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To study frequency distributions with generality a number of writ-
ers, such as Thiele, had been led to give attention to the symmetric
functions of samples from such distributions. The most obvious of
these are the moments. It was gradually realised that the symmetric
functions of the distributions of such functions were necessarily ex-
pressible in terms of corresponding functions of the parent distribu-
tion. That is that a symmetric function of degree s of a symmetric
function of degree r of a sample must be expressible as a symmetric
function of degree rs. The pioneers in the development of the rele-
vant formulae were Sheppard and ‘‘Student,” but by about 1919
an immense amount of algebraic material of this sort had been pub-
lished by Techrouproff, using what appeared to the author a very
clumsy approach. C. C. Craig had indeed called attention to the
need, if the algebraic formulation was to be made manageable, of
the use of functions other than crude moments.

In this paper are defined the functions which provide the neces-
sary simplification, namely the symmetric functions k, the mean
values of which are unconditionally equal to the cumulants of the
yarent distribution. On the basis of the simpler forms so obtained
for some of the expressions already known, and others which are
made easily accessible, the paper develops an approach in which the
mechanical simplification of overwhelming algebraic formulae is re-
placed by a consideration of the properties of certain bipartitional
functions, which, apart from the sample number n, are purely arith-
metical.

Proceedings of the London Mathematical Society, Series 2, 30: 199-238, (1929).



This form of approach has the advantage that it is immediately
applicable to the complex extension offered by bivariate and multi-
variate distributions, for we have merely to consider under the same
rules of procedure the bipartitions of multipartite numbers to obtain
for them equivalent formulae. Section 11 on measures of departure
from normality may be ignored, as it has been superseded by a more
exact treatment (Paper 83). Complete univariate formulae are given
up to the 10th degree; these afford a commodious check for develop-
ing any multivariate formulae that may be required.

MOMENTS AND PRODUCT MOMENTS OF SAMPLING
DISTRIBUTIONS

By R. A. FISHER.

1. Introductory.

If a random sample of n observations be taken from a univariate dis-
tribution, and the sample values obtained be designated by z;, @, ..., Z,,
then any symmetric function of these sample values of degree r may
be termed a moment function of the sample of the r-th degree. If the
coefficients of the symmetric function involve the sample number n
in such a way that, as n tends to infinity, the value of the function
tends to a finite limit, in the sense that the probability of exceeding
or falling short of that limit by a positive quantity ¢, however small,
tends to zero, then the limit to which it tends is a moment function
of the population sampled, and the moment function of the sample
may be regarded as a statistical estimate of the corresponding moment
function of the population.

If we consider the random samgpling distribution of such a statistic
it is evident that the moment functions of this distribution will be ex-
pressible in terms of the moment functions of the original distribution,
in so far as these are finite, by means of formulae which will be inde-
pendent of the nature of this distribution. For example, a moment
function of degree s of the sampling distribution of a moment function
of degree r will involve only symmetric functions of the observations
of degree rs, and will therefore be expressible as a momeunt function of
the population of this degree, irrespective of the moments of higher
degree.
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Numerous researches have been made into the moments, chiefly of
the second order, of moment statistics. The algebraic method was
developed by Sheppard [1], and used extensively by Pearson [2, 8] and
Isserlis [4, 5]; in all these researches, however, owing to the supposi-
tion that the mean of the sample coincides with the mean of the popula-
tion, or for other similar reasons, the results are only first approxima-
tions neglecting n~'. In 1913 [6] Soper obtained a number of approxima-
tions as far as n~2, In 1908 ‘‘Student’’ [7] derived an exact formula
for the second moment of the variance as estimated, which corresponds
in a different notation to equation (1) of this paper for the univariate
case. Later, much work, by the exact algebraic method, was carried
out by Tchouproff [8], who obtained in this way the first eight moments
of the mean, in addition to the univariate formulae corresponding to
numbers (5) and (14). Tchouproff’s version of (14) in the univariate pro-
blem was subsequently corrected by Church [9]. The application of
the combinatorial method developed below to the general moments of
the distribution of statistics of the second degree from normal multi-
variate populations has already appeared in a paper by J. Wishart
[11].

