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1. Introduction

The quark–gluon vertex describes the coupling between quarks and gluons, and is thus

one of the fundamental quantities of QCD. In perturbation theory, a complete calculation

has been performed to one loop [1], and partial two- and three-loop calculations have

been performed for specific gauges and kinematics [2, 3]. Nonperturbatively, however, it

remains largely unknown. In [4, 5, 6] the first steps were taken towards a nonperturbative

determination, by way of a quenched lattice calculation of the form factor containing the

running coupling in two different kinematics in the Landau gauge.

The Dyson–Schwinger equation (DSE) for the quark propagator contains the quark–

gluon vertex, and normal practice has been to truncate the hierarchy of DSEs by providing

an ansatz for the vertex. However, if a realistic gluon propagator, obtained from the

coupled ghost–gluon(–quark) DSEs [7, 8, 9] and consistent with lattice data [10, 11, 12] is

used, dynamical chiral symmetry breaking appears to be quite sensitive to the details of

the ansätze employed [9]. It therefore appears highly desirable to obtain ‘hard’ information

about the full infrared structure, not only the part containing the running coupling.

In this paper we take the first steps towards this aim, by determining all the nonzero

form factors at the two kinematic points used in [6], namely q = 0 and q = −2p, where q

is the gluon momentum and p is the momentum of the outgoing quark leg. At the same

time we also study the quark mass dependence by using two different quark masses for the

vertex at q = 0. Some preliminary results have already been presented in [13].

The quark–gluon vertex is related to the ghost self-energy through the Slavnov–Taylor

identity,

qµΓµ(p, q) = G(q2)
[
(1 −B(q, p+ q))S−1(p) − S−1(p+ q)(1 −B(q, p+ q))

]
, (1.1)
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where G(q2) is the ghost renormalisation function and B(q, k) is the ghost–quark scattering

kernel. Evidence from lattice simulations [14] and Dyson–Schwinger equation studies [7, 8,

9] indicate that G(p2) is strongly infrared enhanced, and this should also show up in the

quark–gluon vertex. On the other hand, nontrivial structure in the ghost–quark scattering

kernel, which has usually been assumed to be small, may also be realised in the vertex.

The rest of the paper is structured as follows: In section 2 we briefly present our

notation and procedure, referring to [6] for the details. In section 3 we present results for

the vertex at the asymmetric point and compare to the abelian (quark–photon) vertex,

which is completely determined by the Ward–Takahashi identity at this point. In section

4 we present results for the vertex at the symmetric point, including the ‘chromomagnetic’

form factor τ5. Finally, in section 5 we summarise our results and discuss prospects for

further work. Some tree-level formulae used in the analysis are given in the Appendix.

2. Notation and procedure

Throughout this article, we will be using the same notation as in [6], and we refer to that

article for a detailed discussion of our notation and procedure. We write the one-particle

irreducible (proper) vertex (see fig. 1) as Λa
µ(p, q) ≡ taΛµ(p, q), where p and q are the

outgoing quark and gluon momentum respectively. The incoming quark momentum is

denoted k.

We will be operating in the Landau gauge, where,

q

k = p+ qp

�; a

Figure 1: The quark–gluon vertex.

as discussed in [6], only the transverse-projected part

of the vertex can be studied away from q = 0. We

will therefore define the transverse-projected vertex

as

ΛP
µ (p, q) ≡ Pµν(q)Λν(p, q) =

(
δµν − qµqν

q2

)
Λν(p, q) .

(2.1)

In a general kinematics the vertex can be decomposed

into 12 independent vectors which we can write in

terms of vectors Li, Ti and scalar functions λi, τi as

described in [6]:

Λµ(p, q) = −ig
4∑

i=1

λi(p
2, q2, k2)Li,µ(p, q) − ig

8∑

i=1

τi(p
2, q2, k2)Ti,µ(p, q) . (2.2)

We will here be focusing on the two specific kinematics defined in [6] and related there

to the M̃OM and MOM renormalisation schemes — namely, the ‘asymmetric’ point q = 0

(i.e., p2 = k2; q2 = 0) and the ‘symmetric’ point q = −2p (i.e., p2 = k2 = q2/4). In the

asymmetric kinematics, the vertex reduces to

Λµ(p, 0) = − ig
[
λ1(p

2, 0, p2)γµ − 4λ2(p
2, 0, p2) 6ppµ − 2iλ3(p

2, 0, p2)pµ

]
, (2.3)
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while in the symmetric kinematics we have

