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SOME COMBINATORIAL THEOREMS AND ENUMERATIONS
CONNECTED WITH THE NUMBERS OF DIAGONAL TYPES
OF A LATIN SQUARE

Author's Note (CMS 41.394a) *

* Reproduced from "Contributions to Mathematical Statistics" (1950) by permission of John Wiley &
Sons, Inc.

The series of theorems in this paper forms a little essay in the art of
using the available mathematical apparatus (generating functions,
bipartitional functions, etc.) to solve a number of problems of enu-
meration of some complexity. The author is convinced that more
comprehensive methods remain to be developed, but that this will
only be accomplished, and the accomplishment understood, by the
aid of a study of particular problems, such as those here discussed.

The proofs in Sections 4 and 7 have been made more explicit, than
in the original, and some arithmetical slips in Table 3 have been
corrected.

The problem in Section 6 suggests a very general class of enumera-
tion, which so far as I know has not been discussed, namely: If a de-
sign consists of n objects at n loci, given a permutation group for
loci, such that designs transformable into one another by any ele-
ment of the group are regarded as equivalent, to enumerate the de-
signs which can be made of objects corresponding with any given
partition of n.

A great many practical problems are of this general type.

Annals of Eugenics, 1l: 395-401, (1942).
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SOME COMBINATORIAL THEOREMS AND ENUMERATIONS
CONNECTED WITH THE NUMBERS OF DIAGONAL TYPES
OF A LATIN SQUARE

By R. A. FISHER

1. If objects are of a different kinds, each available in unlimited numbers, the number of ways

of choosing a set of n objects is (n+a—1)!
(@a=1)n!"

For, if the selection consists of #, of the first kind, n, of the second, ..., n, of the last, to every
different selection there corresponds a linear arrangement of symbols, e.g. n noughts and ¢ — 1
crosses, arranged so that the first cross follows n, noughts, the second follows n, more, while the
sequence ends with a series of n,. Consequently, the number of ways of arranging such a sequence
is the number of ways of making the selection required.

The number enumerated is clearly the coefficient of " in the expansion of the generating function

(1—x).

2. If P = (pl'pf...), Z(m)=p,
is a partition of n, the number of ways of choosing » objects so that m, types are represented each
p, times, 7, types p, times, etc., is a!

mlim! .. (a—p)V’
for this is the number of ways of assigning the a kinds of objects to the groups represented a given
number of times.

It may be noted that by multinomial expansion
a!

Thgdatisds Yoo SO aEom
(T+atattals..) mim!. .. (a—p)! ’
where the summation is taken over all integral values of , m;, .... Hence

al
Pmlim!.. (a—p)!
is the coefficient of " in the expansion of
(1—x)¢%;
this supplies an alternative demonstration of the expression
(n+a—1)!
(@a—1)!nl’
previously obtained.
3. If a, is the number of types of weight s, then the number of ways of making a selection of
total weight is the coefficient of z* in the expansion of
(L—z)yo(l—2a?) ...
If we write Px) = ayx +axt+agxd+ ...,
this generating function may be written alternatively in the form

exp{p(z) + }p(x?) +34(=°) + ...}



Author's revised version of SBection 4 (CMS 41.395a).

4. If we imagine a variate which takes the value z with frequency ay, the value
z? with frequency ag, and so on, then

o(z), (b, -
will be the sums of the first, second, and higher powers of the variate, i.e.,
8y, Sz, 83, etc.

The product of the variate values of any selection will be r to the power of the
weight of the selection. Hence the monomial symmetric function of the vari-
ates, G(P), correspanding with any partition P is the generating function the
coefficients of the powers of x in which give the frequencies with which different
weights occur in selections of type P. But, the bipartitional function Gs(P, Q)
is defined to give the coefficients of the expansion of (/(P) in sums of powers.
That is,

G(P) = Gs(P, Qskisls -+,
Q
the summation extending over all partitions . Hence

D Gs(P, Qe (@)X (x®) - --
Q

is the generating function for weight of selections of type P, where @ is any par-
tition of the number of variates chosen, defined by

Q = (g¥'g¥* --)-
Combinatorily, as Sukhatme (1938) has shown,
(=) milwe! - - - Gs(P, @)

is the number of ways of making directed circuits ¢ out of undivided parts p.
Since, summing for all partitions (P) of the same partible number