Apart from the last, these results are subject to two somewhat
serious limitations; the great complexity of the results attained detracts
largely from the possibility either of a theoretical comprehension of
their meaning, or of numerical applications; it has also led to great
difficulties in the detection of errors, which have had on more than one
occasion to be corrected by subsequent workers. Secondly, partly no
doubt in consequence of this complexity, attention has been almost
solely confined to the direct moments of single statisties, and the product
moments, specifying the simultaneous distribution of two or more
statistics, have been largely neglected. The total number of formulae
of degree no higher than 12 is large, and it is scarcely possible that the
whole body should be made available, either for study or for use, unless
an improved notation can be found which will greatly simplify the
algebraic expressions. It will be shown that the formulae are much
simplified by the use of the cumulative moment functions, or semi-
invariants, in place of the crude moments.

The importance of the formulae lies in their generality; they are
applicable to all distributions for which the expressions have a mean-
ing. In the present state of our knowledge any infcrmation, however
incomplete, as to sampling distributions is likely to be of frequent use,
irrespective of the fact that moment functions only provide statistical
estimates of high efficiency for a special type of distribution [10].
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2. The cumulative moment functions.
If the probability that a single sample value falls in the range dw is

$(z) dz,
then the function
M= je‘”«p(x) dz,

taken over all possible values of the variate z, may, or may not, have a
meaning for real values of t. If it has a meaning we may expand the
exponential term, and, writing

fhr = jw’qb(Z)dx.
£ £
we have M= 1+u1t+u2§——!+,u3§—!+....
If we expand the logarithm of M in powers of ¢ we may write
K = log M = kyt-+ry o4 kg
= i0g M = & +K2§‘!+"3§'I+-~-y

where the cumulative moment functions x are determinate functions of
the moments u, whether the series converges or not; moreover, since «,
involves only u,, and lower orders, it follows that, if u;, ..., u, are finite,

so will «;, ..., k, be finite.
The expression of «, in terms of u will involve the term

L
corresponding to any partition

(pi*pe’ ... pit)
of the integer r, with coefficient

(= Hp—D! 7! ,
ad gl el (PP (P . (pa )™

where p = Z(z) is the number of parts.
Similarly, the expression p, in terms of « will involve the term
h

w3
Kpy Kpy o+« Kpy
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with coeflicient
1 ri
mlmg! com ! (P ) (o )™ ... (ou Y™

The simplification of moment formulae obtained by referring the
moments to the mean of the distribution is due to the fact that, when
t#1=0, no subsequent u involves «;, and the number of partitions re-
quired is much reduced ; thus

Mg = Kg Mg =Ky [y = xy+ 83,

and so on. The advantage of this simplification may be carried to higher
orders by consistently using the cumulative moment functions « in place
of the moments p.

The cumulative moment functions supply an immediate solution of
the problem of the distribution of the mean, for, using the well known
cumulative property, that, if z and y are independent variates,

K@+y) = K@)+ K@),

where K(x) stands for the K function specifying the distribution of z,
we find that, if s; = S(x) is the sum of » independent values constitut-
ing a sample from a given distribution, then

K(s;)) = nK(z)
& 8
= nxy i+ niy 51 +nxg Yl “+ ..

but the mean is z = (1/n)s;; consequently the K function of the mean
is found by substituting t/n for ¢t in the series for K(s;), giving

K B

t8
K@) = xt+-] 5—!+7’:-§ g7t

The value of «, in the distribution of the mean is thus found from
that of the sampled distribution by dividing by n™.

3. The appropriate moment statistics.

In order to take the full advantage of the properties of the cumulative
moment functions, it is necessary to introduce a modification also into
the form of the moment statistics ; it is usual to employ statistics which
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may be written m, = —}l— SE—z),

which are called the moments of the sample about its mean, together
with the mean itself, Z. These moments may be expressed in terms of
the symmetric functions s,, defined by

s, = SN,

by direct expansion; for example,

Z=n"ls,

my = nls,—n"ts,

-3 .3

mg = n"'sy—8n"%s, 8,423,

and so on. While the coefficients =1, n~%, etc., are kept simple, we here
encounter the complication that the mean value of m, is not in finite
samples equal to u,; in order that this should be so we should multiply
mg by n/(n—1), and m; by n*/[ (n—1)(n—2)] ; further, for functions of the
fourth and higher degrees, «, is not a linear function of the moments y,
and, in consequence, a moment statistic of which the mean is «, will not
be exactly the same function of moment statistics, of which the means
are w,, 88 &, 18 of u,. As a preliminary step, therefore, to the simplifica-
tion of the formulae to be obtained, it will be desirable to obtain, in
terms of the direct summation values s, the moment statistics of each
degree of which the sampling means shall be «;, g, 3, .... They will
be represented by ki, ks, ks, ....
The first few statistics which fulfil this condition are

by =m =n"'s,

n
n—1

~1 .4
§1)s

32—71

1
feg = Mg = 7

_ n? _ . n
ky = n—1)(n—2) M = n—1)(n—2)

nﬂ

b= D -2 —3) {

(s3—38n"1ts; s+ 2n7" s},

(n+1) my—8(n—1) m}

n

= n—1)(n—2)(n—8)

