values of D. Schloesing proposes to use values of ¢,
increasing in geometrical progression with constant ratio equal to 2; and
to interpret the values of S so derived as the quantities of soil falling in
times less than ¢, between ¢, and ¢,, and so on.

In view of the foregoing analysis, it would appear that Schloesing’s
method introduces considerable systematic errors of variable amounts, for
if Sdt represent the quantity of matter whose time of fall lies in the range
dt, we should have

'tl .wt

Dlajo S‘[H/,, Isit

D,= 't’<1 - 5) Sdt + fm(ae2 ~ ) at.
t t t [4

But according to Schloesing’s formula

t
S =D,-D 1
1 1 2t2 tl’

which may be written

A t -
/ lS(lt+/21"—‘ . f.:’.__i . Sdt.
Jo [N t tz—— tl

Schloesing’s method assumes, in fact, that

.t2
t / (fz_ 1>Sdt
f2~tl,tl t
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is negligible. If ¢,=2t,, this is far from being the case. The error of S is
always positive, and depends upon the actual distribution ; as an illustration
we may take the case, which is approximately the condition often found
over considerable ranges, where
sk,
11
The value of the error is then

oy 1 on . _
AL (3= 7 )at = AL =10g,2) = 30694
~ this may be expressed in terms of the equivalent error in the time by
equating it to
tite €
[sar=nnog(1+5),

iy

Jay
whence
145 =1359,
tl

or the equivalent error in the time is 359 per cent.

3. THE PracTicAL REDUCTION OF SEDIMENTATION DaTa.

In the practical reduction of the instrumental data the outstanding
feature is the great range of velocities to be studied ; a single observational
series may deal with times and therefore with velocities with a range
of over a thousandfold. Consequently, the rate of deposition changes
enormously during the experiment ; and, while rapidly succeeding observa-
tions are required in the early part of the experiment, far longer intervals
are desirable during the greater part of the time. For the statistical
reduction it is convenient that the observations should be read off at equal
intervals of the logarithm of the time.

1f
x =l log ¢,
then
2 DA _ A oA (XD

—
ar - de dic?

multiplication by ¢* is thus avoided ; and when the appropriate formula for

.. dA d*A . .
obtaining —— and s from a group of successive values of A have been

decided on, then, since lc\ is constant, the values of F' may be obtained by
applying a single sequence of multipliers to such groups of successive
values.

The particular formula which it is appropriate to apply must depend
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upon (i) the magnitude of the instrumental errors, (ii) the rapidity with
which the true value of F varies as v is decreased. The more terms are
used in the formula, and the lower the order of differences ignored, the
smoother will be the resultant series of estimates of F, and the more
thoroughly will instrumental errors be obliterated. On the other hand, if
instrumental errors are small, and the structure of the soil in respect of
velocity distribution is highly complex, with rapidly recurring maxima
and minima, then high order differences should be retained and the sequence
of values used should be curtailed.

To obtain information as to instrumental errors, it is evidently necessary
to study the records of parallel soil samples, sedimenting preferably through
different heights. The ideal method of reduction may then be regarded as
the one which brings out the maximum detail common to the several series,
with the minimum of discrepancies between them. In order to study the
errors themselves, however, we shall not, in the present case, carry the
smoothing so far.

To illustrate the principles underlying this method we may consider
the possible formula for the first differential coefficient. If only three
points were taken we should have no choice but to take §(y,—v-,) as
the differentiated coefficient at the central point, for this is the slope of
the tangent to the parabola passing through the three points. With five
points we may take either

Fol2Wa—y-2) + (1 - 1)}
or

o { = e~ U=0) + 8y - y-0)hs
the tirst representing the slope of the best fitting straight line (or parabola),
and the second that of the best fitting cubic polynomial, or of the quartic
which passes through the five points. The difference between these two

formulee is
bol = (e = y=2) + 20— Y1)}
= = 35t = By + 3y = y) + (Y1 = 3yp + 3y~ U2)} 5

in the latter form it is seen to be proportional to the mean of the two third
differences derivable from the five given points. If such third differences
are not negligible, then either (i) a smooth curve of a higher degree than
a parabola is required to represent the data, or (ii) the data are atfected by
random experimental errors, and so do not give a smooth curve. In the
first case the second formula is required, for the first will suffer from a
systematic error in the neglect of the third differences. In the second case
both formulae are free from systematic error, but the first formula is prefer-
able, since it is very much the less affected by random experimental errors.
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The possible formula for the first differential coefficient for seven and

nine points are given below.

