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This paper was written to give mathematical teachers a concise ac-
count of these distributions, with demonstrations and the analysis
of their probability integrals. These are identified in various forms
with partial sums of the binomial and Poisson series. Papers 36
& 123 together supply a compact mathematical background for the
common tests of significance.
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THE MATHEMATICAL DISTRIBUTIONS USED IN
IN THE COMMON TESTS OF SIGNIFICANCE

By R. A. FismEr

Introduction.—The three frequency distributions which provide the
greatest number of tests of significance in common use are all closely
related. The main types of application will be found illustrated arith-
metically in the author’s book Statistical Methods for Research Workers
and in other publications in which extensive use is made of the arith-
metical arrangement known as the Analysis of Variance. Some need
has, however, been felt by mathematicians for a concise account of the
algebraic properties and relationships of these distributions, and the
following are essentially lecture notes designed to give a mathematical
student a clear account of their properties.

1. The frequency distribution of x2.—If 1, s, - - - , Z», are independ-
ent values of a variate distributed normally about zero, with unit
variance, then the quantity

x* = S(z?),
where S, as usual, stands for summation over the sample, has a dis-
tribution given by :—
: e
df = —— (bx)¥DeWd(3x)
n—2
2 L]
This may be proved in several ways, two of which deserve notice.
(a) By induction, for n=1, the expression reduces to

2
,‘/:- ez,
T

which is clearly the distribution of 22 for a single observation. If, now,
2y is the sum of the squares of n independent values of the variate,
and has the distribution,

df =

utv—De=udy,
n—2

2

!

and z is an additional observation independent of the others, then
X = 2u + 2%,

and its distribution is to be inferred from the simultaneous distribution
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df = ! : 1/ —2— ult-Deg—u—tldydy.
2
If we now substitute
w=30¢— 2, du=d@Gx),
we have
-y E e (557
2

in which z takes all values from 0 to x. Integration with respect to z
will, therefore, yield a factor x*~! or (3x2)#»—1 (with a constant which
need not be determined, but which may be obtained from the Eulerian
integral of the first kind), giving the distribution

—— () Ve (),

S

2

in accordance with the general formula.

Although the proof by induction is an attractive exercise in Eulerian
integrals, many students find an alternative proof based on Euclidean
hyperspace more simple and direct.

If 2y - - - z, are the co-ordinates of a point in such space, the fre-
quency density at any point is proportional to e~#’, and depends only
on the distance of the sample point from the origin. The region in
which this density exceeds any specified value is, therefore, a hyper-
sphere in n dimensions having volume proportional to x*. The volume
in which x lies within any elementary range dx is, therefore, propor-
tional to

x"'dx,
and the element of frequency in this range is proportional to
X" lem iy

The Eulerian integral of the second kind,

f tre~tdt = p!,
0

then supplies the required constant factor and establishes the distribu-
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tion of x or x%.!

2. The distribution of Studeni’s {.—If we have a value of x* derived
from n independent values, and 2 additional value z independent of
the others, ‘“‘Student’s t”’ may be defined ag

n
{ = —);

X

for n degrees of freedom. Writing down the simultaneous distribution
of x and z, as above, and substituting for z in terms of ¢, we obtain

1 2 X
df = /‘/—:_ 1,2)3(n—2)g—ix2(1+2/n) J (142 —dt;
if =T W(zX) (7)()\/%

2 !

2\
or, putting u for 3x? (1 + ——),
n

1 2 12\~ (4D
(1 + ~—> wtr—De—vdudt.
n

n—2 ~/nw

!
2

Integration with respect to u from 0 to infinity, recollecting that ¢
must be equally frequently positive or negative, yields the distribution
found by “Student’” in 1908 -—

n—1
!
2 dt

n—2 N
!\/1rn<1 + ~>
2 n

3. The distribution of z.—In the most general case arising in the
analysis of variance, we consider two quantities, x.%, and x.?, based
respectively on n; and n; values of the variate, all of which are inde-
pendent. We may then define z so that

7L2X12

et = qy = ’

n1xs?
and proceed to find the distribution of z. This is carried out, as in the
previous cases, by writing down a simultaneous distribution of x;
and x: and making the substitution

1 This distribution was first given by Helmert in 1875; it was later found in-
dependently by Pearson, “Student,” and others, in the examination of vari-
ous special problems belonging to the wide class in which it occurs.



356 ECONOMETRICA

VN 9
Xl‘z R e X2 u'
N

The integration proceeds as before, yielding the general distribution
for z,
ny -+ ng — 2 |

i =2 2 o ervdz
= wnerr 1 2P 1937 2 ’
n, — 2 | Ny — 2 ; (nle“ + ’I’Lg)%("l"'"?)

