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Best Causal Mathematical Models for a
Nonlinear System

Anatoli Torokhti, Phil Howlett, and Charles Pearce

Abstract—We provide new causal mathematical models of a non-
linear system which are specifications of a nonlinear operator

of degree = 1 2 . . .. The operator is determined from a
special orthogonalization procedure and minimization of the mean
squared difference between outputs of and . As a result, these
models have smallest possible associated errors in the class of such
operators . The causality condition is implemented through the
use of specific matrices called lower trapezoidal. The associated
computational work is reduced by the use of the orthogonaliza-
tion procedure. We provide a strict justification of the proposed
approach including theorems on an explicit representaton of the
models’ parameters, and theorems on the associated error repre-
sentation. The possible extensions of the proposed approach and
its potential applications are outlined.

Index Terms—Causality, input–output map, nonlinear systems.

I. INTRODUCTION

A. Previous Studies

CAUSALITY is an integral feature of physically realizable
systems. Approaches to understanding, explanation, and

formalization of physically realizable systems, and their various
constructive models can be found in a number of previous works
beginning with a classical paper by Russel [1]. In particular,
Jones [2], Suppes [3], Petrović [4] and Verhaegen [5] related
causality to both determinstic and stochastic dynamic systems.
De Santis [6], Porter [7], and Bertuzzi et al. [8] studied causal
polynomial approximation for input–output maps in Hilbert
spaces. In a series of papers by Sandberg (see, for example,
[9]–[12] and the bibliographies therein), new effective models
of causal systems have been proposed and justified. In [13],
[14], some new concepts of causality have been considered and
applied to the analysis of nonlinear systems.

We note that known causal models have been developed
mainly for the case of nonlinear system approximation with
any pre-assigned accuracy.

An alternative direction of research in causal system theory
has been proposed by Bode and Shannon in [15]. The approach
[15] concerns optimization of causal linear systems. Ruzhansky
and Fomin [16] extended the result [15] to the case of minimiza-
tion of a cost functional with the arbitrary nonnegative weight
matrix.

Manuscript received December 8, 2001; revised November 2, 2004. This
paper was recommended by Associate Editor G. Setti.

A. Torokhti and P. Howlett are with the Centre for Industrial and Applicable
Mathematics, The University of South Australia, Mawson Lakes, SA 5095, Aus-
tralia (e-mail: anatoli.torokhti@unisa.edu.au; phil.howlett@unisa.edu.au).

C. Pearce is with the Applied Mathematics Department, The University
of Adelaide, Adelaide, SA 5001, Australia (e-mail: cpearce@maths.ade-
laide.edu.au).

Digital Object Identifier 10.1109/TCSI.2005.846673

B. Contribution

In this paper, we propose causal mathematical models of non-
linear systems with smallest associated error. In general, our ap-
proach is based on the development of ideas from [15]–[19].

The differences from the known techniques are as follows.
The presented models will follow from solutions to the best ap-
proximation problem (16), (17), given in Section IV, while the
models in [13], [14] follow from the solution of problems for
the input-output map approximation with any pre-assigned ac-
curacy. The statements of the problem (16) and (17) and those
in [17], [18] are different. As a result, the solutions are different.
Unlike the known methods [15], [16], [19], we propose the non-
linear causal approximator of an arbitrary degree [see (3) and
(5)]. An increase of implies the improvement at the accuracy
in comparison with the models [15], [16], [19] (see Theorem
2, Corollary 1 and Remark 2 in Section V). Thus, the proposed
model is equipped with a degree of freedom which is the de-
gree of the approximator. In contrast to the approach in [20],
the presented method relates to so-called direct methods while
the model in [20] is iterative. Besides, the model in [20] is not
causal.

Thus, the novelty of the proposed approach consists of the
new model of the system (Section III) based on the extension of
the results in [13]–[19], and a new technique for the establishing
its associated properties (Section V).

In particular, the proposed model implies an orthogonaliza-
tion procedure presented in Section V-A1.

The general model of the system, given in Section III, is
determined by the sequences of operators. We present the con-
structive specification of based on the special forms of the
operators which compose . Section IV contains the rigorous
statement of the problem. In Section V, we provide the determi-
nation of the parameters which define the optimal model . In
particular, we propose and justify the orthogonalization proce-
dure aimed at reducing the computational work associated with
the optimal choice of . The representation of the error asso-
ciated with is also given in that section. The possible exten-
sions of the proposed approach and its potential applications are
disccused in Section VI.