Tanre I,

Degree of - 9
Fitted Curve. ! e
Lor IL | {(y; = 90 + 2092 - ¥) Fl(e=1_)+ 20 — Y—2) +3(Us - Y3)

+3(y3 - y_s)} 40y~ y-g)}

IIL or IV. | 52:{58(y, ~y-1) +67(Ya~y_s) | 15x{126(y, ~y_,) + 193(¥—v-)
—22(y3 - y_3)} + 142(Y3 - Y_s) — 86(ys ~ y_0)}

Voor VI ggtdb(y) —y-) ~ 9(¥2 ~ y-2) #dugl20911(yy — Y y) + 20421(Y: —y-g)
_ + (=) —12429(y; — y_3)+ 2286(y, ~ y_4)}
VIL or VIIL <o l672(y, —y_ ;) — 168(y,—y_y)

+ 32(yy - Y—) ~ 3(Ys~ Y_o)}

The influence of random errors in the case of each of these formuls
may be ascertained by expressing the variance (the mean of the square
errors) due to this cause, in terms of that of the original series, as in the

following table :—
Deceer or Cunvve Firrep.
Juber L or IL. ILL or IV, V.or VI VIL or VIIL
3 ‘3000
5 -1000 ‘9028
7 ‘0357 2626 11706
9 ‘0167 1142 4186 1'3626

It is evident that there is a very considerable advantage in using
formule based upon a sufficiently large number of points.  With nine
points we may take account of changes in value requiring a quartic
curve with nearly the same accuracy as in assuming that a parabola
gives a sufficient fit for a 5-point run.

The important term in the sedimentation formula is that for the
second ditterential coefficient. The following are two 9-point formulse:

R —
: ‘
Dngl:‘ :36? Yepo } Y | Y | Yo | Yo e 1 Yo Yy Yy
| |
ILor IIL  |+28 |+7 | -8 | —17 ;«-eo 17 | =8 |47 | +28 |-462

i
+151 -~’211;—-370 =211} 4+ 151 +371| ~126|+1716
i J
}

IV.or V. ~-126| +371

o)
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These may be combined with those for the first differential coefficient
to give separate formula appropriate to curves of the second, third, fourth,
and fifth degrees, using the appropriate value of % in equation XI. For
example, when the times of the successive values increase in geometrical

progression, so that the difference of the natural logarithms is ‘05, then
k=20; and
—pdA

dA _ o0 d?A
o = 205~ 40052

dge -’

To obtain a formula appropriate for a fitted curve of the third degree,
we insert in the above the second of the formuls given for the first
differential coefficient and the first of those given for the second differential
coefficient. The resulting coefficients of the nine observed values are

given below, with sufficient accuracy for the purpose for which they were
calculated.

Y_a Y3 Yg Yoq Yo- Y Yo Yz Yy

-22:795 | - 8451 | +-3-677 | +12'597 i+l7'316 +16'840{+4+ 10176 — 3670 | — 25'690

Any consecutive set of nine observations of the total weight
accumulated, multiplied by these factors, will give a value of the required
quantity, which is proportional to the frequency function. Equally by
dividing the above multipliers by A,, we may obtain the frequency
function directly in each case.

