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Hamiltonian limit of „3¿1…-dimensional SU„3… lattice gauge theory on anisotropic lattices

T. M. R. Byrnes, M. Loan, and C. J. Hamer*
School of Physics, The University of New South Wales, Sydney, NSW 2052, Australia

Frédéric D. R. Bonnet,† Derek B. Leinweber, Anthony G. Williams, and James M. Zanotti‡

Special Research Center for the Subatomic Structure of Matter (CSSM) and Department of Physics and Mathematical Phys
University of Adelaide 5005, Adelaide, Australia

~Received 20 November 2003; published 30 April 2004!

The extreme anisotropic limit of Euclidean SU~3! lattice gauge theory is examined to extract the Hamil-
tonian limit, using standard path integral Monte Carlo~PIMC! methods. We examine the mean plaquette and
string tension and compare them to results obtained within the Hamiltonian framework of Kogut and Susskind.
The results are a significant improvement upon previous Hamiltonian estimates, despite the extrapolation
procedure necessary to extract observables. We conclude that the PIMC method is a reliable method of
obtaining results for the Hamiltonian version of the theory. Our results also clearly demonstrate the universality
between the Hamiltonian and Euclidean formulations of lattice gauge theory. It is particularly important to take
into account the renormalization of both the anisotropy, and the Euclidean couplingbE , in obtaining these
results.
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I. INTRODUCTION

It is well known that lattice gauge theory~LGT! can be
constructed in two ways: Wilson’s ‘‘Euclidean’’@1# formula-
tion where both space and time are discretized, or the Ko
Susskind ‘‘Hamiltonian’’@2# formulation where time remain
continuous. The method of choice in recent years for m
lattice gauge theorists has been to use classical Monte C
methods in the Euclidean framework to extract observab
from the theory. LGT in the Hamiltonian formulation ha
been rather neglected in comparison. Despite this, the Ha
tonian framework still offers an interesting alternative to
Euclidean cousin. One advantage of the Hamiltonian vers
is that techniques familiar from quantum many-body the
can be used to attack the problem, such as strong-coup
series methods@3#, the coupled cluster method@4–8#, the t
expansion@9–11#, the plaquette expansion@12–14#, and the
density matrix renormalization group method@15#. It must be
said however that these methods tend to be more succe
for lower dimensional lattices. Another possible advantag
that from a numerical point of view, the reduction in th
dimensionality of the lattice from four to three provides
significant reduction in computational overheads. Furth
Hamiltonian results can serve as a check of the universa
of Euclidean results.

Because of the success of Monte Carlo methods in
Euclidean regime, one might expect similar levels of succ
in Hamiltonian LGT. Unfortunately, this has not been t
case and quantum Monte Carlo methods for Hamilton
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LGT lag at least ten years behind their Euclidean coun
parts. One of the first attempts at such a calculation w
performed using a Green’s function Monte Carlo approa
by Heys and Stump for U~1! @16,17# and SU~2! @18#. Chin
and co-workers soon after implemented the closely rela
‘‘guided random walk’’ algorithm for U~1! in ~311!D @19#,
then for SU~2! @20#, and SU~3! @21–23#. A feature of both
these methods is that a ‘‘trial wave function’’ is used to gui
random walkers toward the exact wave function. This a
peared in the early days to be an advantage of the techn
as the physical features of the wave function may be pu
by hand, while the unknown part may be found through
stochastic process. However, later investigations@24# have
shown that there is an unacceptable dependence of the
servables on the parameters of the wave function, in the c
of SU~3! theory in ~311!D. Other methods, such as th
‘‘projector Monte Carlo’’ method@25,26# and the related
‘‘stochastic truncation’’ method@27# have a version of the
‘‘minus-sign problem’’ arising due to the strong couplin
~electric field! representation used for the basis states. Thi
due to the necessary introduction of Clebsch-Gordan co
cients for non-Abelian theories, which potentially cause d
structive interference between the transition amplitudes
view of the lack of any clear success of these quant
Monte Carlo methods, we are therefore forced to pursue
alternative approach.

