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Scaling behavior of the overlap quark propagator in the Landau gauge
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The properties of the momentum space quark propagator in Landau gauge are examined for the overlap
quark action in quenched lattice QCD. Numerical calculations are done on three lattices with different lattice
spacings and similar physical volumes to explore the approach of the quark propagator toward the continuum
limit. We have calculated the nonperturbative momentum-dependent wave-function renormalization function
Z(z2;p) and the nonperturbative mass functionM (p) for a variety of bare quark masses and perform an
extrapolation to the chiral limit. We find the behavior ofZ(z2;p) and M (p) are in reasonable agreement
between the two finer lattices in the chiral limit, however the data suggest that an even finer lattice is desirable.
The large momentum behavior is examined to determine the quark condensate.
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I. INTRODUCTION

The quark propagator is one of the fundamental quanti
in QCD. By studying the momentum-dependent quark m
function in the infrared region we can gain valuable insig
into the mechanism of dynamical chiral symmetry break
and the associated dynamical generation of mass. There
been several studies of the momentum space quark prop
tor @1–9# in Landau gauge using different fermion action
Here we focus on the overlap fermion action and exte
previous work@8# to three lattices with different lattice spac
ing a at fixed physical volume. This allows us to study t
approach of the Landau gauge quark propagator to the
tinuum limit. The study of the overlap quark propagator
the Gribov copy-free Laplacian gauge is underway and w
be reported elsewhere.

II. QUARK PROPAGATOR ON THE LATTICE

In a covariant gauge in the continuum, the renormaliz
Euclidean space quark propagator has the form

S~z2;p!5
1

ip”A~z2;p2!1B~z2;p2!
5

Z~z2;p2!

ip”1M ~p2!
, ~1!

where z is the renormalization point. The renormalizatio
point boundary conditions forM (p2) andZ(z,p2) are cho-
sen to be

Z~z2;z2![1, M ~z2![m~z2!. ~2!

where, at sufficiently large renormalization pointz, m(z2) is
the usual renormalized~running! quark mass. The function
A(z2;p2) and B(z2;p2), or alternatively Z(z2;p2) and
M (p2), contain all of the nonperturbative information of th
quark propagator. Note thatM (p2) is renormalization point
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independent, i.e., sinceS(z2;p) is multiplicatively renormal-
izable all of the renormalization-point dependence is carr
by Z(z2;p2). For sufficiently large momenta, the effects
dynamical chiral symmetry breaking become negligible, i
for large p2, and we haveM (p2)→m(z) up to logarithmic
corrections, wherem(z) is the perturbative running mass.

When all interactions for the quarks are turned off, i.
when the gluon field vanishes~or the links are set to one!, the
quark propagator has its tree-level form

S(0)~p!5
1

ip”1m0
, ~3!

wherem0 is the bare quark mass. When the interactions w
the gluon field are turned on we have

S(0)~p!→Sbare~a;p!5Z2~z2;a!S~z2;p!, ~4!

where a is the regularization parameter—in this case, t
lattice spacing—andZ2(z2;a) is the quark wave-function
renormalization constant chosen so as to ensureZ(z2;p2)
51. For simplicity of notation we suppress th
a-dependence of the bare quantities.

On the lattice we expect the bare quark propagators
momentum space, to have a similar form as in the c
tinuum, except that theO(4) invariance is replaced by
four-dimensional hypercubic symmetry on an isotropic l
tice. Hence, the inverse lattice bare quark propagator ta
the general form

~Sbare!21~p![ i S (
m

Cm~p!gmD 1B~p!. ~5!
©2004 The American Physical Society05-1



on
en

t

a

a

v
n

l

tor

rier
ki-

e
tor

the
the
at
ach

.
t the
the
ion
of
er,
this
tor
ical

with
l
he
ved

tice
ing

the

in

-

ZHANG et al. PHYSICAL REVIEW D 70, 034505 ~2004!
We use periodic boundary conditions in the spatial directi
and antiperiodic in the time direction. The discrete mom
tum values for a lattice of sizeNi

33Nt , with ni51, . . . ,Ni

andnt51, . . . ,Nt , are

pi5
2p

Nia
S ni2

Ni

2 D , and pt5
2p

Nta
S Nt2

1

2
2

Nt

2 D .

~6!

The overlap fermion formalism@10,11# realizes an exac
chiral symmetry on the lattice and is automaticallyO(a)
improved. The massive overlap operator can be written
@12#

D~m!5
1

2
@11m1~12m!g5e~Hw!#, ~7!

whereHw(x,y)5g5Dw(x,y) is the Hermitian–Wilson-Dirac
operator, the mean-field improved Wilson-Dirac operator c
be written as

Dw~x,y!5@~2mwa!14r #dx,y2
1

2 (
m

$~r 2gm!

