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of the bipartite number (22), namely

20y 1 9
(0 2) — (15)
11 1 1 1 :
and K (1 1) = ';TKQQ'{"”_I K+ T Forkao, (1¢)

representing the product moment of the estimates of variance of the
two correlated variates, and the variance of the estimated product
moment.

It will be observed that by equating the two variates, which is carried
out by summing the columns of the partition, and replacing the two
suffixes of each «x by their sum, equations (1a), (1b), and (1c) are reduced
to equation (1). As with univariate formulae, the partitions involving
parts of the first degree may be directly derived from formulae of lower
degree and therefore need receive no separate consideration.

With more than two variates the bivariate notation may be extended
to the use of three or more rows in the representation of a partition of
a tripartite number, and three or more suffixes to the parameters «.
The remaining formulae of the fourth degree are therefore

20 1 2
x| 01 )= w ki == K110 k1015 1d)
n—1
01
11 1 1
k| 10 } = —xm-!- 1 Kag K o11+ 1 K101 K1100 (1e)
01
10
10 1 1 1
K 01 = "y "1111+n 1 K1010K0101+,n__1 K1001 Xo1100 ")
01

representing the partitions of the tripartite number (211) and of the
quadrupartite (1111), ignoring such as have unitary parts.

Just as equation (1) may be derived from either of equations (la),
(13), or (L¢) by identifying the variates, so, by equating appropriate
variates, (1a) may be derived from (1d), or (1b) from (14d), or (1¢) from
(le), and finally all can be derived from the general multivariate
formula (1%).

Tt appears, therefore, that the formulae appropriate for both univariate
and multivariate distributions may all be expressed in terms of those
representing partitions of the multipartite number (1*). Thus of the

For parts of the first degree, read unit parts.
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sizxth degres, a series of formulae, of which formula (8) is the final con-
densation, will be given by the partition of the multipartite (1%) into
parts (1*0%) and (0*1%), a series of formulae reducing to (4) by the parti-
tion into the parts (130%) and (0%1%), and a series of formulae reducing
to (5) by the partition into parts (120%), (0°120%) and (0*1®). The pre-
sentation of formulae of the type here discussed for the case of many
variates might therefore be completed by the tabulation of the general
multivariate formulae (2*), (3*), ete.

The disadvantage of such a course is that such general formulae will
consist of a large number of terms equal to the sum of the coefficients
(of the highest powers of n) of the formulae already tabulated, and that
each term will consist of a product of «’s, each baving as many suffixes
as the degree of the equation. The general formulae are therefore ex-
tremely cumbrous, and, ag the suffixes will consist merely of repetitions in
different orders of the numbers 0 and 1, it will be of more value if general
rules can be found by which these particular combinations are to be
selected. Such rules will then apply to the univariate and less general

multivariate cases, the coefficients being merely the number of ways in

which each selection can be made.

Now the suffixes of the product terms are merely other partitions of
the same number, whether unipartite or multipartite, of which one par-
ticular partition specifies our formula; we are therefore concerned with
the difficult question of the relations which can exist between different
partitions of the same number. This question may be considered solely
with respect to unipartite numbers, for if the rules can be made out
which govern the coefficients in such cases, the same identical rules must
apply to multipartite numbers by reason of the methods by which one
formula may be condensed into another. For example, if we start with
the partition (2°) of the number 4, in conjunction with the rule that only
such partitions are to be considered as in each part involve elements
from both parts of the old partition, we should obtain equally the co-
efficient 2 of the term «Z, and by applying the same rule to the partition
of the multipartite number (1*) into parts (120?) and (0°1?) should obtain
the terms kioi0, ko101, and Koo, koo, having in both cases the same divisor

n—1.

9. Empirical statement of the rules for the direct evaluation of the
coeffictents.

Although the rules of the combinatorial procedure were not com-
pleted before the development of the method of Section 10, yet so much
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can be learned by an empirical study of the formulae that it is con-
venient to make a complete statement of the rules in an empirical form,
prior to the demonstration of their validity.