II. -CAUSALITY

Let be a probability space, where is the
set of outcomes, a -field of measurable subsets of and

an associated probability measure on with
.

Let where
a collection of time instants. We write

1057-7122/$20.00 © 2005 IEEE
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, and so that ,
and .

Let , and
, and let . Realizations of

random vectors , and are denoted by ,
and , respectively.

As in [19], we interpret as a given “idealized” input signal
without any distortion, and as an actual (observed) input
signal. Vector is treated as an output of the system. In par-
ticular, can be interpreted as contaminated with noise. No
specific relationships between signal and noise are assumed to
be known.

Each operator defines an associated operator
via the equation

(1)

for each . The operator is interpreted here as the
input–output map of the system.

Hereinafter, operators acting in spaces of random vectors are
denoted by the calligraphic character letters. The terms “oper-
ator,” “model,” “input–output map,” and “system” will be iden-
tified.

Let be a model for
with the associated operator such that

, where

and . If

(2)

for all then the operator is called causal.
This definition can equivalently be written as follows.
Definition 1: Let be defiend by (2). The operator is

called causal if for any , , and

In many real problems, information is often obtained with
some error, caused by the influence of external factors, data and
instrument inexactness, etc. In this sense, the definition above is
rather idealistic. A more realistic definition of causality for the
operator is as follows.

Definition 2: Let be defiend by (2). The operator is
called -causal if for any there exists such
that for arbitrary , , and

where .
It is clear that the (0, 0)-causal operator is causal in the sense

of Definition 1.
The set of -causal systems is denoted by .

III. MODEL OF SYSTEM

1) Preliminary Formulation of the Problem: We wish to find
a mathematical model of the system which possesses the fol-
lowing properties. First, the model should be defined construc-
tively, i.e., in an algorithmical form. Second, the model should
be causal. Third, the model should approximate the system with

the best possible accuracy. Fourth, the model should have some
degrees of freedom to adjust to associated conditions such as a
computational cost and a desirable accuracy of representation.

To pose the problem in the rigorous form, we need some
preparatory work which we present in this section. The rigorous
statement of the problem is given in Section IV.

2) General Model: We begin with a general representation
of the system model.

An idea is to represent the model as a sum of composition
of the operators , and with . The oper-
ators , and are introduced in (5) to satisfy the con-
ditions which are given in Section IV. In particular, the op-
erators are to minimize the related mean squared
error. The operators are introduced to reduce the as-
sociated computational work by implementing the orthogonal-
ization procedure. The operators are to specify a
transformation of vectors to a form suitable for computation.
In particular, , given by (7) , reduce the model to a
Volterra-like polynomial form (9), (10). An alternative choice
for is considered in Section VI. It will be shown in
Section III-A3 that the proposed model is reduced to the form
(12), where and are derived from operators and . The
operators and will be determined in Section V. We note
that the model (12) requires associated derivations and cannot
be introduced straight away.

We denote by some set of vectors and write
. Let

and

for with . Let

(3)

where with

(4)

(5)

and where and operators , , , and are deter-
mined by the equations which are similar to (1), with ,

, , ,
and .

We consider as the model of the system .
The model associated with the operator is represented in

Fig. 1. We note that the representation (5) is motivated by the
known structure of the -degree approximator studied, for ex-
ample, in [7], [8], [13], [14]. Indeed, if we choose ,
denote with , put a
-linear operator and the identity, then

(6)

Such a model has been exploited in a number of works, in partic-
ular, in [7], [8], [13], [14]. At the same time, despite the natural
interpretation of in the form (6), the model (5) is not suitable
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Fig. 1. Representation of the operator P .

for computation. Next, we show that, on the basis of Lemma 1,
the model (5) is reduced to the computationally adjusted form
(12).

3) Specification of : The next step in our preparatory
work is a specialization of operators , , and , and the
related constructive representation of the operator .

We note that different specifications of , and define
different forms of in (5). Here, we consider the case when

with the identity operator,1 ,
is a -linear operator and is given by

(7)

where

For such and , the model (5) is reduced to

(8)

In Lemma 1, we show that the choice of in the form (7)
implies a Volterra-like polynomial representaion for . In
the Section VI-A5, we consider a different form for which
implies a Fourier-like polynomial representaion for . Some
other possible forms for and are also considered in
Section VI-A5.