1
Gs(P, Q) =
zp: 7, Q) ql'ed?

s xalxal e
it follows that the generating function for a given number of objects selected is

z: ¢XI($(II)¢X2(‘,L.42) e

7’ aP'ed - xalxa! -

where Q is any partition of the number of objects.
Thus the generating function for a choice of one object is ¢(x). For two ob-
jects we have
36%(2) + §6(?);
for three objects
$46%2) + 36D e(z) + 36(23),
and so on.
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396 COMBINATORIAL THEOREMS AND ENUMERATIONS

4. If we imagine a variate which takes the value & with frequency a;, the value 2* with fre-
quency a,, and so on, then blx), Pla?),

will be the sums of the first, second, and higher powers of all the variates. Consequently, the
generating function for the number of ways of choosing objects of partitional type P, and given
total weight, must be ZGs(P, Q) pxi(at) pra(as) ...,
where ¢ stands for the partition of which the partible number is the weight,
(g gg ), 2(x) =0,
and Gs is the bipartitional function giving the coefficient of the expansion of the monomial sym-
metric function P in terms of sums of powers (Macmahon, 1915). Combinatorily, as Sukhatme
(1938) has shown, (=)omlmy! ... Gs(P, Q)
is the number of ways of making directed circuits ¢ out of undivided parts p.
1
g ...zl a,l
it follows that, if we sum for all partitions P of a given partible number, the generating function is
5 B plats) ..
AL
where the summation is taken over all partitions  of the same partible number.

Since 3 Gs(P,Q) =
P

Thus the generating function for a choice of one object is #(z). For two objects we have

$6%x) + 14(2%);
for three objects 16%(x) + 34(2?) b(x) + $¢(2?),
and so on.

5. Branches. Let a,stand for the number of ways of arranging s lines in a connected figure, so
that after the first the others may follow in sequence, or brarich off in any number from the end
of any previous line. Thus, with four lines we should have the arrangements

AN NANL L <

Then, in making up branches of (s+ 1) lines we may follow the first by a selection of any number
of branches containing a total number s; consequently, the sequence of numbers a, may be found
by equating the coefficients of 2” in the identity

© ©
a2t =z ] (1-2°)%,
s=1 s=1

or, symbolically, l.oggé(g—) = @(x) + (2% + dp(2®) + ...
In arithmetical calculation, when each coefficient up to a, has been obtained, the generating
function, so far as it has been calculated, is multiplied by
(1 —x® )—-u,’
to obtain a new series, including the next coefficient, a,.,, the earlier coefficients being unaltered.

Table 1 shows the calculation up to branches of 16 lines, set out in a form from which it may
easily be extended to higher values.

See previous page for revised version of Section 4.



R. A FISHER

397

A similar problem arises in the chemistry of carbon compounds, in which, however, the modi-

fication is introduced that the number of branches arising at any point is limited to three. The

recurrence relationship by which the number of branches may be enumerated, subject to this
limitation, is evidently

Table 2 shows the calculation of the first 16 terms of this series,

x

S3(0) = 1+(0) + 420) + 39 + 10) + 1) 9%) + 1967,

Table 1. Calculation of the number of different branches to be made of n elements

Final values

$(@)fz

a0 H B 1
at 3 . I
a? 1 2 . 2
x* I 2 4 4
@t I 3 3 9 9
s I 3 7 11 20 . 20
x8 1 4 11 9 28 48 . 48
z I 4 13 29 47 67 115 . 115
a® I 5 17 47 83 123 171 286 . 286
£ X 5 23 61 142 222 318 433 710 . 719
z10 1 6 27 [} 235 415 607 837 1123 1842 1842
z1 X 6 33 125 341 741 1173 1633 2205 2924 4766
x'? I 7 42 180 531 1301 2261 3296 4440 5878 12486
18 r 7 48 230 833 1983 4287 6587 9161 12037 32973
2t X 8 57 315 1269 3349 7741 13261 18981 25452 87811
218 e 8 69 411 1890 5570 12650 25875 39603 53983 235381

