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For nearly two decades prior to the date of this publication, the
arithmetical procedure of the analysis of variance had been found
in a rapidly expanding field of applications, to provide the most
commodious approach to the problem of summarising thoroughly,
and interpreting in critical fashion, the kinds of observational data
available. In many cases the properties naturally postulated for the
observations in question were such as to render the interpretation,
and the standard tests of significance, mathematically exact; but
this was not always so. New extensions were constantly being made,
such, for example, as that implied by the discriminant functions, and
it seemed to the author worth while, as in the opening section of
this paper, to specify explicitly the conditions for the exactitude of
the z-test; and in the succeeding sections to illustrate cases in which
it must be inexact, though often presumably a good approximation,
the limitations of which could not be specified without the solution
of problems so far seemingly intractable.

The paper incorporates the solution of the simultaneous distribu-
tion of the latent roots which arise in discriminant analysis, without
the formidable notation of matrix algebra. The method of resolu-
tion of this rather difficult problem may therefore be of interest in
view of other possible applications.

Annals of Bugenics, 9: 238-249, (1939).
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THE SAMPLING DISTRIBUTION OF SOME STATISTICS
OBTAINED FROM NON-LINEAR EQUATIONS
By R. A. FISHER

1. THE FIELD OF THE z-TEST
I has long been recognized (Fisher, 1936) that that aspect of the analysis of variance which
consists in comparing the mean square ascribed to some possible causes, or discrepancies,
with an appropriate residual mean square, or error, is absolutely valid for normally dis-
tributed errors, subject to a certain limitation of the form in which the adjustable parameters

are involved.

For example, to take a case of wide generality, in testing the goodness of fit of a regression
line, or surface, having a given hypothetical form, no difficulty is introduced merely by
reason of the line being curved, or the form non-linear. The idea that special difficulty is
involved in non-linear regression is an illusion widely disseminated by the Pearsonian
school, who were indeed completely at fault, even in testing the goodness of fit of linear

regression.
If the form of the regression line be

Y=5#X+0: X+ ... +8,X,,
where X, ..., X, are any functions of the independent variate z, we may minimize
Sy—Y)?
for variations of fy, ..., #,,, and obtain linear equations for these adjustable parameters,
SX,(y-Y)=0

having solutions 8; = b,,..., 8, = b,.
Multiplying by by, ..., b,, and adding, it follows that, for the solution,

SY) = 8(1?),
and therefore that ‘ S(y—Y)2 = S(y?)— S(Y?).
This is the residual sum of squares with 7 —p degrees of freedom, where 7 is the number of

degrees of freedom possessed by the set of values y, which may themselves be deviations
from some simpler formula; while S(¥?) has p degrees of freedom. Then in general the analysis

of variance

D f
figgfiffrr? Sum of squares
Regression P S(Y?)
Residual n—p S(y— Y)?
Total n Sty?)
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supplies a direct and exact test of significance for the set of adjustments represented by
by to by,

For goodness of fit, where we have several observations y in each array, the most com-
plicated form of curve is one which has as many variable constants as there are arrays.
All such curves will pass through the array means, and all are indistinguishable, so far as
such data are concerned. The goodness of fit of any curve involving a —p restrictions on

the array means may therefore be tested in a similar analysis:

Degrees of .
ﬁ’gczdom Sum of squares
Deviation from fitted line a—p Zngf,— Y)*
Within arrays n—a Sy —4.)?
Total n—p Sy~ Y)

[t will be noticed that the expected values from which deviations are calculated in the
second line are the array means, so that the vanishing of this sum of
squares implies for all observations, ¥ = 7,. If y is used as a co-ordinate
in generalized space, these conditions are satisfied in a plane continuum
of a dimensions, within which lies a more restricted plane continuum
of p dimensions representing all possible fitted curves of the form chosen. 4
The observation point O will not in general lie within either space. The P
foot A of the perpendicular dropped from it on the a-space determines
the observed means of the arrays, its length, OA4, determines the sum of
squares within arrays. The foot P of the perpendicular dropped on the p-space determines
the fitted curve; its projection AP in the a-space gives the sum of squares of deviations.
The test of goodness of fit consists in recognizing that, if this is unduly large compared with
0A, the hypothetical form is incompatible with the data.

