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THE WEIGHTED MEAN OF TWO NORMAL SAMPLES
WITH UNKNOWN VARIANCE RATIO

Sir RONALD A. FISHER, F.R.S.
Division of Mathematical Statistics, CSIRO, Adelaide

SUMMARY. The exact small-sample solution of the problem of the weighted mean, flows
from an analysis parallel with that required for Behrens’ problem. The algebraic forms are, however, more
complex, involving one more parameter, for which it is convenient to choose Sukhatme’s d. The logical
basis of choice between weighted and unweighted means is considered.

1. ANALYTICAL PROCEDURE

Since the analytic demonstration of Behrens’ test of significance for a difference
between the means of two Normal samples has been set out explicitly (Fisher, 1935),
it has been apparent that the problem of the distribution of the weighted mean of
two such samples could be resolved, in the exact terms appropriate to small samples,
by a similar analysis. In its mathematical generality, however, this problem is a more
difficult one than the simple test of significance of the difference, for in addition to
involving the two degrees of freedom, n, and n,, for the two samples, the modular
angle

tan 0 = sfs,
of the ratio of the two standard deviations, and the level of significance required, it

involved also as a fifth parameter, the measure of discrepancy of Behrens’ test as
defined by Sukhatme, namely

d = (B, —8,)[v/s}+53

and this to no unimportant an extent.

In a recent paper in Sankhyd (Fisher, 1961) I have shown how this test, like
that of Behrens, can be exhibited as a verifiable assertion about frequencies, as must
indeed always be the case when the Reference Set adverted to in any statements of
probability has been explicitly specified.
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Whereas Behrens’ distribution is symmetrical, and so can be conveniently
tabulated by giving the deviate, positive or negative, determining limits outside
which d shall fall with a specified frequency, in random samples from the reference
set, as is the case with Student’s #, the distribution of the weighted mean is
unsymmetrical in the general case. The analytical method of asymptotic expansion,
which will be used in this paper, is however, just as applicable as it is in the case of
Behrens’ test (Fisher, 1941).

2. SPECIFICATION OF THE ANALYSIS

The ordinate of a Student’s random variable ¢, for n degrees of freedom, may
be expanded in Student polynomials, P, in the form

1 —}t2 et
= e P, n ", “ee 1
y \/2” € % r n, ( )
in which the first six polynomials are
Py=1 3
P, =tt—20—1 + 4
P, = 38— 28613014+ 12623 ~ 96
Py = 1222610 1138—92(5— 33(4— 612-15 = 384 L9
P, = 1546— 6001447100612 —26616¢19 - 183308} 636046 -1 19801
~— 1800¢2—945 = 92160
Py = 320190418+ 4025816 — 339714 - 103702412 — 63444£10— 212708
— 780054455t 18902 — 17955, --368640 J

The simultaneous distribution of two Student variates is exhibited by the
product of two expressions of the form (1).

The distribution of the weighted mean is determined from the Statistics
observable in the two samples:

1

. o)
o = T S
‘¥ (3)
By G = — L S(r,—2,)
‘12y 83 nz(n2+l) (xa 2) s j
by putting T = (533, +8F By)[(s34-53 ) 3
" BTSSR J
and obtaining finally u, =248 201 L; Uy N7 N3 1. v (8)
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WEIGHTED MEAN OF TWO SAMPLES WITH UNKNOWN YARIANCE RATIO
To obtain explicit expressions for w,, for any given probability we set
| p—F =18,
H—Ty = ty8y, 8,[8y = tan

whence BT = —.9—2%- (8af1+8485) = 8(¢; cos 841, sin 6). e (6)
1783

Let
t; cos 041, 8in G = &
(7

tysin 0—it,c080 = d
where d is Sukhatme’s criterion for the significance of the observed difference between

%, and T,. Since d is known, the distribution of x is required conditional upon a given

value of d.

3. INTEGRATION

We should then substitute

ty = ucos 0+dsinfd )
8)

ty=usinf@—dcosf |
in Student’s polynomials. Then
o] @K
[ du -+ [ du
H ~Q0

will give the probability of the deviation of the weighted mean (standardized by divid-
ing by §) exceeding any chosen value &, the integrand being the product of two ex-
pressions in the form (1) for n, and n, degrees of freedom respectively.

