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The extreme anisotropic limit of Euclidean &) lattice gauge theory is examined to extract the Hamil-
tonian limit, using standard path integral Monte CafdMC) methods. We examine the mean plaquette and
string tension and compare them to results obtained within the Hamiltonian framework of Kogut and Susskind.
The results are a significant improvement upon previous Hamiltonian estimates, despite the extrapolation
procedure necessary to extract observables. We conclude that the PIMC method is a reliable method of
obtaining results for the Hamiltonian version of the theory. Our results also clearly demonstrate the universality
between the Hamiltonian and Euclidean formulations of lattice gauge theory. It is particularly important to take
into account the renormalization of both the anisotropy, and the Euclidean coydinén obtaining these
results.
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[. INTRODUCTION LGT lag at least ten years behind their Euclidean counter-
parts. One of the first attempts at such a calculation was
It is well known that lattice gauge theof.GT) can be performed using a Green’s function Monte Carlo approach
constructed in two ways: Wilson’s “Euclidearfl] formula- by Heys and Stump for (1) [16,17] and SU2) [18]. Chin
tion where both space and time are discretized, or the Koguand co-workers soon after implemented the closely related
Susskind “Hamiltonian2] formulation where time remains “guided random walk” algorithm for W1) in (3+1)D [19],
continuous. The method of choice in recent years for mosthen for SU2) [20], and SU3) [21-23. A feature of both
lattice gauge theorists has been to use classical Monte Cartbese methods is that a “trial wave function” is used to guide
methods in the Euclidean framework to extract observablesaandom walkers toward the exact wave function. This ap-
from the theory. LGT in the Hamiltonian formulation has peared in the early days to be an advantage of the technique
been rather neglected in comparison. Despite this, the Hamiks the physical features of the wave function may be put in
tonian framework still offers an interesting alternative to itsby hand, while the unknown part may be found through the
Euclidean cousin. One advantage of the Hamiltonian versiostochastic process. However, later investigatip?¥| have
is that techniques familiar from quantum many-body theoryshown that there is an unacceptable dependence of the ob-
can be used to attack the problem, such as strong-couplirggrvables on the parameters of the wave function, in the case
series methodg3], the coupled cluster methdd —8|, thet  of SU(3) theory in (3+1)D. Other methods, such as the
expansior 9—11], the plaquette expansiqi2—14), and the  “projector Monte Carlo” method[25,26 and the related
density matrix renormalization group methidd]. It must be  “stochastic truncation” method27] have a version of the
said however that these methods tend to be more successfuhinus-sign problem” arising due to the strong coupling
for lower dimensional lattices. Another possible advantage igelectric field representation used for the basis states. This is
that from a numerical point of view, the reduction in the due to the necessary introduction of Clebsch-Gordan coeffi-
dimensionality of the lattice from four to three provides acients for non-Abelian theories, which potentially cause de-
significant reduction in computational overheads. Furtherstructive interference between the transition amplitudes. In
Hamiltonian results can serve as a check of the universalityiew of the lack of any clear success of these quantum
of Euclidean results. Monte Carlo methods, we are therefore forced to pursue an
Because of the success of Monte Carlo methods in thalternative approach.
Euclidean regime, one might expect similar levels of success In a previous study, standard Euclidean path integral
in Hamiltonian LGT. Unfortunately, this has not been theMonte Carlo (PIMC) methods were used to extract the
case and quantum Monte Carlo methods for HamiltoniartHamiltonian limit for the UW1) lattice gauge theory in 21
dimensiong28]. The basic idea is to measure observables on
increasingly anisotropic lattices and then extrapolate to the

*Electronic address: cjh@phys.unsw.edu.au Hamiltonian limit, corresponding ta r=a;/a;—0, where
"Present address: Department of Physics, University of Regina; andag are the lattice spacings in the time and space di-
Regina, SK, Canada S4S 0A2. rections respectively. The results obtaif@8] show excel-

