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SUMMARY

In this thesis the theory of l-spreads of PG(3,q) is generalised to a theory

of f-spreads of PG((s + t)(t * 1) - 1, q). There is a well developed theory for

t-spreads of. PG(2t * 1, g), but so far there are limited results in other cases.

This thesis extends much of the existing theory to the general case of f-spreads of

PG((s+1Xt*1)-r,q).

After a short Introduction containing a literature review, Chapter One of the

thesis gives a brief account of the concepts involved.

In Chapter Two the theory of ú-spreads of. PG(2t+ 1, q) is revised, setting the

scene for the generalisation to come in Chapter Three. Most of the work in this

Chapter is well known, but in order to facilitate the later generalisation, some of the

presentation is different from the original. For example the concept of regularity

is presented in the light of the connection between a regulus of PG(2t + I,q) and

the classical Segre Variety which is the product of a line and a f-dimensional space

of. PG(2t + 1,q). In addition, a new and straightforward construction is given

for a spread set (originally defined in Bruck and Bose (1964)) corresponding to a

f-spread or. PG(2t+ 1, q). This new construction uses the space s*(M"(Gr(q)))

introduced by Thas (1971). !:

chapter Three gives results for t-spreads of PG((s + 1x¿ + 1) - 1, g) suggested

by the theory studied in Chapter Two. A generalised ú-spread set of matrices for

certain of these ú-spreads is found, using a construction similar to that given by

Bruck and Bose (1964). In addition, the new construction of a spread set discussed

in Chapter Two generalises naturally to give a new but rçlated entity, to be called

a projective ú-spread. set. This concept is more general because any t-spread of
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PG((s + 1)(¿ + 1) - 1,g) admits a projective f-spread set, but not every t-spread

admits a ú-spread set. Regula,rity of a ú-spread of PG((s + t)(t + 1) - 1, q) is

explored using the properties of the classical Segre Variety. Different subvarieties

produce different reguli of a t-spread, and therefore corresponding different types

of regularity. It is shown, however, that ali these types are equivalent and coincide

with the usual notion of regularity in the few cases where a definition has previously

been given, for example in the case of l-spreads of PG(2s i-1,q) in Ebert (1983)'

The approach developed in this Chapter leads to the construction of an indicator

set for a ú-spread. of PG((s+1X¿+1)-1, g), extending the work of Lunardon (19Sa)'

It also yields a representation for regular ú-spreads of PG((s + 1)(t * 1) - t, q),

generalising that due to Bruck (1969) for 1-spreads of PG(S ,q). L l-spread is called

geometric if for any pair X, Y of its elements, the other elements of the f-spread

are either contained in or are skew to the space 1 XrY > spanned by X and

Y . h is shown that a geometric t-spread allows a construction of an affine space

AG(s+ 1, qt+1), and the projective ú-spread set provides homogeneous coordinates

for the correspónding projective space. Examples are given to illustrate the ideas

presented.

The next Chapter considers certain partial ú-spreads, and in particular those

called k-sets of t-dimensional subspaces. These have been studied in the space

PG(3t +2,q) by the authors Thas (1971), Declerck et al (1987), Casse and Wild

(1983), Casse et al (1985) and Wild (1986). Some neïv' concepts and results are

given. The definition of k-sets is then extended to (k, rz)-sets of PG(3t f 2, g), and

connections with work already done by Beutelspacher (1975) and Declerck et al

(1987) (in the case of s : 2) are explored. A maximal (k, n)-set is defined, and

its size is determined. A condition guaranteeing that such a set arises from the

construction of Thas is found, and applied to maximal (k,3)-sets of PG(5,3ä) and

v1



maximal (h, n)-sets of PG(3ú +2,,2) when ú > 1. An example of a 4-set ((4,2)-set)

of lines of PG(5,2) is given, which does not arise from the construction due to

Thas (1971). This set is contained in a spread which contains no regulus.

A short conclusion and suggestions for further research appear in Chapter

Five
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INTRODUCTION

The subject of this thesis is the theory of f-spreads of PG((s + lXÚ + 1) - 1' q)'

A Í-spread. of PG(n,q) is a partition of the points of. PG(n,q) into t-dimensional

subspaces. It is known that PG(n,g) admits a t-spread if and only if t * 1 divides

n t 7, thus we choose n * l: (s * 1Xt + 1)'

Our aim is to develop a unified. algebraic and geometric theory applicable to

all ú-spreads of PG((s + 1)(t + 1) - 1, g) and which contains the known results on

f-spreads of certain projective spaces as special cases of the new theory'

The rather natural idea of partitioning the points of a finite structure has

appeared in many contexts in the development of mathematics, particularly in the

freld of abelian groups. This is especially significant because the abelian groups

have been shown to correspond to finite projective geometries, and certain parti-

tions of the abelian groups correspond to t-spreads in the projective geometries

(see carmichael (1937)). In fact the result quoted above on the existence of f-

spreads of. PG(nrg) appeared in Burnside (1911) as a theorem on partitions of

abeiian groups.

It was not until later that t-spreads or. PG(n',g) were studied in their own

right. Burnside,s result was rediscovered in geometrical language by André (1954)'

Bruck and Bose (1964) and segre (1964). At the same time the connection between

t-spreads of. PG(2t + 1, q) and finite translation planes was discovered by André

(1954) and Bruck and Bose (1964) and (1966). It was shown that a t-spread of

PG(zt+ 1,q) could be used. to construct a translation plane of order Ot*l, and

that all fi.nite translation planes arise from such a construction' This connection

added great impetus to the study of f-spreads, yielding many interesting results

on translation planes (see for example ostrom (1963), Hughes and Piper (1973)'
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or Lüneburg (1930)).

The resea¡ch on t-spleads of. PG(zt + 1,q) was directed by the discovery

(Bruck and Bose (1964)) that the translation plane corresponding to a t-spread of

PG(zt+ 1, q) is Desarguesian if and only if the corresponding Ú-spread is regular'

A classification of all f-spread.s or. PG(2t + 1, q) would imply a classification of all

finite translation planes. Much effort has been directed to the study of regular,

subregular and aregular t-spreads of PG(2t + 1,q). The problem of classifying

the t-spreads of PG(2t + 1, q) has only been effected in a small number of cases,

for example every t-spread. of. PG(2t + 1,2) is regular (see Dembowski (1968)'

p227), and every l-spread of PG(3, g) is either regular or is subregular of index 1

(see Bruck (1969) and Denniston (1973b)). complete results in other cases seem

difficult to obtain, see for example Bruck (1969) and (1973c), Bruen (1975)' orr

(1976) and Ebert (1983). Examples of aregular f-spreads are given by Denniston

(1973a), Bruck (1969) and Bruen (1972a). An interesting result in this area is the

construction by Denniston (1976) of a f-spread which contains reguli but is not

subregular.

In Bruck and Bose (1964) and (1966), it was also shown that to a f-spread

of. PG(2t+ 1,q) there corresponds a set of gt*r (t + f) x (ú * L) matrices, called

a, spread, sef. This construction of a spread set enabled an easy coordinatisation

of the translation plane corresponding to the ú-spread. The following characteri-

sation was given: the spread. set forms a fretd under addition and multiplication

of matrices if and, only if the ú-spread is regular. Later Maduram (1975) used this

representation of translation planes to describe in terms of matrices the condition

that two ú-spreads represent isomorphic translation planes, and to exhibit a new

characterisation of Desarguesian planes: a translation plane is Desarguesian if and

only if all pairs of matrix representations are equivalent'
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Apart from purely geometrical arguments conducted entirely in the space

pG(Zt* 1,g), an important method of studying f-spreads of PG(zt f 1,q) is by

indicator sets. These \Mere introduced for l-spreads of PG(3, q) in Bruen (L972a),

and used for the study of the regularity, subregularity and aregularity of l-spreads

in PG(3, q) bv Bruen (I972a) and (1975) and sherk and Pabst (1977). The gen-

eralisation to ind.icator sets of t-spreads of PG(zt + 1,q) was effected by Sherk

(1g7g), with a construction relying on knowledge of a spread set for the spread, as

defined by Bruck and Bose (1964). Lunardon (1984) was able to construct indi-

cator sets in a purely geometrical manner, avoiding the use of spread sets' Again,

this was employed to study d.ifferent types of t-spreads and different translation

planes arising from the t-spreads'

The current uses of the term regularity appearing in the literature apply only

in the cases of Í-spreads of. PG(2t + 1,q) (Dembowski (1968)) and L-spreads of

PG(zs+ 1,q) (Ebert (1983)). A t-spread w of. PG(zt a1,ø) is called resular lf

given any line of. PG(2t + 1, q), not meeting any element of. w in more than one

point, then the elements of. W meeting the line form a regulus in PG(zt + 1, q).

A l-spread W of. PG(2s+ 1, q) is called regular if given any line of. PG(2s * 1, q),

not contained. in W, then the elements of W meeting the line form a regulus in a

B-dimensional subspace PG(3, q) of. PG(2s * 1, g). Thus both notions of regularity

rely on the concept of a regulus of t-dimensional spaces h PG(ZI + 1, q). To be

able to extend. the defrnition of regularity to t-spreads of PG((s + 1Xú + 1) - 1, q),

a more general concept of regulus is required.

This thesis addresses the problem of defining a more general regulus. We

re-examine the known case of t-reguli of. PG(ZI * 1,g), altering our point of view

into one which is easily generalised. To be precise, it is shown that a t-regulus

of PG(2t+ 1,q) is just the set of f-d,imensional spaces lying on a classical Segre
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variety SVr+t,z whose opposite system of subspaces consists of lines' The natural

generalisation leads us to say that the set of f-dimensional spaces lying on a Segre

variety 5)/r+r,"+r in PG((r + 1X¿ + 1) - 1,q) is at-regulus of ranlc r.

The notion of the t-regulus of rank r is used in the definition of regularity

of rank r of a t-spread of PG((s + t)(t + 1) - 1,g) as follows. A Ú-spread W of

PG((s + f)(t + 1) - 1,q) is said to be regular of ra,nlc r if whenever ,9' is an r-

dimensional subspace of PG((s + 1x¿ + 1) - 1, g) not meeting any element of w in

more than one point, then the set of elements of W meeting ,9t is a regulus of rank

r in some ((r + 1)(t + 1) - l)-dimensional subspace of PG((s + 1)(t + 1) - 1, q). This

definition agrees with the two definitions mentioned above, which are examples of

regularity of rank 1. It is shown that a ú-spread of PG((s + 1)(t + 1) - L, g) is

regular of rank r if and only if it is regular of every rank 0,1, . . ' , s and in this case

it is called regular. It is interesting that in proving various results about regular

f-spreads of pG((s + 1)(t + 1) - 1, g), it is the fact that it is regular of rank s that

seems most useful, in other words., the use of the t-reguli of rank s yields the most

information about the f-sPread.

Now that we have a notion of regularity for t-spreads of PG((s*1)(t+1)-1, q),

rvr/e can extend. many of the known results on regular ú-spreads of PG(2t + 1,q)

to the general case. For example, in a representation due to Bruck (tO0O) it is

shown that a l-spread of. PG(3,g) is regular if and only if there is a line I of the

extension PG(g,g2) skew to PG(3, q) and meeting every element of the l-spread,

necessarily in a unique point. we generalise this to PG((s + t)(t + 1) - 1, q),

showing that: a t-spread. W of. PG((s + lX¿ + 1) - 1,g) is regular if and only if

there is an s-dimensional subspace of the extension PG((s + lxt + 1) - 1,gt+t)

skew to PG((s + lXú + 1) - 1, gt) and meeting every element of the Ú-spread in a

unique point. This result is used to show that a Ú-spread of PG((s + t)(t + 1)- 1, q)

4



is regular if and only if it is geometric.

one of the fundamental results we present is the connection between two

seemingly different sets, each constructed from a f-spread of' PG(2t * 1,g)' First

there is the spread set of matrices due to Bruck and Bose (1964)' which we will

cali a t-spreail set. Second. there is the set of points of the space 5r(Ilt+r(Cf(q)))

introd.uced by Thas (1971). This set of points is represented as a set of equivalence

classes of pairs of (ú f 1) x (t f 1) matrices, where two pairs are equivalent if and

only if the matrices of one can be obtained from the matrices of the other by

multiplication by a non-singular matrix. This set will be called a projectiue t-

spreail set. Il is shown in chapter Two that in PG(zt + 1, q) a t-spread set yields

a projective f-spread. set, and conversely a projective f-spread set yields a t-spread

set. we show that a f-spread of PG(2t+ 1, q) is regular if and only if its projective

t-spread set is isomorphic to PG(1, q). Since a projective t-spread set can be

constructed knowing only a basis for each element of the ú-spread, this result

gives a new and straightforward. construction of the t-spread set of any t-spread

oI PG(2t + 1, q).

The above method.s are generalised in Chapter Three to construct projective

ú-spread sets and. t-spread sets for Í-spreads of PG((s + 1X¿ + 1) - 1, g), by using

the space s"(Mt+t(Cr(q))). It is shown that a t-spread of PG((s+lxÚ+1) - 1' q)

is regular if and only if its corresponding projective Ú-spread set is isomorphic to

PG(s,gt+t). The new definition of projective ú-spread set emphasises the pro-

jective nature of f-spread.s, which was possibly obscured by Bruck and Bose's

construction of the spread set as a non-homogeneous entity.

we are able to generalise the construction of an affine plane from a t-spread

oî. PG(2t+ 1,q) to construct an affine space AG(s + 1,gt+1) from a ú-spread of
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pc((s + 1Xú + 1) - 1, q) with s > 1 only under the additional assumption that

the ú-spread. is geometric, or equivalently regular. The fact that we need to make

this extra assumption is not surprising if we recall that in the case s : 1 our

affine plane is a translation plane, and is Desarguesian if and only if the f-spread

is regular. When s ) l the affine space AG(s +1,q'+t) is always Desarguesian,

and so its subplanes are always Desarguesian. In fact these arguments are used

to give a ner,¡¡ proof of the known result: a geometric f-spread induces a regular

ú-spread on a (2t * l)-dimensional subspace which is the space spanned by two

t-spread elements.

Now that we have constructed a projective ú-spread set for any Ú-spread of

PG((s + f )(t + 1) - 1, g), we are able to construct an indicator set for any t-spread

of pG((s + 1Xú + 1) - 1, q). Thus concepts which have proved fruitful in the study

of f-spreads of. PG(211* 1,g) can now be applied to the study of ú-spreads of any

projective space PG((s + t)(t + 1) - 1, q).

In the literature, attention has also been given to partial t-spreads of. PG(n,q),

where a pa.rtial f-spread is a collection of pairwise skew f-dimensional subspaces.

Particular emphasis has been given to the study of maúmal partial t-spreads,

where a partial ú-spread is maximal if it is not a ú-spread and further is not

contained, in any ú-spread as a proper subset. These are also called matirnal k-

spans (see Hirschfeld (1979)), and in this thesis will be called complete partial

t-spread.s. The main interest has been in answering the questions: how many

elements may a partial f-spread have? In particular, how many elements can

a complete partial ú-spread have? Finally, how many elements must a partial Ú-

spread have to guarantee that it is contained in a unique f-spread? These questions

are not treated here, but results appear in Mesner (1967), Glynn (1982), Bruen

(1971), (1972b) and (1975), Jungnickel (1984), Beutelspacher (1975), (1976) and
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(1980), Bruen and Thas (1976), Ebert (1973) and (1979), and Freeman (1980)'

These results are collected in Hirschfeld (1935).

The partial f-spreads which are of interest to us in Chapter Four are those

which are connected with k-arcs and (k, n)-arcs of projective planes. This con-

nection originates in Thas (1971), but is closely related to the representation of

f-spreads of PG((s + lX¿ + 1) - 1, s) in PG((s + lXú + 1) - 1, st+t) as the set of

t-dimensional spaces meeting an s-dimensional space.

The partial ú-spreads connected with k-arcs are called ,t-sets of PG(3t i2,q),

and are sets of ,t t-dimensional spaces of PG(3t I2,q), any three of which span

pc(gt ¡ 2,A) (see Casse and Wild (1983)). The connections with the space

Sz(Mt+t(Cf(q))) allow the use of the projective t-spread set defi,ned in Chap-

ter Three.

For a k-set of PG(3t *2,q), it is known that k 1 q'*' +2 if. g is even and

L 1 q'*' + 1 if g is od.d. The only known examples of (gt+t * 1)- and (qt+t + 2)-sets

are constructed in Thas (1971) as follows. Lel o denote the field automorphism

o i r à æc of GF(qt+t ). Let II be a plane of PG(3f f 2, q'+t) whose Ú*1 conjugates

[, [',. . . , [o' span PG(3t:L2,gr+t). Such a plane II is called imaginary. Then II

gives rise to a ú-spread of PG(st + 2, q) ail of whose elements meet it in a unique

point. The partial t-spread comprising all the elements of the f-spread meeting fI

in the points of a (qr+l f 1)- or (qt+t + 2)-arc are a (gt+t + 1)- or (qt+t + 2)-set of

PG(St +2,,q). The points of the plane II are a partial indicator set for the partial

t-spread whose ind.icator set is II. In a similar way' a k-atc of PG(2,q¿+1) gives

rise to a ,t-set of PG(3ú +2,q).

The converse is an interesting question. Given a k-set K (with possibly some

restriction on the size of k) of PG(3t *2,g), is there always an imaginary plane II
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of PG(3t +2,g'+') meeting the extension of every element of K? Or equivalentl¡

is every k-set K contained in a regular Í-spread of PG(3t l2,q)? This question

has been addressed by for example, Casse and Wild (1983), Casse et al (1985),

Wild (1986) and Declerck et al (1987). They have shown that under certain

circumstances, a k-set is contained in a regular ú-spread of PG(3t I2,g) or, in

other words, arises from the construction described above.

We turn to partial t-spreads which correspond in the same way to (k,")-

arcs of projective planes. The above connection between partial t-spreads and

k-arcs suggested a study of (k, n)-arcs of projective planes by the same methods,

hopefully leading to examples of maximal (k, n)-arcs, or to demonstrations of the

non-existence of these maximal (k, n)-arcs in projective planes of certain orders.

The appropriate set of ú-dimensional subspaces in PG(3t +2rq) will be called a

(k, n)-set. A (k, n)-set or PG(3t+2,q) is defined to be a geometric partial Ú-spread

of. PG(3t ¡2,A) which satisfies the additional property: no (2t + 1)-dimensional

subspace of PG(3ú ¡2,1) contains more than n elements of. K, but there is some

(2f + l)-dimensional subspace containing exactly n elements of K. It is shown that

a (k, n)-set has at most (, - l)q'+' + n points, and that sets of this size (called

maximal (k,n)-sets) can be constructed as above by taking a maximal (k,n)-arc

in the plane II, provided such an arc exists.

The question of existence of maximal (,b, n)-sets is therefore closely linked with

the question of existence of maximal (k, n)-arcs. It is an open question whether,

for 21n < qt+L - 1, there exist any maximal (,t,n)-arcs in PG(2,qt+l) with g

odd, and hence whether there exist any maximal (k, n)-sets in PG(3t + 2, q).

As in the case of k-sets of. PG(3t *2rq), the following question is of interest:

Do there exist maximal (,b,n)-sets of. PG(3t¡2,A) which do not arisefrom the

8



above construction using a (å, n)-arc of an imaginary plane II? This question can

be rephrased in another way: Is every maximal (k, n)-set. contained in a regular t-

spread of PG(3ú* 2, q)? In Chapter Four we obtain some results towards answering

this question.

The theory presented in this thesis is an extension of the existing theory

of ú-spread,s. Thus any known use of f-spreads of. PG(2t f 1, q), especially with

regard to regularity spread sets or indicator sets, can now be examined for possible

extensions to the case of ú-spreads of PG((s + lX¿ + 1) - t, q). A few ideas on this

theme are collected into Chapter Five.
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CHAPTER ONE

PRELIMINARIES AND FUNDAMENTAL CONCEPTS

1.1 PROJECTIVE SPACES AND VECTOR SPACES

In the study of projective geometry, especially from the algebraic point of view,

it is often useful to represent an n-dimensional projective space PG(n',q) over

GF(q) by an (n * l)-dimensional vector space }/¿a1 over GF(q). This equivalence

is explained in Hirschfeld (1979) and briefly is as follows:

Each point P of an n-dimensional projective space PG(n,q) is represented by

an equivalence class of (n * l)-tuples of elements of GF(q), not all zero, written

as column vectors

P -- {c@o,tr¡.-. ,rn)T : P e GF(q) - {0}i

where I denotes the transpose of a vector or of a matrix. Interpreted as an

equivalence class of points of an (nf l)-dimensional vector space )/p11 over GF(q),

this set of (n+l)-tuples is a line of.Vn+L through the origin (0,0, . . . ,0)?, excluding

the origin.

An rn-dimensional subspace of. PG(n,q) is a set of points all of whose repre-

senting vectors, together with the zero vector, form an (rn f 1)-dimensional sub-

space of )r,+r. We will adopt the following convention with regard to subspaces

of. PG(n,g) having no common point.

1.1.1 Definition

Two subspaces ^91 and .92 of PG(n,g) are called skew ff they have no common

point in PG(nrq). The corresponding subspaces ,51 and Sl of V",+1 have only the

zero vector in common, and we shall say that ^91 
and S'2 ate ske'u also.
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In this way two subspaces a¡e skew if and only if as projective subspaces they

are disjoint, and as vector subspaces they have only the zero vector in common'

We will also be using the idea of the d"írect sum of. two vector spaces, say l/,,

and )/- of dimensions ?? and m respectively. The direct sum of )2,, and V- is

VnØV*: {("r rrLr... ¡ünrUttUz¡...,,A*) :

(rr,*",...,on) € V," and (yrrytr...,A*) eV*I .

The point (*rr*rr. .. ¡tn,tUt,tAz,.. . ,U*) is often written as

(rrr*r,. . . rûn) O (Yt ¡u2¡''' rurn) '

The direct sum is an (n * rn)-dimensional vector space over G-F (g), and contains

the subspaces

^91 
: {(u 1 tï2¡... ttn¡0,0,. . . ,0) t

(*rr*rr...ræn) eV"j
and

^92 
: {(0,0,..., 0ryt,Azt... tAm) :

(atrYr', "'ran) eVr.\

which are isomorphic to V,, and V* respectively, and these isomorphic spaces are

sometimes identified. This definition is extended inductively to the direct sum of

a finite number of vector spaces.

In the following, the vector e¿ of. avector space V,, will denote the vector with

1 in the ith position and wiih 0 in every other position.

The next result appears in Bruck and Bose (1964) in the special case of s : 1.

We will require the extended form in Section 3.2.

L.L.z Lemma

Let V1"+r)(rar¡ be an (s * 1)(f * l)-dimensional vector space with a subspace V"(t+r)
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of dimension s(f f 1) spanned by the (t * l)-dimensional subspaces At, Az,. . . , A"

of )1s1r)(t+r). Let B be a (t * l)-dimensional subspace of V("+r)(t1r¡ skew to

V"(t+r). \Mrite y(s+r)(r+l¡ as the direct sum of the spaces 4t,42,,...,4" and B,

so that any element of )/1sar)(t+t) can be written as d1 @ az Ø"' O ø" @ ó where

a¿ € A; for i : 7,2,...,s and b e B. Conversely any vector of this form is an

element of Vlrar)(t+r). Suppose there exist s non-singular linear transformations

from .4,1 onto each of. At,,A2r...rA" in turn, denoted by

(i):fi--+A;

or. o$).

Let C be any (t + 1)-dimensional subspace of )1s1r)(t*r) skew to V"1¿a1¡ and to

B, with the additional property that it is skew to each of the s(t + f )-dimensional

spaces spanned by B together with s - 1of the spaces At,Az,,...rA". (Such a

space certainly exists, for example if each A¿ has a basis {"[n), *ln),.--,*tu) ] and

B has a basis {Ao,yt ,. . . ,Ut} then a suitable such space C would have basis

{"[t) e "5r) 
e...o ø[") o so, ,"Ít) o ,Ír) e...o ø!") o yr].)

Then there exists a unique non-singular linear transformation

t:A1 --+B

O, 
'' 

CL,

such that the linear transformation

o = oQ) Ø aQ) O ...O o(") 6 ø,

maps A1 onlo C.

Proof: Since a linear transformation is determined by its action on a basis,

it is enough to show that there exists a basis

{oÍt', otÐ,...,oÍ?r,olÐ,otÐ,...,o"?r, ,oÍ"), oLù,...,oÍ?r,bt,b2,...,ä,+r}
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of V1s1r)(r+1) such that

Ar :lin "\

"\

{
r) 

,atÐ ," ' , "Í?r ) ,

{ "',,ofr,...,oÍ?r),Az:Iin

A" :lin 
{"1'),oL"),..., 

rÍ?r},

B : iin {bt,br,.. . , ór+t} and

c: lin{'Ít'*oÍ') e...ooÍ") oór,ott) Øatz) o "'oo!") e b2,.-....,

,Í?, e'Í?, o ... e oÍ?, 6 a,+,) .

Then the required linear transformation' is

''.ay-B

,o\L) *b¡, for j - !,2,...,¿+1.

We do this by choosing a basis lor C, and then since the space )(s+r)(¿*r¡ is the

direct sum of At, A2,,. . . , A" and B each basis element of C is uniquely expressible

as a direct sum of elements of. A1rA"r...,A, and B. In this v¡ay' suppose that

C : lin {"rr"rr. . ., cr+r}

: tin{"Ít) eoÍ') o...oø[") o ór,olt) e"f) o...o oÍ") e b2,......,[^
,Í?, e "Í?, o...e'Í?, 6 a,+,) .

where 
"\n) 

, A¿ for i: !,2,...,s and j : L,2,...,t*1, and ó¡ € B for each

j:i,2,...,ú +1. Wemust show that the set of vectors {"Ín" j:L,2,...,¿+ 1}

is abasis for the space A¿f.or each i with i : Lr2,...,s: and that the set of vectors

{b¡ , j : I,2,. . . , f * 1} is a basis for B. Then since }1"+1Xr+1) is the direct sum

of. A1, Az, . .. , ,4," and B, the set of all these vectors is a basis for V("+r)(t+r¡. Now,

none of the vectors ó¡ may be zero since C is skew to V"1¿11¡, and no lr""to, oji)

may be zero for i:\r2r...rs and j :Lr2r...rú*l since C contains no point

13



of the space spanned by B and the set of spaces At,,...rA;-trA¿+t,...,,4'". We

now show that {ó¡ : j : I,2,...,t * 1} is a linearly independent set of vectors.

Consider the equation

,+1

lß,ib; : o, where fu e GF(q) for i : \,2,...,t tr
i=L

Suppose that A1 has basis {*rr*r¡...¡rt+r }. Then

¿+1 f+1

Dl'(uos'r): t þ¿r¡Ø0.
i:L i:1

The vector on the right hand side is contained in A1 O 0 and the vector on the left

hand side is contained in (Ar O B). Now ,4.1 O 0 and (Ár e B) have only the zero

vector in common so that

¿+1 ¿+1

DPn(Uns "r) 
: t þ¿x¿ Ø0 : 0 O 0.

i:l i:L

As {ø1 ,t2,...¡ût+r } is abasis for .4.1, we have that þ¿:0 for all i: I,2,,...,t +l
showing that {ó1 ,b2,...,ór+r} is a basis for B. The arguments for showing that

the set of element. {"Ío),oLn),...,oÍo) } is abasis for A¿for each i are analogous.tr

Note: The proof follows easily in the case of s : 1. The space Y2¡¡2 is

spanned by At and B. Any space skew to both of them has basis of the form

{ot Obt ,az@bzr. . . ¡ø,t+r@ô¿+r } and none of a¿ or b¿ may be zero. Then considering

Iinear combinations of the ø; and the ä¿ establishes linear independence, recalling

that ,4.1, B and C have only the zero vector in common.

We shall sometimes define incidence structures from our projective spaces.

Ln inciilence structure is a triple T: (P,B,I), where P and B are disjoint non-

empty sets and I ç (P x B). \Me normally refer to the elements of P as poi,nts

and the elements of B as bloclcs or lí,nes. If p € P, I e.B and (p,l) e.I then v¡e say

that p is incident with f, and more commonly that p lies on / or I contains p. If /1
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arrd 12 a,re tvúo blocks of an incidence structure we say that /r nxeets /2 if they are

mutually incident with at least one point. We define h ñIz to be the set of points

mutuaily incident with both blocks, and we say that 11 and 12 meet in h I lz.

An isomorphism from Í : (P,8, .I) to I' : (P' , B' ,I') is a map

ó: P U B -+ P'u B'

such that ó(P) : P' , ó(B) : B' and (p, t) e f if and only if (p' ,I') € .I' for all

pePandleB.

L.2 ú-SPREADS OF PG(n,q)

In this Section we will give a brief introduction to those concepts regarding t-

spreads of PG(n,q) which we wiII use in the following chapters. There is a good

collection of material on t-spreads contained in Dembowski (1968) and Hirschfeld

(1e7e).

L.2.L Deffnition [Segre (1964), p23]

A. t-spread, W of PG(n,q) is a set of f-dimensional subspaces such that every point

of PG(n,g) is contained in exactly one element of W.

L.2.2 Theorem [Segre (1964), p23-25]

The space PG(n,q) contains aú-spreadif and onlyif ú*l divides n*1. If W is

a f-spread of PG((s + 1Xt + 1) - 1, q) then

lwl : !ont'+rl
I

i=0

Proof: Let W be a ú-spread of PG(n,q). since the space PG(n,q) is the

disjoini union of the subspaces inW, the numb"t {þ of points of PG(n,q)
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must be divisible by the number # of points in a ú-d.imensional subspace.

This occurs if and only if t* 1 divides nf 1, so that rz : (s + 1xÚ+ 1) - 1, and the

number of elements in the spread is the quotient Éäjff of these two values.

For the converse, we will construct a ú-spread of PG((s* 1x¿+ 1) - 1, g) follow-

ing the presentation in Hirschfeld (1979), Theorem 4.1J, p72. Let K : GF(q'+r)

beafieldextensionof -F: GF(q),sothat 6 : F(a). Theelements I,a,a2,...,dt

are linearly ind,ependent over GF(q), and any element Ç of. GF(qt*t) maY be writ-

ten uniquely as

C¿ : *¿o * x¡cr+... + rilo/, where x¿j € GF(q).

Inthis$¡ay,an(s+l)-tupleof elements((0,(r,...,(") of.Gî(qt+l)givesriseto

the following ((s + i)(t * 1))-tuple of elements of GF(q):

("oor"orr...rÍ0t, rlo¡rll¡...¡r1tt ¡ls0¡ls7r"'rært)

\Me can interpret this ((s + t)(t + l))-tuple as homogeneous coordinates of a point

in PG((s + t)(t + 1) - 1, s), and similarly a point of PG((s + 1Xú + 1) - 1, q) is given

by an (s * 1)-tuple of elements of GF(q'+'). We choose s * 1 elements rs, rr,. . .,rs

of. GF(qt+l), not all zero, and consider the set of equations in GF(qt+l) given by

(o (r ("
Tg T1 Ts

If we now write each element of G.F(gr+l ) as

e¡ : x¿o * rna+... + z'ito¿t ¡ r¿j e GF(q)

rj : yjo *a¡rz+ "' + U¡tott, yjk e GF(q),

then we obtain s(t * 1) linearly independent equations in the variables r¿¡. This

is because there are s linearly independent equations of the form

riei : r¡(t, for i,i e {0,1,

16
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involving elements of. GF(qt+l), and each of these gives rise to ú + 1 equations

in elements of GF(q). These s(ú * 1) equations in the variables n¿¡ determine a

subspace of PG((s + 1)(t + 1) - 1,s) of dimension (s + 1)(t + 1) - 1 - s(ú * 1) : ¿.

Multiplying each element of the (s t l)-tuple (rs, 11¡...,r") bY an element of

GFçnt+r) gives another. (s * 1)-tuple defining the same f-dimensional subspace of

PG((s+ 1X¿ + 1) - 1, g), so that a point ("0,...,r") of PG(s,,q'+t) determines a

f-dimensional subspace of. PG((s + 1)(t + 1) - f,q). Conversely a f-dimensional

subspace of PG((s + 1)(t + 1) - 1, q) determines a point of PG(s, qt+t). The set

of f-dimensional subspaces of PG((s + 1X¿ + 1) - L, g) determined by all points

of pG(s,gr+t) is a t-spread of PG((s + 1X¿ + 1) - f,q). To see this, note that

PG(s,gt+1) has

N
g(s+l)(t+1) - 1

qt+r _ I
points, so we obtain -lü ú-dimensional subspaces of PG((s + 1Xt + 1) - 1, q). This

is the number of elements of a ú-spread and it remains to be shown that the

f-dimensional spaces we have constructed are disjoint. Each point of the space

PG((s + t)(t + 1) - 1, g) lies in at least one such f-dimensional space, for we

ca¡r find. the corresponding (s * l)-tupte ((0,(r,...,(r) of elements of G.t'(gt+l),

and produce equations of the above type in (; and r¿. The number of points

of PG((s + t)(t + 1) - 1, g) covered by the above t-dimensional subspaces is N

multiplied by the number of points in such a ú-dimensional subspace, or

q(.r+1)(t+1) - 1 _ qr*t - 1

gtl-t_1 " q-I

which is exactly the number of points in PG((s+1XÚ+1)-1, q). The f-dimensional

subspaces must be disjoint and so form a f-spread of PG((s + lx¿ + 1) - r, q). tr

The following idea of a geometric Í-spread appeared in both Baer (1963) and

Segre (1964), p32, in relation to partitions of abelian groups or as a property of

the f-spread constructed in the proof of Theorem 1.2.2.
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L.2.3 Definition [Beutelspacher (1975), p2L2]

A ú-spread W of PG((s + t)(t + 1) - 1,g) is called geometric if for every pair of

distinct elements XrY of. W the elements of.W are either contained in or are skew

to the join < X,Y ) of the spaces X and Y. The elements of W contained in

1X,Y ) form a ú-spread of < X,Y >, called the f-spread induced, on ( X,Y >

bv w-

For a geometric f-spread W of PG(n,,q) lei T be llne following incidence struc-

ture:

- the points of. I arc the elements of W,

- the bloclcs of.I are the subspaces ( VrV' ) for any two distinct elements I/

and V' of W, and

- the incidence in Z is set-theoretic inclusion. Then the following holds

L.2.4 Theorem [Segre (1964)]

(1) If the space PG(n,,g) contains a f-spread then it must contain a geometric

. ú-spread. By Theorem !.2.2, this occurs if and only if t * 1 divides n * 1'

(2) If W is a geometric ú-spread of PG((s + t)(t + 1) - 1, g) then I is a" projective

space of order g¿*1 and dimension s.

Proof: (1) The ú-spread constructed in the proof of Theorem 1.2.2 is in fact

geometric.

(2) This follows by checking that the incidence struct:ure I satisfies the axioms for

a projective space, for example those appearing in Hirschfeld (1979), p39. tr
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1.3 THE SEGRE VARIETY 5),+r,r+r IN PG((s + t)(t * 1) - 1' q)

The Segre variety 5Vsr1,¿*1 appeared first ii the work of C. Segre in 1891- (see

Segre (1891)), where it was studied in projective spaces over infi.nite fields. The

Segre variety is also referred to as the Segre manifold or the Segre product of

two spaces S¿ and S", of dimensions ú and s respectively. For a discussion of the

classical Segre variety over an infinite field, see Burau (1961) or Hodge and Pedoe

(1e52).

The theory is still valid over fi.nite fields, giving the Segre variety in the fi.nite

projective space PG((s + 1Xf + 1) - f , q). There is a close connection with the

theory of spreads of PG((s + 1X¿ + 1) - 1, q) by Í-dimensional or by s-dimensional

subspaces. This connection allows us to generalise the known theory of l-spreads of

PG(3,q), in a natural way. In the case of PG(3, q) when s : t :1, reguiarity of a

l-spread is defi.ned using the idea of a regulus of lines, which is related to the Segre

variety svz,z.Inthegeneralcase,regularityofaf-spreadof PG((s*lxt+l)-1,q)

is defi.ned in an analogous way but using the Segre variety SVr+r,t+r'

Here we investigate the behavior of the Segre variety over the fi'nite field

GF(q).

Let ^9¿ 
and ,S" be projective spaces of order g and of dimensions t and s re-

spectively, and suppose that they have as systems of homogeneous coordinates

respectivety (yo, At,...,Ut) and (ro,rr,...rz").Consider the ((s + 1X¿ + 1) - 1)-

dimensional projective space PG((s + 1Xú + 1) - 1, g), with homogeneous coordi-

nates

("00, 
"0, ¡... ¡rts).

The set of points of PG((s + 1X¿ + 1) - 1,g) with æii y¿z¡ lor all i:0,1,...,¿

and j:0,1,...,s is avariety in PG((s+1)(t+1) -1,g), called the Segre uariety
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SYs*r,t+1 in PG((s + lX, + 1) - f 
'q).

In the following, we will occasionally'use semicolons in place of commas to

break up the coordinate (s + 1)(t * l)-tuple

(too,rot r...¡rt")

into f * 1 blocks of s * 1 coordinates each:

("OOr"Orr... rÍOsif10r011 t. - -,, l1si if tOrrn',"'¡ræ)'

This has no formal significance, it is just done for ease of notation.

1.3.1 Lemma

(1) The Segre variety 5)/s*1,t*1 has two systems of linear subspaces of order g lying

on it. There are g"f gs-r+...+g*l spaces of dimensiont, each in projective

correspondence with,gr and, each determined by one point ("o,,'r',"'rz") of'

.9". There are qt * qt-r +.. . + g * 1 spaces of dimension s, each in projective

correspondence with ,9, and each determined by one point (yorYrr''' ,At) of

,St.

(2) The spaces of each system are skew and there is one space of each system

through any given point of 5}r+r,¿11. Therefore a space of one system meets

each space of the other system in a unique point-

(3) The Segre variety S)/rar,rar has exactly

(q' + q'-t + -.. + q* 1Xq" * q"-' + "' + q + 1)

points.