2 2

which is evidently that of the natural logarithm of the ratio between
two independent estimates of the same standard deviation based on
ny and 7, degrees of freedom, respectively. The wide class of prob-
lem for which z provides the appropriate test of significance is most
easily recognized from this property.

4. The Probability integral of x*. The probability integral of the x2
distribution,

af = (3 Pe ¥ d(3x?)
n—2 |
2
is
P = L= De—tdf
1x2 n — 2 i
Pl

which represents the probability of exceeding a given value of X
Now, integrating by parts,

© 1 1 o © 1
f — lre~tdt = I:* ‘—-t’e*‘J +f e {1l (]}
pe T r! ix? e (r— D!

3

'
-]

1 ]
= - (1,2 re—%xz + tr—-le—-tdt'
o7 ) e (7 — D)1

When 7 is even, this process terminates, yielding the formula

1
Po= e 14 i 4 = G - ()|

| — ! f

Thus, for
n =2, P = ¥

n=4, P =e(l4be),
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{ 1
n=§, P=f”%4¢f+gﬂhwf

1 1
n=8,  Poem{ld bt G+ G0

all of which are easily calculated for a given value of $x2.
When 7 is odd, the same process may be applied, terminating at
r=1%; we then have the formula,

® 1 1
= — 4 ,—t ~3x2 4 (1. 92)} . (1y2)3
P=f it %¢ﬂ>+3fﬂ>
5
4+ ... (3x?) D
n—2' .
2

In the integral, write 1z? for ¢, and substitute for the fractional fac-
torials using (—1)! =+/7, and we find

T e ¥l 1
P = V—f e ¥y + /‘/—-e“m{x + I+ —x°
T Jx T 3-5
1

55 (n= 2))(,,4}_

The integral is the familiar probability integral of the normal curve,
the contribution to P being the total frequency outside the limits +x
times the standard deviation. The series is easily evaluated as before.

5. Relation of the x* distribulion to the Poissonsseries.—I1t will be
noticed that, when n is even, the probability of the variate 3x* ex-
ceeding any specified value m is

m2 m}(an)
e"’”<1+m+-é~'+--'+ >

n—2'
5

which is the sum of the first 3n terms of the Poisson series, having the
parameter m, or, in other words, the probability that a variate dis-
tributed in such a series is less than $n. This identity is expressed
in the formula,

i | ro1
—tretdt = ), —mTe ™,
m p‘ z=0 x!
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where p, which takes the place of $(n—2), is a positive integer or zero.

Thus, a table of x? can be used as a table of the partial sum of the
Poisson series; in particular, the 5 per cent value of x?, which is the
value exceeded once in 20 trials, gives (on halving) the value of m,
the “‘expectation’ of the Poisson series of which the first 3n terms oc-
cupy 5 per cent of the frequency.

For example, if n is 8, the & per cent value of x* is 15.507; conse-
quently, we may infer that, if a rare event has been observed only
3[=3(n—2)] times, the observation has departed significantly from
any expectation exceeding 7.754 occurrences and, consequently, its
real frequency of occurrence probably does not exceed that which
would give this number in our body of observations. Again, if n is 6,
the 95 per cent point is 1.635, so that, if 3 cases have certainly been ob-
served, the expectation probably exceeds 0.817, since for this value
95 per cent of the observed numbers will be 0, 1, or 2. We may thus use
the table very simply to show just how much information about the
frequency of rare events is contained in a record of only a few such
occurrences.

6. The probablity integral of “Student’s” t distribution.—It has al-
ready been shown that the ratio ¢ of a deviation to its standard error
as estimated from n degrees of freedom is

n—1 |
9 2\t D
df = --—-————<1 + 2 di;
n— 21\/___ n/
—W 7
2 m™
or, if tan 8 is written for {/+/n,
n—1
!
2
df = - cos™1 4-dé.
n — 2’ —
N T

Then the probability of exceeding a given value of ¢ is
n— 1
!

ir 2
f ——— cos™! 0-df,

n—2
5 e

where t=+/n tan «.
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Now, integrating by parts, it appears that

(r 4 P! (r+ ) ix
cos¥tlg.dp = cos? 0 sin @
fa r'v=« !— rl/w - ]

ix r 4 I
+ f 2 —(—E)— cos?1 ¢ sin® 9d6.

a

r—- DW=
which, so long as r is positive, is equal to
(""""2)' g‘*’ (r— 3
————cos¥asinae+ (2r+1) |  —————"u cos?! 6-d0
r'\/'ir ( >Jja‘ (r— D7
ir r + 1 '
-— 2rf ( B! 0s ™1 9-dé.
o« 7l \/1r
Hencge,
*'(r+%)' 1 (r— 1!
os¥ 1 §.df = — —- cos?r a si
j; r'\/_ 5 T!\/W_. a sin «