What is essential for the generality of the analysis is clearly not the linearity of the
regression line, but the linearity of the relations among observaticen points for different
sets of deviations to vanish simultaneously. Thus, if expectations are expressed in terms
of parameters in any way, we may eliminate the parameters and obtain the relations which
hold among the expectations of direct observations, equally liable to error. It is these
which must be linear for the simple procedure of analysis of variance itself to supply exact
tests of significance.

1t is, of course, to be anticipated that the ordinary tests will still be sufficiently exact
when the radii of curvature of the spaces concerned are all large compared with the distances.
This condition has been recognized in the use of least square formulae for non-linear
equations in astronomy and geodesy; the real importance of non-linearity does not lie,
however, as has been supposed, in the fact that with equations non-linear in the parameters
employed, the process of fitting may have to be iterated. This in itself presents no difliculty;
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what is important is that after a good fit is obtained, and the sums of squares to be compared
have been accurately evaluated, curvatures of the restriction spaces, if they are not small
relative to the distances indicated by the sums of squares, may appreciably affect the
frequency distribution of their ratios.

2 THE TEST OF SIGNIFICANCE OF A HARMONIC COMPONENT
Examples, in which the analysis is not too difficult, are rare; an early one was provided
by the process of testing the reality of harmonic components in a series of equally spaced
observations, w,.
Supposing such a series to be composed of independent and normally distributed values,
then any function

S(a,w,)
will have a mean value zero, if S(a) = 0, and will be normally distributed with the same
variance as a single observation, if
S(a?) = 1.

If the number in the series is odd, 2s+ 1, then

a, = 2 coszwm
A\ 2s4+1) T 254+ 1

2 . 2mpr
and a, = A/(————23 m l)sm Py

for values of p from 1 to s, will constitute 2s mutually orthogonal components, oceurring
in pairs having periods (2s+ 1)/p units. The like is true of an even number, 252, only in
this case there is an unpaired component

1
ﬂr=m~)(—)%

of period 2 units. We may omit this component from consideration by deducting
1 2
EYS) (Uy —ug+ug— ... —Usgys)
from S(u—u)?,
so that the remainder consists of two components for each of s different periods.

The sum of two squares for each period constitutes a certain fraction of the whole. If
we choose that period out of s available which makes the largest contribution, it has been
shown (Fisher, 1929) that the fraction, ¢, taken by this period is distributed so that the
probability of exceeding any value g is
s(s—1) st

5 (1= 29 (= ) e (L= kg, (1)

P — ofl — g)s—1__
P=sl-g) GoRR

in which £ is the greatest integer less than 1/g.
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Now, the choice of one period out of the s Fourier submultiples available, together with
the evaluation of the two corresponding coefficients, gives that function

2mpr . 2mpr
’T = r— ] ———
[/ ACOSQH-I %381n28+1,

involving the adjustable constants 4, B and p, which minimizes
S(u—U)?
for integral values of 5. If p were adjusted to some intermediate value it would presumably

give a lower value still.
To find the mean of g as distributed in random samples, it is convenient to use the

expression for 1— P,

1—P—L( )'k,(' ),(kg ) R (2)

for values of & up to s for which kg > 1.
Then the mean of y may be evaluated as

& (1= P)gdg = g1 - )= (1= P)dg,
in which the limits for term k are Lfk and 1.
The contribution of each term is therefore

o Lo
(=1 - 1= =1y,

which is to be summed for values of % from 2 to s.
Now, if u,, is a polynomial in & of degree less than s,

hd !
%(")s“kk!@;g__iWuk P (_ )s(sul__uo);
putting w, = (k— 1)8v1__§]_']_6‘{(/‘;_ e (= 1)),

! 1
the mean is found to be 1+2,( Yo k‘(.: ek

13, s! 1
=2 T

This may be expressed as the definite integral

1
lj (= (l-a)} %
sto

or Slfol{l+(i~x)«1—(1-—:1:)2+...+(.l—-m)'*'“1}dx.
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1 I 1 1
H G = -~ - :
ence 7 8(1+2+3+...+S)} . (3)
1 Y
or ;’{F(s)—F(O),.

The values of 7, of 3/2s, and of 25§/3 are given below for the first few values of s.