In a previous study, standard Euclidean path integ
Monte Carlo ~PIMC! methods were used to extract th
Hamiltonian limit for the U~1! lattice gauge theory in 211
dimensions@28#. The basic idea is to measure observables
increasingly anisotropic lattices and then extrapolate to
Hamiltonian limit, corresponding toDt5at /as→0, where
at and as are the lattice spacings in the time and space
rections respectively. The results obtained@28# show excel-
lent agreement between the extrapolated results and Ha
tonian estimates of the same quantities. In this work
attempt a similar procedure for pure SU~3! gauge theory in
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BYRNES et al. PHYSICAL REVIEW D 69, 074509 ~2004!
311 dimensions. We calculate two basic quantities, the
erage plaquette and the string tension, and compare the
results obtained in the Hamiltonian formulation. We find th
indeed the anisotropic Euclidean results converge to
Hamiltonian estimates, once the difference of scales@29# be-
tween the two theories has been taken into account. Spe
cally we find that this is particularly important atfinite an-
isotropy @30# in the extrapolation procedure. This will b
discussed in more detail in Sec. II.

The use of anisotropic lattices has generated much inte
in recent years, following the work of Morningstar and Pe
don @31,32# in extracting accurate glueball masses. T
same approach has now been extended to extracting h
quark spectra@33,34#. The importance of taking into accoun
the difference of scales on anisotropic lattices in these s
ies has already been discussed by Klassen@35#, through the
renormalization of the anisotropy. In our case, the renorm
ization of the isotropic Euclidean couplingbE is also impor-
tant in extracting our results. This may be of some releva
to other studies on anisotropic lattices.

In Sec. II we briefly discuss the SU~3! model as defined
on anisotropic lattices. We also discuss in this section
extrapolation procedure to the Hamiltonian limit. In Sec.
we explain the simulation methods used to obtain our resu
and in Sec. IV we show our results for the average plaqu
and string tension. Some concluding remarks are given
Sec. V.

II. THE ANISOTROPIC SU „3… MODEL

The anisotropic action is given by@36#

S5
bs

j (
x

(
i . j ; iÞ4

@12Pi j ~x!#1btj(
x

(
iÞ4

@12P4i~x!#,

~1!

where the first term sums over all spacelike plaquettes on
lattice, and the second term sums over timelike plaquette
plaquette at lattice positionx is defined by

Pmn~x!5
1

3
Re Tr@Um~x!Un~x1m̂ !Um

† ~x1 n̂ !Un
†~x!#,

~2!

where Um(x) is the SU~3! gauge field variable. The cou
plings bs andbt are defined by

bs5
6

gs
2

, bt5
6

gt
2

, ~3!

and the anisotropy factor or aspect ratio is defined by

j5
1

Dt
5

as

at
. ~4!

One must include different spacelike and timelike couplin
gs andgt in Eq. ~3! in order to allow the freedom to renor
malize so that correlation lengths are equal in both dir
tions, even though the spacingsas andat are different. In the
continuum limit we require that physical quantities be ind
07450
-
to

t
e

ifi-

st
-
s
vy

d-

l-

e

r

s,
te
in

he
A

s

-

-

pendent of changes in both of these quantities. Therefore
require the two couplings to be a function of bothas andat .
Karsch @30#, using the background field method of Dash
and Gross@37# and Hasenfratz and Hasenfratz@29#, obtained
a mapping between the equivalent couplings of the Euc
ean and anisotropic actions

1

gs
2
5

1

gE
2

1cs~j!1O~gE
2 !, ~5!

1

gt
2
5

1

gE
2

1ct~j!1O~gE
2 !, ~6!

where gE is the coupling for the Euclidean theory withj
51. The factorscs(j) andct(j) are defined in Eqs.~2.24!
and ~2.25! of Ref. @30#. For the Euclidean theory withj
51, these factors both approach zero, and therefore we
cover the usual action with only one couplinggs5gt5gE .
In the limit j→`, Eqs.~5! and~6! reduce to the Hamiltonian
values as obtained by Hasenfratz and Hasenfratz@29#.

It is convenient to rewrite the action~1! in a more sym-
metric fashion:

S5
bj

j̄
(

x
(

i . j ; iÞ4
@12Pi j ~x!#1bjj̄(

x
(
iÞ4

@12P4i~x!#,

~7!

where

bj5
6

gj
2

, j̄5
j

h
, ~8!

with gj
25gsgt and h5(gt

2/gs
2)1/2. In the limit j→`, bj

goes to the Hamiltonian couplingbH . Using Eqs.~5! and~6!
we may write a correspondence between these variables
the Euclidean theory,

bj5bE13@cs~j!1ct~j!#1O~bE
21!, ~9!

h511
3

bE
@cs~j!2ct~j!#1O~bE

22!,

~10!

wherebE56/gE
2 . Therefore for every (bE ,j) pair there is a

corresponding pair of couplings (bj ,j̄). The relation be-
tweenj and j̄ has been discussed in some detail by Klas
@35#. In his language,j̄ is the bare anisotropy, whilej is the
renormalized anisotropy. To evaluate the factorscs(j) and
ct(j), one may either directly calculate them in terms of t
integrals given in Ref.@30#, or in the case of Eq.~10! use the
parameterization given by Klassen@35#.

