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ON A PROPERTY CONNECTING THE CHI-SQUARE
MEASURE OF DISCREPANCY WITH THE METHOD
OF MAXIMUM LIKELIHOOD
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* Reproduced from "Contributions to Mathematical Statistics" (1950) by permission of John Wiley
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A more general and systematic exposition than had previously been
attempted of the connection between the x? measure of discrepancy
between fitted expectations and observational frequencies, and the
method of fitting by maximum likelihood.
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ON A PROPERTY CONNECTING THE ;* MEASURE
OF DISCREPANCY WITH THE METHOD OF MAXIMUM LIKELIHOOD

1. - Introductory. — The measure of discrepancy, x°, between observation
and hypothesis conforms to its well known series of distributions only in the
limit when the number of observations tends to infinity ; and in the theory of
finite samples it is not obvious that this measure has any unique merit. In the
theory of large samples it has been shown (') that the test of Goodness of Fit
based upon it is valid only if all statistics used in estimating adjustable para-
meters satisfy the criterion of efficiency, and further that all efficient statistics
tend in large samples to equivalence. Recently, however (%), in the detailed in-
vestigation of a simple sampling problem arising in genetics the writer found
that y* is specially related to a particular type of efficient solution, namely to
that obtained by the method of maximum likelihood. In view of the theoretical
and practical importance of solutions obtained by this method in the exact theory
of finite samples, it is of interest to trace how general the observed relationship
may be, and to ascertain its bearing upon the interpretation of y* derived from
finite samples.

2. - A particular example. — In the particular case examined four types of
offspring may occur, the expectations from a sample of # being

Z(@+6,1-6,1-6,6)

in which 0 is an adjustable parameter depending on the linkage between the two

genetic factors concerned ; if
Qyy A2y A3y Ay

are the numbers observed in the four classes, it is evident that the two expressions

T=a;+ a:—3(as + a,)
y=a,+a;—3(a: +a,)

(!) R. A. FISHER (1924): The conditions under which y° measures the discrepancy between
observation and hypothesis. Journal of the Royal Statistical Society, LXXXVII, pp. 442-449.

() R. A. FisHER (1928): Statistical Methods for Research Workers. Edinburgh, Oliver &
Boyd, 2" Edition, XTI + 269 p.



98 COMUNICAZIONI

have each an expectation zero for all values of 6, and that the random sampling
distribution of each may be derived from the binomial expansion

3 1\n
G+
in entire independence of the value of 0.

In the comparison of four observed frequencies with a series of expectations
amounting to the same total, three degrees of freedom will be available for
discrepancies ; if, however, the expectations have been calculated from the obser-
vations to which they are to be compared by the use of one adjustable parameter
we may anticipate that the degrees of freedom left available for discrepancies
will be reduced to two. We may identify these with z and y since these represent
discrepancies which are not affected by modifications of the value of 6.

For any value of @ the value of y* may be written

4
72—-%24_9-%

which, for a given value of 7, is a quadratic function of the frequencies; if, for
our two chosen components z and y we form the quadratic expression

1)

and substitute for o} and ¢} the mean values of z* and y? and for go,0: the
mean value of zy, we obtain

a}+a}

% ol

1
I—Q"

z* 201y %
o0y 03

- 3 eyt 2(40— 2
&= 8n(1-——0)(1+20)%x +y*—3(0—1)zy
which is also, for a given value of », a quadratic function of the frequencies.
On comparing the two expressions term by term it appears that
e uta a4€2/ (14 20)n
x 550 1—0 /200 — 0@+ 0
The value of x*— @ is therefore always positive, except for the special
value of 6 for which

o _wate, o
536 1—6 19

which is the equation for the estimate of 0 provided by the method of maximum
likelihood. For this method maximises

L=a, log (2+6) +(a:+a;) log (1 —6) +a, log 6

whence ) e atay a,
W 2+ 1—6 T8
Moreover L + a2 +ay A
06* (2 + e+or —0r T ey
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of which the mean value is (14 20)n
T W1 —0)E2 6’

which, with changed sign, is the gquotient in our expression for y*— Q?; or,
otherwise interpreted, the quantity of information relative to 6 which the data
contain.