(1) The coefficient of «{!«<3... in the expression for «(p{*p3?...) depends
on the possible partitions of the second order of which the column totals
give the partition (p7ip3...), and the row totals give the partition

gfg¥..).

For example, the coefficient of .« in the expression for «(4°2) may
be obtained by inspection of the partitions of the second order

222| 6 281] 6 38.| 6
11.1 2 11.( 2 1.1 2
11.] 2 1.1 2 .11 2

44210 442[10  g42f10

in each of which the sums of the rows constitute the partition (62%), while
the sums of the columns constitute the partition (422).

(2) The numerical factor in the contribution made by any partition
of the second order is the number of ways in which the totals in the
lower margin may be allocated to form a partition of the type considered.
The numerical factors corresponding to the three partitions set out above
are 72, 192, and 32 respectively. In the first case, for example, the
number may be arrived at from the consideration that the pair of units
to be separated in the first four may be chosen in six ways, and that
these may be assigned partners from the second four in twelve ways. In
the second case we may choose either of the two fours to be parted into
(21%), as in the first column, and, whichever is chosen, we may allocate
the units in the three columns in twelve, four, and two ways respectively ;
while, in the third case, we may choose the units from the two fours in
sixteen ways and associate them in two ways with the units of the two.

(3) Before considering the general rule for determining the function
of n by which the numerical factor is to be multiplied, it is convenient
to note that certain partitions of the second order make no contribution
whatever to the coefficient, and so may be neglected at once. The most
useful class consists of those in which any row has only one entry other
than zero; for example, such partitions as

231f 6
.11 2
2..1 2
442110
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are to be ignored. It is obvious for statistical reasons, as has been men-
tioned above, that x; cannot appear in any of these formulae, and as it
will be seen that the function of n involved depends only upon the con-
figaration of the zeros of the partition of the second order, the necessity
for this rule will become apparent. More generally, we may exclude
any partition in which any set of rows is connected to its complementary
set by a single column only.

(4) The usefulness of rule (3) for excluding superfluous partitions
18 extended by employing it in conjunction with the rule which holds
when any column has only one entry other than zero; for in these cases
we may introduce the factor n-! and ignore the column concerned. For
example, the partition pattern

XXX
XX,
XX .

irrespective of its numerical coefficient, is associated with a function
of n which is one 7-th of that associated with

X X
X X
X X

Moreover, such a partition as

42.1 6
.11 2
L11) 2

—

442(10

is to be ignored (although every row has two entries) by reason of its

connection with
X .

X X
XX

in which this condition is not fulfilled.

With these criteria of rejection one may easily assure oneself that
the three partitions set out above are the only ones which need be con-
sidered in that case.

(5) To find, in general, the function of n with which any pattern
is associated, we consider all the possible ways in which the rows can be
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separated into 1, 2, 3, ... separate groups, or separates. Thus with three
rows we have one separation into one separate, with which is associated
the factor n; three separations into two separates, with which is asso-
ciated the factor n(n—1); and one separation into three separates, with
which is associated the factor n(n—1)(n—2). In each of these five
separations we count in how many separates each column is represented
by entries other than zero. If in one separate, that column contributes
a factor n~1; if In 2, 3, 4, ... separates, the factors are

—1 21 —3!
nn—1) nr—1Dm—2)’ an—Ln—=2)(n—3)

In applying this rule all patterns which are resolvable into two parts,
each confined to separable sets of rows and columns, must be ignored.
As an example, consider the five possible separations of the pattern

the first supplies the term

the separations into two separates supply

8n{in—1) _ 3
*n—17% ~ nm-—1)’

while the separation into three separates gives

dnn—1)n—2) 4
Wn—1)n—27° " anm—1)n—2)

the total being n/{(n—1)(n—2)}, the function appropriate to this
pattern.