We now discuss our extrapolation procedure in order
obtain Hamiltonian estimates from an anisotropic lattice. I
naive extrapolation procedure, one might assumeb5bs

5bt in Eq. ~1!, and extrapolate physical quantities at co
stant b to the Hamiltonian limit,j→`. This procedure is
incorrect, however, becausebsÞbtÞb due to renormaliza-
9-2
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HAMILTONIAN LIMIT OF ~311!-DIMENSIONAL . . . PHYSICAL REVIEW D 69, 074509 ~2004!
tion. The correct procedure is to extrapolate toj→` at con-
stantbE . We may summarize the procedure as follows:

~1! For a particularbE , choose several anisotropiesj.
~2! Calculate the corresponding values ofbj and j̄ using

Eqs.~9! and ~10!.
~3! Use the action given in Eq.~7! to calculate physica

observables at these couplings.
~4! Perform a polynomial fit to the data in the inver

square anisotropyDt2 at constantbE , and extrapolate mea
sured quantities toj→` (Dt→0) ~we extrapolate in the
inverse square anisotropy since the leading discretization
rors in the timelike direction are expected to be of orderat

2).
It is interesting to note that the discrepancy betweenbj

andbE in Eq. ~9! reaches a maximum aroundj'3.6215, as
can be seen from Fig. 1. We see that in the vicinity of
maximum, the discrepancy reaches nearlybj2bE'0.19.
Since the most anisotropic lattice we use is in the vicinity
this maximum, significant discrepancies begin to creep i
the correct procedure is not used.

III. METHOD

A. Simulation details

We analyze the action given in Eq.~7! by standard path
integral Monte Carlo methods. Configurations are genera
using the Cabibbo-Marinari@38# pseudo heat bath algorithm
applied to the three diagonal SU~2! subgroups of SU~3!. To
analyze the behavior between weak and strong coupling
concentrate on the regionbj54 –7. For eachbj value we
generate configurations for anisotropies in the rangej̄

51 –3. These parameters (bj ,j̄) may be converted into thei
corresponding (bE ,j) by solving Eqs.~9! and ~10! numeri-
cally. Our full set of parameters is shown in Table I, togeth
with the equivalent (bE ,j) values.

Due to the large number of configuration sets that mus
generated, we limit ourselves to relatively modest latt
sizes, ranging from 8338 to 83324. We adjust the lattice
size in the time direction according to the anisotropy used
order to keep the physical length in the time and space
rections equal. Configurations are given a cold start and t

FIG. 1. The discrepancy between the anisotropic and Euclid
couplings as a function of the anisotropy.
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5000 thermalization sweeps in order to equilibrate. Af
thermalization, configurations are stored every 500 swe
for 100 configurations. As a measure of the equilibration,
plot the average action for various anisotropies in Fig. 2.
see that for each value of the anisotropy the configurati
relax to equilibrium after of the order of 1000 sweeps.
particular we see very little difference in equilibration tim
for the various anisotropies. This is in contrast to the res
of Ref. @28#, which used a standard Metropolis algorith
combined with Fourier acceleration techniques for the U~1!
model in 211 dimensions. There it was found that equilibr
tion times were longer for the anisotropic lattices, desp
using Fourier acceleration techniques. The advantage of
pseudo heat bath algorithm in updating anisotropic lattic
where the space-timebt and j can be very large, is mos
easily seen when considering its application to SU~2! color
gauge theory. In this case a link variable is updated with

n

TABLE I. Parameters used for each configuration set.