3Um~x!dy,x1m̂1~r 1gm!Um
† ~x2am̂ !dy,x2m̂%

5
u0

2k Fdx,y2k(
m

H ~r 2gm!
Um~x!

u0
dy,x1m̂

1~r 1gm!
Um

† ~x2am̂ !

u0
dy,x2m̂J G . ~8!

The negative Wilson mass (2mwa) is then related tok
by

k[
u0

2~2mwa!1~1/kc!
, ~9!

and mean-field improvement allows the use of the tree-le
valuekc51/(8r ). The Wilson parameter is typically chose
to ber 51, and we will also user 51 here in our numerica
simulations. The dimensionless quark mass parameter is

m[
m0

2mw
. ~10!

The overlap quark propagator is given by the equation

Sbare~m0![D̃c
21~m!, ~11!

where

D̃c
21~m![

1

2mw
D̃21~m!

and

D̃21~m![
1

12m
@D21~m!21#. ~12!
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At tree-level, the inverse bare lattice quark propaga
becomes the tree-level version of@Eq. ~5!#

~S(0)!21~p![ i S (
m

Cm
(0)~p!gmD 1B(0)~p!. ~13!

We calculateS(0)(p) directly by setting the links to unity in
the coordinate space quark propagator and taking its Fou
transform. It is then possible to identify the appropriate
nematic lattice momentum directly from the definition

qm[Cm
(0)~p! ~14!

The form ofqm(pm) is shown and its analytic form given in
Ref. @8#. Having identified the appropriate kinematical lattic
momentumq, we can now define the bare lattice propaga
as

Sbare~p![
Z~p!

iq”1M ~p!
. ~15!

This ensures that the free lattice propagator is identical to
free continuum propagator. Due to asymptotic freedom
lattice propagator will also approach the continuum form
large momentum. In the gauge sector, this analysis appro
dramatically improves the gluon propagator@13,14#.

The two Lorentz invariants can now be@24#

Z21~p!5
1

12iq2
Tr$q”S21~p!% ~16!

M ~p!5
Z~p!

12
Tr$S21~p!%. ~17!

While Z is directly dependent on our choice of momentumq,
the mass functionM is indirectly dependent on this choice
In the case of staggered quarks it has been seen tha
kinematic momentum derived from tree-level analysis of
action is a good choice of momentum for the mass funct
@5,6#. This is an empirical result. The tree-level behavior
the Overlap quark propagator is rather different, howev
and a different approach may be needed. We investigate
issue by analyzing the scaling behavior of the propaga
over three values of the lattice spacing at constant phys
volume.

III. NUMERICAL RESULTS

We present results from three lattice ensembles, each
a different lattice spacinga, but having the same physica
volume. Lattice parameters are summarized in Table I. T
gauge configurations were created using a tadpole impro
plaquette plus rectangle~Lüscher-Weisz@15#! gauge action.
Each ensemble consists of 50 configurations. The lat
spacing was determined by the static quark potential us
the string tensionAs5440 MeV @16#.

The gauge field configurations were gauge-fixed to
O(a2) improved Landau gauge@17#. Our calculation begins
with the evaluation of the inverse of the Dirac operator
Eq. ~7!. We approximate the matrix sign functione(Hw) by a
14th-order Zolotarev approximation@18#. The coordinate
space propagator, Eq.~11!, is calculated for each configura
5-2
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TABLE I. Lattice parameters.

Action Volume NTherm NSamp b a ~fm! u0 Physical volume (fm4)

Improved 163332 5000 500 4.80 0.093 0.89650 1.5333.00
Improved 123324 5000 500 4.60 0.123 0.88888 1.5333.00
Improved 83316 5000 500 4.286 0.190 0.87209 1.5333.00
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tion. A discrete Fourier transform is then applied to the ea
of the coordinate space propagators, and the momen
space bare quark propagatorSbare(p) is finally obtained from
the ensemble average.

In the Wilson action we usek50.19163 for the regulato
mass. We calculate the Overlap quark propagator for
quark masses on each ensemble by using a shifted Conju
Gradient solver. The quark mass parameterm was adjusted
to make the tree-level bare quark mass in physical units,
same on three lattices. For example, we choosem50.018,
0.021, 0.024, 0.030, 0.036, 0.045, 0.060, 0.075, 0.090,
0.105 on ensemble 1, i.e., the 163332 lattice witha50.093
fm. This corresponds to bare masses in physical units
m052mmw5127, 148, 169, 211, 254, 317, 423, 529, 63
and 740 MeV, respectively.

Results from ensemble 2 were presented in Ref.@8#, and
some results from ensemble 3 were also reported in Ref.@9#.
Here we will compare the quark propagators on each
semble to examine its behavior as the lattice spacing v
ishes. First we present some results from ensemble 1,
finest lattice of the three. All data has been cylinder cut@13#.
Statistical uncertainties are estimated via a second-or
single-elimination jackknife.