It is equally easy to verify that the functions appropriate to the
patterns

XX X X X .
XX . X .X
X . X . XX
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both reduce to 1/(n—1)%. The required coefficient is therefore

79 n 224  8(87Tn—65)
n—1Dn—2 ' w—1*" (r—1)*n—2)

as appears in formula 28.

It will be obvious from the preceding section that the same rules
must be applicable to multivariate problems, the only difference being
that the column totals are then regarded as consisting of objects of two
or more kinds. For example, to find the coefficient of «x,«}, in the
221
2921
order partitions of the bipartite (55) corresponding to the three partitions
of 10, used above, can be allocated in 20, 48, and 8 ways respectively,
yielding a coefficient

expression for x( ), 1t is merely necessary to note that the second

4(197—88)
n—12(n—92)°

Alternatively the contributions to the coefficient of the univariate formula

may be each split up among the six coefficients by which it is replaced
in the bivariate formula, giving in this case

4(1 9n*— 33) Kss K‘fl +8(1 1714"-20) K3s K20 Ko2+ 8(7”— 12) K42K.ll K02
+8(T1—12) Kyy Ky Ky + 2 (51— 9) gy K2+ 257 —9) xy5 2,
in place of 8(37Tn—65) kg k-

In the same way the appropriate subdivisicn of the other bivariate and
multivariate formulae may be obtained from an examination of the same
set of two-way partitions, and it will evidently be sufficient for practical
purposes to tabulate all the univariate formulae up to a given degree in
order that all the corresponding multivariate formulae should be rapidly
obtainable.

The algebraic equivalents of a number of the more commonly occur-

ring patterns are given on pages 223-226.

Some useful patterns.

Two rows.
XX 1 XXX n—2 XX XX n*—8n+38
XX n—1 XXX nn—1)> XX XX nin—1)pP

- P!
In general, if a= —{1/(n—1)}, we have 1 na —_
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Three rows.

X X

X X
% X (n—1)n—2)

X X X
X X X
X XX

X X X . XX
X . X=X.X
X X . XX .

X X
X X

132
(n—1) % X

XX XX
XX XX
XXX,

(n—8)(n®—4n-+6)
n(n—1)° (n—2)*

XX XX
XX . X
XXX .

n:—5n+47
nn—17>n—2)

X XXX . XXX
X . XX=ZX.XX
XX . XX .

n—2

Four rows.

X X

X X n{n+41)
XX (a—1)n—2)(n—38)

X X

X X X
XXX n*—8ni417n+2
X X X (n—1)*(n—2)*(n—8)
XX .

X X X

X X X n(n—4)

X . X (n—1@m—2)2
XX .

XXX . XX
X . X X . X
X X . X X .
XX . XX .

i

XX . X XX X X
XX . X _XX.X

n?—6n+410
(n—1)*n—2)*

R. A. FisHER

X XX
X X X
X X .

n—3
(n—1)*(n—2)

X X
X X
X X

nt—9n34 88502 —60n+48
n(n—1)% (n—92)°

XX XX
XX XX
XX .

n?—4n<45
nn—17%n—2)

X XX
XX . X
XXX .

n—38

n(n—1)3»

XX XX 1

nn—1)° C XX =1y

XX .

X XX
X X X
XXX
X XX

nt—1208 4510’ —T74n—18
n—1)%(n—2)* (n—38)*

X XX
XXX
XX,
XX .

nt—dn—1
n—12%(n—2)(n—38)

X X X
CX X _ n—8)
X . X (mn—1)*n—2)*
X X .