Dimensions bj j̄ bE j

8338 4.0 1 4.0 1.0
8338 5.0 1 5.0 1.0
8338 5.4 1 5.4 1.0
8338 5.6 1 5.6 1.0
8338 5.8 1 5.8 1.0
8338 6.0 1 6.0 1.0
8338 7.0 1 7.0 1.0
83312 4.0 A3/2 3.9396 1.2968
83312 5.0 A3/2 4.9428 1.2795
83312 5.4 A3/2 5.3437 1.2747
83316 4.0 A2 3.8992 1.5444
83316 5.0 A2 4.9036 1.5139
83316 5.4 A2 5.3049 1.5053
83312 5.0 3/2 4.8891 1.6197
83312 5.4 3/2 5.2904 1.6095
83312 5.6 3/2 5.4910 1.6050
83312 5.8 3/2 5.6916 1.6008
83312 6.0 3/2 5.8921 1.5970
83312 7.0 3/2 6.8941 1.5815
83324 4.0 A3 3.8546 1.9569
83324 5.0 A3 4.8588 1.9053
83324 5.4 A3 5.2602 1.8907
83316 5.0 2 4.8366 2.2341
83316 5.4 2 5.2376 2.2146
83316 5.6 2 5.4381 2.2060
83316 5.8 2 5.6385 2.1981
83316 6.0 2 5.8389 2.1908
83316 7.0 2 6.8406 2.1609
83324 4.0 3 3.8110 3.5811
83324 5.0 3 4.8112 3.4538
83324 5.4 3 5.2113 3.4171
83324 5.6 3 5.4114 3.4010
83324 5.8 3 5.6114 3.3860
83324 6.0 3 5.8115 3.3721
83324 7.0 3 6.8117 3.3152
9-3



le

m
f

i

te
t

on
4,
s
a

is
r
In
m
th
e

ve
e

ur
lts

ta
v

on
i-
a
th

ted

ne
o

e

to-

ce.
es

f a

ll
ex-

BYRNES et al. PHYSICAL REVIEW D 69, 074509 ~2004!
any reference to the current link. Rather only the stap
associated with the link are considered in making the SU~2!
update. The improved ergodicity afforded by this algorith
is largely carried over to the SU~2! subgroup updates o
SU~3! links.

According to the extrapolation procedure described
Sec. II, we must extrapolate at constantbE , not bj as we
have calculated. Therefore for all observables we must in
polate our values in the (bj ,j̄) plane onto lines of constan
bE . We do this using the modified Shepard method@39# of
multivariate interpolation. We choose our interpolati
points along the linesbE53.8110, 4.8112, 5.2113, 5.411
5.6114, 5.8115, 6.8117, andj values such that they are a
close as possible to existing data points. These points
chosen such that there is no interpolation for the most an
tropic points (j̄53), and there is minimal interpolation fo
the remaining points, to minimize the interpolation error.
practice these interpolation errors are quite negligible co
pared with the original errors on the data points, such that
error on the interpolated value can be taken as the sam
the error in the nearest data point.

Clearly a more straightforward procedure would ha
been to generate data points originally such that they w
constant inbE , by choosing appropriate varying (bj ,j̄) val-
ues. In a future study we would adopt such a proced
although there is little loss in accuracy for our current resu

B. The static quark potential

The static quark potential is extracted from the expec
tion values of Wilson loops, which are expected to beha
like

W~r ,t !5(
i

Ci~r !exp@2Vi~r !t#, ~11!

where the summation is over the excited state contributi
to the expectation value, andi 51 corresponds to the contr
bution from the ground state. To obtain the optimal sign
to-noise ratio, we must suppress the contributions from

FIG. 2. Evolution of the average action^S& with the number of
sweeps of the lattice, forbj55.6, and various anisotropies.
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excited states, which may be done by APE smearing@40,41#.
This involves replacing a particular spacelike link by

Um~x!→PF ~12a!Um~x!1
a

4 (
n51;nÞm

3

@Un~x!

3Um~x1 n̂ !Un
†~x1m̂ !1Un

†~x2 n̂ !Um~x2 n̂ !

3Un~x2 n̂1m̂ !#G , ~12!

where theP denotes a projection back onto SU~3!, anda is
a parameter which is defined by the user. This is repea
nAPE times. This amounts to adding in a fractiona of neigh-
boring staples for every spacelike link on the lattice. To tu
the smearing parameters, we fix the smearing fraction ta
50.7, as it is sufficient to fixa and tunenAPE @42#. To find
the optimumnAPE, we look for a value that minimizes th
statistical variation of the effective potential

V~r ,t !5 lnF W~r ,t !