{(n+1)s;,—4n"Yn+1)s,53—3n " n—1) s

+12n7 st s,—6n"*st},
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3

"
ks = =2 m—8)n—0 {(n+5) ms—10(n~1) my mg)
T (—1(m—2)(n—38)(n—4)
X {(n+5) 85"’5 '7};7{;_5 8184—"10 n“jl SgSa
+20 —5- "+2 5] 3+30 13132 22 3';’52‘}‘%5?}’
2
ks % (D02 150 — 4) mg— 15 (n— 1) (n-+4) mgm,

= n—1)... n—5)
—10(n—1)(n*—n+4) mi+80n(n—1)(n—2) m3}

=T ” 5 {(n+1)(nﬂ+15n-4)36-639ﬂ( 24 15n—4) 5,85
15( 1) (n+4)s,8,
g0 IR A +9"+2 f4+120 $1525
+3O(n—13(7z 2) o 12On+3 ?Ss
n—1 360 120
—270 po s3sa - — sts,— B s‘f}.

If these be employed we have not only the result that the 7-th cumu-
lative moment function of the mean is n~¢~Vg,, but also that the mean of %,
18 ky, thus reducing a second group of the required formulae to its simplest
form. It is, however, the effect of their use upon the more complex
formulae which is of the greater importance. The general structure of k
for any degree will be elucidated in § 10.

4. The aggregate of moment sampling formulae.

If we consider in its full generality the simultaneous distribution in
random samples of the statistics ki, ks, ks, ..., it is clear that we can
represent it by means of cumulative moment functions analogous to those
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developed for a single variate. To any partition
CHT A0
of the number 7, there will correspond a moment
w(pT P5* ... pi) = mean value of AJ' K} ... kp,

and, if we write

M= Supppp..pp) o b I
i !y ! !

the expansion in terms of ¢, &, ... of K = log M assumes the form

e S

e T T

K = Ze(pppp ... pi) By 2o
e Mg Th

There will thus be a separate formula of degree r for every partition
of the number r, and for the complete specification of the distribution
each must be expanded in terms of the cumulative moment functions of
the sampled population. For example, the semi-invariants of the dis-
tribution of the second moment statistic k, will be given by the terms
corresponding to the partitions (2), (2%, (2%, (2%, ..., which we

designate by
k(2), «(2%, (2%, «(29, and so on,

The well known solution of the distribution of the mean, given above,
may now be written

(1) = =5, @

while from the manner in which the statistics k have been constructed

we have also
x(7) = Ky (II)

In general, the expression for the «x corresponding to any given
partition of r will include a term in «, together with terms of the form

Al@r g3 ... GO es . Kk

a?

where ¢Y1¢¥...¢» is any partition of r in which no part is unity.
This restriction, which greatly diminishes the number of terms to be
evaluated, flows from the consideration that «;, unlike all other cumula-
tive moment functions, is altered by a change of origin, and by such a
change can be given any desired value, while of the moment statistics
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also %, is the only one affected by such a change, and that by addition
of a quantity which is invariable from sample to samp}e consequently,

1 can only appear in the single formula

K(l) = Ky,

expressing that the mean of the sample of n will be the mean of the

population.

5. Partitions involving unit parts.

A relationship exists, of which a proof may be deduced from the
general theory to be developed, which enables us to dispense with the
separate examination and tabulation of the formulae corresponding to
all those partitions which involve unit parts. The effect upon the corre-
sponding formula of adding a new unit part to the partition is (1) to
modify every term in the formula by increasing the suffix of one of its
« functions by unity in every possible way, and (2) to divide the whole

by n. For example, the formula for the variance of ks is

1 2
P A 2
k(2% = _'n K4+7‘—“‘L 1 Ky,

whence we may deduce, by applying the above rules,

1 4
2 —_—
«@71) = n’ +n(n 1) “efw

and, by further applications,

1 4 4
219%) — — s
K(2 1 ) = n3 K6+ n2(7b—1) K2K4+ n2(,n..__.1) Kg,
12
218
k(2218 = 4 kgt n"(n ) K2K5+n3(n—1) Kg Ky,

and so on.
An immediate consequence of the same relationship is that

Kris
k(rl®) = —
1) n

(II)

The number of formulae remaining of any degree r is the number
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of partitions of 7 into parts of 2 or more ; these are
7 4 5 6 7 8 9 10 11 12 18 14 15 16 17
partitions 11 3 3 6 7 11 18 20 23 83 40 54 65

Up to the 12th degree there are therefore 65 formulae, while 150 more
will only reach the 16th degree. It is proposed to put on record, as a
basis for discussion, the formulae up to the 10th degree, together with a
few others of special interest, with an explanation of the procedure of
calculation.