We denote and
.

Lemma 1: Let and let be a -linear oper-
ator. There exist matrices and

such that

(9)

(10)

1The case when V is the zero operator will follow directly from our next
derivations.

Proof: The proof is given in Appendix.
The representations (9) and (10) are equivalent. Without loss

of generality, we shall now consider given by (9) only.
We denote and

with and
.

To define a structure of the -causal model , we need
the following definition.

Definition 3: The matrix is called -lower
trapezoidal if for and
where , and also
for and .

In particular, the -lower trapezoidal matrix
is defined as above, and in this case .

For example, a 3 3 matrix is 2-lower trapezoidal if
for , 2, 3, and , i.e., if it has the form

where “ ” means the entry which is not necessarily zero.
The following statement establishes the structure of the

-causal model .
Proposition 1: If matrices and are

-lower trapezoidal then is -causal.
Proof: The proof follows directly from the above defini-

tions.
Next stage in this section is to reduce the model to a more

compact form. We do this as follows.
If we consider and for each combina-

tion of and , then for each
we obtain matrices. For , there are

(11)

matrices altogether and if we denote them by
, where , , with

the corresponding operands denoted by
then we can write

and

(12)
where and with

.
Now we are in a position to pose the problem rigorously.

IV. RIGOROUS STATEMENT OF PROBLEM

Without loss of generality, we assume that all random vectors
have zero mean.

Let

(13)
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We write

(14)

where is the expectation operator, is the Euclidean norm
and each is -lower trapezoidal. The latter condition is essen-
tial for the next derivations.

It is assumed that a structure of the input-output map of
the system is unknown, and that an information on the system
is given by certain covariance matrices formed from ,
and . Such an assumption is traditionally used in the problems
dealing with transformation of stochastic signals [15], [16],
[18]–[25]. The methods for the estimation of covariance ma-
trices can be found, for example, in [26]–[33]. This estimation
technique is an area of special study and is not a subject of this
paper.

We write for the zero matrix and denote
.

The problem is to find , , such
that

for (15)

(16)

subject to

(17)

where

(18)

The condition (15) will allow us to simplify and reduce the com-
putational work needed to determine (see Sec-
tions IV and V).

The operator is called the -causal optimal model of
the system .

V. DETERMINATION OF -CAUSAL OPTIMAL MODEL

1) Generic Scheme: Let be the Moore–Penrose
pseudo-inverse of .

Lemma 2: The operators , which satisfy (15),
are given by

and (19)

where and is defined by

(20)

and

(21)

with , and arbitrary.
Proof: Let and for

. The required condition (15) implies

and

The solution to the latter equation is given by (21). Thus, the
desirable are given by (19).

A possible and natural choice for is .
Example 1: Let . By (34) and (12),

with and
, and therefore (with ) is deter-

mined by and for . The ma-
trices and are assumed to be estimated by the
techniques given, in particular, in [26]–[33]. Of course, for such
estimates, it is not necessary to suppose that itself is known.
To estimate and by [26]–[33], one can set, for
example, or . Then
or , where . As a result, the as-
sumption made in Section III can be reduced to the assumption
on the knowledge of covariance matrices formed from and

.
We note that (or ) can be used to specify the

associated covariance matrices only. In general, is determined
by and can be obtained numerically (see [34, pp.
66–67], and Example 2).

Theorem 1: Let be defined by Lemma 2. Let
be positive definite and let

the Cholesky factorization for with lower triangular.
Let and

(22)

where is strictly upper triangular (i.e., with the zero en-
tries on the main diagonal), is -lower trapezoidal and
supplements to form a lower triangular matrix. Then the

-causal optimal model is given by

and (23)

with .
Proof: Let us denote and

. By the assumption, is positive definite

therefore . Moreover, defined by
Lemma 2 are such that matrix is block diagonal, i.e.,
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Then

Here

where .
Next

and

The latter is true because is -lower trapezoidal. Therefore

Thus, and minimize . Each matrix is
-lower trapezoidal therefore .

Example 2: Let . Then

with , and therefore by Theorem 1,
, i.e., . The

solution to the latter equation in terms of follows, for
example, from the fixed point theorem [34, pp. 66–67]. In other
words, the feedback model can be reduced to the nonfeedback
one.

Remark 1: The solution (23) to the problem (16) implies that
the matrices and are known. The methods of their
estimation is based on the approach described in Example 1.