Proof: (1) Fix a point (rL, t'r,. . . , t',") of s", and consider the set of points of

SYs+r,r*r given by

{@ortrUozlr...,aozt"iatz'oratz'tr' ",Utz'"i iatzL,Utz'tr''',yt"'")}
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for grs, Ut¡...,Ut € GF(q),, not all zero. This set of points is a ú-dimensional

subspace of PG((s + 1)(t + 1) - 1, g) since it is spanned by the ú * 1 linearly

independent points

QL,r\,...,2'"i0,0,...,0;...... i0,0,...,0),

(0,0,. .. r0;rLrzl,...,z'",0,0,...,0;...... i0,0,...,0),

(0,0,...,0;...... ;0,0,.. .,0; rL,z\,...,r'").

It is in projective correspondence with the ú-dimensional space .9¿ with homoge-

neous coordinates (yo, Ut¡...,y¿). There are g" *gs-r +...+g*l choicesfor the

point ("L,"'r,...r"'") of Sr, so there are g" * gs-r + "'+ g * 1 such t-dimensional

spaces on 5)"11,r+r. In an analogous lvay we fi.x a point (y',,,y't, . . - ,vl) of ,S¿, then

the set of points of SV"+r,¿11 given by

{@L"r,ULzt,... ,VLz";Alzo,Alzt,,. . . ,Vlz"; iA'tzo,AIzt,. .. ,y'rt")}

for zs,zt¡...r2" € GF(q), not ail zero, forms an s-dimensional subspace of the

space PG((s + t)(t + 1) - 1, g) since it is spanned by the s * 1 iinearly independent

points
(yå,0,...,0; a1,0,...,0;...... ; y't,0,...,0),

(0,yå,0,...,0;0,yi,0,...,0;...... i0, u't,0,...,0),

(0,...,0,,yL;0,..., O,,y't;...... ;0,..., 0,vÐ.

Each such s-dimensional space is in projective correspondence with the space ,9,

with homogeneous coordinates (zo, ztr. . . , z").

(2) Given any two distinct points (y'o,a't,...,v') and (gff,v'|,...,y'l) "f .91, the s-

dimensional spaces that they define are skew, and similarly any two Í-dimensional

spaces on.SV"a1,¿+1 are skew. The point

@'o'L,vL''r, "' raL''r;y'r"try'r''t, "' ralz'"i ;y'tzLrv'r"'tr "' ry'r''r)
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lies on the t-dimensional space of .SV"+r,¿+r determined by the point ("'o, 
"'r,, 

- . . , zL)

of ^9" and the s-dimensional space determined by the point (y'o,A't,. . . ,U') of S¿,

and these spaces are unique. Conversely the f-dimensional space of 5)r+r,¿+r

determined by the point (t'0, 
"'rr. 

. . , z'") of ,5" meets the s-dimensional space deter-

mined by the point (y'o,y't,. . . ,y'r) of 
^9¿ 

in the unique point

@L,L,aL,1,... ,aLz'"iv|'L',v'r"'t, "' ,U'tz'"i " ''";u'tzL,y'r"'t, "' ,y'r"'r)

of 5)"+r,¿+r.

(3) The number of points of the Segre variety 5)/s*r,¿*1 is the number of f-

dimensional spaces on it multiplied by the number of points in such a ú-dimensional

space. Alternativelg it is the number of s-dimensional spaces multiplied by the

number of points in such an s-dimensional space. This is

(qt + q'-t + ...* q* 1Xq" + g"-t + "'+ q + 1)

L.3.2 Examples

The Segre variety SVz,z is a quadric in PG(3, q) and the Segre variety EVs,z is the

rational cubic scroll of planes in PG(5, g). For convenience \¡/e include the trivial

cases of 5)1,1 which is a point, SlzJ : SVt,z which is a line, and in general

SV"+r,r which is a projective space of dimension s.

1.3.3 Note

By Lemma 1.3.1 (2) we see that the two systems {^9"} and {,S¿} of projective

subspaces tying on 5}ra1,ú+1 are respectively a partial s-spread and a partial ú-

spread of PG((s + t)(t + 1) - 1, g), covering the same points (the points lying on

the Segre variety Sys*t,f*l), and such that an element of one spread meets an

element of the other spread in a unique point. This property is used in Lemma L

of Beutelspacher (1973), where he proves that there is a ú-spread in the projective

22
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space PG((s + t)(t + 1) - 1, q) containing a partial f-spread which covers the same

points as a partial s-spread of the space. In other words Beutelspacher (1978)

has constructed a f-spread of PG((s + t)(t + 1) - 1, g) which contains the set of

ú-dimensional subspaces of a Segre variety 5)/st1,r*1. He uses this to prove that a

partiai ú-spread. of PG(d,g) is contained in a ú-spread of PG((d + 1)(Ú * 1) - 1, q).

L.3.4 Lemma

(1) The system {S¿} of ú-dimensional spaces can be obtained by joining cor-

responding points of t * L projectively related s-dimensional subspaces of

PG((s + 1X¿ + 1) - 1, q), no ú of which iie in a hyperplane. The system {S"}

of s-dimensional spaces is obtained simiiarly by joining corresponding points

of s * 1 projectively related ú-dimensional subspaces no s of which lie in a

hyperplane.

(2) There is a unique Segre variety S}s*r,r*l containing any f * 2 s-dimensional

subspaces of PG((s* lx¿+ 1) - 1, Ç), no t*1 in a hyperplane. similarly, there

is a unique Segre variety 5ys*1,¿*1 containing s +2 f-dimensional subspaces

of PG((s + 1X¿ + i) - 1,q), no s * 1 in a hyperplane.

Proof: (1) We choose a convenient system of homogeneous coordinates for

the space PG((s + t)(t + 1) - 1,g) so that the s-dimensional spaces are:

{(0,...,0;...... i0,...,0; ro¡îr,...,r") ; r¿ e Gek)}

For r,o ,n\,... ,fr," e GF(q),, not all zero, construct the t-dimensional space spanned
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by the points

(*'or*\r... rr'"iO,.. .,0;...... ; 0, 0

(0,...,0;"å, *\,...,c'";0,...,0;....'. i0, 0

(0,...,0;...... i0,...,0; ío,r't,...,"'").

The set of t-dimensional spaces constructed is the set of ú-dimensional spaces of a

Segre variety 5)/s*1,t*1, and they can be used to give all the s-dimensional spaces

as in Lemma 1.3.1 (1). Simitarly we can choose homogeneous coordinates for the

space PG((s + 1)(¿ + 1) - 1, g) so that the given t-dimensional spaces are:

{("0,0,...,0;11'0'...,0; ir.t¡}¡...,0) " ri e Gek)}

{(0,t0,0,...,0;0,ø1,0,...,0;.'.... i0, ît)}i...,0) t x¡ e GF(q)}

{(0,...,0,o0i0,...,0,rri i0,...,0,r¿) : n¿€Gf(q)}'

For cf, ...rr,t e GF(q), not all zero, construct the s-dimensional space spanned

by ihe points

("å,0,...,0;ri,0,...,0; ir't,O,,...,0),

(0, 
"'0, 

0, . . . , 0; 0, o'r, 0, . . . , 0; . . . . . . i 0, f'rr\, .. . , 0),

(0,...,0,rä;0,...,0,"'r; i0,... ror*'r)-

The set of s-dimensional spaces constructed is the set of s-dimensional spaces of a

Segre variety ,S}"+r,r+r, and they can be used to give all the f-dimensional spaces

as in Lemma 1.3.1 (1).

(2) Through a general point of PG((s + 1X¿ + 1) - 1, g) there passes a unique

ú-dimensional space meeting each of ¿ + 1 skew s-dimensional spaces, no f in a

hyperplane. This space is called a, transaersal space to the s-dimensional spaces,
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and meets each of the s-dimensional spaces necessarily in a unique point. So given

t + 2 s-dimensional subspaces of PG((s + 1X¿ + 1) - 1,g), no ¿ + 1 lving in a

hyperplane, there are g" + g"-1 + '.. i q i 1 ú-dimensional spaces meeting all

of them, each in a unique point. These t-dimensional spaces are pairwise skew

and together with the s-dimensional spaces they define a Segre variety S)/s+r,t+r.

Similarly, through a general point of PG((s + t)(t + 1) - 1, g) there passes a unique

common transversal s-dimensional space to s * 1 skew ú-dimensional spaces' no s

in a hyperplane. So given s *2 t-dimensional spaces in PG((s + 1X¿ f 1) - 1,q),

no s { 1 in a hyperplane, there are qt I qt-t +..' + g * 1 s-dimensional subspaces

of PG((s + t)(t + 1) - 1, g) meeting all of them, each in a unique point. These

s-dimensional spaces are pairwise skew and together with the f-dimensional spaces

they define a Segre variety SVs*l,¿*r. tr

\Ve now investigate the properties of Segre subvarieties of a Segre variety, an

idea which will become important later.

1.3.5 Lemma

The Segre variety 5)/s*1,¿*1 admits Segre subvarieties 5V.11,ta1 for every value of

r with 0 ( r ( s. The ú-dimensional spaces of the subvariety are all t-dimensional

spaces of 5}r+r,¿+r, and the r-dimensional spaces of 5V.+r,t+1 are subspaces of

the s-dimensional spaces of 5)"-¡1,¿+r. In particular, 5V'*1,1*1 lies in a subspace

of PG((s + t)(t + 1) - 1, q) of dimension ((" + 1X¿ + 1) - 1).

Proof: Let ,9" be one of the spaces of dimension s lying on 5V"11,¿a1.

For any value of r, with 0 ( r ( s, let ,9' be a subspace of ^9" of dimension

r. The ú-dimensional spaces of 5)"+r,r+r meeting ,S" in points of .9' are the

ú-d.imensional spaces of a Segre variety 5Vr*1,¿*1. Each element of the system

of r-dimensional subspaces on S}r+r,¿+r is found either by intersecting the Ú-
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dimensional spaces of SVr+r,r11 with the s-dimensional subspaces of ,SV"+r,¿+1 or

alternatively by finding the r-dimensional subspace of each s-dimensional subspace

of 5)"a1,¿+r which is projectively equivalent to the subspace S, of ^9" under the

original projectivity relating the s-dimensional spaces. tr

1.3.6 Examples

(0) t : l_ and r : 0. The segre subvariety svt,z of 5)"+r,z is just a line of the

Segre variety.

(1) ú: 1 and r: I. The Segre subvariety Slz,z of .9V"+r,2, s ) 3 is a quadric

surface in a 3-dimensional subspace of. PG(2s + 1,q). For example if s :3

then we see that the cubic scroll in PG(5, q) has exactly q2 + q f 1 quadrics

on it, each lying in a 3-dimensional subspace of PG(5, g), and each pair of

them having a line in common, which is necessarily a line of the scroll SVs,z.

(2) t:1 and r :2. The Segre subvariety SVs,z of 5V"+r,2, s ) 4 is a rational

cubic scroll in a 5-dimensional subspace of. PG(Zs + 1, q).

L.4 THE STRUCTURE OF PG(n,qd)

Lunardon (1934) used the idea of imaginary point and imaginary subspace of

PG(zt - 1,qr). This refi,ned the approach of Sherk (1979) who used the concept

of linearly independent direction numbers of a line to describe the same phe-

nomenon. In this Section we discuss imaginary subspaces of a general projective

space PG(n,qd).

L.4.L Definition

Let K be a field extension of the field .F. Then PG(n,^F) is said to be embed'deil

in PG(n,I(). If -I( is not equal to ]¡ then the embedding is called proper.
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PG(n,^F) is also said to be a subgeometry of PG(n,,.Il), as in Hirschfeld

(1979), p87. For each d.ivisor d; of d, the projective space PG(n,,gd') it embedded

in pG(n,qd). A point P of PG(n,qd) is said to lie in PG(n,q¿'),íf when P is

normalised (so that one of its coordinates is 1), then all the coordinates lie in

GF(qot). If q is not prime there are other spaces embedded in PG(n,qd) but these

shall not concern us here

If S is a subspac e of PG(n, q) then we will denote its extension to PG(n, qd)

bv 3.

L.4.2 Definition

A point of. PG(n,q) will be called a real point of. PG(n,qd). A k-dimensional

subspace of. PG(n,qd) will be called real if. it intersects PG(n, q) itt a subspace

of the same dimension k. A point or subspace which is not real will be called

non-real.

L.4.3 Example

Let q: 2 and d,:4. Now PG(rz,2a) has the two spaces PG(n,2) and PG(n,22)

properly embed.ded in it. Let ø be a primitive element of' GF(2a), so that GF(24)

is the set of elements {0,1,ø, Q2 r... ,rta} where rÐr5 : 1 and ua + ø3 + 1 : 0'

Then GF(22): {0, I,@6,o10} with primitive element ø5 and CF(2): {0,1}'

The points of PG(n ,2), or the real points of. PG(n,2a) are the (rø * l)-tuples of

elements of Gtr'(2) and the points of. PG(n,22) arc the (zz * 1)-tuples of elements

of. GF(22) where one of the elements is 1. The points of PG(n,24) not lying in

PG(n,22) arethose points which have at least one coordinate in GF(24) no matter

which coordinate representation of the point is used.

Let o denote the field automorphism, called conjugation, of G.F (gd), that is,
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for c € GF(qo),

o û ¡--+ nQ

The map ø induces a collineation on PG(n,gd) which will also be called a. The

image of a point P under ø will be denoted by P' and more generally the image

of a subspace S of PG(n,gd) under ø will be denoted by S". More precisely,

oi P:(æo¡tt,t...rf'7')*

po : (*oorrorr... ,*q.)

and

o : S : {P¿: P; € S} * So : {Pi : P¿ e S}

Note that Po' :P for all P since teo :r for all n e GF(qd)

L.4.4 Definition

Given a point P e PG(n, gd), the d points

PrPorPo"...rPoo-'

are cailed lhe conjugates of. P.

L.4.5 Lemma

(1) If P e PG(n,qd) then Po : P if and onlv if P e PG(n',q)

(2) If ,5- is a subspace of. PG(n,gd) then ,9- is fi'xed by o, not necessarily point-

wise, if and only if s- intersects PG(n,g) in a space of the same dimension

n'¿

(3) If P e Pc(n,qd), then Po'i :. P if. and only if d¡ iq a divisor of d and

P e PG(n,q'tt).
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proof: (1) If æ e GF(qd) then te : t, if and only if r € GF(q) and (1)

follows since P e PG(n,q) if and only if all the coordinates of P are in GF(q)

when one of the coordinates is 1.

(2) In the special case of n:2d, - 1, this result appears as Lemma 1, p719 of

Lunard.on (1984). The proof in the general case is analogous. Firstly if ,S- is

a subspaceof. PG(n,gd) meeting PG(nrq) in a space of dimension rn, then it is

spanned by m*l linearly independent points P0,Pl ,..-,P* of PG(n',q)' Since

P{ : Po, P{ - Pr, . . . ,, Pfl : Prn, we see that

Si^ : Iin {Pso, P{ ,. . - , Pil}

: lin {Po, p, ,... ,P^}

which is .9*. The converse is proved by induction. 1L m :0 then ,S* is a point and

the property (2) is true by part (1) of this Lemma. Next suppose that any subspace

of PG(n,qd) of dimension k - I which is fixed by ø meets PG(n,g) in a space of

the same dimension k - 7. Let ,9r be a k-dimensional subspace of PG(n,qd) with

Si :,S¡, and suppose that ,Sr meets PG(n,q) in a space of dimension t, where

t < k. Let Ht a¡rd Hz be two hyperplanes of PG(n,e), so that their extensions

^gr. Then the spaces S, : Fr n,9¡ and S, --Erñ S¡ are both fixed by ø (as F1,

E2 and, Sr are all fi.xed by ") and both have dimension k -I. By the inductive

hypothesis 3r and ,Sz meet PG(n,q) in (distinct) spaces both of dimension k - 1,

and so Sr meets PG(n,q) in a space of dimension k.

(3) First suppose that d; divides d and that P € PG(n,qd') C PG(n,qd)' The

coordinates of P lie in Gr:(qat), and. x e GF(qar) implies that tqo' : æ so that

Poo' : P. Converselyif P € PG(nrq)anð'P"ot : Plher-a'Ioí: rforeach

coordinate a of P. But øco' -1 : 1 - s,t(qd-t¡ for any r and g a primitive element

of. GF(qd), so that n : a,(qd-r)/(cd¡-r). But G]¡(qdr) has primitive element
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¿¡ko-Ð/Got-1), so r e GF(qdr) with d; a divisor of. d as required.

1.4.6 Example

We return to the Example 1.4.3. The automorphic collineation ø of PG(n,24) is

GFQ4)--+ GF(24)o

22råa

Now ø2 : r if and only if. x :0 or 1, that is, if and only if t € GF(2)'

elements which satisfy *2' : r ate the elements 0,1,¿¿5 and ø10 of GF(22)

elements of. GF(2a) satisfy ,2n : *.

The

AII

1.4.7 Deffnition

(1) A point P e PG(n, qd) is called imaginary if the subspace L(P) spanned by

its d conjugates P,P',...,Po¿-'has dimension d- 1in PG(n,qd).

(2) An rn-dimensional subspace ,9* of. PG(n,qd) it called imaginary if the sub-

space L(5,.) spanned by the d conjugates ,9-, 5i,..-,5*-' has dimension

d(mt1)-1inPG(n,qd).

1.4.8 Theorem

(1) If P is an imaginary point of PG(n,gd) then L(P) meets PG(n,g) in a space

ofdimensiond-1.

(2) If ,9- is an imaginary subspace of PG(n,qd) then -[(.S-) meets PG(n,q) in

a space of dimension d(m + 1) - 1.

(3) If ,9- is an imaginary subspace of. PG(n, gd) then all its points are imaginary
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Proof: (r) Now

(L(P))" : (ri" {e
: Hn {.Po"* l.- '

: L(P)

and so by Lemma 1.4.5 (2), L(P) meets PG(n,g) in a space of dimension d - 1.

(2) Similarly

(¿(.9,,))" : (un {t,", 5",,,. . . ,5":-'\)
: un {så ,. . . , s",l-', t* }
: L(5,"),

so by Lemma 7.4.5 (2), L(5,*) meets PG(n,q) in a space of dimension d(rn*l)-1.

(3) Suppose that .9- is an imaginary subspace of. PG(n,qd) containing a point P

which is not imaginary. There exists a basis P, Xr, Xz, . . - , X* for ,S- and

.ú(,S",) :1in srorsî-r...,s#-t)

Por"'rP*-'\)

{

{

, P"o-' , P\

d-1
PO

Xt,,X{,.-.,X{'-',

XrnrXln,,... rX*-'\

: Iin {I(P),L(Xt),.. . , L(X,")}-

Now I(P) has dimension less than d - 1, so lhat L(5,,) has dimension less than

d(m * 1) - 1 contradicting Definition 1.4.7 (2). tr

L.4.9 Theorem

Let P be a point of. PG(n,qd). Let a e GF(q') b" such that GF(qd) : GF(q)(a),

so that P can be written uniquely in the form

P : Po * Pta * Pza2 + "' + P¿-r.oo-t

P,Po,Iin

31



where Po, Pt, . . . ,, Pd-r are real points of. PG(nrgd)' Then

L(P): lin {r,r" ,Po' ,.. . ,P"o-'\

: lin {Po, Pt,,. . . , P¿-t } .

Proof: The d conjugates of P are:

P : Po* Pro * Pzoz + "' + Pd-tad-|,

Po :Po * &(aq) + Pz(c,q)' + "' + P¿-r( oo)o-t,

po' :po + pr(ao') + p2(s¿ø')' +...+ p¿-{.,")o-t ,

poo-': po * p1(o¿td-') + prç,,o'-')" ...* P¿-t(ooo-')o-t.

This can be written as

11

2
a
a2

1

o¿q

aq)

d-1
o¿q

(.,oo-')"(¿.. .,Po'-' ) : (Po, -..,Pa-r)

where each of the elemenls pot and P¡ is an n x ! column vector over GF(gd)

or GF(q) respectivel¡r and the matrix is d x d over GF(qd). The matrix is a

Vandermond,e matrix, which is invertible because the elemen Ls a, aq , oe' , ' ' ' , ooo-'

a.re distinct (see Finkbeiner (1960), p96). Thus, over GF(qd), th" space spanned

by the columns of

( r Po Po' P"o-' )

coincides with the space spanned by the columns of

(A Pt Pz P¿-t)

(

and the result is proved.
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1.4.1O Corollary

(1) Apoint P:Po*Ptc"*Pza2 +...+ P¿-rod-r of PG(n,gd), *he."P¿ isreal

for i:0,1,.. .,d- 1, is imaginary if and only if the points Po,,Pt,,..-,Pd.-r

are linearly independent over CF(q) and hence over GF(qd).

(2) If P is an imaginary point of PG(n.,sd) then L(P) is the unique (d - 1)-

dimensional subspac e of PG(n, gd) containing P and meeting PG(n,gd) in a

space of dimension d - 1.

(3) If ,9¿_r is " (d - 1)-dimensional subspace of PG(n,q), then there exists at

least one imaginary point P of. PG(n,gd) such that Z(P) :3a-t.

Proof: (1) BV definition, P is imaginary if and only if L(P) has dimension

d - I in PG(n,qd). But by Theorem L.4.9,

L(P) : lin {Po, Pt,, . . . ,, P¿-t}

and this has dimension d- 1in PG(n,qd) fi and only if the points Po,Pt,...,Pd-t

are linearly independent over GF(qd).

(2) This follows since the points Po, Pt, . . . , Pd-t are uniquely determined by P.

(3) suppose that xo,xt,,...,xd.-t are linearly independent points of PG(n,g)

such that

^9¿-r : lin {Xe, Xtr. .- ,Xa-t} .

Then the point

P : Xo * X1a * Xza2 + ...+ X¿-rod-'

is imaginary (by Theorem 1.4.9) and lies in

L(P): lin {Xo, Xt,.- . ,,X¿-t'} '
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1.5 THE SEGRE VARTETY 37"+r,r+1 rN PG((s + lxú + 1) - 1,s',+t)

In Chaþters 2 and 3 (particularly Sections 2.9 and 3.9) we will be interested in

the regularity of t-spreads of PG((s + 1X¿ + 1) - 1,g), and it turns out that

this idea is closely related to the Segre variety, and also to the embedding of

PG((s + 1Xú + 1) - 1, g) in PG((s + 1X¿ + 1) - 1, Çt+t). In this Section, therefore,

we shall investigate the properties of the Segre variety 5Vs*1,¿11 when embedded

in the space PG((s + t)(t + 1) - 1, s'+t).

In the following, let GF(qt+t) b" a field extension of GF(q), and denote the

corresponding extension of PG((s+ t)(t + i) - 1, q) by PG((s + 1Xr + 1) - 1, s'+t ).

Recall Definition L.4.2, so that a point of PG((s + 1X¿ + 1) - 1, q) will be called a

real point of PG((s + 1Xú + 1) - 1, gt+t). Similarly, a k-dimensional subspace of

PG((s+lXú+1)-1,qt+t) willbe called reo'I îf.it intersects PG((s+1Xt*1)-1'q)

in a subspace of the same dimension k.

. Recall also that o denotes the field automorphism, called conjugation, of

GFçnt+t), that is, for r e GF(qt+r),

or r->x8.

The map o induces a collineation on PG((s + 1x¿ + 1) - 1, gt+t) which fixes

PG((s + t)(t + 1) - 1, g) pointwise, and this collineation will also be called o. The

image of a point P under o will be denoted by P" and more generally the image

of a subspace ,s of PG((s + lx¿ + 1) - 1, gt+t) under ø will be denoted by ^9".

Let 5y"..1,t+r be a Segre variety of PG((s + 1Xt + 1) - f , q). 'We extend

5)/s*1,r+r to PG((s + f)(t + 1) - 1,gt+t) to obtain S-V"+r,r+r. This could be

achieved by first extending s * 2 of the ú-dimensional spaces of ,S)r+r,¿+1' no s + 1

in a hyperplane, to PG((s + 1)(t + 1) - 1,Øt+t). As in Lemma 1.3.4 (2)' the
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resulting t-d.imensional subspaces of PG((s + lX¿ + 1) - 1,gt+t) define a Segre

varietyÐs*l,r*1 in PG((s +t)(t+1)- 1,qt+t). We could also have done the

same thing using s-dimensional subspaces of SVs*l,r*1. Alternatively we could

view the equations of the Segre variety SVs*1,¿*1 as equations over G-t'(q¿+l), and

then 5)4+1,ta1 is the set of points of PG((s + t)(t + 1) - 1, qt+t) which satisfy the

equations.

The f-dimensional spaces of S)/"+r,t+r extend to f-dimensional spaces of

37"ar,rar, so that Ðs*l,t*1 has g" * gs-r +. . .+ q * 1 real t-dimensional spaces.

Similarly the s-dimensional spaces of 5)"+r,¿.u1 extend to s-dimensional spaces of

Ðs*r,r*r, so that F¡/"*r,r*r has gú * qt-r +''' + g * 1 real s-dimensional spaces.

gut 5ì4+l,r+t has o(t+r¡t * g(t+t¡1t-l) + . ..* qt*t * 1 s-dimensional spaces and

O(t+r)" * q(t+r¡1s-1) + ...* gt*r f 1 f-dimensional spaces. Thus it has

n(t+r)t+g(f+l)(f-r) *. .+qr*t +1_ (q, +qr-t +...+q+1)

non-real s-dimensional spaces and

O(t+r)" +q(r+l)(s-r) *. .+qr+t +1_ (q, +g"-1 +...+q+ 1)

non-real t-d.imensional spaces. Since through each real point of 5V"41,¿+r there

passes a real t-dimensional space and a real s-dimensional space of Ðr+r,r+r

(namely the extensions to PG((s+1)(ú+1)-1, qt+t) of the t-dimensional space and

s-dimensional space of 5ì/r+r,¿..,'-1 through that point), no non-real s-dimensional

space or non-real t-dimensional space of ilV"+r,rar ma] contain any real point (see

Lemma 1.3.1 (2)).

A real f-dimensionalspace of Ð"+r,r+r has qt +qt-L +"'+g*1real points

O(t+r)t a g(t+r¡1r-r) *... + qr+t + 1 _ (q, + qr-t +... +q + 1)
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non-real points. A non-real f-dimensional space of Ð"+r,r+r has

n(t+r)t + g(r+1)(ú-t) * ...a gf+l a 1

non-real points. Similarly, a real s-dimensional space of Ð"+r,t+r has q" + q."-L +

"'+q*lrealPointsand

O(r+r)" a O(r+r)("-r) *. .+ qr+r +1_ (q" +g'-1 +...+q+ 1)

non-real points. A non-real s-dimensional space of 5/r+r,t+r has

n(t+r)s a g(r+r¡1,-t) *. . +qt+t + 1

non-real points.

A real point of Ð141,¿..,.1 lies on a real t-dimensional space and a real s-

dimensional space of .S-)/r+r,t+r. A non-real point lies on a f-dimensional space

and an s-d.imensional space of Ð"a1,1*rr v/here the Í-dimensional space and the

s-dimensional space are not both real. The Segre variety Ðr1r,¿11 has

(øtr*tl" a o(r+r){s-r) * .. .+ qr*t + r) (øtt+l)¿ + g(,+1)(¿-1) + ...+ q'+t + 1)

points, of which exactly

(q" * s'-1 + "'+ q+ 1) (q' r qt-r + "'+ q + 1)

are real.

Let I be an s-dimensional space of .SD"+r,r*r, skew to PG((s * 1X¿ + 1) - 1' q)'

The set 5 of the ú-dimensional spaces of t}r-,-1,¿-.,.1 which are the extensions to

PG((s + 1)(¿ + 1) - 1, gt+t) of ú-dimensional spaces of Sv"+r,t+r meet I in a set

B of. q" ¡-qs-t +...+q+ 1 points. Now B is an s-dimensionalsubspaceof I

having order g. This is because the extensions of the (real) f-dimensional spaces
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in .S meet I in a set of points which is the projective image of the set of points

of any of the s-dimensional subspaces of the Segre variety S)/sll,t*1, that is, an

s-dimensional projective space of order g.

Conversely, let B be an s-dimensional subspace of order q of the s-dimensional

space l. Then the set of ú-dimensional spaces of Ð"+r,r..1 which meet it (each in

a point) are the extensions of the t-dimensional spaces of a Segre variety 5)/s-tl,t*1

of PG((s + f )(t + 1) - 1, q) which extends as above to the Segre variety Ðs*1,r*1

containing the space l.

Now a t-dimensional space of ,SV"+r,¿+r meeting I in a point P is real and

so contains all the conjugates P, Po , Po' ,. . . , Po' of P. Thus any f-dimensional

space of Ð"+r,¿+r meets all of l,fo,...,lo', each in a unique point' As these

spaces ali have dimension s, they are s-dimensional spaces of 57"+r,t+r.

In this way, each s-dimensional subspace B of order g of I determines a Segre

variety Ðs*r,¿*t containing I and each of the conjugates lo, lo'',"',fo'' This

means that we have projective correspondences T1, T2r. . . ¡Tt between I and each

of l",lo" r...,fo' respectively such that the f-dimensional spaces of sV"+r,t+r

are the t-dimensional spaces joining a point P of I to the corresponding points

Pa)Pr2.,... rP', of l',lo' ,...,1o' respectively. The real t-dimensionalspaces of

Ðs*1,r*1 are exactly those spaces meeting I in the points of B, and these are the

joins of a point Q in Bto the points Qo, Q"' r...,Qo' of ll",lo',' " rlo'' Thus

on the points of. B, the projective correspondences Tr,,72r...¡Tt determined by

57"+r,r+r coincid.e with the maps oro2 r.. .rat from I to each of 1.o, lo' ,.. .,lo'

in turn

conversel¡ suppose we are given projective correspondences rr¡ T2¡....tTt

from I to each of lt,lo'r...,1o' respectively. Then these determine a Segre
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variety Ðs*r,ú*1 containing each of l,lo, lot ,,... , fo'. Since Ð"+r,r+, contains

q" * q"-t + ... + q + L real ú-dimensional spaces, there exists an s-dimensional

subspace B of I of order g such that the projective correspondences TL¡ T2¡...,trt

coincide with the maps ora2 ,. . . ,ot from I to each of lo, lo' ,,.. . ,lo' on exactly

the points of. B.

1.6 THE SPACE S*(M^(Gr(q)))

This space was introduced by Thas (1971), and we will give a short introduction to

it in this section, using the same notation. Let M.(Gr(q)) be the set of all n x n

matrices over Gtr'(g). There ate qn2 of them, and the number of n x n matrices of

rank k over GF(q) is

F] k" - qj)(q* - qj)LL6'j:0

Consider the collection of (- * 1)-tuples of elemenß of. M,(GF(q)),, written as

column vectors, say (€0, (r,. .. ,€*)T , such that €¿ e M.(Gf(q)) and, over GF(q),

rank

€o
(t

È\m

:n.

We wiII usually interpret this as an (m* 1)rz x n matrix over GF(g). \M" introduce

an equivalence relâtion on this set of.(m * l)-tuples of elements of M"(GF(q)),

so that two such (* *l)-tuples (6át),(Ín),...,(Í"Ð)t u,nd ({[i),€Í'),...,€H))t ,t"

equivalent if there exists a non-singular r¿ x r¿ matrix p over GF(q) such that

€[o) : €[i)p for a]l Ic :0,L,.. .,,ffi.

1.6.1 Definition [Thas (1971)]

The space S*(M,(Gf(q))) is the set of equivalence classes of such (rn * 1)-tuples
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of element s of M.(GF(q)), and each equivalence class is referred to as a, poi,nt oL

s^(M"(Gr(q))).

The space 8,.(M^(Gf(q))) reflects the "homogeneous" nature of projective

spaces, except that in this case the homogeneity is with respect to multiplication

by non-singular matrices.

A set of k points P1,P2,...,Pn of'S*(M.(G.F(q))), with 2 < k < rn*f is

said, to be in clear position íf.,given thai Pi : ({Ío),€Ío),"',€E))t,

¡(t)
SO

rank

¿(1) Áz)
ç ?r¿ \1r¿

c( k)
\n

This matrix will be referred, to as lhe coordi,nate matrifr P1,2,...,te of the points

Pt,Pzr...,Pr.If.P1,Pz,...,P¡areinclearposition,thentheydefinea(/c-1)-

d,imensional subspace, to be d'enoted by St -{M"(Gl¡(q))), of E' (M"(C]7(q)))

as follows: the points of. St -t(M"(Gf(q))) are defined to be precisely those points

({0,6r, .-. ,t^)r of' S^(Mn(Cf(q))) which satisfv

o¿z
: P!,2,.,.,r,

o¿k

rank : Tl,.

ak

Now any k points Pt,Pz,...,P* or. E*(Mn(Gr(q))) belong to an l-dimensional

subspace S(M.(GF(ø))) ir and, only if their coordinate matrix Pr,z,...,k has rank

less than or equal to rz(l+1). A subspac e S*a(M"(Gf'(q))) is called a hyperplane,

a subspace of dimension 1 is called a line and a subspace of dimension 0 is a point'

(1
I

t
ç : nlc.

ot1

where o¿1¡o¿z...,otte vary among all the elements of M.(GF(q)) which satisfy

ot1

ot2
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A hyperplane has tangential coordinates lzro, "it¡ . . . ,T^f , written as a row vec-

tor, with each matrix r; € M"(GF(q)), and the rank of the matrix of tangential co-

ordinatesis n. Apoint P: (60,{r,.. .,€^)r and ahyperplaneof E,,(M"(Gf(q)))

are said to be in clear position if the matrix ltto€o + rt€t * "' I r,n€,nl has rank

n

L.6.2 Theorern [Thas (1971)]

There is a bijection / of the space 5,.(M.(Gf(q))) onto the set of all (n - 1)-

dimensional subspaces of a projective space PG((m * l)n - 1,q).

Proof: To any point of. 5,.(M.(Gf(q))) there corresponds an (" - 1)-

dimensional subspace of PG((m I L)n - l,e), defined in the following way. Let

P : ({0, €r,.. .,t,,)r be a point of.5,.(M^(Cf(q))). Then P is mapped under the

bijection to /(P) which is the (n - l)-dimensional subspace of. PG((m* 1)n - 1, q)

spanned by the n columns of P over GF(q), recalling that P has rank n. f e)
is well-defined since if. Q : ((0,(r,.. .rC,,)r is another representation'for the

point P then by definition there exists a non-singular matrix p such that for each

i:0,1,..., rnwehave (; : €¿p whichimpliesthat Q - Pp. The columnsof Q are

just the coordinate vectors of the columns of P under the change of basis reflected

in the matrix p. Thus the (n - l)-dimensional subspace of. PG((m * l)n - 1,q)

spanned by the columns of Q coincides with the space spanned by the columns of

P.

Now let S,,-r be an (n - l)-dimensional subspace of PG((m* 1)rz - 1, q) and

Iet ¡.t - (tto,ttr¡...¡ltrn-r) be a basis for,5,,-r. Then /-l(5"-r) is defined to be

the point P of S^(M"(G.F'(q))) with coordinate matrix (60,€t,...,t*)T whose

columns are potþtr...rFn-L. This is well defined since if. u : (ro,r't,...,,un-t)

is another basis for,5,r-1 then the matrix Q: (Co,(r,...rC^)r whose columns

40



ãte t/s,t,r¡...¡un-r will represent the same point P of' 5,,(M"(Gf'(q)))' This is

because if p is the (non-singular) transition matrix from the basis ¡.r to the basis v

then (¿ : €¿p for i : L,2,. . . ,n. D

Thas (1971) showed that for 2 < k 1 m *1, k points of. E^(M*(Gr(q))) are

in clear position if and only if the k corresponding (rz - l)-dimensional subspaces

of PG((m * 1)n - 1, g) span a space of dimension kn - 1.

The points of a subspace S*(M^(Gf(q))) correspond under the bijection

to the set of (n - l)-dimensional subspaces of. PG((rn * 1)n - t,q) Iying in a

subspace PC((k * 1)n - I,q). 4 point and a hyperplane of S^(M"(Gf'(q))) are

in clear position if and only if the corresponding subspaces Sn-r and S*,.-1 of

PG((m * l)n - 1, g) are skew.

In the next theorem, O¡ is the (* * l)n x n matrix which in block form has

an r¿ x rz identity matrix in the ità row and zero matrices in every other row. -E is

the matrix wiih the identity matrix in every row in its block form. A coilineation

of. E^(M^(Cf(q))) is a map which involves first applying a field automorphism

to the coordinates of each point and then multiplying the coordinate vector by a

non-singular matrix of appropriate size.

1.6.3 Theorem fThas (1971)]

Given a set of m*2 points Po,Pt¡.-.,P,n*r o1' 5,,(M.(Cf(q))) such that every

n¿+Lof them are in clear position, there exists a collineation f) of. 8,.(M.(Cf(q)))

such that

fl(Ol) - Pi, for i : 0,1,...,rn

0(E) - P1.

and

4L
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CHAPTER T\MO

¿-SPREADS oF PG(zt + 1,q)

2.L INTRODUCTION

In this chapter we revise much of the theory of Í-spreads of. PG(2t* 1, g), although

sometimes from a different point of view, setting the scene for the generalisation

to come in Chapter Three. A very useful reference for the theory of t-spreads

is Dembowski (1968) who directs the reader to the original works' More recent

texts are Hirschfeld (1979) and (1985). Thus most of the work in this chapter is

well known, with the exception of Sections 2.6,2.8 and 2'9 which I believe to be

original.

Let W be a f-spread of PG(n,g) as defined in Section 1.2. In the following we

will set n: (s+1x¿+1) -1, sinceby TheorernI.2.2, t*1must divide nf 1. In

this Chapter 1ve make the further restriction that s : 1, so that 'vl¡e are considering

only f-spreads of PG(ZI + 1,q). The case of general s will be tackled in Chapter

Three.

so for this chapter, Iet w be a Í-spread of PG(2t + 1, q). Thus w comprises

gr+r +1 pairwise skew ú-dimensional subspaces covering the points of' PG(2tit,ù.