The computations, and, as it happens, the physical measurements,
are somewhat simplified by using the first ditferences of the series of
observed weights. Since the sum of the above factors is zero, the formula
will apply equally to the first differences, and the multipliers then become

Y3~ Ysr | Yo=Yz | Y1— Y- | Yo~ Yrr Y1~ Yo Yo=Yy Y3~ Yy Yo — Y3

{

{

i

I T
+31'246; £27569 l +14'972

—19:184 i - 29360 | —25690
I

+ 22795 —2:344

There are now only eight multipliers instead of nine, and the differences
in the weights are three figure, in place of five figure numbers.

Tables II and III show the results of two experiments recently
carried out in the Physical Laboratory, Rothamsted Experimental Station,
with the same soil—a clay from Rothamsted, from which the coarser
fractions had been previously removed. These experiments are only
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of a preliminary character, carried out as part of the work of developing
a sufficiently accurate technique. They serve to illustrate the methods
of statistical reduction and to show how the results of the latter may
be used to gauge the accuracy attained at any stage. With more complete
temperature control we may anticipate a considerable advance in precision.
The frequency function is expressed in percentages of the total possible
deposit, A, the values of which in the two cases were 1182 and 1121

grms. The course of the desired frequency function is shown in figs. A

and B; the above 9-point formula was used in both cases, since it enables
both the general course of the curves and the experimental errors to
be clearly seen.

TaBLE II.

00, *05. '10. ‘15, -20. *25. *30. -35. *40. 45,

oo |—294 |01 | 316 | 341 | 248 59 74
101 1-24 15 54| 266 | 200 | 118 | 260 | 278 | 205
1-55 2-50 535 600 | 556 | 682 | 548 | 542 | 271 | 620
651 804 977 | 10118 | 926 | 913 | 7118 | 821 | 807 | 712
728 657 6-70 712 | 678 | 662 | 643 | 673 | 679 | 650
627 580 563 583 | 540 | 574 | 546 | 521 | 528 | 505
569 580 520 557 | 523 | 507 | 507 | 454 | 459 | 447
4-30 4'46 4-61 448 | 464 | 472 | 444 | 431 | 442 | 459
477 508 4-86 464 | 407 | 406 | 457 | 491 | 464 | 476
416 391 398 412 | 467 | 495 | 531 | 618 | 663 | 658
6-25 575 585 599 636 | ...

NTOD TG R W
S oo ooTo oL

TasLe III.
00, 05. 10, 15, 20, | 25, *30. *35. 40, 45,
2+4715 ‘84 206 111 91 |—-16 {—--81 26

29716 2-48 266 1-67 2056 | 231 284 | 3770 | 568 | 382 |32 .
34715 | —-70 1'356 2-92 522 | 656 | 699 | 579 | 514 | 647 | T-27
39715 741 6-80 643 661 6564 | 654 | 682 | 715 | 755 | 754
44715 7°55 634 501 444 | 483 | 535 | 620 | 640 | 577 | 525
49715 510 529 565 579 | 497 | 447 | 470 | 381 | 365 | 363
54715 437 481 468 507 | 501 | 412 | 405 | 417 | 447 | 466
59715 4-41 405 360 363 | 376 | 391 | 411 | 443 | 436 | 358
64715 322 3:31 352 370 | 442 | 449 | 464 | 412 | 460 | 4586
6-9715 481 509 479 439 | 469 | 508 | 550 | 518 | 522 | 471
74715 399 394 423

Note to Tables II and ITL—The natural logarithm of the time corresponding to any
entry is found by adding the number heading the column to the number to the left of the
same row. Thus the first entry of Table III, -84, corresponds to log¢=2'6215. Both
tables proceed by intervals of -05.
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In examining the extent of experimental errors we may distinguish
the internal evidence of error provided by the irregularities of a single
curve, assuming the true curve to be such that the square of the
difference between successive values is negligible. This evidence neces-
sarily ignores causes of error which affect a number of consecutive values
in the same manner; such causes being only exposed to detection by
the comparison of parallel experiments, that is, by studying the external
evidence of error. ' ' ' '

The range of values available was divided into five groups, each of
twenty consecutive values. For each set was calculated the imean square
difference between consecutive terms (the unit being 1 per cent.); these
values show a general agreement between the two experiments. From the
means of the two sets of values an estimate was obtained of the mean
square error of an individual value; if consecutive values had been inde-
pendent, this would be obtained by multiplying by -5, but since the formula
used introduces a correlation of adjacent values, the appropriate factor is
'90156. Thence, by taking the square root, an estimate is obtained of the
standard error, based on internal evidence only.