*present address: John von Neumann InstituComputing NIC,  lent agreement between the extrapolated results and Hamil-
Deutsches Elektronen-Synchrotron DESY, D-15738 Zeuthen, Geitonian estimates of the same quantities. In this work we
many. attempt a similar procedure for pure &)Y gauge theory in
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3+1 dimensions. We calculate two basic quantities, the avpendent of changes in both of these quantities. Therefore we
erage plaquette and the string tension, and compare them tequire the two couplings to be a function of bathanda, .
results obtained in the Hamiltonian formulation. We find thatKarsch[30], using the background field method of Dashen
indeed the anisotropic Euclidean results converge to thand Gros$37] and Hasenfratz and Hasenfr@®8], obtained
Hamiltonian estimates, once the difference of scE?&$be- a mapping between the equivalent couplings of the Euclid-
tween the two theories has been taken into account. Specifan and anisotropic actions
cally we find that this is particularly important &hite an-
isotropy [30] in the extrapolation procedure. This will be 1 )
discussed in more detail in Sec. II. —= 5 1t¢,(£)+0(gp), ®)

The use of anisotropic lattices has generated much interest 9, Oe
in recent years, following the work of Morningstar and Pear-
don [31,37 in extracting accurate glueball masses. This i:i 2

. 2 2 +CT(§)+O(9E)! (6)

same approach has now been extended to extracting heavy ° g
quark spectr@33,34]. The importance of taking into account
the difference of scales on anisotropic lattices in these studwhere gg is the coupling for the Euclidean theory with
ies has already been discussed by Klad&8&h through the =1. The factorsc,(£) andc (&) are defined in Eqs2.29
renormalization of the anisotropy. In our case, the renormaland (2.25 of Ref. [30]. For the Euclidean theory witkf

ization of the isotropic Euclidean couplingt is also impor- =1, these factors both approach zero, and therefore we re-
tant in extracting our results. This may be of some relevanceover the usual action with only one coupligg=g,=0¢.
to other studies on anisotropic lattices. In the limit é—, Egs.(5) and(6) reduce to the Hamiltonian

In Sec. Il we briefly discuss the $8) model as defined values as obtained by Hasenfratz and Hasenfi28k
on anisotropic lattices. We also discuss in this section our It is convenient to rewrite the actiofl) in a more sym-
extrapolation procedure to the Hamiltonian limit. In Sec. Il metric fashion:
we explain the simulation methods used to obtain our results,
and in Sec. IV we show our results for the average plaguette g,
3

D X2 [1-Py(0]+B£EY X [1-Pyi(x)],

and string tension. Some concluding remarks are given inS=

Sec. V. X i>j;i#4 X 1#4 (7)
Il. THE ANISOTROPIC SU (3) MODEL where
The anisotropic action is given 46| 6 _ ¢
B 3§:E, &= oy (8)
S=F 2 2 [1-Pj(0]+E.£2 2 [1-Pa(x)], ¢
X i>]i#4 X i#4

(1)  Wwith 9:=0,9, and »=(g%g>)*2 In the limit é—o, B,

goes to the Hamiltonian couplingy, . Using Egs(5) and(6)
where the first term sums over all spacelike plaguettes on th@e may write a correspondence between these variables and
lattice, and the second term sums over timelike plaquettes. fae Euclidean theory,
plaquette at lattice positior is defined by

L B:=Be+3[C (&) +c(6)]+0(Beh), ©)
PM(X)z§ReTI[U#(x)UV(x+,&)UL(x+;)UI(X)], 3
) n=1+ E[cg@)—cwhowgz),
(10)

where U ,(x) is the SU3) gauge field variable. The cou-

plings B, and 8 are defined by whereBe=6/g2 . Therefore for every g ,£) pair there is a

corresponding pair of couplingsg¢,§). The relation be-

Be=—7%, B~=—73 (3)  tweené¢ and¢ has been discussed in some detail by Klassen
9o g9z [35]. In his languageé is the bare anisotropy, whilé is the
and the anisotropy factor or aspect ratio is defined by renormalized anisotropy. To evaluate the factogés) and
c.(&), one may either directly calculate them in terms of the
1 a integrals given in Ref.30], or in the case of Eq10) use the
&= AT a (4) parameterization given by Klassgsb].