Table I. Values of § for small samples

Length _ .
of se%ies $ g 3/2s 2sG/3
5 2 3/4 3/4 1
7 3 11/18 /2 1°2222
9 4 25/48 3/8 1-388¢
1L 5 137/300 3/10 1’5222
13 6 49/120 1/4 1°6333
I5 7 363/980 3/14 17286

Instead of accounting for only the fraction 3/2s of the total sum of squares, as would be
the case for a formula linear in three adjustable parameters, the fraction accounted for
in large samples is about

v+logs
8 3
the ratio of which to 3/2s increases indefinitely as the size of the sample is increased; if
s = 121t is double, and at s = 227 about four times expectation.
Note that if p were fixed, and only 4 and B adjustable, the eliminant would be
2mp
Upy + Uppq = 2, COS 1
alinearequation between any three adjacent observations; whereas, when p also is adjustable,

we have
Upy Uiy Ut Uiy
- 3
U, Uy 1

for any four adjacent observations; and this eliminant, being non-linear, shows that the
formula cannot be replaced by one linear in the three constants required.

3. THE SIMULTANEOUS DISTRIBUTION OF LATENT ROOTS

The most important case, for practical statistics, of an analysis derived from the solution
of non-linear equations, is one which has been approached from different standpoints by
several different groups of writers, notably Hotelling (1933, 1935, 1936), Mahalanobis
(1930, 1936), Bose (1936) and Bose & Roy (1938), and which I have recently discussed
under the heading of “The statistical utilization of multiple measurements’’ (Fisher, 1938).
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The problem that emerges, when the effect of these researches is viewed in its mathematical
generality may be stated as follows:

1f,,...,2;...,x,stand for p different variates and a;; for the sum of products of any two of
them, an analysis of covariance will give values a,; separately for several different dis-
tinguishable causes.

In connexion with any series a,; corresponding with n, degrees of freedom we shall wish
to consider the totals A,; (of n,+n, degrees of freedom) including the contributions of
error, or of other causes, from which our chosen series may or may not be significantly
distinguishable.

If, using arbitrary multipliers b?, positive or negative, we make a compound variate

X = Y b,
7

then the sums of squares for X are

D.F, 8.8,
Treatment n, ZX bbay;
Remainder Ny ZX b (A —ay)
Total 1y 1y EXVb A,

and it is to be noted that the ratio of the sums of squares is stationary for all variations
of b, if

e  Lblay,  Xbley, 0
2hid,,  Xbidy,, T 2b4,;,
Hence 6 is one of the roots of the equation
lay—045 =0 .. (4)

which is at most of degree p. For the present we may suppose that n, and n, both exceed p — 1.
Note that 6 is also the ratio of the part to the whole of the sums of squares of X, so that
all the roots of the equation lie in the range from 0 to 1. The fundamental problem is the
sampling distribution of these roots considered simultaneously.
The simultaneous distribution of the sums of squares and products, of a couple of variates
x and y, was given by the author (Fisher, 1915) in a form equivalent to

V-1 oy gy = 2oy g typ—ap g

I
£ g2
df - {é(N* 3)}'{;(1\"’ 4)}' \/71 (O‘n%z “12)
X (@ Qg — 05 V-V, da,,da,,, ... (5)

in which the frequency element of the parent population is

; s

A&y Rog — LT, 2 "

Y._( 11 _4_1_2 12) ey 0y Xy Ay, dwl (17}2
24

Clearly N, the size of the bivariate sample, may in general be replaced by n,+ 1, when n,
is the number of degrees of freedom on which the estimates a,,, a,,, a,, are based.
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If now a second sample yields values aj;, ay,, @5, we shall have a similar distribution in
which these values are substituted for a,,, a,s, @5, and n, for n,. The frequency with which
the two bivariate samples give values in the range

day dagydagyday; dajydas,,
is given by the product of two such expressions.

With homogeneous samples we may argue in like manner from the totals, obtaining
the total frequency of samples for which

W tay = Ap, Gptay, = Ay, aptap = Ay,
have given values. Noting also that, when a,;, @,,, @., are fixed,
u=d4dy, daj,=ddy,, day =dA,,
it follows that, given 4, 4;,, A,,, the simultaneous distribution of @}, @, and a,, is

af = {%(n1+n2_2)}!{%(n1+n2_3)}!
{#(ny = 2} {3(n, = 3)} (B (ny— 2)} {§(ny = 3)} T
(@11 05 — @1)HM (@), a5, — ajF) 100D

(Ayy Agy — Afp)trutna )

daydasdag,. ..., (6)

This is the case of two variates of the more general distribution for p variates
df = {“‘%(”14"”«2“2)}!---{’%(77'1‘{‘”2“17‘1)}!
= Bl —p = D] (e = D =2 =1} V7
% ] a;; !5(7"1—1’)—1) , a’;‘j lé('"z“l"“l)
| Ay [Hoatm—e=D

dayy ... day,,. ...... (7)