TapLe IV.
Mean Square ‘
Approxi- Difference. Mean
Section. mate Time Mean. Square Slé;dard
in Minutes, Error. or.
Al B. '
1. . . 14-37 2:2142 2:3190 2-2666 20435 143
. . . 37-100 1-6639 6603 1-1621 1:0477 102
LT . . . 100-280 1068 2413 ‘1740 ‘1569 40
Iv. . b 280-750 ‘0485 1263 ‘0844 0761 28
V. . . 750-2100 1580 1458 1524 1374 3T

The obvious feature, which is well shown in the diagrams, is the
relatively high values of the errors in sections I and II, especially in the
former. Tt would appear that during the first hundred minutes of the
experiments the sedimentation curve was very much less smooth than it
was later, and that, if errors of any magnitude affect the later values, they
must be of a kind to act in a similar direction for considerable periods, up
to hours, at a time.

To utilise parallel experiments for comparison, it is necessary to fix
corresponding points on the logarithmic scale. The different heights
through which the soil settles may be allowed for by converting the time
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scale into a velocity scale, introducing merely an additive constant to bring
the two experiments into correspondence. A similar additive constant will
serve to allow for viscosity, when it is desired to compare two experiments
carried out at different temperatures. The velocity distribution will be
changed by the change in viscosity, so that the comparison has to be
based on the “effective radius” calculated from Stokes’ formula. We
should expect this distribution to be the same in two experiments poured
from the same suspension. The abscissa of the two experimental dis-
tributions may thus be made to correspond; the ordinates also will need
adjusting since A, is for a similar suspension proportional to the height
of subsidence. .

When the corresponding percentage values are compared from the two
experiments it appears that there is a systematic excess of A over B, except
in the first section. The mean square ditference for each section may be
therefore calculated with or without allowance for the systematic error.

TasBLe V.
Mean Mean Mean Standard | Standard
Section. Difference | . Square Square Error Error
(A-B). (A-B). Adjusted. | Unadjusted. | Adjusted.
I. . . . —-126 43545 45873 1-47 151
IT. . . . + 524 31065 2-0811 1:25 122
ITt. . . . +014 1-4501 4451 -85 47
v. . . . + 639 ‘7139 3250 ‘60 40
V. . . . +°392 1-0978 ‘9938 74 70

The systematic error is doubtless due to two sets of causes: (i) errors
of the absciss® of the two diagrams, due probably to insufficient tempera-
ture readings ; (ii) to sustained causes of disturbance in the sedimentation
process. The existence of such causes is evidenced by the fact that even
after removing the systematic contribution the standard error in sections
IIT, IV, and V, as revealed by a comparison of parallel experiments, is
considerably greater than that indicated by the internal evidence of a
single experiment. If the whole systematic error were due to this cause,
we should prefer the unadjusted values; but since errors of abscissa-
adjustment have no doubt contributed, the better values for comparison
will lie between the adjusted and the unadjusted figures.

Comparing these with the values obtained from internal evidence, we
at once confirm the relative inaccuracy of the values in sections I and II:
for these, indeed, the internal evidence reveals practically the whole of the
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causes of error. In the remaining sections, the internal evidence reveals a
decreasing proportion of the actual errors present, which must therefore be
largely due to sustained causes.