We now discuss our extrapolation procedure in order to
One must include different spacelike and timelike couplingsobtain Hamiltonian estimates from an anisotropic lattice. In a
g, andg, in Eq. (3) in order to allow the freedom to renor- naive extrapolation procedure, one might assugeg,
malize so that correlation lengths are equal in both direc= g, in Eqg. (1), and extrapolate physical quantities at con-
tions, even though the spacingsanda, are different. Inthe stant8 to the Hamiltonian limit,é—occ. This procedure is
continuum limit we require that physical quantities be inde-incorrect, however, becaugt, # 8,# 8 due to renormaliza-
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02 TABLE |. Parameters used for each configuration set.
018
i Dimensions Be & Be 3
ol 1 83x8 4.0 1 4.0 1.0
oref . 8%x 8 5.0 1 5.0 1.0
B.-B | _ 83x8 5.4 1 5.4 1.0
e 83x8 5.6 1 5.6 1.0
' 83x8 5.8 1 5.8 1.0
or 8%x 8 6.0 1 6.0 1.0
0041 1 83x8 7.0 1 7.0 1.0
ooz} 1 83x 12 4.0 V312 3.9396 1.2968
o . . . . 83x 12 5.0 J3r 4.9428 1.2795
° o IRV S °® ‘ 83x 12 5.4 3R 5.3437 1.2747
, , , , 8%x 16 4.0 V2 3.8992 1.5444
coupings 2 & funclon o e amsavony. L SAS S0 Z e st
X1 54 2 5.304 1.505
3
tion. The correct procedure is to extrapolat&te « at con- :3§ 1; 2'2 gg g'gggi 1'232;
stantBg. We may summarize the procedure as follows: 83 12 5'6 312 5'4910 1'6050
(1) For a particulaiBg, choose several anisotropiés 3 ' ' '
. — 8°X12 5.8 3/2 5.6916 1.6008
(2)(9C)2alcgl(alt8) the corresponding values@f and ¢ using 83% 12 6.0 3/2 5.8921 1.5970
Egs.(9) an ' 83x 12 7.0 312 6.8941 1.5815
i i i : ical
observables at these couplings. PSRl wxae 403 sess 19509
(4) Perform a polynomial fit to the data in the inverse BBXZA' 5.0 3 4.8588 1.9053
square anisotropgs 7 at constaniBg, and extrapolate mea- 83><24 54 3 5.2602 1.8907
sured quantities té—o (A7—0) (we extrapolate in the 8°x16 5.0 2 4.8366 2.2341
inverse square anisotropy since the leading discretization er- 8°X16 5.4 2 5.2376 2.2146
rors in the timelike direction are expected to be of oraf®. Bzx 16 56 2 54381 2.2060
It is interesting to note that the discrepancy betwggn 8 x16 5.8 2 5.6385 2.1981
and Bg in Eq. (9) reaches a maximum aroure-3.6215, as 8°Xx16 6.0 2 5.8389 2.1908
can be seen from Fig. 1. We see that in the vicinity of the  8°%16 7.0 2 6.8406 2.1609
maximum, the discrepancy reaches negBly— Bg~0.19. 8°x 24 4.0 3 3.8110 3.5811
Since the most anisotropic lattice we use is in the vicinity of 83x 24 5.0 3 4.8112 3.4538
this maximum, significant discrepancies begin to creep in if 83x 24 5.4 3 5.2113 3.4171
the correct procedure is not used. 8%x 24 5.6 3 5.4114 3.4010
83x 24 5.8 3 5.6114 3.3860
83x 24 6.0 3 5.8115 3.3721
lll. METHOD 83x 24 7.0 3 6.8117 3.3152

A. Simulation details

We analyze the action given in E€{) by standard path
integral Monte Carlo methods. Configurations are generate
using the Cabibbo-MarinafB8] pseudo heat bath algorithm
applied to the three diagonal $2) subgroups of S(B). To

