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RECENT PROGRESS IN EXPERIMENTAL DESIGN

BY

R. A. FISHER.

I. GENERAL PRINCIPLES.

In surveying the progress of recent years in the application of
statistical experience to the planning and design of experiments,
I need not go further back than-my paper of 1926 “ The Arrangement
of Field Experiments ”, in which I set out the principles which had
at that time been recently developed at Rothamsted, and which have
since become much more widely understood and applied to experi-
ments both in the field and in the Laboratory.

For many years the practice of replication, that is the repetition
of an experimental comparison on different areas of land, or, in
general, upon different samples of experimental material, had been
gaining ground among critical experimenters. The purposes of replica-
tion had, however, been frequently misunderstood, through lack
of recognition that two distinct functions were fulfilled: (I) the
increase in the precision of the comparisons made, and (II) the estima-
tion of this precision, by means of which alone the experimenter can
judge what conclusions it is safe to draw. To be definite, these
conclusions must be based on tests of significance, and, since the
most widely useful of these tests involve estimates of error, it is
essential that the estimates provided by the experiments shall be
valid, that is, that the components used in the estimation of error
shall be produced by exactly the same system of causes as produces
the actual errors of the experiment.

From L'application du caleul des probabilités, (Proceedings of the Intermational
Institute of Intellectual Cooperation, Gemeva, 1939), 19-31, (1945).
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2. RANDOMISATION,

To ensure the validity of the estimation of error, it is sufficient
to supplement replication by a second principle, namely randomisa-
tion. We may state the principle briefly by saying that, while it is
impossible to compare two varieties, or treatments, in the same year,
on exactly the same land, yet they may be compared on random
samples of the same land, in such a way that the errors produced by
differences in the areas of land on which they are grown shall be
correctly estimable from the discrepancies between areas similarly
treated, or sown with the same variety.

The efficacy of this principle is easily seen in such a case as that
referred to above, in which the whole experimental area is divided
into plots, of which so many are assigned at random to each variety.
It is, however, customary, in order to diminish the magnitude of the
real errors, to eliminate in advance the effects of heterogeneity between
certain large areas, such as the blocks, rows or columns of an experi-
ment, by requiring that all treatments shall be applied equally to
such areas. It may then be shown that randomisation, subject to
such simple restrictions, still exactly fulfils its purpose of providing
an estimate of error, after the elimination of the grosser elements,
which is validly representative of the actual errors of the comparisons
desired.

For example, if five varieties are to be tested, the experiment
may consist of a number of compact blocks, each divided into five
plots. In each block one plot is assigned at random to each variety.
Then it is evident that the errors in the comparisons of the aggregate
yields of the different varieties are due solely to such soil heterogeneity
as exists between different plots of the same blocks, and will be wholly
unaffected by differences between the fertilities of the blocks as
wholes. The errors of the comparisons may, therefore, properly be
estimated from the discrepancies between the different comparisons
made in each block, eliminating entirely from the estimate of error
heterogeneity between whole blocks. The precision of the experiment
may be increased indefinitely by increasing the number of blocks,
even though this requires that the experimental area as a whole
shall be made more heterogeneous.
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The principle of dividing the errors to which an experimental
comparison is exposed into two separable fractions, of which one,
representing generally the larger sources of error, is completely
eliminated by the methods of experimentation adopted, while, by
means of randomisation, errors of the second fraction are scrupulously
divided between the comparisons which finally constitute our experi-
mental results and those other comparisons from which our estimate
of error is built up, is of very wide and varied application. The great
progress of recent years has, indeed, largely consisted in the elabora-
tion of sometimes very intricate schemes appropriate to different
types of experimental material, and to the other requirements which
the experiment may have to meet. Since, however the notion of
randomisation, though simple in itself and completely general in its
application, has been occasionally misunderstood, it may be as well
first to answer certain objections that have been felt before discussing
any of the more elaborate structures which depend upon it.

3. SAMPLING.

The nature of randomisation may be very well illustrated from
its use in the sampling of an agricultural crop, e.g., of a single experi-
mental plot, or of an area given over to commercial production.
The technique by which such sampling can be carried out, on a large
or a small scale, efficiently and without danger of bias, is of very
widespread statistical utility, by no means confined to agriculture.
Indeed, during my recent visit to India the best source of official
information upon many sociological facts of the utmost importance
appeared to lie in the application to whole districts or provinces of
methods which at Rothamsted we had developed to grapple only
with the complexities of the crop growing in an agricultural field.