Theorem 2: The error associated with the
-causal model is given by

(24)
Proof: We have and then (24)

follows from the above proof when are determined
by (19)–(21), and and are substituted instead of and
in the expression for given by (14).

2) Particular Case: in (3)–(5). Let us consider
the model without a feedback, i.e., when in
(3)–(5). Then similarly to Lemma 1, it is proved that there exist
matrices such that

(25)
where we write instead of and where

.
By analogy with (12), the latter is reduced to the representa-

tion

(26)
Remark 2: Here, we use the same notation , , , ,
and as in (12) but for different operators, matrices and

vectors, which are now constructed from , , and
, respectively. We also define matrix similar to

that in (22) but with determined from (13) and Lemma 2 for
the case when . Another difference from (12) is the
number of terms in (26) which is essentially smaller than

in (11) and (12), namely

(27)

These conditions lead to the accuracy associated with the
model, as follows.

Corollary 1: The error associated with the -causal
model with is given by

(28)
Proof: The proof follows directly from the above.

A comparison of (24) and (28), and (11) and (27) shows that
the accuracy associated with the optimal feedback model (12)
is better than that of the optimal nonfeedback model (26).
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Remark 3: The known models [15], [16] follow from (26)
if (or ) and , i.e if . The
quadratic model [19], satisfying the causality condition (17),
and its associated error follow from the above in a similar way.
As we have mentioned in Section I-B, unlike the models [15],
[16] and the described extension of the model [19], the proposed

-causal models (18) and (25) are equipped with the degree
of freedom . In particular, for , the errors given
by (24) and (28) are less than the errors associated with the
mentioned approximators [15], [16], [19]. In other words, it may
occur that the accuracy of approaches [15], [16], [19] are not
satisfactory but the accuracy of the proposed method can be
improved due to increasing degree . Another advantage of the
models (18) and (25) is the orthogonalization procedure. An
associated benefit is discussed in the next Section VI-A1.

VI. DISCUSSION

A performance of a particular model of the system is charac-
terized by related computational work and associated accuracy.
In this Section, we discuss these two characteristics in relation
to the proposed method.

1) Computational Work: The technique presented in Sec-
tion IV provides the optimality and -causality of the
model . The specification of the operators
by Lemma 2 allows us to reduce matrix to the block
diagonal form. The latter leads to the representation of

in the form of simple independent expressions
given by (23). Computation of the matrix in (23) consists
of the vector orthogonalization by Lemma 2 which requires

flops (since ), and the Cholesky de-
composition which requires flops. In total, requires

flops only. If in (3)–(5)
then the nonfeedback requires flops.

2) Associated Accuracy: Theorem 2 establishes that the
accuracy of the model increases with the increase in
the number of terms in , and consequently, with the
increase of the degree of . Thus, one can regulate the
accuracy by varying . Next, the degree of the model can
be varied depending on , i.e., where follows from

. An increase of for a few initial values
of will improve the accuracy of the estimate.

3) Possible Extensions and Applications: The technique
presented above can be extended for different types of operators

, and in (5). In particular, let and let
unlike (7), the operators be chosen so that

(29)

where

(30)

and

(31)

with .

Second, in (5), we set
linear for each , not -linear as in Lemma 1.

A motivation for such a choice of operators and
follows from the observation that the model with

defined by (7), requires computation of matrices
by Lemma 2 and matrices by

(23). The number is given by (11). The model with
and as above requires computation of

only matrices and matrices with
. The latter diminishes a related computational cost.

We note that the model with defined by
(29)–(31), operators determined similarly to those
in Lemma 2, and operators obtained from a solu-
tion to the minimization problem similar to (16), can be referred
to as an operator generalization of the truncated Fourier series
(i.e., the Fourier polynomial) in a separable Hilbert space
[35]–[37]. Unlike the original Fourier polynomial [35]–[37],

and are operators, not scalars.
Our preliminary investigations show that such a device leads

first, to a reduction of associated computational work, and
second, to a slight increase of the associated error, in compar-
ison with determined by (7), Lemmas 1, 2 and Theorem 1.
In further work, we plan to investigate a compromise between
accuracy and computational load in more detail.

An attractive specialization of the model (12) is based on
a determination of operators from a solution of
the interpolation problem similar to that in [38] instead of their
determination from the solution of the minimization problem
(14)–(16).

