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Abstract

We show that Algorithm H∗ for the determination of the rate matrix of a block-G I=M=1
Markov chain is related by duality to Algorithm H for the determination of the fundamental
matrix of a block-M=G=1 Markov chain. Duality is used to generate some efficient
algorithms for finding the rate matrix in a quasi-birth-and-death process.

1. Introduction

In a companion article [8] we constructed a probabilistic algorithm for the deter-
mination of the rate matrixR of an irreducible block-G I=M=1 Markov chain and
showed with benchmark numerical experiments that our procedure, Algorithm H∗,
compares favourably with existing methods in the literature. Algorithm H∗ assumes
irreducibility of the Markov chain but makes no assumptions about ergodicity.

The notation was chosen to emphasise a duality, indicated by∗, with Algorithm H
for the determination of the fundamental matrixG for a block-M=G=1 Markov chain.
The duality was not established in [8]. Algorithm H is derived in [7] and can be shown
to reduce to a version of the cyclic reduction algorithm of Bini and Meini for the
determination ofG when further technical conditions are imposed. For an exposition
of the cyclic reduction methodology the reader is referred to [2, 3, 4] and [11].

In this paper we take these ideas further. We manifest explicitly the duality between
Algorithms H and H∗ and show how in the QBD case several other probabilistic
algorithms can be constructed for the efficient calculation ofR. We shall also find
relations between Algorithm H∗, the logarithmic reduction algorithm of Latouche and
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Ramaswami [10] and the cyclic reduction algorithms of Bini and Meini. To avoid
repetition, we assume familiarity with the ideas and notation of [7] and [8].

2. The dualityA j ←→ C j

The duality ∗ between processes of structuredG I=M=1 and M=G=1 types was
introduced by Ramaswami [13]. An alternative derivation based on time reversal was
presented subsequently by Asmussen and Ramaswami [1]. Further developments are
given in Bright [5].

The duality is between classes of block-M=G=1 chains and classes of block-
G I=M=1 chains. The anomalous leading block row and column in the one-step
transition matrices for these two paradigms do not enter into the duality and it is
convenient to omit these and relabel the remaining rows and columns as 0; 1; : : : . So
we replace theM=G=1 chain by a chainA0 on levels` ≥ 0 given by the structured
one-step transition matrix

P.0/ =




A1 A2 A3 · · ·
A0 A1 A2 · · ·
0 A0 A1 · · ·
:::

:::
:::

: : :




and similarly replace theG I=M=1 chain by a chainC0 on levels` ≥ 0 given by the
structured one-step transition matrix

P∗.0/ =




C1 C0 0 0 · · ·
C2 C1 C0 0 · · ·
C3 C2 C1 C0 · · ·
:::

:::
:::

:::
: : :


 :

It should be noted that these matrices are substochastic.
The blocks of both matrices arek × k. The matrixC = ∑∞

j=0 Cj is taken as
stochastic and irreducible and so has an invariant probability measurec, that is,cC = c.
The entries ofc are all positive sinceC is irreducible. Set1 = diag.c/. Ramaswami’s
duality is given byAm = 1−1CT

m1 for all m ≥ 0. Clearly the matricesAm have
nonnegative entries. For the notion of duality to be meaningful in the context of
Markov chains, it is helpful for the matrixA = ∑∞

m=0 Am to be stochastic. This
is immediate. We haveA = 1−1CT1 or C = 1−1AT1, so thatcC = c can be
expressed asc1−1AT1 = c or c1−1AT = c1−1. Sincec1−1 = eT , wheree is a
suitable vector of units (here of lengthk), we thus haveAe= eand soA is stochastic.
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The dualityAn ←→ Cn induces a correspondence betweenP.0/ andP∗.0/. Denote
by .P.0//n;m, .P∗.0//n;m respectively the.n;m/ block entries in these two matrices
(n;m≥ 0). Then (

P.0/
)

n;m
= 1−1

[(
P∗.0/

)
m;n

]T

1;

which we may express asP.0/←→ P∗.0/ or

A0←→ C0: (2.1)

This provides a basis for an inductive proof of the following theorem, which extends
the duality to one between the sequence.A j / j≥0 of censored processes involved in the
construction of Algorithm H and the sequence.C j / j≥0 of censored processes used in
the construction of Algorithm H∗. This entails an extension of the duality to multistep
transitions involving taboo levels.