000 thermalization sweeps in order to equilibrate. After
ermalization, configurations are stored every 500 sweeps,
’ for 100 configurations. As a measure of the equilibration, we
. . lot the average action for various anisotropies in Fig. 2. We
analyze the behavior bgtween weak and strong coupling ee that for each value of the anisotropy the configurations
concentrate on the regiofl;=4-7. For eachB, value we relax to equilibrium after of the order of 1000 sweeps. In
generate configurations for anisotropies in the rarige particular we see very little difference in equilibration times
=1-3. These parameterg{, g) may be converted into their for the various anisotropies. This is in contrast to the results
corresponding 8g ,£) by solving Egs(9) and (10) numeri-  of Ref. [28], which used a standard Metropolis algorithm
cally. Our full set of parameters is shown in Table |, togethercombined with Fourier acceleration techniques for thg)U
with the equivalent Bg,¢) values. model in 2+1 dimensions. There it was found that equilibra-
Due to the large number of configuration sets that must bé&ion times were longer for the anisotropic lattices, despite
generated, we limit ourselves to relatively modest latticeusing Fourier acceleration technigues. The advantage of the
sizes, ranging from Bx 8 to 8x24. We adjust the lattice pseudo heat bath algorithm in updating anisotropic lattices,
size in the time direction according to the anisotropy used irwhere the space-tim@. and £ can be very large, is most
order to keep the physical length in the time and space dieasily seen when considering its application to(&ltolor
rections equal. Configurations are given a cold start and thegauge theory. In this case a link variable is updated without
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FIG. 2. Evolution of the average acti@) with the number of _ _ —
sweeps of the lattice, fgB,=5.6, and various anisotropies. FIG. 3. Effective potential plots foB,=5.60 and¢=2.0.

. excited states, which may be done by APE smedrditig4 1.
any reference to the current link. Rather only the stapleshis involves replacing a particular spacelike link by
associated with the link are considered in making thé23U

update. The improved ergodicity afforded by this algorithm a O

is largely carried over to the SB) subgroup updates of UM(X)HP{(l—a)UM(X)-i-Z E [U,(x)

SU(3) links. v=lvtp
According to the extrapolation procedure described in

Sec. Il, we must extrapolate at constg@, not g, as we

have calculated. Therefore for all observables we must inter-

polate our values in thed,£) plane onto lines of constant XU, (x=v+p)]
Be - We do this using the modified Shepard metf8€] of

multivariate interpolation. We choose our interpolationynere theP denotes a projection back onto @)Y and« is
points along the linege=3.8110, 4.8112, 5.2113, 5.4114, 5 parameter which is defined by the user. This is repeated
5.6114, 5.8115, 6.8117, arglvalues such that they are as , __times. This amounts to adding in a fractianof neigh-
close as possible to existing data points. These points aligyring staples for every spacelike link on the lattice. To tune
chosen such that there is no interpolation for the most anisgye smearing parameters, we fix the smearing fractioa to
tropic points ¢=3), and there is minimal interpolation for =0.7, as it is sufficient to fixx and tunenpg [42]. To find

the remaining points, to minimize the interpolation error. Inthe optimumnpg, we look for a value that minimizes the

practice these interpolation errors are quite negligible comstatistical variation of the effective potential
pared with the original errors on the data points, such that the

error on the interpolated value can be taken as the same as
the error in the nearest data point.

Clearly a more straightforward procedure would have
been to generate data points originally such that they weri the plateau region, while maintaining a good signal-to-
constant in3g, by choosing appropriate varying(,¢) val-  noise ratio, and also examine the rg#s]
ues. In a future study we would adopt such a procedure, i1 "
although there is little loss in accuracy for our current results. WS, O/WHr 1+ 1), (14)

XU, (x+ Ul (x+m)+ Ul (x= 1)U ,(x— )

, (12

W(r,t)

V(r,t)=|n m

(13

_ _ which should be near unity for good ground state dominance.

B. The static quark potential A typical value which proved to be sufficient for most cases

The static quark potential is extracted from the expectawasnape=5, although for smal; the overall effectiveness
tion values of Wilson loops, which are expected to behavedf the smearing procedure was reduced. An example of a
like typical effective potential plot is shown in Fig. 3, fg@,
=5.60 and¢=2.0. We see good plateau behavior for snball
W(r,t)=2 Ci(r)exd — V;(rt], (11) values, whi(_:h reflec_ts the o_pt_imum_ smearing. Finally we ex-
i tract the string tension by fitting with the form

V(r)=Vo+Kr—elr, (15)
where the summation is over the excited state contributions
to the expectation value, a1 corresponds to the contri- Wheree=m/12[44], andK andV, are fit parameters. The
bution from the ground state. To obtain the optimal signal-String tension is then found according ko=ca®. An ex-
to-noise ratio, we must suppress the contributions from th@mple of such a fit is shown in Fig. 4, f@8,=5.8 and{
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PIMC