The principles of crop sampling may be readily grasped in terms
of the hierarchy of subdivisions which it involves. First we may
eliminate major elements of heterogeneity by dividing the whole area
into sections, or strata, chosen for their apparent homogeneity, each
of which is known as a sampling area. This area is conceived as
composed of a number of sampling units, each of which may be only
a small fraction of the sampling area. Not less than two of these
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units, chosen at random from the whole, constitutes the sample, and
these are examined, measured or analysed independently. Finally,
each of these sampling units is, in practice, generally composed
of smaller portions known as ultimate units, which are the smallest
elements which it is convenient to handle separately.

For example, with a cereal crop drilled inrows we may choose as
our ultimate unit a length of 25 cms. of a single row. Four such
lengths lying side by side constitute a convenient sampling unit
on which the quantity of produce can be measured at harvest, or at
other times of the year the dry weight, the number of ears, or the
number of plants can be ascertained. With a crop consisting of larger
plants, such as sugar-beet, the ultimate unit will be a single plant.
The sampling unit will be a number of plants, but these need not
grow in a compact group. On the contrary, a convenient form of
sampling unit consists of every twentieth plant, commencing with a
particular individual chosen by lot from the first twenty, and counting
every plant of the sampling area in a predetermined order.

It will be noticed that randomisation is not applied within the
sampling unit. Its parts are always related to one another in a
systematic and predetermined manner. Corresponding with this
fact, we may note that no separate determinations need be made,
in the process of sampling, upon the parts of which the sampling
unit is composed. It is sufficient to count the number of ears on the
whole unit, or to determine the sugar content of the mixed pulp of
all the plants which constitute it, rather than analysing these
separately. Differences within the same sampling unit are not ran-
domised because they are not used in the estimation of sampling
error. They are only of interest for the different and preliminary
process of discovering what type of sampling unit it is best to use,
namely, that by which we can reduce the sampling error to a
predetermined level with a minimum of trouble.

The estimate of sampling error is derived solely from the differences
observed between different sampling units from the same sampling
area. It is to guarantee the validity of this estimate that we choose
our sampling units independently and at random from the area
which they are to represent. Ii is for this reason that we never take
less than two. If, for example, we had pairs of sampling units from
each of forty sampling areas, the sum of the squares of the forty
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differences in any measurable character will provide a satisfactory
estimate of the sampling variance of the total of the forty samples.
In practical sampling we always require such an estimate, for only
from it can we judge whether the sampling procedure has been suffi-
ciently intensive or, in general, sufficiently accurate for its purpose.
It should be noted that the large differences which may exist between
different sampling areas contribute nothing to the error of sampling,
for these areas are made to contribute proportionately to their extent.
Like the differences within sampling units, though for a different
reason, they are irrelevant to the estimation of sampling error.
The terminology of this simple procedure has been designed
to make clear exactly in what randomisation consists, and in what
particular way it aids our researches. One fallacy tobe avoided consists
in asserting that randomisation is inconsistent with the elimination
of the grosser elements of soil heterogeneity, as it would be if we were
forced to ignore the distinction between different sampling areas, and
to choose by chance varying numbers of samples from them. Equally,
it is a fallacy to suppose that it is inconsistent with the choice of a
sampling unit of complex structure when this happens to be advanta-
geous, as if we were forced to take the smallest available element as
our sampling unit. The object of the complex sampling unit suggested
above for sugar-beet is that it shall contain plants grown in a variety
of places within the sampling area, the aggregate, or average, of
which shall be closely similar to that of the other sampling units
which might be chosen. Equally, in comparing a pair of cereal
varieties, we may choose for closer comparison to grow them always
on pairs of adjacent parallel strips, assigning at random only which
shall occupy the first strip and which the second. In this case the
experiment will provide a number of independent comparisons bet-
ween different pairs, the errors of which have been properly random-
ised. Further, if it were feared that important differences might exist
between adjacent parallel strips, by reason of a transverse fertility
gradient, we may, if we choose, set up a balanced configuration, or
“ sandwich 7 of strips ABBA and confine randomisation to deciding
whether for each configuration it shall be ABBA or BAAB. In
this case, each complete configuration will provide a single compa-
rison, properly randomised, so that, from a number of such compa-
risons, a valid estimate of experimental error may be determined.
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I have stressed these preliminary and fundamental points, not
because they are widely misunderstood by practical experimenters,
who, indeed, usually appreciate them thoroughly, but because, in
recent years, certain theoretical statisticians, having little contact
with practical work, have thought to score an argumentative point
by misrepresenting the function and nature of randomisation in
experimental technique. The same authors, actuated by a desire to
defend the early and inaccurate applications of statistics to