The use of y* from finite samples is therefore exactly equivalent to the use
of the bivariate expression (1) when the method of maximum likelihood is
employed. The difference y?— (Q? may be regarded as that part of the discre-
pancy between observation and hypothesis which is due to imperfect methods
in the estimation of 6. This part will be large even in large samples if inefficient
methods are used; but with efficient methods other than the method of maxi-
mum likelihood it may be expected to be sufficiently small for sufficiently
large samples.

3. - The statistic defined by an equation linear in the frequencies. which
is also efficient. — The particular instance examined is special in that the
frequencies are expressible as linear functions of the unknown parameter. The
connection between y* and the maximum likelihood solution does not, however,
flow from this fact, but from the fact, which is true in general, that the equa-
tion of maximum likelihood is linear in the frequencies. The maximum likelihood
equation may indeed be derived from the conditions that it shall be linear in
the frequencies, and efficient for all values of 6.

Consider any statistic 7" defined as the relevant root of an equation of the form

X=S(ka)=0

in which a stands for the frequency in any class, & for a coefficient, which is to

be a functions of 6, and S for summation over all classes. Then the sampling

variance of T from large samples may be equated to the sampling variance of X,

for a given value of 6, divided by the square of the mean value of 9.X/d6.
But, if we let p denote the probability of any class,

NX)=nS(pk*) ;
and the mean value of dX/06 is given by,
0X/00—nS(p 35)-
If now the statistic is consistent

S(kp) =0

for all values of 6, and hence

S(p %)+S(k§%)=0;
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s0 we may write
2

W, 0P\

If we minimise this for variations of % it appears that

o [0
S(pk?y  S(kop[06)
for each class, or

Using these relations we find
4 1 (0p\?
V(T)_1.—nséz(—og) %

and the equation for 7' becomes

s(e)

which is in fact the equation of maximum likelihood.

4. - The resolution of x* into its components. — In general with any number
of parameters 0y, 0,,..., 6, to be estimated, the equations of maximum likelihood
will be

adp)
815 5,4~0

adp)
AR

Any linear function of the frequencies,

zi:::S(ka),
will have a mean value zero provided that
S(kp)=0;
and this mean will be stationary for variations of 6,,...,, 0, provided the » conditions,
op)
@) S(Ic )=,

are fulfilled. If the number of classes is s it will then be possible to form §—7»—1
quantities z fulfilling these conditions, and such that for any two of them =z,
and z; the condition

3) S(pkcka)=0

shall also be satisfied.
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Considering now the quantities

a—pn

Von

as rectangular coordinates of a point in s dimensions. Since

z—S8(k&Vpn)

E=

it follows that

=~ ]
VS(npi?) V80e)
the s—r—1 values of which represent the coordinates of the same point with

respect to s—7—1 new axes, while the condition (3) shows that these new axes
are mutually orthogonal and (2) shows that they lie in the surfaces

a Op
%p 00 g O
and evidently also in S(a)=n.
But 2 !
S(&%) =y*

is the square of the distance of the sample point from the origin, and

22
S%S(npk*)%
which we may now write, Q% must represent the square of its distance from

the generalised surface
Ty =To= sero. =TLg_yr_1 =0

and these quantities will necessarily be the same if the remaining 7 coordinates,
which can be built up as linear functions of
ia Op
S(3 %)
are all zero. In fact y?— Q* must always be a positive quantity expressible as
a homogeneous quadratic funection of the quantities
o @ 0p
b(p 69)
@Q? being the sum of the squares of s—»—1 linear functions of the frequencies
the mean value of each of which is stationary for variations of the parameters.
It follows that, in the theory of large samples, we may always speak of »*
as made up of two parts, one of which is due to errors of estimation, and vanishes
when estimation is efficient, while the other is distributed in random samples as
is the sum of the squares of s—r—1 quantities each normally distributed about
zero with unit standard deviation. In the theory of finite samples the former
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portion vanishes only when the adjustable parameters are estimated by the
method of maximum likelihood, while the latter is the sum of the squares of
quantities distributed, generally discontinuously, but each with unit standard
deviation, and without mutual correlation for the particular set of parametric
values arrived at by the method of maximum likelihood, and such that the
mean of each is stationary at zero for variations of the parameters in the
neighbourhood of these values.
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