6. Calculation of formulae.

In the calculation of the formulae by the algebraic method it is de-
sirable to proceed somewhat formally, although the results for the 4th
and 5th degrees may be obtained fairly readily by writing down the
algebraical expressions at length. The procedure may be illustrated by
the work for the formulae of the eighth degree. There will be six of
these, and corresponding to any of these. such as «(62). the & product,
keky, may be written down and expanded in the symmetric functions s.
The work proceeds in three steps : (1) the mean value of the k product
1s expressed 1n terms of the population moments u; (2) by substitution,
the expression in terms of u is condensed into its equivalent in terms
of «; (3) from the moment thus obtained, corresponding to the required
partition, the corresponding cumulative moment function is found by
the use of formulae of lower degree previously prepared.

The first step is carried out by means of easily verified relationships
giving the mean value of such a product as s,s,s, in the form

"’ﬂp+q+r+n(n’“ 1)(#p#q+r+l‘q ,U~r+p+,“r,“'p+q) +nn—1)n—2) Mep fhg Mre

In order to apply these relationships expeditiously a table is prepared
for each degree, showing the coefficients with which each p product,
ignoring u, occurs in the expansion of each s product.

To evaluate the mean value of any k product, such as klk, it is
first expanded in s products as

2
n 6 10 9 4
2 2 o2 2 3 ¢ 3.2 5
g5 | S5 Sy = 8387 —— 53858, F+ —5 S8, 50+ —5 S5 87— —5 8.8
n—17(n 2)2(32 p 3TV Ty P21 T O SH i U w 82517 T S5

21 4
q251'1’ . 323?"‘? sf),
whence from a table of the separations of 8 the following table may at

once he constructed.
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TABLE 1.
Caloulation of the mean value of k}k,.

nin—1) nin—1) nn—1) nn—1)n-2) nn—1)n-2) nixr-1)n—2mn—3)

Ny ey pghs w2 w3 Py i
sls, 1 1 2 — — 1 —
828} ,{—1 -1 -2 =2 — -1 — }
3,828 -6 ~12 -~18 -6 —6 —12 —
558 ,f10 40 50 30 80 40 -

n-
et 9 36 54 a7 54 54 9 f
8,8 _3{—4 ~40 —44 20 = -60 —~40 -1
n .
a2s} ~21 —168 —252 —147 —336 — 420 —68 |
5,88 n-* (16 256 416 240 960 1120 240 )
$ nd (=4 —112 —922¢ —140 -840 —1120 —490)

) 4
Collecting like terms and cancelling the factors n—1 and n—2 when-
ever possible, we get

n*—8n+28 2n®—12n%448n—56
w')) = SRR M A s

+—8n2+25n—-35 2 1
2m—12 M7 m—1)2En—2)

X {(—6n*+84n% — 8961+ 9600 —840) u, uj
+(nP—18n* 4940 — 4601+ 11201+ 1120) u3u,

+(9n4 —90n3+ 42972 — 1140n+ 1260) u} .
The second step consists in substituting
rq = g+ 83,
ms = x5+ 10kyk;,
pg = g+ 15k, +10x5+15x3,
rg = Kg+ 28xgxg+ 56k5 kg+ 85k + 210k, k2 + 280x% &, - 1053,

which reduces the expression to the simpler form

20y _ kg , n+20 2n’+44n—64 27Tn—45 ,
w82 = n? +fn(n——1) kokat nn—1)* kK3t nn—1)2 "
In%481n—180 0 5417041040 —3820

+ n‘+481ln K4K§+n +1772°4104n e,

n—1*n—2)

6n°+80n
+ m—1)* (n—2) ¥

n—17*n—2)
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The third stage consists in removing from u(8?2) those terms which

do not belong to «(3%2); from the general relationship which connects
these two groups of functions

w(8292) = K(322)+ZK3 €(82)+x;x (8 F K3k,

and from formulae of lower degree already evaluated we know that

— __’fi 61{.’_3/(3
«(82) = n +n—1’
: o . Ko, KoKy 9«2 61«3
while (8% = n +n—1 +n—-l+(n—~1)(n~2)'

Removing the superfluous terms we are left with

aloy — Ka 21 6(8rn—11) 9(B3n—>5) ,
€«(872) = n* +n(n—1) “rat n(n—1)* K33+ nn—1p "
_18(6n—11) o, 18(9n—200 86n ‘

m—1Pn—2) T G 1) (n—2) Ksky D —2) "

an expression in which the part played by each of the characteristic co-
efficients of the original distribution is clearly apparent. In the normal
distribution, for example, when every coefficient beyond k; vanishes,
only the last term remains to be evaluated.

