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Coevolutionary Optimization of Fuzzy Logic
Intelligence for Strategic Decision Support

Rodney W. Johnson, Michael E. Melich, Zbigniew Michalewicz, and Martin Schmidt

Abstract—We present a description and initial results of a
computer code that coevolves fuzzy logic rules to play a two-sided
zero-sum competitive game. It is based on the TEMPO Military
Planning Game that has been used to teach resource allocation to
over 20 000 students over the past 40 years. No feasible algorithm
for optimal play is known. The coevolved rules, when pitted
against human players, usually win the first few competitions. For
reasons not yet understood, the evolved rules (found in a symmet-
rical competition) place little value on information concerning the
play of the opponent.

Index Terms—Coevolution, fuzzy rules, games, resource alloca-
tion, strategic decisions.

1. INTRODUCTION

HE NOTION of big decisions, those that shape the future
evolution of a business or organization, frequently attaches
the word strategic. For example, what a company chooses to do
or avoid doing is shaped by its answer to the strategic question:
Are we a consulting company or a product company? Or in the
case of the U.S. Navy the question has taken the form: Are we
an organization that provides prompt and sustained operations
at sea, or are we operators of ocean-going naval combatants?
The allocation of the people, capital, goodwill, and other
assets will be different depending upon which choice is made.
Product companies often expect to derive revenue streams
from a developed set of loyal customers whose needs are
understood through ongoing contact that informs new de-
velopment and leads to sales of subsequent generations of
products. Product companies usually see themselves lasting
many product generations and hope to leverage their collective
skills to increase margins. Consulting companies often are not
tied to given products and find themselves working in a fee for
service arrangement on their client’s problem of the moment.
Constantly finding new problems (and new clients) for the
next engagement grows to dominate the marketing effort and
tends to limit the profitability to the profit on hourly charges.
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Long-lived consultancies tend to attach to problems such as
“accounting standards,” the “tax code,” and other complexes of
regulation and custom.

How are strategic questions to be answered? First, any anal-
ysis will ask if there are customers and competitors, and how
are they described. Second, whether the company can profitably
obtain and serve the customers in the face of the existing and
potential competition? Third, what should be done and in what
order to become successful? Easily stated questions—but diffi-
cult to answer. Even describing what constitutes a good choice
or set of choices is complicated by the tens to thousands of dif-
ferent actions that could be taken. In larger organizations that
have had time to evolve in response to competitive and envi-
ronmental pressures, the allocation of effort—the decision—is
most explicitly presented in the budget. But budgets tend to de-
scribe inputs to the organization’s activities and not the outputs.
Businesses fall back on measures of profitability over some time
period as the measure of their success. Military organizations
look to wars and conflicts to characterize their success. Thus,
analyzing strategic questions can be cast as asking: Will a partic-
ular sequence of investments, expressed as budgets, over many
years produce a successful result in the face of competition and
a changing environment?

Resource allocation in mission- or market-oriented large en-
terprises, either government departments or large businesses,
is made difficult by the large number of possible investment
plans that could be considered. This complexity is in addition
to the normal uncertainties associated with a changing envi-
ronment—changing competition, technical innovation, etc. For
example, within the U.S. Department of Defense, it is not un-
common for tens of thousands of different categories to be ex-
amined annually. Decisions are then made to allocate funds and
personnel for the forthcoming budget year, as well as projec-
tions for six years in the future. Similar activities and associated
complexities are found in nongovernmental organizations [21].

In the early 1960s, the Department of Defense created a man-
agement system, the Planning, Programming, and Budgeting
System (PPBS) of considerable complexity to rationalize its re-
source allocation problems. A major training program was in-
stituted to teach the PPBS and a “game” was created by General
Electric’s “TEMPO think tank™ to train people in the use of
the new system. The Defense Resource Management Institute
(DRMI) (see: www.nps.navy.mil/drmi/98org.htm) has used the
TEMPO game in its courses for nearly 40 years. Over 20 000
students from 125 countries have benefited from exposure to
this game.

We became interested in resource allocation problems while
conducting large scale, multination “futures” studies. Our
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studies used scenario methods [30]. An integral part of the
multiyear competitive decision environment was the allocation
of national resources to defense. This forced tradeoffs between
investment in economic growth, foreign assistance, education,
etc. This is a very complex set of decisions, and we soon
realized that we were trimming a very complex decision tree
and had little hope of understanding what other options might
offer. The work presented here reports one facet of our research
program, initiated in 2000, to deal with aspects of resource
allocation problems in a world where your competitors are also
able to make choices.

II. COEVOLUTIONARY APPROACHES TO GAMES

Games are characterized by rules that describe the moves
each player can make. These moves constitute the behavior of
the players: the manner in which each allocates his resources.
When a player makes a move, he receives a payoff; usually, he
tries to maximize the cumulative payoff over a period of time.
In some games, such as chess, the payoff comes at the end of
the game, but we can imagine a surrogate payoff, or evaluation
function, that correlates with a player’s chances of winning at
each point in the course of the game.

Some games are competitive, others are cooperative, and still
others are mixed, depending on the form of the evaluation func-
tion. If, for example, one player is gaining in payoff and the
other player is losing payoff, it is a competitive game.

The evaluation function is a key ingredient in a game-playing
system. Sometimes, however, we have no idea of how to create
a good evaluation function; there may be no clear measure of
performance beyond simply whether you win, lose, or draw.

As indicated in [23], the situation is similar to that of living
creatures in nature, who are consummate problem solvers,
constantly facing the most critical problem of avoiding being
someone else’s lunch. Many of their defensive and offensive
survival strategies are genetically hard-wired. But how did these
strategies begin? We can trace similarities across many species.
For example, many animals use cryptic coloration to blend into
their background. They may be only distantly related, such as
the leafy sea dragon and the chameleon, and yet their strategy
is the same: don’t be noticed. Other animals have learned that
there is “safety in numbers,” including schooling fish and herd
animals such as antelope. Furthermore, herding animals of
many species have learned to seek out high elevations and form
a ring looking outwards, so as to sight predators as early as
possible. These complex behaviors were learned over many
generations of trial and error, and a great deal of life and death.