- P! a1 9.4
1 g.d6
+f IS IV A

when r is positive; but, when r =0,

i (p I
f (r+3%) costt 9-df = 1(1 — sin a).
- r!\,/;r_

Hence,

1-3
P=%—%sina{1+%cos a—l-ﬁcos“a

cos"ay,
2:4-6---(n—2)

when n is even. When 7 is odd, we proceed in the same way until r =1,
and obtain

a sina
P=%———————~{cosa+%cos3a
™ ™
2:4.--(n—-3)
. cos"“za}.
35---(n—2

As in the case of x?, when 7 is odd a transcendental function is re-
quired, in this case an inverse circular function, whereas when 7 is
even, P is expressed as a function algebraicin ¢.
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“Student’” has given (1) four-figure tables of P up to n=20; beyond
this value a good asymptotic expansion is available (3). “Student’s”
tables are for 1 — P in the notation used above, and represent the prob-
ability of a value less than any given positive value of ¢. Since the
distribution is symmetrical about zero, this probability is never less
than i. For tests of significance, we often require the probability, 2P,
that the observed ratio of a deviation to its estimated standard error
shall lie outside the limits +¢, or the complementary probability,
1—2P, that it shall lie within these limits.

It WIH help to make clear the analogy with the more general test of
significance given by 2, of which the x* and ¢ tests are special cases, to
observe that, when 7 is even, the expansion for 1 —2P is

1-3
sina{l-{—%gcosQaqL«é»Zcos“a-{—

1-35---n—3
COS"”Za};
246---n—2

or, in terms of = cos? a = ¢,

n

_ 1-3 1-35---n—3
V1 = {1+l gt acn—z)},
LR Toae. a2t

in which the expression within the bracket is the first n terms of the
binomial expansion

(I — gt

Just as the probability integral of x* gives the partial sum of a
Poisson series, so, therefore, does the probability integral of ¢ give the
partial sum of a special type of binomial expansion; in each case the
external factor is the inverse of the sum of the complete series, and the
identity holds for all even values of n.

7. The probability integral of the distribution of z.—The digtribution
of z involves two whole numbers, n, and n,, which are the numbers of
degrees of freedom in the two lines of the analysis of variance to be
compared, and is given by the general formula,

ny + ne — 2 |
2 em3dz
sz______.nmm .
-2 ?'Lz - 2 (nie?* + nz)&("l"'"?)

2'2
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Writing
7’1«162"’
LD e oo ]
nie?® -+ ng

this becomes
n+ ne — 2 |

2

df = q*(”x—”(l — q)%(nz“‘ﬁ)dq‘

n1—2'n2~2'
2 2

Now,
f‘(r—l—s-{-l)! (r+s+ 1!
‘ ri(s + D!
! (r+s4+ D! .
r~1(1 — s+1d
+fq(r-—1)!(s+1)!x( w)ide
_(r+s+1)!
B ri(r + 1)!
rl (r+s4+ D! .
r— 1___ sd,
+fq DG G
T fl(r—{—s—{—l)!
s+1J,

(1 ~ z)sdz = [-—

rls!

qr(]_ — q) s-+1

(1 — x)de.

rls!
This establishes the recurrence relation

fl(r+s+ 1)!xf(1 _ oyds = (r + 9!

rls!
ql_@(—rj——f?é!— Y1 — x)sdzx.
Hence, when 2, is even, the probability of
” nye?
mes 4+ ny
exceeding any fractional value ¢ is

Ny na(ng + 2)
P = 1 —_— %"z 1 p— —_— " 2
( q) { + ) q + v q

ng(n2+2)(n2+n1-—4) }
. q&(nl——2) ,

24 - (ng —2)

z'(l — x) sﬂ]

qr(l — q)s-H.

q
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of which the terms in the second component are the first 37, terms of
the binomial expansion

(1 — g)#ns,

From this expansion, when n; is even and not too large, the probability
may be easily calculated.

Alternatively, using the direct result of integration by parts, we
shall find the alternative expression

mtn-—2 q
2  1-g¢
UL RS TR
2-4 1—g¢q
+ (m +ng—2) - (n2—|—2)< q )}(n1—2>}
24---(m—2) 1—q

involving the first 1n, terms of the expansion of the positive binomial

Y tn—2)
(1 + L) :
1—q

The probability integral of z, when n, is even, is thus equivalent to
the sum of 1n, terms of a negative binomial in form (A), or of a positive
binomial in form (B). It is of some historical interest that the proba-
bility integral of the normal distribution was first introduced by De
Moivre as an approximation to the sum of a terminating series of
binomial terms. Indeed, had the eighteenth century mathematicians
possessed greater analytic power, the distribution of z, which was un-
known to statisticians up to about 10 years ago, might have been
studied before the normal distribution.