—_—
(n—1)*(n—2)

W —Tn?+13n-41

XXX . XX .
XXX . XX X .

n(n—17(n—2)(n—3)
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XX KX % X X X
XX XX n*—5n4Tn+41 X X X mP—8ni+428n—24
X X nn—1¥mn—2n—3) X . XX @—18n—2)3°
X X . X X .
CX XX X . X X
X . X X n—9n*+29n—82 XX . X n—Tn414
XX .X @—1)Pn—2° XXX . (n—1%n—2)?
XX X . XXX . ‘
XXXX XXXX . XX
X . XX X ..X_XX.x n—6nt10
XX .. XXX . XXX . a—=1Pn—2?
XXX . XXX. XXX.
XX XX XXXX X X X X
XX XX XXXxX_n—5nt8 X X X _m—bn4T
XX =X X . —1DPn—2)° X . X . (n—18%n—2)7?
X X . X X . X X .
X X X X . XX
X . X X (n—38)* X X . X n—4
XX . X =1 n—2? XX .. @—1)n—2)
X X . XXX .
X .. X XXXX XXXX XXX
XX X X . X _ . XX __ XXX
XXX . —XX .. oXX.XTx..X
XXX . XXX. XX. X X .
X XX . XX
X . X __ XX . X n—3
T xy¥Y ..o xxX. @=1)*n—2)
X XX . X X .
X X X X
X X . 1
XX . n—1)2n—2)
. XX
XXXX XXXX XX X LXX . . X X X
X o oX . XX e XX . XX XXX
XX .. " X..XTX..XTX..XTXX.
X . X . X X . X X . X X . X X .
. X X X XX X . XX
XX . XL XX XX 1
S L T O Vs
X . .X XXX. XXX
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nn+41)
n—1>*n—2)(n—38)

n(ni—4n—1)

(n—1)*(n—2)%(n—38)

n(n?—41n—29)

(n—1P*n—2)(n—8)(n—4)

nn+1)(n*—5n+492)

X . X (n—1) n—2)%n—38)°

n(n+1)n?+15n—4)

226 R. A. FisHER
Five and siz row patterns.
XX . XX X X . XX .
XX . XX. i’ XX . XX,
X . X=ZEX X 73— XX.=XX.
XX x.x @TVe= T X x
. XX XXX . XX X X X
X X XX X
X X ni(n-+5) XX
X X m—1mn—2)n—3_8)(n—4) XX .
X X X . X
X X . XX
X X X XXX
;: § X n(nd—5n—2) ;: ;: X
. _ g —_ ] — .
<X . (n—1¥(n—2)°(n—8) % X .
X . X XX .
X X X XX .
X X X XX .
% % n(nd—9n?+19n-45) X . X
C o (n—1)2(n—2)*(n—8)*
X . X
% X . XX
) . XX
XX . X X
X X . X X
X X . ”2(n+1) X X
X . X (n—1)*n—2>%n—3) X X
X . X X X
. X X X X

n—1)n—2)(n—38)(n—4)(n—>5)

The general formula for the two-column pattern with r rows is easily
found, by enumerating the separations into 1, 2, 3, ... separates, to be

AP(0")

é (p—1)!
»=1 P

nn—1)...mn—p+1)’

where AP(0") stands for the leading p-th advancing difference of the

geries 07, 17, 27, ....

10. Demonstration of the combinatorial method.

To demonstrate the validity of the rules which have been stated,
it is useful to consider in what manner the generating function M will
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be modified by a functional transformation of the variates. In the case
of a single variate z we have the function

t2
M= 14u bt o+

the coefficients of which give the mean values of all powers of « in the
population. By what operation should the function M be transformed

so as to give the corresponding function appropriate to a new variate £,

which 1s a known function of z? Suppose that

€ = f&) = ¢yFcztcx®+...,
then the mean value of { is

M= Cotcimteamet ...,

which may be written

d a
Co+olm M+Cza‘t‘§M+.--,

or f (‘%) M,

where ¢ is made to vanish after operation.
Moreover, the mean value of the r-th power of ¢ will be given, at

least formally, by the equation
b (24 )1
pr=1f ( 7)) M
and the new generating function,

2
M = 1urtuigy+o

may be written e’ M,

in which the operator is supposed to be expanded in powers of d/dt

‘before attacking the operand.

