

THE DEVELOPMENT OF ZINC (II) SELECTIVE FLUORESCENT LIGANDS

Jo-Anne Margaret Pratt

Thesis submitted for the degree of Doctor of Philosophy

in

The Department of Chemistry
University of Adelaide

March 1995

1

CONTENTS

	Page
ABBREVIATIONS	vi
ABSTRACT	vii
DECLARATION	ix
ACKNOWLEDGEMENTS	х
1 The Need for a Probe for Biological Zinc (II)	
1.1 The role of Zinc (II) in Human Biology	
1.1.1 Clinical Aspects of Zinc (II)	1
1.1.2 Biochemical Role of Zinc (II) in Man	2
1.2 Measuring Biological Zinc (II)	
1.2.1 Current Methods of Measurement	4
1.2.2 Zinc (II) Measurement using a Fluorescent Probe	6
1.3 Fluorescent Probes for Other Metal Ions	9
1.4 Bibliography	11
2 Design and Synthesis of Trial Ligands	
2.1 Pyochelin, a Model for Ligand Design	14
2.2 Initial Ligand Synthesis	
2.2.1 Selection of a Synthetic Route	16
2.2.2 Preparation of Thiazolines	17
2.2.3 Preparation of Thiazoles	22
2.3 Initial Tests on Trial Ligand Series	27
2.4 Bibliography	30

with Zinc (II)	
3.1 Introduction	
3.1.1 Selection of a Test Series of Metal Ions	31
3.1.2 Ultraviolet Absorption Spectroscopy	32
3.1.3 Using Ultraviolet Spectroscopy to Detect Complex Formation	34
3.2 Results and Discussion	35
3.3 Bibliography	47
4 Acid Dissociation and Stability Constant Determination	
4.1 Introduction	
4.1.1 The Required Affinity of a Probe for Zinc (II)	48
4.1.2 Definition of Acid Dissociation and Stability Constants	49
4.1.3 Potentiometry	52
4.1.4 Determination of Stability Constants	53
4.2 Results and Discussion	54
4.3 Bibliography	70
5 Fluorescence	
5.1 Introduction	
5.1.1 Principles of Fluorescence	71
5.1.2 Characteristics of Fluorescent Organic Compounds	74
5.1.3 Applications of Fluorescence	75
5.1.4 Fluorescent Probe Specifications for the Detection of Zinc (II)	76
5.2 Results and Discussion	78
5.3 Bibliography	89

3 Investigation of the Specificity of the Thiazole Derivatives for Chelation

6 Further Development of Zinc (II) Probes	
6.1 Development of More Trial Ligands	
6.1.1 Design of Ligands	90
6.1.2 Synthesis of Further Ligands	93
6.2 Investigations into the Suitability of APTE and POEE as Fluorescent	
Zinc (II) Probes	
6.2.1 Measurement of Zinc (II) Specificity	95
6.2.2 Acid Dissociation and Stability Constant Determination of APTE	
and POEE and their Complexes	103
6.2.3 Fluorescene Measurements on APTE and POEE	109
6.2.4 Summary	115
6.3 Bibliography	118
7 Summary and Conclusions 8 Experimental	119
8.1 Synthetic Methods	
8.1.1 General	127
8.1.2 Synthesis	128
8.2 Physical Methods	
8.2.1 General	138
8.2.2 Ultraviolet Absorption Spectra Measurements	140
8.2.3 Potentiometric Titrations	141
8.2.4 Molecular Modelling	144
8.2.5 Fluorescent Emission Spectra Measurements	144
8.3 Bibliography	147

Appendices	
Appendix A Ultraviolet Absorption Spectra	148
A.1 PTA and Complexes	149
A.2 PTME and Complexes	153
A.3 PTEE and Complexes	157
A.4 POEE and Complexes	160
A.5 APTE and Complexes	163

B.1 PTA and Complexes	167
B.2 PTME and Complexes	171
B.3 PTEE and Complexes	174
B.4 POEE and Complexes	175

166

177

Appendix B Fluorescence Emission Spectra

B.5 APTE and Complexes

ABSTRACT

This thesis describes the development of Zn²⁺ selective ligands suitable for use as fluorescent probes to monitor exchangeable Zn²⁺ in biological systems. A related aim was to develop fluorescent probes for other metal ions of biological concern, such as Al³⁺ and Pb²⁺.

A series of prospective ligands were synthesised based on the phenyl substituted thiazoline substructure of 2-(2-o-hydroxyphenyl-2-thiazolin-4-yl)-3-methylthiazolidine-4-carboxylic acid (pyochelin), a naturally occurring fluorescent Zn²⁺ ligand. 2-(2-Hydroxyphenyl)-2-thiazoline-4-carboylic acid and the corresponding methyl ester were synthesised along with the methyl esters of the corresponding 2-methoxyphenyl and the phenyl substituted thiazolines. The ethyl esters of the analogous thiazole carboxylic acids were also synthesised.

The chelation of these ligands to Zn^{2+} was investigated using ultraviolet spectroscopy. The selectivity of the Zn^{2+} chelating ligands was investigated using a chosen series of metal ions and ultraviolet spectroscopy. The stability of the Zn^{2+} and other complexes formed was assessed by determining values for the stability constants of formation of the complexes, using a potentiometric titration technique. Fluorescence spectroscopy was utilised to establish the fluorescent nature of the complexes.

Only the ligands which contain the 2-hydroxyphenyl substituent chelated to Zn^{2+} . These appear suitable for use as Zn^{2+} probes, since they each form stable fluorescent Zn^{2+} complexes and do not form fluorescent complexes with biologically prevalent metal ions.

2-(2-Hydroxyphenyl)-2-thiazoline-4-carboxylic acid and the corresponding methyl ester both form highly fluorescent complexes with Al³⁺ making them suitable

for use as fluorescent Al3+ probes.

The 2-hydroxyphenyl substituted thiazolines provide a basis for further development of Pb²⁺ fluorescent ligands, since their Pb²⁺ complexes were of high stability, but were non fluorescent.

Ethyl 2-(2-hydroxyphenyl)-oxazole-4-carboxylate and methyl 2-(2-aminophenyl)-2-thiazoline-4-carboxylate were also synthesised and their Zn^{2+} chelation and selectivity along with the fluorescence of complexes formed by these ligands were assessed. Only the Zn^{2+} complex formed by the oxazole was fluorescent. This ligand appears suitable for use as a biological Zn^{2+} probe. The 2-aminophenyl substituted thiazoline did not form fluorescent complexes with any of the metal ions tested, indicating that the 2-hydroxyphenyl substituted thiazole derivatives are more suited as biological Zn^{2+} probes.