If n, tends to infinity and neg to the limiting value x?, both the forms
(A) and (B) tend to the form

1 e 1+

(B)

ny —

2

!

1
e‘*“{l iAo )+ (%xz)*‘""”},

which we obtained for the distribution of x?, if we identify n; of the
general case with n of the x? distribution. The distribution of x? is,
thus, as is obvious from its statistical derivation, the limiting case,
when n, is infinite, of the general distribution, the substitution being

x?,

— = g% n = n.
n
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Again, if ny=1, the expression is evidently equivalent to that ob-
tained for the probability that “Student’s” test of significance ¢ shall
lie within the limits

1 —
+ /‘/nl q)
q
but
1 - n
________q — _2_6—-2z —_— __6—2z,
q Ny ni

hence the probability that z shall exceed a given value is the proba-
bility that ¢ shall lie within the limits +e2, when ny=1, n1=n.

Since z is the logarithm of the ratio of the estimates of the standard
deviation derived respectively from n, and n, degrees of freedom, it
follows that, if we interchange n; and ns and change the sign of z, the
expression for the distribution is the same as before. Consequently,
when 7, is even, the probability integral may be expressed as the sum
of $ns terms of a binomial expansion. The expression corresponding to
(A) is, writing p for 1 — g,
ni(n + 2)

2.4
mng +2) - - (4 ne — 4)
2.4...(n2—2)
illustrating that, for n; =1, ny=n, the probability that z exceeds any
given value is the probability that ¢ will fall outside the limits +e?,

and that, when n, is infinite, the x? distribution is given by the trans-
formation

2

Ty
1—P=(1—p)5‘"1~{1+-2—p+

pocal, a

€2, n = ny.

X2
~=
Corresponding to expression (B), we have
mtn—21-—4q
2 q
(+me—2) - - (g + 2) (1 - q)*‘"z‘”} , (B')
2 (ma— 2 q

1 — P = qi("x*"‘z’?){l +

When both n, and n, are even, it appears that P and 1—P are the
first 1n; terms and the remaining 37, terms of the expansion of

(p + q) 3(n (0 g—2) ,
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where

q 7y

JR— ,__462.27

D N2

the ratio of the sums of squares in the analysis of variances.

In cases where either ny or 7, is even, the probability integral can
be expressed as the incomplete sum of a binomial series, either with
positive or negative exponent, the exponent being the half of an odd
integer if either n; or n; is odd. The case remains to be considered in
which both n; and ne are odd.

For this case we apply the recurrence solution as far as r =3, obtain-
ing

ny — 1
- !

! 2
P =f WT—M:F%(I — )iy
o N

2
ng — 1

!
2 7o + 1
e q)éwq%{w?
Ny —
-1
2 Vi
(ng + 1) - (ne+ny—4) }
q’:‘("r‘?‘) .
3. (m— 2)

(I+

The numerical coefficient of the second term, when 7, is odd, is
2 24 (na—1)
w13 (m—2)

and the integral remaining at this stage is just double the one which
has been already evaluated for the ¢ distribution; so, putting

t2
z = sin® @, q = sin? a = —
t2 4+ my

H

we find, sinee n. is odd,
20 2 sin«a
P=1 ~mw~———{cosa+%—cos3a+~~-

n ™

+2-4~--(n2—3) 2}
cos™:
35 (ng—2) «
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r 13- (ng—2)
(n2+1)---(n1+n2—4)_ s }
sSIn™Y o

3.5 (ng —2)

sin « cos™: o {1 + sin®a + - - -

in terms of , where « is connected with z by the equation

n
tan o = —- €.
(2

Tables for z for the 5 per cent and the 1 per cent points of the dis-
tribution have been given for n;=1, 2, 3, 4, 5, 6, 8, 12, 24, <« ; the last
five values are in harmonic progression and enable the table to be in-
terpolated in the manner which I have called asymptotic interpolation.
For ng, I have given values from 1 to 30, together with 60 and «;
in this case again the series of values for 20, 30, 60, and «, may be
used for asymptotic interpolation and the table thus gives four-figure
values of z, an accuracy fully sufficient for all common purposes for all
combinations of n; and n. except the region in which n; exceeds 24 and
ny exceeds 30.

R. A. FIsHER

University College, London
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