The corresponding relationship for simultaneous variation is easily
found. In such cases M will be a function of two or more variables
t1, ts, ... corresponding to the variates x, y, ...; the new variates will be

given functions of the old

&=f&y ),
52 =f2(il7, y! ---)3
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and the operative expression for the transformation of M is
M = e'nfx+rgfz... M.

To apply this result to univariate sampling problems, consider the n
observations of the sample as our n original variates, and the symmetric
functions ki, ks, ... as the new variates the generating function of which
is required. Then, considering first the operand, for the first observation
z, the u generator is ¢X®, where K is the « generator of the population
sampled, i.e.

t2
K = K1t+K2g+....
Moreover, since the n observations are independent, their simultaneous

x generator will be merely the sum of the individual generators, so that
our operand is

exp {xlsl—i—xg g—%+}> ,

in which 8, =

i e

(&),

1

We may note at once that the coefficient of «%!«% ... in the operand is
X1 X3
Sq1 Sqg

@Vt @Vt

The u generator of the simultaneous distribution of the k statistics
will be given by the operator

e Ki+rokgt... +7, k",

in which k, 1s interpreted as the same function of d/dt,, d/dt,, ... as
the corresponding k statistic is of x,, s, ..., ,. The property by which
these statistics were defined, namely that the mean value of k, should be
&,, is now seen to imply that

but k,(ﬁl Sy ) =0,

v ! vyl

where (v, vy, ...) 1s any partition of v. If, for example, the partition
is of two parts,
n(n+l

" )
Sty = 8@+ 8 (e,
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in which ¢ and ¥ are different members of the set ty, ..., t,, it follows
that %, must contain, in addition to the simple term

Lg(dy”

n S(dt ’

terms for all two-part partitions of the form
_—1 vl g{(_‘i> " (Li.)"‘}
nn—1) vy ! ! dt at'

except when v; == v, when each operator finds two terms on which it can
act, and its coefficient is therefore to be halved. Thus, if we write

) = (—)rpe—=D!
) nn—1)...n—p+1)

xs{(G) - @) )" @)

/)
1 ]

g(o7 p3* ..

where p=m+4m-4 ... and ¢, etc. are any selection of p out of the
n variables t, the summation being extended over all such selections,
then

_ p!

- (pl !)"1 7rl ! (pa !)"2 7"3! .t

ky - g(p1py ),
the summation being taken over all partitions of p.

This structure of the k operator makes it possible to think of the p
acts of differentiation in each operator as p separate objects, the partitions
of which, represented by the g operators, occur each in as many ways as
the objects can be arranged in that partition. We may thus use a two-
way partition to assign how many of these operations are effective against
each of a series of factors s, s,, constituting the operand.

Liet now this operand product be expanded in a number of terms of

the form
Z(a, b, C) — S(tatlbt'lc)’

the summation being taken over all the n(n—1)(n—2) different ways of
selecting t, t/, and t” from among the set t;, ..., tn. There will then
be a z term for every possible separation of the partition (gf1¢gj*...) into
one or more separates. For each two-way partition chosen all these
separations will contribute to the result, and with the same numerical
coefficient, apart from that contained in the g operators, equal to the
number of ways of allocating the objects in the two-way partition.
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The number of terms in the 2 corresponding to any separation into
a separates is n(n—1) ... (n—a+1), and this, combined with the factors
in the g operators, gives the functions of n corresponding to any two-
way partition according to rule (5). There remains, however, in M’ a
number of terms corresponding to two-way partitions, in which the
columns may be divided into two classes, each confined to different
sets of rows. These introduce terms of a higher order in n, which are
obliterated when we find K’ =log M’, for in these cases the additional
term in M’ will be of the form AB, where both A and B occur also as
other terms in M'.