4. Mortion oF FrLuip.

The main features of the above statistical examination appear to be

explicable in terms of the probable movements of the fluid in which the
particles are suspended. These may be considered under two heads:
(i) TInitial disturbance; (ii) Convection currents. In both cases we shall
be concerned with exceedingly slow movements, for a movement of the
fluid becomes important when it is of the order of only a small percentage
of the velocity of sedimentation, which is itself very small.
(i) Initial Disturbance.—According to the simple theory, the fluid, at
the moment when settling commences, should be both in a state of uniform
mixture, and af rest.  Actually at the last moment at which the mixture
is uniform it is in a state of violent motion, as it is poured into the sedi-
mentation vessel. To ascertain what consequences must follow from the
state of initial disturbance, we must know how rapidly the initial motion
dies away. We may suppose that this initial motion is compounded of the
various periodic motions consistent with the form of the vessel and of the
various types of steady circulation of which the fluid is capable, and that
after a short time the motion will consist solely of those motions which die
away least rapidly. Among these, and of chief importance for our purpose,
is the motion of steady cireulation down the centre of the tall cylindrical
vessel, returning upwards in a zone nearer the circumference. Such a
motion, whether the central column move downward or upward, would
profoundly modify the process of sedimentation upon a plate occupying
the central portion of the bottom of the jar, so long as the velocity of
movement was appreciable compared with the velocity of sedimentation.

To calculate how rapidly a slow circulation of this type would die
away, owing to the viscosity of the fluid, we may compare its motion with
that in the capillary tubes used by Poisseuille. If « be the radius of such

a tube, and
ve=¥T

be the velocity after time ¢ at a distance » from the centre, then equating
the retardation of each zone of fluid to that caused by the viscous forces,

we have
22 -2,
or "ar Ty
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or, v satisfies the differential equation
2y low
L y=0,
w7 8r+p,TU

This equation is satisfied by the Bessel function of zero order, J,; so

that we may write
v= AJO<,\/ I%w'),

and the condition that the velocity should vanish when r=q gives us
an] L = 24048,
ul

being the first zero of J, Hence
. o
T*(2-4048)m
gives the time required for the velocity at any point to fall through the
ratio 1 : e.

It will be noted that the velocity distribution found above for steadily
decaying motion differs slightly from that in the Poisseuille tube for steady
maintained motions, in that the Bessel function

J0(2 1048 a)
is substituted for
2

1-—

a?’

this substitution leading to & slightly reduced dissipation of energy.

In applying this theory to the motion in a jar of fluid of radius b, we
may obtain a rough approximation by equating a? to }b?2; thus, for example,
with p=1, b=6'7 cm., and u=-0129, the value for water at 11°C., we have
a?=2245 and T=301 secs. This rough procedure may well exaggerate
the time required to the extent of doubling it, but in such a case we can
only arrive at a very broad approximation.

To ascertain for how long such a circulation will continue to be of
importance relative to the rate of sedimentation, a similar approximation
must suffice; for the actual initial velocity is unknown. After time ¢, soil
will be sinking through the liquid at all velocities up to Aft, where & is the
height of liquid above the plate. Taking %/2t as a standard, the velocity
of the liquid will fall below 1 per cent. of this, when v=~FA/200¢.  If, then,

v= et
we shall have .
four e _ 2 _.000283
T = 3G0sT - 000285,
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putting A=17 cm., T=300 secs., v,=10 cm. per sec. The latter value
is very arbitrary, but it may be altered considerably without much
affecting the value of ¢/T obtained. With the above values we have
t=105T =53 min.

After a lapse of 53 minutes, therefore, there is reason to think that the
initial disturbance will have subsided to an extent to render the direct effect
of fluid motion entirely negligible. Indeed, for some time before the rate
of flow falls to 1 per cent. of the rate of sedimentation the direct effect will
be small compared to the actual variations observed. There is, however,
a secondary effect of such fluid motion, which will probably continue to
disturb the sedimentation curve for a longer period. While there is any
circulation comparable with the rate of sedimentation, the aggregate of
particles of a given size, which on the simple theory should be uniformly
distributed over a portion of the fluid, ceasing abruptly at a given height,
will be displaced from this simple distribution, and will extend to different
heights in different parts of the fluid. In consequence, it is probable that
they will not be deposited with perfect regularity on the suspended plate,
but, being distributed in clouds or layers, will be deposited to some extent
intermittently, so disturbing the second differential of the amount deposited,
whiels quantity is very sensitive to any disturbance of this type. Such an
irregular distribution will not be induced in the finer particles, which will
still be uniformly distributed over almost the whole fluid, at the time when
the initial motion has subsided; but the coarser of those particles which
have not settled at this time will be so affected, and the disturbance may
he expected to continue until these also have settled out.