Another possibility for a modification of the proposed tech-
nique is based on a choice of in the form of so-called
partitioning operators [39]. In such a case, and are parti-
tioned into ‘shorter’ subvectors. This leads to the reduction of
associated computational cost.

An important extension follows from considering the
problem (16) for subject to the restriction on the rank of
operators in (14)–(16). The solution has a direct
application to data compression and filtering [22], [24].

Other potential applications of the proposed technique in-
clude areas in target detection [23], a blind channel equalization
problem [24], [40], combating speckle in SAR images [41] and
pattern recognition [42].

4) Degrees of Freedom: It follows from the above that the
performance of the model (5) can be varied by choosing ,

and . Hence, the proposed model is flexible and has the
degrees of freedom implied by , , and .

5) Particular Case: Filtering of Stochastic Signals: If
then (5)–(9), (12) and (23) represent the filter with and

the reference signal and observed data, respectively.

VII. CONCLUSION

The approach proposed and justified in this paper provides
models of a nonlinear system which are causal and optimal in
the sense of minimizing the associated mean squared errors.
The models are generated by the module given by (5) and are
defined by the sequences of operators , and
with . For the particular choice of operators
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, and given in Section III-A3, the model is rep-
resented by the operator given in (12). The computational
implementation of implies the orthogonalization procedure
(19)–(21) and the solution of the minimization problem (23).
The causality condition has been incorporated into the models
through so-called -lower trapezoidal matrices. Explicit equa-
tions for the errors associated with the models have been es-
tablished. It has been shown that the models have a degree of
freedom which is the degree of the operator .

Possibilities for alternative determinations of operators ,
and have been discussed (Section VI).

APPENDIX

Proof: Let be the standard basis in . Then

since is the -linear operator.
Let us denote

Then, we can define the matrices and
by the formulas

and

respectively, where . Therefore

(32)

and for ,

(33)

and then (9) follows.
The representation of in form (10) follows from the

above scheme in a similar way due to the symmetry of and
in (34).

Example 3: For , the formula (9) takes the form

(34)
where is the tensor and

or
.
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[4] L. Petrović, “Causality and markovian representation,” Stat. Prob. Lett.,
vol. 26, pp. 223–227, 1996.

[5] M. Verhaegen, “A subspace model identification solution to the identifi-
cation of mixed causal, anti-causal LTI systems,” SIAM J. Matrix Anal.,
vol. 17, no. 2, pp. 332–347, 1996.

[6] R. M. De Santis, “Causality theory in systems analysis,” Proc. IEEE,
vol. 64, no. 1, pp. 36–44, Jan. 1976.

[7] W. Porter, “An overview of polynomic system theory,” Proc. IEEE, vol.
64, no. 1, pp. 36–44, Jan. 1976.

[8] A. Bertuzzi, A. Gandolfi, and A. Germani, “Causal polynomial approxi-
mation for input-output maps on hilbert space,” Math. Syst. Theory, vol.
14, pp. 339–352, 1981.

[9] I. W. Sandberg, “Conditions for the causality of nonlinear operators de-
fined on a linear space,” Quart. Appl. Math., vol. 23, no. 1, pp. 87–91,
1965.

[10] , “Criteria for iniform approximatiion using dynamical neural net-
works,” in Proc. 4th IEEE Mediterranean Symp. Control Automation,
Crete, Greece, June 1996, pp. 1–5.

[11] , “Notes on uniform approximation of timre-varying systems on fi-
nite time intervals,” IEEE Trans. Circuits Syst. I, Fundam. Theory Appl.,
vol. 45, no. 8, pp. 863–865, Aug. 1998.



1020 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 52, NO. 5, MAY 2005

[12] , “Time-delay polynomial networks and quality of approximation,”
IEEE Trans. Circuits Syst. I, Fundam. Theory Appl., vol. 47, no. 1, pp.
40–49, Jan. 2000.

[13] P. G. Howlett, A. P. Torokhti, and C. E. M. Pearce, “The modeling and
numerical simulation of causal nonlinear systems,” Nonlinear Anal., vol.
47, no. 8, pp. 5559–5572, 2001.

[14] , “A philosophy for the modeling of realistic nonlinear systems,” in
Proc. Amer. Math. Soc., vol. 132, 2003, pp. 353–363.

[15] H. W. Bode and C. E. Shannon, “A simplified derivation of linear
least square smoothing and prediction theory,” Proc. IRE, vol. 38, pp.
417–425, 1950.