11. Measures of departure from mormality.

The statistical inefficiericy of moment statistics from distributions
differing widely from the normal, except when they are of a special type
[10], much reduces their practical importance for curve fitting ; but since
they are fully efficient for the normal distribution, they provide an ideal
basis for testing if an observed sample indicates a significant departure
from normality in the population sampled. Significant asymmetry
should, in the first instance, be shown by an excessive value of ki; but
since the variance of the population is usually unknown, but may be
estimated from the value of k, observed in the sample, the test of signi-
ficance will usually involve not the distribution of ks, the moments of
which are given by such formulae as (4) and (20), but the distribution
of the ratio kg%;%.  Since, for the normal distribution, the variance of
ks is given by
6n s

. «(8) = (m—1(n—2) Ko

it will be convenient to show how the moments of such a statistic as

-

may be expressed in terms of the general «(p'pj...), for all distribu-
tions, and its particular value obtained for the normal distribution. This
may be done by expanding the factor k;? in the form

Fro— K\ 3
Ké—g(l-’_ s'/('2'(‘2) ’

whereupon, in virtue of the expressions connecting the moments u with
the semi-invariants «, and tha mean value of z being zero, we can at once



SAMPLING DISTRIBUTIONS. 281

write down the following expansion for its variance :

—1)(n—2 3 6 .
pal@) = ko) = 5?_-671%—-3 {x(3“)—-—x—; ')+ (< c@)r(E* 2}
33 {382 €@+ k@] + 25 {808 220} ],
K2 2

in which, remembering that a « of p parts involves n~(*-D, terms beyond
n~* have been omitted, as well as the terms of odd degree which vanish
for symmetrical distributions.

Similarly we have

(n—172m—27(

6
() = 36n748 13x2(32)+x(34)-— -;; {61((32 2) k(8 4« (8" 2)}
+ %7} { 8«2 (32) K (22) -+ 6«* (32 2)
2 1)
(8% (29 +6x(322) c(8H)}
— ig { 18«(3%292) x(89 x(22) + 3K2(32) «(2%) }
Ky
+ 128 {oeen )|
2
and
— | S(n) e 9 3
() = 91———272%;;3——) {15623+ 158" (Y + (8

— 2 {456(872)2(8Y)+ 15x(842) (8" + 15¢(8") £(8°0)}
2

+ 4;25‘ {154%(8%) «(2%) + 90«*(322) x (8% + 45« (8? 2% k*(8%)
) +154(8% x(8%) K(22)}
— -1-’;63 {1563(8% «(2%)+ 185x(822) (8% k(2%

2
+f§§ (45:3(8% @)} |

2 }

From these moments of the distribution of z, the semi-invariants «(x)
and kg(x) may be obtained by means of the relations

py(@) = k,(x)+8x5 (),
(@) = Ke(@)+ 15x,(2) (@) + 1513 (2),
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giving
1\ (N2
x(z) = W { 8YH— (39 2) x(32)+°2"z A(8H < (2D
99 ﬁ 2 &
- ~(3*2)+ @2+ x(s ) (@)
+ ?—Q «(8%2%) k(8% — 12—(2 «(822) « (8% x(29
2 2
— 188 em @+ 130 e o)
and
—~ 1B (n—2)8
k(@) = (i‘——él—)ﬁ-f;—fxg—)—{ (89— 23 c(3t9) (3“)«-—— ©(8Y x(872)
+ 1-915—‘—’ 2E12) (@) + 137 k(8720 (39
+ 2—79 (8% k(8% k(29— 50—" 3(8%) «(2%)
2
5670

x(3“2)xﬂ(3=)x(2*)+4860 «*(8% ’(2’)‘
Ky
while no higher semi-invariants contain terms involving only n=2
The formulae tabulated give all the values required for xs(z); thus
for samples from the normal distribution

8 _ 2 o 6n 3 3y — 8
@) = n—1"% «@) = n—1)(n—2) ¥’ «(2) = (n—1p "
K82) = 2 k@), «(@12) = 48 o k(8

and substituting these values, we find
6 , 22
kg(z) = 1—7-*-"—?’-,-.