Λµ(−q/2, q) = − ig
[
λ1(q

2/4, q2, q2/4)γµ + τ3(q
2/4, q2, q2/4)

(
6qqµ − q2γµ

)

− iτ5(q
2/4, q2, q2/4)σµνqν

]
;

(2.4)

ΛP
µ (−q/2, q) = − ig

[
λ′1(q

2/4, q2, q2/4)
(
γµ− 6qqµ/q2

)
− iτ5(q

2/4, q2, q2/4)σµνqν

]
, (2.5)

where on the last line, in the transverse-projected vertex, we have written λ′1 ≡ λ1 − q2τ3.

In an abelian theory (QED), the Ward–Takahashi identities imply that the form factors

λi(i = 1, 2, 3) are given uniquely in terms of the fermion propagator,

S(p) =
1

i 6pA(p2) +B(p2)
=

Z(p2)

i 6p +M(p2)
. (2.6)

In the kinematics we are considering, they are given by

λQED
1 (p2, 0, p2) = λQED

1 (p2, 4p2, p2) = A(p2) ; (2.7)

λQED
2 (p2, 0, p2) =

1

2

d

dp2
A(p2) ; λQED

3 (p2, 0, p2) = − d

dp2
B(p2) . (2.8)

The deviation of the QCD form factors from these expressions thus give us a measure of

the purely nonabelian nature of the theory. Note that λ4, which is identically zero in QED,

is zero also in QCD at these two particular kinematic points.

The bare (unrenormalised) quantities λ3, τ5 and λ′1 (at the symmetric point) can be

obtained by tracing the lattice Λµ with the appropriate Dirac matrix (the identity, σµν and

γµ respectively):

λ3(p
2, 0, p2) =

1

2p2

∑

µ

pµ
1

4g0
Re TrΛµ(p, 0) ; (2.9)

τ5(q
2/4, q2, q2/4) = − 1

3q2

∑

µ,ν

qµ
1

4g0
ReTrσµνΛP

ν (−q/2, q) ; (2.10)

λ′1(q
2/4, q2, q2/4) = −1

3

∑

µ

1

4g0
Im Tr γµΛP

µ (−q/2, q) . (2.11)

At the asymmetric point, λ1 and λ2 both come with the same Dirac structure. To separate

them, we first determine λ1 as described in [6] by setting the ‘longitudinal’ momentum

component pµ to zero, and then obtain λ2 by

λ2(p
2, 0, p2) =

1

4p2

∑

µ

( 1

4g0
Im Tr γµΛµ(p, 0) + λ1(p

2, 0, p2)
)
. (2.12)

In order to make the lattice form factors more continuum-like, we employ tree-level

correction, as discussed in [11, 15]. The tree-level correction of λ1 is described in [6],

although at the symmetric point we have here refined the correction procedure, as described

in appendix A. In the case of λ2, λ3 and τ5, these are simply zero at tree level in the

continuum, while they are non-zero on the lattice with the action and parameters we are

– 3 –



using. We therefore have to subtract off the lattice tree-level forms. The details of this are

given in appendix A. Not unexpectedly, this procedure leads to large cancellations which

make our results unreliable at large momenta.

As always, the quantities obtained from the lattice are bare (unrenormalised) quanti-

ties. The relation between renormalised and bare quantities is given by

ψ0 = Z
1/2
2 ψ ; ψ

0
= Z

1/2
2 ψ ; A0

µ = Z
1/2
3 Aµ ; g0 = Zgg ; ξ0 = Z3ξ , (2.13)

where Z2, Z3, Zg are the quark, gluon and vertex (coupling) renormalisation constants

respectively. The renormalised quark and gluon propagator and quark–gluon vertex are

related to their bare counterparts according to

Sbare(p; a) = Z2(µ; a)S(p;µ) ; Dbare(q2; a) = Z3(µ; a)D(q2;µ) ; (2.14)

Λbare
µ (p, q; a) = Z−1

1F (µ; a)Λµ(p, q;µ) . (2.15)

Renormalisation may be carried out in a momentum subtraction scheme. For the quan-

tities computed at the asymmetric point, we will use the M̃OM scheme defined in [6]

requiring that λ1(µ
2, 0, µ2) = 1; while for the quantities at the symmetric point we will

use a modification of the MOM scheme, requiring λ′1(µ
2/4, µ2, µ2/4) = 1. In both cases we

choose µ = 2 GeV as our renormalisation scale. We can then easily match our results on

to perturbation theory in the ultraviolet, using the associated (M̃OM or MOM) running

coupling.