This is a process of coevolution. It is not simply one indi-
vidual or species against its environment, but rather individuals
against other individuals, each competing for resources in an
environment that itself poses its own threats. Competing indi-
viduals use random variation and selection to seek out survival
strategies that will give them an edge over their opposition. An-
telope learned to form a ring to spot predators more quickly;
predators learned to hunt in teams, and use the tall grasses of the
savanna to mask their approach. Each innovation from one side
may lead to an innovation from another, an “arms race,” wherein
individuals evolve to overcome challenges posed by other indi-

viduals, which are in turn evolving to overcome new challenges,
and so forth.

Note that the individual antelopes did not gather in a con-
vention to discuss new ideas on survival and come up with the
strategy of defensive rings on high ground. Nevertheless, the de-
velopment of strategies is unmistakably a process of learning.
When instinctual, they have been accumulated through random
variation and selection, with no evaluation function other than
life and death. The entire genome of the species is then the
learning unit, with individuals as potential variations on a gen-
eral theme.

It is not surprising that coevolutionary processes have been
used by many researchers, whether in optimization or in game
playing.

An example in optimization is Hillis’s now famous example
of minimizing a sorting network: a fixed sequence of operations
for sorting a fixed-length string of numbers [15]. By an evolu-
tionary search, he had found a network that sorted 16 numbers
with just 65 comparisons. Networks were scored on the frac-
tion of all test cases (unsorted strings) that they sorted correctly.
Hillis then noted that many of the sorting tests were too easy and
only wasted time. He, therefore, devised a method in which two
populations coevolved: sorting networks and sets of test cases.
The networks were scored according to the limited number of
test cases presented (10 to 20), and the test sets were scored on
how well they found problems in the networks. Variation and se-
lection were applied to both populations; the test cases became
more challenging as the networks improved. Hillis reported that
the coevolutionary approach avoided stalling at local optima,
and that it eventually found a network comprising only 61 com-
parisons. (This is just one short of the best network known to
date, discovered by Green and using 60 comparisons [19].)

Sebald and Schlenzig studied the design of drug controllers
for surgical patients by coevolving a population of so-called
“CMAC?” controllers, chosen for effectiveness, against a popu-
lation of (simulated) patients, chosen for presenting difficulties
[31]. Many researchers have studied pursuit-evasion games, for
example, [6], [9], and [29]. Various interesting approaches to
constraint-satisfaction problems are reported in [20], [24], [26],
[27]. With a bit of thought, what would appear to be a straight-
forward optimization problem can often be recast with advan-
tage as a problem of coevolution.

In 1987, Axelrod studied the iterated prisoner’s dilemma
(IPD) by an evolutionary simulation [2]. Strategies were repre-
sented as lookup tables giving a player’s move—cooperate or
defect—as a function of the past three moves (at most) on each
side. Strategies competed in a round-robin format (everyone
plays against every possible opponent) for 151 moves in each
encounter. The higher scoring strategies were then favored for
survival using proportional selection, and new strategies were
created by mutation and by one-point crossover. Axelrod made
two observations. First, the mean score of the survivors de-
creased in the early generations, indicating defection, but then
rose to a level indicating that the population had learned to co-
operate. Second, many of the strategies that eventually evolved
resembled the simple but effective strategy of “tit-for-tat”—co-
operate on the first move, and then mirror the opponent’s last
move.
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In 1993, Fogel studied the effect of changing the represen-
tation of strategies in the IPD, replacing Axelrod’s lookup ta-
bles with finite-state machines [10], [11]. The results were es-
sentially the same as what Axelrod had observed. Harrald and
Fogel, on the other hand, observed entirely different behavior in
a version of IPD, where the player could make moves on a con-
tinuous numeric scale from —1 (complete defection) to 1 (com-
plete cooperation) [14]. Strategies were represented by artificial
neural networks. In the vast majority of trials, payoffs tended
to decrease, not increase. Darwen and Yao observed similar re-
sults in a variation of IPD with eight options, rather than two or
a continuous range [7]. They observed, first, that as the number
of options to play increases, the fraction of the total game ma-
trix that is explored decreases. Second, when the IPD had more
choices, strategies evolved into two types, where the two types
depended on each other for high payoffs and did not necessarily
receive high payoffs when playing against members of their own
type. These observations are very interesting, yet they perhaps
do not fully explain the degradation in payoff that is seen when
a continuous range of options is employed. Hundreds of papers
about the prisoner’s dilemma are written each year, and very
many of the contributions to this literature have involved evo-
lutionary algorithms in different forms. These and many other
studies indicate the potential for using coevolutionary simula-
tion to study the emergence of strategies in simple and complex
games.

In the late 1990s and into 2000, Chellapilla and Fogel
[3]-[5] implemented a coevolutionary system that taught itself
to play checkers at a level on par with human experts. The
system worked like this. Each position was represented as
a vector of 32 components, corresponding to the available
positions on the board. Components could take on values from
{-K,-1,0,+1,K}, where K was an evolvable real value
assigned to a king, and 1 was the value for a regular checker.
A 0 represented an empty square, positive values indicated
pieces belonging to the player, and negative values were for the
opponent’s pieces. The vector components served as inputs to a
neural network with an input layer, multiple hidden layers, and
an output node. The output value served as a static evaluation
function for positions—the more positive the value, the more
the neural network “liked” the position, and the more negative,
the more it “disliked” the position. Minimax was used to select
the best move at each play based on the evaluations from the
neural network.

The coevolutionary system started with a population of 15
neural networks, each having its weighted connections and K
value set at random. Each of the 15 parent networks created an
offspring through mutation of the weights and K value, and then
the 30 neural networks competed in games of checkers. Points
were awarded for winning (+1), losing (—2), or drawing (0).
The 15 highest scoring networks were selected as parents for
the next generation, with this process of coevolutionary self-
play iterating for hundreds of generations. The networks did not
receive feedback about specific games or external judgments on
the quality of moves. The only feedback was an aggregate score
for a series of games.

The best neural network evolved (at generation 840) was
tested by hand, using the screen name “Blondie24,” against
real people playing over the Internet in a free checkers website.
After 165 games, Blondie24 was rated in the top 500 of 120 000
registered players on the site. The details of this research are in
[3]-[5] and [12].

There are 10%° possible positions in checkers, far too many
to enumerate, and checkers remains an unsolved game: no-
body knows for sure whether the game is a win for red, a
win for white, or a draw. Chess, at 1054 positions, is still
further from being solved. But Fogel and Hays have combined
neural networks and coevolution to create a grandmaster-level
chess-playing program, again without giving the simulated
players any feedback about specific games [13].

