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THE PLACE OF THE DESIGN OF EXPERIMENTS
IN THE LOGIC OF SCIENTIFIC INFERENCE

By SIR RONALD A. FISHER
Division of Mathematical Statistics, C.8.1.R.0. University of Adelaide

I - EARLY AIMS.

When, a little more than 25 years ago, I first attempted a systematic expos-
ition of the subject, known as the Design of Experiments, it is no very grave con-
fession to avow that I did not fully understand the position among the statistical
sciences of this new discipline, My approach at that time was frankly a tech-
nological one. As a statistician I had often set myself the task of analysing
experimental data, andwas much concerned with those improvements in statistical
methods, which promised to make such analysis more thorough and more com-
prehensive. Technically, I could see that some methods were superior to others
in the concrete sense of extracting from the data more “information” on the
subjects under enquiry, and therefore of leading to estimates of higher precision,
and to tests of significance of greater sensitivity. And so it was, in this atmos-
phere, borne in upon me that very often, when the most elaborate statistical
refinements possible could increase the precision by only a few per cent, yet
a different design involving little or no additional experimental labour might
increase the precision two-fold, or five~foldor even more, and could often supply
information in addition on relevant supplementary questions onwhich the original
design was completely uninformative,

It was thus clear at an early stage that there were quantitatively large
technological gains to be obtained through the deliberate study of Experimental
Design, and that these gains were to be harvested by making the plan of experi-
mentation and observation logically coherent with the aims of the experiment, or
in other words with the kind of inference about the real world, which it was to be
hoped the experimental results would permit, At this point we catch sight of
some questions concerning the nature of the inferences which are possible from
the data of the Natural Sciences, which seem still to be matters of dispute, and
of which I hope to speak more fully at a later stage.

II - COMBINATORIAL PROGRESS,

For the present, it will be familiar tous all that in the numerous books which
have appeared and are appearing onthe Design of Experiments the chief attention
has been given to developments in combinatorial mathematics often of quite an
intricate character, which have undoubtedly servedgreatly to enlarge the experi-
menter’s repertoire of designs effective in very varied fields of enquiry. Their
efflorescence has been rapid, and it must have given pleasure to experimenters
in many parts of the world to learn, as we learnt little more than a year ago, of
the success of R. C. Bose and his American and Indian colleagues in settling a
problem in pure mathematics, which has been a challenge since the time of
Euler, by demonstrating the existence of Graeco-Latin squares of side 10, and
some other numbers of the form 4r + 2. Euler had satisfied himself of the non-
existence of such squares of side six, though he had not enumerated the Latin
squares exhaustively, or recognised the existence of the twelve types into which
they may be classified. Evenforthe 6 x 6 squares his paper left room for doubt,
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though his conclusion was, in fact, correct. He also suggested that the same
might be true for all even numbers not divisibleby four. For my own part I
think such a conjectural suggestion,whichhe never suggested he had demonstrat-
ed, desirable for the advancement of mathematical thought. Bose’s discovery
seems to do no injury to Euler’s reputation, but it is, of course, a decisive refut-
ation of several claims made in the twentiethcentury to have proved the truth of
Euler’s conjecture, and of even more inclusivetheorems, by topological methods.
The case is not that of a contribution of pure mathematics to experimental design
so much as a by-product of the intensification of interest in combinatorial math-
ematics due to the modern recognition of their importance in this applied field.
It is certainly good to have a supposed restriction decisively overcome.

III - SCIENTIFIC EXPERIENCE.

Now, if we are to encourage the experimental scientist to seek expert advice
before the experiment is executed, and not merely, as too often in the past, to
call in a statistician for the post mortem, I think we must do a little more than
many of the writers of these books seem to consider necessary, and this in two
respects. The literature as it has grown up seems to be unbalanced in its com-
parative neglect of the Seientific aspects of the problem, and of its Logical
aspects. This perhaps might have been expected, since many of the authors,
albeit talented mathematicians, have evidently never submitted their minds to the
specifically educational discipline of any one of the Natural Sciences, have never
taken personal responsibility for experimentation at ground level, and have no
direct experience of the kind of material involved, but only of the reactions of
mathematically minded students, exhibiting acuity perhaps, but without depth of
focus. Seminars discussing and rediscussing questions, whether substantial or
trivial, but always at this shallow level, taking time that might have beengiven
to laboratory experience, must bear their share of responsibility, for the same-
ness, and lack of constructive thought, of the many new books which come on to
our desks in their glossy covers.