We use the same ensemble and parameters as in [6]. The Wilson gauge action is used

at β = 6.0 on a 163 × 48 lattice. The Sommer scale provides an inverse lattice spacing of

2.12 GeV. The mean-field improved SW action is adopted with off-shell improvement in the

associated propagators. Further details may be found in [6]. In order to study the quark

mass dependence of the vertex, we have used two values for the hopping parameter, κ =

0.137 and 0.1381, corresponding to a bare quark mass m ≈ 115 and 60 MeV respectively.

3. Asymmetric point

First, we investigate the mass dependence of the λ1 form factor, which was already studied

in [6]. Since in this paper we are primarily concerned with the deviation from the abelian

(Ball–Chiu) form, we show, in figure 2, the quantity Z(p2)λ1(p
2, 0, p2), which in an abelian

theory would be constant. The clear infrared enhancement observed in [6] is confirmed, and

we also see that the mass dependence of this quantity is negligible. The slight difference

in λ1 between the two masses observed in [13] is in other words entirely due to the mass-

dependence of the quark renormalisation function.

In order to compare our results with the abelian forms (2.8), we have fitted the tree-

level corrected quark propagator [15] to the following functional forms [16],

Z(p2) ≡ 1/A(p2) = k

(
1 − c2

a2p2 + l2

)
; (3.1)

aM(p2) ≡ aB(p2)/A(p2) = cm
l
2(α−1)
m

(a2p2)α + l2α
m

+mf , (3.2)
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0 1 2 3 4 5 6
p (GeV)

1

1.2

1.4

1.6

1.8

2

Z
(p

2 )λ
1(p

2 ,0
,p

2 )

m = 115 MeV
m = 60 MeV

Figure 2: The unrenormalised form factor λ1(p
2, 0, p2) multiplied by the quark renormalisation

function Z(p2), as a function of p. In an abelian theory, this would be a p-independent constant.

where k, c, l, cm, lm, α and m are fit parameters. The best fit values are given in table 1.

When comparing with the renormalised vertex we use the values obtained from the quark

propagator renormalised at 2 GeV, which amounts to dividing the unrenormalised values

by Z(4GeV2). From these fits, we can then derive the abelian form factors (2.8).

m (GeV) k c l cm lm α mf

60 1.075 0.218 0.326 0.0261 0.400 1.232 0.0258

115 1.045 0.208 0.316 0.0357 0.484 1.361 0.0670

Table 1: Fit parameters for best fits of the quark propagator to the functional forms (3.1) and

(3.2). All fits have been performed to data surviving a cylinder cut with radius 1 unit of spatial

momentum, up to a maximum momentum of pa = 1.2 for the lighter quark mass and 1.4 for the

heavier mass.

We will also compare our results with the one-loop Euclidean-space expressions,

λMS
2 (p2, 0, p2) =

g2

16π2

1

4p2

{(
1 − 2

m2

p2

)[
2ξ CF +

CA

2
(1 − ξ)

]

+
m4

p4
ln

(
1 +

p2

m2

)
[4ξ CF + (1 − ξ)CA]

} ; (3.3)

λMS
3 (p2, 0, p2) =

g2

16π2

m

p2

{[
(3 + ξ)CF − (3 + 2ξ)

CA

4

](
1 − m2

p2
ln

(
1 +

p2

m2

))}
, (3.4)

where the group factors CF = 4
3 and CA = 3 in QCD, and the gauge parameter ξ = 0

in Landau gauge. In order to match this to our lattice results, we renormalise both the

lattice and perturbative data in the M̃OM scheme. From the data of fig. 6 in [6] we

find that 1/ZM̃OM
1F (2GeV, a) = 1.39+6

−7 at m = 115 MeV. From this we determine the
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renormalised form factors λM̃OM
2,3 = ZM̃OM

1F λlat
2,3. The M̃OM 1-loop values are determined by

evaluating the expressions (3.3), (3.4) using g
M̃OM

(2GeV) = 2.21(10) and multiplying by

ZM̃OM
1F /ZMS

1F = 1.069, obtained from eq. (7.2) of [6].

In figure 3 we show the form factor λ2 as a function of p, for the heavier quark mass.