experimental data, have undertaken an exposition of the tests of

significance, essential to the interpretation of well-planned
experiments, with an equal lack of understanding of their logical
basis and, therefore, of the questions which they are competent to
answer. Thus Neyman has developed an elaborate attack upon the
experimental design known as the Latin Square, in ignorance of the
fact that the test of significance which he declares to be biassed is a
test of the null hypothesis that the varieties compared are equivalent
in those quantitative characteristics to which the test is applied
and is therefore perfectly adapted to its purpose.

4. THE LATIN SQUARE.

The Latin Square, named after the combinatorial problem studied
by Euler, is an arrangement in which the number of replications is
equal to the number of treatments to be compared, but in which
these replications are not grown separately but in a single compact
block of plots having the same number of rows as of columns. The
treatments are then so arranged that each treatment appears once
in each row and once in each column, as may always be done whatever
the number of treatments. To obtain a random arrangement it is
not necessary to choose one at random out of all the possible solutions
for a square of given size; it is sufficient, starting with any one solu-
tion, to rearrange at random first the rows, and then the columns,
finally assigning at random the treatments to be used to the letters
of the square. This procedure, in effect, chooses a solution at random
from among one of the transformation sets into which the solutions
may be divided.

The great practical utility and widespread use of the Latin
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Square, both in direct experimentation, as described above, and as
a basis for more complex designs, has stimulated the study of the
transformation sets and of the problem of enumeration which, in
the mathematical literature has been somewhat disconnected and
desultory. For 6 X 6 squares there are in all twenty two transforma-
tion sets, as defined above, containing numbers varying from 20
to 1080 standard squares, 7.¢., squares having the letters of the first
row and column in a standard order. By permuting the rows and
columns each standard square will generate 6 ! 5! or 86,400 different
arrangements. It is, therefore, sufficient and convenient to enumerate
the standard squares of each set. Different transformation sets may,
however, be connected in another manner, namely by permuting the
different categories, rows, columns and letters with each other. The
interchange of rows and columns produces what is called the conjugate
square and, for squares larger than 5x 35, conjugate squares need
not belong to the same transformation set; consequently, we have
such things as conjugate sets. It is equally possible to interchange
the rows and letters, or the columns and letters, to produce what
are called adjugate squares, and it is evidently possible for as many
as six sets, all of which must contain the same number of standard
squares, to be thus related by adjugacy. Actually, among the 22
sets of 6 X 6 squares there are 5 triplets of adjugate sets, in addition
to 7 completely self-adjugate sets. Since the majority of properties
of importance are invariant, both to the permutation (e.g. of dif-
ferent rows) within each category, and to permutations among
the three categories, there may be said to be twelve species of
6x6 Latin Squares, containing from 20 to 3240 standard solu-
tions each.

Among the properties unaffected by these two kinds of transfor-
mation is the possibility or impossibility of forming a Graeco-Latin
solution, i.e., of adding a fourth category with the same number of
classes, such that each class occurs once in each row, once in each
column and once with each letter. In none of the twelve species of
6x6 square is this possible, as was conjectured by Euler, and
demonstrated by Tarry in 1900, who must also have enumerated
the 6X6 squares, for he states their total correctly. He speaks,
however, of their being seventeen kinds, evidently through recognising
the equivalence of conjugate sets, but not of adjugate sets.



26 R. A. FISHER

A second group of invariant properties, very serviceable for the
recognition and identification of different sets of solutions, consists
of the number and distribution of the intercalated 2X2 squares,
which most Latin Squares contain. These must appear whenever
the permutation partition connecting any pair of rows or columns
contains a part 2, as do the partitions (5, 2) and (3, 22) of the partible
number 7. Consequently, it commonly occurs that such intercalated
squares are numerous, and by mapping these it may often be seen
at a glance that no rearrangement of the rows, columns or letters
can reproduce the square as it stands, or that a few particular per-
mutations may possibly do so. These can then be tried without much
labour. Again, intrinsic differences between the categories are at
once obvious, and when any two, or all three, of these are apparently
equivalent, they may be tested directly. In exploring the 7x7
squares, no two sets have been found, apart from a few which contain
no intercalates, the difference between which was not apparent as
soon as intercalates were mapped.