2.2 Í-SPREAD SETS

In their papers of (196a) and (1966) Bruck and Bose showed how, given a t-spread

of. PG(zt * 1, g), one could construct a spread set. A spread set is a set of linear

transformations of the (t + l)-dimensional vector space corresponding to one of

the f-spread elements, under the correspondence explained in Section 1'1' The

linear transformations can be represented as (f + 1) x (¿ + 1) matrices, and the

set of such matrices is also called a spread set. We will in general identify a linear
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transformation of a (ú { 1)-dimensional vector space with the (¿ + 1) x (t + 1)

matrix ihat it determines. The construction of a spread set will be generalised in

Chapter Three so we give the construction of Bruck and Bose (1966) in full here.

Because our coordinate vectors are written as column vectors while Bruck and

Bose (1964) and (1969) used row vectors, our linear transformations will act by

premultiplication by a (ú + 1) x (¿ + 1) matrix instead of postmultiplication by a

(¿ + 1) x (ú i- 1) matrix. The matrices of the spread set constructed here are just

the transposes of the matrices constructed in Bruck and Bose (1964).

Let W be a f-spread of. PG(2ú* 1, q). As in Section 1.1 we represent the space

PG(2t + 1,q) as a (2ú * 2)-dimensional vector space vzt+z over the fietd Gr(q).

Then W becomes a collection, still denoted by W, of (ú * 1)-dimensional vector

subspaces of.Vzt+z pairwise having only the zero vector in common and satisfying

the property that each non-zero vector of Yzt+z lies in exactly one element of W.

Let A, B and C be an ordered triple of distinct (t + f )-dimensional vector

subspaces of lzt+2, pairwise skew (in the usual sense that paiiwise they have only

the zero vector in common). \Me will write Yzt+z as the the direct sum of A and B.

Then applying Lemma 1.1.2 we see that there exists a unique non-singular linear

transformation

iar-a'

of A onto B such that the linear transformation

maps A oúo C. To each linear transformation X of A to A over GF(g) there

corresponds a unique (ú + f )-dimensional subspace J(X) of Vzt+z given by

J(X):{XaO¿': aeA}.
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In particular (with the following convention for oo, and denoting the zero linear

transformation by 0 and the identity transformation by f),

/(-):A:{a:a€A},

./(0): B:{o':a€A}, and

J(I):C:{aØa'za,eA}.

Conversely each (ú+1)-dimensional subspace J of.V1¡,+z which is skew to A: /(-)

has the form ,./ : J(X) for a unique linear transformation X of A onto itself.

2.2.L Lemma

Let X and Y be linear transformations of A into itself. Then

J(X)nJ(Y):{XaOa': ae A and (X-Y)ø:0}

:{YaOø' : a € A and (X -Y)ø : 0}

Proof: Suppose æ € J(X) n /(y). Then for unique elements a,b e A,

n:XaØa':YbØbt.

This can occur if and only if a' : b' and X¿ : Yb. Now øt : b' implies that a : b

and X¿ :Yb implies that

(X - Y)a :0

and the result foilows.

2.2.2 Corollary

Two spaces /(X) and /(Y) are skew if and only if x - Y is non-singular.

Proof: J(X) and /(Y) have only the zero vector in common if and only if

the equation

(X -Y)a:0
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has only the trivial solution a : 0. This occurs if and only if the matrix X -Y is

non-singular. tr

Now let A, B and C be an ordered triple of three distinct elements of the

f-spread W. In terms of the above representation, W corresponds uniquely to a

collection C : C(A, B rC) of linear transformations of the vector space L onto itself

over GF(q) with the following properties:

(i) C contains 0 and -[,

(ii) If X and Y are distinct elements of C then X -Y is non-singular, and

(iii) If b,c€ A with cf 0 there exists a unique x inc such that xc:b.

To establish these properties, flrst note that the spaces B and C give rise to

the elements 0 and I of C. If X and Y aredistinct elements of C, they correspond

to distinct elements J(X) and "I(Y) ol.W. These are skew, so by Corollary 2.2.2,

X.- Y is non-singular. To show (iii), recall that any element of Vzt+z skew to

/(*) can be written uniquely as b O c' where b,,c € A and " + 0. Then ó G¡ c' is

contained in a unique element J(X) of the ú-spread W, so that

åOc' € /(x) : {XaØ a' : a e A},

and so ct : o,' implying that c : ø and b : Xc. These results suggest the next

definition.

2.2.3 Definition [Bruck and Bose (1964)]

A, t-spread, seú is a set C of linear transformations of a (f f l)-dimensional vector

space onto itself satisfying the following conditions:

(i) C has gú+1 elements,
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(ii) C contains 0 and -f, and

(iii)'If x a¡rd Y are distinct elements of c then x -Y is non-singular.

We call the set of linear transformations a f-spread set instead of a spread set

to emphasise the fact that it corresponds to a ú-spread.

Conditions (ii) and (iii) above ensure that every non-zero element of C is

non-singular.

2.2.4 Theorem [Bruck and Bose (1964)]

Let C be a ú-spread set and let {orro"¡.",ctrt+t, btrbrr-..,br+t} be a basis of

a (2t f 2)-dimensional vector space Vzt+2. Let "I(oo) be the subspace of.Yu+z

spanned by the vectors ch,,az¡...,Qt+r and for eadn C¿ €. C let J(C;) be the

subspace

l(Cù: lin {C;o, @ b1,C¡a2 @ b2,,.. . ,C¿at+t O ó¿+r}'

Then the set

1,Y : {.I(oo)} u U(C;) : C; ç g¡

is a set of pairwise skew (t + f)-dimensional subspaces of. Vzt+2. It therefore

represents the set of elements of a f-spread W of. the corresponding projective

space PG(zt + 1,q). Conversely every such ú-spread may be represented in this

manner by a ú-spread set.

Proof: The f * 1 vectors spanning each of the spaces /(-) and -I(C¡) for

C; €. C are linearly independent, so each element of. W is a (f * l)-dimensional

subspace of.Yzt+2. Now "I(oo) has only the zero vector in common with each space

J(C;), and by Definition 2.2.3 (iii) and corollary 2.2.2 we see Lhat J(c;) and "r(c¡)

are also skew for aII i I j. Thus W is a set of q'*.r + 1 pairwise skew (f + 1)-

dimensional subspaces of.V2¡¡2, corresponding to a ú-spread of PG(zt * 1, q). The
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converse, that every ú-spread of PG(2t + 1,q) can be represented in this manner

is demonstrated in the construction by Bruck and Bose (19ô4) given above. tr

2.2.5 Remark

It is worthwhile to note that in this construction of a ú-spread set, a procedure of

a "non-homogeneous" nature was used. Suppose that instead of considering the

spaces

J(X):{Xa@a':aeA}

we had used spaces of the form

J(M,,N): {MaØNa';aeA}

where N is a linear transformation of A and M is a linear transformation of B

then "I(oo) would have arisen as

/(-) : ,/(/,0)

and any other space would be

J(X): J(X,I).

The construction of the f-spread set is reminiscent of the process of restricting

a projective line

I : {(¿, A) : æ,a e GF(q)}

to an affine line

[:{(æ,1): æeGF(q)}:{(t)z xe Gr@)}

by deleting the point (*) : (1,0)
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2.3 CONSTRUCTION OF AN AFFINE PLANE OF ORDER ot+t

Bruck and Bose, again in their papers of (196a) and (1966) developed a very

important technique, that of constructing an affine plane of order gt*l from a ¿-

spread of PG(2t*1, q). This affine plane can be completed to a projective plane of

order gú*1 in the usual way, and is in fact a translation plane. As this construction

will be generalised in Chapter Three, it is given in full here.

2.3.L The construction [Bruck and Bose (196a)' p88]

Let W be a ú-spread of PG(zt * 1, Q), and embed PG(zt + 1, q) as a subspace of

PG(2t ¡2,A).We defi.ne an incidence structure II: (P,8,-I) as follows:

- The points of fI are the points of. PG(2t ¡ 2,ø) - PG(zt + 1, q).

- The lines ol.II are the (t+1)-dimensional projective subspaces of PG(2t+2,q)

which intersect PG(zt+ 1, q) in a unique element of. W , and are not contained

in PG(2t + 1, q).

- The incid,ence relation of II is that induced by the incidence relation of

PG(2t +2,q).

2.3.2 Theorem [Bruck and Bose (196a), p88]

The incidence structure fI is an a,ffine plane of order gú

Proof: The theorem is proved by checking that the incidence structure fI

satisfies the axioms of an affine plane of order gÚ. The details appear in Bruck and

Bose (1964), p88-89. tr

The affine plane II may be completed to a projective plane in the usual man-

ner. Since each element X of the ú-spread W corresponds to a class of parailel lines
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of II, namely those containing X, we adjoin each such X to II as a "point at infin-

ity." The t-spread W fills the role of the "line at infi.nity." Hence the corresponding

projective plane has a concrete representation in terms of this construction.

2.3.3 Remarks

(1) The affi.ne and projective planes constructed in this Section need not be De-

sarguesian. In fact it is proved [Bruck and Bose (1966), Theorem 12.1] that

the construction yields a Desarguesian piane if and only if the t-spread W is

regular (see Section2.4 for the definition of regular).

(2) It is interesting to note that the f-spread W acts like the projective line in

this construction, (compare this with Remark 2.2.5). More will be said about

this in Section 2.7 and, in the general case, in Chapter Three.

2.4 ¿-REGULT AND REGULAR ú-SPREADS OE PG(2t * 1, q)

These are very important ideas in the study of f-spreads and, as they too will be

generalised in Chapter Three, a brief introduction is given here.

2.4.L Deffnition [Dembowski (1968), p220-221]

A. t-regulus in PG(2t * 1, g) is a set 7l of ¿-dimensional subspaces such that

(i) ßhasgf lelements,

(ii) the elements of R are pairwise skew, and

(iii) if a line I meets three distinct elements of. R, then it meets them all.

Such a line I is called a, transaers¿l of R. L transversal meets every element

of Íl in a unique point, and conversely every point of a transversal belongs to a

unique element of. R.
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There is a unique transversal through each point of an arbitrary element of

71,, so that in particular all transversals of 7l are pairwise skew. The existence

of f-reguli is well known; in fact the non-degenerate quadrics of index ú * 1 in

PG(2t + 1, q) are always covered by reguli.

2.4.2 Lemma [Dembowski (1963), p220-227]

Given any three pairwise skew ú-dimensional subspaces A, B and C in PG(2t* 1, q)

there is a unique ú-regulus R :'17(A, B,C) containing A', B ar'd C .

Proof: Through a fixed point of A, there passes a unique line meeting both

B and C, necessarily in a unique point. Thus A, B and C admit

0:qt *qt-t +...+ q+1

transversal lines {/¿ : i : I,2,. .. ,9}, which are pairwise skew. The t-dimensional

spaces A, B and C determine a projective correspondence between Í1 and another

transversal line /¡ as follows' The image of the point PA : Aìh of /1 is the unique

point PP -- AìI¡ of /¡. Similarl¡ the points Pa -- BÀIL and Po: Clìlr of

/1 have images P9) : B ìIj and P!') : C Àl¡ of. I¡, respectively. These three

pairs of point and image determine a unique projective correspondence between

/1 and /¡ for each j : 2,3,...,0. The space joining a point Q e h to its images

q(z),q(z),...,Q@) on each of.I2,Is,...,,le respectively is a ú-dimensional subspace

of. PG(2t * 1,q), and two such spaces ^9q and ,5n for Q,R e h are skew. \Me

have therefore constructed a set 7t. of q * 1 pairwise skew f-dimensional subspaces,

each meeting each of f1, Izrls, . . . ,16 in a unique point. If a line of. PG(2t + 1, q)

meets three elements of Í{, then it must be one of the lines /1 ,12,,1t,.. . , /e since

through a point of. PG(2t + 1, q) there passes a unique transversal line to two

skew ú-dimensional spaces. By Defi.nition 2.4.I,71. is a f-regulus containing 4,, B

and C. It is unique because of the uniqueness of the projective correspondences
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(2)

2.4.3 Deffnition [Dembowski (1968), p220-22L]

A ú-spread W of Pc(zt+l,q)íst-regulør (or just regular) if whenevet A,B,C eW,

then 7?(A,B,C) CW.

2.4.4 Remark

It is worth noting the connection between the f-reguli of. PG(2ti1, g) and the Segre

variety SVz,t+t The set of t-dimensional subspaces in a f-regulus 7l together with

all ihe transversal lines is a Segre variety SVz,t+t in PG(2t+ 1, g). This is because,

as we have already seen, the ú-dimensional spaces of the ú-regulus 7?, determine a

projective correspondence between each pair of transversal lines, and in a similar

way the transversa,l lines determine a projective correspondence between any pair

of f-dimensional spaces. Any three of the Í-dimensional spaces determine the

Segre va,riety, and any t + 2 of the transversal lines determine the Segre variety.

It is this observation which leads to the generalisation of the idea of ú-regulus of

PG(zt + 1, q) to that of f-regulus of rank r of PG((s + 1xt + 1) - 1, q) as we shall

see in Section 3.4.

2.4.5 Theorem

Let W be a ú-spread of PG(2t + 1, q). Then W is regular if and only if given any

line I of PG(zt + 1, q) not meeting any element of. W in more than one point, the

elements of. W meeting I form a ú-regulus in PG(2ú * 1, q)'

Proof: Suppose that W is regular. Let I be a line of PG(zt f 1, q) not

meeting any element of W in more than one point, and let A, B and C be three

distinct elements of W meeting l. Now by Lemma 2.4.2, A, B and C are in a

unique f-regulus Tt(A,B,C), and this ú-regulus has I as a transversalline. Since

)(3 (d)
,
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W is regular,R(A,B,C) is contained in W and thus the elements of.W meeting

/ (which are exactly the lines of. R(A, B,C)) form a ú-regulus.

Conversely suppose that given any line I of PG(2t * 7,g) not meeting any

element of W in more than one point, the elements of W meeting / form a f-regulus

of PG(2t+ 1, q). Let A, B and C be three elements of.W and let / be a transversal

Iine of A, B and C. The elements of W meeting I form a f-regulusR(A,B,C),

the unique ú-regulus containing A, B and C. Thus R(A,B,C) is contained in W

and W is regular. tr

2.4.6 Theorem

Every t-spread of. PG(2t + 7,2) is regular.

Proof: LelW beaú-spreadof PG(2t+1,q). Nowat-regulus of PG(2t+I,q)

has three elements, thus any three elements A, B and C of W determine a unique

f-regulus R(A,B,C) : {A,B,C} which is contained in W. By Definition 2.4.3,

W is regular. tr

2.5 CONSTRUCTION OF A PROJECTIVE ¿.SPREAD SET

In this Section we give a construction for a ú-spread set corresponding to any f-

spread of PG(2t + 1, q) by a method which is easier than finding a set of matrices

satisfying the requirements of Definitiort2.2.3. For the approach developed in this

Chapter, all we need is a basis for each of the subspaces of the t-spread'

The projective f-spread set is constructed by an entirely different method from

that used in Section 2.2. It fact we will use the space S^(M"(Gf(q))) defined in

Thas (1971) and introduced in Section 1.6.

Under the bijection / of Theorem L.6.2, points of the space S*(Jvl"(Gf(q)))
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are mapped into (n - l)-dimensional subspaces of. PG((m + 1)" - 1, q). Thus to

apply these ideas to f-spreads in PG(2t * 1,g), we need to put n: t * 1 and

m: t.

Thus a f-dimensional subspace of PG(zt + 1, q) gives rise to a homogeneous

pair of (f + 1) x (ú * 1) matrices, or a point of s1(M¡¡t(Gr(q))). \Me show that

the ú-spread sets of Section 2.2 arise naturally from the construction by simply

"non-homogenising" the homogeneous pairs of matrices found. The construction

given in this section has a "homogeneous" or t'projective" flavour and we will call

the resuiting structure a projective f-spread set.

2.5.L The construction

A ú-spread W of PG(zt + 1, q) maps under the bijection -f-1 (see Theorem 1.6.2)

into a set of qt+r + l points Po,Pt,...,Po,+, of S{Mt+t(G¡'(q))), each pair of

which is in clear posit.ion. Note that the idea of clear position can only be applied

to pairs of points in ,s1(,,v1¿ar(Gr(q))) since rn * 1 : 2. If we choose any three

points from amon EPo, Ptr. . . , Por+t, tvl¡e may use Theorem 1.6.3 to map them under

a collineation of 51(,,Vr+r(Gf(q))) to the points Oo,Ot and -8. Thus without loss

of generality suppose that

",:(á) ,":(?) , and 
":(',)

where each submatrix is (¿ + 1) x (ú * L). Recalting that under the bijection /-1, a

ú-spread element W¿ is the space spanned by the columns of the coordinate matrix

we see that this process is equivalent to choosing a basis ("rr"r,...,e2¡¡2) Íor

o: (:[:ì),
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PG(2t + 1,q) so that the ú-spread W contains the Ú-dimensional spaces

Ws : Iin {e¿¡2, êt+s t. . ., ezt+z},

Wt - lin {e1 ¡€2¡... , e¿+r} ,

Wz - Iin{e1 * et+z,,ez * et+sr -. - rêt+r * ezt+z}

7nd V242 is the direct sum of ltrzs and Ir[¡1. Now any point P; is represented by a

column vector of two (¿ + 1) x (¿+ 1) matricet (€Ít),€Ít))t, for i:0,1,...,{t*t.

Since every pair of points P;,Pi fot i,,j € {0,1,...,g'+t} is in clear position, the

following matrix has rank equal to 2(f + 1):

( €ti\ eÍÐ\
\Èi,, ii', /

These results suggest the foilowing defrnition.

2.5.2 Deffnition

A, projectiuet-sgtreail set is asetPC: {(€át),€Ít)) :i:0,1,'..,qt+t)} of pairs of

(ú + 1) x (t + 1) matrices such that

(i) PC has gt+r f 1 elements,

(ii) For each i,
i)

rank r) :t*1,¿(
s0
ç(
s1

( )

(iii) If (€án), €Ít)) ""d ({[i), €Íi)) are distinct elements of PC then

/ ¿(i)

'."u üT,,

Ái)
ç0
ÊU)

s1

:2(t + L)

A projective f-spread set is said to be normalised, iL it satisfi.es the additional

property,

(ív) PC contains the elements (0, f), (f,0), and (/' I).
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We have shown that every projective Í-spread set can be normalised, which

just corresponds to choosing a convenient coordinatisation Íor PG(2t + 1, q). Thus

we shall usually assume that a projective f-spread set has been normalised, except

where we explicitly mention a non-normalised set. In a normalised projective

t-spread set, condition (ii) is implied by (iii) and (iv).

2.6.3 Remark

Referring again to Remark 2.2.5, the projective t-spread set of matrices arises

naturally as a set of homogeneous pairs of matrices. In this case it is easy to

"non-homogenise" to get the ú-spread set of matrices, (see Theorem 2.5.5 below).

Only one t-spread element A : "I(oo) is 'lost' in the sense that it does not have

an element of the ú-spread set corresponding to it. In the standard treatment of

Section 2.2, J(æ) is recovered as the points of. PG(2t+ 1, q) not lying in any other

Í-spread element. In contrast, the projective t-spread set has a specific element

describing J(*). The advantages of using a projective ú-spread set are more

obvious in the general case of s > 1 given in Chapter Three. In this situation, not

every f-spread has a f-spread set, and any eventual f-spread set comprises elements

of different natures corresponding to different ú-spread elements. The homogeneous

form is preferable as there is only one type of element of the projective t-spread

set corresponding to each of the ú-spread elements. For the details see Chapter

Three.

2.6.4 Theorem

Let W be a f-spread of PG(zt + 1, q). Then there exists a projective ú-spread set,

and conversely every projective f-spread set gives rise to a f-spread.

Proof: If W is a t-spread of. PG(zt+ 1, q) then writing the elements as points

of the space E1(Mt+{Gf(q))) yields a projective ú-spread set by the arguments
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preceding Definition 2.5.2. Conversely rf. PC is a projective ú-spread set then we

may interpret its elements as points of the space E{Mt+t(Cf(q))). Since these

points satisfy Definition 2.5.2, they in turn correspond to elements of a f-spread

of. PG(2t + 1, q). tr

2.5.5 Theorem

Given a projective f-spread set we may construct a t-spread set, and the t-spreads

defined by each of them are isomorphic.

proof: LetPC: {P¿: (€áo),€Ít)) : i:0,1,..., q'*t + 1} be a projective

flspread set of matrices. Wiihout loss of generality v¡e assume that it is normalised

so that Ps: (L,0), pt : (0,.I) and P2: (1,.I). Since for i 10, the point P' is in

clear position with the point Ps,

rank

Therefore it follows that the matrix 6{i) n"r non-zero determinant and the point P¿

may be written in the form P¿ : (C;,r) where Co : €át)(€Ío))-t is a (f *1) x (r+1)

matrix, for i: L,2r...,g'*'. Note that Cr:0 and Cz: I.

The set C of matrices {C; :i:Ir2r...,gt+l} forms af-spreadset, andinfact

the ú-spread that it defines (in ihe sense of Section 2.2) is exactly the t-spreadW

above.

To see this, first note that C has qrtl elements and that it contains the matrices

0 and -I. Second, choose two elements C; and C¡ of. C. Since the corresponding

elements of the t-spread are skew, the corresponding points P;,Pi are in clear

position. Thus the matrix

I
0 ):z1t+r).

f (i)
s0
¿(')
ç1

( )
C; C¡

II
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has rank 2(¿+ 1) and so has non-zero determinant, and this implies that the matrix

(C; - C¡) has non-zero determinant.

To show that C is a ú-spread set for W, we need to remember how the bijection

/ of Theorem 1.6.2 maps a point of the space 51(.,12f r+r(Gr(q))) to a Ú-dimensional

subspace of. PG(2t a 1, ø). The point P¡ : (C¿,f) is mapped to that subspace 
^9¿

spanned by the columns of the matrix

/ c;\
\¡/

The columns of the matrix have 2(ú * 1) entries and are points of the 2(¿ + 1)-

dimensional vector space say Vx+z which correspollds to the projective space

pG(Zt* 1, q), and since the matrix has rank f t L, the f f 1 points corresponding to

the columns are linearly independent and so span a (t + l)-dimensional subspace

or. Yzt+2. we show that this space is ./(c;), then the two Í-spreads have exactly

the same elements.

Let the subspace of. vzt+z corresponding to the point Po be

/(-): {(", ¡n2,...,tr+r,0,...,0)t, n¡eGF(q), not all zero}

and let the subspace corresponding to the point Pr be

/(0) : {(0,.. .,,0,r¡¡z¡rt+s,t. .. ,rzt+z)' , ,, e GF(q)', not ail zeto}'

\Me now write Vzt+z as the direct sum ,I(oo) e "l(O). As a (Ú f l)-dimensional

vector space, consider /(-) to have the basis

a1 :(1,0,...,0)T,

a2:(0,1,0,...,0)t,

¿t+r:(0,0,...,0,1)?
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and as a (t * 1)-dimensional vector space, consider J(0) to have the basis

b1 :(1,0,...,0)1,

ô2:(0,1,0,...,0)",

ó¿..1 :(0,0,. . ., 0, 1)".

Let ' denote the non-singular linear transformation

' : J(oo) -+ /(0)

;a¡-b;,

so that for example

J(I): {ooO a|ia¿ e /(oo)}

: {(tr ¡r2r. .. ,e,t+r¡îLrï2, )... )*r+t)T : r¿ € GF(q), not all zerc}'

Now the columns of the matrix

(?)
â,rec1 @bt,cz@b2,...,ct+LOö¿+r wherec, € "I(oo)isthe jthcolumnof C;' As

ø¡ is a Í x 1 column vector with 1in the jth position, cj - C¿ai.Thus the space

spanned by these columns is

Iin {c1 Ø bt,cz Ø bz, .. . , ct+t O ót+r }

:Lin{C¿ar O ör ,C¡oz@b2,...,C¿at+t O ó¿+r}

: Iin {Coo, O ¿'r, C;az Ø olzr. . . ,Ciat+t O "l+t }

which is /(C¡) (see Theorem2.2.4). tr

2.5.6 Theorern

Given a t-spread set we may construct a projective t-spread set and the Í-spreads

of. PG(2t + 1, q) defined by each of these are isomorphic.
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Proof: Let C : {C¿ ; i : L,2, . . . ,gt+t } be a ú-spread set of matrices, with

Ct:0 and Cz: L Consider the set P: {P;: i:0,1,...,q'+'} of points of

5r (11'+r (Cr(q))) defined as follows:

* : (á), and 4 : (";), ror i:t,2,"',q't''

since 
,."u (å ';) -- 2(t + L)

and by the deflnition of t-spread set

rank
C¿ C¡ : 2(t + 7),

any pair of points of. P are in clear position and so map under the bijection / of

Theorem 1.6.2 to qf+l + 1 pairwise skew t-dimensional subspaces of PG(2t + 1, q).

This is a t-spread W of. PG(zt * 1, g), and the set

P -- {(Cn, I) : i : L,2,. ..,q'tt} u 11r' o¡1

is a (normalised) projective t-spread set. Theorems 2.5.4 and 2.5.5 show that

the ú-spreads defined by the projective f-spread set and by the f-spread set are

isomorphic. D

2.6 COORDINATES FOR THE AFFINE PLANE II

We use the notation of Section2.2. LetW be a f-spreadof PG(2ú*1, Ç), and embed

the space PG(2t+L, g) as a hyperplane in the projective space PG(2t+2, q). As in

Section 1.1 we represent PG(2t+ 1, q) as a (2t*2)-dimensional vector space Vzt+z

over the field G.F (q), embedded as a hyperplane in the (2¿ + 3)-dimensional vector

space lzt+s. Then W becomes a collection, still to be denoted by W, of pairwise

skew (ú * l)-dimensional vector subspaces of Vzt+z over GF(g) which satisfies the

property that each non-zero vector olVzt+z lies in exactly one element of W.

)II
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Without loss of generality we may give a special role to some (arbitrarily

chosen) ordered triple /(-), /(0) and J(/) of distinct elements of the Ú-spread W.

Then rü¡e may assume that, in the notation of Section 2'2,

¡,Y : {.I(oo)} u U(C;) : C¿ ç g¡

where c is a f-spread. set. Then vzt+2: ,/(oo) o /(0) has a basis or' 2t -l2 elements

{or, orr. . . ¡ o,t+Lrbtrbz, . . ., bt+t}

and we need only add. one single element e* say of' Vzt+e which is not it Y2¡¡2 in

order to obtain a basis for Vzr+s.

Each point of the affine plane fI constructed in Section 2.3 is a l-dimensional

vector subspace of.lzt+s not contained in Vzt+z and so has a unique basis element

of the form

nØA' Øe*

where y, € /(0) so that u and A aîe in J(oo). Thus we defrne the coordinates

of that point of II to be (c, y). Every ordered pair (c, y) "f elements of /(oo)

represents a unique point of II corresponding to the subspace x Ø Y' O e* of Vzt+s.

By defrnition, a line of II is a (t + 2)-dimensional subspace of.Vzt+s meeting lzr+z

in an element J of. W., and so has the form

1 J,(t,Y) >:< J',r ØY' Ø e* >

provided (rry) is one of its points, or correspondingly, ihe (f f 2)-dimensional

space contains the l-dimensional space x Ø A' O e*. These lines may be divided

into two types:

(L) LinesU:t.If s,t € /(*)thepoint (*,u) of Illiesontheline( /(-),(t,¿) >

if and only if

r@y' Oe* €< /(-),(s,ú) >:< {ø: ø e /(oo)},sOú'Oe* >

60



which occurs if and only if at : t' thus if and only if' y : ¡'

(2) Lines ("-") :C;(V -ú). If s,t € J(-) and J(C¿) €W, thepoint (ø,v) lies

on the line ( J(C;),(t, ú) > if and only if

rØa' Oe* €< J(C;),(s,t) ¡:a {C¿ala': ø e /(oo)},sOt'Oe* >

if and. only if V -- a+t and c : C¿a*s,, that is, if and only if (t-") : C¿(a-t)'

We have specifi.ed all the points and all the lines of II by coordinates and linear

equations, respectively. We can actually introduce a coordinate ring (7?, *,') by

taking 7l to be /(-) and defining addition in 7l to be the addition in "I(oo) as a

vector space. To specify multiplication in R we choose a non-ze o element of 7l

or, equivalently, we must pick a unit point of II. We pick the point

r:(1,1):tO1'Oe*

where 1 is any fixed non-zero element of R. To each u € TL there corresponds a

unique matrix X e C such that n : Xir, by property (iii) immediately following

Coroilary 2.2.2. Then for r, y eR we define

xY:(Xt)V:XA.

2.6.L Theorern [Bruck and Bose (1966)]

The system (R,,*,,.) is a coordinate ring for fI, and (to within isomorphism) every

coordinate ring of the affine plane II (though not of the corresponding projective

plane) may be obtained in this manner.

Proof: See Bruck and Bose (1966), p158-159.

2.6.2 Theorem [Bruck and Bose (1966)]

(1) The system (R,+,') is a division ring precisely when C is closed under addition,

and then (Cr+) is an abelian group isomorphic to (7t, *).
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(2) The system (R,*,.) is a nearfield precisely when C is closed under multipli-

cation, and then (C - {0},') is a group isomorphic to (R - {0}'')'

(3) (R,, f ,.) is a field precisely when (C,+,,') is a ring, and then (C, +,') it a field

isomorphic to (lt, f ,').

Proof: See Bruck and Bose (1966), p159.

2.6.3 Corollary [Bruck and Bose (1966)]

Let W be a ú-spread of PG(2t + 1, q) with Ú-spread set C.

(1) The t-spread W is Desarguesian, that is, the affi'ne plane II defi.ned by W

is Desarguesian, if and only if the system (C,+,') is a field isomorphic to

GFçqt+t¡'

(2) Further, c contains the set of matrices {kr : k e GF(q)} which is isomorphic

to GF(q).

Proof: (1) See Bruck and Bose (1966), Theorem 11.3, p161

(2) See Bruck and Bose (1966)' p163.

2.7 REGULAR Í-SPREADS Oî PG(2t * 1, q)

The afiñne plane, and hence also the projective plane, constructed from a Ú-spread

of. PG(2t+ 1, q) are Desarguesian if and only if the system (R,+, ') is a field, that

is, if and only if the t-spread set C is a field. In this case, as mentioned in Remark

(2) of 2.3.3, the ú-spread W is acting like a projective Galois line, the line at

infi,nity of the translation plane constructed from the ú-spread. We see that the set

of matrices C is a field. of order q¿*l and is a non-homogeneous coordinatisation

of this line. By Theorem 1.2.4 (2),.if W is geometric then it is isomorphic to

the projective line, and in fact the t-spread elements provide an affine coordinate

62



system for this projective line. What we have done in this Chapter is to provide

projective coordinates for such a line by using the projective ú-spread set. Note

that there is a slight difficulty when we try to use the projective ú-spread set as

projective coordinates for the line, for the pair (X,I) is projectively equivalent to

the pair (px, p) where p may be any non-singular (ú + 1) x (ú + 1) matrix. we

are no longer assured that the projective "coordinat es" (pX, p) are elements of the

field C. To get a projective coordinatisation for the projective line we just allow a

pair (X,.I) or (.I,0) to be multiplied only by elements of C-

2.8 T.SPREAD SETS AND INDICATOR SETS

Sherk (1979) used. a t-spread set of a t-spread W of. PG(zt + 1,g) to construct

a set of qt+r points in an affine space AG(t + 1,gt+1) called an indicator set

fot W. Lunardon (1984) produced a geometric definition of indicator set, and

showed that Sherk's indicator set can be regarded as an example of the geometric

construction for a particular choice of indicator space. Lunardon's main criticism

of the construction used in Sherk (1979) was that he needed to know a ú-spread set

for the t-spread., or equivalently, a quasifreld coordinatising the translation plane

constructed from the ú-spread. In the light of Section 2.5, this criticism is no longer

valid since given any f-spread, we just need to identify points spanning each of its

elements and this immediately gives a t-spread set.

In this Section we re-examine the construction of an indicator set as in Sherk

(1979). We modify the construction slightly in view of the ideas presented in this

Chapter, giving in some sense a more natural definition of indicator set without

losing the spirit of the theory as introduced by Bruen (7972a),, Sherk (1979) and

Lunardon (1984). The modifi.cation involves using a projective Ú-spread set to

define the indicator set, plus another minor alteration. The main advantage of the
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modifrcation is that the new construction cafÌ be generalised in a natural way to

f-spreads of PG((s + 1)(t * 1) - 1, q).

This new definition is more natural in another sense because it gives the

indicator set in a geometric setting similar to that in Bruen (7972a) and Lunardon

(1984), where the indicator set is found by intersecting the f-spread elements with

a certain affine space. Thus the algebraic and the geometric approaches are unified'

2.8.1 Construction of an Indicator set [Sherk (1979)]

Let W be a f-spread of PG(2t+ 1,q) and' Iet C: {C¡: i: L,2,"',nt+t} be a

ú-spread set for W, where

C;

"Í?

"t!
"\:)
-( i)w22

-( 
r)ult+1

"L?*,

"Í?,, "l?r, ':' "Í?,,*,
and, the f-spread is W : {J(C;) ; i, - 7,2,"',Q'*t } u {"1(oo)} "t before' Let

Gflçot+r) be a field. extension of GF(q) and let GFçrt+t¡ - GF(q)(o)' Define a

selT of points I: {P¿: i:L,,2,...,gt+t} of a (tf l)-dimensional afrne space

AG(t + 1, gt+t) as follows:

" : i;' :''* -' :', *.Í?,, o,,

"ll) * "\!" + . . . + "lil,,o',

"Íîì, + "\il+ro+'..+ "Í?,,*,o')

Then Z is called lhe i,nd,icator set of the f-spread W and AG(t a 1,qt+1) is

cailed the ind,icator space. The subspace J(oo) is not represented by a point of

the ind.icator space, and this difficulty is overcome by adjoining to the indicator
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space a single ideal point, denoted by the symbol oo, with the property that it lies

on every line of AG(t +1,gt+t). The set 7* :7U {oo} is called the augmented

inilicator sef of the t-spread W.

The direction numbers of the line joining the points p, : (p\o) ,pLn) ,"',pÍ?r)

and P¡ : (pÍi) ,p!j),.. . ,pÍ?r) are the f * 1 elements

þÍ') - p\n\, @lj) -pt')),...,þÍ?, -pÍ?')'

The indicator set T lrras the characteristic property that ihe line joining any two

of its points 4 and, P¡ has direction numbers which are linearly independent over

GF(q). To see this, note that the line joining P; to P¡ has .direction numbers

(AVr,AVz,,...,AV+r) where V* is the kth column of the matrix C¡ -C; and A

is the row vector (1,o, e2,...,,a').These numbers are linearly independent over

GF(q) if and only if the vectors Vr,. ..,V+t are linearly independent over GF(q),

which occurs if and only if the matrix C¡ - C¿ is non-singular. This follows since

c¿ and c¡ arc elements of the t-spread set of w (see Deflnition 2.2.3).

2.8.2 Deffnition of the indicator set from the projective t-spread set

In order to generalise the construction of an indicator set to indicator set of a

f-spread in PG((s + t)(t + 1) - 1, g), we prefer to use the projective t-spread set to

defi,ne the indicator set. This enables us to give an indicator set for a wider class

of t-spreads than just those possessing a t-spread set. The frrst step is to use the

projective t-spread set of a ú-spread in PG(2t + 1,q) to define an indicator set.

\Me are going to modify Sherk's definition of indicator set, and the reason for

this mod.ification is illustrated with the following example.

2.8.3 Example The case t :1..

Let W be a 1-spread of PG(3,q) 
"ttd 

let PC be a projective 1-spread set for W
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Then PC: {(/,0)} U {(C;, I): i: !,2,..,,Q2} as in Theorem 2'5'6, where the

matrices {c;} form a l-spread set. Now each matrix c¡ is a 2 x 2 matrix over

GF(q), say

.l? \
"t:) 

)
Ler GF(qz) be a field, extension of GF(q), and let GF(q') - GF(q)(a). The points

of the indicator set in an affine space AG(z,q') i. the defi,niiion of Sherk given

above are
P¿: (I,a)C;

: ( 
"Í'ì + 

"Ll 
o, "\l + 

"L') ")
satisfying the condition that the direction numbers of the line joining any two

points of the indicator set in AG(2, q2) are linearly independent, or in other words

that the determinant of every matrix c ¡ - c¡ wiih j f i, is non-zero.

Now we wish to use the projective l-spread set to define the indicator set.

It would. seem natural to use the following definition: The indicator set of the

l-spread W is the set of points

Q;: (L,a)(C; I)

: ("Í? + "\1", "\:) 
+ "L'ì", 1, o).

This is a set of 92 points lying on the space spanned by the vectors

€t¡€2¡ eg ! ae4

which is a 2-dimensional projective subspace PG*(2,q2) of PG(3,g2) which meets

PG(Z,g) in the l-dimensional subspace spanned by "r an'd e2. This coincides with

the defi.nition of indicator space given by Bruen (1972a), but not the definition of

indicator set given there since a point of this new indicator set need not automati-

cally lie on the l-spread element that it indicates. In the notation of Sherk (1979)

the indicator space is the affine space PG*(2,q2) - PG(3',g) and the points of the
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indicator set are exactly the points with affine coordinatet ("Í? + "\lo, "\:) + "Lì")'
What we have done is bring the algebraic construction due to Sherk (1979) closer

to the natural geometric setting used by Bruen (7972a)'

Now as we have seen in section 2.5,if. we consider the element (c,i,,I) of the

projective indicator set as a point of the space S{M2(GF(q)))' then it corresponds

under the bijection / of Theorem 7.6.2 to a unique line l; of the space PG(3,q)'

This line is spanned by the columns of the matrix

/co\
\¡/

considered as points of PG(3, g), and so can be written as

This consideration suggests the following definition of indicator set Z' of a

l-spread of PG(3, q). Let T' : {Q¡ ; i :1,,2,. . . ,g2} where

,o:{(?) (l) , Àe cr(q),t-}}

: 
{("tt +"1!.r,"!? + "t:)^,r,^)' : À € GF(q), i-}}

) (:)

+ "\")o, ,L? + "L|o, 1, o)'

The set Z' is different from the indicator set I given by Sherk (1979)' but it does

satisfy the characteristic property that if Q¿ and Q ¡ ate points of z' then the

non-zero direction numbers of the line Q;Q¡ are linearly independent over GF(q).