Coevolution can be a versatile method for optimizing solu-
tions to complex games, and a reasonable choice for exploring
for useful strategies when there is little available information
about the domain.

III. TEMPO GAME

The TEMPO Military Planning Game is a two-sided
zero-sum competitive game. Teams of players compete in
building force structures by dividing limited budgets, over a
succession of budgeting periods (“years”) between categories
such as “acquisition” and “operation” of “offensive units” and
“defensive units.” The rules are no more complex than the
rules of, say, Monopoly. However, players learn that the rules’
apparent simplicity is deceptive: they pose challenging and dif-
ficult decision problems. No feasible algorithm for optimal play
is known. The full set of investment categories for the TEMPO
game comprises: 1) operation of existing forces; 2) acquisition
of additional or modified forces; 3) research and development
(“R&D”); 4) intelligence; and 5) counterintelligence. There are
four types of forces: two offensive (“Offensive A and B”) and
two defensive (“Defensive A and B”). Each type comprises
several weapon systems with varying acquisition and operation
costs (measured in “dollars”), measures of effectiveness (in
“utils”), and dates of availability (in “years”). A team’s ob-
jective is to maximize its total “net offensive utils.” A team’s
net offensive utils of type A are the total utils for its operating
Offensive A units, minus the opposing team’s Defensive A,
but not less than zero, and likewise for type B. Thus, there is
no advantage in investing more in a defensive system than is
necessary to counter the opponent’s offensive systems of the
same type. A team’s total net offensive utils are the sum of its
net offensive utils of types A and B.

R&D is current investment that buys the possibility in a fu-
ture year of acquiring new weapon systems, possibly with better
price/performance ratios than those now available. Investment
in intelligence buys information about the opponent’s operating
forces and investment activities. Investment in counterintelli-
gence degrades the information the opponent obtains through
intelligence. Every year the probability of war (PWar) is an-
nounced. When this is low, players may well decide to invest
heavily in R&D and acquisition of new units; when it is high,
they may prefer to concentrate on operating existing units.
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IV. INITIAL EXPERIMENTS

In 2000, we performed experiments aimed at seeing whether
with evolutionary methods we could obtain reasonable players
for a TEMPO-like game. Being mindful of the usual tradeoff
between programming convenience and execution speed, we
began with a Lisp implementation, using Koza’s Simple Lisp
Code for Genetic Programming (GP) [18] before deciding to
invest substantial programming effort. We used a very rudimen-
tary version of the TEMPO game. There were only one offensive
and one defensive weapon system (“OA1” and “DA1”). R&D
was eliminated; however, the operating and acquisition costs of
the systems could vary from year to year. Intelligence and coun-
terintelligence were also eliminated, but each player was given
the opponent’s current inventory of the two weapon systems. A
game ended with the outbreak of war, or after a specified number
of years (typically ten). Finally, utils were equated with units,
i.e., the util values were set at 1 per unit. This meant that oper-
ating and acquisition costs were effectively given in dollars per
util, and operating and acquisition decisions could be made with
a granularity of 1 util.

Koza’s Simple Lisp Code is a generational, tree-based ge-
netic-programming kernel written in Common Lisp. Individuals
(candidate algorithms) are represented as computer programs in
a simple Lisp-like language, written in terms of user-specified
terminals (constants and variables) and functions. In addition
to: 1) the set of terminals and 2) the set of functions, the user
must specify 3) the fitness measure; 4) a set of fitness cases;
5) a termination condition; and 6) a set of GP parameters such
as population size and probability of mutation.

For the rudimentary TEMPO game, the terminals were
random floating-point constants and variables describing the
current state of the game. State variables included the current
total available budget, PWar, current acquisition limits, prices,
and operating costs for the offensive and defensive units, and
both the player’s and the opponent’s current inventories of
these units.

The function set included operations that attempt to allocate
funds for the coming budgeting period to acquisition and opera-
tion of the offensive and defensive units. For example, (AcOA1
u) allocates funds to acquiring at most u units of “Offensive
A1,” subject to constraints: the number of units is a nonnegative
integer, total expenditures do not exceed the available budget,
and total units acquired do not exceed the acquisition limit for
OA1. Arguments u that attempt to violate these constraints incur
a penalty; for example, if the requested number of units would
exceed the acquisition limit, the player receives only the al-
lowed number of units, but the budget is still decremented by the
total cost of the number requested. Besides these TEMPO-spe-
cific operations, the function set included the elementary arith-
metic operations (+, —, X, <) and two general programming
constructs: (if 3 n z y z) evaluates n and then, depending on
whether the result is negative, zero, or positive, evaluates and
returns the value of z, y, or z; and (progn3 z y z) evaluates its
three arguments in order and returns the value of the last.

Investment algorithms were evaluated for fitness by pitting
each in games against a selection of others from the same pop-
ulation and adding up penalties according to the result: O for a

win, 1/2 for a draw, and 1 for a loss. For simplicity, the fitness
was 1/(1 4+ F), where F is the sum of the penalties.

A fitness case consisted of initial inventories of the two
weapon systems, the maximum number of game years, and
initial values, rates of increase or decrease, and volatilities for
the budget, PWar (actually the corresponding odds) and the
acquisition costs, acquisition limits, and operating costs of the
weapon systems. (These latter parameters were updated from
year to year within each game by random factors drawn from
lognormal distributions determined by the corresponding rates
of change and volatilities.) Six fitness cases were defined, and
each player was evaluated by one game (each with a different
opponent) for each fitness case.

The termination criterion for evolution was simply reaching
the specified number of generations.

The main GP parameters for the run reported here were: pop-
ulation 12 000, number of generations 100, and the following
probabilities for reproduction methods: crossover 0.89, copying
0.10, and mutation 0.01. Other parameters included method
of selection (fitness-proportionate) and method of generation
(ramped half-and-half, see [18] for the definition).

The question was whether anything reasonable would emerge
in such a simple framework. And indeed, starting from an initial
generation of completely random programs, an algorithm was
evolved that allocated funds according to rudimentary sensible
rules, which can be characterized as “dumb, but not crazy.” If
the budget and inventories are adequate, it is equivalent to:

« (OPOA1 OA1INV);
« (ACDAI DAIACLIM);
« (OPDA1 DAIINV);
« (ACOAI OAIACLIM).