THEOREM2.1. WhenA is irreducible, we have the duality

A j ←→ C j for each j ≥ 0: (2.2)

PROOF. Suppose (2.2) holds for somej ≥ 0. We have

P. j / =




B. j /
1 B. j /

2 B. j /
3 · · ·

A. j /
0 A. j /

1 A. j /
2 · · ·

0 A. j /
0 A. j /

1 · · ·
:::

:::
:::

: : :


 ; P∗. j / =




D. j /
1 C. j /

0 0 0 · · ·
D. j /

2 C. j /
1 C. j /

0 0 · · ·
D. j /

3 C. j /
2 C. j /

1 C. j /
0 · · ·

:::
:::

:::
:::

: : :


 ;

so thatB. j /
n = 1−1

(
D. j /

n

)T
1, n > 0, andA. j /

n = 1−1
(
C. j /

n

)T
1, n ≥ 0.

Therefore

K . j+1/
0 =

∞∑
i=0

(
A. j /

1

)i =
∞∑

i=0

{
1−1

(
C. j /

1

)T

1

}i

= 1−1
∞∑

i=0

{(
C. j /

1

)i
}T

1

= 1−1

([
I − C. j /

1

]−1
)T

1 = 1−1
(

K . j+1/
0

)T

1;

so thatK . j+1/
0 ←→ K . j+1/

0 . This provides the basis for an (inner) induction that

K . j+1/
m ←→ K . j+1/

m for m≥ 0: (2.3)

Suppose that (2.3) holds form = 0; 1; : : : ; n− 1 for somen ≥ 1. Then from the
equation

K . j+1/
n =

n−1∑
m=0

K . j+1/
m A. j /

2.n−m/+1K . j+1/
0
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derived in [7, Section 3], we have

K . j+1/
n =

n−1∑
m=0

{
1−1

(
K . j+1/

m

)T
1
}{
1−1

(
C. j /

2.n−m/+1

)T

1

}{
1−1

(
K . j+1/

0

)T

1

}

= 1−1

(
n−1∑
m=0

K . j+1/
0 C. j /

2.n−m/+1K . j+1/
m

)T

1 = 1−1
(
K . j+1/

n

)T
1

by [8, (3.7)], which gives the inductive step in the inner induction.
Using this result, we have similarly from the equation

L . j+1/
n =

n∑
m=0

K . j+1/
m A. j /

2.n−m/

(derived in [7]) and [8, (3.4)] thatL . j+1/
n ←→ L . j+1/

n for n ≥ 0.
Finally we have from the relation

B. j+1/
n = B. j /

2n−1+
n∑

m=1

B. j /
2m L . j+1/

n−m

derived in [7] for n ≥ 1 that

B. j+1/
n = 1−1

(
D. j /

2n−1

)T

1+
n∑

m=1

{
1−1

(
D. j /

2m

)T

1

}{
1−1

(
L . j+1/

n−m

)T
1
}

= 1−1

[
D. j /

2m +
n∑

m=1

L . j+1/
n−m D. j /

2m

]T

1 = 1−1
[
D. j+1/

n

]T
1

by [8, (3.3)], so thatB. j+1/
n ←→ D. j+1/

n for n ≥ 1.
A similar argument yieldsA. j+1/

n ←→ C. j+1/
n for n ≥ 0, completing the outer

induction.

COROLLARY 2.2. It follows from Theorem2.1 that[
I − B.N/

1

]−1
A0←→ C0

[
I − D.N/

1

]−1
:

The successive approximants toG, R derived respectively by AlgorithmsH and H∗

are of the forms of the left- and right-hand sides. Hence theN-th approximantsTN,
T∗N to G and R given by these algorithms satisfy

TN ←→ T∗N: (2.4)

Relation (2.4) is a path-restricted version of the standard duality resultG←→ R
between block-M=G=1 chains and block-G I=M=1 chains. It illustrates that whenA
is irreducible, duality can be applied directly to Algorithm H forG to produce Algo-
rithm H∗ for R.
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3. Quasi-birth-and-death-chains

3.1. Algorithm H ∗ In the case of a QBD, substantial simplifications occur in the
equations prescribing Algorithm H∗, as presented in [8, Section 4]. SinceC. j /

n = 0
for n > 2, we haveK . j /

n = 0 for n > 0 and so

L . j+1/
n =




C. j /
0 K . j+1/

0 ; n = 0;

C. j /
2 K . j+1/

0 ; n = 1;

0; n > 1:

Also D. j /
n = 0 for n > 2.