This follows since the direction numbers are actually

("Í?-"1'1, "\:)-"f?)(:) and ( ,t?-.,t:1, "t:)-"t?)(l)
These are linearly ind.ependent over GF(q) because the rows of the matrix C;- C¡

are linearly independent over Gp(q).
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It is interesting to note that in fact Z' is the indicator set under the construc-

tion due to sherk (1979) of the l-spread with projective l-spread set

{(0, r)} u {(CT, I) : i : 7,2,. . .,q2}

The points Q¿ of It all lie in the same indicator space, but now we have the

added property that the point Q¡ of the indicator set which indicates the line /¡ of

the l-spread actually lies on the extension of that line. This is the description of

indicator set exactly as in Bruen (1972a).

It is natural to augment the indicator set with the point

Q*: (å) (i)
: (1,a,0,0)î.

This is no longer an ideal point of the affine indicator space as in Sherk (1979)' but

a speciflc point of the line at infinity spanned by the elements e1 and e2, giving a

more satisfactory augmented indicator set.

'We now present the new construction of an indicator set in the general case

of a t-spread in PG(2t+I1g), and show connections with the work of Sherk (1979)

and Lunardon (1984).

2.8.4 The construction

We return to the notation of Section 2.2, and suppose that ,4-, B,C is an ordered

triple of distinct (t + l)-dimensional vector subspaces of Vx+2, pairwise having

only the zero vector in common. \Mrite vzt+z - A@B and let ' denote the unique

non-singular linear transformation of A to B such that the linear transformation

defined by a r+ aØatmaps 14. onto C. Then given any linear transformation C; of.

A to A over GF(q) there corresponds a unique (f + 1)-dimensional vector subspace
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J(C;) of. Vzt+z where

t(C;):{C¿aOø': aeA}.

Conversely any (ú * 1)-dimensional vector subspace of. Vu+z having only the zero

vector in common with A may be written in this form. We know thaf J(C;) and

J (C ¡) have only the zero vector in common if and only if the matrix C ¡ - C; has

non-zero determinant.

2.8.5 Lemma

Let GF(qt+t) be a field extension of GF(q) and let GFçnt+t) - GF(q)(a)'

Ler PG(2¿ + 1,qt+t) denote the corresponding extension of PG(2t + 1,q). If

A is a subspace of PG(2t * 1,g), we will denote its corresponding extension to

PG(2t + 1, gt+t) bv ã. To each subspace J(C;) we associate a point

a,: (C.'\
\//

: (qÍt) ,qtn) ,''' ,q[i\*r)'

of PG(2t + 1, gt+t) - PG(2t a 1, ø). Now each point Q¡ is

Q¡:Vt*Vza+...+V+tat

where V; is the ith column of the matrix

( c;\
\¡/

Since the columns yl ,,V2,... ,V+t are linearly independent, by Corollary 1.4.10

Q¡ is imaginary.

Let o denote the automorphism o : r, è rq of. GFçot+t), an also the auto-

morphic collineation of PG(2f f 1, g) induced by o.

(t) J(C;) : lin {e,,eî ,.. . ,,e/\

69



(2) Two distinct spaces J(C;) and "I(Cr) have only the zero vector in common if

and only if the line joining the points Q¡ and Q¡ i" imaginary.

proof: (1) Now @ is a f-dimensional subspace of. PG(2t+ 1, gt+t) meet-

ing PG(2t + 1, q) in a ú-dimensional subspace J(C;). The imaginary point Q¿ lies

in J(c¡), and by corollary 1.4.10 Q) rQù is the unique such subspace. Thus

m: L(Q¿)'

(2) Now J(C;) and ,I(Cr) are skew if and. only if @ aú,-J(C¡) are skew. This

occurs if and. only if the points Q¿,Qî,...,Qî'Qi,Qi,.' . ,Qî' span a space of di-

mension 2t+\,and this occurs if and only if the lines Q;Q¡,(Q¡Q)" ,... ,(Q¡Q)"'

span a space of dimension2t* 1, that is, if and only if the line Q;Q¡ is imaginary

(see Definition 1.a.7 (2)). tr

2.8.6 Remark

The points Q; a\Ilie in the projective subspace PG*(t+I,Lttr) of PG(2t+1, qt+1)

which is spanned by the vectors

êrt e2,,. . . ¡ €t+L¡ ct+2 + orct+g+''' + atezt+z

and this space meets the space PG(2t+1, g) in the f-dimensional subspace spanned

by the vectors ê1,¡€2¡. . . ,êt+r. This is the subspace /(-) -- J(1,0) of PG(2t*I,q).

In fact each point Q¿ lies in the affine space

AG*(t+ 1,gt+t) : PG*(t + 1,gt+t) - /(*).

Now let W be a f-spread of. PG(2t + 1, q) containing the subspace "I(oo).

Suppose it has a projective ú-spread set

PC -{(,I,0)} U {(C¡, I) : i : !,2,...,q'*t}
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as in Theorem 2.5.6. We will denote by J(C;) either the t-spread element cor-

responding to the element (C;,1) itself or the corresponding (f * l)-dimensional

subspace of.Vzt+z.Let the set of points of. AG*(t+L,q'*t) corresponding to these

f-spread elements be

2.8.7 Theorem

In the definition of Sherk (1979), AG*(t + 1,g'+1) is an indicator t-space for the

set of ú-dimensional subspaces of PG(zt + 1,q) skew to /(-). Further, T is an

indicator set for the Ú-spread w' wherew' has projective t-spread set

PC' :{(/,0} u {(C,",I) : i : 1,2,...,qt+t}

Proof: The construction of an indicator ú-space appeared in Sherk (1979),

p272-273. He showed that there is a one to one correspondence between the points

of AG.(t+ 1, gt+t) and. the f-dimensional subspaces of PG(2t+ 1, q) skew to /(-),

as described in 2.8.4. Since

o¿

a

the direction numbers of the line joining any two points of I are linearly indepen-

dent over Gp(q). Thus the set of points I in AG*(t * L,q'+t) is an indicator set

for the t-spread V/', see Sherk (1979)' p2I3-275- tr

2.8.8 Theorem

The space PG*(t+I,nt+t).is an indicator (f *l)-space and the selT is a¡r indicator

set on PG.(t * 1, qt+t), in the sense of Lunardon (198a).
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Proof: The space

PG*(t I!,g'*L) : Iin {.r,"r¡...¡et+7¡at+2 + o,et+s + "'+ o'"zr+z}

is a (t f l)-dimensional subspace of PG(2t + 1, gt+l) which meets PG(2t f 1, g) in

a space of dimension f, namely the space 51 spanned by e1 rê2¡.. . ¡êt+r. Further,

PG*(t + 1, g'+1) contains the imaginary point

P : et+z * aet+s+ "' + atezt+z

which is not contained itt E. The conjugates P,Po,...,Po' of P span a f-

d.imensional space which is skew t" E since Sr : Iin {"r,"r,...,e¿+r}. Thus

we have shown that PG*(úf 1,qt+t) is an indicator (f +1)-space under Defini-

tion 3 of Lunardon (1984), p721. The set 7 of point" Q¿ comprises g¿+1 points

of PG.(t + 1,qt+l) -E and it is an indicator set in the indicaior (ú f 1)-space

PG*(t + 1, qt+t) if it satisfies the property (c) of Definition 4, p72L of Lunardon

(1934), that the line joining any two of the points meets E itt an imaginary point.

Let Q; and Q¡ be two points of Z. These are imaginary points (see Construction

2.8.4) and since the line Q¿Q¡ is imaginary by Lemma 2.8.5 (2), all its points must

be imaginary by Theorem 1.4.S (3). In particular the point of intersection of Q¿Q¡

with ,St is imaginary. tr

2.8.9 Remark

The element "I(oo) : ./(0, I of the ú-spread W has no point of the indicator set

associated to it. Sherk (1979) adjoins an ideai point oo to the affine indicator space

AG.(t+ 1,qt+t) and lets this point represent J(-). Under our new construction

of indicator sets, however, it seems natural to let the point

Q*:(il (1)
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represent the t-spread element /(*). Then Qoo lies on the hyperplane at infinity

of. AG*(t + 1,gt+t) and so is still in some sense an ideal point of the affi.ne space,

but it is a particuiar point of the correspoll.ding projective space- Further, Qoo has

the added advantage that it is imaginary and /(-) : L(Q*)nPG(zt *1,q), a

property that holds for every other point Q¿ of the indicator set z.

2.8.10 Theorem

The set of points PI - {8"o, Qt,Qzt... tQqt+r} constructed as above is a projec-

tive indicator set in the sense of Lunardon (198a).

Proof: We check tlrat PI satisfi.es the properties listed in Definition 2, p720

of Lunardon (1.984), with t replaced by f f 1. Firstly, PI cornprises g¿+1 + 1

imaginary points of PG(2t+ 1, q'*t), and by construction the line joining any two

of the points is imaginary (Lemma 2.S'5 (2)). tr

2.8.11 Theorem [Lunardon (1984)]

ffPI is a projective indicator set of PG(2t * 1,qt*l), then the set

W -- {L(Qt) n eCQr f 1, s) : Q; e PI}

is a ú-spread of PG(zt + 1, q).

Proof: The proof appears in Lunardon (t98+), Lemma 2,, p720. tr

It is also noted. in Lunardon (1984) that a f-spread of PG(zt + 1, q) may have

many projective indicator sets. It is enough to choose an imaginary point in the

extension to PG(2t + 1,gt+1) of each element of the f-spread' In this Chapter, we

have used the normalised projective t-spread set to construct a projective indicator

set which contains an indicator set in the indicator space AG*(t + 1,q'+1). We

shall show that conversely an indicator set gives rise naturally to a normalised
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projective ú-spread set (Theorem 2.8.13), but that in general a projective indicator

not containing an indicator set corresponds to a projective ú-spread set which is

not normalised (see Theorem 2.8.L2).

Let PT: {Q*,Qr,Qzr...,Qq,+r} be a projective indicator set in the space

PG(zt * 1, gt+t), corresponding to the f-spread

Y1t : {L(Q) : i : oo, L,2,...,g1+1}

Let a e GF(qt+t) b" such that Gf'(nt+t¡ : GF(qXo). Each point Q¿ may be

written as

o,:(Í:ì) 
ß)

where for k : 1,2,, CÍù is a (ú + 1) x (t + r) matrix over G-F (q).

2.8.L2 Theorem

The set

pC : {(CÍo), CÍt)) : i -- oo,1, 2,.. . ,qt+t}

is a projective f-spread set, corresponding as in Section 2.5 to the t-spread W. It

is not in general normalised. Conversel¡ any projective t-spread set for W gives

rise to a projective indicator set for W.

Proof: We check that PC satisfies the conditions of Defi.nition 2.5.2, then it

is a projective t-spread set. Firstly, it comprises gú*1 * 1 pairs of (t * 1) x (t + 1)

matrices. Since each point 8, : ((Ío), (Ít)) i. imaginary, by Coroltary 1.4.10 (1)

,u,no I'tt"-*-'\lT"):Ú*1

Two elements Q¡: ((áo),(Ín)) and.Q¡: ((áj),CÍ') can be considered as points

of the space Et(Mt+t(Gf(q))) with the corresponding t-dimensional subspaces
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of PG(zt +1,q) being fQ;): L(Q¡) and f(Q¡): L(Q¡). The line Q¿Q¡ i"

imaginary so the spaces r(Qù arld L(Q) are skew, so that the points Q¿ arld Q¡

are in clear position (see Section 1.6) and therefore

/ ¡(i) ¿(i) r
'""u (li', li,, ) 

: 2(t + r)'

To show lihat PC is a projective ú-spread set for the ú-spread W , for each Q ¿ e PC,

we need to show that the subspace spanned by the columns of

is precisely the space L(Qù l PG(2t + 1, q). This follows since the space spanned

by ihe columns of

/ eÍ') \
\ eÍn)/

is a ú-dimensional subspace of PG(2t + 1, q) whose extension to PG(2t + 1, g'+t)

contains the point 8¿. However by Corollary 1.4.10 (2), L(Q¿) is the unique such

space. The converse follows by reversing the arguments. tr

2.8.13 Theorern

LetPI: {8oo, Qr,Q"t...,Qqt+t}beaprojectiveindicatorsetin PG(2t+7,,q.'+t).

Suppose the points {Qr,Qz,...,Qq,¡r} of. PI are an indicator set, and so all

lie in r (¿ + 1)-d.imensional affine subspace AG*(t + 1,gt+t) of. PG(2t + 1,qt+t).

Suppose further that the projective space PG.(t+ 1, gt+t) obtained by completing

AG" (t + 1, gt+t) meets PG(zt + 1, q) in a t-dimensional space PG(t,g), such that

e* ÇW Let o e GF(qt+L) be such that G,F(qt+l) - G,¡l(qxa).Then in a

certain coordinatisation of. PG(zt * 1, g'+t), the t-spread W correspondingto PT

has a projective f-spread set of the form

PC : {(I, 0)} U {(C¡, /) : i : L,2, . . . ,q'+t }
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where

The converse is also true.

Proof: The converse of this result was demonstrated in Construction 2.8.4.

For the forward argument, choose coordinates for PG(2ú * 1,qt+t) so that

W: Iin {"rr"r,,.. . , et+r}

Q*: e1! orc2 + "'+ atet+t

PG*(t + 1, qt+t) : lin {"r,,"r,... ¡at+t¡et+2 * aer+e + "' + o'"rr+r) -

Then

PG.(t + 1, st+t) n PG(2t + 1, q) : PG(t,q), and

AG*(t + 1, gt+t) : pG*(t + 1, qt+t) - PG(t,q)

Now
Q* : (1, *, ... ,et r0,0,. .. ,0)t

and

Qo: ("\o) ,"t'),. .. , "Í?r, 
r,d,. . . ,o')r

where for k : !,2,...,Q'*t we have "f) 
:"[? + "f]o +... + "[f*rot.

If we denote by C; the (t * 1) x (f + 1) matrix whose elements ate the c['r),

then
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The f-spread of PG(2t + 1, q) corresponding to PI is

W : {L(Qi) Ã PG(2t I l,q) z i : oo, L.,2,...,gt*t}

and by Theorem 2.8.12, this is also the f-spread corresponding to the projective

ú-spread set PC. rl

These last two theorems give a geometric interpretation of the procedure of

normalising a projective t-spread set. A projective ú-spread set corresponds to a

projective indicator set for a t-spread W. Then W has another projective indicator

set, but one that contains an indicator set. This is obtained geometrically by

intersecting the elements of W with an indicator space- The projective t-spread

set corresponding to this new indicator set is in the normalised form.

2.s ú-SPREADS OF PG(2t + 1,q) rN PG(2¿ + 1,q'+t)

In the study of sets of f-dimensional subspaces of a space PG(zt *I,q), it is often

useful to know whether such a set is contained in a regular ú-spread. There is

a representation of regular Í-spreads which can often be applied to answer this

question. It was introduced by Bruck (1969) for regular l-spreads of PG(3, g), but

it can easily be extended to regular t-spreads of PG(2t + 1,q) as v¡e shall show

below. The representation has the advantage that it yields easily many of the

properties of the t-reguli in a regular f-spread.

In the following we shall use the notation and the ideas of Section 1.3. Theo-

rern2.9.2 is a special case of Theorem 2.9.3. The theory developed in this Chapter

allow a simple proof of Theorem 2.9.3, and therefore also of.2.9.2. We shall, how-

ever, give an indication of the original proof of the first part of.2.9.2 due to Bruck

(1e6e).
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2.9.t Lemma [Bruck (1969)]

Let R be a regulus of PG(3,q) and let / be a line not meeting the quadric Q

defined by R.There exists exactly one regular 1--spread W of PG(3,g) containing

both Ît and l.

Proof: This is proved using the l-spread set tr

2.9.2 Theorem [Bruck (1969)]

Let W be a regular l-spread of PG(3, q). There exists a line I of. PG(3, q2) skew

to PG(3,q) such that f" is also skew to PG(3,q) and

W:{PP".PG(3,q): Pe /}.

The lines I,Io are imaginary and are uniquely determined by the l-spread W.

Conversely any line / of PG(3, 92) skew to PG(3, g) yields a regular l-spread of

PG(3,q) in ihis manner.

Proof: This result appears as Theorem 5.3 (i) in Bruck (1969). The second

statement is proved in an analogous way to the corresponding statement in Theo-

rem 2.9.3. To prove the first result, we note ihat if 7l is a regulus in W then it is

one set of iines of a quadric surface Q in PG(3, g) with extension Q t" pC(3,q').

A line I of W not in 7? meets O in t*o distinct points P and Po which do not lie

in PG(3, q). The two distinct lines rn and mo of the opposite system of lines of

@ through P and Po respectively define a regular l-spread of PG(3, g) containing

R and /. By Lemma 2.9.L, this regular l-spread is W. tr

'We now give the proof of this result generalised to t-spreads of PG(2t + 1, q).

The proof relies on the projective t-spread set.
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2.9.3 Theorem

(1) Let I be an imaginary line of PG(zt + 1, gt+t). The set

w : {ur, {r, r",...,,Pn'\ n ncçzt+ 1,q) )P el

is a regular f-spread of. PG(2t + 1, q) meeting each of l,lo ,,. . . ,,lo' -

(2) Conversely a regular ú-spread of. PG(2t a 1, ø) can be represented in this

manner for a unique set of lines (L,1" ,. . . ,1"').

Proof: (1) Let I be an imaginary line of PG(zt + 1,gt+t) and let P and

Q b" distinct points of l. By Theorem 1.4.8 (3), P and Q arc imaginary and by

Definition 1.4.7 (1) each of the spaces

L(P): lin {r,r",...,r"'}
and

LQ): Un {g, Qo ,. . . ,au }

has d.imensiont in PG(2t*1, Øt+t) and so by Theorem 1.4.8 (1) meets PG(2t*I,q)

in a t-dimensional subspace. By Lemma2.8.5, L(P) and L(Q) are skew. Thus W

is a set of gt*r { 1 pairwise skew t-dimensional subspaces of PG(2t + 1, q) and so

is a f-spread. We must show that it is regular, according to the Definition 2.4.3.

Lel A, B and C be three distinct elements of. W, let R be the regulus that they

define in PG(2t + 1,q) and iet 'll* be the regulus that their extensions Z, B and

d d"fitt" in PG(2t + 1,qt+l). Now I meets each of the three distinct elements A,

B and e of R* and by the remarks immediately following Definition 2.4.L I is a

transversal of.'17* . An element of.71, extended fo PG(2t* 1, qt+l), is an element of

7?* and therefore meets I in a unique point. So the extension of every element of

71. meets l, and by Corollary.1.4.10 (2) this must be the unique real ¿-dimensional

space meeting I in a given point, and so is in W.
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(2) Now let W be a regular f-spread of. PG(zt * L,q). To show that W can be

represented in this manner, we show that there exists an imaginary line / which

meets the extension to PG(zt+ 1, gt+l) of every element of. W. In this case,

w { lin { P,Pn, PO, ) ìPG(zt +1,q): P eI )

and the uniqueness of the set of lines l, lo ,. . ., /o' follows by Definition 1.4.7 (2).

\Me will prove the result for a particular extension PG(2ï+I,7'*L) of. PG(2t*1, g),

and the result follows since all extensions of the same degree are isomorphic. As

in Section 2.5, W gives rise to a normalised projective f-spread set

PC : {(C;, r) : C¡ e C} u {(r,0)} ,

where the set C of matrices is a f.eld of order q¿*l under addition and multiplica-

tion. Let ( e GF(qt+t) be such that Gfçot+r¡: GF(q)((), then

GF(q'*t) : {ro * ær€ + *z€2 + ...+ ,rt' , 
"¿ 

e GF(q)}

where the muitiplication is the field (matrix) multiplication of G.F(q¿+l). By

Corollary 2.6.3 (2) C contains the subfield {kI : k e GF(q)} which we shall

denote by GF(q). Let

{"rr"rr. . . ,ezt+z}

be a basis for PG(2t+1, q) over GF(q) and hence of. PG(2t*!,¡'tL ) over Gtrçot+r¡.

The following set I of points of. PG(2t + 1, qt+t),

¡: {eyC;+e2eci+...+ et+t€tC¿*et+zI *et+s€I + "'+ "zO+Ð('1, 
C;eC\

U {e1.I * ez€ + ...+ er+r€t}

: 
{(cn, €c;,...,€'cr,I,€,...,€t)t t c;e c\

u {(/,€,...,(',0,...,0)t}
: {rr(¡,€,. ..,€t,0,...,0)t + (0,0,...,0,/,€,..., €')' , Q ec\

u {(¡,€,...,€t,0,0,...,0)t}
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is a line of. PG(2t + 1,gt+t). Since / is

I : (1,f,...,€t)t o (t,€,...,€t)t

:PAQ

the space ,D(f) spanned by its t * 1 conjugates is the join of the spaces I(P)

and I(Q) spanned by the ú + 1 conjugates of P and the ú * L conjugates of Q

respectively. Now each of P and Q is imaginary by Corollary 1.4'10 (1) and so

L(P) and I(Q) have d.imension t, and further by construction .t(P) and L(Q) are

skew so that I(t) has dimension 2f * 1. By Definition 7.4.7 (2), / is imaginary.

Now recall that because PC ís a projective t-spread set for )d, we have

W : {W; -- J (C¿,1) : C; e C) U {W*: / (/, 0)} '

wewillshowthatthepoint(/,€,...,€t,0,...,0)?of/liesontheextensionÏFoo

of. W* to PG(2t * 1, g'*t), and the point

(Co,€Cn,. . .,€'C¿,, I, €,. .., €t)t

of / Iies onW¡ for each i:L,2,...,qt*l. Then the line I is the line requiredfor

proof of the result as it is imaginary and meets the extension of every element of

w.

We recall some notation. The element J(1,0) of W has basis {"r,"",. . . , et+r}

and the element /(0,/) has basis {"r+r,êt+s¡....,e2t+z}. The vector space Yzt+z

corresponding to PG(2t + 1, q) has basis {"r,""¡...¡e2t+2} so that

Yzt+z - J(1,0) O /(0, I).

Also, ' denotes the (non-singular) linear tra¡rsformation

'.: J(I,0) -+ "I(0'f)

. ek t) e(¿+1)+e.
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W* :J(1,0) : {a : a€ J(/,0)}

:{(ør ¡d2,t...¡dt+r,0,...,0)t, a; e GF(q), not all zero}

Then

so that

We can put

and thus the point

Similarly,

(: ( e /(I,0)

W*:{(€t,€2,...,€r+r,0,...,0)r : ü e GF(qt+l), not all zero}

€: ({r,.'.,€r+r,0,'..,0)t : (r,6,' ",€'r0,"',0)t t jfq

€: (€r ,€2,,.-.,6r+r,0,.'.,0)t: (¡,(,. ..,(',0,"',0)t e 601

){

(¡, €,. .. , €t,0,. . . ,0)t e W*.

W¿ - J(C;,I) : {C¿aOø' : a e J(I,0)}

o ; a; € GF(q), not all zero

at+t1

where the O denotes the direct sum of the frrst vector which is an element of

J(/,0) and the second vector which is an element of J(0, /)' Therefore

Again we can put

O,1

O,2

: 
{",(:,) 

. (:,) 
: €¿e GFln('l+r,, n.,a,,,*.}

J(C¿,1)W;

: {c,€o €" e e 7Ço)}
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so that €' : (0,. . . ,0, I,€,. .. , (t)t € rc';I) and the point

(cr, tc 0,, - . .,, t' c¿, I, t,. .., (t)t : c ¿ (L,(', . . ., €t)t o I (¡, €,''', €t)t

e W;.

Thus we have shown that the extension of every element of W meets the imaginary

line I of. PG(2t * 1, qt+t), which is enough to prove the Theorem. tr

2.9.4 Corollary

A regular ü-spread of. PG(2t + 1,q) has an indicator set comprising the qt*l + 1

points of an imaginary line of PG(zt + 1,qt+t) and conversely an imaginary line

of. PG(2t+ l,gttt) is an indicator set for a regular t-spread of PG(2t + 1,q).

Proof: Let I be an imaginary line of PG(2t -f 1,Qt*t). The set

w : {ur' {r,r",...,Po'} necçzta1,ø) : P € ¿}

is a regular ú-spread of. PG(2t + 1,q) and the points of the imaginary line / are

an indicator set for W as they are imaginary points and one point iies on the

extension of each f-spread element. Also, the line joining any two such points is I

and is therefore imaginary. Conversely, given a regular ú-spread of. PG(2t * 1,g),

there exists an imaginary line I of PG(2t + 1, gt+t) meeting the extension of every

t-spread element. Such a line gives an indicator set for the ú-spread. tr

2.9.5 Corollary

A regular t-spread W of PG(2t + 1, q) is uniquely determined by a t-regulus 7t. of

W and an element of W not belonging io 71.

Proof: Let W be a regular f-spread and let I be an imaginary line of the space

PG(zt + 1, gt+t) meeting the extensions of every element of W. The extensions of

the elements of a ú-regulus ll contained in W meet I in the points of a projective
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subline I' of.I, an{ the extension of a further element xo of w meets / in a point

P not belonging to 1,. Lel w' be a regular t-spread containing the elements of

ll and the element Xo of. W. We will show that every element of W is also an

element of. W' and. the result follows. Choose elements X1 and X2 of 7{.. There is

a unique f-reguius Rt of. PG(2t+ 1, q) containing Xo,Xt arrd Xz, which is distinct

from 7t. The line I is a transversal to the extension of Rt , thus the extensions of

the elements of 7Lt all meet I. But the f-dimensional spaces of. PG(zt + 1, q) whose

extensions meet / are exactly the elements of W. Thus every element of 7l' is an

element of W. Now since W' is regular, it contains every element of R' , which

are all elements of w. we repeat the argument using different elements of w' to

define t-reguli, all of which are shown to belong to w, continuing until we have

shown that every element of. W' is also an element of W' tr

Theorem 2.9.3 can be interpreted from the point of view of the Segre variety.

Any three distinct elements Wo,Wt and'Wz of a regular t-spread W of PG(2t+7,q)

are contained. in a unique t-regulus ft (see section 2.4). The g*1 elements of R are

all elements of W and. form the set of ú-dimensional subspaces of a Segre variety

svz,t+tin PG(2t+1, g) wiih lines as its opposite subspaces (see Remark 2.4.4). We

now embe ð, PG(2t+1, q) in PG(2t+ 1, gt+l) and extend Sì.lz,t+t to a Segre variety

Ñr,r+rÁ PG(2t*1, gt+t) as in Section 1.3. Then Ñr,r+, has g*1 f-dimensional

subspaces which meet PG(2t + !,g), and the remainin| q' - g subspaces are skew

to PG(2t+1,q). since the lines l,lo,...,lo' meet all q+ l elements of'Ðzl+t

which are extensions of elements of. 71, they must be lines of lVz,¿+r. In fact the

extensions of the elements of 7l meet l,,lor...rln' in the points of a projective

subline of each of.lrlor...,lo', respectively. The properties of projective sublines

of a projective line of. PG(2t + 1,g'+1) can be used to demonstrate properties of

t-reguli and regular ú-spreads, as in the following'
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2.9.6 Corollary

(1) Two ú-reguli in PG(2t + 1, q) have either 0, 1, 2 or q * 1 lines in common.

(2) A regular ú-spread of. PG(2t + 1, q) with (r + L,2): l- is the union ot

qt+qt-l+"'+q+L

disjoint Í-reguli.

(3) A regular f-spread of PG(2t + 1,q) has.ôÍ reguli,where

¡¡ : q'(q':*t r) 
.

q2 -L

Proof: (1) follows since three points of a projective line / of order g¿+1

determine a projective subline of order g.

(2) Noting that a such a line I is the union of. qt+qt-r *. . .*q*1 disjoint projective

sublines of order g yields (2) (see Hirschfeld (1979), Theorem 4.3.6, Corollary 1,

pe2).

(3) Recall that since a projective subline of order g is determined by three points

of /, the number of such sublines is the number of distinct triples of points of /

divided by the number of distinct triples in a subline of order g, giving:

(q'+l+t)

('T')

which is N.
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CHAPTER THREE

I-SPREADS oF PG((s + t)(t * 1) - r, q)

3.1 INTRODUCTION

This Chapter generalises the work of Chapter Two to the case of ú-spreads of

PG((s + 1Xf + 1) - 1, q). In Sections 3.2 and 3.5 we investigate the construction of

f-spread sets and projective ú-spread sets corresponding to f-spreads of the space

PG((s + lXú + 1) - 1-,g), showing the connection between these two ideas. we

generalise the construction of an affine plane from a ú-spread of PG(2t+ 1, q) to the

construction of an affine space AG*(s * 1,g'*1) in Section 3.3, and in Section 3.6

v/e use the projective ú-spread set to provide coordinates for AG*(s * 1,qt+1). In

Section 3.4 we use the Segre variety to investigate the phenomenon of regularity of

f-spreads of PG((s + 1)(t + 1) - 1, g). Section 3.8 generalises the work on indicator

sets to define a projective indicator set of a ú-spread of PG((s + t)(t + 1) - 1, q) and

Section 3.9 shows a representation of a t-spread of PG((s + 1X¿ + 1) - 1, q) when

embedded in PG((s + lX¿ + 1) - L,1'*r ). The ideas developed in this Chapter are

demonstrated by two examples given in Section 3.10.

For this Chapter, tet W be a ú-spread of PG((s + t)(t + 1) - 1, g). Then W

comprises a : qs(t+L) -'u g(s-t)(¿+1) + ..'* q(t+t) + 1 pair*ise skew ú-dimensional

subspaces covering the points of PG((s + 1X¿ + 1) - 1, q).

3.2 T-SPREAD SETS

In this Section, we generalise the construction of Bruck and Bose (1964) and (1966).

Where the f-spread set in the case of s : 1 is a set of matrices, the t-spread set

inthecaseofgeneralsisasetofs-.tuples,(s-l)-tuples,...,2-tuplesandsingle

(¿ + 1) x (ú * 1) matrices.
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Let )/q"+r)(t+r¡ be an (s f lX¿ + l)-dimensional vector space ovet GF(q) and

let V,1¿-.1¡ be a fi.xed s(f * 1)-dimensional subspace.

Let At,A2,,...,,A" be s distinct (ú * l)-dimensional subspaces of V1e1r)(t+r)

spanning ys(r*t) and write V"(t+r) as r4.1 ØAzØ...O.4.". Define s non-singular

linear transformations (i) mapping A1 to A¡, for i : 7,2,. . . ,s, so that

(i): fi -+ A¿

o-'oG)'

Let B and C be an ordered pair of skew (ú f l)-dimensional vector subspaces of

V1"ar¡1r+r;, both skew to )s(r*l), and such that C is skew to each of the s(t + 1)-

dimensionalspaces spannedby B together with s- 1of the spaces AtrAz,...,Ar.

Consider V(s+r)(¿+r) to be Ár O Az Ø. . . O A" O B. The existence of C is shown

in Lemma I.7.2, and we apply this Lemma to show that there exists a unique

(non-singular) linear transformation

':A1 -+B

ar-a'

of /. onto B such that the linear transformation

o -, oG) Ø aQ) O ... O o(") 6 ø,

maps /.1 onto C. Now to an s-tuple of (t+1) x(f+1) matrices (Xt, Xz, . . ., X,) over

GF(q), there corresponds a unique (t+1)-dimensiona.l subspace J(Xt,,Xz,. ' . , X")

of Vlsar)(r*r) skew to V"1111¡ given by

J(xr,,x2,...,x") : {xrø(r) Ø X2aQ)e. " o x"s,(") Ø a' : a e At\

The s-tuple of (t * 1) x (¿ + 1) matrices can be interpreted as s linear transforma-

tions of the spaces AtrAz,...,A" respectively. In particular, (with the following
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convention for the case oo, and denoting the (t + t) x (t + 1) zero matrix by 0 and

the (t * 1) x (t + 1) identity matrix by /),

J(-)-At:{a:aqAr}

J(0,0,...,0) : B : {o' ; o€ Ar}, and

J(L,1,...,/) : C :1ø(1) O o(') o...O a(") Oø' : a € ALl¡-

Conversely each (ú * l)-dimensional subspace .I of )1"+r)(r+1) which is skew to

V"(t+r) has the form J : J(Xt,X2,...,X") for aunique s-tuple of (Ú*t) x (t+1)

matrices (Xr,,Xrr. . . , X") over GF(q).

3.2.L Lemma

Let (X1 , X2,.. . , X,) and (Yr ,Y2,. -. , 
y") be two s-tuples of (t+1) x (t+f ) matrices

Then

J(Xt,, Xz, . .. , X") l1 J(Yr,Y2,. . ' , Y,)

: 
{xrø(r) Ø xra?) o ...o x"a,G) Ø at: a € Ar and.

(X, - )'r)ø(rl O (X, -YùaQ) O "'O (X" - %)a{") : O}

: 
{rro{1) @y"r,?) o... o y"6.G) Ø a': a€ A1 and

(X, - Yr)ø(rl Ø (X, -Y2)øQ)O "' O (X" - y"¡a{") - O}

Proof: Suppose x e J(X1,X2,.. . , X,) ì J(n,Y2, -.' ,Y")' Then for unique

elements arb e 41,

x : Xtao) g yr6?) O'..o X"o,G) Ø ø' : Yr¡(tl ØYr6Q) O "'O y"ó(") O ó'.

This implies that

Xr."Q)- yró(r) Ø XraQ) -YrbQ) o ... o X"¿(") - Y"b(') Ø ø' -ó' : 0.
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Recalling that the spaces AtrAz,...rA",B pairwise have only the zero vector in

common, this can occur if and only if a' -- b' so that a : b, then we have

(X, - Ír)ø(tl Ø (X, -YùaQ) O... O (X" - Y")a(') - 0

and the result follows

3.2.2 Corollary

Two spaces "I(X1 ,X2,...,X") and ./(Yr,Y2,...,Y") are skew if and only if ø:

(0,0, . . . ,0)t is the only common solution to the equations (X, - Y,)a : 0 for

i:Lr2r...rs.

Proof: Since the spaces AtrAzr...,A" have only the zero vector in common,

then if

(X, - ),r)ø(tl O (X, -Yùa(z) O... O (X" -Y")ø(") - ¡

with (X¿ -Yi)aØ € A; for all i : !,2,...,s it follows that

(Xo -Y¿)a(Ð -g forall i:L,2,...,s.

Now "I(X1 , X2, .. . , X") and "f (Y1 ,,Y2,, . .. , 
y") have only the zero vector in common

if and only if ø : (0,0,. . . ,0)? is the only common solution to the equations

(X¿ -Y)aØ : 0 for i : I,2,,... rs. As the linear transformations (i) : fu -- A;

are non-singular, this implies that a : 0 is the only common solution to the

equations (X¡ -Yt)a:O for i : L,2r. . . , s. tr

Now let W be a t-spread of PG((s + 1X¿ + 1) - L, g), with the property that

there exists an (s(ú + 1) - l)-dimensional subspace S"(t+r)-r : PG(s(t + 1) - i' q)

such that any element of W is either contained in 5"1¿.u1¡-1 or is skew to it. As in

Section 1.1 we represent PG((s + t)(t + 1) - 1, g) as an (s + lxf * 1)-dimensional

vector space y(s+r)(r+l) over the field G.t'(q). Then W corresponds to a collection,
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still denoted W, of (t * l)-dimensional vector subspaces of V1"ar)(t+l) over GF(q)

pairwise having only the zero vector in common and satisfying the property that

each non-zero vector of V1s4r)(t+r) lies in exactly one element of W' The space

$s(rrr)-r corresponds to an s(f * l)-dimensional subspace )/,11ar¡ of )/1sar)(t+r).

Any element of the f-spread w not lying in the space )/"(¿+r) has only the zero

vector in common with it.

suppose there exist elements A1 ,Ar,...rA"rB,C of. the Ú-spread w such that

the elements Al, Azr. .., A" span the space ls(¿*l)r the elements Al, A2r " ", A,r B

span the space Vlsar)(t+r¡, and further any s*1 of the spaces AtrAzr...rA",B,C

span V1"4r)(r+1). In particular, the last condition implies that C is skew to )"1¿-.1¡

and. to B. The elements A1 ,A2r...rA"rB can always be found, and when w is

geometric (see Definition 1.2.3) an element C satisfying the requirements can be

found. To see this, note that there are vectors of }1"+r)(f+1) skew to each of the

s(ú * 1)-dimensional spaces spanned by s of the,elements A1 ,A2,...,A",8' Any

one such vector must be contained in an element C of'W,, and since W is geometric,

C is skew to each of the above s(t * 1)-dimensional spaces as required'

In terms of the above representation, W gives rise to a unique collection

C":Cr(At,Az,...,A,,B,C) of s-tuples of (f * 1) x (t * 1) matrices over GF(q)

satisfying the following conditions:

(i) C' contains (0,0,...,0) and (1,1,...,1),

(ii) If (Xt,Xr,...,X") and (Yr,Y2,...,1:) are distinct elements of C" then ø:

(0,0,. . . ,0)t is the only common solution to the equations (X¿ - Y;)ø : 0 for

i:Ir2r...rs, and
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(iii) If î\¡Í2¡...¡ts,a € At with y l0 then there exists a unique s-tuple

(xt,,xz,, -.. ,,xr) e c"

such that ,lt) - Xry(r) , ,f) : Xz'.,Q), . .., ø!") : x"y3).