Here, OP means “operate,” AC means “acquire,” INV is “in-
ventory,” and ACLIM is “acquisition limit.” Thus, the algorithm
would not attempt to acquire units beyond the appropriate acqui-
sition limits or to operate units beyond the number in inventory.
The actual code was nearly 100 lines of Lisp, mostly introns,
which some hand editing reduced to:

(OPOA1 OA1INV)
(IF3 (+PWAR BUDGET) 0 0
(PROGN
(ACDA1 DA1ACLIM)
(IF3
(OPDAI
(IF3 DA1INV
DA1ACCOST
(OPDA1 DA1ACLIM)
DAI1INV))
0
(OPOA1 OA1OPCOST)
(ACOA1 OA1ACLIM))))

This incorporates a check to ensure that an initial allocation
to operation of offensive units has not exhausted available funds
(by more than a fractional dollar) before further allocations are



686 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 9, NO. 6, DECEMBER 2005

attempted. This result took just under 10 hours to obtain on a
Pentium III processor.

We did not pursue the Lisp route further. We found this last
result sufficiently encouraging to proceed to a C++ program and
to a more substantial subset of the TEMPO game.

V. DESIGN OF A NEW SYSTEM

In an attempt to improve the evolution of human readable
rules, we attempted to design a coevolutionary system that
evolves fuzzy logic rule bases to play the TEMPO game.

There have been two basic approaches to such evolution of
readable fuzzy logic rule bases.

e Interpretability-oriented approach, where rules are based
on symbols and then the symbols are translated into
crisp/numeric values for the membership functions, the
inference system, and the output membership function.

* Precision-oriented approach, where rules are based on
crisp numbers that define all membership functions but
then the rules have to be translated into more human
interpretable form. Such translation would not take place
during the fuzzy logic calculations but only to output
some more human readable rules.

As stated in [8]:

“There is a well-known tradeoff between numerical accuracy
and linguistic interpretability. This tradeoff is the consequence
of a well-known limitation of the human brain to represent a
limited number of categories on a given domain. [...] On the
other hand, the numerical accuracy is very important in the im-
plementation of policies and control actions oriented to obtain
a desired result from the system. This issue of accuracy is very
critical when the models are used in dynamic way, where the
predicted value is fed back and the small errors will be propa-
gated and reflected as errors in the long term prediction.”

The interpretability-oriented approach evolves readable rules
yet the translation to crisp numbers via membership functions
has to be defined. On the other hand, the precision-oriented ap-
proach is easy for internal calculations but readable rules have to
be created at the end by a translation into more human readable
rules. For both approaches, there are techniques to reinforce the
“missing” aspect (e.g., [8], [28], and [32]).

In our design, a precision-oriented approach was chosen.
Hence, the evolved rules are inherently crisp and “numerical”
on the genotype level, which means that the evolutionary opti-
mization works directly on the crisp parameters. The internal
calculations still use fuzzy logic for all calculations, yet the
evolved membership functions are based on numerical param-
eters. The translation of such exact rules will be explained in
details later but is inherently a uniformly spaced segmentation
of input ranges into symbols like “very low,” “low,” “medium,”
“high,” and “very high.” These symbols are then used for
humans to attempt to understand why a fuzzy logic rule-base
performs well or not (whatever the case might be). The new
system has the following features:

Each individual can encode a maximum of w rules for ac-
quiring and operating weapons (called “weapon rules”) and ¢
rules for buying intelligence or counterintelligence (called “intel
rules”).

Rule, | Rule, | Rule, Rule,,
‘U3 B13C553 B3G3 5 B3G5 | 5

Fig. 1. A structure of a chromosome.

The chromosome is based on the structure given in Fig. 1.
There are m = w + q rules altogether; each Rule; is built
from several fields (Fig. 1 expands Rules):

e Us is a Boolean defining whether the rule Rules is used;

e B3 are Booleans defining whether input 7 is used;

* (3 are centers of the Gaussian in range [0, 1] for input %;

» S;3 are sigmas of the Gaussian in range [0, co) for input 4;

* Y3 is the output in range [0, 1] of rule Rules.

There is one rule set for weapon allocations and a second
similar rule set for buying intelligence. The first set has a total
number of floating-point genes equal to w(1 + 3n,, + 1); for
the second set, the number is ¢(1 + 3n4 + 1) (see Fig. 1). The
parameters of the weapon rule set used in the initial runs with
fuzzy-logic system reported further in this paper were w = 34
and n,, = 15.! The intelligence rule set used ¢ = 16 and n, =
7.2 The complete chromosome was encoded as one string of
floating point numbers (Booleans were represented as floating
point numbers as well).

We use the Mamdani fuzzy logic system with Gaussian mem-
bership functions,? singleton fuzzyfier, product operation rule
for fuzzy AND, and center of average defuzzyfication.

The weapon rules assign a value (a “desirability”) to each
weapon system; the intel rules assign a value to each intelli-
gence/counterintelligence category. The budget is allocated by
linear scaling of these values, followed by normalization in
order not to exceed the available budget.

We use two populations, X and Y, each consisting of pop_size
individuals. This was 200 for the initial runs mentioned, with a
fixed genotype length [ = 34(14+3-154+1)+16(14+3-74+1) =
1966. The decoded phenotype has a varying number of rules and
membership functions* with a maximum number (given by the
maximum length [ of the chromosome).

Note that the fitness function created for the initial experi-
ments (and discussed in Section IV of this paper), was defined

INote again, that each rule can use one or more of the available environ-
mental parameters for weapon allocation and intelligence gathering. The envi-
ronmental weapon related parameters are: probability of war, budget, weapon
category (offensive or defensive), weapon type (A or B), weapon subtype (0,
1, 2, etc.), initial units available, maximum number of units available for ac-
quisition, acquisition cost per unit, operations cost per unit, utils (i.e., effective-
ness of weapon), utils per operation cost, utils per acquisition cost, year avail-
able, enemy offensive force change, and enemy defensive force change; so alto-
gether there are n,, = 15 environmental weapon related parameters (maximum
number of weapon inputs).

2The environmental intelligence related parameters are: probability of war,
budget, intelligence category, offensive and defensive force change for weapon
types A and B; so altogether there are n, = 7 environmental intelligence related
parameters (maximum number of intelligence inputs).

3We use one Gaussian spreading parameter for each input.