From the way the variates have been transformed from t,, ¢, to u, d the external
factor
e—Hez+13) e (9)

becomes e—fut | ¢—}d? .. (10)

of which the latter factor is common both to numerator and denominator, and may,

therefore, be omitted with the corresponding constant divisor 4/27. The integral of

1
o e—¥* P (4 cos 64d sin 6)P,(u sin §—d cos 6) . (11)

being that of the exponential multiplied by a polynomial in », when taken from —co
to o0 is a function of d and # which may be designated by D,,, so that the complete
divisor is

® (.4
D =X Z D,n{"nz’ e (12)

T g=(
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We may at once note, writing ¢ and ¢ for the cosine and sine of 6,

Dy =1
Dyy = {4c?¥d?—1) 4 s¥d*—2d2—1)} -4
Doy = {oH(dA—3d8— 1) 4c2¥(d3—1)} =4 } .
Dy, in tabular form
1 g2 d4 de dd
cfs?  —192 192
ctst 48(+3 —18 + 5 . <)
%8 8(43 427 —46 4+ T ) 9 o (132)
58 +3 +12 +30 —28 43
while D,, expressed similarly is
1 a2 ds ds ds
c8s?  4(—3 21 — 11 1 )
chst 81 —252 122 —20 1 =18 .. (13.3)
s 4—3 21 — 11 1 )

Expressions for Dgy, Dy, Dy,, Dy are easily found, but will only be needed if adjust-
ment beyond the third are to be calculated.

The incomplete integral in the numerator involves terms of the form,

« 1 _%u2 m
gI —== e u™ du, .. (14)

vV

which when m is odd is simply
2{E™1 4+ (m—1) E"% - ... + (m—1)(m—3)...2}, .. (13)
but when m is even has in addition

g{(m—1)m—3) ...3}, .. (16)

in which expressions z stands for

Ve
and ¢ for f . (1)
[ zdu J
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4. Drvisioxw

We may, therefore, express the incomplete integral of the numerator as

28 X L,y ng*+q & % Dyni™s’, ... (18)
r 8 o8
and if dividing by D= 1+711" Dm+;—:~ Dyy+... . (19)
1 2
there remains the quotient -tz Z X gy ngt, - (20)
L]

then the first operation (division) takes the form

G0 = Loy 9o = Iy
920 = L30—q10 D10
a1 = I11—¢10 Doy —901 D10 g .. (21)

930 = Lyo—920 D10—10 Dsos

o1 = Lo1— 411 Dio—20 Dor— 10 P11~ %01 Do- /
and so on, adjusting the direct integral I at each stage by subtracting all products of

the same weight (r, s) of D and ¢.

5. ADJUSTMENT OF DEVIATION
The expression

2Q =2 2 X q,ni 1t ... (22)
r

gives the excess probability beyond the deviate £ defined in terms of g.
If the probability evaluated is exactly
q(x) = ¢(§—F)

where F is some function of £, then

£ =gt F
and 2 Q = gE—F)—q()
or 2| Fh i P @~ DF 4 (03 o) e (23)
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using the expansion in Hermite polynomials. Hence F may be expressed in terms of

£ as
F = Q—-;—-EQ’—%%(%”»}—I)QP'— ,2-1-;(6£3+7E)Q‘ + .. (24)
from which may be derived

Jio = G100 Jor = o1

J2o = an“‘gﬁo

fi = ta—E8q1ln (25)
30 = Gao—Eq10020+3 (26%+1)ado
Jor = 01— (@10 G117+ o1 o0)+3 (267+1)gho 9

and z+ ? Z'If,,n " ng* .. (26)

is the deviate cutting off exactly the assigned probability

o 1
—3u?
J;; '\/277’ € du,

but in which the polynomials in F are expressed in terms of £ .

Finally to express the successive adjustments in terms wholly of the normal
deviate, known in advance, denoted by x, we put = for £ and calculate

. 1 d p 1 d& .,
U———F+ -2— &;F +—€- %E‘F +--- Lo (27)
with, in detail U = froo Y1 =Jo

1
uzozfzo“}"é (%ffo - (28)

Uy = fn +<%: (fro for)

and so on.
The three first adjustments calculated in this way are set out in the accompanying
Table.
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WEIGHTED MEAN OF TWQ SAMPLES WITH UNKNOWN VARIAWMCE RATIO
TABLE OF THE FIRST THREE ADJUSTMENTS

I

The adjustments are successively of the 4-th, 8-th and 12-th degrees in cos 6
and sin 0, and of the 3-rd, 5-th and 7-th degrees in « and d