7. The univariate formulae.

In addition to the partitions involving unit parts, which have already
been set aside, the numbers 4 and 5 have only one partition each, 6
and 7 have three partitions each, while 8, 9, and 10 bring the total
up to 32. These are given in the following Table. Since it is scarcely
to be hoped that all of these, especially the heavier formulae, will be
entirely free from error, it should be particularly noted that any suspected
term may be evaluated separately and independently by means of the
combinatorial method elaborated below. I am indebted to Dr. J. Wishart
and Prof. Hotelling for checking these formulae.

In addition to these formulae, which are complete up to the tenth
degree, four others of the twelfth degree may be put on record, namely
those for the variance of kg, the third moment of k4, fourth moment of ks,
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TABLE OF FORMULAE.
The 32 univariate formulae up to the 10-th degree,
LT
n n—1
©(2%) 1 2
X5 K3y
” n-1
« (32) 1 6
fg KyKe K3 i
n n-1 n—1 (n—1)(n—2)
x(42) | 1 8 6 —
x(3%) 1 9 9 6
L(f. KyKo K:'-; Kg
nt n{n—1) n{n—1)3 n—1)*
®(2%) 1 "12 4(n—2) 8
— K K5 K. i Ky K3
7 n—1 512 ’I;-'?l KyK3 (71—1)(70—-2) 372
x(52) 1 10 20 —
K (43) 1 12 30 36
* KsKg KyKy KK,
nt | nn=1) | n@p—1p (n—1)*
x {329 1 16 12 (2n~—38) 48
_1.. Kg KKy K5 K, ! "G PR
n n—1 1 o3 n—1 * n—1)(n—2) **
K (62) 1 12 30 20 —
x(53) 1 15 45 30 60
 (49) 1 16 48 34 72
1 . KXo K5 K3 “ K k3
n* n(n—1) n(n—1)? n{n—1) (n—1)*(n-2)
x (429) 1 20 8(5n—7) 4(Tn—10) 80 (n—2)
x(3!9) | 1 21 6(8n—11) 9(3n—5) 18(6n—11)
| & Kgks K5 K3 K oy
7| min—1) | n¥(n—1) nEn—1)3 n{n—1)*
«(29) 1 94 32(n-2) | B8(4n*—9n+6) 144
Ky KyKa KgK3 Ky by e, k2
n n~1 n—1 n—1 (n—1)(n-2)
x(72) | 1 14 42 70 —
x(63) 1 18 63 105 90
k(54) | 1 20 70 120 120
Ky KyKg kg Ky K5 Ky Ky ke
nt | an—1) | n@m-1p nin—1) =1 (n=2)
Kk (52%) 1 24 20(8n—4) 20 (5n—17) 120 (n—2)
x(432)| 1 26 94 (3n —4) 10(11n—17) 36 (57— 9)
x(3%) 1 27 27 (83n—4) 27 (4n—7) 54 (4n~—1)
x| _Kpks L L e
| Win—1) nt(n-1)° n? (n—1)° n(n—1)?
x (32%) 1 30 2(31n—53) | 12(9n*—23n + 16) 240
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1)
(2)
3)
(4)
(8)
(6)
()
(8)
n n{n+1)
FoDE= " | GoDm=m=3)
- — (9)
90 — (10)
144 24 (11)
K3 x5
(n—1y(n—2) (n-1)*(n—2)
120 (n—2) — (12)
18 (9n—20) 86n (18)
xik, x}
AG—IP 1P
96 (n—2) 48 | (14)
Ny iy 7 ni{n+ 1),
n—1)(n—2) (n—1)(n—2) (n—1}{n—2)(n~8)
— — - (15)
360 90 — (16)
600 180 240 (17)
KyKgs xg Uy K3
n—1)3{(n—-2) (n—1)*(n—2)? (n—1)*(n—~2)*
480 (n—2) 120(n—2)? — {18)
12 (61n—128) 86 (n—2)(5n—12) 360 (1 —2) (19)
162 (5n—12) 86 (Tn3— 30m + 34) 108(5n—19) (20)
KyKyKa 3 Xy
»(n-:l)3 n(nll)’ (n—1)
360(2n—3) 24 (5n—12) 480 (21)
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TABLE OF FORMULAE--continued.