To establish these properties, first note that the spaces B and c give rise to

the elements (0, 0, . . . , 0) a,nd (1, I, .. . , .r) of. c". Two distinct elements

(Xr,,X4. ..,X") and (Yr,Yz,. - -,Y")

of C, correspond to distinct elements J(Xr,Xz,-..,X") and "I(Yr,Y"," ',Y') of

w. These are skew, so by coroilary 9.2.2, a : 0 is the only common solution to

the equations (x; -v¿)":0 for i: I,2,...,s. To show (iii) recall that since

the spaces AtrAzr... rA"rB spanVls+r)(t+r) and '41 ,A2r"'rA" span V"1¿.'1)' any

vector of Vlsar)(t+1) - Vs(¿tl) can be written uniquely in the form

,lt)e*f)e...O'!")Oy'

where r1¡t2¡...¡ts)y a']e all elements of A1 andy f 0, since w is a t-spread of

y(s+l)(ú+t), this vector is contained. in a unique element J(Xr, Xz, ' ' ' , Xr) of W'

Thus

e *f) O . . . O "!') O a' e {Xp(r) 6 ¡rø(2) O ' ' ' O X"¿(") O o' : ø e 'ar }

and (iii) follows since y' : øt implies that U : a'

3.2.3 Deffnition

An (i, t)-spread, seú is a set C; of i-tuples of (t * 1) x (t f 1) matrices satisfying the

following conditions

'Ít)

(i) C; has gi(t+r¡ elements,
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(ii) C; contains (0,0,...,0) and (1,L,...,.I), and

(iii) If (Xt,X",...,X¿) and (li,Yz,...,Y;) are distinct elements of. C¿ l}jlen a:

(0,0, . . . ,0)t is the only common solution to the equations (X¡ -Y¡)a: 0 for

j:Lr2r...ri.

We can also represent the i-tuples of (ú * 1) x (t * 1) matrices in the set C¿

by i-tuples of linear transformations of i skew (t + l)-dimensional vector spaces

At.,Az,...,Ai respectively. \Me will say that C; is an (i,ú)-spread set of linear

transformations or an (i, t)-spread set of matrices if we need to distinguish between

these two definitions.

3.2.4 Theorem

Let C¿ be an (i,t)-spread set and let

{o1", otÐ,...,oÍ?r;o\Ð,o!:),...,o,?r;......;oÍo),oLÐ,.-.,o]?r;bt,b2,...,4,+r}

be a basis of an ((; + t)(t + 1))-dimensional vector space )/1;1r¡1t+r). Let Y¿(+t)

denote the subspace spanned by the vectors

{oÍ", ot') ," ' , oÍ?'; o\'), of),..., o111r; . . . . . . ; oÍo),
(i)

az' ,

For each (CtrCr,... ,,C¿) e C; Iet

J(Cr,C2,,...,C¿)- lin{crrfl @ C2of,)o'.' o cnof)o ór : lc : L,.'.,¿ + 1}

,Í?,)

Then the set

w¿ - {rqÍn,c[Ð,,...,c!ù), QÍù,cf,Ð,...,cÍi)) e ct\

is a partition of )1;ar)(t+r) - )/¿(r+r) into pairwise skew (f + l)-dimensional sub-

spaces. It is therefore the set of elements belonging to a partial t-spread covering
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the points PG((i + r)(t + 1) - 1,q) - PG(i(t + 1) - 1,q) of the corresponding

projective space. conversely let w¿ be a partial f-spread covering the points of

PG((i+ lxt + 1) - 1,g) - PG(i(t + 1) - 1,q) and suppose that there exist ele-

ments At,,Azr...,,AirB,C of W¿ such that Ar ,A2,"',A¿ span PG(i(t+1)-1'Ç)'

At,Az,...,Ai,B span PG((i+lX¿+1)-1,q) and any if 1of Ar,A'," ',A¿,8'C

span PG((i + lxt + 1) - 1, q). Then W; cm be represented in this manner'

Proof:

points of

For the second statement, such a partial ú-spread W; covering the

PG((i + 1Xú + 1) - 1, q) - PG(i(t + 1) - 1' q)'

has an (i,t)-spread. set as constructed in this section. This (i,f)-spread set has

the required form. To show the first statement, suppose tlnat C¿ is an (i,t)-spread

set. We have to show that the set W; comprises qt(f+l) pairwise skew (Ú + 1)-

dimensional subspaces of V(¿+r)(t+r) - J/¿(r+r). An element of w¿ is a (t + 1)-

dimensional subspace of )1,+r)(f+1) since the set of spanning vectors is linearly

independent. To see this, Iet (Cr,Cr,...,C;) be an element of c, and suppose

that for ro¡îr¡. . . ¡tt € GF(q)

f .r(c'"f) ecrof) o "'o coof) e ót) : o'

È=0

This implies that

6þc-("oo[*l +rro\ù +"'+ rroÍ*')o(ø6ós *xtbt+"'+ '.¿b¡):s
¡tt=l

Now the first term on the lefi hand side is in )/¿1¿11;¡ and the second term is

in B : lin{fu rbr,...,br+r}, and since B has only the zero vector in common

with );11."r¡r both parts of the left hand side of this equation must be zero. But

{br,,þr,. .. ,br+t} is a linearly independent set of vectors as it is contained in the

basis for V(;+r)(r+r), and this implies that ro,rt¡"'tÏt are all zero' Thus W
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certainly comprises qi(t+L) (ú + 1)-dimensional subspaces of ì/(¿+r)(r+1) - )/¿(t+r).

Let JQli) ,gu) ,. ..,cÍi)) anð, J(cl*) ,cf,*) ,. .. ,cÍ*)) be distinct elements of

W. By Corollary 3.2.2, they are skew if and. only if ø : (0, 0, . . . , 0)t is the only

common solution to the equations, QY) - CÍ^\": 0 for Ic : 7r2,.-.,i. This is

true by Definition 3.2.3 (iii) of (i,ú)-spread set. tr

3.2.6 Remark

The (i, t)-spread set of (¿ + 1) x (t * 1) matrices as defined here is limited in that it

only describes elements of a partial ú-spread W¿ covering the points of the subspace

PG((i + t)(t+ 1) - 1,q) and skew to a certain subspace PG(i(t * 1) - f,q).

Now suppose that we start with a f-spread W of. PG((s + lX¿ * 1) - 1, q),

where W contains a partial f-spread W, covering the points of

PG((s + t)(t + 1) - 1,q) - PG(s(t+ 1) - r,q)

Suppose further that W" has elements,4l ,Arr.'.rA"rB,C where At,Az,,...rA"

span PG(s(t+ 1) - 1,g), At,Az,...,A",B span PG((s + lXú+1) - 1,g) and any

s + 1 of. At,A2,,...,A,,8,C span PG((s + t)(t + 1) - f'q). Then by Theorem

3.2.4wecan construct an (s,f)-spread set for W". However there is no information

gained about the elements of W not contained in Wr.

To try to overcome this difficulty v¡e suppose further that there exists an

((r - 1Xú + 1) - l)-dimensional subspace PG((s - 1)(ú + 1) - 1, q) such that the

elements of the ú-spread W tying in PG(s(t + 1) - 1, g) are either contained in

PG((s - lX¿ + 1) - 1,g) or are skew to it. Suppose further that W has elements

A\, A!t, . . . , A'"-1, B' ,C' such that A\, A!r,. . . , A'"-L span PG((s - 1)(f * 1) - t, q),

A\,A!r,...,A'"-L,B'span PG(s(t+1)-1,g) and any.s of A\,A!r,--.,A'"-L,B',C'

span PG(s(f * 1) - 1,q). Then we can construct an (s - 1,t)-spread set corre-
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sponding to the partial t-spread of elements of W which are (entirely) contained

in PG(s(t + 1) - 1,q) - PG((s - lxt * 1) - 1,q).

We could proceed in this manner, provided that the following condition is

satisfied.. Suppose that we are concerned with the elements of W contained in the

subspace PG(k(t+ 1) - 1, q). This is the kth stage of the process. We require that

there exists " ((k - 1X¿ + 1) - l)-dimensional subspace PG((k - 1XÚ + 1) - 1'q)

of PG(k(t+ 1) - 1,q) such that the elements of w in PG(k(t + 1) - 1,s) are

either contained in PG((k - 1x¿ + 1) - 1, g) or are skew to it. \Me require further

that W has elements A'/,A!1,...,A'1,-r,B",C" such that A!|,AU,"',A'f-t span

PG((fr - 1Xt+1) - I,8), A'l,A!;,...,,A'l-t,-B" span PG(k(t + 1) - 1,s) and anv

k or A!l,A!;,,...,,A'',,-r,8" ,C" span PG(fr(ú + 1) - 1, q). Then ìMe can construct a

(k - 1,t)-spread set corresponding to the elements of.w in PG(k(t + 1) - 7,q) -

PG((k - 1Xú + 1) - r, q).

Note that in the case of a geometric f-spread W, the condition can always be

satisfied at every stage, and in fact the space acting as A¡-1 in the kth stage can

be used as B in the (k - 1)th stage. The spaces Ar, Az,- - - , A*-z of the /cth stage

are used as A1 ,A2,...,A*-z in the (k - l)th stage.

We obtain an (s,ú)-spread set, an (" - l,f)-spread set, and so on until we

get a (1,t)-spread set, with a single element PG(t,q) eW remaining. The (1,f)-

spread set is a set of qt*l singie matrices corresponding to the elements of W in a

subspace PG(zt + 1, q) but skew to PG(t,,q). This is the t-spread set constructed

by Bruck and Bose (1964), see section 2.2, and the space PG(t,g) is any ú-spread

element which is chosen to be /(-).

The above remarks could be summarised as follows
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(s): Elementsof W in PG((s+r)(t+1)- 1,q)- PG(s(t +1)- 1,s) giveriseto

Os(t*l) s_tuples of (t * 1) x (t { 1) matrices

{{cÍÐ, ctù,.'.,cÍi)) : i : r,2,"',n'(t+l)},

(s - 1): Elements of.W in PG(s(Ú + 1) - t,q) -PG((s - 1Xt + 1) - 1,s) give rise to

q(s-1)(t+1) (s - l)-tuples of (¿ + 1) x (t + 1) matrices

{tcÍi) ,ctù ,. .., ci']r) : i : !,2,'" , n{"-r)(t+l)} ,

(2): Elements of W in PG(3(¿+ 1) - 1, q)- PG(2t+ 1, q) give rise to gz(t+r) 2-tuples

of (t * 1) x (f * 1) matrices

{tcÍ'),c[Ð) : i : L,2,...,02(t+1)],

(1): Elements of w in PG(2t+t,q)-PG(t,g) give rise to g¿*1 single (¿+1) x (t+1)

matrices

{"Í" : i :L,,2,...,q'*'},

(0) The last remaining element of W is PG(ú, q) : /(oo)

The matrices appearing in the i-tuple at each stage could be taken to be linear

transformations on the appropriate (t + l)-dimensional vector spaces.

We demonstrate the reverse procedure in the case that W is geometric' We

choose a basis for PG((s + t)(t + 1) - 1, g) such that the elements

At, Azr. .., A", As*t : B, A"¡2 : C
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of. W are as follows:

At :ü'{o[t) ,oLÐ ,.. . , "Í?r]
: ./(oo),

Az :lin 
{o['), of) ,.. . , tÍ?, ]

e PG(2t + 1, q) - /(-),

As :tir, {olt) ,of;) ,,. .. , "Í?r}
€ PG(3(ú + 1) - 1, q) - PG(2t + 1, q)

A" :ür 
{o[') ,oLù,... , rÍ?r]

e PG(s(t + 1) - L,q) - PG((s - 1Xú + 1) - 1, q),

As*l : Iir, {o["+t) ,oL"*t) ,,. . . , tÍî{t) ]
e PG((s + lX¿ + 1) - 7,q) - PG(s(t * 1) - 1,q),

so that

{rÍ", ott),..., oÍ?r; o\"),of),...,o11j.r; .. . . . . ;

s) ., oÍ?r; o['*t), o["+r),''', oÍï1t)]

is then a basis for PG((s + t)(t * 1) - r, q)

The elements of W in PG((s + t)(t+ 1) - 1,q) - PG(s(t + 1) - 1,s) are

Jeli),ctÐ,... ,c[i))

: 
{c{Ðrtr) *gu)o(2) O. ..ggØo(s) go(s*l) ' "e.+r}

for j - I,2,...,g"(t+l)

The elements of W in PG(s(t + 1) - 1,q) - PG((s - 1XÚ + 1) - 1,q) are

JçÍi) ,cti) ,.. . , cÍ'1,)

: 
{CÍtrorr) 

ggu)o(2) o. ..eCl!ro(s-l) 6o(s) . o e A.r}

ls) (
ai'raz
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for j - 1,2r...,g('e-1)(r+1), and so on

The elements of W in PG(3(t + 1) - L,q) - PG(zt * 1, s) are

JeÍù,c[Ð¡ :{c{il"trl ø c[Ð o<zt o o(s) : a e Ar\

for j - L,2,,...1q2(t+r).

The elements of W in PG(zt + 1, q) - PG(t,g) are

JeÍ\ : {clit"tl) + ¿(2) : a e Ar\

for j - Ir2r. . . ,7t*L. The remaining element of.\N is L1

These considerations suggest the following definition

3.2.6 Definition

A t-spreail set c is a collection of gs(¿+l) s-tuples, g(s-1)(ú+1) (s - l)-tuples, . . .,

qz(t+L) 2-tuples and gt*r single (¿ + 1) x (ú * L) matrices such that for each i :

1,,2,... , s the i-tuples of matrices form an (i, t)-spread set.

3.2.7 Deffnition The Shell Property

Let W be a t-spread of PG((s+t)(t+ t) - r, q). Suppose that PG((s+1)(t+ 1) - t, q)

admits subspaces PG(t,q), PG(2III,q), PG(3(¿+1)-1 ,8),,. . . , PG(s(tt1)-r, q)

such that the sets of points

PG(t,q),

PG(z(t + 1) - 1, q) - PG(t,q),

PG(s(t+ 1) - 1,q) - PG((s - 1Xú * 1) - 1,q),

PG((s + lX¿ + 1) - 1,q) - PG(s(t* 1) - 1,q)
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are disjoint and so form a partition of PG((s + t)(t + 1) - 1, g). We shall call a

set of points

PG((k + 1X¿ + 1), q) - PG(k(t * 1) - r, q)

a shell of PG((s + 1)(t + 1) - 1, g) for k, : 7,2, . . . , s. w is said to have the shell

property with respect to this partition of PG((s + 1XÚ + 1) - 1, g) into shells if

(i) every element of. W is contained in exactly one shell and has no point in any

other sheli, and

(ii) for each k : L,2,...,s there are elements At,Az,,...rAkrB,C of W such

that Ar,Az,,...,Ax span PG(k(¿+ 1) -L,9), the elements Ar',A2,"',Ax,B

span PG((fu + 1X¿ + 1) - 1,g) and any ft * 1 of Ar,Ar,,...,Ak,B,C span

PG((k + 1X¿ * 1) - r, q).

When s : 1, every ú-spread W has the Shell property with respect to any

partition of. PG(2t + 1, q) into shells, provided that in that partition the shell

PG(t,q) is an element of.W.

3.2.8 Theorem

A geometric ú-spread of PG((s + lx¿ + 1) - L, g) has the Shell property 3.2.7

with respect to any partition of PG((s + 1X¿ + 1) - 1, g) into shells where each

shell entirely contains at least one element of. W. ConverseLy if W is a Ú-spread

of PG((s + 1)(¿ + 1) - 1, g) with the Shetl property 3.2.7 for any partition of

PG((s + f )(t + 1) - 1, g) into shells, where there is at least one element of W

contained in each shell, then W is geometric.

Proof: Let W be a geometric ú-spread of PG((s + t)(t + 1) - 1, g). Choose

any elementWo of.W, then this is a space PG(t,q) "f PG((s + t)(t + 1) - f ,q).

Now choose another element Wt of. W distinct from I4l0. These two spaces span a
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(2t + l)-dimensional subspace PG(2t + 1,q) of PG((s + t)(t + 1) - 1,s) and any

element of W either lies in PG(2t a 1,ø) or is skew to it. Further there exists

another element C of.w in PG(2t + 1, q) skew to PG(t,q) and to wt and any two

of. Ws,Wt,C span PG(2t * L,q). Now choose an element Wz ol W not lying in

PG(zt + 1, q). Then Wo,Wt arld W2 span a (3(¿ + 1) - l)-dimensional subspace

PG(3(t + 1) - 1, s) of PG((s + t)(t + 1) - 1, q), and every element of W is either

contained in PG(3(t + 1) - 1, g) or is skew to it. F\,rrther, there exists another

element ct of. w in PG(3(ú + 1) - 1,g) skew ro PG(2t + 1,q) and to wz s:U.ch

that any three of.W¡,Wt,Wz,C'span PG(](t *1) - 1,q). \Me continue in this

way until we reach the foilowing: choose an element W" of W not lying in the

subspace PG(s(t + 1) - 1, g) of PG((s + lXú + 1) - 1, q). Then Wo,Wt,. .. ,W"

span PG((s + 1)(t + 1) - 1, g) and the¡e exists an elemeni C" of. W such that any

s * 1 of Wo,Wt, . . .,W", C" span PG((s+ t)(t + 1) - L', q). PG((s + 1)(t * 1) - 1' q)

is thus partitioned into shells

PG(t,q),

PG(2(t + 1) - 1, q) - PG(t,q),,

PG(s(f + 1) - 1, q) - PG((s - 1)(¿ * 1) - 1, q),

PG((s + 1X¿+ 1) - 1,q) - PG(s(t * 1) - 1,q)

and by construction every element of. W is contained in exactly one sheli and has

no point in any other shell. Given a partition of PG((s + 1xÚ + 1) - 1-, g) into

shells where each sheli contains at least one element of W, choose one element

from each shell and let these beWo,Wtr...rW" as above, and W has the Shell

property 3.2.7 with respect to this partition of PG((s + t)(t + 1) - 1, g) into shelis.

Conversel¡ suppose that W has the Shell property 3.2.7 with respect to any

partition of PG((s + 1X¿ + 1) - 1, q) into shells where each shell contains at ieast
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gl?

one element of W. Choose X,Y e W and choose X - PG(t,g) as the first

shell and Y as an element of the second shell PG(2t * 7,q) - PG(t,q). By the

Shell prop erty 3.2.7, every element of. W - {X} is contained in or is skew to

PG(ZI + 1, q) - PG(t,q). Thus every element of. W is contained in or is skew to

t)ne (2t * l)-dimensional space 1 X,Y ), and W is geometric. tr

It is interesting to ask if there are any ú-spreads which are not geometric but

which have the Shell property for some division of PG((s + lX¿ + 1) - 1, g) into

sheIls.

3.2.9 Theorern

Let C be a ú-spread set as above, so that

c : {{cÍi),cf,ù,,.. -,c!\ :'i : L,2,...,s, i : r,2,...,qt(ú+l)}

Suppose that PG((s + 1)(ú + 1) - 1, s) has a basis

{"Í", otÐ,.. ., oÍ?, ; o\Ð,of),. ..,oÍf}r; . . . . . . ; oÍ'), oL"),. . ., oÍ?r;

ol"+t), o!"+r), . . ., 
"Íî1t) )

and that

/(*) : ti" {ol') ,oLt) ,,.

For each element (cÍi), Cti) ,. . . ,cÍi)) of C, Iet

tçclÐ,c[i),... , cÍi))

:rirr{c{i)of;) e c[Ðotzl o...@ ç{ùoØ oo[t*t) : k:L,2,...,¿+1]

,Í?,)

Then

w - {tçcÍÐ,cÍù,...,cÍ\ z i:!,2,...,s, i:!,2,...,qt(t*t)}u 1"'1-¡1

is a partition of ìr1s4r)1t+r¡ into pairwise skew (ú f l)-dimensional subspaces. This

gives a f-spread W of PG((s + lXú + 1) - L, g) with the Shell property 3.2.7.
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Conversely every ú-spread of PG((s + 1)(f + 1) - 1, g) which has the Shell property

3.2.7 may be represented in this way by a t-spread set.

Proof: The fact that every Í-spread of PG((s + t)(t + 1) - 1, g) with the

Shell prop eúy 3.2.7 has a representation as a f-spread set was demonstrated in

the construction in Remark 3.2.5. Now let C be a f-spread set, and let W be

the set constructed as in the statement of the Theorem. By definition, for each

i : Lr2r. . . ,s, the set

c, : {tcÍ¡t,c[Ð,...,c!Ð) : i : r,,2,...,qi(t+l)]

is an (i,t)-spread set. This means that, by Theorem 3-2.4, the set

w : {t("Í" ,ctù ,,. ..,c[ù) : i : r,2,... , qt('+l)]

is a partial ú-spread of PG((i+ 1)(t + 1) - 1, q) - PG(i(t+ 1) - 1, s). Then Wr is a

partial t-spread of. PG(2t + 1, q) covering the points of PG(2t + 1, q) - J(æ), Wz

is a partial t-spread of PG(3(t + 1) - 1, g) covering the points lying in the subspace

PG(3(t + 1) - 1, q) - PG(2(t + 1) - 1, g), and so on until we reach W" which is a

partial t-spread covering the points of PG((s + lXú + 1) - t, q) - PG(s(t + 1) - 1, q).

Thus,

),v: Ü w;u{¡(-)}
i=1

is a ú-spread of PG((s + 1X¿ + 1) - 1, g). To show that W has the Shell property,

first note that PG((s + 1)(t + 1) - 1, g) has been divided into shells and that

each element of W is contained in exactly one shell. To show condition (ii), for
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1<k(s, Iet

and let

{

{

{

lin

áz : lin

"\"\
1)I ,Í?, )

)

)

of) ,"f) ,. .- ,o\?r,

oÍt),ott), "' , "Í?,

A* :Iit 
{ote) ,oLu) ,, . . ,"Í?t} .

Further, let

B : lin {o1**tl,oLn*t),. 
. ., "Íiït)}

C: J(I,1,...,,1)

where (1,1,...,f) is in Wr, that is, it is a k-tuple. Then At,Az,"','A¡ span

PG(k(t * 1) - 1,q), At,A2,...,Ak,B span PG((k + 1X¿+ 1) - 1,s), and anv

,t+t of At,Az,....,Ak,B,C span PG((k+ t)(t+1) - 1,g). Thus W has the Shell

property. tr

3.2.10 Corollary

Let W be a t-spread of PG((s + t)(t + 1) - 1, g) with ihe Shell property 3.2.7

Suppose that PG((s + i)(t + 1) - 1, s) has a basis

At

As lin

{oÍt),o[t),. . . , "Í?, ;o\t) ,ol:) ,. . . ,"1.?ìt;.-- .

oÍ"*t), oL"*r) ,. . . , rÍîlt, )

o\Ð,ol),"',oÍ?t)

o\Ð ,of),. .., "Í?r)
oÍt),o!t),"',oÍ?r)

A" :tir 
{o[") ,oL") ,. . . , rÍ?, ]

s*r), oG*r), . . ., 
"Íî1t, )

; oÍ'), ot") ,, .. . , "Í?r;

At

Az

As

lin

lin

lin

{

{

{

As*r :ü" {rÍ
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For each k with Ic : L,2,.. . ,s * 1, let (k) denote the following (non-singular)

linear transformation:
(k) : A1 ---+ A*

øtl) ,* o{t) for I : L,2, -.-,f + 1.

For 1 < i < s, given any i * 1 elements

at e. At, az € Azr. .. , ai € A;, and A € At,

there exists a unique element (CÍi), Cti),...,C[i\ of the ú-spread set C of W such

that

at : cÍi) y¡ cL2 : c[i) v,.. . ¡ ai : cÍi) a'

Proof: The vector ør O az Ø ... O ø; g ,(;+t¡ represents a point of the

((i + lX¿ + 1) - 1)-d,imensional vector subspace of /q"+r)(r+1) spanned by the spaces

At,Az,...,Ai+t SinceWisat-spreadofVlsar)(t+l)\4riththeshellproperty3.2.7,,

this vector is contained in a ú-spread element of the form

JGÍi) ,c[i) ,. . . ,cÍi))

for some i e {1,2,... rs} and i e {1,2,...,qi(t+r) }. Thus

¿1 o d2o... o ø; oy(¿+1) e I (clÐ,c[i),...,cÍt')
: 

{C{rlotr) *ço)o(2) O. ..ØC{ilo(i) O¿(t+1). ø e Ar}

and we see that o(i+t¡ - y(i+r¡ so that a: A and the result follows. tr

Apart from the fact that this representation of a f-spread involves different

representations for different ú-spread elements, only a limited class of f-spreads

even have a representation as a f-spread set, namely those with the She1l property

8.2.7. This situation contrasts with Section 3.5 in which we show that every f-

spread has a projective t-spread set, and the elements of the projective f-spread

.set are all the same. In the case of s : 1 every f-spread has the Shell property

and this difficulty doesn't arise.
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3.3 CONSTRUCTION OF AN AFFINE SPACE AG*(s + l,q'+t)

This Section generalises the construction of an affine plane which has been given

in the case of s : 1. The construction yields an afñne (s * l)-dimensional space

of order n(t+t¡. Since every (s * l)-dimensional space is Desarguesian for s ) 2,

there are certain implications for the t-spread.

LetW: {WorWtr.--,Wr},where a: qs(t+r) -,un(s-t)(t+1)+ "' ao(t+t) a1'

be a ú-spread of PG((s + 1xt +1) - 1,q). Embed PG((s +1)(t + 1) - 1,q) as a

hyperplane in PG((s+lXú+1), q), and define an incidence structure A: (P,B,I)

as follows

- the points of Aarcthepointsof PG((s+lXÚ+1),q)-PG((s+1Xf +1)-1,q),

- the blocks of A are the (f * 1)-dimensional subspaces of PG((s + t)(t + 1)' q)

which meet PG((s + 1)(t + 1) - 1, g) in exactly an element of the ú-spread w,

- the inciil,ence is that induced by the incidence of PG((s + 1x¿ + 1), q).

Therefore ',4 has q(s+1)(t+1) points and gs(t*r)' blocks' we now show that

under the assumption that W is geometric this is an affine (s f l)-dimensional

space of order q(r+l), noting first that it has the correct number of po.ints and

blocks.

3.3.1 Theorem [Hirschfetd, (1979)' p39]

Let I be an incidence structure with an equivalence relation (parallelism) on its

blocks such that

(i) Any two distinct points Pr and P2 areincident with exactly one block denoted

by b(P1P2).

and

105



(ii) For every point P and block b, there is a unique block ó' parallel to b and

containing P.

(iii) If b(PLP2) and b(P3Pa) are parallel blocks and P is a point on b(&Ps) distinct

from Pr and Pe, then there is a point P' on b(PPz) and b(P3Pa)'

(iv) If no block contains more than two points and P1, Pz,Ps are distinct points,

then the block ó3 through Ps parallel to ô(Pr P2) and the block b2 through P2

parallel t" Q(Prpr) have a point P in common.

(v) Some block contains exactly q > 2 points.

(vi) There exist two blocks neither parallel nor with a common point

Then 7 is isomorphic to the n-dimensional affine space AG(n,q) "f order g,

for some n) 3

We now check that ,4 satisfies these axioms. \Me say that two blocks of. A are

parallel if and. only if they are (t + f )-dimensional subspaces of PG((s + t)(t * 1), q)

meeting PG((s + 1)(¿ + 1) - 1, g) in the same element of the f-spread W. Note that

parallel blocks are (f f l)-dimensional subspaces of PG((s + t)(t + 1), q) which are

either coincident and pass through an element of. W or meet only in the points of

an element of W. Paralleiism so defined is indeed an equivalence.relation' Now

we check the conditions (i)-(vi) above.

(i) Let Pr .ttd P2 be distinct points of. A. They are points of

PG((s + lX¿ * 1), q) - PG((s + 1)(t + 1) - 1, q),

and the line PrPz of PG((s + 1)(t 1L 1), q) - PG((s + lX¿ + 1) - 1, s) meets

PG((s + t)(t + 1) - 1, g) in a point which lies on a unique element 14¡¡ of the

ú-spread W. The (ú * l)-dimensional subspace 1W;,PtPz ) is the unique

tr
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block of ,4 containing both P1 and P2

(ii) Let P be a point of ,4 and ó a block of A,, where P is not incident with ö.

Then P is a point of PG((s + lX¿ * 1),q) - PG((s + lX¿ + 1) - 1,s) and ó

is a (ú * l)-dimensional subspace of PG((s + t)(t * 1), g) not containing P

and meeting PG((s + 1xú + 1) - 1, g) in the unique element Wt of. W. The

(t + l)-dimensional space lWo,P > is the unique block of 
"4, 

through P and

parallel to ó.

(iii) Let b(PLP2) and ó(PsPn) be parallel blocks of A' so that they are (f + 1)-

dimensional subspaces of PG((s+ 1)(t+ 1), q) meeting PG((s + 1)(t * 1) - 1, q)

in exactly the elemetlWt say of W. The block b(PrPs) meets the space

PG((s + 1)(t + 1) - 1, g) in the element W2 sa! of W, distinct from Wt, and

meets each of b(hP2) and ó(PePa) in the unique point Pr or P3 respectively.

Let, P be a point on the block b(PrPr) distinct from Pr and Pa. The block

b(PPz) is a (t f l)-dimensional subspace of PG((s + 1x¿ + 1)'q) meeting

PG((s + f )(t + 1) - 1, g) in an element Ws of.W. Ws is distinct from I'Ør since

b(PPz) ar.,db(P1P2) are not parallel blocks, and I,Øs is distinct from I'72 since

b(PPz) and ó(PrPs) are not paraliel blocks. Now ô(PP¿) and å(PsP¿) meet

in exactly a point if and only if as (t t 1)-dimensional subspaces they span a

(2ú+2)-dimensional subspace of PG((s*1X¿+1), q). This happens if and only

if the spaces Wt,Wz and I,tr¡s all lie in a subspace of PG((s + lX¿ * 1) - 1, q)

of dimension 2t + 1.

To see this, frrst suppose that tr4! ,w2 andws\ie in a (2t* l)-dimensional

space, then ö(PP2) and b(&P4) lie in a space of dimension one greater as they

contain points of PG((s + t)(t * 1), q) - PG((s + lXÚ + 1) - 1, q). Conversely

if. b(PPz) and b(PePr) .purr a space of dimension2t * 2 then they meet the
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hyperplane PG((s + lxf + 1) - 1, q) in a space of dimension 2f * 1. This

space contains the t-spread. eiements I,Ør and I4l3 (since they are contained in

b(ppz) and ó(PrPa)) and the point of intersection of PG((s + 1)(t + 1) - 1' q)

with the line joining the points P and P3, which lies in wz. A's P may vary

over the block ó(P1Ps), and the point of intersection of the line PPs must

remain it wz and in the space spanned by wt arld ws we conclude L]rlat wz

must lie it 1Wt,,Ws ). The requirement lhat Wz must lie in 1Wt,Ws ) as

wr,ws anð,w2 vary over the elements of the Ú-spread is exactly the condition

that W is geometric.

(iv) This is satisfied vacuously since every block has more than two points'

(v) Every block has exactly n(t+r¡ points'

(vi) Let W1 and.wz be d.istinct elements of the t-spread w. Let ö be a block of 
"4'

passing through lTlr. There is a block of I, passing throughwz and skew to

b, since b and w2 spaîa subspace of PG((s + 1)(¿ * 1), q) of dimension2t!2,

and joinin EWz lo any point not in this subspace gives a (t * l)-dimensional

subspace of PG((s + 1)(t + 1), q) skew to ó'

The above arguments show the following'

3.3.2 Theorem

Let W be a geometric ú-spread. of PG((s + r)(t + 1) - 1, q). Then the incidence

structure Z constructed as above is an afÊne space AG*(s + 1,qt+l) of dimension

s * 1 and order gt+l which may be completed to a projective (sf1)-dimensional

space PG*(s + 1, g'+t).

Proof: Applying Theorem 3.3.1 we see that the incidence structure is

indeed afl affine space of order gt*l and by comparing the number of points with
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the number of points of an affine space \Me see that the space has dimension s * 1.

\Me complete the affine space to a projective space by adjoining in a special way

the space PG((s + 1)(t + 1) - 1, g) as the s-dimensional space at infinity of order

gú*1 and the elements of the ú-spread W as the points at infrnity, one per parallel

class. 'We see then that the s-dimensional space of order q.ttr at infinity has the

correct number ø of points. The (i(f + 1) - l)-dimensional spaces joining these

are the i-dimensional subspaces of the s-dimensional projective space at infinity,

as in Theorcm I.2.4. D

It is known (see Beutelspacher (1980) and Segre (1964)) that a geometric

ú-spread W o1 PG(d,q) for d > 2t * 1 induces a regular ú-spread on the space

1 V,V' ) for any two distinct elements V and Vt of. W. This result can be

recovered as a Corollary of the preceding Theorem 3.3.2.

3.3.3 Corollary

LetW: {Wt,...,W.}, u - qs(t+t).r-g(s-t)(t*r) a ...+ q'+r { 1, be a geometric

ú-spread of PG((s + t)(t + 1) - 1, g). Then for any paft w¿,w¡ or. elements of. w,

the ú-spread induced on the (2t + l)-dimensional space 1W¡,W¡ > is regular.

Proof: Since W is geometric, it induces a f-spread on any (2t+1)-dimensional

space 1w;,w¡ >. Let AG*(s +1,gt+l) be the affine space constructedfrom w

as above. The hyperplane at infi.nity of ,4.G*(s * 1, Ø'*1) is the incidence structure

Z constructed on the space PG((s + t)(t + 1) - 1, g), where the points are the

elements of. W and the subspaces are the joins of these points. Thus the lines

at infinity are the f-spreads induced by W on the (2t + l)-dimensional subspaces

of PG((s + f)(t + 1) - 1,g) of the type IW;,Wi ),W¡ # W¡, and a piane of

AG*(s + 1, qt+t) meets the hyperplane at infinity in a line at infinity. A plane of

AG*(s + 1, gt+t) arises from a f-spread induced by W on a (2t * 1)-dimensional
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subspace < W;,W¡ > of PG((s + t)(t + 1) - 1, q) by the construction described in

Section 2.3. Now AG*(s*!,I'tt ) is Desarguesian for s 2 2 so any subplane of it is

Desarguesian, and thus by Section 2.7, the f-spread induced by W on 1W¿,W¡ >

is regular. E

3.4 Í-REGULI OF RANK r AND REGULAR ¿-SPREADS

Since a f-regulus of a (2¿ + l)-dimensional projective space is just the set of all ú-

dimensional subspaces of a Segre variety SVzJ+t in PG(2tf 1, g), it seems natural

to generalise this to a ,'higher dimensional regulus" of PG((s + t)(t * 1) - r, q)

using the Segre variety S},ar,t4r in PG((s + t)(t + 1) - 1, q).

3.4.L Definition

For 0 ( r ( s, let lo,ft,...,lt be t*L pairwise skew r-dimensional subspaces

spanning a projective space PG((r + t)(t + 1) - 1, g), and suppose there exist

ú projective correspondences reiating l0 to each of lt,l',...,f'. The set of t-

dimensional subspaces of PG((r + 1Xú + 1) - 1, g) joining a point P of f0 to the

corresponding points P' , P'r. . . , Pt of 11 ,f' ,. .. , lt is called a t-regulus of ranlc

r, and is denoted by R,.

The space PG((r + 1Xú + 1) - 1, q) may be a subspace of a projective space

PG(n,q). It this case we say that R, is a t-regulus of rank r of PG(n,g), but we

understand that 7{,, lies in a ((r + 1X¿ + 1) - l)-dimensional subspace of PG(n,q).

3.4.2 Examples

(1) A l-regulus of rank 0 is just a line iî PG(n,q)

(2) A l-regulus of rank 1 is a regulus of lines of PG(3, g), normally defined as the

set of q + 1 lines of PG(S,,q) forming one system of generators of a quadric
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surface

(3) A ú-regulus of rank 1 is a ú-regulus of PG(2t + 1,q) as in Defrnition 2.4.1.

3.4.3 Theorem

A ú-regulus of rank r in PG(n, g) is the set of f-dimensional subspaces of a Segre

variety 5)/r*r,r+r in some subspace PG((r + t)(t + 1) - 1, g) of PG(n,g) and

converseiy.

Proof: LeI 'l?, be a f-regulus of rank r which is contained in a subspace

PG((r +lxt+1)-1,q) of PG((s+1X¿+1)-r,q). There exist t*1pair-

wise skew r-dimensional spaces lo,lt,...,lt as in Defrnition 3.4.1. The ele-

ments of.'17, are the f-dimensional subspaces of PG(n,q) joining corresponding

points of 10, lt, . . . , ft under projective correspondences between l0 and each of

lt,l',...,lt respectiveiy. These lie in PG((r +lXú+ 1) - 1,q). By Lemma 1.3.4

(1) the set 7ð, is the set of t-dimensional subspaces of a Segre variety 5)'*1,¿*1

in PG((r + t)(t + 1) - 1,q). conversely, Iet R, be the set of t-dimensional

spaces of a Segre variety S}/r*r,t*r in an ((r + t)(t + 1) - l)-dimensional subspace

PG((r + t)(t + 1) - 1, g) of PG(n,q). Then any ú * 1 of the r-dimensional spaces

of 5).+r,¿.r-1 spanning PG((r + t)(t + 1) - 1,q) may be chosen as l0,ft,'..,|t

by Lemmas 1.3.1 (1) and 1.3.4 (1). tr

3.4.4 Corollary

(1) A t-regulus of rank r 7t" has q'i-q'-r + "'+ q+7 elements.