E=J372 O~
st 045 Bare strong coupling £=v32 —
’ [2/2] Pade to strong coupling &=V372 ——— o
oar PIMC E&v3 - -
&) Bare strong coupling &=v3 -
035 [2/2] Pade to strong coupling &=v3 —— o" a
14 ’
V() o
12
Wt
08
06
0 1 2 1.3 4 5 6 5 5‘.5 6
r
FIG. 4. Static quark potential #&,=5.8 and¢=3.0. FIG. 6. Comparison of the average spacelike plaquette calcu-

lated using PIMC at anisotropies=/3/2 and&= /3 with strong

=3.0. We see that the general trend of the data is well fitte@0Upling expansions to ordg@? . Dashed lines are to guide the eye.
(15), in this instance givingKk=0a?=0.189(4) andV,

=0.7347). Thescatter of the data points is larger than theirPling series, which shows that beyo~5 the series di-
statistical error bargéwhich are within the data pointsbut ~ verges away. Our PIMC data match smoothly onto the strong

this may be attributed to residual anisotropies between difcoupling and weak coupling expansions in their respective
ferent directions on the lattice. limits, as expected.lt can be seen that the crossover from

strong coupling to weak coupling behavior takes place in the
region Bg~5-6, as is well known.

At finite anisotropy, we are not aware of any results avail-
A. Average plaquette able to make a similar comparison. It is fairly straightfor-
ward however to calculate the corresponding strong coupling

Our aim in this section is to obtain estimates for the av_expansion o orde,86 The calculations for this are given in
i . c-
erage plaquette, defined as the expectation value ofZg. the Appendix. Setting=J—1 in Eq. (A10) gives

for the Hamiltonian theory. As no timelike plaquettes are

IV. RESULTS

present in the Hamiltonian lattice, we therefore calculate 1 1 5 233 65

only spacelike plaquettes in the Euclidean theory. Henceforth (Psd=—=b+ —=b?— ——b*+ ( - __> 5
we will refer to the average spacelike plaquette simply as 3¢ 6& 726 243 19445
“average plaquette,” unless specified otherwise. As a first _ _

test of our results, we compare the average plaquette for the +<§_2 4_54 749 >b6+0(b7) (16)
isotropic latticeé=1 to existing results. This is shown in 81 243 1944@3 '

Fig. 5, together with strong coupling expansions to omg‘r

[45,46, and weak coupling expansions to orgeg” [47]. whereb=,/6. A comparison between the strong coupling
We also show 45/5] Padeextrapolation of the strong cou- expansion and our PIMC data is shown in Fig. 6, along with
a[2/2] Padeextrapolation. We see consistent results between

o8 — the expansions and our data f6¢=4, which is still in the
Weakcoupling evcidean — | e strong coupling region. The seri€kb) is singular in the limit
o7r Bare strong coupling— | . e ] - . —
[5/5] Pade to strong coupling —— e Ié;?é oec, and its convergence therefore worsens decomes
dl We now extrapolate our results to the Hamiltonian limit.
(Ps) Performing the interpolation as described in Sec. Il A, we
osf obtain points at consta8z. Our results are then extrapo-
lated to the Hamiltonian limit in powers df 72, as shown in
o4f Fig. 7. We see a fairly smooth dependence/or?, for all
Be . Error estimates for the extrapolation may be estimated
o3r
02 " - - - s We note that the physical time extent of tg=7.0 lattices is
B, sufficiently small to take us beyond the deconfinement phase tran-

sition. However, the small spatial lattice extent constrains us to
FIG. 5. Comparison of our PIMC data for the average plaquetteexamine short distance quantities which are not severely affected by
with strong and weak coupling expansions for the isotropic latticedeconfinement issues. Therefore, we present results for the mean
¢=1. Dashed lines are merely to guide the eye. plaquette ajBg= 7.0 with this reservation.
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o e e
........ ,,—»‘
] e