4Rules and inputs can be “pruned,” i.e., be “NULL” and, hence, not used.
Pruning reduced the effect of overlearning. The fitness reflects that a smaller
rule base is preferable using a static penalty approach.
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justas 1/(1+ F). It did not involve utilities; its value was deter-
mined by the number of wins, draws, and losses in a number of
games. For the new system, a new fitness function was imple-
mented that created more dragging toward improved and more
compact rules. This required more gradual control by the evo-
lutionary algorithm over the complexity of the rule base. More
precisely, the fitness f of an individual is calculated as follows.

Each individual from each population is evaluated by letting
it compete against o randomly chosen opponents from the other
population. (For the initial runs we had o = 200.) Thus, each
individual from population X plays o games against opponents
from Y and also has the expectation of being chosen at random
about o times to serve as an opponent for a player from Y. That
is, a player from X plays at least o games, but the expected
number is 20 games, all of which contribute to the fitness score
of X. The same is true of each player from Y. The fitness of each
individual is computed from its average “net offensive utils”
and average number of games won, with a penalty term that is
linear in the number of parameters and rules used by the fuzzy
logic system (for “pruning”). More precisely, the fitness f of an
individual is calculated as follows:

f=k-r+u—p-(w+wi/n,) —p-(9+gi/ng)

where r is the average number of wins (per game played), w is
the average net offensive utils, w is the total number of weapon
rules used, w; is the total number of weapon inputs used, g is the
total number of intelligence rules used, g; is the total number of
intelligence inputs used, n,, = 15 is the maximum number of
weapon inputs, and 1, = 7 is the maximum number of intelli-
gence inputs. The chosen penalty constants were & = 10°, and
p = 10%5The components and constants included in the fitness
function have the following roles.

e k- r should maximize the average number of games won
by maximizing r.

e u should maximize the average net offensive utils (per
game).

* p-(w+ w;/n,) should minimize the total number of
weapon rules used w and minimize the total number of
weapon inputs used by weapon rules (expressed as a frac-
tion w;/ny,).

* p-(g+g9i/n,) should minimize the total number of intel-
ligence rules used g and minimize the number of inputs
used by intelligence rules (expressed as a fraction g; /n,).

Note that the fitness f is constructed in such a way that its

major component is the average number 7 of wins; the constant
k is set so that simply winning is given much greater weight
than sometimes winning by a large margin w. In other words, it
is “better” to win ten games by a small margin than winning nine
games by large margins and losing one game (even by a small
margin). The constant p, on the other hand, is a prolixity penalty
that controls the degree of parsimony pressure. Hence, more
well-performing and compact rule bases are preferred during
the evolution, which is more in accordance to the well-known
Ockhams Razor principle.® As the constant p is set two orders of

SParameter values were determined by preliminary experimentation.

60f two equivalent theories or explanations, all other things being equal, the
simpler one is to be preferred.

magnitude lower than k, again, winning is much more important
than simplicity of rules.

The mutation operator could perform either small or large
mutations of each parameter (floating point number) with a
probability py,¢ = 0.7. If mutation is selected, then each gene
has a probably of 0.5 to be mutated. If a gene is selected for
mutation, then there is a fixed probability of 0.1 for a “big mu-
tation” and 0.9 for a “small mutation.” A “big mutation” adds a
random number in range [—d, +d] to the gene, while the “small
mutation” adds a random number in range [—d/10,+d/10]
(d = 0.1 is used). Notice that it might seem like overly strong
mutation, but due to unexpressed parts of the chromosome
which are not translated to the phenotype there are many
unused intron-like segments in the chromosome.

The crossover operator is a standard two-point crossover with
Pcross = 0.3.

For each population the environment changes from game
to game, i.e., available weapons and effectiveness and prices
change. This results in a dynamically changing environment in
which the rule bases have to make budget allocations.

Starting from random populations the coevolutionary system
develops interesting fuzzy logic rule bases. In order to get an un-
derstanding of some kind of “absolute” performance, the best-
performing individual is played against a static “expert” based
on simple heuristics (expressed as fuzzy logic rules).” The “ex-
pert” uses the following rules.

if [UtilsPerOperationCost IS Very Low-Low]
then [Evaluation IS Very Low]

if [UtilsPerOperationCost IS Low-High]
then [Evaluation IS Medium]

if [UtilsPerOperationCost IS High-Very High]
then [Evaluation IS Very High]

In other words, the “expert” looks at the effectiveness of each
weapon only and disregards any other available information.
The performance against the “expert” is not included in any fit-
ness calculations but is used to understand the quality of the
evolved rule bases during the evolution.

The rules can be presented in a form that can be understood
easily by humans, which is one reason for choosing fuzzy logic.
Here, is an example.

RULE 1:
if [PWar IS Very Low-Low]

[CATEGORY IS DEFENSIVE]
[SUBTYPE IS 1 OR 2]
[Inventory IS Low]
[MaxAcquisitonUnits IS Low-Medium]
[AcquisitionCost IS Very Low]
[UtilsPerAcquisitionCost IS Very Low-Low]

then [Evaluation IS Low]

TWe use the term “expert” as applicable to any system that incorporated rules
of thumb derived by consultation with human experts, regardless of whether the
system actually exhibited any particular level of expertise. Our “expert” incor-
porates a rule of thumb that human players find useful (e.g., “more bang per
buck is better”), but we do not actually claim that it a very strong player. It wins
handily in the early generations, against opponents that play more or less at
random, but within the first hundred generations or so, evolved players usually
arise that can beat the “expert” more than half the time.
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The terms of the “if” part refer to seven of the environment
variables that are available for constructing a weapon rule. A
term such as “AcquisitionCost IS Very Low” refers to the de-
gree of membership of the acquisition cost in a certain fuzzy set
represented internally by a Gaussian membership function with
a given center ¢ and standard deviation ¢. The program uses the
actual numeric values of ¢ and o internally, and these are the
quantities that mutation and crossover operate on. But for the
human reader, expressions such as “Very Low” are presented,
and are presumably more palatable than a pair of floating-point
numbers.