In addition to affording the means of recognising a set already
known, and of determining the size and structure of the set to which
a given square belongs, the intercalates are of further value in that,
by reversing them, leaving the other elements of the square unchanged,
a square belonging to another set is usually produced. The whole
body of sets, or at least all that are connected in this way, may thus
be systematically generated by making all possible reversals, or,
as is sufficient, all that the symmetry properties of the square in
question show to be intrinsically different. H. W. Norton at the Galton
‘Laboratory has recently enumerated the 7 x 7 squares by this method,
finding in all 146 species. The enumeration is not theoretically
exhaustive, but, since precautions have been taken beyond those
which I can here mention, it is improbable that any solutions have
escaped discovery. Norton has also explored the Graeco-Latin sets
of size 7.

5. CONFOUNDING.
The Latin Square has been especially successful when the number

of treatments or varieties to be compared is from 4 to 10, although
squares as large as 12 X I2 have been used successfully. Much larger

o
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numbers may, however, be required. This occurs inevitably in plant
selection work where, after crossing, the lines to be tested for
favourable combinations may run into hundreds, but it also occurs
deliberately, as was foreshadowed in 1926, when advantage is taken
of the high efficiency and comprehensiveness of facforial experiments
in which several different factors, manurial, cultural or varietal, are
introduced in all possible combinations into the same experiment.
The number of different combinations may then be considerable,
e.g., 48 or more, and it was in experiments of this type that the
method of confounding was first introduced. This consists in the
use of blocks of smaller size than would be required for a complete
replication. Certain of the experimental contrasts within the replica-
tion are thus represented by the difference in yield between whole
blocks and are liable to much greater experimental error than are
the much more numerous contrasts which can be made up within
blocks. By choosing, therefore, contrasts deemed to be experimentally
unimportant for confounding with plot differences, the contrasts
of experimental importance can be given the higher precision
attainable by the use of small blocks.

The subject is of great variety and occasionally of some intricacy.
I have attempted to clarify its logical principles and to illustrate its
more important applications in The Design of Experiments, 2nd Ed.,

1937.
6. INCOMPLETE BALANCED RANDOMISED BLOCKS.

Some very important developments in this field are due to F. Yates.
Yates pointed out that, if a number of variates v were grown in
blocks each containing % plots, an exact and appropriate analysis
of the results was possible without any serious complexity, provided
that each pair of varieties fall equally frequently in the same block.
If & blocks are sufficient to provide r replications of each variety,
then evidently

vr = kb

If, also, every pair of varieties come together A times then

r(k—1I) =2A(v—1I)



28 R. A. FISHER

Two equations thus connect the five integral values, and the practical
question arises for what integral numbers can the problem be solved
for a moderate number of replications.

It is easy to see that, if all possible selections of % varieties were
chosen from the v available, we should have

vl

"= e
whence
, (v —1)!
k—1)! (v —&)!
and
- (v—2)!

T (k—2)l (v —&)!

Generally the expression above for » will be more than the number
of replications which can be grown, and a successful arrangement
would only be possible if the three expressions contain a high common
factor. This is a primary arithmetical requirement, which, however,
leaves open the question of the existence of a combinatorial solution.
Thus, it might be thought that with v = 43, £ = 7, a solution could
be found with 43 blocks and 7 replications, but this is known to
be impossible.

The non-existence of a combinatorial solution when the arith-
metical conditions are satisfied is, however, exceptional. It can be
shown that the number in a block, &, must be less than or equal to
the number of replications. Consequently, the arithmetical possibili-
ties up to any finite number of replications can be listed exhaustively,
as has been done with replications up to 1o. Of these, a dozen cases
remain where the existence of a solution is uncertain, but, for the
majority, solutions are available which permit of the use of this
method for a useful range of numbers of varieties extending, if
10 replications be allowed, up to g1 in blocks of ro.