We see that it is greatly enhanced both compared to the Ball–Chiu form (2.8) and the one-

loop form (3.3), and only approaches these around or above 3 GeV.1 In figure 4 we show

the dimensionless quantity 4p2λ2(p
2, 0, p2) as a function of p. This quantity measures the

0 1 2 3 4 5 6
p (GeV)

0.001

0.01

0.1

1

10

λ 2(p
2 ,0

,p
2 ) 

(G
eV

-2
)

m = 115 MeV
BC (115 MeV)
1-loop (115 MeV)

Figure 3: The renormalised form factor λ2(p
2, 0, p2) as a function of p. Also shown is the abelian

(Ball–Chiu) form of (2.8) and the one-loop form of (3.3).

0 1 2 3
p (GeV)

0

0.5

1

4p
2

λ 2(p
2 ,0

,p
2 )

m = 115 MeV
m = 60 MeV

Figure 4: The renormalised form factor 4p2λ2(p
2, 0, p2) as a function of p.

1In [13] there was an error of a factor of 4 in the normalisation of λ2, which gave the false impression

that our numerical results agree almost perfectly with the Ball–Chiu form.
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relative strength of this component compared to the tree-level λ1. We see that λ2 becomes

comparable in strength to λ1 for the most infrared points.

In figure 5 we show λ3(p
2, 0, p2) as a function of p. Here we have performed a ‘cylinder

cut’ [17] with radius 1 unit of spatial momentum to select data close to the 4-dimensional

diagonal. We see that it coincides within errors with the Ball–Chiu form (2.8), and ap-

proaches the one-loop form at about 2 GeV. We also see that the quark mass dependence

of both λ2 and λ3 is very weak. λ3 becomes somewhat larger as the quark mass is

0 1 2 3
p (GeV)

0

0.5

1

1.5

λ 3(p
2 , 0

, p
2 ) 

(G
eV

-1
)

m = 115 MeV
m = 60 MeV
BC (115 MeV)
BC (60 MeV)
1-loop (115 MeV)

Figure 5: The renormalised form factor λ3(p
2, 0, p2) as a function of p. Also shown is the abelian

(Ball–Chiu) form of (2.8) and the one-loop form of (3.4).

0 1 2 3
p (GeV)

0

0.2

0.4

2p
 λ

3(p
2 , 0

, p
2 ) 

(G
eV

-1
)

m = 115 MeV
m = 60 MeV

Figure 6: The renormalised form factor λ3(p
2, 0, p2) multiplied by twice the quark momentum 2p,

as a function of p, for m = 115 MeV. This dimensionless quantity gives a measure of the relative

strength of λ3.
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decreased, which corresponds to the effect of dynamical chiral symmetry breaking being

relatively larger for a smaller bare mass.

In figure 6 we show 2pλ3(p
2, 0, p2) as a function of p. This quantity is dimensionless and

measures the relative strength of λ3 compared to the tree-level λ1. For the most infrared

points, λ3 can also be seen to contribute significantly to the interaction strength, although

clearly not as strongly as λ1 and λ2.

In order to see more clearly the relative strength of all three components of the vertex,

in figure 7 we show the dimensionless quantities λ1, 4p
2λ2 and 2pλ3 for the heavier quark

mass. In this figure, the hierarchy of strengths λ1 > λ2 > λ3 is evident.

0 1 2 3
p (GeV)

0

0.5

1

1.5

2

λ 
i (

p2 , 0
, p

2 )

λ1

4p
2λ2

2pλ3

Figure 7: The dimensionless form factors λ1, 4p
2λ2 and 2pλ3 at the asymmetric point, as a function

of p, for m = 115 MeV.

4. Symmetric point

Since we have already established that the dependence of the vertex on the quark mass

is very weak, in this section we will only be using one quark mass, m ≈ 115 MeV. We

will also in this section make use of the lattice momentum variables K(p) ≡ sin(pa)/a

and Q(q) ≡ 2 sin(qa/2)/a = −2K(p). These momentum variables appear in the lattice

tree-level expressions for the form factors we will be studying, as well as in the transverse

projector, and are thus appropriate variables to use.

