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1. FrEQUENCY DISTRIBUTIONS AND RANDOM VARIABLES

The very existence of quantitative or biometrical work in the Pharmaceutical
Sciences is in itself evidence of the extent to which during the last sixty or seventy
years one of the greatest obstacles to exact thought has been effectually overcome.
The obstacle to which I refer is the existence of variability in the natural world.
Only one hundred years ago the inhibiting effect of this obstacle can be seen in
many writers; for us to-day the obstacle does not exist. The familiar concept of
a frequency distribution as used by Adolphe Quetelet comes to our minds, and
we recognize that by means of this device, easily represented on paper, varia-
bility may be accurately specified, and its consequences calculated.

A close mathematical analogy, though not a logical identity, exists between
the specification of a frequency distribution, and what in recent years has come
to be called a Random Variable. If z stand for such a variable and if, for all
values of P from 0 to 1 we can make probability statements of the form

Prx < z,) =P,

where z, is a known function of P, then z is said to be a random variable, and
knowing z, , we may say it is a random variable of known distribution, for the
probability of z lying between any two values z, and z, may be equated con-
ceptually to the frequency in a variable population of objects having some charac-
teristic measurement which lies between these limits. The probability statements
would then be equivalent to those appropriate to the knowledge that the subject
of these statements had been chosen at random from a real population having
this specification.

However, the probability statements do not imply the existence of any
such population in the real world. All that they assert is that the exact nature
and degree of our uncertainty is just as if we knew it to have been one chosen
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at random from such a population. The subject of a probability statement if we
know what we are talking about, is singular and unique; we have some degree
of uncertainty about its value, and it so happens that we can specify the exact
nature and extent of our uncertainty by means of the concept of Mathematical
Probability as developed by the great mathematicians of the 17th century
Fermat, Pascal, Leibnitz, Bernoulli and their immediate followers.

The emergence of the notion of mathematical probability in these great
minds was undoubtedly a major step in the intellectual development of the
human race. It was unknown to the Greeks, and to the Islamic mathematicians
of the Middle Ages. It owes its emergence, I suppose, to the high prestige of
the recreation of gambling among the nobility of France and England, and to
the existence of a technology advanced enough to supply apparatus of gambling,
dice, cards, etc. with a precision sufficient to justify the calculations of the
mathematicians. The type of uncertainty which the new concept was capable of
specifying with exactitude was that which confronts a gambler in a game played
fairly, and with perfect apparatus. The probability statements refer to the
particular throw qr to the particular result of shuffling the cards, on which the
gambler lays his stake. The state of rational uncertainty in which he is placed
may be equated to that of the different situation which can be imagined in which
his throw is chosen at random out of an aggregate of throws, or of shufflings,
which might equally well have occurred, though such aggregates exist only in
the imagination.

2. UNCERTAIN KNOWLEDGE OF THE REAL WORLD

This distinction makes clear the propriety of the application by the great
Carl Gauss of the Theory of Errors to make probability statements about
features of the real world, which the observations can ascertain only with
some uncertainty, as in Astronomy, about the distance of the Sun. Gauss with
a certain amount of approximation, which later work has removed, showed
how to calculate a function z, of any value of P from 0 to 1, such that if z stand
for the unknown distance, the probability statement

Prizx < z,) = P,

could be asserted for all values of P. He therefore expressed the unknown distance
z a8 what we should now call a Random Variable, about which probability
statements at all levels could be asserted.

It is an indication of the state of confusion about even the most primary
concepts of mathematical statistics, that more than one modern writer, starting
perhaps with Neyman about 1935, should have taken exception to this form of
statement on the ground that, for example, there is only one distance of the Sun,
that if it is less than z, , the probability should be unity, and if it is greater
that z, it must be zero. The error, evidently, is to suppose that additional data,
such as that which provides the exact value of z, can be introduced without
altering the probability statements which the data actually provide. However,
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the conclusions of a logical argument must depend on its premsses, and it is no
criticism of the argument that these are different from what they would have
been had the premises used in the induction been different from what they are.

3. THE MEANING OF MATHEMATICAL PROBABILITY

The error has, however, had some troublesome consequences. To obviate
these and to clarify the matter further, I will set out what I understand to
be the meaning of the term Mathematical Probability, as used both by the Old
Masters and by modern scientific practitioners, for it seems to be only in Mathe-
matical Departments insulated from practical research in the Natural Sciences,
that confusion and misapprehensions abound. The requirements of a correct
statement of Mathematical Probability are, I believe, only three:

(a) A conceptual Reference Set, which may be conceived as a population of
possibilities of which an exactly known fraction possess some chosen charac-
teristic. To the extent that this is a meaningful fraction of the whole, the set
must be measurable, but it need not be measurable in all respects. The set of
possible throws with a die may be conceived to have exactly 1/6 Aces, and if
this proportion is the same for throws made on any day of the week, it is un-
necessary that the specification of the set shall tell us what proportion come
on Tuesdays. The distribution among days of the week is irrelevant and may
remain unknown.