W~r ,t11!G ~13!

in the plateau region, while maintaining a good signal-
noise ratio, and also examine the ratio@43#

Wt11~r ,t !/Wt~r ,t11!, ~14!

which should be near unity for good ground state dominan
A typical value which proved to be sufficient for most cas
wasnAPE55, although for smallbj the overall effectiveness
of the smearing procedure was reduced. An example o
typical effective potential plot is shown in Fig. 3, forbj

55.60 andj̄52.0. We see good plateau behavior for smat
values, which reflects the optimum smearing. Finally we
tract the string tension by fitting with the form

V~r !5V01Kr 2e/r , ~15!

wheree5p/12 @44#, andK and V0 are fit parameters. The
string tension is then found according toK5sa2. An ex-
ample of such a fit is shown in Fig. 4, forbj55.8 andj̄

FIG. 3. Effective potential plots forbj55.60 andj̄52.0.
9-4
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HAMILTONIAN LIMIT OF ~311!-DIMENSIONAL . . . PHYSICAL REVIEW D 69, 074509 ~2004!
53.0. We see that the general trend of the data is well fi
~15!, in this instance givingK5sa250.189(4) andV0
50.732(7). Thescatter of the data points is larger than th
statistical error bars~which are within the data points!, but
this may be attributed to residual anisotropies between
ferent directions on the lattice.

IV. RESULTS

A. Average plaquette

Our aim in this section is to obtain estimates for the a
erage plaquette, defined as the expectation value of Eq.~2!,
for the Hamiltonian theory. As no timelike plaquettes a
present in the Hamiltonian lattice, we therefore calcul
only spacelike plaquettes in the Euclidean theory. Hencef
we will refer to the average spacelike plaquette simply
‘‘average plaquette,’’ unless specified otherwise. As a fi
test of our results, we compare the average plaquette fo
isotropic latticej51 to existing results. This is shown i
Fig. 5, together with strong coupling expansions to orderbE

15

@45,46#, and weak coupling expansions to orderbE
22 @47#.

We also show a@5/5# Padéextrapolation of the strong cou

FIG. 4. Static quark potential atbj55.8 andj̄53.0.

FIG. 5. Comparison of our PIMC data for the average plaqu
with strong and weak coupling expansions for the isotropic lat
j51. Dashed lines are merely to guide the eye.
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pling series, which shows that beyondbE'5 the series di-
verges away. Our PIMC data match smoothly onto the str
coupling and weak coupling expansions in their respec
limits, as expected.1 It can be seen that the crossover fro
strong coupling to weak coupling behavior takes place in
regionbE'5 –6, as is well known.

At finite anisotropy, we are not aware of any results ava
able to make a similar comparison. It is fairly straightfo
ward however to calculate the corresponding strong coup
expansion to orderbj

6 . The calculations for this are given i
the Appendix. SettingI 5J51 in Eq. ~A10! gives

^Pss&5
1

3j̄
b1

1

6j̄2
b22

5

72j̄4
b41S 2j̄3

243
2

65

1944j̄5D b5

1S j̄2

81
1

4j̄4

243
1

749

19440j̄6D b61O~b7!, ~16!

whereb5bj/6. A comparison between the strong couplin
expansion and our PIMC data is shown in Fig. 6, along w
a @2/2# Padéextrapolation. We see consistent results betwe
the expansions and our data forbj54, which is still in the
strong coupling region. The series~16! is singular in the limit
j̄→`, and its convergence therefore worsens asj̄ becomes
large.

We now extrapolate our results to the Hamiltonian lim
Performing the interpolation as described in Sec. III A, w
obtain points at constantbE . Our results are then extrapo
lated to the Hamiltonian limit in powers ofDt2, as shown in
Fig. 7. We see a fairly smooth dependence onDt2, for all
bE . Error estimates for the extrapolation may be estima

1We note that the physical time extent of thebE57.0 lattices is
sufficiently small to take us beyond the deconfinement phase t
sition. However, the small spatial lattice extent constrains us
examine short distance quantities which are not severely affecte
deconfinement issues. Therefore, we present results for the m
plaquette atbE57.0 with this reservation.

e
e

FIG. 6. Comparison of the average spacelike plaquette ca

lated using PIMC at anisotropiesj̄5A3/2 andj̄5A3 with strong
coupling expansions to orderbj

6 . Dashed lines are to guide the ey
9-5
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BYRNES et al. PHYSICAL REVIEW D 69, 074509 ~2004!
by comparing fits of different orders~linear, quadratic, cubic
etc.! in Dt2. Our numerical values in theDt→0 limit are
shown in Table II.