In Fig. 1 we show the results for all ten masses for b
the mass and wave-function renormalization functio
M (p) and Z(R)(p)[Z(z2;p), respectively, as a function o
the discrete lattice momentump. Z(R)(p) is renormalized at
z53.44 GeV. We see that bothM (p) and Z(R)(p) are rea-
sonably well behaved up to 5 GeV. In the plots ofM (p) the
data is ordered as one would expect by the values form, i.e.,
the larger the bare quark massm0, the higher is theM (p)
curve. At small bare massesM (p) falls off more rapidly with
momentum, which is understood from the fact that a lar
proportion of the infrared mass is due to dynamical ch
symmetry breaking at small quark masses. In the nonrela
istic limit, the mass function would be a constant.

Z(R)(p) on the other hand is infrared suppressed. T
smaller the quark mass, the more pronounced the dip at
momenta. This behavior is qualitatively consistent with wh
is seen in Dyson-Schwinger-based QCD models@19,20#. It is
likely that some of the suppression, however, is due to
finite volume @6#. In Fig. 2 we repeat these plots but no
using the kinematical lattice momentumq. This only alters
the large momentum behavior of the propagator.

We perform an extrapolation to zero quark mass by
linear fit to the data. At sufficiently large momenta the ma
function will be proportional to the bare quark mass,
which case the linear extrapolation is appropriate. Nonlin
behavior is to be expected in the infrared, but this sim
ansatz describes the present data adequately. In the ultr
let, the renormalizedZ should—and does—approach its pe
03450
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turbative value of 1. This is mass independent. We inve
gated the effect of including the smallest quark masses in
chiral extrapolation and found that eliminating the lighte
two made little difference to the extrapolated result. The
sulting estimate of the chiral limit is shown in Fig. 3. The
are shown against bothp andq, renormalized as before. W
see that bothM (p) andZ(R)(p) deviate strongly from their
tree-level behavior. In particular, as in earlier studies of
Landau gauge quark propagator@3–5,8#, we find a clear sig-
nal of dynamical mass generation and a significant infra
suppression of theZ(R)(p) function. At the most infrared
point—the lowest nonzero momentum available on t
lattice—the dynamically generated mass has the va

FIG. 1. The functionsM (p) and Z(R)(p)[Z(z2;p) renormal-
ized at z53.44 GeV for all ten quark masses. Data are plot
versus the discrete momentum values defined in Eq.~6!, p
5A(pm

2 , over the interval@0,5# GeV. The data correspond to bar
quark masses~from bottom to top! m50.018, 0.021, 0.024, 0.030
0.036, 0.045, 0.060, 0.075, 0.090, and 0.105, which in phys
units correspond tom052mmw.127, 148, 169, 211, 254, 317
423, 529, 634, and 740 MeV, respectively.
5-3
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M IR5307(6) MeV and the momentum-dependent wa
function renormalization function has the valueZIR
50.55(2). These values are very similar to the results fou
in previous studies@3–6,8# and are also similar to typica
values in QCD-inspired Dyson-Schwinger equation mod
@19,20#. The results of Ref.@6# suggests that at least some
the infrared suppression ofZ(R)(p) is due to finite volume
effects.

Now we present the results on three lattices for comp
son. These lattices have approximately the same phys
volume, but each has a different lattice spacing. Thus we
study the Overlap propagator’s scaling properties.
present the results for the chiral limit. The mass functi
M (p) for the three lattices in the chiral limit is plotted in Fig
4, using bothp andq. We see that if the mass functionM (p)
is plotted against the standard lattice momentump, the
agreement of the results among the three lattices is b
than the case in which the mass functionM (p) is plotted
against kinematical lattice momentumq.

The results for the renormalization functionZ(R)(p)
[Z(z2;p) of the three lattices is plotted in Fig. 5. Here th
renormalization points are chosen to bez53.44 GeV inp
scale andz5 5.31 GeV inq scale. Contrary to the case o

FIG. 2. The functionsM (p) and Z(R)(p)[Z(z2;p) for renor-
malization pointz55.31 GeV for all ten quark masses. Data a
shown versus the discrete momentum values defined in Eq.~14!,
q5A(qm

2 , over the interval@0,12# GeV. The data in both parts o
the figure correspond from bottom to top to increasing qu
masses. The values of the bare quark masses are in the capt
Fig. 1.
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mass functionM (p), but as predicted by the tree-leve
analysis, the agreement between the results on three lat
is better if Z(R)(p) is plotted against the kinematical lattic
momentumq. There are also the relatively small discrepa
cies in Z(R)(p) versusq in the infrared region on three lat
tices; it seems that in the continuum limit, the dip in th
renormalization functionZ(R)(p) will be narrow, but the
depth of the dip will be unchanged. It suggests that an e
finer lattice will be needed to confirm the continuum limit
Z(R)(p) in the infrared. It is possible that the linear chir
extrapolation is unreliable forZ(R)(p) in this regime or it
could be that dynamical chiral symmetry breaking is co
pling hypercubic lattice artifacts to finite volume effect
This warrants further investigation with finer and larger la
tices.