(b) It must be possible to assert that the subject of the probability statement
belongs to this Set. To the mathematician this may seem trivial, though obviously
a logical necessity. Tasks of identification, however, belong to the scientist,
and may require his full attention. We must rely on a Chemist to tell us, if an
atomic weight has been determined, whether it is that of Potassium or of Rubid-
ium. This second requirement puts our probability statement into the real
world.

(¢) No subset can be recognized having a different probability. Such subsets
must always exist; it is required that no one of them shall be recognizable.
This is a postulate of ignorance, and therefore unfamiliar to deductive reasoning,
though characteristic of inductive logic. Let me illustrate it briefly using the
probability of throwing an Ace.

(i) The subset of throws made on a Tuesday is easily recognizable, it has,
however, the same probability as the whole set, and is therefore irrelevant.

(ii) The subset of throws of odd numbers (1, 3, 5) is obviously relevant,
gince all Aces are odd numbers; this subset is, however, unrecognizable before
the die is cast. '

(iii) A parapsychologist claiming the gift of precognition might recognize
a subset in which the Ace is foreseen. If the gift is veridical the proportion of
Aces in this subset must exceed one in six. In such a case the subset will super-
sede the original set as the basis of the probability statement. If, however,
experience shows that the proportion in the subset is just one in six as it would
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be without precognition, the subset is recognized to be irrelevant, and the
original set is reinstated.

Now I submit that these conditions are Necessary and Sufficient; that there
is nothing lacking in the three conditions I have set out for a valid probability
statement in the real world; and that there is nothing superfluous. In other
words, all genuine probability statements fulfil these conditions and any state-
ment which fulfils these conditions is a genuine statement of mathematical
probability.

On this basis we may clear the air somewhat. The concept of Mathematical
Probability isshown to be unitary. There are not two or more logically distinet
kinds of probability statements, for if there were they would be susceptible of
distinct logical specification. Some writers have, however, misunderstood the
phrase “fiducial probability”, forgetting that it was introduced only to mean
probability derived by the particular kind of argument to which the term
fiducial has been applied, and imagining that it signified a special kind of prob-
ability, for which therefore a special definition would be required. No such
definition, however, has been proposed. In the minds of these writers we are
left with a distinction without a difference.

4. Tur FipuciAL ARGUMENT

I propose to illustrate the fiducial argument in a simple case, which utilizes
a small but important improvement added in this century to the method of
Gauss. In 1908 more than 50 years after Gauss's death, a research chemist,
W. S. Gosset, better known under his pseudonym of “Student”, decided that
the observations of his laboratory at Guinness’s brewery required for their
interpretation exact knowledge about the true mean of a normal distribution
from which only a sample, and perhaps a small sample of observations was
available.

His mathematical approach to this problem was to calculate the distribution
in random samples of the error of the mean divided by the best possible estimate
of that error. Symbolically, if u stand for the true mean, and £ for the mean of
the sample calculated from

% = S(x)/N

where S stands for summation over the sample observed, and if we define s by
$ = 8@ — /NN - 1)

80 that s is the estimated standard error of the mean, then Student determined
the exact distribution of a quantity ¢ defined so that

(w—2)fs =t

The distribution is independent both of the unknown parameter u, and of
the unknown variance of the population sampled, so that value ¢, can be tabu-
lated such that for any random sample from any normal distribution
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Prit < 1) = P,

for all values of P from 0 to 1.

If, therefore, & chemist has N observations, being independent determinations
of equal precision of some unknown of importance to his work, he can calculate
% and s from his sample, and substitute their numerical values in the expression
for ¢ so obtaining the probability statement

Prip < (Z +st)] =P.

The subject of these probability statements is the unknown u, a property
of the real world to be determined by observation and experiment like an atomic
weight, and the series of probability statements about this unique value is
strictly of the form aimed at by Gauss.

The improvement on the method of Gauss achieved in the course of 100
years consists of two elements: (a) Gauss did not know the exact distribution
of ¢t but took instead as an approximation appropriate for large samples that
it was normally distributed; (b) In the confusion of the early nineteenth century
Gauss had indeed introduced into his demonstration the assumption of proba-
bility a priori supposedly axiomatic as taught by Laplace. He later regretted this
and in a letter to Bessel recognized its arbitrariness. He was not, however, in a
position to remedy this logical defect.