To compare our extrapolated results to existing Ham
tonian results, we must take into account the difference
scales between the two regimes. The Hamiltonian coup
parameterl56/gH

4 , wheregH[ limj→`gj , may be related
to the Euclidean coupling through the relation@29#

bE5A6l20.07848. ~17!

Using this relation we may plot our extrapolated Euclide
estimates against previous results obtained within the Ha
tonian formulation, as shown in Fig. 8. This figure compa
our present results with Green’s function Monte Ca
~GFMC! results of Chinet al. @22# and Hamer, Samaras, an
Bursill @24#, the weak coupling series to orderl21/2 of Hof-
säss and Horsley@48#, and the strong coupling series to ord
l7 of Hamer, Irving and Preece@49#. For the strong coupling
series we show both the raw series sum, and the@3/3# Padé
approximant. The analysis of Hameret al. @24# shows that
finite-size effects in the Monte Carlo data should be ne
gible at this level of accuracy.

For l,4, the agreement between the different estima
is excellent, except that our point atl52.52 is a little lower

FIG. 7. Extrapolation of the average plaquette to the Ham
tonian limit Dt→0, for fixedbE . Dashed lines show quadratic fit
to the data inDt2.

TABLE II. A summary of our estimates in the Hamiltonian lim
Dt→0 for the average~spacelike! plaquette and the string tension
The Hamiltonian couplingl, calculated from Eq.~17!, is also
shown.

bE l ^Pss& sa2

3.8110 2.5214 0.125~5!

4.8112 3.9849 0.23~1! 1.08~20!

5.2113 4.6637 0.312~7! 0.57~4!

5.4114 5.0231 0.36~1! 0.31~2!

5.6114 5.3958 0.403~5! 0.17~1!

5.8115 5.7819 0.431~6! 0.110~4!

6.8117 7.9125 0.526~7!
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than the strong coupling series result. A possible explana
is that we have relied heavily on the weak-coupling relatio
between scales of the anisotropic and Hamiltonian theo
and the Euclidean theory@i.e., Eqs.~9!, ~10!, and~17!#. It is
possible higher order terms in these expansions begin to
tribute larger effects atl,3.

In the regionl5528, however, there is a large discre
ancy between our results and the previous GFMC estim
@22,24#. We find that the crossover from strong to weak co
pling behavior occurs at much the same couplings as in
isotropic regime, and earlier than shown by the GFMC
sults. There is quite good agreement, on the other hand,
tween our results and the strong coupling series extrap
tions in this regime. This gives us confidence that our pres
results are the more accurate. It was pointed out in Ref.@24#
that the GFMC method suffers from an unacceptable dep
dence on the trial wave function, and we surmise that
variational parameter may not have been optimized to
correct value in this region.

Further evidence is provided by Longet al. @23# who
showed that GFMC results for the ground-state ene
change significantly if a second variational parameter
added in to the trial wave function. We conclude that t
PIMC offers a more unbiased method of extracting resu
even with the somewhat undesirable extra step of havin
perform aDt→0 extrapolation.

B. String tension

We now turn to calculating the string tension. We aga
use only spacelike Wilson loops, so we can ultimately co
pare to Hamiltonian results. Figure 9 shows results for
isotropic case,j51. Our results for smallbE are contami-
nated by large errors due to the fast exponential decay of
Wilson loops. The parallel lines show the two-loop scali
form

L5
1

a
~g0g2!2g1/2g0

2
expS 2

1

2g0g2D , ~18!

- FIG. 8. Our extrapolated Euclidean PIMC results compared
Hamiltonian strong coupling@49#, Hamiltonian weak coupling@48#,
and Green’s function Monte Carlo~GFMC! results @24#. Dashed
lines are merely to guide the eye.
9-6
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where

g05
11

16p2
, g15

102

~16p2!2
. ~19!

The couplingg refers to the Euclidean couplinggE in this
case, and the scaling parameter here isL5LE , the Euclid-
ean scaling parameter. Our data asymptotically appear to
proach the expected scaling form in the weak coupling
gion. The parallel lines correspond to

As5~113610!LE , ~20!

or

As5~1.3560.12!Lmom, ~21!

where Lmom is the perturbative QCD scale parame
@29,50#. It is well known, however, and is evident from Fig
9, that in quantitative terms the string tension follows neith
two-loop or three-loop scaling at these couplings; and a m
sophisticated fit by Edwardset al. @51# taking into account
various correction terms gives a much smaller value,

As5~7561!LE . ~22!