[16] M. V. Ruzhansky and V. N. Fomin, “Optimal filter construction for a
general quadratic cost functional,” Bull. St. Petersburg Univ., Math., vol.
28, pp. 50–55, 1995.

[17] S. Chen and S. A. Billings, “Representation of nonlinear systems:
NARMAX model,” Int. J. Contr., vol. 49, no. 3, pp. 1013–1032, 1989.

[18] S. Chen, S. A. Billings, and W. Luo, “Orthogonal least squares methods
and their application to nonlinear system identification,” Int. J. Contr.,
vol. 50, no. 5, pp. 1873–1896, 1989.

[19] A. Torokhti and P. Howlett, “On the best quadratic approximation of
nonlinear systems,” IEEE Trans. Circuits Syst. I, Fundam. Theory Appl.,
vol. 48, no. 5, pp. 595–602, May 2001.

[20] , “Method of recurrent best estimators of second degree for optimal
filtering of random signals,” Signal Process., vol. 83, pp. 1013–1024,
2003.

[21] L. L. Scharf, “The SVD and reduced rank signal processing,” Signal
Process., vol. 25, pp. 113–133, 1991.

[22] Y. Yamashita and H. Ogawa, “Relative Karhunen-Loéve transform,”
IEEE Trans. Signal Process., vol. 44, no. 2, pp. 371–378, Feb. 1996.

[23] B. Javidi and J. Wang, “Optimum filter for detecting a target in multi-
plicative noise and additive noise,” J. Opt. Soc. Amer. A, vol. 14, no. 4,
pp. 836–844, 1997.

[24] Y. Hua and W. Q. Liu, “Generalized Karhunen–Loéve transform,” IEEE
Signal Processing Letters, vol. 5, no. 6, pp. 141–143, 1998.

[25] V. J. Mathews and G. L. Sicuranza, Polynomial Signal Processing, New
York: Wiley, 2001.

[26] L. I. Perlovsky and T. L. Marzetta, “Estimating a covariance matrix
from incomplete realizations of a random vector,” IEEE Trans. Signal
Process., vol. 40, no. 12, pp. 2097–2100, Dec. 1992.

[27] M. Jansson and P. Stoica, “Forward-only and forward-backward sample
covariances—a comparative study,” Signal Process., vol. 77, no. 3, pp.
235–245, 1999.

[28] J.-P. Delmas, “On eigenvalue decomposition estimators of centro-sym-
metric covariance matrices,” Signal Process., vol. 78, no. 1, pp. 101–116,
1999.

[29] G. Kauermann and R. J. Carroll, “A note on the efficiency of sand-
wich covariance matrix estimation,” J. Amer. Stat. Assoc., vol. 96, pp.
1387–1396, 2001.

[30] C. J. Champion, “Empirical Bayesian estimation of normal variances
and covariances,” J. Multivar. Anal., vol. 87, pp. 60–79, 2003.

[31] M. K. Schneider and A. S. Willsky, “A Krylov subspace method for co-
variance approximation and simulation of a random process and fields,”
Multidim. Syst. Signal Process., vol. 14, pp. 295–318, 2003.

[32] T. Kubokawa and M. S. Srivastava, “Estimating the covariance matrix:
a new approach,” J. Multivar. Anal., vol. 86, no. 1, pp. 28–47, 2003.

[33] O. Ledoit and M. Wolf, “A well-conditioned estimator for large-di-
mensional covariance matrices,” J. Multivar. Anal., vol. 88, no. 2, pp.
365–411, 2004.

[34] A. N. Kolmogorov and S. V. Fomin, Introductory Real Analysis. New
York: Dover, 1970.

[35] J. M. Holtzman, Nonlinear System Theory. A Functional Analysis Ap-
proach. Englewood Cliffs, NJ: Prentice-Hall, 1970, p. 70.

[36] M. Cotlar and R. Cignoli, An Introduction to Functional Anal-
ysis. Amsterdam, The Netherlands: North-Holland, 1974, pp.
114–116.

[37] L. V. Kantorovich and G. P. Akilov, Functional Analysis. Oxford,
U.K.: Pergamon, 1982.

[38] P. Howlett and A. Torokhti, “Weak interpolation and approximation of
nonlinear operators on the space C([0; 1]),” Numer. Funct. Anal. Optim.,
vol. 19, no. 9 & 10, 1998.