This work —@— |

Weak coupling series - -
Hamer, Samaras and Bursill —1

Chinetal. —&— | 1

Bare strong coupling series ——

[3/3] Pade to strong coupling —— | 1

2 3 4 5 8 7 8 9

A

FIG. 7. Extrapolation of the average plaquette to the Hamil- FIG. 8. Our extrapolated Euclidean PIMC results compared to
tonian limit A7—0, for fixed B¢ . Dashed lines show quadratic fits Hamiltonian strong couplinf49], Hamiltonian weak couplin§48],
to the data inA 72. and Green’s function Monte Carl@GFMC) results[24]. Dashed
lines are merely to guide the eye.
by comparing fits of different ordeftinear, quadratic, cubic,
etc) in A72. Our numerical values in thA7—0 limit are  than the strong coupling series result. A possible explanation
shown in Table II. is that we have relied heavily on the weak-coupling relations
To compare our extrapolated results to existing Hamil-between scales of the anisotropic and Hamiltonian theories
tonian results, we must take into account the difference oind the Euclidean theolfy.e., Eqs.(9), (10), and(17)]. It is
scales between the two regimes. The Hamiltonian couplingossible higher order terms in these expansions begin to con-
parametem=6/gﬁ|, wheregy=lim,_..g,, may be related tribute larger effects ax <3.

to the Euclidean coupling through the relati@®] In the region\ =5—8, however, there is a large discrep-
ancy between our results and the previous GFMC estimates
Be=V6N—0.07848. (17)  [22,24. We find that the crossover from strong to weak cou-

) ) ) ) pling behavior occurs at much the same couplings as in the
Using this relation we may plot our extrapolated EUC“dea“isotropic regime, and earlier than shown by the GFMC re-
esti_mates agair_1$t previous re_sults_ obtaine_d vyithin the Hamils its There is quite good agreement, on the other hand, be-
tonian formulation, as shown in Fig. 8. This figure compareégyeen our results and the strong coupling series extrapola-
our present results with Green's function Monte Carlojigns in this regime. This gives us confidence that our present
(GFMC) results of Chiret al.[22] and Hamer, Samaras, and regits are the more accurate. It was pointed out in [,
Bursill [24], the weak coupling series to order 2 of Hof-  that the GEMC method suffers from an unacceptable depen-
sess and Horsle}y48], and the strong coupling series to order gence on the trial wave function, and we surmise that the

7 B .
A" of Hamer, Irving and Preedd9]. For the strong coupling  yariational parameter may not have been optimized to the
series we show both the raw series sum, and #&} Pade  ¢qrrect value in this region.

approximant. The analysis of Hamet al. [24] shows that Further evidence is provided by Loref al. [23] who
finite-size effects in the Monte Carlo data should be negli-showed that GFMC results for the ground-state energy
gible at this level of accuracy. change significantly if a second variational parameter is

~ Fora<4, the agreement between the different estimategqged in to the trial wave function. We conclude that the
even with the somewhat undesirable extra step of having to

TABLE II. A summary of our estimates in the Hamiltonian limit perform aA7—0 extrapolation.

A 7—0 for the averagéspacelike plaquette and the string tension.
The Hamiltonian coupling\, calculated from Eq(17), is also

shown. B. String tension
2 We now turn to calculating the string tension. We again

Be A (Ps9 oa use only spacelike Wilson loops, so we can ultimately com-
3.8110 25214 0.125) pare to Hamiltonian results. Figure 9 shows results for the
4.8112 3.9849 0.23) 1.0820) isotropic caseg¢=1. Our results for smalBg are contami-
5.2113 4.6637 0.312) 0.574) nated by large errors due to the fast exponential decay of the
5.4114 5.0231 0.36) 0.312) Wilson loops. The parallel lines show the two-loop scaling
5.6114 5.3958 0.4G8) 0.171) form
5.8115 5.7819 0.43®) 0.1104) 1 , 1
6.8117 7.9125 0.528) A= _(7092)—71/270@( — 5| (18

a 209
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FIG. 9. The string tension af=1. We plot our own PIMC

results, together with a 12th order strong coupling expargsah FIG. 10. Extrapolation of the string tension to the Hamiltonian

limit A7—0. Dashed lines show quadratic fits A2,

where
The extrapolation to the Hamiltonian limit is shown in
11 102 Fig. 10. This is performed again in powers Afr%, in a
Vo= > NT o5 (19 similar fashion to the average plaquette. There is a trend
16m (167%) towards a stronger curvature in the extrapolation for smaller

values of B¢, suggesting that our estimate fBe=4.81 is
probably too high. There are however large error bars on
these data points.
P~ In Fig. 11, our extrapolated results for the string tension
are compared with Hamiltonian estimates obtained by
Hamer, Irving and Preede9] using an exact linked cluster
expansionELCE) method. Our axes are such that the scal-
ing relation(18) for the string tension appears as a straight
line in the plot. In this case we use the Hamiltonian versions
of the couplingsg=gn, A=Ay, and)\=6/g,‘f|. We do not
_ . show here the GFMC results of Hamet al. [24], which