The relations linkingC j+1 andC j are thus

C. j+1/
n = C. j /

n K . j+1/
0 C. j /

n .n = 0; 2/;

C. j+1/
1 = C. j /

1 +C. j /
2 K . j+1/

0 C. j /
0 +C. j /

0 K . j+1/
0 C. j /

2 ;

D. j+1/
1 = D. j /

1 + C. j /
0 K . j+1/

0 D. j /
2 ;

D. j+1/
2 = C. j /

2 K . j+1/
0 D. j /

2 :

The initialisation isC.0/
n = Cn (n = 0; 1; 2) andD.0/

n = Cn (n = 1; 2).

3.2. Other QBD methods In the previous section we showed how Ramaswami’s
duality can be used to link Algorithm H for the determination of the fundamental
matrix in a block-M=G=1 Markov chain and Algorithm H∗ for the determination of
the rate matrix in a block-G I=M=1 Markov chain. Operationally, we could have used
duality to induce Algorithm H∗ from Algorithm H.

We may also dualise the logarithmic reduction technique Algorithm LR for find-
ing G for a QBD to obtain an Algorithm (LR)∗ that can be used for calculatingR for
a QBD. This was observed by Latouche and Ramaswami in their analysis [10].

There is a further possibility available for a QBD. We have the well-known relations

U = C1 +C0G and R= C0.I −U /−1

(see Hajek [6] and Latouche [9]). From these,R may be calculated viaU onceG has
been determined. In fact, any Algorithm A for findingG in a QBD gives rise to an
Algorithm AU for computingR.

This provides us with several methods for computingR for a QBD. Apart from the
known Neuts method [12, page 13] and the Schur factorisation, both discussed in [8],
we have the new Algorithms (LR)∗, HU and H∗.
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3.3. Relations between the algorithms We now consider together the probabilistic
Algorithms HU, H∗, LRU and (LR)∗ proposed for the determination of the rate matrix
R. Of these only H∗ has general applicability beyond the QBD context. We examine
the path contributions made to the estimates forR in these algorithms in the QBD
case.

Recall that the matrixU is envisaged as referring to visits from level 0 to level 0,
with level−1 taboo. For̀ > 0, the matrixU .`/ denotes the contribution toU arising
from trajectories which do not reach level` or higher. SimilarlyG refers to first visits
to level−1 from level 0 andG.`/ is the contribution toG made by trajectories not
attaining level̀ .> 0/ or higher. Finally,R refers to visits to level 0 from level−1
with −1 as a taboo level andR.`/ is the contribution toR made by trajectories not
reaching level̀ .> 0/ or higher.

The estimateTN of G made by iterationN of Algorithm H is thenG.2N+1/ and is
based on the determination ofU .2N+1/. We have

U .2N+1+ 1/ = A1 + A2G.2N+1/: (3.1)

Hence the estimate ofU made in iterationN of Algorithm HU isU .2N+1+ 1/. Also

R.2N+1+ 1/ = C0

[
I −U .2N+1+ 1/

]−1
;

so iterationN of Algorithm HU provides the estimateR.2N+1+ 1/ for R. The above
argument shows incidentally that Algorithm HU is enhanced by the use of (3.1) to
calculate a value forU rather than merely using the value ofU already employed in
estimatingG.

In the same way, iterationN of Algorithm LR provides the estimateG.2N+1− 1/
for G. Since

U .2N+1/ = A1 + A2G.2N+1− 1/ and R.2N+1/ = C0

[
I −U .2N+1/

]−1
;

the contribution toR from iterationN of Algorithm LRU is R.2N+1/.
Iteration N of Algorithm H∗ incorporates the contributions toR of all paths not

involving level 2N+1 or higher, so that the estimate ofR provided by that iteration is
alsoR.2N+1/.