We do not attempt such a fit here.
On the same figure are plotted the strong coupling exp

sions of Münster and Weisz to 12th order@52# and the Monte
Carlo results of Edwardset al. @51#. Due to the presence o
the roughening transition atbE'5.5, we expect the stron
coupling expansion to diverge from the data beyond t
point, as is seen in the figure. At the smaller values ofbE ,
our results agree well with those of Edwardset al. @51#; but
at largerbE , our results are higher than theirs. This is mo
probably due to the smaller lattice size used in our calcu
tions, as discussed in Ref.@51#, and is consistent with the
higher estimate of the string tension obtained at Eq.~21!.
One would need to use larger lattice sizes or else an
proved action to get more accurate estimates of
asymptotic parameters.

FIG. 9. The string tension atj51. We plot our own PIMC
results, together with a 12th order strong coupling expansion@52#.
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The extrapolation to the Hamiltonian limit is shown
Fig. 10. This is performed again in powers ofDt2, in a
similar fashion to the average plaquette. There is a tr
towards a stronger curvature in the extrapolation for sma
values ofbE , suggesting that our estimate forbE54.81 is
probably too high. There are however large error bars
these data points.

In Fig. 11, our extrapolated results for the string tens
are compared with Hamiltonian estimates obtained
Hamer, Irving and Preece@49# using an exact linked cluste
expansion~ELCE! method. Our axes are such that the sc
ing relation~18! for the string tension appears as a straig
line in the plot. In this case we use the Hamiltonian versio
of the couplings,g5gH , L5LH , andl56/gH

4 . We do not
show here the GFMC results of Hameret al. @24#, which
were derived from Creutz ratios on very small loops, a
therefore subject to large finite-size effects. We see that
ELCE results are more accurate in the strong coupling
gion, but our PIMC results are better in the weak coupli
region. The two sets of data do not agree belowAl52.1.
This may be because our point atAl52.00~or bE54.81) is
too high, as noted above; but also, we do not expect pre

FIG. 10. Extrapolation of the string tension to the Hamiltoni
limit Dt→0. Dashed lines show quadratic fits inDt2.

FIG. 11. Extrapolated PIMC results together with ELCE resu
and GFMC estimates of the string tension.
9-7
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agreement in this region, since the measurements corres
to different quantities. The PIMC estimates refer to the de
exponent of spacelike Wilson loops, while the ELCE es
mates are of the ‘‘axial’’ string tension, i.e., the energy p
unit length of a ‘‘string’’ of flux along one axis. It is wel
known that these estimates may differ at strong coupli
where rotational invariance is broken; but at some interm
diate coupling estimated@53# to be aroundl55.4, a ‘‘rough-
ening’’ transition @44,54,55# takes place, after which rota
tional invariance is restored and different estimates of
string tension should coincide. Series expansions for
axial string tension cannot be continued past the roughe
transition.

Again the crossover to weak coupling behavior occurs
the regionAl52.1–2.4, corresponding tobE55.1–5.8. In
the weak coupling region, the ELCE results are somew
higher than our PIMC estimates, but are almost compat
within errors: we believe our present results are more relia
and accurate. They are also much more reliable than
GFMC results of Ref.@24#, mentioned above.

We again see evidence for the approach to asympt
scaling behavior in the regionAl.2.3. The data give us a fi
of

As5~12365!LH ~23!

or

As5~1.3460.05!Lmom, ~24!

using the conversion factors computed by Hasenfratz
Hasenfratz@29#. This is much the same as our Euclide
estimate, and somewhat too high by comparison with
~22!, presumably for the same reasons discussed above.
considerably better than the Hamiltonian ELCE estim
As5(1.760.4)Lmom of Hameret al. @49#, however.

V. CONCLUSIONS

We have demonstrated in this work that one can ob
reliable results for the Hamiltonian limit using the standa
path integral Monte Carlo method for anisotropic lattices a
extrapolating toDt→0. We have calculated two quantitie
the average~spacelike! plaquette and the string tension.
both cases our results are a substantial improvement on o
estimates calculated purely within the Hamiltonian formu
tion, although there is broad agreement between them.
demonstrates clear evidence of the universality between
Hamiltonian and Euclidean formulations of LGT.