Vo= (1.35%0.12 Ao, @1 were derived from Creutz ratios on very small loops, and
where A, is the perturbative QCD scale parametertherefore subject to large finite-size effects. We see that the
[29,50. It is well known, however, and is evident from Fig. ELCE results are more accurate in the strong coupling re-
9, that in quantitative terms the string tension follows neitherdion, but our PIMC results are better in the weak coupling
two-loop or three-loop scaling at these couplings; and a moréegion. The two sets of data do not agree belgn=2.1.
sophisticated fit by Edwardet al. [51] taking into account This may be because our point\at = 2.00 (or B=4.81) is

The couplingg refers to the Euclidean couplingg in this
case, and the scaling parameter herd isAg, the Euclid-
ean scaling parameter. Our data asymptotically appear to a|
proach the expected scaling form in the weak coupling re
gion. The parallel lines correspond to

Jo=(113+10)Ag, (20)

or

various correction terms gives a much smaller value, too high, as noted above; but also, we do not expect precise
Jo=(75+1)A¢. (22) :
ELCE -+
We do not attempt such a fit here. . . Asymptotic weak coupling —=—

On the same figure are plotted the strong coupling expang °f-
sions of Minster and Weisz to 12th ordgs2] and the Monte &
Carlo results of Edwardst al. [51]. Due to the presence of
the roughening transition g8~5.5, we expect the strong
coupling expansion to diverge from the data beyond thisw
point, as is seen in the figure. At the smaller valuegBpf
our results agree well with those of Edwamlsal. [51]; but
at largerBe, our results are higher than theirs. This is most — _,|
probably due to the smaller lattice size used in our calcula-
tions, as discussed in Rg51], and is consistent with the .
higher estimate of the string tension obtained at &f). 25 > 5 0 vy i =
One would need to use larger lattice sizes or else an im-
proved action to get more accurate estimates of the FIG. 11. Extrapolated PIMC results together with ELCE results,
asymptotic parameters. and GFMC estimates of the string tension.
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agreement in this region, since the measurements correspotaige influence in terms of extrapolating our resultséto
to different quantities. The PIMC estimates refer to the decay—«~. We expect that this renormalization will have a much
exponent of spacelike Wilson loops, while the ELCE esti-smaller effect for improved actiori$6,57), and hence utiliz-
mates are of the “axial” string tension, i.e., the energy pering such actions may be a neater way of removing the com-
unit length of a “string” of flux along one axis. It is well plication altogether.
known that these estimates may differ at strong coupling, Our main motivation for examining anisotropic lattices
where rotational invariance is broken; but at some intermewas to investigate alternative Monte Carlo procedures for
diate coupling estimated3] to be around\=5.4, a “rough-  obtaining results in the Hamiltonian formulation, in view of
ening” transition[44,54,55 takes place, after which rota- the lack of a reliable quantum Monte Carlo algorithm for
tional invariance is restored and different estimates of théHamiltonian LGT. We have found that the PIMC approach is
string tension should coincide. Series expansions for theuperior to quantum Monte Carlo methods, in particular the
axial string tension cannot be continued past the rougheninGFMC algorithm. The GFMC algorithm was found previ-
transition. ously [24] to have unacceptable systematic errors due to its
Again the crossover to weak coupling behavior occurs independence on a trial wave function. In this investigation we
the region\\=2.1-2.4, corresponding t8z=5.1-5.8. In  have found that the PIMC method gave more reliable results
the weak coupling region, the ELCE results are somewhafor the mean plaquette, and also gave good results for the
higher than our PIMC estimates, but are almost compatiblstring tension in the scaling regime, which the GFMC
within errors: we believe our present results are more reliablenethod[24] could not.
and accurate. They are also much more reliable than the The major disadvantage of PIMC is the necessity to make
GFMC results of Ref[24], mentioned above. an extrapolation to the Hamiltonian limik 7— 0. This re-
We again see evidence for the approach to asymptotiduces the accuracy of the final results, and also is rather
scaling behavior in the regiogih >2.3. The data give us a fit expensive in computer time, as several configuration sets