Now, on what conditions do a system of statements such as I have inferred
by the fiducial argument represent genuine statements of probability in the real
world? As regards the Reference Set we may recognize that the triad of values

(ﬂ; z, S)

must exist for every sample from every normal population, that for some of
these samples, but not for all, the inequality

< st

is satisfied, and that whatever may be the true values of the mean and variance
of the population sampled, the proportion of random samples which satisfy
the inequality is exactly P.

The second requirement, that our data really belong to this reference set,
depends as I emphasized above on the competence of the Scientist and partic-
ularly on the adequacy of his experimental design.

The third requirement, which has been the most often ignored, is, however,
more interesting. Can any subset be recognized within the general set? If a
distribution a priori of u were available, this could be used by Bayes’ method
to recognize & particular subset characterized by

z 4+ st,

and to make probability statements appropriate to this subset, different in
general from those of the fiducial argument., We must therefore specify that if
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a Bayesian probability a priors is available we shall use the method of Bayes,
and that the first condition for the applicability of the fiducial argument is
that no probability a prior? of the form needed for Bayes’ thedrem shall be
available.

Next, it might be thought that some feature calculable from the observations
could define a relevant subset. However, it has been shown that for Normal
samples the two statistics £ and s are exhaustive, meaning that the sampling
distribution of any such function, conditional upon given values of & and s
shall be completely independent of the true mean and variance of the population
sampled. There is therefore no relevant and recognizable subset, and all the
conditions for a genuine statement of probability are satisfied.

It is sometimes asserted that the fiducial method generally leads to the same
results as the method of Confidence Intervals. It is difficult to understand
how this can be 80, since it has been firmly laid down that the method of con-
fidence intervals does not lead to probability statements about the parameters
of the real world, whereas the fiducial argument exists for this purpose. Moreover,
the arguments of Neyman and Pearson are deliberately not restricted to cases
where exhaustive estimation is possible, and this is a definite condition for an
accurate fiducial argument. It is perhaps only the frequent occurrence of ex-
haustive estimation in elementary examples which is responsible for the frequent
coincidence of Confidence with Fiducial limits. The meaning however is always
different.

5. BaYes’ THEOREM

Since the time of Laplace the use by Bayes of probabilities a priori has been
a stumbling block. For Laplace believed, as Bayes did not, that such probabilities
were axiomatic a priori. Bayes’ resistance to this notion is shown by two phrases
in Price’s introductory letter, which explains that in Bayes’ opinion the postulate
“might not perhaps be looked on by all as reasonable”, and that therefore he
had chosen to demonstrate his proposition in another way “rather than to bring
into his mathematical reasoning anything that might admit dispute.”

We have these demurrers only at second hand through Price; but if there
were any doubt we could resolve it by reference to Theorem 8 of Bayes’ own
text, and see there that the probability statements a priori are not assumed
axiomatically, but are the result of an auxiliary ezperiment.

Bayes’ problem was that presented by Bernoullian or binomial data in which
o successes and b failures have been recorded out of n trials. His solution took
the form that if prior to and independently of these observations the unknown
probability p of success were known as a random variable, so that the probability
of it falling in the range dp were known to be f(p) dp then the probability of
this event combined with the outcome of the observations could be expressed as

' .
5;"-5—! p°¢"f(p) dp,
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where ¢ stands for 1 — p, and this expression divided by its integral from 0
to 1, as normalizing factor, would give the probability a posteriori, from which
probability statements to the effect that p is less than any given value, or lies
between given limits, would be derived by direct integration. No one in that
century objected that p could have only one true value, that this must either
lie between the given limits or not, and that the probability statements were
therefore meaningless. Such an argument requires a sophistry peculiar to the
twentieth century!

How did Bayes obtain his probability a prior:? His apparatus was an idealised
billiard table. He says ‘I suppose the square table A BCD be so made and levelled
that if either of the balls O or W be thrown upon it, there shall be the same
probability that it rests upon any one equal part of the plane as another, and
that it must necessarily rest somewhere upon it.

I suppose that the ball W be first thrown and through the point where it rests
a line shall be drawn” parallel to the ends of the table ‘“and that afterwards the
ball O shall be thrown »n times”, and that its resting beyond the line should
constitute a success.