One of the most useful of this series of solutions is derivable from
a study of completely orthogonal squares. As is well known, the
Graeco-Latin square may be regarded as two Latin Squares in
super-position, these having the property that each letter of one
square falls once on each letter of the other. With sXs squares a
group of s — I Latin Squares may be mutually orthogonal. This

on
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possibility is easily realised when s is a prime number, and has been
shown to be always realizable when s is a power of a prime. From
a complete set of mutually orthogonal squares of side s it is easy to
solve the solution of the problem of randomised blocks where 2 = » =
s+ 1, and v = b =s? + s + 1. The non-existence of the 6x6
Graeco-Latin Square is, thus, the reason for the non-existence of the
incomplete block-solution stated above for 43 varieties in blocks
of 7. A second series of incomplete block problems for which 2 = s,
y=s+ 1, v=s2 and b= s% 4 s, may also be derived from
orthogonal squares. But these two series, though providing immedia-
tely useful solutions, are only a first step in the elucidation of the
general combinatorial problem.

The immediate practical problem is to obtain any solution. This
can then easily be randomised and used in experimentation. Such
a first solution is often found by a process of cyclic substitution.
In many cases such solutions are unique, as are those based on ortho-
gonal squares up to 7x7, in the sense that, from any one solution,
all the others possible may be generated by permuting the varieties.
In other cases solutions exist of a variety of types or species not
connected by any such permutation. Given any one solution, these
may be explored by interchanges among a limited number of blocks
analagous to the reversal of intercalates in the exploration of Latin
Squares. For example, for arranging 13 varieties in 26 blocks of
3 with 6-fold replication there are two sets of solutions with different
relationships of symmetry among the varieties. In examining the
arrangements with 15 varieties in 35 blocks of 3 with 7 replications,
I find no less than 79 different sets of solutions, of which a few possess
the further property, of some experimental interest, that the 35 blocks
can be divided into 7 groups of 5, each group containing one complete
replication. These constitute the totality of the intrinsically different
solutions of a problem which attracted some attention during the
nineteenth century, under the name of “ Kirkman’s schoolgirl pro-
blem ”.

7. LATTICE DESIGNS.

For very large numbers of varieties to be compared, Yates has
also developed a system of quasi-factorial arrangements in two-fold
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or multiple lattices, wherein the number used in a single block is the
square, cube-or higher root of the number of varieties. Thus, a recent
experiment in forestry genetics, carried out in California, uses blocks
of only g rows of seedling each from 729 different seed parents. These
72Q varieties are arranged diagrammatically in a 9X9X9 cube,
and the 81 rows of g, parallel to any edge, constitute a single replica-
tion of 81 blocks. A set of 3 replications then suffices to include rows
of g parallel with all edges, and one or more such set of replications
constitutes a complete experiment in which, although the precision
of all possible comparisons is not exactly equalized, yet it is made
sufficiently equal for all practical purposes, and very considerably
higher than if an entire replication had to be included in a single
block.

When the number of varieties is a square, only two replications are
needed to complete a set, having in their blocks the contents of the
rows and columns of a diagrammatic square. By using a Latin
Square solution a third replication and, with a Graeco-Latin Square,
a fourth may be added having the same relation to the first two as
these have to each other. If this process is carried so far as to use a
completely orthogonal square, it is found that the arrangement has
become balanced with respect to the precision of all comparisons,
and we have a balanced incomplete block arrangement of the second
series referred to above as derivable from orthogonal squares.

A very beautiful and effective application is the arrangement
known as the lattice square. The total degrees of freedom among
s plots or varieties number s? — 1. A completely orthogonal square
may be regarded as a method of dividing up these into s + 1 parts,
each of s — I degrees of freedom. In a Latin square s — I degrees
of freedom are discarded in the elimination of rows or columns, so
that, if s is odd, e.g., 11, the 12 parts, each of 10 degrees of freedom,
may be assigned to the comparisons between rows and columns in
6 different squares. Thus with only six-fold replication a number as
large as 121 different varieties may be tested in a perfectly balanced
design with the high precision appropriate to comparisons in a Latin
Square. Randomisation in such a case is effected as with the simple
Latin Square, by permutation of the rows and columns and by random
assignment of the varieties to the symbols used in building up the

plan.
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In general, it may be observed that the modern tendency is to
make experiments larger, more comprehensive, and more intricately
planned. This tendency has given an entirely new importance to
combinatorial analysis and has thrown up numerous problems to
which, in the present state of that subject, no adequate answer can
be given. By utilizing what is already known, however, the expe-
rimenter has a wealth of resources from which to choose, according
to the nature of his material and the aims of his experimental pro-
gramime.
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