In figure 8, we show λ′1 at the symmetric point as a function of |Q(q)|. In contrast

to in [6], the tree-level correction here has been carried out on each Lorentz component

of the vertex separately, as explained in the Appendix. These results should therefore

be more reliable than those shown in [6]. We have also performed a cylinder cut on the

data with a radius of 2 units of spatial momentum in q. From these data, we deter-

mine 1/ZMOM
1F (2GeV, a) = 0.95(8). Multiplying by Z2Z

1/2
3 determined in [6] we also find

gMOM(2GeV) = 1.47(15). The ratio of renormalisation constants is ZMOM
1F /ZMS

1F = 1.093.
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0 1 2 3 4 5 6
Q(q) = 2K(p) (GeV)

0

0.5

1

1.5

2

2.5

λ 1’(
p2 ,q

2 ,p
2 )

Figure 8: The unrenormalised form factor λ′
1
(p2, q2, p2) at the symmetric point q = −2p, as a

function of the gluon momentum q. The data shown are those surviving a cylinder cut with radius

2 units of spatial momentum in q.

0 2 4 6 8 10
Q(q) = 2K(p) (GeV)

0

0.5

1

1.5

2

2.5

λ’
1(p

2 ,q
2 ,p

2 )

Figure 9: The renormalised form factor λ′
1
(p2, q2, p2) at the symmetric point q = −2p, as a function

of the gluon momentum q. Also shown is the one-loop form from [6].

This is used to determine the one-loop λ′1, shown together with the renormalised lattice λ′1
in figure 9.

In figure 10 we show the form factor τ5 as a function of the gluon momentum q. The

same cylinder cut has been performed as in fig. 8. We see that, although τ5 is power

suppressed in the ultraviolet, it rises very significantly for q . 2 GeV. Although this

form factor is related to the chromomagnetic moment, and as such is expected to be of

phenomenological importance, it has not previously been included in QED-inspired model

vertices commonly used in, e.g., DSE-based studies. However, work is in progress to provide
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0 2 4 6 8 10
Q(q) = 2K(p) (GeV)

0.001

0.01

0.1

1

τ 5(p
2 ,q

2 ,p
2 ) 

(G
eV

-1
)

Figure 10: The renormalised form factor τ5 at the symmetric point as a function of the gluon

momentum q. The data shown are those surviving a cylinder cut with radius 2 units of spatial

momentum in q. Also shown is the one-loop form of (4.1).

an analytical, nonperturbative expression for this and the other form factors in the purely

transverse part of the vertex [18]. We will also compare our lattice results to the one-loop

τ5, which in Euclidean space is given by

τMS
5 (s2, 4s2, s2) =

g2

16π2

m

12s2

{
(1 − ξ)

[
8CF + ξCA − CA

m2(1 − ξ)

s2 −m2

]

− (2CF − CA)
4s2(1 − ξ)

s2 +m2

[
1

2

√
1 +

m2

s2
ln

√
1 + m2

s2 + 1
√

1 + m2

s2 − 1
+

1

2
ln
m2

µ2

]

+CA
s2

s2 −m2

[
7 + 9ξ + 2ξ2 − 2m2(1 − ξ)

s2 −m2

(
6 − ξ +

2m2(1 − ξ)

s2 −m2

)]
ln

4s2

µ2

+

[
4CF (1 − ξ)

s2 − 2m2

s2 +m2
− CA

(
9 + 7ξ + 2ξ2 − 6m2(1 − ξ)

s2 +m2

− (6 − 16ξ + ξ2)
2m2

s2 −m2
− 2m4(1 − ξ)

(s2 −m2)2
[
9 − 4ξ +

2m2(1 − ξ)

s2 −m2

])]
×

×
[
ln
s2 +m2

µ2
+
m2

s2
ln
(
1 +

s2

m2

)]}
.

(4.1)

We find that the nonperturbative τ5 is several orders of magnitude larger than the one-loop

form, and there is no sign of the lattice data approaching the perturbative form even for

the most ultraviolet points we can trust, around 5 GeV. We take this as an indication that

very strong nonperturbative effects affect this form factor. It is also worth noting that the

one-loop contribution to both τ5 and λ′1 at the symmetric point are an order of magnitude

smaller than the one-loop contributions to form factors at the asymmetric point.

In order to get a dimensionless measure of the strength of this component relative to

the tree-level vertex, we have scaled τ5 with the gluon momentum q. We show this together
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Q(q) = 2K(p) (GeV)

0
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1

1.5

2
λ

1
’

τ5

Figure 11: The dimensionless form factors λ′
1

and qτ5 at the symmetric point, as a function of q.