[39] A. Torokhti, P. Howlett, and S. Lucas, “Method of partitioned data or-
thogonalization for principal component determination,” in Proc. XVI
Int. Symp. Mathematical Theory of Networks Systems, Leuven, Belgium,
2004.

[40] K. Abed-Meraim, W. Qiu, and Y. Hua, “Blind system identification,”
Proc. IEEE, vol. 85, no. 8, pp. 1310–1322, Aug. 1997.

[41] Q. Lin and J. P. Allebach, “Combating speckle in SAR images: vector
filtering and sequential classification based on a multiplicative noise
model,” IEEE Trans. Geosci. Remote Sensing, vol. 28, no. 4, pp.
647–653, Apr. 1990.

[42] K. Fukunaga, Introduction to Statistical Pattern Recognition. Boston,
MA: Academic, 1990.

Anatoli Torokhti is an Associate Professor at the School of Mathematics and
Statistics, University of South Australia, Mawson Lakes, SA, Australia.

His research interests are in the areas of mathematical modelling of nonlinear
systems, mathematical signal processing, operator approximation, applied sta-
tistics, and operator equations.

Phil Howlett received the B.Sc , BSc.Hons., and Ph.D. degrees of in mathe-
matics , from the University of Adelaide, Adelaide, Australia, in 1964, 1965,
and 1971, respectively.

He is currently a Professor in the School of Mathematics, University of South
Australia, Mawson Lakes, SA, Australia and the Director of the Centre for In-
dustrial and Applied Mathematics at the same University. He is also the Director
of the Australian Mathematics-in-Industry Study Group. His research interests
are applied optimal control theory, optimization, singular perturbations, and op-
erator approximation.

Charles Pearce received the the B.Sc degrees in mathematics and physics from
the University of New Zealand, in 1961, the M.Sc degree in mathematics from
Victoria University, Wellington, Australia, in 1962, and the Ph.D. degree in
mathematical statistics from the Australian National University, Australia, in
1966.

He is currently a Professor in Applied Mathematics at The University of Ade-
laide, Adelaide, Australia. His research interests are harmonic analysis, tele-
traffic, queueing theory, and probability theory.

Dr. Pearce is the National President of the Australian Society for Operation
Research and a Member of the Editorial Boards of eleven journals in applied
mathematics.


	17855.pdf
	hdl17855
	toc
	Best Causal Mathematical Models for a Nonlinear System
	Anatoli Torokhti, Phil Howlett, and Charles Pearce
	I. I NTRODUCTION
	A. Previous Studies
	B. Contribution

	II. $(\delta,\varepsilon)$ -C AUSALITY
	Definition 1: Let $\tau_{k}$ be defiend by (2) . The operator $P
	Definition 2: Let $\tau_{k}$ be defiend by (2) . The operator $P

	III. M ODEL OF S YSTEM
	1) Preliminary Formulation of the Problem: We wish to find a mat
	2) General Model: We begin with a general representation of the 


	Fig. 1. Representation of the operator ${\cal P}_{p}$ .
	3) Specification of ${\cal P}_{p}$: The next step in our prepara
	Lemma 1: Let $A_{q}\in\BBR^{m\times m}$ and let $B_{q}$ be a $q$
	Proof: The proof is given in Appendix . $\hfill\square$

	Definition 3: The matrix $W_{j_{1},\ldots,j_{q},k_{1},\ldots,k_{
	Proposition 1: If matrices $W_{j_{1}}$ and $W_{j_{1},\ldots,j_{q
	Proof: The proof follows directly from the above definitions. $\

	IV. R IGOROUS S TATEMENT OF P ROBLEM
	V. D ETERMINATION OF $(\delta,\varepsilon)$ -C AUSAL O PTIMAL M 
	1) Generic Scheme: Let $E_{h_{k}h_{k}}^{\dagger}$ be the Moore P
	Lemma 2: The operators ${\cal G}_{1},\ldots,{\cal G}_{N_{yu}}$, 
	Proof: Let ${\bf h}_{1}={\bf w}_{1}$ and ${\bf h}_{i}={\bf w}_{i

	Example 1: Let $p=1$ . By (34) and (12), $P_{1}(y,u)=a+\sum_{i=1
	Theorem 1: Let ${\cal G}_{1},\ldots,{\cal G}_{N_{yu}}$ be define
	Proof: Let us denote $\mathtilde{T}=[T_{1}\ldots T_{N_{yu}}]$ an

