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A Multipole Array Magnetic Spring

Will Robertson, Ben Cazzolato, and Anthony Zander

Active Noise and Vibration Control Group, School of Mechanical Engineering, University of Adelaide, SA, Australia 5005

This paper presents research on a magnetic spring concept, which has application to the development of a vibration isolation table.
Features of the design are scalable, noncontact load bearing and a single degree of instability.

Index Terms—Magnetic forces, magnetic levitation, magnetic spring, multipole arrays, permanent magnetics.

I. INTRODUCTION

IBRATION isolation is a requirement for a variety of sen-
V sitive equipment, as undesirable vibrations can often cause
inaccuracy or error. Commercial vibration isolation tables for
cleanroom environments typically use pneumatic springs. It is
proposed here that noncontact magnetic springs could be used
instead, eliminating the path of physical vibration transmission.

The prior art for levitation tables show designs that are ef-
fective vibration isolators, but not well suited for efficient large
load bearing. For example, the design of Mizuno et al. [1] is un-
stable in the vertical direction, and that of Choi et al. [2] uses
singular magnets which do not scale well with volume.

This paper outlines the design of a noncontact magnetic ar-
rangement that is able to passively bear large loads and is also
potentially easily integrated into a control system to remove the
inevitable instability elucidated by Tonks [3].

II. BASIC MAGNETIC SPRING DESIGN

Two magnets in repulsion create a passive spring force be-
tween them. In a vertical arrangement with the lower magnet
fixed, the floating magnet is unstable in both horizontal direc-
tions. A more stable arrangement is to use three magnets ar-
ranged horizontally in attraction, with the outer two fixed and
the floating inner magnet acting as the spring element (this is
similar in behavior to an axial magnetic bearing). The floating
magnet is stable in the vertical direction and also in the direction
perpendicular to the position of the fixed magnets. Diagrams of
these arrangements are shown using cube magnets in Fig. 1.

The more stable horizontal spring is, however, less appro-
priate for supporting weight. Graphs of force versus vertical
displacement for these arrangements, solved using Bancel’s an-
alytical “magnetic nodes” technique [4] for 15-mm cube mag-
nets, are shown in Fig. 2. Here, the rest position for the vertical
spring is 1.5 magnet widths and the gap between the horizon-
tally arranged magnets is 0.1, 0.5, and 1 magnet widths in three
separate cases. The weight of the magnets due to gravity is ne-
glected. It can be seen that with the exception of very close hor-
izontal magnet arrangements, the vertical spring may support
much greater loads with an exponentially increasing stiffness;
furthermore, the horizontal spring becomes unstable if the ver-
tical load is increased past the peak force.
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Fig. 1. Schematic of two simple magnetic springs: vertical arrangement in
repulsion and a horizontal arrangement in attraction.
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Fig. 2. Force versus displacement curves for the arrangements shown in
Fig. 1 for 15-mm cube neodymium magnets. Gap is normalized by the magnet
dimension.

A combination of the vertical spring and the horizontal spring
yields a system that is capable of supporting large loads in the
vertical direction and is unstable in only a single horizontal di-
rection. This instability may be constrained with passive guides
or an active control system with noncontact electromagnetic
actuators.

III. MULTIPOLE ARRAYS FOR STRENGTH

This “combination spring” design may be improved by re-
placing the homogeneous magnets with multipole arrays. Such
arrays have been used in magnetic bearings for increased stiff-
ness [5] and their application here follows similar principles.
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Fig. 3. Complete magnetic spring design with multipole arrays. Solid arrows
show the x and z reaction forces on the spring.
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Fig. 4. Geometry of the individual stabilizing, support, and load bearing
arrays. Wavelength of magnetization of the multipole arrays is twice their
thickness.

Fig. 3 shows the design of a combination spring that suits the
original requirements for stability and load bearing. The fixed
horizontal arrays stabilize the spring in the y direction even over
a range of vertical displacements corresponding to large varia-
tions in the load on the spring.

To demonstrate the concept, 15-mm-thick neodymium mag-
nets are used in a magnetic nodes analysis of the forces on
the spring due to displacements in every direction. Each array
contains four magnets alternating in magnetization as shown in
Fig. 4. The gaps between the fixed and floating arrays at rest are
all equal to the array thicknesses.