This very general distribution is derived by reasoning, exactly parallel with that above,
from the distribution of a single set of variances and covariances

if = :

B2 B —p- Dl
where |« | and |a| stand for the determinants of the s and a@’s respectively. This is the
generalization for p variates of the bivariate distribution given above. It may be derived
either by the geometrical argument used by Wishart (1928), or as Hotelling has shown
(1933, p. 51a), by an inductive chain, using the fact that the distribution of a partial corre-
lation from which ¢ variates have been eliminated, is exactly the same as that of a total
correlation based on a sample smaller by ¢, and that such partial correlations must be
distributed independently of the variates eliminated.

The distribution with which we are concerned is invariant for all linear transformations
of the variates, so that we may at this point simplify the algebra by choosing

o [irneg—EZax | g |Hn-p-1) da,, ...da s
11 nn

Au =1, A12 =0, Ay =1,
4y = @, e = b, Qg = C,

’
ap =1l—a, - ap=-b, az, = 1—c.
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The roots of the equation 8, &', then satisfy the symmetric relations

0+6 =a+c=0p,

00" = ac—b? = gq,
whence (1-0)(1-0)=(1—a)(l—c)—b*=1-p+gq,
(@ —c)? = p?—4q — 4b?,
opq
and 3a.) =a—c.

The simultaneous distribution of p, ¢ and b is therefore

_ (g +7ny—2)! $(n,—3) Hatg—3) _____?L
f"4n(n1—z)!( 514 (I-p+g) dpqu(p oy JRRURE (8)

where the factor 2 has been inserted on the understanding that the integration is taken

over the region in which @ exceeds c.

For given p and ¢, b may take any value between the limits +4J(}p?—¢). Integrating
between these limits, the last factor then is replaced by the constant, 7.

To obtain the simultaneous distribution of the roots, note that

A9 _ 5y
50,0) 0-0',
giving
— __ﬁ_@_li_@___)__ H—3)( 1 — G =D =31 — Yna-3(f) — ' ,
U= 10 =2) (ma— )9 (1 — 0)¥na=90"som=3(1 — §')na=3(0 — §") OO ...... (9)

For p variates, when p does not exceed n, or n,, the general distribution of the p roots
is, as might, apart from a factor involving p only, at this stage be expected,
df = 3 (n1+n2—2}' {3t ny—p— 1}
=D} (30 —p— DY (Fng— 2} - (Sna 5~ 1!
ﬂil')
X 0,...0, ) -1 0. (10, )}mp-D
{%(_’p-—Z)}’(-—%)'{ 1 11} {( 1) ( p)}

X (01— 0y) ... (0,—0,) (03— 05) ... (0, —0,)d0,...d0,. ... (10)

The general form, apart from the constant factor, may be demonstrated by using the

transformation,

@y = Ekjeikejkgk’
which, if S =1, Yeyey =0, when j#£k
B B

satisfies the requirement that the sum of the principal minors of |@ | of degree s is equal
to the sum of the products of § taken s at a time. For example,

Zau Z(}k’
ZE (au 73 CL'ij) = %Elﬁkaly

and so on.
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We may now replace the 1p(p+ 1) variates a; by p variates 0 and 4p(p~1) functionally
independent values e. The Jacobian of this transformation is of degree {p(p—1) in ., and
must consist, apart from a constant involving p, of the product of the §p(p— 1) differences,
for it can be shown to contain such differences as ¢, — 0, as a factor.

If as variates we choose those e;; for which j >, then to satisfy the condition

= Yegeny =0,
ae‘bj k

oe, ey,
we find i S
Oegp en
i _ n
- 3
deyy  en
oe;; .
a—‘l =0, j>2,
€12
0 €i28i
whence a;; = 50, —0,).

i
Oty en

For all values of i and j, this contains the factor (6, —0,), which, therefore, divides the
Jacobian. Similarly, this is true of every difference (6,—6,,), thus establishing the form of
the distribution. The constant factor in the Jacobian cannot involve n, or n,, so that, for
any value of p, putting n; = n, = p+1, we may evaluate it by direct integration. Arn
elementary evaluation of this function of p is given in the following section.

A more formal demonstration of this important distribution is exhibited in this number
by Dr P. L. Hsu.