Table 2. Number of branches such that no more than four elements meet at any point.
Enumeration of alkyl radicals
Dower of & I ¢ 19t 3be 1 116, 165 ?5/"«'

o I 1

L I . . . 1

2 I 3 3 . . . 2

3 2 I . 3 3 1 4

4 4 2} % 3 3 . 8

5 8 6 . 1} 10 . ]

6 7 14 I 4% 2% b 39

7 39 33 . It 6 . 89

8 89 8o 2 28% rd . 211

9 211 194 . 73% 274 g 507

10 507 478 4 190 59 . 1238
Ix 1238 1188 . 490 141 . 3057
2 3057 29793 8} 1265% 327 i3 7639
13 7639 7528 . 3278 796 . 19241
14 10241 19161} 19} 85134 1920} . 48865
15 48865 49060 22182} 4796 2k 124906

6. The number of ways of arranging the units of a partition, P, in a ring.

The number of ways of arranging the units of a partition, P, of the partible number ¢ in open

sequence is

!

(2 ) (p
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398 COMBINATORIAL THEOREMS AND ENUMERATIONS

From this it follows that, provided the numbers p have no common factor, the number of ways of
arranging them in a closed sequence is
¢!

(o) (Pl
since each closed sequence corresponds with ¢ open sequences, in this case all different, formed by
breaking the ring at ¢ different points.

If, however, the numbers p have any common factor f, the number of ways of forming an open
sequence consisting of a repetition of f equivalent parts is

1
¢

!

PN
! T
and if p/f have further prime common factors, F,, £, ..., the number of these which will consist
of a succession of fF| equivalent parts is Nyp , and of these agaih the number consisting of fF F,
equivalent parts is Nz p,-

Consequently, in the enumeration of the open sequences, consisting of successions of only
[ equivalent parts,

Sl o

Nf=

N,
will appear with coefficient (— )*; and in the enumeration of closed sequences with only frepetitions,
it will appear with coefficient f

—ypl
().
Hence, in the enumeration of all closed sequences, N; will be involved with coefficient
=707
-2V 1-=])...,
t\ A fe
where f,, fz, ... are the prime factors of f. The total number of closed sequences is, therefore,
W F
wp) = 3N,
f
where the summation is for all common factors of the parts, including unity, and
1 1
wf) = 1~-) (l ——)
1 =1(1-5) (17
For example, with the partition (24, 122), the values of N; for all factors of 12 are:

Table 3. Form for the enumeration of rings composed of elements of a given partition

f I 2 3 4 6 1z

N, 12,4575907,283610,094800 2498,640144 g00Qoo 18480 420 Iz

v(f) I b4 2 2 2 4

N, v(f)/48 259531,401741,895725 .52,055003 37537% 770 178 x

With f-fold symmetry 259531,401689,821962 104,100219 56280 1539 51 3

The two last lines both give the total 259531,401793,989054 as the value of n(P), when
P = (24,12?%); the fourth line gives the terms of the formula, which need not individually be
integral; the fifth line shows the arrangements divided according to the highest symmetry each

shows, i.e.
V= Np= Ny + ), G Ny~ Ny—No+ Ma), 6N — ),
and so on.
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7. Ringsof branches. The number of distinct directed rings of which the elements are branches,
chosen so that the total weight is given, may be found by multiplying the number of arrangements
for a given partition P, by the generating function for the number of ways of choosing elements
of that partition. This gives the generating function,

@

5 5 Wy as(p,0) g5 -

f=1P,Q

but
> NAP)Gs(P, Q)
P

is the coefficient of
. ) shses -
in the expansion of
(of +8 4+ + -,

and this is clearly zero, save when ¢ = f, x = t/f, when it is unity.
Hence,

PP I D N P6s(p, Qe

0
I=1PQ I=1
0

-3 11081 - o)
J=1
Hence, if P(@) = dx) + bd2(x) + 143 () +
or, symbolically, —log (1—-¢),
th.e M f 3 17 1 z V(f) of
generating function required is .7- U
f=t

of which the coefficient of 2% will enumerate the number of rings of branches of total weight u.
It should be noted that this enumeration includes ‘rings’ of a single element, i.e. of simple branches.
The numbers of proper rings of two or more branches may be obtained by subtraction. The
coefficients of yr(x) and the enumeration of the numbers of ‘rings and branches’ are shown in
Table 4.