The above considerations probably afford an explanation of the irregu-
larities observable in the first two sections of the record, which extend to
about 100 minutes from the commencement. It is probable that these
irregularities could not be wholly removed by any improvement of the
recording mechanism. In so far as they are due to initial disturbance, a
complete remedy would seem to lie in the use of fluids of higher viscosity,
for in this way the initial disturbance may be very quickly damped out,
and, at the same time, the time of sedimentation of the coarser particles is
much increased.

(i1) Convection Cuwrrents—Little need be said in addition to the
above in reference to convection currents. Currents of this kind will
undoubtedly be set up in the jar, if, owing to gradual rise in temperature,
the walls of the jar are maintained at a higher temperature than the
interior. During the latter days of the experiment, especially, very minute
currents will serve to produce relatively great disturbances in the rate of
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sedimentation. Evidently for long-period experiments inereasingly accurate
temperature control will be required. The efficacy of temperature control
would be much increased by fixing the temperature at 4° C., at which point
the density is stationary; a reduction in the diameter of the jar should
also do much to cut down such disturbances.

One direct effect of changing temperature may be noted, namely, that
which is due to the change of viscosity with temperature. A slight rise
in temperature is accompanied, apart from convection effects, by a speeding
up of the process of sedimentation; in the neighbourhood of 11° C,, the rate
of deposition will be increased by 2:83 per cent. for a rise of 1° C., in the
temperature. With falling temperature the apparent value of F will thus
contain a positive error, and with rising temperature a negative error.
Sensible errors in the apparent velocity distribution will in this way be
introduced by small temperature changes during the experiment ; as in the
case of convection currents, the need for accurate temperature control
increases with the length of the experiment.

SUMMARY.

(1) A simplified mathematical statement of the theory of sedimentation
through a stationary fluid leads to the formula originally indicated by
Odén, and shows that the characteristic distribution of the sediment may
be obtained—

(@) from the variation of density with depth,
(b) from the rate of change of density at a given depth,
(¢) from the variation of hydrostatic pressure with depth,
(d) from the rate of change of hydrostatic pressure at a given
depth ; Y
the last relationship affording the theoretical basis of the sedimentation
method. '

(2) Schloesing’s sedimentation theory is incomplete, and leads to some-
what large errors in the interpretation of the observations.

(3) A discussion is given of the statistical problems arising in the
reduction of sedimentation data derived from the automatic balance, and
eximples of such data from two duplicate experiments are utilised to
examine into the experimental errors actually present.

(4) Two types of fluid motion appear to influence the results:

(@) A vertical circulation set up by the initial disturbance of the
fluid, the theoretical effects of which agree with errors
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indicated by the experiments as occurring during the first
100 minutes of sedimentation. This disturbance may be
remedied by using fluids of higher viscosity, especially as
this procedure increases the time taken by the coarser
particles to settle, in addition to reducing the time necessary
to obliterate the initial disturbance.

(b) Convection currents of unspecified type will become important
in prolonged experiments, where the finer particles are
being studied. Great experimental refinement may be
necessary to avoid these: their effect should be much
reduced by maintaining the temperature of the water as
close as possible to its temperature of maximum density. -

579



	Reproduced by permission of the Royal Society of Edinburgh from Proceedings of the Society, vol: 
	 44: 98-115 (1924): Reproduced by permission of the Royal Society of Edinburgh from Proceedings of the Society, vol. 44: 98-115 (1924)