These quantities gives a measure of the relative strength of the two components of the vertex.

with λ′1 in figure 11. As we can see, between 1 and 2 GeV, τ5 contributes with about the

same strength as λ′1, making it a very significant contribution that cannot be ignored.

Although τ5 has the same tensor structure as the (chromo-)magnetic moment, the

relation between the two is not straightforward. In particular, since quarks are never on-

shell, the Gordon decomposition which is used to define the magnetic moment in QED is

not applicable, making the definition of the chromomagnetic moment ambiguous. This is

an issue that deserves further investigation.

5. Outlook

We have computed the complete quark–gluon vertex at two kinematical points, finding

substantial deviations from the abelian form — which cannot be described by a universal

function multiplying the abelian form as in [9]. This, and the fact that we observe a p-

dependent enhancement of λ1 at the asymmetric point, where q and thereby also the ghost

form factor G(q2) is fixed, indicates that the ghost–quark scattering kernel entering into

the Slavnov–Taylor identity (1.1) must contain nontrivial structure.

The form factor τ5, related to the chromomagnetic moment, has been estimated non-

perturbatively for the first time, and found to be important. The work has been carried out

on a relatively small lattice, using a fermion discretisation which has serious discretisation

errors at large momenta. It will be important to repeat this study using larger lattices and

a more well-behaved fermion discretisation.

A natural extension of this work would be to map out the entire kinematical space in

the three variables p2, k2, q2. This is numerically very demanding, but work is underway

on a complete determination of λ′1(p
2, q2, k2).

Finally, it should be noted that the lattice Landau gauge restricts us to computing

only the transverse-projected vertex away from q = 0; i.e., it is not possible to determine

λi, τi, i = 1, . . . , 4 separately; only the linear combinations λ′i. Although the vertex is

– 11 –



always contracted with the gluon propagator in all actual applications, and thus only the

transverse-projected vertex plays any role in Landau gauge, it would be of interest to

determine all these form factors by computing the vertex in a general covariant gauge —

which would also give a handle on the important issue of gauge dependence.
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A. Tree-level expressions

The tree-level lattice expressions are given in terms of the lattice momentum variables,

Kµ(p) ≡ 1

a
sin(pµa) ; (A.1)

Qµ(p) ≡ 2

a
sin(pµa/2) =

√
2

a

√
1 − cos(pµa) ; (A.2)

K̃µ(p) ≡ 1

2
Kµ(2p) =

1

2a
sin(2pµa) ; (A.3)

Cµ(p) ≡ cos(pµa) . (A.4)

The tree-level vertex is [6]

Λ
a(0)
I,µ (p, q) = cmS

(0)
I (p)−1S

(0)
0 (p)Λ

a(0)
0,µ (p, q)S

(0)
0 (p+ q)S

(0)
I (p + q)−1 , (A.5)

and

(S
(0)
I )−1S

(0)
0 =

1

DI

(
i 6KAV +BV

)
, (A.6)

where we have written

cm ≡ 1 + bqm ; (A.7)

AV (p) = 2c′qD(p) ; (A.8)

BV (p) = (cm − 2c′qM(p))D(p) ; (A.9)

DI(p) =
[
A2

V (p)K2(p) +B2
V (p)

]
/D(p) ; (A.10)

D(p) = K2(p) +M2(p) ; (A.11)

M(p) = m+
1

2
Q2(p) . (A.12)

At q = 0 we have

Λ
a(0)
I,µ (p, 0) =

−ig0
D2

I

(
i 6KAV (p)+BV (p)

)(
γµCµ(p)−iKµ(p)

)(
i 6KAV (p)+BV (p)

)
. (A.13)
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This expands to
(
i 6KAV +BV

)(
γµCµ − iKµ

)(
i 6KAV +BV

)

=(A2
VK

2 +B2
V )γµCµ − 2A2

V Cµ 6KKµ + 2iAV BVKµCµ

− iB2
VKµ + 2AV BV 6KKµ + iA2

VK
2Kµ

=(A2
VK

2 +B2
V )Cµγµ + 2(AV BV −A2

V Cµ) 6KKµ

+ i(2AV BV Cµ +A2
VK

2 −B2
V )Kµ .