4, SOME SPECIAL CASES

A common source of such an analysis of variance as was considered in § 3 is the expression
of p dependent in terms of n, independent variates. This situation has been most elegantly
elucidated by Hotelling. The linear compound corresponding to the largest root has been
termed by him the “most predictable criterion”. The compounds corresponding with the
whole series of roots he has termed the cancnical series of dependent variates, while the
multiple regression formulae for these form the corresponding covariant series of dependent
variates. The roots 6 are then the squares of the correlation coefficients between different
pairs. The same roots are thus obtained if the sets of variates are interchanged. Thus, if
p exceeds n, there are only n, roots, and n, and p are interchanged jn the distribution
formula. If either set of variates is normally distributed the distribution of the roots, for
independence of the sets of variates, or for homogeneity in respect of the second set of
samples selected in respect of the first set, is unaffected by non-normality of the other set.
This explains the curious equivalence of the discriminant function for a single contrast
with the partial regression formula for an artificial variate introduced to register the
contrast to which attention was called in an earlier paper (Fisher, 1938).
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This case is reproduced by putting #, = I, then the distribution of 0 is

(En—4$)!
2 2 -1 — §)in-ip- (6,
(Gp=-D!n—tpr—)!
being the test of significance of Hotelling’s generalized “Student’s” ratio, as used in simple
diseriminant analysis.
Again, in the case p = 2, the simultaneous distribution of the two roots is
df = Iy +dny— U (dny — dng— )1
=TT (= D (s =) T =
x Gt O = (1=, pre=d (1 — 0,) (6, — 0,)d0, d0,

. ('n’l + Ny — 2) -8 (] — ing—#
=T o p+q)ttdpdg,

where p is the sum, and ¢ the product of the roots. For given ¢ the limits of p are 2.Jg and
1+q. Integrating with respect to p, we have

(ng+ny—2)! &nri 2 -
(i, 2)! (ny—2)1 1 — {2y

 my+my— 2)!
S =2 (- 2)!

()R (L= gt d (),

the curious result found by Wilkes in studying the distribution of the ratio of the so-called
“generalized variance”’, which is the product of the roots. The significance of such a product
may thus be tested by a z-test. Such a test would, of course allow a large root due to some
relevant causation to be obscured by the accident that the second root happened to be
exceptionally small. It will generally be the largest root, or the largest of those doubtfully
significant, which will need to be tested.

An important section of the general distribution is the limiting form when n, is large. 1f

Ty —>00, My =N

and 7y 0 — 20,

the simultaneous distribution of the p variates ¢ is seen to be

ﬂ-ﬁll
Gn— 01 Un=tp—HUp—D (= !
X e B tp(¢hy o O NG =) (P, 1 — ) Py A,

oy Vi

where O<(,61,<951,,,l<..,<(/)[<r:o. ...... (1
Apart from its own analytic interest, this form supplies a simple demonstration of the
form of the function of p referred to in § 3. For let

T 0 i e e
n=DT.. (n—1ip— g)!

]

((I/Il (/’)_') ((fl)n‘—l “(1‘[)11)"1(/}[ ({961) = I(Y('I‘)’
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when the integration extends over all admissible sets of values; then if n = p+1

210

2

Ap-P!...0l F(p) zfe_¢l"'~'¢p(¢1~¢2) Py =Py dpy,. (12)

Now substitute in the right-hand element
¢p =, ¢i_¢p = ¢;,r t=1 P 1

then we have the recurrence equation

(dp—B!... ) F(p)
- J " e[ i} ) KA ) =)

=}— !... !F’ —_ .
,p('%P) (! F(p-1)

Removing the common factors, it appears that

F@)Fip—1) = () Y(D)!
=@p-DIym. (13)
Since also, when p = 1, F(p)=1= (=)
it follows in general that
Flp)=m4dp-Dl.. (=B, . (14)

the form given in § 3.
Returning to equation (12) it is interesting to note that it may be written in the form

fe_¢‘“"'_¢”(¢1 —@s) ... (¢p—1 - ¢p) gy ... d¢:o

»
= I Gp—4)! (o= i— 9!
»
= I1 (p—i)l2 o>
{=1
= 2 e-Np_1)l(p-2)!...(0). ... (15)
SuMMARY

Hitherto little has been known of the distribution of statistics requiring the solution of
non-linear equations. The test of significance of a selected harmonic, obtained some years
ago, shows, however, that some complexity is to be expected in exact tests of significance
for thege.

In the present paper the solution is given of the simultaneous distribution of the roots
of certain quantic equations which arise in discriminant analysis.
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