Ugefy = {(@3+2)et 4 4d(x2 4 1)c3s+ 2(3d2 — 1)ac2s? + 4d(d2—1)cs®} + dm,
Ugy 1y = {—4d(d?— 1)cPs-+2(3d2— 1 )awcs? —4d (224 1)cs®+ (a3 +-x)e%} - 4nm,

where, as always, u,, may be obtained from «,,, by interchanging ¢ and s and reversing
the sign of d, or by writing ¢ for s, (—s) for ¢ as if (7[2+0) were written for 6.
1I

For higher adjustments it is convenient to separate the odd and even powers
of d. The terms to be divided by 96n3 are

even odd

w5 3 x wt 22 1

c8 4+ 1 5 16 3
c7s -+ 48d 1 3 2

c8s2 — 4 4 23 51
+ 1242 . 15 31 c538  — 96d 1 5 8
' + 32ds .1 18

cist -+ 12 . 2 9
— 2442 . 10 39 ¢3s5 4 06d . 1 3
+372d+ . . 1 — 6443 . 5 13
+192d5 . . 1

€246 -+ 14442 . . 1
—240d+ B . 1 es? 4- 96d3 . . 1
— 96ds . . 1

with conjugate terms divided by 96n3, while with divisor 16nn, they are

even odd

5 23 @ x4 x2 1

cigd + 1 7 24 69
— 40d2 . 2 7 (c588 —~c885) - 8d 3 13 22
- 108d4 . . 1 + 16ds . 6 13
— 48ds . . 1

(c6824c288) — 2 . 5 9
+  6d: 5 17 (c78—cs?) + 164 . 1 1
— 4844 . . 1 — 16ds . 1 1
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Uy, respectively divided by 384ni

III

The third adjustment has four parts in two complementary pairs for uy, and

even odd
27 x5 23 z 6 24 22 1
cl2? + 1 3 19 17 —15
clls 4+  26d 4 23 39 24
cl0g2 - 2 24 181 632 915
4+ 6d2 77 368 475 93— 64d 8 55 165 198
+ 192ds 9 33 28
c8y4 + 4 12 134 649 1695
— 1242 196 1146 2486
4+ 4de 965 2341 c?s5 -+ 384d 1 10 40 71
—2048d3 3 14 19
-+ 76845 7 9
c636 - 8 8 70 225
+ 2442 56 480 1441
—  40d4 250 839 c887T  — 384d 1 7 15
-+ 448846 1 + 128ds 21 146 286
-10368a5 1 2
+192047 1
c4s8 - 96d2 10 51
-+ 96d4 35 181 389 — 256d8 5 16
— 662446 1 + 384ds 7 23
—2304d7 1
02510 — 060d+ 1
-+ 1344de 1 csll  — 384d5 1
+ 384d7 1

Normal deviaticns for chosen probabilities in a single tail are given below for ready reference.

P P -2
.01 2.32635
.25 . 67449 .005 2.57583
.10 1.28155 .0025 2.80703
.05 1.64485 .001 3.09023
025 1.95996 .0005 3.29053
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WEIGHTED MEAN OF TWO SAMPLES WITH UNEKNOWN VARIANCE RATIO
and by 384nln,

even
7 a8 x8 x

clog2  —~ 2 77 328 435
+ 642 . i 568 931

—  96d4 15 31

cBst + 1 163 1177 5099 113565
— 144d2 28 183 427

+ 2444 . . 515 1679
—5952d¢ . . N 1

c8sg8 - 4 36 361 1580 4065
+ 18042 . 35 224 607

— 8d¢ . 3040 11099

+ 17880d8 . 1

cts8 + 12 14 103 225
— 120d2 . 14 121 319

+  4d4 . 3085 11813
~11808d6 1

c2310 4 14442 . 5 13
— 4844 25 93

-+ 172848 1

odd

clig

948

¢35

547

ci59

c8§1L

+ 192d

— l6d
+ 384d3

— 384ds

+ 324
-~ 51248
+ 384ds

—3840d7

— 192d
1+ 12843
— 38445

+7680d7

+ 192d
~ 128d3
+6912ds

—2304d7

+ 38448

~ 384d5

26 x4
1

1

28 251
10

52 377
27

4 39
93

3

a?

819
49

11

1341
136

53

145
487

61

17

103

1080
57

13

2148
209

101

818

137

111



6. DiscussioN

It appears unmistakably that the quantity d, defined by Sukhatme for imple-
menting Behrens’ test of the significance of the difference between the two observed
means, is a major factor in determining the precision with which the weighted mean,
with appropriate adjustments, can be used for the estimation of the common mean,
assumed by hypothesis, of the two populations sampled. The analysis implies that
the result of applying Behrens’ test is not such that the hypothesis of a common mean
is abandoned; it does not imply that the difference is not formally significant at some
of the standard levels.