(2) There is a unique ú-regulus of rank r through any rf 2 f-dimensional subspaces

in PG((r + t)(t + 1) - 1, g), no r + 1 of which lie in a hyperplane'

(3) A ú-regulus R, of.rank r has gú *qt-t +...+g*l transversalr-dimensional
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spaces, that is, r-dimensional spaces which meet every element or. R, in a

unique point.

proof: (1) BV Theorem 3.4.3, '17, is the set of t-dimensional spaces on a Segre

variety 5Vr*1,r*1 of PG((r + f )(t + 1) - 1-, g), which numb.er q' + q'-r + "' + Ç * 1,

by Lemma 1.3.1 (1)'

(Z) BV Lemma I.3.4 (2), there is a unique Segre variety SVr*l,t*r containing r f 2

t-dimensional subspaces of PG((r + f)(t + 1) - 1,g), no r * 1 in a hyperplane'

The f-dimensional spaces of this 5)/rf1,t*1 form the unique Ú-regulus of rank r

containing these r + 2 sPaces.

(3) Bv Theorem 3.4.3, 71" is the set of Ú-dimensional spaces of a segre variety

5)/r*1,t*1 in PG((r + f )(t + 1) - 1, q). By Lemma 1.3.1 (1) and (2), 5)/'-¡1,¿."1 has

qt +qt-L +...+ q+l r-dimensional spaces, which are transversal r-dimensional

spaces of. Rr. tr

3.4.5 Lemma

A f-regulus of rank r admits ú-subreguli of ranks r -I, r -2,. . . ,1,0' The number

of ú-subreguli of rank k for 0 ( Ie 1r in a t-regulus of rank r is just the number

of k-dimensional subspaces of an r-dimensional projective space.

Proof: A f-regulus of rank r is the set of Ú-dimensional spaces of a segre

variety 5)/r*1,r*1 in PG((r + r)(t + 1) - 1'q). As in Lemma 1.3.5, this variety

admits segre subvarieties.g)r+r,r+1 for each value of fu with 0 < k ( r. The set of

t-dimensional spaces on such a segre subvariety is then a t-subregulus of rank k of

the t-regulus of rank r. This is because the t-dimensional spaces of S)/t+r,t+1 are

all f-dimensional spaces of 5}r+r,¿+1, again by Lemma 1.3.5. As in the proof of

that result, a Segre subvariety $Vr+r,t+r of the variety 5ì/r1r,tar is determined

by a k-dimensional subspace of one of the r-dimensional spaces of 'SV'+r,¿*1: so
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the second statement of the Lemma holds.

3.4.6 Lemma

Let R, be a t-regulus of rank r in PG((r + 1xÚ + 1) - 1, g). Two t-subreguli 1{-¡

and 7i.- of. R, (of ranks say k and rr¿ respectively) are either disjoint or intersect

in a Í-subregulus of. R, (which is also a t-subregulus of Rx ar'd of-'l7-, ) of rank

less than or equal to the smaller of the two ranks Ie a¡d m.

Proof: The f-subreguli of ranks k and n'ù alte defined by k- and rn-dimensional

subspaces of one of the r-dimensional spaces of. R, as a Segre variety (see Lemma

1.3.5). These meet in a subspace of dimension less than or equal to the smaller of

k and m, a¡¡d this subspace of intersection determines a Segre subvariety which is

a f-subregulus of 71,¡^ and of both the Ú-subreguli of ranks lc arld m. tr

As we now have a definition for a ú-regulus of rank r, we can use it to introduce

the idea of different sorts of regularity of a t-spread corresponding to the different

sorts of f-regulus which it may contain.

3.4.7 Definition

A f-spread w of PG((s + t)(t + 1) - 1,q) is t-regular of ranlc r for 0 ( r ( s if

whenever ,S, is an r-d.imensional subspace of PG((s + 1)(t + 1) - 1, q) not meeting

any element of W in more than one point, then the q'+q"r +"'*q]-lt-

dimensional spaces of W meeting it form a ú-regulus of rank r. If there is no

confusion then we say that W is regular of rank r. In particular, the q' + q'-t +

... + q * 1 lines in the f-regulus of rank r lie in an ((r + t)(t + 1) - l)-dimensional

subspace of PG((s + t)(t + 1) - 1, q).

3.4.8 Examples

(0) Every f-spread of PG((s + t)(t + 1) - 1, q) is regular of rank 0, since given
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any 0-dimensional subspace of PG((s + lxf + 1) - 1, g), which is just a point,

there is a unique element of the t-spread through it, and this f-dimensional

space is a ú-regulus of rank 0.

(1) In PG(zt * 1, q), a ú-spread is regular of rank 1 if and only if it is regular in

the usual sense of the word, see Theorern 2.4.5.

(2) In Ebert (1983), a l-spread W of PG(2s + 1, q) is called regular if for any line

I of. PG(2s * 1, g) not contained in W, the g f 1 lines of W meeting I form

a regulus. This is precisely the condition that the l-spread is regular of rank

1. Thus regularity of rank 1 coincides with the usual notion of regularity for

J.-spreads of. PG(2s + 1, q).

The only existing defi.nitions of regularity of t-spreads of PG((s+1)(f +1)-t, q)

known to the author are in the cases ú : 1 with general s, and s : 1 for general Ú.

These are discussed in,Section2.4 and in the Examples above. The new defrnition

of regularity of d.ifferent ranks given in Definition 3.4.7 does not contradict any of

the previous definitions, but refines and generalises the idea of regularity.

3.4.9 Lemma

For some integer r with 1 ( r I s - L, let S" be an r-dimensional subspace of

P G((s+ t)(t + 1) - t, q). A set 7t, of g' * g'-1 + . . . + q * 1 Ú-dimensional subspaces

of PG((s + t)(t + 1) - 1, g), each meeting ,S, in a unique point, is a ú-regulus of

rank r if and only if for each line I of ,S,", the set of ú-dimensional spaces of. R,

meeting I is a ú-regulus of rank 1.

Proof: Suppose first that 71, is a t-regulus of rank r. Then it is ihe set of

ú-dimensional spaces of a Segre variety 5V.11,tar contained in a given subspace

PG((r + t)(t + 1) - 1, s) of PG((s + lXú + 1) - 1, q). Now ^9' is one of the r-

IT4



dimensional spaces of SV'+r,¿+r, bY Lemma 1.3.4 (2). Then by Lemma 1'3'5, the

set of t-dimensional spaces of S}r+r,t+r meeting a line I of ,S' is a Segre subvariety

SVzJ+t contained in a (2ú * 1)-dimensional subspace of PG((r + 1X¿ + 1) - 1, q),

that is, a f-regulus of rank L.

Conversely, suppose the set of g * 1 ú-dimensional spaces of. R, meeting any

Iine of ^9" form a f-regulus of rank 1, so that they are the t-dimensional spaces

of a Segre variety Eyz,r+r' Let P be a point of ,S' and let lt,lz," ' ,1' be lines

of ,9" through the point P, such that 11 ,,1r,. .. ,1'" span .9,. Let ,Sr be the unique

f-dimensional space of. R, passing through P. For a,ny i wiih 1 < i < r, consider

the f-regulus of rank 1, denoted. bV ßi, comprising the ú-dimensional spaces of

7i, meeting l;. This is the set of ú-dimensional spaces of a Segre variety SY'r,r+,

which contains ^9, und has l¡ as one of its lines. Any two such varieties, for

distinct i and j ,.y, have no common point apart from the points of ,S¿, as the fi'i

meet only in the points of .9¿. Now two such Segre varieties EV'r,r+, and 5Vi,1a1

Iie in (2t + l)-dimensional subspaces of PG((s + 1XÚ + 1) - 1,q) which meet in

exactly the f-dimensional space ,9¿. This is because if they meet in more than just

S¿, then they meet in a (f * l)-dimensional space through ^9¿, 
and such a space

through a ú-dimensional spac e of. SVi,¡¡, , which is a ruled quadric iî PG(2t+1, q),

meets it in points outside ,9¿, and similarly meets SVL,t+t in points outside '9¿.

So SVi,ra, and Syi,r+r, would have common points outside ,Sr. Through any

point Q of. st there passes a line tþ ol the variety sY",r+r, and the set of r such

lines through I span a space of d.imension r as each is contained in a (2f + 1)-

dimensional space (as above) and the set of all such (2t + l)-dimensional spaces

spans a ((r*lXú+1)-l)-dimensional space PG((r+t)(t+1)-1,s)' As Q varies

among the points of ^9¿, 
weobtain qt +qt-r +...+g*1r-dimensionalsubspaces

of PG((r + f)(t + 1) - 1,g), each meeting ,(q'+ qt-L + "'+q) * 1 elements of
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Rr. Infact each such r-dimensional space meets every element of. R, by repeating

the above argument choosing another convenient point as P. These r-dimensional

spaces define a Segre variety S}r+r,r+r with fl,, as the set of f-dimensional spaces,

and hence R, is a regulus of rank r' D

3.4.10 Theorern

Let W be a ú-spread of PG((s + t)(t + 1) - 1, g) which is regular of rank r, for

some r with 11r ( s. ThenW isregularof eachrank r-7rr -2,"',1,0, and

it is also regular of each rank r t 1,r *2,...,s.

Proof: For some value of k with I < k 1r - l,'let ,9'-t be an (r -k)-
dimensional subspace of PG((s + 1)(t + 1) - 1, q), not meeting any element of W

in more than one point. This iies in an r-dimensional subspace 5' of the space

PG((s + lX¿ + 1) - 1, g) not meeting any element of W in more than one point'

The g' * qr-t +...+ q * 1 ú-dimensional spaces of W meeting 5,. are a Ú-regulus

of rankr by assumption, andthe q'-k +nr-te-L +"'+gf 1ú-dimensional spaces

of. W meeting .9.-¡ are a subregulus of rank r - k by Lemma 1'3.5. This shows

that W is regular of each rank r - !,r - 2,..., 1 and it is regular of rank 0 since

every t-spread is regular of rank 0 (Examples 3.a.8 (0)).

Now since W is regular of rank r for some r with 1 ( r ( s - 1, then by the

firstpart of theTheoremWisregularof rank1. Let S"*È,forsome 1< k ( s-r,

be an (r * fr)-dimensional subspace of PG((s + t)(t + 1) - 1, g), not meeting any

element of W in more than one point. There is exactly one element of W through

each point of 5".'¿, and since W is regular of rank 1, the set of q * 1 ú-dimensional

spaces of. W meeting any line of ,S'1¡ is a Ú-regulus of rank 1. By Lemma 3.4'9'

the set of ú-dimensional spaces of. W meeting ,S.1¡ is a t-regulus of rank (r + fr)

and so W is regular of rank r * k. This shows that W is regular of each rank
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r*1,r*2,,...,s.

3.4.11 Deffnition

A ú-spread W in PG((s + 1X¿ + 1) - 1, g) is called regular if it is regular of rank

r for some r with 1 ( r ( s, then it is necessarily regular of each rank 0,1,. .. , s.

3.4.L2 Theorem

Let W be a f-spread of PG((s + 1)(t + 1) - 1, q). Then W is geometric if and only

if it is regular.

Proof: First, Iet W : {Wt,W2,...,W.) be a geometric ú-spread of the

space PG((s+ 1Xú + 1) - 1, g). Then W induces a regular f-spread on any (2¿ + 1)-

dimensional subspace 1 W¡,W¡ > for distinct elements W¿ an:d W¡ of. W (see

Coroilary 3.3.3 or Segre (1964)). Let I be a iine of PG((s + 1X¿ + 1) - 1, q),

not contained in any element of W. \Mithout loss of generality, suppose I meets

the element. {lryr. ,W2,... ,Wq¡r} of W. Then I is contained in 1Wt,W2 } aîd

since I4l3,W+,...,WqI: all have a point in common with l WtrWz > (which

is their point of intersection with l) then We,Wt,...,Wq*r are all contained in

< W,Wz ) as W is geometric (see Defrnition t.2.3). As the ú-spread induced on

l WrrWz ) is regular, the set of spaces WyrW2r. . . ,Wq¡r form a ú-regulus which

is a f-regulus of rank l-. Thus W is regular of rank 1 and by Theorem 3.4.10, W

is regular.

Conversely suppose that W is a regular ú-spread, then it is regular of rank 1 by

Definition 3.4.11. Choose W;,Wi € W, with W; t W¡, and consider the (2Ú + 1)-

dimensional space 1W;,W¡ >. Any line t of < W;,Wj ) meets q + 1 elements

of the t-spread W, which form a f-regulus of rank 1 in some (2t + l)-dimensional

subspace of PG((s + 1X¿ + 1) - 1, g). Thus if / meets both w¿ a¡d lll¡ then the

1r7



elements of the f-regulus of rank L defined by I all lie in 1W;,Wi ), since it has

d.imension (2¿ + 1). Now let P be any point of. < W;,Wi ), and suppose that

P eWt,where k+i,,j. Thereis alinetof PG((s+1)(t+1)-1,9) throughP

which meets both I4l; arld'W¡. This is because the space 1W;,P > is contained

it 1W¡,W¡ > and has dimension ¿ + 1. Thus it meets W¡ in a point say Q, and

the line I - PQ passes through P and meets both 14¡; andW¡. In this lvr/ay we can

see that every point P e< W¿,,Wi ) Iies on some element Wx of. the t-spread W,

and this element must be contained in 1w;rwi ),, and w is geometric. tr

3.5 CONSTRUCTION OF A PROJECTIVE ¿.SPREAD SET

This construction is different from that given in Section 3.2. A f-spread is now

shown to correspond to a set of (s*l)-tuples of matrices, or linear transformations.

The ú-spread set, for t-spreads where it exists, can be obtained from this projective

ú-spread set by a "non-homogenising" procedure.

Again we use the space 8,.(M^(Gr(q))) introduced by Thas (1971), gener-

alising the resuits found in Section 2.5.

under the bijection / given in Theorem L.6.2, points of. s, (M.(Gr(q)))

correspond to (n - l)-dimensional subspaces of. PG((m + 1)n - t,q)' Thus to use

this space to analyse t-spreads of PG((s+1X¿+1)- 1,g), we need to put n : t*1

and rn: s.

3.5.L The Construction

Let W be a t-spread. of PG((s + 1)(t + 1) - 1,s) and let ø : l)4/l' Then W

corresponds under the bijection "f-1, where f is as in Theorem 1'6'2, to a set

P or. u points of. s,(Mt+r(G¡(q))), each pair of which is in clear position. The
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elements of the ú-spread W a¡e represented by points of. P

B : (€Ín), eÍo),. . ., (Ío))t,

fori:0,1,.. .)(Ð-1, whereeach subm.trix{[i) is (t+1) x (ú*1) and

¿(
s0

€Í

i)

i)

r)
€f

rank :ú*1.

The property that every pair of points in P is in clear position means that if

p,: (6áo),(Ío),...,{Ío))t and P¡: ((Í,),€Í'),...,€Íi))t are distinct points of P

then
¿(i)
ç0
¿(t)
sr

Ê(i)
s0
tU)
çlrank :2(¿+1)

Ê(t) rU)ss ss

If we can choose a set of s * 2 points of. P such that any s * 1 of them are in

clear position, then Theorem 1.6.3 allows us without loss of generality to stlppose

that

Ps : (L,0,...,0)t,A : (0,/,0,...,0)t,...,P"+r : (0,...,0,/)t

and

Ps*2:(1,1r...,,1)'

where each submatrix is (ú + 1) x (f * 1). Recalling that under the bijection /, a

t-spread element W¡ is the space spanned by the columns of the coordinate matrix

¿( i)
ç.e

r(i)
s0
c(i)
sr
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we see that this process is equivalent to choosing a basis {"rr"rr...,e1s1r)(t+r)}

for PG(((s + t)(t + 1) - 1, g) such that the t-spread )d contains the Ú-dimensional

spaces

Wo - lin {e1 ,a2r. -. , et+r} ,

Wt - lin {e¿-¡2, êt+st...,"2(t+r)} ,

WstL: lin {""(r*r)*, ¡es(t+r)+2¡" ' ' 
e(s+l)(t+1)} and

Ws+z: lin{tt + et+zI "'* er(t+r)trte2 * et+s + "'+ es(t!r)*2t" " " '

e¿+r * ez¡+t) + ...+ e(s+r)(r+r)) .

This is possible since if we choose the bases for the spaces WorWt,, - . . ,W" as above

then Lemm a L.1,.2 ensures that there is a suitable basis for Wr+t so that W"¡2 has

the required basis.

These considerations prompt the following Definition.

3.5.2 Deffnition

A projectiue t-spread,.eef is a set PC of (s * l)-tuples of (ú * 1) x (t f 1) matrices

such that

(í) PC has ø - ns(t+r) + q(s-t)(t+l) +.. .* qt+r f 1 elements,

(ii) If p, : (€Át), €Ío),. . . , €Ít)) is an element of PC, tlnen

Á
SO

c(
s1

r)

i)

rank :f*1

¿(t)
Ss

(iii) If p, : ((Áo),€Ío),...,€Ín)) and P¡ - (€Íi),€Í'),...,€Íi)) are d'istinct elements
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of.PC then

rank :2(¿+1)

¿(r) Áj)çe Se

A projective ú-spread. set is said. to be normalised, íf. it satisfres the additional

property,

(iv) PC contains the (s a l)-tuPles

(r,0,...,0), (0,r,0,...,0),... (0,...,0,.I), and (1,1,...,/)

3.5.3 Remark

A geometric t-spread has a projective ú-spread set which can be normalised, since

the extra requirement is satisfied. In a normalised projective Í-spread set, condition

(ii) is implied by (iii) and (iv)'

The above arguments have shown the followin!:

3.5.4 Theorem

Let W be a t-spread of PG((s + lX¿ + 1) - 1, g)' Then there exists a projective

ú-spread setPC: {P¡: i:1,2,...,a}. If weconsidertheelementsof PCas

points of. S"(Mt+r(G.F'(q))) then

W : {f(P¿) : i : I.,2,...,a}

where / is the bijection of Theorem L.6.2.

Proof: LetW : {W¡ z 'í:7,,2,...,u}. By the Construction 3'5'1, the

setPC: {,f-1 (W¿), i:L,,2,...,ar} is a set of c,'r points of S"(Mt+r(Gf(q)))'

every pair of which is in clear position. We therefore have constructed a set of ø

r)

r)

ç(\0

€Í

Ê(i)
s0
È(i)
s1
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(s * l)-tuples of (ú + 1) x (ú * 1) matrices satisfying (ii) and (iii) of Definition 3.5.2

PC is therefore a projective Ú-spread set. Since

Pc : {f-t(w) : i : 7,2, - -.,w}

and / is a bijection, we have that

W : {f (P;) : i : L,2,... ,u} .

E

3.5.5 Theorern (The converse)

Lel PC be a projective ú-spread set. Then there exists a t-spread W of. the space

PG((s + 1)(t + 1) - 1, s) such that

Pc: {f-t(wt): w¿ ew)

where / is the bijection of Theorem 1.6.2.

Proof: Let PC - {(€Ít),{Ít),...,(Ín)) : i: !,2,.'.,c.r} be a projective f-

spread set, that is a set of (s * 1)-tuples of (t * 1) x (t f L) matrices over GF(q),

satisfying the three properties (i), (ii) and (iii) of Definition 3.5.2. The elements of

PC may be regarded as points of the space 5"(¡1Zt+r(Gf(q))) every pair of which

are in clear position. These correspond under the bijection / of Theorem 1.6.2 to

a set w of ø þairwise skew ú-dimensional subspaces of PG((s + lx¿ * 1) - 1' q).

Thus W is a ú-spread of PG((s + t)(t + 1) - L, g) and

Pc : {f -'(w) z w; e w\ .

tr

3.5.6 Theorem

Given a f-spread set, we can construct a (normalised) projective f.spread set and

the t-spreads they define are isomorphic.
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Proof: Let c be a f-spread set of matrices, so that it is a set of ge(t+l) s-

tuples of matrices, g("-r)(t+r) (s - l)-tuples of matrices, . . . 1 q2(t+r) 2-tuples of

matrices and gt*r single matrices,

c: {{cÍi),c[ù,...,cÍi)) : i --1,2,.-.,s, i :7,2,' ",no(t*t)]'

All the above matrices are (ú*1) x (¿+1) andfor each i :L,2,,... 
's 

the following

properties are satisfied:

(ii) the i-tuples (0,0, . . . , 0) and (1,1, .. . , /) are in C, and

(iii) if (xr,,xr,...,x¿) and (yl,Y2,...,Y;) are distinct elements of c then r:0

is the only common solution to the equations (X, -Y¿)x :0'

For each i-tuple of matrices in the set C, we construct an (s + l)-tuple of

(¿ + 1) x (ú * 1) matrices whose fi.rst i entries are the matrices of the i-tuple in the

same order. The next entry (ihe (i + 1)tr' entry) is the identity matrix and the

last (s + 1) - (i + 1) entries a¡e the zero matrix. To the set of such (s a l)-tuples,

adjoin the (s * l)-tupie (/,0, . . . ,0), to obtain

Dla -,v-

{rn, 
: elÐ,ctÐ,. . .,c!ù,r, 0, . . ., 0), i : !,2,. . .,s,, i : L,2,. -., qt(t+l) }

U {P"" : (/,0,.'. ,0)}'

The set PC so constructed is a normalised projective t-spread set, and we show

this by checking lhat PC satisfies Definition 3'5'2. First, PC is a set of o :

Os(t+r) + g(s-t)(t+t) .u ... * gt*r * 1 (s 1- 1)-tuples of (ú + 1) x (¿ + 1) matrices

which contains the elements (.I,0,...,0),'..,(0,...,0,/) and (f, 1,"',1)' (This

follows from the fact that the i-tuple all of whose entries are the zero matrix is

in the set for every value of i and performing the above construction on such an

i-tuple gives an (s t l)-tuple with an identity matrix in position (i + 1) and zero
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matrices elsewhere. The (s * l)-tuple all of whose entries are the identity matrix

is constructed from the s-tuple all of whose entries are the identity matrix.) Thus

(i) and (iv) are satisfied. Since each element of PC }ras the identity matrix as one

of its elements, property (ii) is satisfied'

Now we must check the condition (iii) of Definition 3.5.2. \Me shall consider

three cases. First, let

(Xr,Xr,...,Xi,/,0,...,0) and (Yr,,Yr,. -.,Yi,.f,0,...,0)

be two (s * 1)-tuples in PC. Then

Xt
Xz

X;
I
0

X¿

I
0

ó

Yt
Y2

Y;
I
0

0

Xt Yt-Xt
Xz Yz- Xz

Y¿-X;
0

0

rank : rank

0 0

and we must show that this matrix has rank equal to 2(t * 1). Since it has 2(t +I)

columns its rank is at most 2(t + 1). Because the first f * 1 columns are linearly

independent, and by property (iii) above ø : 0 is the only common solution to

the equations (Xr' - Y¡)" : 0, we see that

Yt-Xt
Yz-Xz

rank :ú*1

Y-x;
and the result follows.

Nowlet (Xr,Xr,...,,Xi,/,0,...,0) and (Yt,Yr,...,Yj,/,0,...,0) be distinct

(s * l)-tuples in PC, and suppose without loss of generality that i ( j. Then the
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matrix

has rank equal to 2(t + 1).

Finalty let (X1 ,X2,...,Xi,f,0,...,0) and (f,0,0,"',0) be two elements of

PC. Then the matrix

has rank equal to 2(t + 1).

'We now show that the f-spreads defined by the f-spread set and the projective

ú-spread set are isomorphic. Let the set of vectors

be a basis for V("+r)(t+r¡, the vector space corresponding to PG((s+1)(t+1)- 1' q)'

Yt
Yz

n
Y¡+t
Y¿+z

Y¡
I
0

ò

Xt
Xz

X;
I
0

ó

0

0

ò

T

0

0

0

0

ô

Xt
Xz

i,
I
0

0
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Let
Ar :üt 

{o[t) ,oLÐ ,.. . , "Í?r]
Az:Iin ,oLÐ ,"' , "Í?t)

fork:tr2r...,t*1

{/(-):,4r:lin "l
1

ot') ,.

The projective t-spread set

pc : 
{n,, 

: eÍi),c[i),...,c:i), /,0,...,o),

where P* : (/, 0, . . . , 0) gives rise to the ú-spread

{'1"

As*L :un 
{al"+rl ,oL'*t),. . . , oÍî1t) } .

For each value of ¿ with i:Ir2r...,,s * 1, define a (non-singular) Iinear transfor-

mation (i) from A1 lo A¿ as follows:

(i):$-+A¿

, of ) *-' o[o)

The f-spread set

defines the ú-spread

where

tçcli),c[ù,

le:tr2r...r¿+1)

and

c : {tcli),c[Ð,...,c[ù) : i : !,2,. -.,s, i : !,2,.. -,qi(ú+l)]

w : UQÍù,ctÐ,...,c!\: i: L,2,-..,s, i :L,2,--.,qi(t+r) ) u 1"t1*¡1

{c{rr"ttl eC[Ð"f) o...o s{i)ott eof+tl

"Í?')

i : Lr2r... rs, i : L,2,,-.. rgi(ú+r)), {"-}

w' :{ftnrl : i : L,2,...,s, i : 1,2,.. -,qi(t+t)} u {/(r.")}

cg) lin)
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where / is the bijection of Theorem 1.6.2. The vectors e1, €2,¡. .., e(s*l)(t1r¡ form

a basis for 71"+r)(¿*1), where e; is the vector with a 1 in its ith position and

zeros everywhere else. We shall express )1sar)(t+r¡ as the direct product of s * 1

(t + l)-dimensional vector spaces as follows:

}qs1r¡1t+r) - Bv@Bz@ "'OBs*1

where
Br : Iin {e1 ¡ ê2¡ . .. , et+r }

Bz: Iin {e¿..2 ¡êt+t¡...rez!+Ð}

B" :ün {e1"-r¡(ú+t)+1' es(r{1)*2:' . ., e"(t+r)}

Bs*l : lin {er1111)+r, es(r+l) *2¡... , elsar¡(t+r)} .

Now we write each Br. as a (t f l)-dimensional vector space, so that for each

j :1,2r. . . ,s * 1, B¡ has basis

a[rl - (1,0,...,0)t

a!i) : 1o ,110,"',0)t

åÍ?r: (0,0,...,0,1)r.

For each j : 7r2r. . . ,,s * 1, we defi.ne a (non-singular) iinear transformation (j)

as follows: 
(i) : 81 + B¡

tbf) " ó[i) for k: L,2,...,¿+ 1.

Now /(P.") is the (t + t) dimensional subspace of )1"+r)(¿+1) spanned by the

columns of I
0

0
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The space spanned by the columns of this matrix is Br. The space f(P¿¡) is the

space spanned by the columns of

These columns are
crr O czr O "' O c¿r O bÍt*t),

cn Ø czz Ø "' Ø c;zO ótn*t),

crt+r o czt+t Ø "'O c¿r+r O bÍl*rt)

where cr¡ denotes the /th column of the matrix C[i) f"t I : !,2,. . . ,f * 1 and

Ie :I,2r...ri. Considered as a point of the space B¡,

ckl : cfi) 6rx¡

and we see that f @¿¡) is spanned by the vectors

C{i)6ol ØC[Ð6{zt O...o g{i)66 obÍi+1),

Ctt)6{rt eC[i)6{zt O...o ç9)6{Ð Oó!t+tl,

cÍ')aÍ?, e c[ù {l},o . . . o c[Ð uÍl].,o åÍ11')

so that

l@;¡): {"Ír,uf) ØC|ûDIQ)O.. .gg(Ð6þ) 66G+r): for k :!,2,...,f +1}

Since the basis {o[i) , le : !,2r...,ú + 1, i : 1,,2,...,s -¡ 1] was arbitrary' ïve

"l!) 
:bf) fot j -L,2,...,s*1and Ic:L,,2,...,s*1

CÍù
cti)

C{i)
I
0

0.

choose
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so that

/(P"") : Bt -- At

and for each i : !r2r...,s and j : Ir2r'..'qt(¿+l)

f@;¡): {"Ír,uf 
) ØCicDba) O...OCfj)ó(') g6G+r): for fr :I,2,...,ú+1}

: 
{CÍr,rf 

) øC[Ðof) O.. .eC!Ðof) s¿[''+1): for k :L,2,...,f +1]

: t (cÍù ,,ctù ,,-. . , cj") .

Thus the f-spreads w and wt are isomorphic, that is, one may be mapped to the

other by a homography of PG((s + 1)(¿ * 1) - 1, q). tr

3.5.7 Theorem

Let W be a t-spread of PG((s + t)(t + 1) - 1, g) wiih projective ú-spread set

PC. Suppose that w has the shell property 3.2.7. Then we cafl normalise the

projective t-spread set and hence construct a ú-spread set which defrnes a t-spread

isomorphic to W.

Proof: Let PC : {P¿¡: (€[o),(Ío),...,€Ít)) ; i, - L.,2,...,ar] be a projec-

tive f-spread. set. The elements of Pc rnay be regarded as points of the space

5"(Mt+r(C¡(q))) every pair of which are in clear position. Now W has the Shell

property 3.2.7, so that there exists a partition of PG((s + 1X¿ + 1) - 1,g) into

ttshellstt,

PG(t,q),

PG(z(t + 1) - I, q) - P G(t, q),

PG(s(t + 1) - 1, q) - PG((s - lX¿ * 1) - t, q),

PG((s + lxt + 1) - 1, q) - PG(s(r * 1) - 1' q)

such that every element of. W is contained in exactly one shell and has no point
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in any other shell. By the Shell property, there exist s * 2 elements

W*rWtr. .' ,W"rW"+t

of. W as follows:

W* - PG(t,q),

Wt € PG(2(t + 1) - 1, q) - PG(t,q),

W"-t € PG(s(t + 1) - 1,q) - PG((s - 1Xf + 1) - 1,q),

W",W"¡1e PG((s + r)(t + 1) - 1, q) - PG(s(t * 1) - 1' q)

where every s + 1 of them span PG((s + 1)(t * 1) - 1, q). The elements of the

projective t-spread. set corresponding to these t-spread elements are the s * 2

elements P*rPtrP2r...,R+r respectively. when these are considered as points

of. S,(Mt+r(Gf(q))), the condition that each s * 1 of the t-spread elements span

pG((s+1Xú+1)-1,g) means that every st1 of the points P*,Pt,P2,...,P"+r

are in clear position. By Theorem 1.6.3 there exists a collineation, denoted by fl,

of. S,(Mt+r(Gf(q))) such that

ç¿(P."):(1,0,...,0),

CI(Pt):(0,.f,0,...,0

O(P'):(0,.'.,0,/),

)

')
o(P,+ (1,1, ,/)

This corresponds to applying a homography to PG((s + 1X¿ + 1) - 1, g) such that
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in the new coordinate sYstem

W* - lin {e1 ,€2t. . . ret+t} ,

Wt - ün {e¿12, at+s>... , e2(¿1r)} r

W" - lin {er1¿a1)+r, es(t1r¡ *2¡..., e(s*r)(t+r)} and

WstL: lin {"t + et+z * "'* e"(r+r)+be2 i et+s + "'+ es!+t)+l2t "'"''

et+t * eze+t)+ .. . + e1s1r)(r+r)) .

Now any element W{i) "tW lying in PG(z(t+1)-1, q)-PG(t',8), i : L,2,''' ,Q'*r

is in the space spanned by W* and Wt, and so the corresponding element of the

projective t-spread set is of the form

(€Íi),€Í'),0,...,0)

and since this is in clear position with the point Poo -- (/,0,''' ,0),

€Íi) I
€Ír) 0

00 :2(ú+1)rank

00

and so aet(6[,) is not zero. This means that we may multiply the coordinates of

the point Pr¡ by the non-singular matrix 16{i)¡-t to obtain a new representation

of the same point of E,(M¿at(GF(q))),

ptj :(C{i),-r, 0,. .., o).

Similarly, for each i with i:2r3,...,s an elemeúW!¡) of.W lying in the space

PG((i + 1Xt + 1) - 1, q) - PG(i(t + 1) - 1, g), has corresponding element of the

projective t-spread set

P¡j :(€Íj), €Í'), "., {Íj), 0,. . .,0).
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This point of S"(.,Vr+r(GF(q))) is in clear position with the space spanned by

P*rPtr...rPi-tandso

rank

0

0

100
0r0

óoo
000
000

òoo

rU)
s0
t(i)
ç1

0

0

0

i
0

0

ò

:(i+1x¿+1)Á'i)si-1
f\i)\t

0

The matri" €Íi) is non-singular, and v¡e may multiply each coordinate of the point

of. S,(Mt+,(Gf.(q))) by the inverse "f €Íi) to obtain a ner,¡¡ representation of the

same point:

P¿j : QÍi),cti) .,...,c:i) ,1,0,..., o).

The projective t-spread set is therefore normalised to

pc :{{cÍ'), ctÐ,...,c[Ð,/,0,...,0), i : r,2,"',s, i : !,2,"',qt(ú+l)]

u{(r,0,...,0,)}

which contains the elements P"o, Pt, Pzr. . . , P"+r. \Me may construct the following

set

c : {tcli),gG),...,cÍi)) z i : 1,2,-..,s', i : L,2,"',qt(t+t)}'

Now C is a f-spread set, and to see this, we check the conditions of Defrnition

3.2.6- First note that c comprises os(t*l) s-tuples, g(3-1)(t+1) (s - l)-tuples' ' ' ''

qz(t+t) 2-tuples a,nd qt*l single (¿ + 1) x (f * 1) matrices. \Me must check that

for each i : !,2r.. . ,s the i-tuples of matrices form an (i, Ú)-spread set according

to Defrnition 8.2.3. The set C; of. i-tuples of matrices has qi(t+l) elements, and

it contains the element (0,0,...,0) arising from P¿-t' If (Xl ,X2," ',X;) and

(Yr,Y",...,Y;) are distinct elements of C; then (X1 ,X2,"',Xi,/,0,"',0) and
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(Yr,Yr,. .. ,Y,f,0, . " ,0) are distinct elements of PC and

rank

Xt
Xz

X¿
I
0

ó

Yt
Yz

Yt
I
0

ò

:2(t + L)

This implies that r : (0,0, . . . ,0)r is the only common solution of the equations

(Xr -Y¡)ø : 0. Thus C; is an (i,t)-spread set, so that C îs a f-spread set and

,ü¡e still need. to show that PC arid C defrne isomorphic f-spreads. The projective

f-spread PC is recovered from the t-spread set C in the manner described in the

proof of Theorem 3.5.6, and Theorem 3.5.6 shows that the t-spreads defi'ned by

these two sets are isomorPhic. tr

3.5.8 Corollary

Let W be a f-spread of PG((s + lxÚ + 1) - 1, g) and suppose that w has the shell

property 3.2.7. Then w has a projective f-spread set of the form

pc :{{cÍ'), ctù,. -.,c:Ð,r,0,...,0), i : !,2, "',s, i : 1,2, "'',qt(t+l)}

u{(/,0,...,0,)}.

Proof: This appears in the proof of Theorem 3-6'7 ' tr

3.6 COORDINATES FOR THE AFFINE SPACE AG*(s + 1,qt+1)

In this Section we provide coordinates for the affine space AG*(s+1, qt+l) which is

constructed (as in Section 3.3) from a geometric f-spread of PG((s+lxt+1)-1, q)'

These coordinates are elements of the vector space corresponding to one of the t-

spread elements, and are determined by the elements of the normalised t-spread
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set. In this way, the work of Section 2.6 for the case of s : 1 is extended to cover

the case of ú-spreads of PG((s + 1)(t + 1) - f 
'q).

We use the notation of Sections 3.2 and 3.5. Let W be a geometric t-spread

of PG((s + r)(t + 1) - 1,s), and embed the space PG((s + 1xr + 1) - 1,q) as

a hyperplane in the projective space PG((s + lXÚ + 1), q). As in Section 1.1 we

represent PG((s + lxt + 1) - 1, g) as an ((s + 1X¿ + 1))-dimensional vector space

Vlsar)(t+r) over the freld GF(q), embedded as a hyperplane in the ((s+1)(t+1)+1)-

dimensional vector space y(s+t)(ú+1)11. Then W becomes a collection, still denoted

W, of. (ú + l)-dimensional vector subspaces of )(r+r)(r+r) over GF(q) pairwise

having only the zero vector in common and satisfying the property that each non-

zero vector of )1"ar)(t+r¡ lies in exactly one element of W'

As W is geometric, it has the shell property 3.2.7,, and so by corollary 3.5.8,

W has a projective f-spread set of matrices of the form

PC:

{*, : (cÍi), ctÐ,...,c:Ð,/,0,.. -,0)' i : L,2,.. -,s, i : r,2,"',qt(r+l)}

U{P"":(1,0,...,0,)}
where

Prr:(0,-f,0,...,0)

Pzt:(0,0,.f,0,...,0)

P"r:(0,...,0,/)

P"o"1r¡rl : (1, I r. . - rI).

This means that

y - {W;¡ : í :I,2,...,s, i :I,2,...,qi(t+l)} U {W."}

: {teln,c[ù,. . .,c:ù,,/, 0, . . ., 0), i : r,2, - . .,s,. i : L,2,. . -,qt(r+l) ]
U{W-:J(1,0,...,0,)}
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where in particular W contains the following (ú * l)-dimensional subspaces of

l/1"ar¡1t+r):

W* - lin(e1 ¡€2¡...,er+r),

Wt - lin (etaz, €t+s¡.' ., ez(r+r)),

WsL : ün (e"1¿a1¡+1, ee(ú+l)+ 2¡. . . ¡e(s+1)(ú+1)) and

Wro"1r¡.r.7: Iin(tt + et+z* "'* es(r*1)+r,e2 * et+a + "'+ es(t1r)+2r" " ",

e¿+r * e2(t+r) + ...+ e(s+r)(¿+r)) .

To the basis {e1 ,t€2¡...,e(s*l)(¿*r)} for }1s1r)(t+r) we adjoin the element e* of

y(s+r)(t+r)*, - )1"+r)(ú+1) to obtain a basis for V("+r)(ú+1)+1'

For each k:2,3,...,s f 1, let (k) be the following (non-singular) Iinear

transformation:

(k) : W* --+ Wge_t)r

: ej àe(È-t)(ú+1)..¡ for i : !r2r... r¿ + 1.