The ranges of meaningful acquisition costs (normalized to the
interval [0, 1]) are divided into subranges running from “Very
Low” to “Very High” in the following way: “Very Low” refers to
the range [0, 1/8], “Low” to the range (1/8, 3/8], “Medium” to
the range (3/8,5/8], “High” to the range (5/8, 7/8], and “Very
High” to the range (7/8, 1]. The reason for this split-up is that
the “imaginary center” for each category is placed as follows:
“Very Low” is at 0, “Low” is at 1/4, “Medium” is at 1/2, “High”
is at 3/4, and “Very High” is at 1. Hence, the imaginary cate-
gory centers have maximum distance to each other. A point in
[0,1] is assigned to the category with the closest center. The
human-readable output is generated using the categories of the
points ¢ £ o. If these are in the same category, a single label is
used. In the example, the entire central part (width 2¢) of the
Gaussian for AcquisitionCost falls in the category “Very Low.”
A term such “AcquisitionCost IS Very Low-Low” would have
been used if the points ¢ & ¢ had been in different categories.

The “Evaluation IS Low” in the “then” part of the rule refers
to a “desirability” value. Again the program uses a specific
number. The human reader is told that the number is in the
low subrange of possible desirability values (the same category
limits are used as for the “if” part).

In addition to the developed coevolutionary system, there is a
game system that lets a human player play against a saved indi-
vidual. The computer distributes its budget according to its rule
base, while the human player interacts with the game system,
currently through a spreadsheet interface.

VI. NEW EXPERIMENTS

Initial experience with the coevolution code immediately
demonstrated the utility of the approach—it proceeded to win
the first games with most of those who played against the de-
rived rules. It was also clear early on that the coevolved rules did
not value information about the opponent’s choices. That is, no
rules for buying intelligence or counterintelligence were of suf-
ficient value to be included in the evolved set. Similar behavior
had been seen in the play of the TEMPO paper game when we
were using it to teach our students. We attributed this either
to avoidance of excessive inputs—a common human strategy
for coping with information overload—or to the “gaming of
the game” that occurs when you know approximately when
the game will be over. Another possibility was that since the
initial version of the TEMPO code provided information that
was not quantitative on what the opponent was getting with the
investments made, there was truly little value.

We did some preliminary investigations to determine if we
could configure the game so that there might be value to buying
intelligence. We gave player X a larger budget and immediate
access to all weapons as they became available, while player Y
had a smaller budget and was delayed one year in having invest-
ment opportunity on the various weapons. This coupled with a
reduction in the prolixity penalty did produce a few “weak” rules
for the purchase of intelligence by the disadvantaged player. We
also modified the rule inputs to enhance the value of the infor-
mation a player could obtain by buying intel. A rule input was
provided indicating whether the opponent had bought counter-
intelligence. The opponent’s operating forces were given in total
utils rather than number of weapon units and these values were
given as absolute current values, rather than as changes relative
to the previous year. This last change was motivated by the fact
that the rules incorporate no “memory” of previous years’ de-
cisions. Finally, an input giving the initially available number
of units of a weapon system was replaced with one giving the
player’s current inventory.

The results of a coevolution have been used in a course at
NPS, “Economics for Defense Managers.” Students played the
game on line through the spreadsheet interface. Many of the stu-
dents needed three or four tries before achieving an outcome
that they were willing to submit for grading. Thus, we continue
to see human-competitive play in the coevolved rules. One of
our colleagues, an economist with previous experience with the
DRMI paper form of the game, was able through prolonged and
concerted effort to beat the machine by a small margin on a first
try. During play, he was ascribing all manner of sophisticated
motivations to the machine for its moves. He was dismayed to
learn afterward that he had been competing against a set of pre-
cisely three rules: the one shown above in Section V and the
following two others.

RULE 2:
if [Budget IS Low-Medium]

[EnemyCounterintel IS NOT BOUGHT]
[SUBTYPE IS 1]
[Utils IS Low]
[UtilsPerAcquisitionCost IS Very High]
[YearAvailable IS Medium]

then [Evaluation IS Low]

RULE 3:
if [Budget IS Low]

[CATEGORY IS OFFENSIVE]
[TYPE IS B]
[Utils IS Very High]
[YearAvailable IS Medium-High]
[EnemyOftensiveUtils IS Unkn. OR Very Low]
[EnemyDefensiveUtils IS Unkn. OR Very Low]

then [Evaluation IS Very High]

Such a low number of rules is not atypical. The above three
rules (RULE 1, RULE 2, and RULE 3) constitute a complete
rule base after a completed coevolutionary run. However, it was
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a bit surprising that the system did not evolve any “intelligence
rules.” We were hoping to see rules like:

RULE 4:
if [PWar IS Low]
[IntelligenceCategory IS OffensiveForcelntel]
then [Evaluation IS High]

However, we did not get any (we return to this topic later in
this paper).

Some analysis revealed that RULE 1 acts as a baseline rule
stating that unless a weapon has special characteristics it is
not worth investing in. RULE 2 states that certain defense
weapons are worth investing in. It might seem counter-intuitive
that this is the case since both RULE 1 and RULE 2 state
“Evaluation IS Low,” but analysis revealed that the Evaluation
from RULEI] is significantly lower than from RULE2. Both
have the same human-readable output “Evaluation IS Low” but
the actual value in the phenotype is very different. Hence, this
is an example where the human-readable output can actually
be misleading the interpretation of the rule-base. RULE 3, on
the other hand, declares that certain offensive weapons are
desirable.

Fig. 2 shows how the number of rules used by the best player
during the coevolution varied over the first 600 generation. The
actual run went to generation 1927, but instances of three-rule
best players were already appearing before generation 500.

Fig. 3 shows how the performance of the best player, playing
against the static “expert,” varied over the first 600 generations.

Each player’s fitness was computed from the outcomes
of o = 100 games against the “expert.” The initial efforts
had immediately highlighted another problem. It had taken
approximately two weeks of computation on a single 3 GHz
processor to coevolve the initial rules. To properly investigate
issues of the sort just described would require faster computa-
tional turnaround. We embarked on porting the coevolutionary
code to the Processing Graph Method Tool (PGMT), a parallel

computing program support system developed at the Naval
Research Laboratory (see [1] and [17]). An application under
PGMT is represented as a dataflow graph (similar to a Petri
net) whose processing nodes can run in parallel on separate
processors. The mapping of nodes to physical processors takes
place at runtime. This flexibility facilitates moving an applica-
tion, without rewriting, from one parallel-processing system to
a very different one—from a small, heterogeneous network of
workstations, say, to a large, homogeneous, high-performance
shared-memory multiprocessor system. (TEMPO examples
were run on two machines of the latter type at NRLs Distributed
Center for High Performance Computing: Silicon Graphics
Origin 3800 and Altix Systems. We have also installed PGMT
on a cluster at UNC-Charlotte and conducted runs there).