To evaluate x4(x) we need in addition

648(5n—12)n*

<8 = a2 ¥

and the leading term in «(3*2); this latter only requires the enumeration
of the number of ways of building up two-way partitions of (3*2) with
row totals (27), or the number of ways of connecting up the symbolical
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RORS

which can be done in 15552, 7776 and 15552 ways respectively, showing
that «(3'2) from normal samples is approximately 38880n~*,
With this value, that of «,(x) is evaluated as

figures

86 1296
@)= T

Finally, for xs(x) the only new « required is x(3%), involving the figures
having six points from each of which three lines radiate :—

[N\
/

JAVAN
\VAV/

which supply a contribution of 47520n-2? to «e¢(z), or, with the other
terms, lead to the value

15120

xe(@) = poaal

For the practical application of the funetion z in testing asymmetry
we shall now require to construct a function of  which, as far as terms
in 772, is distributed normally. Putting

z = BE+8(£3—8£)+n(£°—10£°+15),
where § is normally distributed with unit variance, it is easy to obtain
(@) = B+68,
x,(z) = 248°3+2168 &%,
xe(7) = 7208°7+4 82408 ¢*,
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which are satisfied by

SV S W NP\
'8_1—-1?——:17" _2n<1 on)’ 1T B

or, inverting the relation between { and z, we have
_ 8 < 111
£€= x(1+ + ) 2n 1= 2n
This translation formula makes it possible to assess the numerical
effects upon tests of significance of the actual distribution ; Tables 2 and 3
show the values of various possible formulae for the test deviate in the
region, important for tests of significance, x =18 to 22, and indicate
that these effects are very serious.

)(:c —82)— 3,, (& — 1025+ 152).

TABLE 2.
Compatison of deviates in five formulae for testing asymmetry.
n = 100,
(a) (@) () () (@)
n n
\/75- mym; 3 \/'6 kykey? x & 3]
1-7999 1-8274 18 1-8475 1-8603
1-9999 2-0305 20 2-0300  2-0586
2-1999 2-2835 2:2  2-2058 2-2530
TABLE 3.
Comparison of deviates in five formulae for testing asymmetry.
n = 5§0.
(a) (4 () (@) (@)
-6— m_-,m, \/ = ky ket z & &
1-7996 1-8558 18 1-8950 1-9463
1-9996 20620 2'0  2°0600 2°1745
2-1995 22682 22 2-2106  2-4016

In this region an error of 01 in the deviate produces an error of
about 24 per cent. in the probability deduced, and, although high
accuracy in the latter is not a necessity, little reliance can be placed upon
tests when the deviate may be biased by as much as 0°2. Of the
formulae tested, the formula (a) in terms of crude moments is almost
equivalent to the use of z, and these are evidently the most in error. Of
the simple formulae (b) is least in error, and for samples of 100 this error
is only about "03. The value & shows the effect of using terms of the
first degree only in the translation formula, while §& shows the effect
of using also terms in n~?, There is evidently little to be gained by
using & instead of the simple formula 4/(n/6)kky3, which latter gives
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apparently the better values for deviations exceeding 2 0. For samples
as small as 50 the fully corrected value & is evidently required, and in
view of the uncertainty of the effect of the omitted terms in n~%, ete.,
no reliable test of normality for materially smaller samples can be said
to be available. As in so many other cases, the adequate treatment
even of moderately small samples is not well approached by series in n~1,

12. The significance of the fourth moment.
The sampling variance of k¢ from a normal sample is

24n(n+1) ..
n—1)(n—2)(n—38)

in testing the significance of such a value, we should therefore naturally
calculate

= \/<n ;4(:(;?8‘ 8)) ks

as a variate which, with increasing sample number, tends to be normally

distributed with unit variance. With finite samples the distribution is

asymmetrical, for «(4%) is not zero. The true mean value of z 1s zero,

for with a normal distribution «(42?) is zero for all values of p, whence it

follows that the mean of k, is zero independently for all values of k.
The mean value of 2? is easily expanded in the form

(n—1D)(—2)(n—3) | ‘ [
SAn(i T 1) o 1“42) ((422)+ 29 x(41) €@+

32 20
or l_n—-l‘*'(n—1)1
as far as n~!