In performing the extrapolation to the Hamiltonian lim
we have found it very important to take into account t
renormalization of the couplingsbj and j̄ in Eq. ~7! at finite
j. The renormalization ofj̄ has been discussed in some d
tail already by Klassen@35#. In our case this is only half the
story, as there is also the renormalization ofbj , which is
related to the Euclidean couplingbE , through Eq.~9!. As
mentioned in the text, the discrepancy between the two c
plings reaches a maximum aroundj53.6214, which is quite
close to some of our most anisotropic data points, and h
07450
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e

in

d

er
-
is

he

-

u-

a

large influence in terms of extrapolating our results toj
→`. We expect that this renormalization will have a mu
smaller effect for improved actions@56,57#, and hence utiliz-
ing such actions may be a neater way of removing the co
plication altogether.

Our main motivation for examining anisotropic lattice
was to investigate alternative Monte Carlo procedures
obtaining results in the Hamiltonian formulation, in view o
the lack of a reliable quantum Monte Carlo algorithm f
Hamiltonian LGT. We have found that the PIMC approach
superior to quantum Monte Carlo methods, in particular
GFMC algorithm. The GFMC algorithm was found prev
ously @24# to have unacceptable systematic errors due to
dependence on a trial wave function. In this investigation
have found that the PIMC method gave more reliable res
for the mean plaquette, and also gave good results for
string tension in the scaling regime, which the GFM
method@24# could not.

The major disadvantage of PIMC is the necessity to m
an extrapolation to the Hamiltonian limitDt→0. This re-
duces the accuracy of the final results, and also is ra
expensive in computer time, as several configuration s
must be generated to obtain onebE point. With modern al-
gorithms, however, the results are almost as accurate at l
anisotropies as in the isotropic case, and the extrapola
can be made with confidence—see Figs. 7 and 10. Thus
conclude that PIMC is the preferred Monte Carlo approa
for estimating physical quantities in the Hamiltonian lim
just as in the Euclidean case.

An obvious extension of the present work would be
attempt to estimate glueball masses using the PIMC
proach, and to compare those with existing Hamiltonian
sults. We hope to attempt this in future work.
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APPENDIX: STRONG COUPLING EXPANSION FOR SU „3…
ON ANISOTROPIC LATTICES

A Wilson loop of sizeI 3J is defined by

W~C!5
1

ZE @dU#
1

N
xS )

i , j PC
Ui j D )

PPPss

e2Sss(P)

3 )
PPPst

e2Sst(P), ~A1!

where C denotes the contour of the Wilson loop,N is the
dimension of the group matrices~in our caseN53), Ui j
denotes a group element lying between sitesi and j, Z is the
9-8
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normalizing factor,@dU# denotes the group integration ov
SU~3! matrices,x() takes the character of its argument, t
product overPss runs through all spacelike plaquettes, wh
Pst denotes all timelike plaquettes. We also define

Sss~U !52
bj

j̄N
x~U !, ~A2!

Sst~U !52
bjj̄

N
x~U !. ~A3!

Using standard character expansion techniques@36#, we
write

e2Sss(U)5(
r 50

`

drx r~U !, ~A4!

e2Sst(U)5(
r 50

`

f rx r~U !. ~A5!

The coefficientsdr and f r may be found by inverting the
relation

dr5E @dU#x r* ~U !e2Sss(U), ~A6!

and similarly for f r . We need only the result forr 50 and
r 53 however, which may be found in Eqs.~7! and ~10! of
Ref. @46#. Defining

u~x!5
1

3
x1

1

6
x22

5

72
x42

1

24
x51

7

720
x61 . . . , ~A7!
.N

J.

v.

e

07450
then coefficientse3[d3 /d0 andg3[ f 3 / f 0 are given by

e353u~bj/6j̄ !5
bj

6j̄
1

b2

72j̄2
1 . . . , ~A8!

g353u~bjj̄/6!5
bjj̄

6
1

b2j̄2

72
1 . . . .

~A9!

Performing expansions according to the diagrams descr
in Ref. @36#, we obtain for spacelike Wilson loops

Wss~C!5S e3

N D IJF112IJS g3

N D 4

12IJS e3

N D 4

12IJNS e3

N D S g3

N D 4

12IJNS e3

N D 5

1 . . . G ,
~A10!

while for timelike Wilson loops we obtain

Wst~C!5S g3

N D IJF114IJS e3

N D 2S g3

N D 2

14IJNS e3

N D 2S g3

N D 3

1 . . . G . ~A11!

The string tension may then be computed using these re
via sa25(1/IJ)ln W(C).
oo-
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