With the availability of the PGMT port, we are beginning to
be able to experiment with somewhat larger problems than pre-
viously, in particular to increase the number of weapon systems
from two to a dozen or so. Doing so, with further relaxation of
parsimony pressure, seems to encourage appearance of rule sets
(now larger than three rules) containing intel rules with High or
Very High in their “then” parts.

We have done a few runs varying just the prolixity setting p.
This (unsurprisingly) confirmed the expectation that the average
number of used rules tends to be lower when the prolixity set-
ting is higher.® To track convergence of runs, we have also been
recording diversity levels of both populations during a run. The
diversity measure is computed as follows. Let P = pop_size be
the number of individuals in the population and G be the number
of genes in the rule set, and let z;, (0 < i < P,0 < g < G) be
the floating-point gene value for gene number g of individual .
Define the average a, of gene number g over the population by

ag = (1/P) szg

Then, the diversity d is the average magnitude of the difference
of the gene values from the mean

P q
d= (I/PG)ZZ |zig — agl.

=0 g=0

Figs. 4 and 5 display the diversity of the two competing popu-
lations (players X and Y, respectively) for three single runs in
which we varied the prolixity penalty. Each figure contains three
plots, one of each setting of the prolixity penalty p.

We were hoping to see a relationship between diversity of the
population and the prolixity level, but none is apparent in the two
figures. The population diversity decreased with the number of
generations until some equilibrium appeared to be reached. But
the apparent equilibrium values do not go monotonically with
prolixity, nor is the ordering consistent between the two figures.
In fact, the diversities in the two populations may stay quite apart
from each other: while the dashed line in Fig. 5, for example,
hovers around 120, that in Fig. 4 stays near 300. We currently do
not understand fully this relationship; investigations are under
way to analyze and explain it. However, there is considerable

8Prolixity settings of 10%, 10, 10°, and 10° resulted in the number of rules
decreasing from about 30 to about 4.
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variability from run to run—Fig. 6 shows the solid line from
Fig. 4 (prolixity 1e5) together with four other traces: the results
of four other runs with the same parameters. This variability
indicates that any systematic correlation between prolixity and
divergence is likely to be washed out in the random variation
from run to run. Moreover, further experiments described below,
though undertaken for other reasons than to study the relation
between prolixity penalty and diversity, have revealed that the
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Fig. 7. Diversity of both populations as a function of generation number (run
with 12 weapon types).

convergence properties of the coevolutionary system are not as
simple as they appeared.

Our most ambitious run to date has used 12 weapon types
(A, B,...,L),or 72 weapon systems in all, and has run for over
17000 generations with a population of 2500. (The prolixity
penalty was p = 10°.) The diversity of the two populations is
plotted as a function of generation number in Fig. 7. In contrast
to the behavior shown in Figs. 4 and 5, the diversities, after
apparently converging over the first few hundred generations,
then start to peak up again, reaching a maximum for player Y
at about 7000 generations before starting to drop off again. It
is somewhat surprising that the diversity reaches values greater
than the original random population, but we do have evidence
that some of the Gaussian centers are drifting out of the ranges
in which they were originally randomly chosen.

Apparently, after an initial shakeout in which the “losers” are
replaced, some rule-sets get recombined or mutated, creating
innovation that leads to an increase in diversity. If one strategy
is “better” that means it exploits a weakness of the opposition.
If that happens, the “better” strategy may start to dominate the
population, reducing diversity. Then, the opposing population
may find a good specific defense and start to defeat the former
“better” solution. This flip-flopping may continue ad infinitum.

The following plot is for a run in which we varied the ratios
of crossover to mutation (peross/Pmut) from 0.3/0.7 to 0.7/0.3
(Fig. 8). Otherwise, the distribution of weapon characteristics
and the evolution parameters were as in the run of Fig. 7.

The next two plots are from two long runs, with two weapon
types, in which we attempted to promote intel purchase by:
1) lowering the costs of intelligence and counterintelligence to
make them essentially free (Fig. 9) or 2) making intelligence
essentially free but making counterintelligence prohibitively ex-
pensive (Fig. 10).

An observation: It is not hard to see that, at least when there
are three or more weapon types, nontransitive orderings of
strategies can occur. Consider a player who buys Offensive A
and Defensive B versus a player who buys Offensive B and
Defensive C. The first player will get credit for all his offensive
utils, and his defense will counter some of the second player’s
offense. The second player will get credit for only part of his
offensive utils, and his defense will be wasted. But the second
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player will similarly win against a player who buys Offensive
C and Defensive A, and the latter will in turn beat the original
player who bought Offensive A and Defensive B.

One of our colleagues (Mike Sovereign, an economist) played
against the best player from generation 11 106 of population
Y of the run of Fig. 7. He observed that the machine player
was playing an absolutely balanced strategy, allocating equal

amounts to each offensive type, and equal amounts to each de-
fensive type. The machine player never bought intel/counter-
intel, despite the fact that the intel rule-set contained a rule with
a higher desirability value in its right-hand side than any rule in
the weapon-rule set. Sovereign could, therefore, see its alloca-
tions at every stage. He also played a balanced strategy for sev-
eral rounds, waiting to see whether the machine player would
break the symmetry. He finally concentrated a fair number of
utils in a single offensive system and shortly thereafter won by
essentially the number of excess utils in that offensive type.

Another colleague (Chip Franck, another economist) specu-
lated that what is going on with regard to the diversity is this:
We know from the theory of two-person zero-sum games that if
one adopts an optimal (minmax) mixed strategy, then it does not
matter what the opponent does (as long as he avoids dominated
strategies). (For example, in rock-paper-scissors, if one plays the
three moves randomly with probabilities (1/3,1/3,1/3), then
there is a guaranteed expected outcome of 1/3 wins, 1/3 draws,
1/3 losses, regardless of my opponent’s strategy.) Thus, if one
side in the tempo game evolves something analogous to an op-
timal mixed strategy, that may take much of the evolutionary
pressure off the other side and permit the other side to evolve a
quite disparate population without much penalty.