Kyg KgKy KoKy Kky 5 e 1y T Ky iy
" n-1 Py = n—1 m=1)(n—2) m=Tn~1)
#(82) 1 16 56 112 70 — —
«(73) 1 21 84 168 105 126 630
« (64) 1 24 96 194 120 180 1080
«{(5% 1 25 100 200 125 200 1500
K1 Kaxy fey 6y Kok y «} KKy Ky tizky
7 n(n-1) n(n—1) n(n~1)* n{n—1) (n—1)n—-2} (n—1P(n—9)
x62) | 1 28 12 (Tn—9) 4 (410 ~56) 20(5n—17) 168(n—2) 840(n—2)
x{(582) | 1 31 101n—181 5(87n—55) 5(28n~35) 30{9n—16) 30(45m—92}
k{422)]| 1 32 8(18n~17) 4(49n-178) 4(29n—46) 8(87n—65) 1536(n—2)
x(48%) 1 33 6{19n — 25) 3(65n~107) 6{19n—34) 18(19n—33) 72(23n - 52)
L Ky Ko Ky Ky Kk 3 KoKy K5 Ky K3
nd nin—1) | nfln—1): nén—~1)% ni{n—1p n{n—1)*(n—2) n(n—1p3mn-—2)
% (42%) 1 36 4(28n—387) | 4(47n*—120n + 81) 12(9n* — 240 + 17) 360(n—2) 288(6n— T){(n—2)
w1 87 6(1Tn—27) | 36102 —166n +117) | 2(59n2—154n+113) | 6(6Tn—~131) | 24(T1n?—246m+208)
a Kghy Ky Ky KKy "g KGK:i K5 K3 Ka
W | Ba-1) | Pl—1F ndn— 1) nHn—1) nin —1)* ni{n—1)»
x(2%) 1 40 80(n—2} 40(5n°=12n + 9) 6(n—2)(6n*—12n+ T) 480 1280(n—2)

and the sixth moment of k,.

These are :—

k(6% = —717 Ic]g—i-;l-é—l (86139 k94 180kg k3 + 4651564+ T80k x5+ 46143)

€@ = gt

+

48(16n—29)
n(rn—1)*

n

+

nin+1)

n—1)Yn—2)

+(n—])(¢z-——2)(n-——3)

213(n 4+ 5)

(450k4 3+ 8600k, kg k34 7200k k4 £+ 6800, &3

+ 4500« k,+ 21600k, &, k34 49503

+ n—1){n—2)(n—=_8)n—4)

n(n+1)02+15n—4)

-+

48

n—1)n—2)(n—38)(n—4)(n—2>5)

16(183n—17)

nin—1

K1okKg
)

12(870—70) ,

n{n—1)*

Kg K3+

72(110—19)

Ky s+

n{n—1)*

(2400x,x3+ 21600« x4 &5

720x3.

12(41n—65)
n(n—1)>

~+15800«; k54 54000« «3 k, + 8100?)

(5400, ki 4216002 &5)

(50)

Kg Ky

24...(p. 218)

KT (i—1)Pn—2) "s2
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KK, nxy K nin+ 1)kl nin+ 1)K 7% (n + B) s
(n—1)(n-—2) (n—1)n—2) (n—1}{n—2)n—3) n—1)n—2)(n—3) | (n—1)}n—2)n—3)}n—4}
- - o — - (22)
4920 630 — — _— (28)
790 1260 480 1080 — (24)
850 1200 600 1800 120 (25)
K3, Ko KD K KD G nxl T
Sy S V) n=Tjtn-2) n—1Pn—9 (RS V)]
560 (n—2) 840(n—9) — _ - (26)
60 (15n—31) 80 (45n—108) 7%0m 16201 - (27)
144 (Tn-—15) 72(21n—50) 96(10n*~27n~1) 144{1Tn2—53n~9) 192(n+1)
n—3 n—3 n-3 (28)
54 (19n—48) 54(33n2— 148n + 175) 79n (178 —40) 1087 (27n—1T0) 2160
gy n—2 "—2 n—3 (29)
w3, X K} «u? 7
n(n-—-l)s('n——@) n{n—1)%(n—2) n—1Pn—2) {(n—1p(n—-2) (n—1(n—-2)
144 (Tn—10)(n—2) 24 (49n—95)(n—2) 260(n—-2) 2160(n—2) — (30)
36 (2902~ 108n +93) | 36(38n2—155% +160) 72(14n—23) 144 (19— 44) 288 (31)
Kx, i K} K63 K 3
nn—1) nEn—1) nin—1p n{n—1) =1y
820 (4n®—~9n + 6) 480(2n%~Tn +6) 1920 1920{(n—2) 384 (82)

