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RAMASWAMI'S DUALITY AND PROBABILISTIC ALGORITHMS
FOR DETERMINING THE RATE MATRIX FOR A STRUCTURED
GI/M/1 MARKOV CHAIN

EMMA HUNT!?
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Abstract

We show that Algorithm K for the determination of the rate matrix of a bloGd-/M /1
Markov chain is related by duality to Algorithm H for the determination of the fundamental
matrix of a blockM/G/1 Markov chain. Duality is used to generate some efficient
algorithms for finding the rate matrix in a quasi-birth-and-death process.

1. Introduction

In a companion articleg] we constructed a probabilistic algorithm for the deter-
mination of the rate matrbR of an irreducible blocks|/M /1 Markov chain and
showed with benchmark numerical experiments that our procedure, Algorithm H
compares favourably with existing methods in the literature. Algorithrassumes
irreducibility of the Markov chain but makes no assumptions about ergodicity.

The notation was chosen to emphasise a duality, indicatédvayh Algorithm H
for the determination of the fundamental mat@xor a blockM /G/1 Markov chain.
The duality was not established i8] Algorithm H is derived in ] and can be shown
to reduce to a version of the cyclic reduction algorithm of Bini and Meini for the
determination of5 when further technical conditions are imposed. For an exposition
of the cyclic reduction methodology the reader is referre®8,[4] and [L1].

In this paper we take these ideas further. We manifest explicitly the duality between
Algorithms H and H and show how in the QBD case several other probabilistic
algorithms can be constructed for the efficient calculatioRofWe shall also find
relations between AlgorithmHthe logarithmic reduction algorithm of Latouche and
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Ramaswami 0] and the cyclic reduction algorithms of Bini and Meini. To avoid
repetition, we assume familiarity with the ideas and notatioryjodupd [3].

2. The duality @7} «— ¥

The duality* between processes of structuréd/M/1 andM/G/1 types was
introduced by Ramaswaml]. An alternative derivation based on time reversal was
presented subsequently by Asmussen and Ramasvignkiyrther developments are
given in Bright b].

The duality is between classes of blobk{G/1 chains and classes of block-
GI/M/1 chains. The anomalous leading block row and column in the one-step
transition matrices for these two paradigms do not enter into the duality and it is
convenient to omit these and relabel the remaining rows and columnd.as 0. So
we replace theM /G/1 chain by a chain, on levels¢ > 0 given by the structured
one-step transition matrix

A]_ A2 A3
o | P AL A
PP=10 A A

and similarly replace th&1/M/1 chain by a chair, on levels?¢ > 0 given by the
structured one-step transition matrix

C. Co 0 O
o _ |G Ci Co O

C C C G

It should be noted that these matrices are substochastic.

The blocks of both matrices atex k. The matrixC = 77, C; is taken as
stochastic and irreducible and so has an invariant probability meadtet is,cC = c.
The entries ot are all positive sinc€ is irreducible. SeA = diag(c). Ramaswami’s
duality is given byA,, = A'CTA for all m > 0. Clearly the matrices\,, have
nonnegative entries. For the notion of duality to be meaningful in the context of
Markov chains, it is helpful for the matribA = )" | A, to be stochastic. This
is immediate. We havéh = A™ICTA or C = A~!ATA, so thatcC = c can be
expressed asA“'ATA = corcA~AT = cA~L. SincecA™! = e, wheree is a
suitable vector of units (here of lendth, we thus havéde = e and soA is stochastic.
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The dualityA, <— C, induces a correspondence betw&t and P*© . Denote
by (P@)nm, (P*(O))mm respectively thgn, m) block entries in these two matrices
(n,m> 0). Then

.
(PO = A7 [(P),,,] .
which we may express &8® «— P*©@ or
Ay > G, 2.1)

This provides a basis for an inductive proof of the following theorem, which extends
the duality to one between the sequene®);., of censored processes involved in the
construction of Algorithm H and the sequen@g ) ;. of censored processes used in
the construction of Algorithm H This entails an extension of the duality to multistep
transitions involving taboo levels.