The auxiliary experiment, consists of the first throw, that made with the ball W,
From this it is inferred that if p be the proportion of the table beyond the line
drawn, then

Prip < p) =m

for all values of p, , and therefore that the probability that p should lie within
the range dp must simply be equal to dp, so that f(p) in the analysis above may
be equated to unity.

6. A RESTATEMENT OF BAYES’ THEOREM

The ingenuity of Bayes’ demonstration consists in showing that the single
probability statement derived from the ball W can be combined with the evidence
of the ball O, which by itself provides no probability statement about p, to
give a posteriors an exact expression for p as a random variable.

There is, however, an element of artificiality about this approach, which
has perhaps been an obstacle to its understanding. For, it should be noted, after
the line is drawn we might infer not only the probability a prior: of the value p,
but its actual value, by measuring the distance of the line from the ends of the
table.

This artificiality may be easily removed by intreducing improved apparatus.
The billiard table was no doubt sufficiently familiar in the eighteenth century,
but in the twentieth we can randomize more accurately with a radioactive
source.

Let us imagine then a radioactive source emitting o particles at random with
unknown frequency. This replaces the billiard table. The two balls are replaced
by detectors of a-particles of two types. The first, which I shall call W, is designed
to measure the exact time interval between two successive emissions. The first
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of these starts the clock, the second stops it. The auxiliary experiment with W
consists in taking a single reading of x seconds. The probability that it should
exceed x seconds is represented by P, and it is easily seen that

-8
e =P,

where § is the unknown rate of emission (in the right direction) supplied by
the source. Moreover as with Bayes' ball it is obvious that

PT(P<P1)=P1’

for all values of P, from 0 to 1.

After the auxiliary experiment therefore, we do not know the value of P,
but we do know its distribution a priors; what has been actually observed is
the time interval, z.

The second detector O, which is to be used n times, is set for a known fixed
time £, and will detect whether in this time interval either no a-particle arrives,
which will be counted a success, or on the other hand one or more particles are
detected, which will be a failure. The apparatus is not supposed to be a counter;
it only distinguishes these two possibilities. The unknown probability of success

is evidently

p=e¢"

Now the ratio of the times z and ¢ is known, and if
zfE =\,
it follows that

P =9,
and

dP = xp'' dp,

which is now the probability a priori of p falling in the range dp. The case
treated by Bayes is that in which X is unity, as could easily be realized in practice
by setting the value £ equal to the value of z first observed.

I suggest, however, that the mild generalization supplied by M is of value in
reminding mathematicians, who often seem to forget it, that Bayes’ probability
a priort was obtained, not axiomatically, but by an auxiliary experiment, which
with the improved apparatus I suggest, could lead to more than one result.

7. SOURCES OF PrRoOBABILITY a Priori

Finally, it may perhaps be useful to set out a brief summary of the cases
which arise in connection with probabilities ¢ priore.

(a) The commonest case is that in which no probabilities a prior exist as,
for example, with the chemical determination of an atomic weight. In these
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cases, when the experiment can be so designed that exhaustive estimation is
possible, we can infer probability statements a posterior: by the fiducial argument.

(b) Probabilities a priori may be inherent in the data. This situation is typical
in Genetics, where before a mouse is born we may be able from its genealogy
to state in advance the probability of each of its possible genotypes, and to
combine these probabilities, in the manner of Bayes, with the evidence of the
frequencies of different types of progeny obtained from test matings.

(c) It may be possible to follow Bayes’ procedure and to carry out an auxiliary
experiment which will supply probabilities @ priori. The types of observation
which will do this are indeed the same as will supply by themselves probabilities
a posteriori by the fiducial argument.

(d) It has often been imagined that probabilities a priori can be set up axio-
matically; this has led to many inconsistencies and paradoxes, and I am forced
to conclude that the process is completely bogus.

This mid twentieth ecentury is not the first period of grave confusion in the
teaching of the Theory of Probability. For fifty years from the publication of
Laplace’s Théorie analytique books in France and England were full of rubbish
concerning the veracity of witnesses, and the probability of correctness of the
findings of tribunals. The present confusion seems largely to be a hangover
from that period from which nineteenth century discussion had largely extricated
mathematical thought in France and England, but perhaps less completely in
some more distant countries.

There is the difference, however, that whereas in the 19th Century error could
be rife in mathematical departments, without doing greater harm than to confuse
their students, in our time really important matters such as the standardization
of drugs, the control of epidemics, and the precision of ballistic missiles are liable
in the future to be influenced by young men now leaving these departments armed
with erroneous numerical tables, as well as with confused and obsolete ideas.
This, in some sort, concerns us all.
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