Thus we have resolved one of the key questions raise
the studies of Ref.@8#. We see that the continuum limit ap
pears to be approached most rapidly whenZ(R)(p) is plotted
againstq andM (p) is plotted againstp. The better scaling of
Z(R)(p) as a function ofq is natural and predicted by th
tree-level analysis. ThatM (p) is better againstp is purely
observation.

Another way of studying scaling is by making compa
sons with known continuum results. In the chiral limit, in th

k
of

FIG. 3. Linearly extrapolated estimates ofM (p) and Z(R)(p)
[Z(z2;p) in the chiral limit. Here the renormalization point arez
53.44 GeV in thep scale andz55.31 GeV in theq scale. At the
smallest accessible momentumM IR5307(6) MeV and ZIR

50.55(2).
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continuum, the asymptotic quark mass function has the fo

M ~p2! 5
p2→`

2
4p2dM

3

^c̄c&

@ ln~m2/LQCD
2 !#dM

3
@ ln~p2/LQCD

2 !#dM21

p2
~18!

@see Ref.@19#, Eq.~6.15!# where the anomalous dimension
the quark mass isdM512/(3322Nf) for Nf quark flavors
(Nf50 in the present case!. The dependence ofM (p2) on

FIG. 4. The mass functionM (p) from a linear extrapolation to
the chiral limit is shown for our three lattices. In the upper part
the figureM (p) is plotted against the discrete lattice momentump,
whereas in the lower part it is plotted against the kinematical m
mentumq. The results again suggest that we most rapidly appro
the continuum limit by plottingM (p) againstp.
03450
m

the renormalization pointm is canceled by the dependence
the condensate, maintaining the renormalization point inv
ance of the mass function. We fit this form to the lattice d
obtained by both linear and quadratic chiral extrapolation
quadratic extrapolation was used on the AsqTad data@6# so it
is useful for comparing with those results. Some results
presented in Table II.

The difference between the quadratic and linear extra
lations is no great surprise as our quark masses are ra
heavy. This is a constraint of the volume. The relevant po

f

-
h

FIG. 5. The momentum-dependent wave-function renormal
tion function Z(R)(p)[Z(z2;p) for renormalization point z
53.44 GeV in thep-scale andz55.31 GeV in theq-scale from a
linear extrapolation to the chiral limit. In the upper part of th
figure, Z(R)(p) is plotted against the discrete lattice momentump
whereas in the lower part it is plotted against the kinematical m
mentumq. The results again suggest that we most rapidly appro
the continuum limit by plottingZ(R)(p) againstq.
TABLE II. Extracted values of the quark condensate^cc&.

b extrapolation p fit region ~GeV! 2^c̄c&1/3 ~MeV! q fit region ~GeV! 2^c̄c&1/3 ~MeV!

4.60 linear 3.6–4.5 337~39! 4.3–8.6 621~49!

4.60 quadratic 3.6–4.5 292~56! 4.3–8.6 575~72!

4.80 linear 3.6–5.3 327~22! 5.5–11.4 499~34!

4.80 quadratic 3.6–5.3 259~36! 5.5–11.4 395~54!
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is that there is good agreement between the two lattices w
p is the momentum, but not whenq is the momentum.

IV. SUMMARY AND OUTLOOK

The momentum space quark propagator has been ca
lated in Landau gauge on three lattices with different latt
spacinga, but very similar physical volumes in order to e
plore the approach to the continuum limit. We calculated
nonperturbative momentum-dependent wave-function re
malization Z(z2;p) and the nonperturbative mass functio
M (p) for a variety of bare quark masses. We also explo
the quark propagator in the chiral limit. As previously antic
pated @8#, the continuum limit forZ(z2;p) is approached
most rapidly when it is plotted against the kinematical latt
momentumq, whereas for the quark mass functionM (p),
we have found that using the discrete lattice momentump
provides the most rapid approach to the continuum limit.

Future work should test our conclusions and further
B
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plore the continuum limit with one or more additional fine
lattice spacings. In addition, it will be necessary to use b
finer and larger volume lattices, in particular to study t
infrared behavior ofZ(z2,q). One can also use other kerne
in the overlap fermion formalism, e.g., using a fat-link irre
evant clover action@21# as the overlap kernel@22,23# in or-
der to further establish the robustness of our conclusions
to provide more accurate data. These studies are curre
underway and results will be reported elsewhere.
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