THEOREM2.1. WhenA is irreducible, we have the duality
aj «— ¢; foreachj > 0. (2.2)

PROOF. SupposeZ.2) holds for somg > 0. We have

(6] (§)] ()] ()] (§)]
B BY BY ... D) ¢ 0o o
. A(()J) Ail) A(ZJ) L _ D;l) C](_J) C(()l) 0 .
PO = 0 A PV =| 50~ ~0) O
0 Ay A -0 D" C7 G G-

sothatB{’ = A~1(D{")" A, n > 0, andA{’ = A-}(C{") A, n > 0,
Therefore

KIH = Xw: (A<11>)i _ i {A‘l (C](-j)>'r A}' . 12”: {(C(')) }

i=0 i=0 i=0

a-1\ T .
_ 1([| —cy] ) A:A*(Ké””) A,
so thatk /" «— K{™. This provides the basis for an (inner) induction that
KUt «— KU for m > 0. (2.3)
Suppose thatX(3) holds form =0, 1,...,n — 1 for somen > 1. Then from the

equation

(j+1 _ (j+D o) (j+D
Kn - Z Km A2(n m)+lK
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derived in [/, Section 3], we have

n-1

; . ’ T . T
K¢ = 3 [a (ki) a){a (Cfhma) A} {ar (k) 4]

m=0

n-1 T
= At (Z K¢ Coh_ mHlK(j“)) A=A (KI) A

m=0

by [8, (3.7)], which gives the inductive step in the inner induction.
Using this result, we have similarly from the equation

n
(J+D _ 4+ A
I-n - Z Km AZ(n—m)

m=0

(derived in [7]) and [8, (3.4)] thatL{*Y «— L{*Y forn > 0.
Finally we have from the relation

B(J+1) Bé:]) L+ Z B(J)L(l+l)

2m —n-—m

derived in [/] for n > 1 that
n
oy = a7t (o) A+ 3 {47 (04) ) [ (L))
B T
|:D(l) Z |_(1+1)D(J):| Afl[Dng)]T A

by [8, (3.3)], so thaB{!*Y <— DU+D forn > 1.
A similar argument yieldsA(*Y «— CU*V for n > 0, completing the outer
induction.

COROLLARY 2.2. It follows from Theoren2.1that
[1—BM] ™" Ay < Co[I —DM]™

The successive approximants@p R derived respectively by Algorithnk$ and H*
are of the forms of the left- and right-hand sides. HenceNkt approximantsTy,
Ty to G and R given by these algorithms satisfy

Ty < Tp. (2.4)

Relation @.4) is a path-restricted version of the standard duality reSut— R
between blockM /G/1 chains and blocks | /M /1 chains. It illustrates that whef
is irreducible, duality can be applied directly to Algorithm H f@rto produce Algo-
rithm H* for R.



[5] Ramaswami’s duality and probabilistic algorithms 489

3. Quasi-birth-and-death-chains

3.1. Algorithm H* In the case of a QBD, substantial simplifications occur in the
equations prescribing Algorithmtias presented ir8[ Section 4]. Since€€!) = 0
forn > 2, we haveK(’ = 0 forn > 0 and so

C(()I)K(()J+l), n= 0,

(+D () e i+ 1.
LUt = LK n=1;
0, n> 1

Also DV =0 forn > 2.
The relations linkings; ., and% are thus

) ) )
CIt =CcKICH (n=0,2),
j+1 j j j+1 j j j+1 j
C](_J ):C:(ll)-{-Cél)KéJ )Cél)—FCéJ)Kél )Céj),
i1 ) ) i1 )
D;J ) Di])—f‘cél)KéJ )Dé]),

DYV — cPKI DY,
The initialisation isC{® = C, (n =0, 1, 2) andD® = C, (n = 1, 2).

3.2. Other QBD methods In the previous section we showed how Ramaswami’s
duality can be used to link Algorithm H for the determination of the fundamental
matrix in a blockM /G/1 Markov chain and Algorithm Hfor the determination of
the rate matrix in a blocks 1 /M /1 Markov chain. Operationally, we could have used
duality to induce Algorithm K from Algorithm H.

We may also dualise the logarithmic reduction technique Algorithm LR for find-
ing G for a QBD to obtain an Algorithm (LR)that can be used for calculatirigfor
a QBD. This was observed by Latouche and Ramaswami in their analyis [

There is a further possibility available for a QBD. We have the well-known relations

U=C;+CyG and R=Cyl —U)™*

(see Hajek ] and Latoucheq]). From theseR may be calculated vidl onceG has
been determined. In fact, any Algorithm A for findil® in a QBD gives rise to an
Algorithm AU for computingR.

This provides us with several methods for computitifpr a QBD. Apart from the
known Neuts methodlP, page 13] and the Schur factorisation, both discusse@,in [
we have the new Algorithms (LR)HU and H-.
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3.3. Relations between the algorithms We now consider together the probabilistic
Algorithms HU, H, LRU and (LR} proposed for the determination of the rate matrix
R. Of these only H has general applicability beyond the QBD context. We examine
the path contributions made to the estimatesRdn these algorithms in the QBD
case.

Recall that the matrixJ is envisaged as referring to visits from level O to level O,
with level —1 taboo. For > 0, the matrixU (¢) denotes the contribution td arising
from trajectories which do not reach leveebr higher. SimilarlyG refers to first visits
to level —1 from level 0 andG(¢) is the contribution tdG made by trajectories not
attaining level¢ (> 0) or higher. Finally,R refers to visits to level O from level 1
with —1 as a taboo level anR(¢) is the contribution toR made by trajectories not
reaching level (> 0) or higher.