3.6.1 Coordinates for the points

By construction, each point of. AG*(s * 1, q'+') is a L-dimensional subspace of

Y(s+r)(¿+r)".1. Write

y(s+1)(ú+1) +r: Wæ ØWn ØWzt O ''' O W¡ Ø {"*}

so that a point of ,4.G*(s + 1, g'+t) has a unique basis element of the form

*, Ø *L') o ff53) o ...o r!ï*rt) e :*
e

æ1 €wçe, *f) ewrr, *f) ewzt,...,t!ï*rt) €w"t

where
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and therefore

ûl¡12¡...:Ístl €W*.

\Me d.efine the coordinates of this point of. AG*(s*7,l'tt) to be (rr,rr,. . . , r,*1).

Every such ordered (s*1)-tuple (r1 ,t2,, . .. , rs*l) of elements of l4loo represents the

unique point of. AG* (s + 1, qt+t) corresponding to the subspace of V(s+r)(r+1)+1 -

V(s+r)(r*r) spanned by the vector *, e ,f) O "' O "!ï*rt) O e*. In this way the

points of AG*(s + 1, qt+l) are represented by (s * 1)-tuples of elements of' Woo'

3.6.2 Equations for the lines

A line of. AG*(s*1, gt+l) is a (t+2)-dimensional subspace of V1"ar)(f+1)+t meeting

y(,+1)(ú+1) in an element W;¡ of. w. such a space has the form

<W;j,(*r,*r:...,t"*1) ):( W;i,,*t g *f) O "'O "!ï1t) O e* >

where (*r,*rr. . . , r"*1) is one of the points of AG*(s + 1, gt+t) belonging to that

line.

The iines may be divided into two main types

(7) Lines passing tlt'rough W*. If.

al¡Ctr2r...rds*l €W*

then the point (*r, ,r, . . . , o"*r ) of AG* (s + 1, gt+l) Iies on the line

1 Wæ,(or,,or,. . ., ¿"*1) ):( {a z a €. W*},o, g of) O''' O o!ï*rt) e e

if and only if

*, ø rf) o...o r!"irt) o e* €< {a: a €.w*},ot e of) o "'o o!ï*rt) o e* >

which occurs if and only if

"l:) ,5t) - oÍt),..., r!ï*rt) : o!ï*rt)
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and therefore if and only if

û2: d2,t t3 : a3¡... ¡ Ûs*l : osll'

(2) Li,nes not pøssi,ng throughW*. If.

dlrÚ2:...r@.e*1 €W*

afld

wii : JçÍi),c[i), - ..,cÍi), /, 0,. . . o) € ]ry,

then thepoint (*r,rr,...,øs+r):ør O ,f) g"'e"!ï*r1) 6¿* lies ontheline

< J(cÍi),,c[i),,...,c:Ð,/,0,...,0),(or,...,ø,+r) )
:< J(cÍi),go,.-.,c[Ð,/,0,...,0),ør e"f) o "'or!ï1t) o e* >

if and only if

*re*f)o...e'!ï*i) ue

e< {C{i)o eC[ùo<zl e'...e ç{ùol;'t g¿(i+r¡ : ø€.**\,

o, @ oLÐ o ...o o!ï*rt) (E e* >

which occurs if and only if

ts*L : ú[s*lr fis : ds¡'.'¡ti+2 : ai+2

*rd r!i+rt) : ø(i+1) + "Íl*rt) 
so that a: ri+t - øi+r and thus

'Ít) - oÍÐ :cj')("Í?, - oÍ?,),

"Í:ì') - "Í:') = c[t)rçrlïr') - "Íï;')),

*t:) - of) : c[i) @.11,-,Í?,1

rt - at - CÍi)@r+r - ø;+r).
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Ãs PC is a projective f-spread set of matrices, and noting the action of each non-

singular linear transformation (k), we see that

('[*) - oÍ,n)) - c[,)("Í?, -'Í?,1
+ (*t - ø¡)(r) : Cf)@o*, - o¿+r)(k)

+ (rr - or): CÍi)@r*r - ¿¿+r).

The equations of the line are:

f s*l : As*l¡ ls : As¡... rf i+Z : Ai+2

and

ri - o,i: C{i)@r*r - ¿¿+r), ...¡tr - ar : CÍt)@r*, - o¿+r)

In this way, every line of AG*(s+ 1, qt+t) is specified by a set of s linear equations

determined by a point of the line and the element of. W through which the line

passes.

We now show that, with an appropriate definition of addition and multi-

plication, the elements of IrIloo form a field, and so they provide coordinates for

AG* (s+ 1, q'*t ) in the usual way. Again, these results extend the results discussed

in Section 2.6.

We have already found equations describing the lines of. AG"(s*l,g'*t), and

they are of the type

0:ctr¡ or(r -a):cf)@-u)

where r¡U,,d and ó are elements of lrlloo und, ClÐ is some matrix appearing in

an element of the projective t-spread set of W. We need to rewrite these with

addition and multiplication in the field replacing the vector sPace addition and

multiplication by a matrix in the projective ú-spread set.
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As IrØoo is a vector space, it has vector addition, and we define addition in

Woo lo be this vector addition. In order to define multiplication, we choose a non-

zero element of 17- and denote it by 1. By Corollary 3.2.10, given any element

r €. W* there exists a unique element QÍi) ,/,0, . . . ,0) of the projective t-spread

set such that

*: CÍi)y

In view of this, for u and y in W*, we define

xy:(Cli")r- CÍi)a,

and the equations of a line in ,4.G*(s + 1, gt+t) are written as:

t: d¡ or (r - a): z(y -b)

where z is the unique element of. W* such that , : CÍi)t

3.6.3 Theorem

The system (W*,+, ' ) described above is a field.

Proof: \Me apply the corresponding result in the case s : 1 to a subplane of

AG. (s + 1, qt+t). Consider the (1, f)-spread set

c, : {(cÍ",/,0,...,Ð : i : L,2,...,n'*'}

and the corresponding elements of W

wt :{t ("Í",/,0,...,o) z i : 1,2,...,n'*t}

u{/(r,0,...,o)}.

Now Wr contains the two elements

W* - J (1,0,0,...,0) : lin {"r,"", "',et+r}

Wt - J (0,1,0,...,0) : lin {et¡2,€t+3,' ",ez$+Ð}
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If we let (2) denote the (non-singular) linea¡ transformation

(2) z W* --+ Wn

: ek t+ et+L+k, for k : Lr2, . -. , t + 1

then the elements of. Wt are W* and, for i : !r2r.' ' ',Q'*t',

wti:'(tÍ',/,0,"',0)

-{clùoØaQ); ae **}

Therefore Wr is a t-spread of the (2t + l)-dimensional space

PG(2t + 1, q) :1W*,Wn ): Iin{e1 ¡ €2t ' ' ' , ez,+Ð},

withprojectiveú-spreadset {(CÍ'),Ð, i:L,2,...,q'+t}u{(/,0)}. Thist-spread

Wr defi.nes an affine plane II of ordet q'+L as in Section 2.3, which is an affine

subpiane of AG*(s + 1, qt+1). To see this, we follow the construction of II given in

section 2.3, but using the space PG(2t+ 1, q) embedded in PG((s + 1xf + 1) - 1, q)

and the t-spread Wr as a subset of. W.

As in Section L.L, PG(2t+1, q) corresponds to a (2t+2)-dimensional subspace

Vzr+z of Vlsar)(r+l)' since

Vzt+z: lin{er, €2¡.- -, ez(r+r)}

}lsar)(t*r) : lin{el ,t€2¡ " ', elsar)(t+r)}'

Also, the space

Vzt+s : lin{er, e2r. . ., 
"r(r+r), "*}

is a (2ú * 3)-dimensional subspace of

y(s+1)(r+1)+r : Iin{e r¡ ê2¡.. .' e(s+1)(t+1), e*}'

The points of the plane II are the elements of Vz¿+ s-Vzt+2, which are also

points of AG*(s f 1, gútl) as they are elements of V1"+r)(r+1)+1-y(r+t)(t+l)' Lines
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of II are the (ú + 2)- dimensional subspaces of )/zr+3 which rneet Vzt+1 in exactly

an element of Wr. These are also lines of AG"(s + l,gt+t) as they are (t +2)-

dimensional subspaces of )1"+1)(¿+r)+1 meeting V1s+r)(t+r¡ in exactly an element

of W.

'We use the construction of Section 2.6 and the construction presented above

to give coord.inates for II, both as a plane in its own right and as a subplane of

AG*(s+ 1,gt+l). In both instances the coord'inates come from the set I'7oo and

we shall see that the coordinates of II as a plane in its own right occur as the

restriction of the coord.inates of II as a subplane of AG*(s+ 1, gt+t) as is normally

the case.

First we give coord.inates for II as a plane in its own right. A point of II is a

point of.lzt+s - Vzt+z and so has a unique basis vector of the form:

qØxf) Øe*

for some rt¡t2 €w*.As in Section 2.6, this point has coordinates (ø1,r2)' Now

a iine of II is a (ú * 2)-dimensional subspace of Vzt+s which meets Vzt+t in exactly

an element of wr. If the space passes through w* - (/,0) and contains a point

(ot,or) of II then it is

{(*t,*r): 12: a2}

otherwise if it passes through 14\i : JçÍj)''t) and' contains the point (at'az)

then it is

{{"r, "r) , (t, - or) : cÍÐ@, - "ù} '

Next we give coordinates to the points of II as a subset of the points of

AG*(s+ 1,gt+t). A point of II stil has basis vector

qaæf) Øe*
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for some rr,,rz eWoo, so by 3.6.1 the coordinates of this point are

(*r,àr,0,... ,0).

By 3.6.2, a line of II passing through woo - (/,0, . . . ,0) and containing the point

(or, or,0, . . . , 0) of AG. (" * 1, nt+t ) is

{(*r,,*rr...,ø,e*r) i û2 : a2¡rs- 0,. .. trs1L- 0}'

Similarly, a line through the element Wri : J(CÍi) ,/,0, . . . ,0) and containing the

point (or,o40,... ,0) of AG"(s + 1, gr+1) is

{{rr, 12¡-..,r"*1)t ("r -or): ClÐ@r-az),Ís:0,"',osrl :0} '

Comparing these two coordinatisations rve see that II has the same coordinates

whether considered as a subplane of AG*(s * 1,9t*1) or as an affine plane in

its own right. In both cases the coordinates come from the set, Woo, on which

is defined an addition (vector addition) and a multiplication. The defi.nition of

multiplication on Woo in Section 2.6 coincides with the definition given above,

immediately preceding this Theorem.

Now since II is a subplane of AG* (s* L., g'*t ), it is Desarguesian. By Theorems

2.6.2 and 2.6.3,, this means that the set (W*,,*,') is a freld' tr

3.6.4 Corollary

Let W be a regular t-spread with projective f-spread set PC. Thet PC is isomor-

phic to an s-dimensional projective space PG(s,q'+t) of o¡der ¿ + 1.

Proof: PC is the set of all equivalence classes of (s * l)-tuples of elements

of.W* which is a field of order g¿+1, where two such (s * l)-tuples are equivalent

under multiplication by any element of ?7oo. tr
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3.7 CONNECTIONS BETWEEN 3.3 TO 3.6

Let W be a f-spread of PG((s + 1xú + 1) - 1, g) with the shell Property 3.2.7. Ín

particular the smallest shell PG(t,,g) is an element of.W, to be denoted by W*.

By Corollary 3.5.8, W has a projective f-spread set

PC_

{n,, 
: e:i) ,cti) ,,. . . ,c:i), r, o, . . . , o) ' i : !,2,,. . . , s,,

U{P"":(1,0,...,0,)}

containing the elements
Ptt:(0,.f,0,...,0)

Pzt:(0,0,-f,0,...,0)

j:Lr2,...,qt(t+l))

P"r:(0,0,...,0,/)

P"o"1r+r¡ : (/, 1 r..., I).

This means that W is of the form

(
¡ry: {Wri: i,:L,2,...,s, j :L,2,...,qi(t+r) }U {øi""}

: {teÍ,,cti),...,c[i),r,0,...,0), i : L,,2,...,s, i : !,2,

U {W*: J(1,0,. . . ,0, )}

and contains the spaces

Woo - lin {e1, ê2,t. . . ,,et+r} ,

Wn - lin {e¿a2, êt+s¡ .. . , ez(r+r) } ,

' ' ', qi(t+L) )

W"t - lin {e"1¿11)*rr es(t*l) 1¡2¡ . . .; e(.r+r)(t+r) } and

Wro,1rlr¡: lin {"t + et+z l "'* e"(¿+t}r)tez * et+s + "'+ es1tt)t2t.

et+t * e2e+t) + ...+ e("+r)(¿+r)) .
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Consider the set

Ph- {Or: QÍÐ,/,0,...,0)' i:r,2,-. j,si(t+l)}u {r." -- (1,0,...,0,)}.

The set

c, : {cÍt) 
. (cÍi),r,0,...,0) eecr}

is a f-spread set for the f-spread Wr induced by W on fhe (2t f l)-dimensional

subspace < W*,Wn ).

3.7.L Theorem

Every matrix appearing in any element of PC belongs to the set C1 above, and the

set C1 is a field under addition and multiplication of matrices.

Proof: We have seen that the set of matrices C1 is a f-spread set for the

t-spread Wt of. PG(zt + 1, q). This ú-spread defines an affine translation plane as

in Section 2.3. This plane is an affine subplane of the affine (s * l)-dimensional

space defined by the f-spread W as described in Section 3.3. Thus the affi.ne

subplane is Desarguesian, and by Theorem 2.6.3, the system (Cr,l,,') is a field.

It remains to show that each matrix C[j) t". k e {1,2,...,i}, i:2,3,.-.,s and

j : L,2,...rqi(r+l) is in C1.

To show that every matrix in each element of. PC occurs as a matrix in C1,

choose such a matrix Cf). f"t o: CÍi)t eW-, then by Corollary 3.2.10,, there

exists a unique element

(cÍi),r,0,.. .,0) ePcl

such that

o: cÍi)t.

It must be that Clil - CÍi) urra the proof is complete.
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3.7.2 Corollary

The field C1 contains the subfield {kf z k e Gf k)} which is isomorphic to GF(q)

Proof: The set {k.I : k e GF(q)} is contained in 4 by Corollary 2.6.3 (2)o

3.8 ¿.SPREADS AND INDICATOR SETS

In this Section we extend the work done in Section 2.8 on indicator sets correspond-

ing to t-spreads of. PG(2t + 1,q). The point of view on indicator sets developed

in Section 2.8 allows a natural generalisation, enabling us to define indicator sets

for ú-spreads of PG((s + 1)(f + 1) - 1, g). These will be called projective indicator

sets since they are constructed using the projective Ú-spread set.

LetW be at-spreadof PG((s +f)(t+ 1) - 1,g) wher" lwl : u): gs(r+l) +

g(s-l)(t+1) + ...+ gt*l + 1. Suppose that W has projective ú-spread set

PC : {p, : (€át), €
(i)
1 r"', €Ít)),i:!,2,...,a\

where each matri" ([o) is (t * 1) x (t * 1) and has rank f * 1 over GF(q). The

t-spread W is

W: {W¿: l(Qùr): i: !,2,...,a}

where / is the bijection of Theorem 1.6.2. F\rrther, if (€án),€Ít),...,€Ío)) .ttd

(gÍi) , €Íi), . . . , €Í') ) are any two elements of PC then

rank :2(t + t).

.(¿) ,ülçs s.e

Let GF(qt+r) be a field extension of G]¡(q), and let a e GF(qt+r) be such that

Gtrçnt+r¡ : GF(q)(a). Let PG((s + t)(t + 1) - 1, gt+t) denote the corresponding

extension of PG((s + 1Xú + 1) - f, q).

c(t) ¿(i)ço s0
r(t) ¿(i)çt st
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Consider the set of points PI : {Q;, i : L,2,... ,a} where

Q¿ --

Ê(i)
ss

and the matrix P,Î is written as an (s + 1)(t + 1) x (Ú + 1) matrix over GF(g). Q,

has (s + lX¿ f 1) coordinates and so is a point of PG((s + 1X¿ + 1) - 1, qt+t)'

3.8.1- Lemma

(l) % has ø points, and for i : !,2,... ,r..r, the point Q¿ lies on the extension F¿

of the corresponding ú-spread element I'[,

(2) each point Q¿ € PI is an imaginary point of PG((s + 1xú + 1) - 1, Çt*t),

(3) if Q¿ e PI then the corresponding ú-spread element /((eá') , €fo), . . . , (Ío))t) it

the f-dimensional space

L(Qù: un {Q;, Qî ,- . . ,8î'} n rc11" + 1X¿ + 1) - t, q),

where ø is defined by ø : t è rq, ar'd

(4) if Q; and Q¡ arc any two points of z then the line Q¿Q¡ joining them is

' imaginary.

Proof: (1) First, PT has one point corresponding to each Ú-spread element,

and the number of these is ¿¿. Each element W¡ of. the t-spreadW is the subspace

of PG((s + 1)ú + 1) - 1, g) spanned by the columns of the matrix

Ê(i)
s0
c(i)
S1

t(i)
s0
r(i)
s1

Ê(i)
Ss
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The point Q¿ is alinear combination of the columns of this matrix with coefficients

7rara2 r... ret, that is

Q¿ : Vo * aVt + a2Vz + .. - + atV

where V¿ denotes ihe (i f l)st column of the matrix

c(i)
s0
¿(t)
ç1

tQ)
çs

Since W; îs spanned by the vectors Vo,,Vt,.. . ,V over GF(qr*l), we see that Q¿

is a point of. W ¿.

(2) Since Q¿:VoIaVt+a2Vz+"'+ atV, where the points Vo,,Vt,.-.,V¿-1 are

linearly independent over GF(q), by Corollary 1.4.10 (t) 8n is imaginary.

(3) Now Q; is an imaginary point of.W¿, which is a ú-dimensional space meeting

PG((s + 1X¿ + 1) - 1, q) in a ú-dimensional space. But L(Q¿) is the unique such

space by Corollary 1.4.10 (2) so that L(Q¿) : Wt, and it follows that W; :

t(Q¿) n PG((s + 1)(t + 1) - r, q).

(a) As Q; and Q¡ a,re imaginary, the space" L(Q¿) and I(Q¡) both have dimension

ú in PG((s+ 1X¿ + 1) - !,, Q'*t), and each meet PG((s + 1Xú+ 1) - L, g) in a space

of dimension f which must be a ú-spread element bv (z). Thus L(Q;) and L(Q¡)

are skew, so the points

Q;,Qî,.. . ,Qî' ,Qi,Qi,-. .,Qî'

span a space of dimension2t + 1. It follows that the lines

Q ;Q ¡, (Q¿Q ù",. - -, (Q ¿Q )"'

span a space which is actually L(Q¿Q¡) and is of dimension2t* 1. From Definition

L.4.7 (2) we see that the lirre (Q¿Q¡) is imaginary. tr

These observations motivate the following defi.nition:
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3.8.2 Definition

A, projectiae ind'icator setisa, sel PT of. u: gs(r+l) + g("-t)(t+t) -¡ "'a gÚ+1 a 1

imaginary points of PG((s + t)(t + 1) - 1, gt+t) such that the line joining any two

points of PI is imaginarY.

3.8.3 Theorern

Let PI be a projective indicator set. Then the set

w(Pî) : {L(Q) n PG((s + t)(t + 1) - 1, s) , Qt ePr}

is a t-spread of PG((s + 1X¿ * 1) - 1' q)

Proof: Firstl¡ the set W(PÐ contains o elements, and by Corollary 1'4'10

(2) since each point Q¿ e PG((s + t)(t + 1) - 1,qt+t) is imaginary, each space

L(Qùn PG((s + 1Xt + 1) - 1, g) has dimension t. It remains to show that any pair

W¡ : L(Q)nPG((s+ 1X¿+ 1) - 1.,s) and Wj : r@¡)nPG((s + t)(t* 1) - r,q)

of elements of.W(PI) are skew in PG((s + 1X¿ * 1) - 1,q). The line Q¿Q¡ i"

imaginary, so the lines

Q ¿Q ¡, (Q ¿Q ù",''',(Q nQ ¡)"'

span a subspace of PG((s+lXú+1)- L,9'*t) of dimension 2t-f 1. Thus the points

Q¿,Q"¿, - . ., Qî' anð'Q ¡,Qî,. - ., Qî'

also span a subspace of dimension2t* 1, and this is only possible if the subspaces

L(Q;) and I(Q¡) are skew. D

3.8.4 Theorem

Let W be a t-spread of PG((s + 1X¿ + 1) - 1, q). Then there exists a projective

ind.icator set PI in PG((s + lXú + 1) - 1, qt+t) such that W : W(PZ) constructed

as in Theorem 3.8.3.
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Proof: Let PC be a projective f-spread set corresponding to the t-spread W.

This exists by Theorem 3.5.4. Then ïve can construct a projective indicator set as

in the remarks preceding Lemma 3.8.1, then use the Lemma 3.8.1 to verify that it

is ind.eed a projective indicator set and that W :W(PI). tr

A projective indicator set in PG((s + 1Xú + 1) - !,8'+L) determines a Ú-spread

of PG((s + 1X¿ + 1) - L, q) uniquely, but a f-spread of PG((s + 1X¿ + 1) - 1, q) mav

have more than one projective indicator set in PG((s + t)(t + 1) - 1,gf+l) since

it may have more than one projective f-spread set. Lunardon (1984) was able to

improve the situation in PG(2t + 1,q) by introducing an indicator (f * l)-space

in PG(2t+ 1,g,+t) and requiring the imaginary points of the ú-spread elements

to lie in this indicator (t + l)-space. This was the approach used by Sherk (1979)

and Bruen (L972a). As we saw in Section 2.8, this corresponded to constructing

the indicator set using the ú-spread set (or equivalently the normalised projective

t-spread set) instead of the projective t-spread set, and since every t-spread of

PG(2t + 1, q) has both a ú-spread set and a projective f-spread set, there vras no

problem. However, the situation is different in PG((s + t)(t + 1) - 1, q) for s ) 1

because as'we have already noted, only the t-spreads with ihe Shell propetty 3.2.7

even have t-spread sets.

In Section 2.8 we found the projective indicator set

{Q¡ ,j : -, !,2, - -. , qt+t}

of a t-spread of PG(zt + 1, q). If a basis for PG(2t + 1, q) and the extension

PG(zt + 1, qf+l) is

{"rr"r,... , ez(t+r)}

then every point Q; is contained in a subspace PG.(t+ 1, gt+t) of. PG(2t+ 1, g'+t)
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spanned by ihe vectors

ê!¡ê2¡... t€t+r¡et+2 * aet+s + "' + atezt+z

In fact each point Q; apaú from Qoo : ("r I aez + ... + cter+r) is contained in

the affine space

AG* (t+ 1, gt+t) : PG*(t+ 1, g'+t) - J(*)

where

/(-) : lin {"t,"r,. . ., er+r} .

In the case of t-spreads of PG((s + 1Xú + 1) - 1, g) the situation is somewhat

more complicated, as we shall now see.

Let W be a t-spread of PG((s + t)(t + 1) - 1, q) and suppose that w has

a projective t-spread set where the last non-zero matrix in each (s + 1)-tuple of

matrices is the identity matrix' This occurs if and onl¡' if W has a f-spread set and

so if and only if W has the Shell property 3.2.7 (see Theorems 3.5.6 and 3.5.7)'

Let

PC : {rr,, j : I,2,... rs,, i : \,2r...,qi{r+rl}

be a projective t-spread set for W, where

P*:(/,0,...,0)

Pti : çÍi'',r,0,...,0), i : 1,2,...,q'*t

pzj : QÍi),c['), 1,0,...,0), .? : L,2,. ..,q2(t+r)

p"j : Q:i),c[t),,...,c[i),0, i : L,2,...,ø"(t+r)
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Let a e GF(qt+r) be such that G?(qt+l) - GfQ)@). Then the projective

indicator set PT comprises the points

PT : {Qo, 
, i, :1,2,.. . ,s, i -- !,2,. .. , qi(¿+l)}

u {8."}
where

cÍi)
nU\tv2

:

.i¡)
-rI

0

ó

and

Q:0(:)
If we suppose that PG((s + 1)(t + 1) - 1, g) has basis

{"r, "rr. 
. ., e(s+l)(¿+t)}

then we see that

Q* : (ur + aez *. .. + otrr+r)

QU e ün {e1, ê2t... ¡êt+t¡ et+z * o,et+s+ "' + o' 
"r(r+t)),

Q¿¡ e lin {e1, ê2¡..., e¡(¿+r)r

e¿(r+r)+r * ae¿(r+r) +z * "' ¡ a'e¡;+r)(r+r)) r

Q"¡ €. ün {e1 ¡ê2¡.-.r e¡(r*l) ,

es(ú{l)*r * ae"(t+r)+2 + ... a cte1"+lxr+t)} .

Q;¡:

1

a

),
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RecaII that W has the Shell properly 3.2.7, and that the shells are as follows:

PG(t,q) : /(oo)'

PG(z(t + 1) - 1, q) - PG(t,q),

PG(s(t + 1) - 1, q) - PG((s - lX¿ * 1) - 1, q),

PG((s + 1X¿ + 1) - 1, q) - PG(s(t + 1) - r, q)

where
PG(t,,q) : J(oo) : lin {"r,"r,... , et+r} ,

PG(z(t + 1) - 1,9) : lin {e1 ,t€2¡... , ez(r+r)} ,

PG(s(ú + 1) - 1,g) : ün {e1 ¡€2¡..., e"(t+r)},

PG((s + lX¿ + 1) - 1, g) : ün {e1 ¡ê2,. .. , e1,1r¡1r+r)} .

We introd.uce some notation for certain subspaces of PG((s*1Xf +1)-1 ,q'+')

as follows.

./(oot: (", *aez+...+ atet+t)

PG.(t+ 1,qt+t) : ün {er,,€2t...,êt+Ltêt+2 * aet+s+' " + o' 
"r(r+r)\,

PG.(i(t + 1), q'+t) : lin {er, êz¡. . . ,te;G+t)¡

e;1r+r¡+r * ae¿e+t)+z * "' ¡ ot e1;+r¡1t+r)),

PG.(s(t + 1), gt+t) : Iin {er ¡ê2¡. .. : es(t+r),

e"(r+r)+r * ae"(t+r) +z l -.. a ote1"+1)(¿+1)) .

Note that every point Qoo and Q;¡ of.PTliesin the space PG.(s(t*1),qt+t),

and, in fact every point Q;¡ of. PI lies in PG.(s(¿ + l),gt+t) - n. \Me can
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be more specific, and investigate exactly which subspaces of PG.(s(f + 1), gt+t)

contain the various points Q- and Q;¡ of. the projective indicator set PI. Using

the notation just introduced for certain subspaces of PG((s + t)(t + 1) - 7,q'+t)

and checking where the basis vector of each point 8l¡ lies, we see that:

Q* €. /(*),

Qt¡ € AG.(t + 1, qt+t) : PG*(t + 1, g'+t) - 7(oo),

Qz¡ € AG.(2(t+ t),qt+t) : PG*(2(¿ + 1),st+t) - PG(z(t + 1) - 1,s'*t),

Q;¡ e AG.(i(t* 1),s'+t): PG*(i(t + r),s'+t) - PG(i(t + 1) - 1,s'*t),

Q"¡ € AG*(s(t+ 1),st+t) : PG*(s(ú + 1),st+t) - PG(s(¿ + 1) - 1,s'+t)

This is similar to the way that a projective space PG((s + 1)(t f 1) - 1,q)

divides into shells , see 3.2.7, and the elements of a ú-spread sometimes lie entirely

within these shells. For this reason we will call this the Shell property for projective

indicator sets.

3.9.5 Definition The shell property for projective indicator sets

Let PI be a projective indicator set in PG((s + 1xf + 1) - I,q'+t). suppose that

every point of PI is contained in a certain subspace PG.(s(t + 1),gt+t) which

meets PG((s + t)(t + 1) - 1, s) in a subspace PG(s(f + 1) - 1, s). Let

AG.(s(t + 1), st+t) - PG*(s(t + r), q'+t) - PG(s(t + 1) - 1, s'+t)
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and suppose that the space AG.(s(t + 1),gt+t) is divided into "shells"

AG*(t + 1, gt+t)

AG-(2(t + 1), st+t ) - AG.(t + 1, s'+t)

AG-(i(t + 1), s'+t) - AG.((i - lX¿ + 1), q'+t)

AG.(s(t + 1), qt+t) - AG.((s - 1X¿ + 1), qt+t).

PI is said to have the SheII property wilh respect to this partition into shells if ii

has

(1) exactly one point in AG*(t * 1, gt+t),

(2) exactty gt+l points in AG*(Z(ú + 1), qt+t) - AG"(t f 1, gt*t),

(3) exactty q2(t+1) points in ,4.G.(3(f + 1), qt+t) - AG-(2(t * 1), gt+t),

and so on until

(s+1) exactly ns(t+r) points in l,G*(s(¿ + 1), gt+t) - áG.((s - 1Xú + 1), gt+l).

3.8.6 Lemma

In the above notation, an element w of. a t-spread w or PG((s + t)(t * 1) - r, q)

lies in the shell

PG((í + 1X¿ + 1) - 1, q) - PG(í(t * 1) - 1, q)

of PG((s + t)(t + 1) - 1, q) if and only if the corresponding point Q o1. a projective

indicator set lies in the shell

AG. ((i + lX¿ + t), s'+t) - AG-(i(t + 1), q'+t)
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of ,4G*(s(r + 1), q'+t).

Proof: An element W of. W lies in the shell

PG((i + t)(t + 1) - 1, q) - PG(i(t + 1) - t, q)

of PG((s + 1x¿ + 1) - 1, q) if and only if (as in the proof of Theorem 3.5.7) it

corresponds to a projective f-spread element of the form

eÍj) ,ctù ,--- ,cÍi) ,r,0,.

This occurs if and only if the corresponding point Q of the projective indicator set

8 g lin {"rr"r,..., e¡(t+r), e;(t+r)+r * ae;Q+t)+z * " ' ¡ a'"ç;+1)(t+1)}

€ AG.((i + lX¿ + 1),s'+t) - AG.(i(t + r),s'+t).

3.8.7 Theorem

Let W be a ú-spread. of PG((s + t)(t + 1) - 1, q) with projective indicator sel Pî

in PG((s + 1x¿ + 1) - 1, gt+t). Then w has the shell property 3.2.7 if and only

\f. PI has the Shell property 3.8.5.

Proof: LetW be a ú-spread set with the shell propeúy 3.2.7, so that by

Theorem 3.2.9 we may suppose that

,s, i : !,2,. -.,gi('+l)) u {øi."}

where

W;¡ e PG((i+ t)(t + 1) - 7,q) - PG(i(t+ 1) - 1'q)

Let PI be a projective indicator set for W, so that

,0)

1S

7,y:{w,¡: i:L,2,,

q)woo - PG(t

PI: {eo¡, i:I,2,...,s, i:!,2,...,q¿(t+r) }U {f."}
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where P;¡ corresponds to W¿¡ and Poo corresponds to I'Øoo. By Lemma 3.8.6,

P¡¡ e AG.((i + 1)(t * L),e'+L) - AG-(i(t + r), s'+t)

arid PI has the Shell property 3.8.5. Conversel¡ if a projective indicator set

PÍ has ihe Shell property 3.8.5, then again by Lemma 3.8.6, the corresponding

t-spread W has the Shell property 3.2.7. tr

3.e ú-SPREADS oF PG((s + 1X¿+ 1) - 1,q) IN PG((s + 1)(t+ 1) - 1,q'+t)

The following result in the case of t : I appears in Ebert (1983), however without

an indication of the proof. It was used by Ebert (1983) to study the subregular

l-spreads of PG(2s + 1,2).

3.9.1 Theorem

(1) Let ,S" be an imaginary s-dimensional subspace of PG((s + 1X¿ + 1) - 1, qt+t).

The set

w : {n' {r.,r",...,po'} n rc11" + 1Xú * 1) - r,q)

:Pe,Sr)

is a regular f-spread of PG((s + t)(t + 1) - f , q).

(2) Conversely a regular ú-spread of PG((s + 1X¿ + 1) - 1, g) can be represented

in this manner for a unique set of s-dimensional subspaces (,Sr, S{ ,, . .. , ,Sí').

Proof: (1) Let P and Q be distinct points of S". By Theorem 1.4'8 (3)' P

and Q are imaginary. By Defrnition 1.4.7 (1) each of the spaces

L(P): lin {r,r" ,. . . ,, P"'\

L(q:lin {0,Q",...,Qn}

and
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has dimension f in PG((s + t)(t + 1) - 7,l'tt) and by Theorem 1.4.8 (1) meets

PG((s + 1Xf + 1) - 1, q) in a ú-dimensional subspace. By the same arguments

as those used in the proof of Theorem 3.8.3, L(P) and I(Q) are skew. Thus

W is a set of Os(t+r) + g(s-r)(t+l) + ... * qt*r f 1 pairwise skew ú-dimensional

subspaces of PG((s + 1)(t + 1) - 1,g) and so is a t-spread. We must show that

it is regular, according to the Definition 3.4.11, and in fact we will prove that it

is regular of rank s according to Definiiion 3.4.7. We must show that if S is an

s-dimensional subspace of PG((s + 1)(ú + 1) - 1, g), then the set of elements of W

meeting ^9 is a ú-regulus of rank s. Let .9 be such an s-dimensional subspace of

PG((s+ 1Xú+1)- 1, g). Let Wt,Wz,...,W,¡zbe elements of W which meet S in

distinct points and are such that no s * l- of them lie in a hyperplane. Let R" be

the f-regulus of rank s defined by Wt,W2, . . . ,Ws!2 in PG((s + 1)(f + 1) - 1, q) and

let 71"* be the t-regulus of rank s defined by their extensions Wr,W2,... ,W r+z

in PG((s + t)(t + 1) - 1, qt+t). Now ,S" meets each of the t-dimensional spaces

W1,Wr,,. .. ,W "+z 
in a point and Theorems 3.4.3 and 1.3.4 (2) imply that S, is a

transversal s-dimensional space of. 1i'r*. A Í-dimensional sPace of. Rr, extended to

PG((s + 1X¿ + 1) - 1, gt*1), is a f-dimensional space of '17"* and therefore meets

,S" in a unique point. So the extension of a t-dimensional space X of.R" meets S"

in a point P. By Corollary 1.4.10 (2) L(P) is the unique such space meeting ,9,

in the point P, so that I(P) n PG((s + t)(t + 1) - 1, s) must belong to W.

(2) Now let W be a regular f-spread of PG((s + 1)(t + 1) - 1, q). To show that

W car- be represented in this mannerr rffe show that there exists an imaginary s-

dimensional subspace ,9" which meets the extension to PG((s+ lXÚ + 1) - 1, qt+t)

of every element of. W. In this case,

w : {un {r,,r",...,Po'} nrcl1'+ r)(t+1) - L,q), P € s"}

and the uniqueness of the set of s-d.imensional subspaces S", Sí, . . . ,, Sl' follows by

Corollary 1.4.i0 (2). We wili prove that ihe result holds for a particular extension
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PG((s + 1)(t + 1) - 1, st+t) of PG((s + lx¿ + 1) - L, s), and the result follows srnce

all extensions of the same degree are isomorphic. As in Section 3.5, W gives rise

to a normalised projective f-spread set

PC:

{("Í", ctù,,...,c:ù,r,0,...,0)' i -- L,2,...,,s, i : L,2,,...,qt(Ú+l)}

u{(/,0,...,o)},
where the set

C : {CÍi) : i : !,,2,...,s, i : !,2, "',0;(t+r)1

of matrices is a field of order g¿*1 under addition and multiplication. Let { e

G\çnt+t) be a such that GtrçOt+r¡: G^t'(qX6). BV Corollary 3.7.2 C contains the

subfreld {fr-I : k e GF(q)} which we will denote bv G]¡(q)' so that

G¡(qt+t) : {"0 * rt€ + nzë2 + "' + *r€', x; e GF(q)}

where multiplication is (matrix) multiplication in the field GFçot+t). Let

{"rr"r,.. . , €(s*1)(r+1)}

be a basis for PG((s + lX¿ + 1) - 1, s) over G F(q) and for PG((s + 1 )(t + t) - 1, q'+t )

over G.F'(gt+r). The set

s, - {eßli) + "recÍ') + ." * e,+r€' cÍÐ +

"r*r7[Ð r et+st7[i) +' " * ez¡+t¡€'c[i) +

e(i-1)(r+1) *rCÍÐ + e(i-l)(¿+ r¡*r€Cl.i) + ''' + "¡çr¡r¡¿'C[il+

er(ú+l)+r + er(r+l)+ z( +" ' + e(i+l)(¿+r)(Ú

z i:!,2,...,s, j:r,2,...,qi(t+r) ) u 1"rr *ez€+"'+ er+t('\

{ ("f' ,,clù c,,. . . ,clÐ 4¿';cti) ,c[i) (,. . . ,cÍÐ 1'; . . . ' . . ;

c[i\,,cÍÐe,...,c[Ð €'i 1,8,...,€',0,... .'.,0)t

: c; ec) u t(¡,6,. . . ,Ë"0,... ,o)t)

+
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is an s-dimensional subspace of PG((s + 1)(t + 1) - I,q'+L) which contains no

point of PG((s + 1X¿ + 1) - r, q).

Since .9" can be written as

^s, : (.I,(,...,€t)t o (1,e,...,€t)t o...

o (r,€,"',(t)t
:PoOPl O...OP",

the space ¿(.9,) spanned by its t * 1 conjugates is the join of the spaces

L(Po), L(Pr),. . . ,, L(P")

spanned by the ff1 conjugates of each of Po, Ptr. . ., P". Now each of Po, Pt,. . ., P"

is imaginary by corollary 1.4.10 (1) and so L(Po),L(Pt),...,,L(P,) each have

dimension f, and further by construction if. i + j then L(P;) and I(Pr) are skew

so that ¿(,5") has dimension (s + 1)(t + 1) - 1. By Definition 1.4.7 (2), ,9, is

rmaglnary.