The mean value of #°, as far as n~%, is

((n— 1) (n—2)Y(n— )]~
{ 24nn+1« )

{ (48)——- @39+ 2L - L) c@) ...

Now «(4%) has been evaluated by the direct combinatorial method,
giving (formula 57)
) 1728n(n+ 1) (2 —5n+2)
8 — 6
«) = n—1%n—2f (n—3F ¥

or, as near as needed,
1728
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while the leading term of «(432) is 1728n~*X 12, giving, as the mean

value of z8,

m—1)(n—2)(n—8)) ¥ _
{ R } 6.4/6{n+8—T2442},

6¢6< __65)

or =],
N 2n
Next, the mean value of z* is, as far as n~},

(n—1)(n—2)(n—38))?
T g } {3K“<4*>+x<44)

~2 (6o e@?9)} +20 {3
Kq Ky

8i*(4%) c(2%)} [
whence, subtracting three times the square of the mean of z?, there
remains
__ {(r—1Dn—2)(n—38))?
@) = o mr a ) |
The leading term in «(4%)+576«% comes to 636n~* to which the other
terms add —192 and 496 respectively, leaving

540

K4(z) = T.

[e(aty— ——x<42> (@9 +-2 ’(4*>}

For the mean value of z° we shall need

§
(2—;‘;1) {1ox(4“) (4% 4 (45 — %’{wx (429) k(49
+10c4?) @2 %Q @)@ k@),

whence, deducting 10xks(z) . ks(2), there remains

C\FL e 60
k(@) = (2;—"’(;) (e cta?) x(422)

10 K(432) (42)+3‘£9 (4% (4 K(zz)},

o % . 144 4/6.

Now if £ is normally distributed with unit variance, and z can be
expressed approximately in the form

& = BE+y(E@ -1+ —8H)+e(f* —6£2+8)+...,
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we have
wi(2) = uy(z) = 0,
k(@) = 1y@) = B+ 2y 4684 24> ...,
k(1) = puy(@) = 68 y+8y5+868y5+...,
py(z) = 3,84—!-24,336—%48,827’
whence k() = 24338448823,
and 5 (2) = 6084y +1208* e+10808° y5+ 680827,
whence x5(x) = 1208* 4720835+ 5608%y >,

and equating these to the actual values neglecting n-?, we have the
translation formula

= () ey (-2 e

21 29 \/G
+5, @805 (

£—6£+9),

or, inversely,
R R R

5, =82+ 1\ /> @i 6274-9).

Summary.

The equations which connect the moment functions of the sampling
distribution of moment statistics with the moment functions of the
population from which the samples are drawn correspond in univariate
problems to all the partitions of all the natural numbers, and in multi-
variate problems to all the partitions of all multipartite numbers. Very
few of this system of equations have hitherto been obtained owing to the
algebraical complexity of their direct evaluation. The formulae are very
much simplified (i) by using the semi-invariants instead of the moments
of the population, and (ii) by using the system of moment statistics, the
mean sampling value of each of which is the corresponding semi-
invariant. The relations which necessarily exist between the different
multivariate formulae demonstrate that all of these, as well as the uni-
variate formulae, must be derivable from a system of rules associating

Not quite coirect but the method is now suverseded - R.A.F.
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different two-way partitions of multipartite and unipartite numbers with
corresponding functions of the sample number =.

Rules are given and illustrated which enable any term of any of
these formulae to be obtained directly from an examination of the appro-
priate partition. Their general validity is demonstrated by a theorem
which connects the moment generating function of any distribution with
the corresponding function of any functionally related set of variates.
Complete univariate formulae are given up to the tenth degree, and some
new results are applied to the theory of samples from a normal popula-
tion.
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