There is, frankly, no easy substitute for the educational discipline of whole-
time personal responsibility for the planning and conduct of experiments designed
for the ascertainment of fact, or the improvement of Natural Knowledge, I say
“educational discipline” because such experience trains the mind and deepens
the judgement for innumerable ancillary decisions, on which the value or cogency
of an experimental programme depends. A manwithfive, or ten, or fifteen years
experience given to such discipline has been himself profoundly modified in his
capacity for the direction of suchwork. Hehas, as we say, learnt by experience,
and this effect will be the more profound the more deeply his thought has been
immersed in his problems, Such men, if they have the taste and gift for
exposition, should be the authors of our text~books on Experimental Design, and
the teachers and directors of our advanced schools of statistics.

For, in truth, the Design of Experiments isnot, as it might have been thought
but a few years ago, a casual extension of statistical studies, but is central to
the whole process of the Natural Sciences. In this process we proceed from
observational data, imperfect indeed in that they are qualified by errors of
measurement, and by errors of random sampling, to conclusions, which by reason
of these imperfections are subject tosome uncertainty, which may, none the less,
be an uncertainty of a rigorously well-defined kind. The strongest possible type
of statement of uncertainty to which our investigations can lead are statements
of Mathematical Probability, as understood by the great French mathematicians
of the 17th century. The possibility of inferring such statements depends on the
quality of the data which provide the premises of the inference. To ensure that
the data shall provide a logical foundation for inferring exact statements of
mathematical probability is one of the tasks to be considered in experimental
design.
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1V - MATHEMATICAL PROBABILITY.

I have in recent years made use of a definition, or semantic analysis, of the
concept of mathematical probability intended to bring out more thoroughly both
the logical and the naturalistic aspects of thisconcept, than is done by such bare
phrases as “the frequency theory”. [conceive thatthere are three requirements
for a probability statement which shall be precisely defined and valid in the real
world.  First, it must imply a Reference Set, a well defined mathematical
construct, which must be measurable in the sense that members of a precise
fraction, P, of the whole set possess some characteristic absent from the others.
This defines the strictly mathematical aspect of the concept, and suffices to
ensure that the statement of probability shall be exact. Secondly, we require
that the subject of the probability statement shall be a member of the Set; this
is the specifically scientific or naturalistic aspect, which must be taken care of
by experimental design. For itentails the characteristically scientific processes
of recognition and identification. Finally, there is the specifically logical re-~
quirement that no subset having a fraction different from P, can be recognised.
Such subsets always exist. Their non-recognisability is a postulate of ignorance,
for if the nature andextent of our uncertainty is to be well defined, it is necessary
to specify our ignorance just as exactly as our knowledge. Manifestly, if the
subject did belong to such a recognisable subset the latter would replace the
original set, as the appropriate basis for the probability statement.

It will be noticed that this specification may be called a frequency theory of
probability in the sense that the value of the probability asserted may theoretic-
ally by verified to any chosen degree of approximation by sampling the Reference
Set, and this, I believe, is the only meaning that can be attached to the phrase
“frequency theory”. The three distinct stipulations I have made have, however,
distinct purposes in satisfying the requirements, first, that the statement shall
be mathematically exact; secondly, that it shall be valid in the real world of the
Natural Sciences; and thirdly that it- shall incorporate a rigorous specification
of the nature and extent of the uncertainty.

V - MEASUREMENT IN NATURE.

If, then, it be proposed to obtain knowledge of some quantitative property of
the real world, such as Planck’s constant of angular momentum, the atomic
weight of some chemical element, the average number of vertebrae in the Euro-
pean eel, or the time constant of the expanding universe, though we cannot attain
to absolute exactness, yet we may aim tobase our knowledge on data good enough
to lead by a rigorous argument to precise statements of probability, rather than
to those weaker levels of uncertainty represented by Mathematical Likelihood, or
only by tests of significance. The conclusionof our induction will be of the form:

Pr(zx < acP) = P,

asserting that the Mathematical Probability that the unknown x shall be less than
a value xp calculable with exactitude from the observations, is equal to P for all
values of P from 0 to 1. In other words we shall express the unknown as a
Random Variable, not imagining that it has morethan one value, but incorporating
in our conclusion the fact that within a restricted region we do not know what
value it has, just as the gambler of the 17th century did not imagine that the die
he was about to throw would turn up simultaneously all six faces, but in stating
that the probability of an ace was just 1/6, asserted by implication that he did
not know which face it would be.

The task we have thrown upon experimental design of providing data good
enough to support conclusions of this definite kindis not prima facie a difficult
one, although technical knowledge of the material would be required tor confidence



in whatever method suggests itself, If in any problem of this sort the experiment-
er’s mastery of his material is suchthathe can obtain a Normal sample of, say,
ten or a dozen independent measurements which, though inexact, are collectively
unbiased, and of equal precision, then he can provide the empirical basis for
such a continuum of probability statements, strict as are the mathematical con-
ditions for such an outcome., Though the mathematics are familiar, the logic,
which is equally rigorous, seems not to be so widely appreciated,

A random sample of ¥ from and Normal population may be characterised by
three quantities, the population mean y, the sample mean Z, and the estimated
standard deviation g, calculated from:

