## 291

## **CONFIDENCE LIMITS FOR A CROSS-PRODUCT RATIO**<sup>1</sup>

SIR RONALD A. FISHER, F.R.S.

Division of Mathematical Statistics, C.S.I.R.O.

<sup>1</sup>Received for publication March 9, 1962.

If the observations in a  $2 \times 2$  table are distinctly out of proportion (and indeed in other cases also) we may wish to set limits to the true cross-product ratio, e.g. the observed table

$$\begin{array}{c|c}10 & 3\\\hline 2 & 15\\\hline \end{array}$$

gives a crude ratio of 25. How small could the true ratio be in reasonable consistency with the data?

If the expectations in the four classes were

the true ratio would be

$$(10-x)(15-x)/(3+x)(2+x),$$

and  $\chi^2$  for the observations would be

$$\chi^{2} = x^{2} \left( \frac{1}{10 - x} + \frac{1}{3 + x} + \frac{1}{2 + x} + \frac{1}{15 - x} \right);$$

so, if x were  $3 \cdot 0$ 

$$\chi^2 = 3^2(0 \cdot 59286) = 5 \cdot 3357$$

with one degree of freedom.

The exact probability of such a small sample of 30 giving 10 or more in the first quadrant is the partial sum of a hypergeometric series, and not easy to calculate, for if  $\xi$  stand for the theoretical product ratio, the frequencies of 0 to 12 in the quadrant will be proportional to the terms

$$1, \frac{13 \times 12}{1 \times 6} \xi, \frac{13 \times 12 \times 12 \times 11}{1 \times 2 \times 6 \times 7} \xi^2, \dots \frac{13! 12! 5!}{(13-r)! (12-r)! (5+r)! r!} \xi^r \dots$$

It would not be too difficult, as in the exact test for disproportionality, to calculate the last three terms for any chosen value of  $\xi$ , but for the ratio of these to the whole we would require the sum of the entire series, or

$$F(-13, -12, 6, \xi)$$

which would be best obtained by calculating all the terms and summing them, a process too lengthy to be recommended.

Using Yates' adjustment, however, we can at once find

$$\chi_e^2 = (2 \cdot 5)^2 (0 \cdot 59286) = 3 \cdot 7054.$$

Further, taking  $x=3\cdot 1$  we have

 $\chi_c^2 = (2 \cdot 6)^2 (0.58897) = 3.9815.$ 

Interpolating for the tabular entry 3.841, it appears that

x = 3.0491

and the cross-product ratio 2.720.

So that it may be inferred from the data that the true crossproduct ratio exceeds 2.720, unless a coincidence of one in forty has occurred. Similar limits can be set in both directions and at all levels of probability.