This shows that, in the QBD case, iterationN of Algorithms LRU and H∗ yields
a common value to machine accuracy. Runs of the two algorithms with a number of
examples confirmed this, so giving a useful check of our codes. Also the CPU times
for Algorithm LRU and the simplified form of Algorithm H∗ for the QBD case were
found to be the same, so that Algorithm LRU may be regarded as simply the QBD
case of Algorithm H∗.

Finally, iterationN of Algorithm (LR)∗ is readily seen to give forR the estimate
R.2N+1− 1/.
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Thus we have simple relationships between the estimates ofR made by the various
algorithms in the QBD case for a common iteration countN. Algorithm HU incor-
porates the contribution of trajectories involving one more level than does the general
Algorithm H∗, while Algorithm (LR)∗ involves one fewer. Algorithm LRU coincides
with the general algorithm in the QBD case.

3.4. Numerics The preceding discussion indicates that one might expect results
of very comparable but slightly decreasing accuracy as we move through use of
Algorithm HU to Algorithms H∗ and (LR)∗ in turn to evaluateR for a QBD. Table1
illustrates this for [8, Experiment 2].

TABLE 1. Results for [8, Experiment 2].

Case Method Iterations I ‖RI − C(RI )‖∞ CPU Time (sec.)

1 HU 12 9.5665e-13 0.010
H∗ 12 9.5847e-13 0.010

(LR)∗ 12 9.6029e-13 0.010

2 HU 12 8.8818e-16 0.010
H∗ 12 8.8818e-16 0.010

(LR)∗ 12 9.9920e-16 0.010

3 HU 10 4.2960e-12 0.010
H∗ 10 4.3280e-12 0.010

(LR)∗ 10 4.3605e-12 0.010

4 HU 10 4.6130e-14 0.010
H∗ 10 4.6629e-14 0.010

(LR)∗ 10 4.7073e-14 0.010

4. Error measures

In [11] Meini noted that, in the absence of an analysis of numerical stability,
the common error measure‖e− GI e‖∞ for an approximationGI to a stochastic
fundamental matrixG may not be appropriate for the invariant subspace method. She
proposed instead the measure‖GI − A.GI /‖∞, which is also appropriate in the case
of substochasticG. We now consider related isues for the error measure

‖RI −C.RI /‖
for an approximationRI to R.
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We make use of the QBD given by

C0 =
[
0 0
0 1− rp

]
; C1 =

[
0 p

rp 0

]
; C2 =

[
1− p 0

0 0

]

with r ≥ 1 and 0< p < 1=r .
With these parameter choices, the QBD is irreducible. It is null recurrent forr = 1

and positive recurrent forr > 1, with rate matrix

R=
[

0 0
.1− pr/=.1− p/ .1− pr/=.1− p/

]
:

We readily verify that, for a matrix

RI =
[

0 0
x y

]
with 0≤ x; y ≤ 1− pr

1− p
; (4.1)

we have

C.RI / =
[

0 0
rpy+ .1− p/xy 1− pr + px

]
:

Taker = 1 andp = 1=2 and putR0 =
[

0 0
0:5 0:5

]
andR1 =

[
0 0

0:6 0:9

]
. Then

‖R− R1‖∞ = 0:4< 0:5= ‖R− R0‖∞:
Also C.R0/ =

[
0 0

0:375 0:75

]
, so that‖R0−C.R0/‖∞ = 0:25, andC.R1/ =

[
0 0

0:57 0:95

]
, so

that‖R1−C.R1/‖∞ = 0:35.
We thus have an example for which‖R − R1‖∞ < ‖R − R0‖∞, and in fact

0≤ R0 ≤ R1 ≤ R, but‖R0−C.R0/‖∞ < ‖R1−C.R1/‖∞.
Now let RI be as in (4.1) with x < .1− pr/=.1− r / andy < 1. Then

x.1− p/.1− y/ < .1− pr/.1− y/

or

x − [rpy+ xy.1− p/] < [1− pr + px] − y;

so that81 < −82, where8i := [RI −C.RI /]2;i (i = 1; 2). It follows at once that if
82 > 0, then81 < 0.
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