The importance of d in the formulae here developed is that the experimenter
is led to realize that, if the populations have a common mean, but at the same time
there has by chance occurred a somewhat wide discrepancy between the means observed,
then the precision with which this common mean can be estimated from the two
samples available is much lower than it would have been had the two means come
in close agreement. This is really to be expected for two reasons:

(a) If the two means are close together, the weights attached to each in
making a common estimate make little difference to the estimate obtained, which will
be in this case principally liable only to nearly equal errors in the same direction of the
means of two independent samples, Whereas with a large discrepancy the value of
the common estimate will be much affected by the relative importance attached to
the two pieces of evidence, and this, with small samples, is not well determined.

(b) A large discrepancy between the two means, in relation to the variation
within samples, is in itself evidence that the mean squares observed within samples
are both too low, and that the precision will be overestimated if the discrepancy is
ignored. This information is absent on the hypothesis that the true means have
an unknown difference.

A numerical example will perhaps make the position clearer. If we wish
to locate the point which the true common mean has a probability of one in forty
of exceeding, we should take, on large sample theory the value

2--(1.95996) 8.

The coefficient of S is modified by the first three corrective terms as follows
in the case n, = 15, n, = 20, cos? 0 = 2[3, and arange of values of d, as shown below.

The successive values for the adjusted coefficient seem to show a satisfactory
convergence for the values of (ny, n,) chosen. The coefficients after three adjustments
seem usually to be correct to two places of decimals and in the central region to three.
As in other cases, it is to be expected that convergence will be slower at higher levels
of significance, but more rapid for larger samples, with which, however, the influence
of d may still be very considerable.
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WEIGHTED MEAN OF TWO SAMPLES WITH UNKNOWN VARIANCE RATIO

first second third

d first adjusted second adjusted third corrected
adjustment coefficient adjustment coefficient  adjustment  coefficient

3.0 .80853 2.76849 15687 2.92536 (0226 2.92762
2.5 62419 2.58415 08344 2.66759 ~. 00988 2.65791
2.0 45831 2.41827 .03568 2.45395 —.01012 2.44383
1.5 .31483 2.27479 .00861 2.28340 —. 00623 2.27717
1.0 .19768 2. 15764 —.00280 2.15484 -—.00234 2.15250
0.5 .11078 2.07074 —.00435 2.06639 - . 00028 2.06611
0.0 .05806 2.01802 —.001686 2.01636 . 00006 2.01642
-0.5 04345 2.00341 -4.00013 2.00354 —.00018 2.00336
-1.0 .07089 2.03085 —.00323 2.02762 .00013 2.02775
~-1.5 . 14478 2.10424 —.01460 2.08964 . 00095 2.09059
-2.0 26758 2.22754 - .03506 2.19248 - .00007 2.19241
~-2.5 . 44470 2.40466 —.06345 2.34121 —. 00880 2.33241
~3.0 .67957 2.63953 —.09618 2.54335 —. 03556 2.50779

An experimenter who can obtain values of a physical constant by two different
methods, the sources of error in which are unrelated, may wish to review his data
from two distinct points of view :

(a) That he has full assurance that his theoretical formulation is correct,
and that his experimental procedures are both free from systematic error. In this
case any apparent discrepancy between the two mean values is ascribed confidently
to random sampling errors only, and fiducial limits for the common mean at any chosen
level of probability may be obtained by the formulae of the present paper.

(b) That he does not exclude the possibility that his two methods would lead,
if indefinitely repeated, to two different average values; that he will admit this possi-
bility without knowing to what such a discrepancy might be due, or being able to
compensate or allow forit. In this case, a large value for Sukatme’s d is not evidence
of lower precision. Indeed, as the discrepancy is not known to be wholly due to errors
of random sampling the weighted mean has no special merit.

A statistical formulation appropriate to this case is that if y, and u, are the
two population means of the two methods, there is one relevant quantity of which
estimation is possible, namely

(1 22)(2,

which presents a simpler problem than the weighted mean, for its error curve is
symmetrical, and is indeed supplied by Behrens’ test of significance. The error of the
estimate,

(#,+%,)/2
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being (t181+158,)/2,

which, since the ¢ distribution is symmetrical, is just half the variate tabulated for
Behrens’ test, when multiplied by +/s?4-sZ.
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