N(N -1)s% = IL(z-Z)%.
Such triads of values, appropriate to all random samples from all possible
Normal populations, constitute our Reference Set, which is thus rigorously de-
fined. Some members of this set, but not all, will satisfy the inequality
U<+ stp s
and if tp is calculated so that
Pr(t < tp) = P,

whatever may be the parent population, for any chosen value of P, then, since

the definition of £ is
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the frequency with which the inequality is satisfied in the Reference Set must be
equal to P. Knowing z and s for his particular data the experimenter may thus
easily infer the specification of the unknown u as a Ramdom Variable. The
mathematical part of the inference is simple in this case; it is provided by
Student’s distribution of £, which has been adequately tabulated, In its logical
aspect two further stipulations are required.

V1 - LOGICAL AND OPERATIVE CONDITIONS.

If Bayesian probability a priori had been available, that is to say, if the
constant to be determined were expressible prior to the observations exactly as
a random variable, we should properly use the method of Bayes to arrive at the
distribution a posteriori appropriate to the observations. This is indeed a
dream from fairyland for we do not in fact, prior to observation, possess such
a continuum of exact probability statements. However, if indeed we did, it
would be very wrong to ignore them, and Bayes’ argument is available for just
this case, and for the more realistic one in which an auxiliary experiment can
be used to supply this ingredient of Bayes’ argument.

Secondly, if the statistics £ and s used in our inequality had not been jointly
exhaustive for the extimation of the two parameters of the Normal distribution,
it would have been possible to find some third statistic such that its distribution,
subject to constrained values of & and s, still depended to some extent on the
unknown 1. Such a statistic would, in fact, define a recognisable subset within
the general class of random probability statements fromthose we have inferred.

The validity of the inductive argument has, then, the logical requirements
that prior to observation the unknown is not already expressed exactly as a
random variable, and that the statistics used in the probability statements inferred
should jointly constitute an exhaustive set. To lead to estimation problems
admitting of exhaustive extimates is therefore a reasonable aim for an ex~



532

perimental programme, which is fully realized if it can obtain such a Normal
sample as I have supposed.

Many experimenters will consider, at first sight, that the task which, in this
example, we have assigned to experimental designis an easy one. It does seem,
none the less, to deserve some thought, and some precautions. The mere fact
that ¥ values are presented to the statistician does not justify him in accepting
them as a random sample from a Normal population. Measurements, each with
its own components of error, but collectively unbiasedare the sort of observation-
al material from which such a situation was first inferred, When steps are
taken to improve the accuracy of a measurement, the largest and simplest
sources of error are firsteliminated; there remain smaller, but more numerous,
components having collectively a smaller variance. The limit of this process,
closely approached in all measurements of precision, is the Gaussian or Normal
form.

The experimenter may now consider that he wants his observations to be
collectively unbiased, independent, and of equal precision. The policy adopted
by many pharmaceutical firms in makingassays of the potency of pharmaceutical
preparations affords the best answer to which I can point to the experimenters
problem under these heads. Recognizing that systematic errors inevitably
affect the determinations in any one laboratory or department, so that repeated
determinations by the same department are not truly independent, the collabor-
ation of several laboratories is obtained, and though it is often useful for each
laboratory to make a number of parallel determinations, as independently as it
can, yet the variance among these will not be used in the estimation of error,
but rather as an internal confirmation of that estimate, which will itself be based
exclusively on the variation among laboratories. So, if there were eight labora-
tories each performing five parallel measurements, the thirty-two degrees of
freedom within laboratories are confirmatory only, andshould give amean square
somewhat less, and sometimes strikingly less, than the seven degrees of freedom
among laboratories.

For equality of precision it is necessary that the number of repetitions shall
be the same in each laboratory. The apparatus, balances, glassware, standard
reagents, etc. will be different, though they may be supplied by the same firms,
or approved by the same standarizing authority. Scientists and technicians will,
of course, be different, but sensibly equivalentin capacity and experience. They
should not be required to undertake tasks involving exceptional personal skill.
The different departments should accept in advance, after due discussion, and
carry out without variation, an agreed programme including schedules of interim
computations. An erroneous mathematical theory connecting the crude readings
with the quantities to be measured will stillintroduce a bias affecting all depart-
ments equally, but this canbe removedeasily at a later stage, if the mathematics
are corrected,

Without particularizing the special object inview, and speaking to our audience
with wide theoretical interests, it would be impossible to descend to the technical
details of any such research. Ihave, however, thought it worthwhile to emphasize
that the design of experiments is a subject with not only mathematical, but also
scientific and logical aspects. And that the thoroughness with which the logic
and the mathematics have been explored with respect to the Gaussian sample
should not blind us to the fact that the production of good data of this kind is a
technological accomplishment worthy to sustain the perfected form of inference
which such data make possible.
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