Table 4. Enumeration of rings consisting of branches

Power Rings and  Proper
of = vy Y, EY branches rings

I 1 1 o

2 3 3 2 I

3 3% [ 4 2

4 74 i . 9 5

5 19} $ 20 I

6 48 1% I 3 51 31

7 124% . 3 125 77

8 323% 3% E; 3 329 214

9 8595 2§ . [ 862 576
10 2299% 9% 1} z 2311 1592
II 62165 . . . L8 6217 4375
12 16917} 24 st 1% 3 i 16949 12183
13 4634913 . . 5 . . . 13 46350 33864
14 1276507% 62} . . . . % 3 127714 94741
15 353256 . 12} . 2% . . = 353272 265461
16 98158515  161%d . 3% - . H b | 981753 746372
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400 COMBINATORIAL THEOREMS AND ENUMERATIONS

It will be seen, for example, that of weight 5 there are nine possible branches, and twenty
possible rings and branches. There must therefore be eleven possible proper rings. These are:

< < < O 0

The configurations may also be denoted by giving letters to the termini of the constituent
lines in such order as to show which follow which in order round the ring, or from the branches to
their base. Thus the eleven configurations figured above may be denoted as follows:

B o oy 5
olE ol? o{ ..o{DEF~ (CLEB- {C{EF
: B.. B.. B! |\ B
lg IB" 1Dl D.

D. E.
, EF. r. ,
C{E{Ig ..cp{gz' ..op[g" "ODE{B..  BCDEF..

Here any termination is shown by a single stop, recurrence by two dots. For clarity B has been
repeated in two cases, but with experience in the notation this is unnecessary. The same con-
figuration may evidently have more than one equivalent formula, but the formula determines the
configuration uniquely.

8. Diagonal types of a Latin square. In a Latin square written in the standard form, with corner
at A, the letters forming the diagonal possess a definite set of relationships, or configuration,
which is unchanged by any permutation of the rows, columns and letters which leaves the corner
element unchanged, and which does not permute the categories. Such a transformation is called
an intramutation.

Taking B to represent any letter used in the square, other than 4, we may note that the row and
column containing B in the first column and row intersect on the diagonal at an element which
has some letter other than B. Consequently, the type of any diagonal of a Latin square may be
denoted by a sequence of letters in which B follows whatever letter is thus found on the diagonal.
Any A on the diagonal will form the commencement of a terminating branch, but the con-
figuration may consist wholly or partly of rings of branches. The total weight of the configuration
found in any diagonal of an n x n square is evidently n — 1, and the number of different diagonal
types on which a Latin square can possibly be built is the number of ways of selecting elements of
total weight n ~ 1 from those enumerated in Table 4.

Thus, if b, stands for the number of different rings or branches of weight s, the coefficient of
z"~1in the expansion of

(L—) b (1= a?) % (1 ~29) b ...

will be the number of possible diagonal types of an n x n Latin square.
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The enumeration of the number of diagonal types available for squares of different sizes thus
roceeds as in Table I, using the series obtained in Table 4. The generating function for this
el D

series is shown in Table 5.

Table 5. Calculation of the numbers of diagonal types

Power

of w
o t
1 L
2 I 3 .
3 T 3 7
4 I 6 1o
5 1 6 18
6 1 10 32
7 1 1o 44
8 1 15 69
9 1 15 105
10 I 21 141
1r I 21 201
12 1 28 283
13 I 28 367
14 I 36 405
15 1 36 659

19
27
59
107
204
312
504
Q12
1519
2287
3699
5603
8630

47

79
167
344
692
1314
2302
4289
7837
13929
24093
40800

130
218
497

1049

2283

4699
9644
17680
35451
68667

133008

SUMMARY

343
622
1424
3158
7974
15519
33930
70576
138667

287758

951
1753
4145
9377

21770
49393
113346
251514
546681

Diagonal

types
1

1

3

7

19
47
130
343
951
2615
7318

20491
57903
163898
466199
1,328093
3799624

Side of
square
1

-t
0N N SN W

-

13
14
15
16

17

The note contains a sequence of theorems in combinatorial analysis connected with the numbers

of selections which can be made from objects of given numbers of types.

Enumerations are given of
(@) the number of different branches to be formed of n elements;

(b
(c
(
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