+ 288(19n—41)
—1)% (n—2) “1"3%2

144 (560 —25Tn+802)

+ 48(208n—528)
(n—1)F (n—g) "sFeka

., 1440(n—11)

T 1P =2 ST 1P (n—2) "

8(709n®—8430n+44456) ,

1 152(2271?— 1067+ 188)
(n—1)*(n—2)? “

t =2

K5Kyxgt

s ; 1728(24n®— 140n’4200n4-4) .

288(19713——98"2-}-]2571-{—2) ok
(n— 1)2*n—2)%(n—8) 57an2

T T =P =2 (n—8) "

864 (1087° — 6297?4984 n-24) s
(n—1) (n—2)*(n—38) Kiksky

482(49n°—287n*+408n+12)
= m—9)  Nat

288(89n°—3828n—88)n |

288 (4174 —884n°+ 1209n*—1282n—86) , .
m—13(n—2?*n—38) *7°

+ n—17 (n—2) (n—8B)° ks

1728(29n8— 19682+ 81Tn+62)n , , 17282 —5n+2)m+1)n ,
+ e Te-e—sr S a—a—grm— > 7
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54 108(2n—3)

1797%—
x(8) = 3 k3t P n—1) 0% i 1y Ko ks 217 m —49n+35

n*(n—1)%

Tn? 20n+16 170 —47n+389 2 87n—T0 y
FBa—1p st T Ty 2 T, gy ke

19n“—67n+54 650> —245n+ 234

nn—1%n—2) Ky Kyky 162 nn— 1) (n—g) [ekake

82n% — 4811’4 958n-640 590 —220n4-224 ,
n(n—1)% (n—2)* nn—17 (n—2y 5%

75m%—473n’41016n—"T756

Kg Ky

4108

+ 324

4108

Kksx3+108

+324 nn—1) n—2)7* K5 kel
gy 1780150814 49620 —7880n+4200 4

nn—1)°* (n—2) K
+108 7%::2;"1?3631’?2?234 JK3+648 79(;;2:1?;,,‘,1322?53 8 i
1486 63(22:12)?2@29;22 24972 99"8"2?8_";);'” (7116_%3;;“ 1280, 2w,
+162 87”3“‘:’%_’”;’5 (}?4_22’)1” 1176 1 972 29(’7'::11)?(1:1”21):}8 yrh
+648n 10?: 1)531(271—{—640 <6482 (W5f)s 12 ] (62)
€2 = & kgt e st e rox+ 240 224;;?_"1*);4 ka4
+96(—9) 'Z@:;T—(-;}i%%-_g N 113»* —-520;1,*:;—(250711)5——80071,4—265 o
+;’ﬁ%329i‘)“’ s+ 4800 i 1)3 g kg kg & 2400 §__7_L§-_(—7;1_2_r_;i—_9 Ko K4k
+160(n—2) 31(" 5;°; g K24 960 (0 — ﬁﬁ%ﬂﬁt—l i,
+1920(n—2) "W s K 65480 11"3“"331(:2;*15)?"”31 x
+ % ke S ?i%‘lr%g(—"wm kg ey 29600 —’;—2(?,;%’%—9 K2
+28800~—(——7——~"’1')*;§ iy k, 4 960(n—2) f? 112)5 p n?ﬁ)f)* K K
+88400 n(” 2 T et (38410),, e (65)
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Some idea of the advantage of using the cumulative moment func-
tions in place of the moments will be obtained by comparing the above
formula (14) with the corresponding formula as obtained by Tchouproff,
and corrected by Church :

3 : 1
oMy = —5 (ug—p3)"+ o (g — dpeg a2 g — 1506}
+48u,us+ 6], —80ud)
1 2 2
— 7 (Aptg— 400 g — 9615 us— 5 + 8361y +528up,— 806u;)

1 9

— =% (Baug— 961 g — 176415 pty— 1020+ 924, 5+ 123205 1, — 1044us)
1 o 9

—% (4pug— 8Bug g — 160wy s — I5ui+ 1050m  u3+ 1360u5u, — 1895ud)

1
+ =7 (s 2Bptq g — 565 g — 8545+ 4200, 3+ 56 0paz t,— 63013).