(A.14)

The tree-level form factors λ
(0)
2 , λ

(0)
3 can be read off directly:

λ
(0)
2 + λ̃

(0)
2 Cµ =

cm
2D2

I

(
AVBV −A2

V Cµ

)
= cmc

′

q

D2

D2
I

[
cm − 2c′qM − 2c′qCµ

]
; (A.15)

λ
(0)
3 + λ̃

(0)
3 Cµ =

cm
2D2

I

(
A2

VK
2 −B2

V + 2AVBV Cµ

)
. (A.16)

The lattice, tree-level corrected equivalents of (2.12) and (2.9), which we use to obtain λ2

and λ3, are thus

λ2(p
2, 0, p2) =

1

4K2(p)

∑

µ

[
1

4g0
Im Tr γµΛµ(p, 0) + λ1(p

2, 0, p2)

− 4K2
µ(p)

(
λ

(0)
2 (p) + λ̃

(0)
2 (p)Cµ(p)

)]
;

(A.17)

λ3(p
2, 0, p2) =

1

2K2(p)

∑

µ

[
Kµ(p)

1

4g0
Re Tr Λµ(p, 0) − 2K2

µ(p)
(
λ

(0)
3 (p) + λ̃

(0)
3 (p)Cµ(p)

)]
.

(A.18)

The tree-level vertex at the symmetric point is given by eq. (B.21) of [6]. We use the

following decomposition into independently transverse tensors,

i

g0
Λ

(0)
I,µ(p,−2p) =λ

(0)
1 γµ − τ

(0)
3 (Q2γµ− 6QQµ) − τ̃

(0)
3 (K ·QCµγµ− 6KKµ)

− iτ
(0)
5

∑

ν

σµνQν − iτ̃
(0)
5 Cµ

∑

ν

σµνKν

− iτ̃ ′
(0)
5

[
Cµ

∑

ν

σµνQν +Kµ

∑

νλ

σνλQνKλ/(Q ·K)
]
,

(A.19)

where Q ≡ Q(q),K ≡ K(q), C ≡ C(q/2); λ
(0)
1 , τ

(0)
3 and τ̃

(0)
3 are given by (B.25)–(B.27) of

[6], and

τ
(0)
5 =

cm
D2

I

AV (p)BV (p) = 2cmc
′

q(cm − 2c′qM(p))
D2(p)

D2
I (p)

; (A.20)

τ̃
(0)
5 = −cswcm

2

D(p)

DI(p)
; (A.21)

τ̃ ′
(0)
5 = cswcm

A2
V (p)(K(p) · K̃(p))

D2
I (p)

= 4cswcmc
′

q
2
(K(p) · K̃(p))

D2(p)

D2
I (p)

. (A.22)
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Since the continuum λ′1(γµ− 6qqµ/q2) becomes two independent tensors on the lattice,

λ′1

(
q2

4
, q2,

q2

4

)(
γµ − 6qqµ

q2

)
→ (λ1−Q2τ3)

(
γµ − 6QQµ

Q2

)
−τ̃3(K·QCµγµ− 6KKµ) , (A.23)

we cannot simply factor out the tree-level behaviour with a simple multiplicative correction.

Instead we apply a ‘hybrid’ scheme where the dominant term, multiplying (γµ− 6QQµ/Q
2),

is corrected multiplicatively, after first subtracting off the remaining part,

τ̃
(0)
3

[
(K ·QCµγµ− 6KKµ) −K ·QCµ(γµ− 6QQµ/Q

2)
]

= −τ̃ (0)
3

(
K2

µ −KµQµ
K ·Q
Q2

)
. (A.24)

It turns out that this term is completely negligible, but it has still been included in the

correction. Thus, the lattice, tree-level corrected equivalent of (2.11) which we use to

compute λ′1, is

λ′1

(
q2

4
, q2,

q2

4

)
=

1

3

∑

µ

− 1
4g0

Im Tr γµΛP
µ (−q/2, q) − τ̃

(0)
3

(
K2

µ −KµQµ
K·Q
Q2

)

λ
(0)
1 −Q2τ

(0)
3 −K ·Qτ̃ (0)

3 Cµ

. (A.25)

For τ5 we employ an additive correction scheme, and thus the lattice equivalent of (2.10)

is

τ5

(
q2

4
, q2,

q2

4

)
= − 1

3Q2(q)

∑

µ,ν

[
Qµ(q)

1

4g0
ReTrσµνΛP

ν (−q/2, q)

−Q2
µ

{
τ

(0)
5 + CµCν τ̃

(0)
5 +Cν τ̃ ′

(0)
5

[
1 − (Cν − Cµ)Q2

ν/Q ·K
]}]

.

(A.26)
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