The estimately of G made by iteratiorN of Algorithm H is thenG(2V+!) and is
based on the determination df(2N+1). We have

UVt 4+ 1) = A+ AGRNY. (3.1)
Hence the estimate &f made in iteratiorN of Algorithm HU isU (2N+! + 1). Also
RV 4+1) =Co[l —U@Y + 1],

so iterationN of Algorithm HU provides the estimat@(2"*! + 1) for R. The above
argument shows incidentally that Algorithm HU is enhanced by the usg.f o
calculate a value fod rather than merely using the valueldfalready employed in
estimatingG.

In the same way, iteratioN of Algorithm LR provides the estimat@ (2N+* — 1)
for G. Since

U™ = A+ AGY —1) and R2VH =Co[l —U (2N+1)]—1,

the contribution taR from iterationN of Algorithm LRU is R(2N+1).

Iteration N of Algorithm H* incorporates the contributions ® of all paths not
involving level 2!+ or higher, so that the estimate Bfprovided by that iteration is
alsoR(2N+1),

This shows that, in the QBD case, iteratibhof Algorithms LRU and H yields
a common value to machine accuracy. Runs of the two algorithms with a number of
examples confirmed this, so giving a useful check of our codes. Also the CPU times
for Algorithm LRU and the simplified form of Algorithm Hfor the QBD case were
found to be the same, so that Algorithm LRU may be regarded as simply the QBD
case of Algorithm H.

Finally, iterationN of Algorithm (LR)* is readily seen to give foR the estimate
RN — 1).
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Thus we have simple relationships between the estimat®sm@dde by the various
algorithms in the QBD case for a common iteration codntAlgorithm HU incor-
porates the contribution of trajectories involving one more level than does the general
Algorithm H*, while Algorithm (LRY* involves one fewer. Algorithm LRU coincides
with the general algorithm in the QBD case.

3.4. Numerics The preceding discussion indicates that one might expect results
of very comparable but slightly decreasing accuracy as we move through use of
Algorithm HU to Algorithms H and (LRY in turn to evaluateR for a QBD. Tablel
illustrates this for §, Experiment 2].

TABLE 1. Results for8, Experiment 2].

| Case]| Method | Iterations | | IR; = C(Ri)ll« | CPU Time (sec.)]
1 HU 12 9.5665e-13 0.010
H* 12 9.5847e-13 0.010
(LR)* 12 9.6029e-13 0.010
2 HU 12 8.8818e-16 0.010
H* 12 8.8818e-16 0.010
LRy 12 9.9920e-16 0.010
3 HU 10 4.2960e-12 0.010
H* 10 4.3280e-12 0.010
(LR)* 10 4.3605e-12 0.010
4 HU 10 4.6130e-14 0.010
H* 10 4.6629e-14 0.010
(LR)* 10 4.7073e-14 0.010

4. Error measures

In [11] Meini noted that, in the absence of an analysis of numerical stability,
the common error measufe — G, €|l for an approximationG, to a stochastic
fundamental matrixG may not be appropriate for the invariant subspace method. She
proposed instead the measuj@, — A(G,)|l«, Which is also appropriate in the case
of substochasti&. We now consider related isues for the error measure

IR — C(R)II

for an approximatiorR, to R.
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We make use of the QBD given by

10 0 10 p _|1-p O
“=lo %] eolp o) e[%7

withr > 1andO< p < 1/r.
With these parameter choices, the QBD is irreducible. Itis null recurrentfof
and positive recurrent far > 1, with rate matrix

Rlz[g 8] with Osx,ysll__'?or, 4.1)

we have

0 0
CR) = .
) [rpy+<l— pxy 1- pr+px}
Taker = 1andp =1/2 and putRo = [ % % | andRy = [ % &% |- Then
IR—Rillo =04 <05=|R—- Roll.

Also C(Ro) = [ 435 o75 ]+ SO that] Ry — C(Ro)ll« = 0.25, andC(Ry) = [ o%; o35, SO
that||R; — C(Ry) |l = 0.35.

We thus have an example for whidlR — Ri|lc < IR — Roll«, and in fact
0< Ry <R <R Dbut||Ry — C(Ro)llc < IRt = C(R) e

Now let R, be as in 4.1) with x < (1 — pr)/(1—r) andy < 1. Then

X1-pA-y)<@-pnNl-y
or

X—=[rpy +xy(1— p)] < [1— pr+ px] -,

so that®; < —®,, whered; := [R, — C(R))],; (i =1, 2). It follows at once that if
®, > 0, thend, < 0.
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