of must be generated to obtain ofe point. With modern al-
gorithms, however, the results are almost as accurate at large
Jo=(123+5)Ay (23)  anisotropies as in the isotropic case, and the extrapolation
can be made with confidence—see Figs. 7 and 10. Thus we
or conclude that PIMC is the preferred Monte Carlo approach

for estimating physical quantities in the Hamiltonian limit,
just as in the Euclidean case.

using the conversion factors computed by Hasenfratz and An obvious extension of the present work would be to
Hasenfratz[29]. This is much the same as our Euclideanattempt to estimate glueball masses using the_ PIMC ap-
estimate, and somewhat too high by comparison with Eqproach, and to compare thqse_wnh existing Hamiltonian re-
(22), presumably for the same reasons discussed above. It%”ts' We hope to attempt this in future work.

considerably better than the Hamiltonian ELCE estimate

Jo=(1.34+0.09 A mom, (24)

Jo=(1.7=0.4)A om Of Hameret al. [49], however. ACKNOWLEDGMENT
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both cases our results are a substantial improvement on other

estimates calculated purely within the Hamiltonian formU|a'APPENDIX: STRONG COUPLING EXPANSION FOR SU (3)

tion, although there is _broad agreement betw_een them. This ON ANISOTROPIC LATTICES
demonstrates clear evidence of the universality between the
Hamiltonian and Euclidean formulations of LGT. A Wilson loop of sizel XJ is defined by

In performing the extrapolation to the Hamiltonian limit
we have found it very important to take into account the

renormalization of the couplings, and£ in Eq. (7) at finite

&. The renormalization of has been discussed in some de-

tail already by Klassef35]. In our case this is only half the x 1 e~ S°(P), (A1)
story, as there is also the renormalization&f, which is PePg;

related to the Euclidean couplingg, through Eq.(9). As

mentioned in the text, the discrepancy between the two counhere C denotes the contour of the Wilson looN, is the
plings reaches a maximum arouéet 3.6214, which is quite  dimension of the group matrice@ our caseN=3), U;;
close to some of our most anisotropic data points, and has denotes a group element lying between sitasdj, Z is the

1 1 s
W(C)zzf [du]ﬁx(ﬂc uij) [T es®

PePgg
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normalizing factor[ dU] denotes the group integration over then coefficiente;=d;/dy andgs=f,/f, are given by
SU(3) matrices,x() takes the character of its argument, the

product overP4s runs through all spacelike plaquettes, while _ B B2
Ps; denotes all timelike plaquettes. We also define e3=3U(B/6¢)= 2ey =t (A8)
6¢ 7%
Bs
S*(U)=—=x(V), (A2) —
&N ~3u(p.Eie =P+ i
B 3= B¢ =% 72 Ce
siu)=- L4, ). (A3) (A9)

) . . Performing expansions according to the diagrams described
Us_lng standard character expansion techniql@d, we i, Ref. [36], we obtain for spacelike Wilson loops
write

0 1 4 4
s €3 J3 €3
e S S(U):Z d, x,(U), (A4) W,{(C)= W 1+21J N +21J N
r=0
e 4 es\°
Lz +2IJN(—3)(% +2IJN<—3 +}
e S W=3 fx(U). (A5) N/AN N
=0 (A10)
The coefficientsd, and f, may be found by inverting the
relation while for timelike Wilson loops we obtain
S 1J 2 2 2 3
dr:f[dU]xf(U)e’s W), (AB) _ %) SNEE S| 9s
Wo(C)=| ) (143l 5] (] H4NIT) [
and similarly forf,. We need only the result far=0 and
r =3 however, which may be found in Eq¥) and(10) of + } (A11)
Ref. [46]. Defining

1.1 S 1 7 The string tension may then b ted using th It
T Y - DL y then be computed using these results
U= Xt gxt = 25X = 5 5 T (AT g a2 = (113) InW(O),
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