A. Load Bearing

At rest, the supporting force of this spring is approximately
70 N. Halving the gap increases this value fourfold (see the
z direction curve of Fig. 7 later). Increasing the load bearing
capacity may be achieved by simply increasing the length and
width of the arrays by adding more magnets. The use of multi-
pole arrays provides this scalability without the need to increase
the thickness of the arrays.

The magnetic nodes technique restricts the multipole ar-
rays used in this analysis to two magnets per polarization
wavelength, with 180° rotations of magnetization between
successive magnets. Stronger forces than reported here are pos-
sible by using 90° magnetization rotations with four half-width
magnets or, even better, 45° magnetization rotations with eight
quarter-width magnets, in order to accurately approximate
sinusoidal magnetization [6].

A further advantage of using more divisions per wavelength
is the focusing effect on the magnetic flux: in the ideal case of
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Fig. 5. Cross sections of the first three variations of magnetization wavelength
to thickness ratio for the curves shown in Fig. 6.
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Fig. 6. Forces between opposing multipole arrays for varying ratios of
wavelength of magnetization to array thickness, as shown in Fig. 5.

sinusoidal magnetization, the flux is entirely single-sided; but
with just two magnets per wavelength, the magnetic field is still
symmetrical. The absence of leakage flux in the former case
removes the possibility of side-effects due to its interaction with
other parts of the device.

Another matter to consider is the wavelength of magneti-
zation. Fig. 5 shows three ratios of magnetization wavelength
to array thickness. As this ratio decreases, the gradient of the
force (that is, the stiffness) between two facing arrays increases
while acting over increasingly smaller distances. This is shown
in Fig. 6 for four pairs of square arrays in opposition. A good
compromise between spring stiffness and range can be achieved
with a wavelength of twice the array thickness: this ensures a
sufficient gap for a range of displacement while still providing
a reasonable stiffness.

This result is consistent with the analysis of a multipole array
levitating against a superconductor [7]. However, there is a no-
table difference between the behavior of a multipole array lev-
itating against a superconductor and the behavior of two op-
posing multipole arrays.

In the former case, the levitation force is created between the
magnet array and a mirror of itself in the superconducting mate-
rial. Thus, any horizontal shifts of the magnet array are mirrored
in the superconductor and the levitation force remains constant.
This is a great advantage when using superconductive levitation,
but, unfortunately, the inconvenience and cost of using such ma-
terial outweighs its advantage for many applications.
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Fig. 7. Forces on the spring in the direction of displacements in each axis.

Curves are normalized by their respective peak values (shown in the legend) to
display their shape.
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Fig. 8. Normalized forces on the spring in each direction for displacements in
the x direction.

In the case with two repulsive magnet arrays, lateral displace-
ments affect the levitation force: a half-wavelength displace-
ment will result in attraction between the arrays, compromising
the stability of the system (this will be seen in the next section
in Fig. 8).

B. Stability of the Multipole Spring

Fig. 7 shows the forces on the spring due to displacements
in each direction. Stable motion requires a negative gradient on
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these curves, since in this case the reaction force will be in op-
position to the displacement. In the centred position, the spring
is in unstable equilibrium with instability in the horizontal = di-
rection only. This instability force is quite linear over most of the
displacement, which is convenient for control system design.

The use of multipole arrays limits the displacement of the
spring in the horizontal directions, as demonstrated in the y di-
rection curve in Fig. 7. The stability reverses after a displace-
ment of a quarter-wavelength of magnetization as the force-dis-
placement gradient turns positive.

Further disincentive for horizontal motion is the reduction of
vertical load bearing as mentioned in the previous section. In
Fig. 8, the spring is displaced in the = direction and the graph
shows the resultant forces on the spring in each direction. This
displacement causes an attenuation of the supporting force in the
vertical z direction. Instability occurs as the vertical force turns
negative after a displacement of approximately one-third of a
wavelength. This is greater than the displacement for instability
in the y direction because the stabilizing arrays also provide
some supporting force.

IV. CONCLUSION

The design of a large load bearing magnetic spring has been
outlined and shown to have a single degree of instability in its
centred position. Significant displacements yield further insta-
bility, so the spring must be constrained either by passive guides
or an active control system. In this state, the spring may be used
as the main support for a vibration isolation table. This latter ap-
plication is the focus of ongoing research, the results of which
will be reported at a later date.
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