VII. CONCLUSION AND FUTURE WORK

Four years ago when we started this work we did not know
if resource allocation problems of the type represented by the
TEMPO game would be approachable using coevolutionary
computation methods. And, even though the initial LISP ex-
perimental system suggested an affirmative answer, the nature
of what we could learn from a coevolutionary system was not
obvious to us. We have learned a number of things, which also
suggest future research.

The environment, e.g., PWar, budget size, sequence of avail-
able weapon types, cost per util, etc., is important, but knowing
what your opponent is doing—via intelligence information—is
a far slipperier component in a sequential game in which the
order of decisions matters.

Though the derived rules can beat most human players imme-
diately, the human players are able to learn the “manner of play”
of the machine codes. This suggests that “intel” may after all be
important for the machine players to win consistently. Human
players usually do buy intel, but the machine does not. The
human players use the information they get from intel purchases
to good advantage. This works, of course, when the machine
rules are not changed from competition to competition. During
coevolution, on the other hand, the rules faced by a player do
change from competition to competition, since the identity of
the opponent changes.

A reviewer of this paper wrote of “...conceiving, and
evolving, solutions that can also learn or adapt their own
strategy. As long as an evolved strategy is fixed, it will ex-
hibit mid- or long-term weakness when confronted to human
counterparts. The mechanism to perform adaptation might be
subject to (co)evolution.” And indeed a primary need is to solve
the mystery of why the code produces rules that allocate most
effort to evaluating weapon characteristics and ignore available
information about the opponent’s behavior.
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To explore the conditions under which intelligence on the
opponent’s inventory of weapons is useful, we have coevolved
rules where knowing should matter. In particular, we have ex-
panded the number of weapons types to 12, drawing the cost
and utils and availability from the same distribution, and we
have tried lowering the cost of intelligence and preventing the
purchase of counterintelligence. It was expected that a player
should base their investment decisions on the offensive weapons
the opponent owns and operates, as well as on the “bang per
buck” for a given weapon. When a set of evolved rules that did
seem as though it ought to do so competed against a human
player, it appeared that in actual play the rules did not lead to
buying and using intelligence information. Further, several of us
have played against the coevolved rules, and we are now gener-
ally able to win.

One might ask whether the currently used representation for
the rules is expressive enough. We have made a start toward
exploring alternative representations. In particular, a student in
a recent class project [22] tried replacing fuzzy-logic rules with
LISP-like expression trees as evaluators for the “desirability” of
weapon systems, while otherwise retaining the architecture of
the current system. (The system was, thus, quite different from
the LISP-based system mentioned in Section IV.) It was found
that the tree-based system performed quite creditably against the
existing system, and the idea is well-worth pursuing further.

Another idea worth trying is to evolve a population against
opponents with more “human-like” strategies than arise in
a purely coevolutionary setting. (Two reviewers have made
roughly similar suggestions.) For example, we could handcraft
rule sets based on strategies that humans have found effective.
(In particular, they would buy and make plausible use of intel.)
Then, we would seed one of the two populations with instances
of these rule sets. Two sorts of questions arise. First, how do
the seeded individuals fare in their own population? Do they
thrive and propagate themselves? What do they evolve into?
Second, how does their presence as opponents affect the other
population? Will adaptable opponents on one side encourage
the evolution of adaptable players on the other side?

Our colleague, when playing the 12 weapons type game, per-
ceived that to compute the potential outcome of a competition
required much more analysis than for the two weapons case.
Further, if the weapons types do not have the same “bang for
buck,” then the decisions become even more challenging. Thus,
we see in this case evidence of the effects of information over-
load. There are three standard techniques for dealing with infor-
mation overload: filtering (discarding information), clustering
(creating a hierarchy), and random selection of what to do [25].
We are interested in how clustering might arise and how effec-
tive it might be in reducing the computational load, though at
the expense of reducing the information used for making deci-
sions. The current system has PWar and budgets as externally
supplied values. A hierarchical competition where the higher
level system that determines these values interacts with the cur-
rent game is of considerable interest.

The prolixity penalty appears likely to be useful as a proxy
for the information handling capacity of the “decision maker.”
As mentioned, teams playing the paper TEMPO game will

sometimes deliberately forego intelligence entirely, possibly
to cope with information overload. Once, in an attempt to
help a poorly performing team, an instructor gave them free,
accurate, completely detailed information about the opponents’
decisions. This conferred no advantage—to the contrary, they
lost decisively. The more rules an organization uses to make
decisions, the greater the demand for information processing
capability. Since most large organizations use fairly simple
metaphors for making decisions, and these metaphors can be
captured as “if-then” rules, it is possible to imagine exploring
alternative rules using different fitness functions to determine
why organizations have come to the rules they use. This is very
much like the “inverse problem,” where given a result we have
to find a potential cause of that result [16]. This is why “1R”
and “Naive Bayes” [33] work so well so often. This leads us to
consider putting an explicit cost function into the coevolution
that would pay for the increasing demand for information
processing.

Exploring questions such as these will require a large and
growing computational environment. Fortunately, the choice
of PGMT has facilitated our ability to move between different
multiprocessor environments with a minimal amount of re-
coding. Our research has now moved from our preliminary
trials on desktop computing machines to networks of pro-
cessors. We thus far have done our computation in 2-3 GHz
desktop computers, on a loosely coupled network of two Sun
and three Silicon Graphics workstations, on 28 processors in
a tightly coupled network of 128 processor in the SGI 3800,
and we are prepared to do experiments in other networked en-
vironments. We have also worked on a cluster of computers at
UNCC. The use of PGMT has permitted us to move efficiently
from one computing environment to another. Once PGMT has
been installed bringing our TEMPO codes into operation has
taken between 4-18 man-hours. Our expectation is that this
combination of a very flexible representation of the resource
allocation problem and the computational environment that
PGMT provides will permit research on a growing family
of poorly understood problems encountered in large living
systems [25].

Our planned future work includes incorporating investment
in R&D into the game, analysis of the developed coevolutionary
system with selection of different fitness functions for the com-
petitors, and the possibility of investigating a nonzero-sum game
(note that we can already set the environment variables in such a
way, that the game is not symmetrical: the players start with dif-
ferent budgets, different weapons are available at different itera-
tions, etc.). These are potential research questions that TEMPO
can be used to explore. There are also other issues of proper
representation, e.g., whether fuzzy logic is the best way to coe-
volve a hierarchical system. We hope that within the next year,
we should have answers for some of these questions.
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