	Example 2: Let $p=1$ . Then $$P_{1}(y,u)=a+\sum_{i=1}^{m}A_{1}D_
	Remark 1: The solution (23) to the problem (16) implies that the
	Theorem 2: The error $\Delta_{p,y,u}$ associated with the $(\del
	Proof: We have $\Delta_{p}=J(a^{0},{\cal T}_{1}^{0},\ldots,{\cal

	2) Particular Case: $V=\BBO_{m\times m}$ in (3) (5) . Let us con
	Remark 2: Here, we use the same notation ${\cal G}_{i}$, ${\cal 
	Corollary 1: The error $\Delta_{p,y}$ associated with the $(\del
	Proof: The proof follows directly from the above. $\hfill\square

	Remark 3: The known models [ 15 ], [ 16 ] follow from (26) if $p

	VI. D ISCUSSION
	1) Computational Work: The technique presented in Section€IV pro
	2) Associated Accuracy: Theorem 2 establishes that the accuracy 
	3) Possible Extensions and Applications: The technique presented
	4) Degrees of Freedom: It follows from the above that the perfor
	5) Particular Case: Filtering of Stochastic Signals: If ${\cal S

	VII. C ONCLUSION
	Proof: Let $\{e_{1},\ldots,e_{n}\}$ be the standard basis in $\B
	Example 3: For $p=1$, the formula (9) takes the form $$P_{1}(y,u

	B. Russel, On the notion of cause, in Proc. Aristotelian Soc., 
	R. Jones, Causality and determinism in physics, Amer. J. Phys., 
	P. Suppes, A Probabilistic Theory of Causality . Amsterdam, The 
	L. Petrovi, Causality and markovian representation, Stat. Prob. 
	M. Verhaegen, A subspace model identification solution to the id
	R. M. De Santis, Causality theory in systems analysis, Proc. IEE
	W. Porter, An overview of polynomic system theory, Proc. IEEE, 
	A. Bertuzzi, A. Gandolfi, and A. Germani, Causal polynomial appr
	I. W. Sandberg, Conditions for the causality of nonlinear operat
	P. G. Howlett, A. P. Torokhti, and C. E. M. Pearce, The modeling
	H. W. Bode and C. E. Shannon, A simplified derivation of linear 
	M. V. Ruzhansky and V. N. Fomin, Optimal filter construction for
	S. Chen and S. A. Billings, Representation of nonlinear systems:
	S. Chen, S. A. Billings, and W. Luo, Orthogonal least squares me
	A. Torokhti and P. Howlett, On the best quadratic approximation 
	L. L. Scharf, The SVD and reduced rank signal processing, Signal
	Y. Yamashita and H. Ogawa, Relative Karhunen-Loéve transform, IE
	B. Javidi and J. Wang, Optimum filter for detecting a target in 
	Y. Hua and W. Q. Liu, Generalized Karhunen Loéve transform, IEEE
	V. J. Mathews and G. L. Sicuranza, Polynomial Signal Processing,
	L. I. Perlovsky and T. L. Marzetta, Estimating a covariance matr
	M. Jansson and P. Stoica, Forward-only and forward-backward samp
	J.-P. Delmas, On eigenvalue decomposition estimators of centro-s
	G. Kauermann and R. J. Carroll, A note on the efficiency of sand
	C. J. Champion, Empirical Bayesian estimation of normal variance
	M. K. Schneider and A. S. Willsky, A Krylov subspace method for 
	T. Kubokawa and M. S. Srivastava, Estimating the covariance matr
	O. Ledoit and M. Wolf, A well-conditioned estimator for large-di
	A. N. Kolmogorov and S. V. Fomin, Introductory Real Analysis . N
	J. M. Holtzman, Nonlinear System Theory. A Functional Analysis A
	M. Cotlar and R. Cignoli, An Introduction to Functional Analysis
	L. V. Kantorovich and G. P. Akilov, Functional Analysis . Oxford
	P. Howlett and A. Torokhti, Weak interpolation and approximation
	A. Torokhti, P. Howlett, and S. Lucas, Method of partitioned dat
	K. Abed-Meraim, W. Qiu, and Y. Hua, Blind system identification,
	Q. Lin and J. P. Allebach, Combating speckle in SAR images: vect
	K. Fukunaga, Introduction to Statistical Pattern Recognition . B