The term involving kg only in «(2") is already known as the r-th semi-
invariant of the distribution of the variance for samples from the normal
curve, and is simply 2'.(r—1)!/(n—1)""". The corresponding term
in «(8% is of interest as showing that the distribution of %, in samples
from a normal distribution, though necessarily symmetrical, yet tends
somewhat slowly to normality. Comparing the last term of (62) with that
of (4) it is evident that

(8) _ 18(5n—12)
%@ m—Dn—2)’

or is somewhat greater than 90/n, a fact which indicates that the occur-
rence of values of ks greater than 2 or 3 times its standard error will,
except in very large samples, be materially more frequent than one would
judge from an assumed normal distribution. The effect upon tests of
normality will be examined in §§ 11 and 12.

8. Bivariate and multivariate distributions.

The extension to bivariate and multivariate data of the methods of
classification and calculation developed above is of both practical and
theoretical importance. Apart from the variance the product moment
of & bivariate distribution is the most important of all moment statistics.

Moreover, the multivariate formulae, by reason of their greater
number, and the confusion caused by the various possible notations in
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which they may be expressed, are particularly in need of orderly classifica-
tion. It will be found, in addition, that the examination of the multi-
variate formulae in their generality throws much light on the expres-
sions already obtained.

It will be seen that just as the univariate formulae correspond to all
the possible partitions of unipartite numbers, so the multivariate
formulae correspond to all the possible partitions of multipartite numbers,
having multiplicities equal to the number of variates.

To make the notation clear let us consider, in the first place, two
variates only, and let the frequency with which the two variates  and y
fall simultaneously in the ranges dz and dy be

df = ¢dzdy,

in which ¢ is the simultaneous frequency function of = and y.
The general moment about any origin is defined as

o = [[ 5731 de g

over the whole range of possible values of the variates. So far as these
moments have a meaning we can build up the expression

8 1
M= X — ==
! p=Oq=0MmP! q!
and equally, with the same limitation, the coefficients of the expression

K=logM= 2 2« t—z:fz-
It R S S Y T

will be well defined. The general expressions connecting the cumula-

tive moment functions, x, with the moments, u, of the simultaneous dis-

tribution are analogous to those given for univariate distribution ; if
(D)™ (papi™ ...}

1s any partition of the bipartite number r, s consisting of p parts,

(=)t p—1)! r! s! - )
Krs = S{ 71!7,':!)... P (D) . (L) (o .. Meni e o]
and
"-S'( 1 r! s! e }
Mrs = B gl . (D (pal)™ ... (P (po™ ... “mini ¥eypg | »

the summation being taken over all possible partitions. For any sample,
we may define s, as the sum of the values of z?y? for each pair of values
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in the sample, and obtain, as for single variates, the statistics
ki, Ko, ks, ke, etc., as expressions in terms of these sums, with such
coefficients that the mean value of kyo shall be «,. Thus we have

i _.~,1_< 4 >
n= Ty S 7 S10801/ »

_-“—n--~(s m-—2~s s —1ss —I—Zs’?
21 (7?-—1)(%*2) 21 % 10 °11 n 20°01 ,nﬂ 10901 ) »

= " +1 8(n—1)
A7 (n—1D)(r—2)(n—3) {("+1) Sax*nn sgosm—~—(—1%—l——— $11 520

3(n+1) 6 6
T Sq1 S10+ "y 81185+ 7 $081080— P So1 3’1’0} ’
_ n { n+1 n+1
kg = n—1)n—2)(n—3) 1(n+1)322—‘2 ” S91501~2 S12510
n—1
=T Sgg8gg "'usm $10

n
2 L, .2 2
— Spg 850 — Sa0Sq1— =3 S5
+ n 02 10+ n 20°01 ) 10 01}
The mean value of any product involving such statistics, as, for

example, kyk;;, may be evaluated in terms of the cumulative moment
functions of the bivariate distribution; such mean values may be written

21
kzo ku—-—l’-<0 1)

giving one line to each variate ; its value is easily found to be

1 n+1
— kgt n—1 Kg0K11-

n o
Hence, subtracting the product of the mean values, kg1, we have the
formula
21 1 2

K (O 1) —_— ‘n—‘ K31+;1,—:——]-_ Kzoxu (1 a)
in which each column represents the particular statistic entering into the
product, and the marginal column found by summing each row is the
multipartite number (31) representing the degree in which each variate
is involved. Similarly, we may deduce the two formulae for partitions

Click here for remainder of article
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