Now as PC is a projective f-spread set for W we have

w-

{w,, 
:, (tÍ',,...,c:Ð,/,0,...,0) : i : L,2,...,s, i : L,,2,....,qt(¿+l)}

u{W*:J(1,0,..',0)}'

We wiil show that the point (/, €, . . . , €t,0,. . . ,0)r of S" lies on the extension I4l"o

of Woo to PG((s + 1)(t + 1) - 1, Ç'r1), and the point

("Í", cÍù €, . . ., cÍi) e' ; c[i), c[i) €, . . ., c[i) Ê'; . . . . . . ;

c[i) , c[i) €, . . . ,c[Ð e'; I, €, , €') 
t

of .9" iies on W;¡ for each i :1r2r...,8, i : !,,2r...,gi(r+l). Then the s-

dimensional subspace ^S, is the s-dimensional subspace required for proof of the

result as ,S" meets the extension of every element of W.
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'We recall some notation. \Me can suppose that W contains the spaces

W* : lin {e1 ¡êzr. .. ,et+t} ,

Wt - Iin {e¿a2, êt+g¡... ,"2(r+Ð) ,

W"t - lin {e"1¿a1)+rr es(¿+r )+z¡'" , e1"-¡r¡1tar¡}

The vector space y(3+1)(ú+1) corresponding to PG((s + 1xú + 1) - 1' g) has

basis {e1 ¡ €2¡ . .. , e(s+1)(r+r¡} so that

Vlsar)(t+r) :W* @Wn ØWzt O "'O l7"r

Also, for each k--2,3,...,s*1, let (k) denote the (non-singular) lineartransfor-

mation
(k) : W* -+ Wçs-r)r

: et à e(k-1)(r+1)+¡ for I : Ir2r...,t + 1'

Woo:{ø: aeW*}

:{(or ¡d2,,...¡et+r,0,......,0) : a;e GF(q) not all zero}

so that

W*- {((r,62,...,€r+r,0,""",0): €¿ e GF(q'+'), not all zercl'

-{1 , €ew*}.

We can choose

€ : (€r,(2,-.',€r+r,0,......,0) : (r,€,...,(t,0,"',0) €W*

which shows thai the point

(/,€,...,€t,0,..., o)r e w ".

Then
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as required. Similarlg

wij :{"Ír,, e CIÐ orzlo... O gQ) o<;¡g o(i+r¡ : a Er*\
cL1

O,2

at+t

d1

O,2

at+t ar+L ).(

{71

A2

at+l).",,,(

* ...* 
"f"

o...o cÍi)

A1

d2

cÍi)

: a; € GF(q), not all zeroj

and

).",,,(

€t
Êz

€r

€z

w

1 €r+r (r+r

t; e GF(qú+l), not all zero)

: 
{c{r,g + c[ù¿tzt +...+ ç(ù¿tù a 6(;+r) ' ( e W-]¡

Again we choose

{ : (€r, €2,.. ., €r+r,0,'' ' , o) : (/, (' ' ,€tr0,..,r0) €W*

so that the point

("Í", cÍÐ Ë, . . ., ÇÍÐ e' ; cÍi), c[i) €, . . ., c[i) €'; . . . . . . ;

cÍÐ,cÍÐ C,...,cÍÐ e';1,Ë,,,€')t
: gu) (/, €,... , (t)t e c[ùçt,,€,. . . ,(t)t o "'o

cÍt) (t,,€,. .., €')t o (/, €,. . ., €')t

'fiü
as required. Thus the extension of every element of' W meets the imagina'ry s-

dimensional subspace ,S" of PG((s + t)(t + 1) - 1,gt+t) which is enough to prove

the Theorem. tr
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3.9.2 Corollary

A regular ú-spread of PG((s + 1X¿ + 1) - 1, q) has an indicator set comprising

the gs(t+r) -r- n("-t)(t+l) +...+ qr*r + 1 points of an imaginary s-dimensional

subspace of PG((s + t)(t + 1) - 1, g'*' ) and conversely an imaginary s-dimensional

subspace of PG((s + lxt + 1) - 1,gt+t) is an indicator set for a regular f-spread

of PG((s + 1Xt * 1) - 1, q).

Proof: First, let ,S" be an imaginary s-dimensional subspace of

PG((s + t)(t + 1) - 1, e'+t). The set

w : {ur, {r,r",...,Po'} nrc11"+ r)(t+ 1) - 1,q)' P € s"}

is a regular t-spread of PG((s + lX¿ + 1) - 1, q) and the points of the imáginary

s-dimensional subspace ,9" are an indicator set lor W as they are imaginary points

and one point lies on the extension of each Í-spread element. The line PQ joining

any two of the points of ,S" is imaginary, for if the space L(PQ) had dimension

less than 2(t + 1) then ¿(s") would have dimension less than (s + 1)(t + 1) - 1.

Conversely, given a regular ú-spread of PG((s + 1X¿ + 1) - 1, g), there exists an

imaginary s-dimensional subspace ,S" of PG((s + 1)(t + 1) - 1, gt+t) meeting the

extension of every ú-spread element. The points of such a s-dimensional subspace

a,re an indicator set for the ú-spread. tr

3.9.3 Corollary

A regular f-spread W of. PG((s + lX¿ + 1) - 1, g) is uniquely determined by a

t-regulus R" of. rank s of.w and an element of w not belonging to 7t'.

Proof: Lel W be a regular t-spread and let ,9" be an imaginary s-dimensional

subspace of the space PG((s + lxt + 1) - 1,9'+t) meeting the extensions of every

element of.W..The extensions of the elements of a t-reguius R" of. rank s contained

ín W meet S" in the points of an s-dimensional projective subspace ^9! of order
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q of ,se, and the extension of a further element xo of )d meets ,s" in a point P

not belonging to s!. Lel w' be a regular ú-spread containing the elements of

71" and the element xo of w. we will show that every element of' w is also an

element ol.wtand the result follows. choose elements xt,xzr...¡xs+r of R".

There is a unique t-regulus '17"' of rank s of PG((s + 1x¿ + 1) - 1-,g) containing

xo, xb . . . , x"*1, which is distinct from 7lr. The s-dimensional subspace ,9" is a

transversa,l to the extension of. 1y'¿tr,, thus the extensions of the elements of 7?'" atl

meet,9". But theú-d.imensionalspacesof PG((s+1)(t+1)-1,g) whoseextensions

meet ^9" are exactly the elements of W. Thus every element of R| is an element

of W. Now since W' is regular, it contains every element of R'",, which are all

elements of. W. We repeat the argument using different elements of. W' to define

Í-reguli of rank s, ail of which are shown to beiong lo w, continuing until we have

shown that every element of Wt is also an element of W' El

we can use the segre variety to interpret this result. choose any s *2 distinct

elements. wo,wt,. . . ,w,¡t of the regular Ú-spread w of. PG((s + t)(t + 1) - 1, q),

no s t L in a hyperplane, and let fl, be the unique f-reguius of rank s containing

them (see Section 3.a). The g" * qs-r +'" + g * 1 elements of R" are all elements

of. W and, form the set of ú-dimensional spaces of a Segre variety 5V"11,¿.'-1 in

PG((s + lXú + 1) - 1, q) with s-dimensional subspaces as its opposite subspaces

(Corollary 3.4.4 (3)).

We now embed PG((s+1)(ú+1)-1, q) in PG((s+1)(t+1) -1,Q'*7 ) and extend

SVs*r,t*r to a Segre variety Ðg*r,t*l of PG((s + lxt+ 1) - 1, 9t*1 ) as in Section

1.5. ThenS-V"*r,r*r has g"*gs-r +..'+g{1t-dimensional subspaces which meet

pc((s+1)(ú+1)-1,9), md the remaining ones are skew to PG((s*1)(t+1)-1, q).

Since the spaces S", Sl, ...,51' meet all g"*q"-1+"'+q+1 t-dimensional spaces

of Ð"+r,r..1 which are extensions of Ú-dimensional spaces oÍ?'?'", they must belong
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to the system of s-dimensional spaces of SV"+r,r+r. In fact the extensions of the

elements of.17" meet S" in the points of an s-dimensional projective subspace of

order g of ,5". Two t-reguli of the same or different ranks intersect according to

how the corresponding subspaces of order g of .9, intersect. The properties of

projective subspaces of a projective space in PG((s + 1X¿ + 1) - 1, g) can be used

to demonstrate properties of the t-reguli of various ranks and regular f-spreads, as

in the following.

3.9.4 Corollary

If (s * 1,f * 1) : 1 then a regular ú-spread of PG((s + t)(t + 1) - 1,g) can be

expressed as a union of disjoint t-reguli of rank s.

Proof: The result follows since an s-dimensional subspace of order qt*1 can

be expressed as the union of skew s-dimensional subspaces of order g if and only

if (s * lX¿ + 1) : t (see Hirschfeld (1979), p92). tr

3.9.5 Corollary

LetW be a regularú-spreadof PG((s+lxú+1)-1,g). Then w has aprojective

f-spread set

PC -{("Í", c[Ð,.,. ,cÍi),/,0,... ,o) 
'

i:tr2,,...rs, i:Lr2,

u {(/,0,.. . ,0)}

,g )
i(r+1)

isomorphic to PG(s,qt+t) : ,9" by Corollary 3.6.4. The elements of PC wh\ch

correspond to the elements of a ú-regulus 7?. of rank r in W are a projective

r-dimensional subspace PG(r,g) of order g of PG(s,gt+t ).

Proof: \Me have seen that a f-regulus fl, of rank s in W meets ,9" in a

projective s-dimensional subspace PG(s, q) of order g. As in Lemma 3.4.5, a t-
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subregulus 7t" of rank r contained in 11" meets ,9" in an r-dimensional subspace

PG(r,q) of PG(s, q). tr

3.10 EXAMPLES

In his paper of (1983), Ebert has given examples of 1-spreads of PG(5,,2). We

use the example of a regular l-spread appearing in Exampl" (3), Ebert (1983) and

the 1-regulus free l-spread of Section 4, Ebert (i9S3) to illustrate the ideas in this

Chapter. In the rest of this Section, we assume that PG((s + lXú + 1) - 1, g) :

PG(5,2) and W is a l-spread of PG(5,2) so that t : !, s :2 and q - 2'

In this Section we will write points of. PG(5,2) and PG(5,4) as row vectors,

for ease of notation.

3.10.1 Example

We extend GF(2) to GF(22) : GF(A) by adjoining a primitive element r,r which

is a primitive cube root of unity in Gtr.(4), so that GF(A): {0, !,a,a2 }, where

,,)2 : u + 1. Let PG(5,4) be the corresponding extension of PG(5,2). As in

Example (3) of Ebert (1983), the following 2L points are points of a plane II of

PG(5,4) which has no point in common with the space PG(5,2). The plane is

n : {o(1, u.r, 0, 0, 0, 0) + P(0,0,1, t r, 0, 0) * Z(0' 0, 0, 0, 1, t r) :

a, þ,7 e GF(4), not all zeroj .

The names of the points X;¡ are consistent with the use of the subscripts ij wiih

i:Ir2 anð. j : L,,2r...r22t, together with oo, in this Chapter and will be used
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Iater in this example.

{ Xn: (0,0,0, 0, 1, @), Xzz : (1,u,0, 0, 1, a), Xzs: (1, c,;, 0, 0, ,2 ,l)

Xz¿ : (1, r, 0, 0, c,.r, ,2), Xzs: (0, 0, 1, ø, Iru), Xza : (1, r, lru rLrt^'),

Xzt : (1,r, a2 rLr12 r!), Xze : (1,r, ure2 ,uru2), Xzs : (0,0,1, urr2 rL),

Xzn : (Irrrere2 rlrr),, Xzn: (1,r, Iruruz rI), Xrrz : (I,uru2 rLrø r,,2),

Xzß : (0,0,1, ,rrrr2), Xzt+: (1,r, ,2 rLrl,a), Xzts : (1,r, Øra2',a2 r!),

Xzrc: (1,r, Iru,r,sr12), Xr, - (0,0, Irur0,,0), Xt, : (1,c';,1,c';,0,0),

Xrs : (1,r, u2 rLr0,0), X1a : (1,ø, @ru2,0,0), X* : (7,rr0,0,0,0)) '

Joining a point X;¡ of.II to the corresponding point Xi¡ of. the plane II* which

is conjugate to II under the automorphism o i t à a2 of. GF(4) gives a line Ç of

PG(5,4) which meets PG(5,2) in a line /¿¡. The set of ail such lines

W : {t¿¡ : i : 1,2, j : !r2,...,22¿}U {l-}

is a regular l-spread of PG(5,2).

Vfe wish to construct a projective l-spread set from this l-spread W. By

Theorem 3.5.4, the appropriate set is

PC: {/-t(¿;¡) z i:L,,2, i :L,2,...,2"n} u {/-t(/"")}

where / is the bijection of Theorem 1.6.2 and each element /-1(/¿¡) is a 3-tuple

(€r,(2,€s)" of 2x2 matrices over GF(2). To construct Í-t(I;¡), recall that /¿¡ is

the subspace of PG(5,2) spanned by the columns of ¡-t(/¡¡) considered as points

of PG(5,2). To frnd the element (Í-t(Ir¡))' : (€r ,(",€z)r corresponding to a 1-

spread element I;¡, we reverse this process. For each line l¡¡ of.W., we identify a set

of two points spanning I;¡, then write the two coordinate 6-tuples of these points

II
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as columns of a2x6 matrix over GF(2).'We then interpret this matrix as a2x 3

column vector whose entries are 2 x 2 matrices ovet GF(2). The transpose of this

column vector is the element Í-t (I;¡) of the projective l-spread set corresponding

lo l¿¡.

For example, the point Xzt: (0,0,0,0,1,c,;) on fI has corresponding point

Xît : (0, 0, 0, 0,!,u2) on fI*, and the line trt "f PG(5r4) joining these two points

meets PG(5,2) in the iine

/21 : {(0,0,0,0,1,0), (0,0,0,0,0, 1), (0,0,0,0,1, 1)} '

Choosing the frrst trvo as a basis for the line, we see that the corresponding 2 x 6

matrix over G.F(2) is

which gives the element Pzt : (0,0,.f) of the projective l-spread set.

Continuing in ihis way rÃ¡e find the whole projective l-spread set which is,

written in the same order as the points of II above

PC : {Pr, : (0,0,.f), Pzz : (f, 0, .f), Pzs : (.t,0, A), Pz+ : (1,0, B),

Pzs : (0, f, .f), Pza : (I,I,I), Pzz : (1, A, A), Pr, : (1, B, B),,

Pzs: (0,1,,4), Pzrc: (I,B,I), Pzrt: (I,I,A), Pztz: (I,A,B),

Pzrs : (0, .f, B), Pzt+ : (1, A,I), Prr, : (/, 8,, A), Pzta : (1,1, B),

Prr : (0, -f, 0), Ptz : (,f , .f, 0), Pre : (1, A,0), Pra : (/, B, 0),

P* : (f,0,0))

where

00
00
00
00
10
01

0

1

1

0

0

0

0

0 ) ( ?), ,: (iI
0 ) ( i)Q: ,I:
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The set of matrices {0, /, A,, B) forms a field GF(4) (as predicted by Theorem

3.7.1), since AB: BA: I,A" - B and B2 : r4., and I+I: A+A: BIB:0,

A+ B : I, A* I : B and B + I: A. As in Corollary 3.7.2, this field contains

the subfield {/,0} isomorphicro GF(2).

If we identify GF(z) and G.t'(4) in the above construction with the fields

{/,0} and {.[, 0, A, B] of matrices, then for example ¿.r : B and the projective

l-spread set PC is a projective plane over the freld GF(a) isomorphic to II. We

shall identify II andPC as in Section 3.9, and use the ideas explored there.

'We can use Theorem 3.9.5 to identify the l-reguli contained in W. As s : 2

W contains l-reguli of ranks 0, 1 and 2. A l-regulus of rank 0 is just a line of

W and corresponds to a O-dimensional subspace of II which is a point of II. A 1-

regulus of rank 2 corresponds to a 2-dimensional subspace of II of order 2, a Baer

subplane. The Baer subplane B coordinatised by GF(2) : (0, -I), for example,

gives a l-regulus of rank 2 in' W . B comprises the points

P*, Prt, Pzt, Prz, Pzz, Pzs arrd Pza

and the corresponding l-regulus of rank 2 is

Rz: {lrr, hr, fr, Irs, 122., 125, 126} .

Also, W has many l-reguli of rank 1, which correspond to projective sublines of

order 2 of lines of II. Ar g - 2, any three coilinear points of II are a projective

subline of order 2, so that l-reguli of rank L correspond to triples of collinea¡ points

in II. Some examples of triples of collinear points of fI are

(Pzz, Pru, Prr)

(P2a, P2s, P1s)

(P2s, P27, P*)

(Pru, Pzn, Ptz)
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corresponding to the following l-reguli of rank 1:

{122, I2ya, I¡}

{1l2a, I2s, I1s}

{125', 127, Ioo}

{126, 1211,, Ie} -

The l-spread y/ is regular, and therefore is geometric (by Theorem 3-4.12)

and so by Theorem 3.2.8 has the Shell prop efiy 3.2.7 for any division of- PG(5,2)

into shelis such that each element of W lies in a unique shell. 'We can therefore

construct a l-spread. set C as described in the proof of Theorem 3.5.7. We disregard

the element P*: (/,0,0) and any other element of.PC is either Pzi: (6t,€2,€r)

with 6s f 0 or Ptj : ((r, €2,0) with €z * 0. By the property (iii) in the Definition

8.5.2 of projective l-spread sets, an element P2¡ has det((s ) I 0 and can be written

Pzj: (€r6it,6r(;r,/).

The corresponding element C2¡ of. the l-spread set is

Czi :((t€it,(z(it) Íot j - 7,2,...,,L6.

similarly, an element P1¡ of Pc has det(€z) I 0 and can be written as

Ptj: (6t€it,/,0)

and the corresponding element of the 1-spread set is

Cti : (€t€it) for j - L,2,... ,4.

The l-spread set C is, again written in the same order,

AS
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C: {(0,0), (^t,0), (.B,0), (,4,0), (0,/), (I,I),

(B,I), (A,I), (o,B), (I,B), (B,B),

(A,B), (o,A), (I,A), (B,A), (A,A),

(o), (r), (B), (,4))

corresponding to the new projective l-spread set

{Prr: (0,0,-f), Pzz: (f,0,.f), Pzs: (8,0, I), Pza: (A,0,1),

Pzs: (0,-f,f), Pzo: (L,I,I), Pzz : (B,I,I), Pr, - (A,I,I),

Pzg: (0,.B, I), Prro: (I,B,I), Pztt: (B,B,I), Prtz: (A,B,I),

Pzß: (0,,4', I), Prr¿,: (/, A,,I), Pzts: (B',A,1), Prtu: (A,A,I),

Pn : (0, -f,0), Ptz : (f,.f,0), Prs : (8,1,0), Pra : (A',/' 0)Ì

U { P- : (f,0,0)} '

This projective l-spread set is also a projective 1-spread set for W as it is

obtained from the original one by multiplying each 3-tuple by a non-singular ma-

trix. This operation corresponds to fixing a particular division of PG(5,2) into

shells where each line of W is contained in a unique shell. In this case the shells

are chosen to be:

PG(L,2): Ioo: Iin {er, ez}

PG(3,,2) -< loo,lrr )- lin {"r,"r,q,e4}

PG(512):< /oo,lrr ,Izz ): iin {e1 ¡€2t€3''ea'e5'e6} '

From now on we shall use this projective l-spread set for W, denotedby PC'

We now demonstrate the ideas of Section 3.9. We proceed to construct a projective

indicator set PX and an indicator set I lor W.

As PC is a normalised projective'l-spread set for W, a projective indicator

set PI is

PT : {Qr¡ t i : !,2, i : 7,2,"',2'n\U {8'"}
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where

Qri : (Pt¡)' 1

u(

For example, P21: (0,0,.[) so that

Qn:

: (0, 0,0, 0, 1, o),

and P23 : (8,0, f) so that

Qzs:

: (uru * \r0, 0, 1, c..t)

: (Ørr2 r0r0,1,ø)

The projective indicator set is, therefore,

PC:

{ Qrr: (0,0,0,0, 1,Ø), Qr" :(1,r,0,0, 1, r), Qzs : (r,12,0,,0, 1,ø)

Qz¿, : (r',L,0,0, 1, u), Qzs: (0,0, 1,ø, 1,ø), Qzu : (I,r,7,a,1,u),

Qz, : (rrr'rl,erl,u), Qza : (r'rl,I,a,Irr),, Qzs: (0, 0,u,u2 ,,1,u),

Qzrc : (1, ø, eru2 rL,,a), Qzr.t : (rrr' ,,@raT r!ru), Qzv : (r' ,Lruru2 ,1, @),

Qzn :(0,0,ø2, 1, 1,ø), Qzv : (7rr,@2,!,1,@), Qzrc : (rrr" ra2 rLr1,@),

Qzrc : (rt,,!r@2,L,1,@), Qr: :(0,0,1,ø,0,0), Qn : (Irr11,ø,0,0),

Qrc : (rrr' ,Lrer0, 0), Qr¿ : (r2 ,!,Lru,0,0), 8- : (1, ø, 0, 0,0, 0)i .

(j)
00
00
00
00
10
01

(t)

01
1l-
00
00
10
01

t7L



Note that PC is exactly the plane II because Q¿¡ - Xii for all i : \,,2 arrd

j : L,2,...,22i anð, Q* : Xoo. Now W has the Shell property 3'2'7 where the

shells are
PG(1,2) : Iin {"r,""}

PG(3,2) : Iin {"r,"r1,*'e4}

PG(5,2) : lin {"r, "r,, €s ¡ €4¡ es, ea}

Let
PG*(1,4) : lin {ey ¡ ue2}

PG*(2,4) : Iin {"r,"r,q + ue4}

PG*(4,4) : lin {"r,"r,êB¡ê4¡e5 + @e6}

Then we see that

Q* : (1, r, 0, 0, 0, 0) e PG.(l,4)

Qri : (ori,bri,1,ø, 0,0) e PG-(2,4) - PG(L,4)

Qri : (ori,bri,c2i)dzi) 1,c'r) e PG*(4,4) - PG(3,4)

Thus PI ]has the shetl property 3.8.5 for projective indicator sets

3.10.2 Example

Ebert (1983), section 4, lists the lines h,Iz,. . .,lzt of a l-regulus free 1-spread

W oÍ PG(5,2). BV the same process used in Example 2.8.L, we can construct a

projective 1-spread set for this l-spreadw. we obtain the set

PC: {P,, - (A,I,B), Pr: (/, I,B), Ps: (I,C,B), P+ -- (D,E,B),

Ps : (1, F, B), P6 : (G, H, E), P7 : (8,1,, E), Ps : (/, 0, /),

Ps: (I,G,E), Pro : (I,H,J), Prr: (K,I,I), P12: (L,K,E)',

Prs : (M, I, K), Prn : (G, C, I), Prs : (K, B', J), Pru -- (L', G, J),

P,s.z : (N,f, M), Prr: (L,I,J), Prs : (BrE,I), Pzo: (J,P,I),

Pzr : (0, 0, /))
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where

Q: ( 3),r:(å0

0

": (1 S)

": (1 3)

':(? å) ,":(i

0

0
0

1 )
, A: 1

0( å) ,":(å )
1

1

0

1

l)

å)

s)

": (1

": (3

,: (1

r: (3

,: (3

)

)

)

0

1

1

0

1

1

)

)

and

It is impossible to normalise this projective 1-spread set, and impossible to

fi,nd'a l-spread set. The l-spread W does not have the Shell property for any

division of PG(5,2) into shells.

'we can, however, find a projective indicator set for w, as in section 3'9 of this

chapter. Let u be a primitive element for GF(4) as a field extension of GF(z)'

A projective indicator set is

PT:

{8, : (r',0,,u,!,,7,0), Qr: (1, u)r7,rÐ,1,0); 8' : (''7'u'w2'r'o)'

Qn : (0,1,c.r,or 1,0), Q" : (1,r, @2 rQ2,1,0), Qa : (',0,0' 1'ø'ø)'

Q, : (rrrr!,,u)rrir@), Qa: (&r,1,0,0,0, ø), Qs -- (1,@, u'0'u'u)''

Qro : (1,@,0,1,0, u), Qt: (0, ,2 ,l,uri.r.u), Qrz : (1, 1' 0' u2 'u'u)'

Qr, :(r,1,1,t.r,0, ,2), Qr¿,: (rr\rwr''sz r1,@), Qrs : (0," 
' 
1' 0' 0'ø)'

Qrc : (L,lru.r0,0,a;), Qtt : (r',Iru,!,!r'), Qß: (1, l''L'u''0'ø)'

Qrs :(1,0,ø, t'srlru), Qzo: (0,@, Q2 r@11,@), Qzt : (0'0'0'0' 1'ø)) '

To check that the l-spread w has no regulus, all we need to do is check that

no three points of.PI are collinear in PG(5,2). This is simpler than the approach

i)": 
(å
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used by Ebert (1983), who conducted a computer search to show that no three

Iines in the L-spread have more than one transversal in PG(5,2)'

In fact, the set PI îs a 21-cap in PG(5,4), having no point in common with

PG(5,2).
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CHAPTER FOUR,

PAHTIAL ¿-SPREADS oF PG((s + lxr * 1) - 1' q)

4.L INTRODUCTION AND DEFINITIONS

In this chapter we will consider partial Ú-spreads of PG((s + 1)(t + 1) - 1, g), which

have useful connections with other geometrical objects. There are certain partial

ú-spreads which can be used to investigate k-arcs and (k, n)-arcs of projective

planes.

Partial l-spread,s of PG(3, g) have been studied by many authors, including

Mesner (i967), Bruen (1971), Bruerr and Thas (1976), Ebert (1979) and Glynn

(igS2). The main work was devoted to determining ihe maximum and minimum

number of elements that a partial l-spread could contain while not being embed-

d.abie in a larger partial l-spread of. PG(3,q), and classifying these l-spreads for

small values of g. The concept of a partial 1-spread was generalised to cover partial

f-spreads of PG(d,q) bV Beuteispacher (1975).

We shall concentrate on the connections between the partial t-spreads and

k-arcs and (k, n)-arcs in projective planes. First we introduce some definitions

and preliminary results on partial t-spreads of PG(d,q).

4.L.L Definition [Beutelspacher (1975)]

(1) A partial t-spread, W of. PG(d,g) is a set of pairwise skew f-dimensional sub-

spaces of PG(d,q). h other words, any point o1 PG(d,g) is contained in at

most one element of. W.

(2) A partial t-spread which is not a ú-spread is called stri'ctly partial

(B) A strictly partial t-spread. W not contained in any pa^rtial Ú-spread W' as a.
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proper subset is called a complete strictly partial f-spread.

A partial f-spread W of..Pc(d,,g) is a f-spread of. PG(d,g) if each point of

PG(d,g) is contained in an el.ement of. W, which is necessarily unique. If W is a

strictly partial f-spread of PG(d,g) then there are points of PG(d,q) which lie on

no element of W.

In the literature, the idea expressed in (3) of Definition 4.1.1 is often called

"maximal". However for the purpose of this work the term "complete" seems

more appropriate, as the concept is the same as, for example, that of complete

,b-arcs (see Hirschfeld (1979), p163). \Me prefer to reserve the term "maximal" for

a concept analogous to that of maximat (k, n )-arcs (see Hirschfeld (1979), fi2a)

which will be introduced for partial f-spreads in Section 4.4.

The next definitions represent a generalisation of the concept of a geometric

t-spread of PG(d,g) as in Definition 1.2.3.

4.L.2 Definition [Beutelspacher (1975)]

(1) A partial ú-spread W is said to induce a partial t-spread on the subspace

1Wt,Wz ) spanned by the distinct elements W1 andWz of. W if any element

of. W having a point in common with 1 Wt,Wz ) is entirely contained in

1Wt,Wz ).

(2) A partial ú-spread W is geometric if for each pair W1 and Wz of. distinct

elements of W, W induces a partial f-spread on ( W1,W2 ).

(3) A geometric partial ú-spread W is called p,-geometric if. for each pair W1,W2

of elements of W, the space 1Wt,Wz ) contains exactly (f + t; elements of

w.
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(4) A partiat ú-spread W is v-uniform if any (f +l)-dimensional subspace through

an element of W meets exactly z elements of.W, each in a (necessarily unique)

point. (If such a (t * 1)-dimensional space ,s¿+r through an element w' e w

were to meet an element Wz e W in more than a point, then the intersection

,S¿-¡1 lì l4lz would contain a line which must then meet the fi.rst element W1 of.

W, giving two elements l7r and. Wz of. W with a common point).

For ageometric partial f-spread w oÍ. PG(d,,q) let T: (P,B,I)be the fol-

lowing incidence structure:

- the points of.T are the elements of W,

- the blocks of I are the subspaces ( WtrWz ) where Wt 4nd W2 ¿;te distinct

elements of W, and

- the incidence is set-theoretic inclusion. Then:

4.L.3 Theorern [Beutelspacher (1975), Theorem 5.1]

Let W be a geometric complete partial f-spread of PG(d,g), with d > 2t* 1' Then

the incidence struct ¡1re T consists of the points a¡rd lines of a projective space of

dimension at least one. D

4.1.4 Corollary [Beutelspacher(1975)]

A geometric complete partial f-spread. of. PG(d,q) with d > 2t * 1 is ¡.r-geometric

where the incidence structurel is a projective space of order ¡.1. tr

The following result characterises the l-uniform partial t-spreads:

4.L.5 Theorern [Beutelspacher (1975)]

Let W be a partial t-spread of. PG(d,q). Then W is l-uniform if and only if the
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following conditions hold

(i) Any three elements of. w span a (3Ú + 2)-dimensional subspace of PG(d,q),

(ii) for any Ws € W the set

{<Wo,W >: W eW - {Wo}}

is a f-spread. of the quotient geometty PG(d,q)lwo. Recall (see Dembowski

(1968), p25) that the quotient geomet ry PG(d, q) lwo consists of ali subspaces

of. PG(d,g) containi.g I,%. This is a projective space of dimension d - t - 1

and order q. tr

The (2ú f l)-dimensional subspaces of PG(d,g) are important for finding

incidence structures on a partial f-spread. We introduce the following terminology.

4.L.6 Definition

Let W be a partial f-spread of PG(d,g), with d > 2t + 7.

(1) A (2t + l)-dimensional subspace s2¡¡1 of PG(d,g) is called an i-secant of. w

if it contains exactly i elements of. W, and is skew to each of the remaining

elements of W.

(2) A secant of.w ís a (2t * l)-dimensional subspace of PG(d,q) which is an

i-secant of.W for some value of i.

Not every (2f + l)-dimensional subspace of. PG(d,q) is a secant of W , as there

arc (2t* l)-dimensional subspaces of. PG(d,,q) which intersect an element W of. W

in at least a point but do not contain the whole of the space W . If. W is geometric

then every (2t + l)-dimensional subspace which contains two elements of W is a
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secant of. W . If in addition W is p-geometric then a (2t * l)-dimensional subspace

containing two elements of W is a (¡r * l)-secant.

The methods of projective f-spread sets and projective indicator sets devel-

oped in Chapters Two and Three can be used to study partial f-spreads. 'We

therefore make the following definitions 4.1.7 and 4.1.9 with regard to partial f-

spreads.

4.L.7 Definition

A partial projectiae t-spread, set PPC is a set of (s * l)-tuples of (t * f) x (t + 1)

matrices such that

(í) PPC has k elements, where

L < k 1 u :ge(r+l) + g(s-t)(t+t) * "' -¡ gÚ+1 a 1

(ii) If pr : (6Ío), €Ío),. . ., €5t)) is an element of PPC, then

i)

r)

rank :f*1

(iii) If p,: ({Ío),€Ío),...,(Ít)) and P¡: (€ái),{Íi),...,€Íi)) are distinct elements

of. PPC lhen

s(
s0
Á
s1

r(
s0
r(
s1

r(i)
SS

¿(i)
ç0
rU)

s1

:

,Ül
çs

i)

r)

rank :2(t + r).

¿(i)(s

Arguments similar to those given in Theorems 3.5.4 and 3.5.5 can be used to

prove the next statement:
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4.1.8 Theorem

Let W be a partial ú-spread of PG((s + 1)(t + 1) - 1, q). Then the set

PPC : {f -'(w,) : w¿ e w}

(where / is ihe bijection of Theorem 1.6.2) is a partial projective f-spread set.

Conversel¡ let PPC be a partial projective ú-spread set. Then the set

yy : {f (P¿) : P¿ e ppC}

is a partial t-spread of PG((s + 1)(r * 1) - f , q)

Proof: Theorems 3.5.4 and 3.5.5 are proved with /c : c¿. The same arguments

are valid when fr is used in place of ø, and the projective ú-spread sets and ú-spreads

are partial. tr

4.1.9 Definition

A' partial projectiae ind,icator sef is a sel PPT of k imaginary points of the space

PG((s + 1)(t + 1) - 1, Çt*l), where

1 < k 1 u :os(t*r) + g("-t)(t+t) *... + gr*t + 1,

and with the added property that the line joining any two points of. PPI is imag-

rnary.

4.1.10 Theorem

Let PPI be a partial projective indicator set, and for each point Q¿ of PPI let

Then the set

L(Qù: tin 
{Qn,, Qî,. . ., Qî' }

W(PPI) : {L(Q¿)n pG((s + 1Xr + 1) - t,q), e; e ppr}
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is a partial t-spread of PG((s + 1X¿ * 1) - 1, q). Conversely,,Iel W be a partial

f-spreadof PG((s*1X¿+1)-1,g). Thenthere exists apartialprojectiveindicator

set PPÍ in PG((s + lX, + 1) - 1, st*t) such that

W : W(PPT)

constructed as above.

Proof: Again the proofs of Theorems 3.8.3 and 3.8.4 need only be modified

to allow partial f-spreads and partial projective t-spread sets. tr

4.2 /c-ARCS AND (k,n)-ARCS OF PG(2,q)-

In this Section we introduce the ß-arcs and (k, n)-arcs of the projective plane

PG(2,g). These are important objects in the theory of projective geometry, and

have been studied by many authors. Hirschfeld (1979) provides a very good intro-

duction to the topic with direction to the original source material.

4.2.t Deffnitions [Hirschfeld (1979), p163]

(1) A lc-arc C of. PG(z, q) is a set of k points, no three of which are collinear

(2) A k-arcof. PG(2,q) is complete íf.it is not contained in a (k+1)-arc of PG(2,q)

(3) The maximum number of points that a k-arc of PG(2,g) can have is denoted

by m(2,g), and a k-a¡c with this number of points is called an oaal.

4.2.2 Theorem [Bose (1947), Qvist (1952), Segre (1955), Cossu (1960)]

If q is odd then 
^(2,, 

q): g + L and an oval comprises the points of an irreducible

conic. If g is even then m(2,q): q+2, and the ovals of PG(2,g), for g even, have

not yet been completely classified. El
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The examples of (q*Z)-arcs in PG(2,8), I - 2h, known up to 1979 are given

in Hirschfeld (1979). Glynn (1983) gives two new infinite sequences of (g f 2)-arcs

in PG(2,8), I :2h, andgives a complete list of such (g*2)-arcs known up to 1982.

Recently a nevv infinite sequence of (q + 2)-arcs (conjectured by W. Cherowitzo)

has been verifi.ed by Glynn and Payne (1987).

The (k,n)-arc of. PG(2,q) is a natural generalisation of a lc-arc of PG(2,q).

Again, Hirschfeld (1979) provides excellent introduction and list of references for

the topic.

4.2.3 Definition [Barlotti (1955)]

(1) A (lc,n)-arc c of. PG(2,g) is a set of k points such that some line of PG(2,,q)

meets C in exactly n points and such that no line meets C in more than n

points, where n) 2.

(2) A line of PG(z,g) meeting C in exactly i points is called an i-secant of. c

A (k,2)-arc of. PG(2,q) is a k-arc of. PG(2,q). Irreducible algebraic curves

of order n in PG(2, g) give examples of (k, n')-arcs with n' ( n, but very little

is known about (k, n)-arcs in general. Even the maximum va,lue for fr such that

(fr, rz)-arcs actually exist given g and r¿ is known for only a few values of g and n.

4.2.4 Theorem [Tallini-Scafati (1966)]

If C is a (k, n,)-arc of. PG(2, g), then k < (, - t)q + "

We shall concentrate our attention primarily on the (k, n )-arcs which admit

the largest possible value of n.

4.2.5 Definition [Hirschfeld (1979), fi2a]

A (k, n)-arc C of. PG(2, g) with lc : (n - 1)q * n is called maximal
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4.2.6 Theorem [Cossu (1961)]

Let C be a maximal (fr, n)-arc of. PG(2,q),

(1) If n: 8 * 1 then C comprises all the points of. PG(2,q),

(2) if n:8 thenC:PG(z,q)-l where I is aline of PG(2,g), and

(3) if 21n ( g then n divides g and the dualof the complement of C forms a

(q(q + L - n)ln,qf n)-arc which is also maximal. tr

4.2.7 Corollary [Hirschfeld (1979) fi2a)

A (k, n)-arc is maximal if and only if every line in PG(z,q) is a O-secant or an

n-secant.

There are few results on the existence of maximal (k, n )-arcs. For g - 2h , there

are examples of maximal (k, n)-arcs for every value of n dividitg g (see Theorem

4.2.8). When q is odd, there is no example of a maximal (k, n)-arc known, and

in fact lf. q : 3à and n : 3 it is known that no maximul (k,3)-arc exists (see

Theorem 4.2.g). First we construct examples of maximal (k, n,)-arcs in PG(2,2h).

This work is due to Denniston (1969), but we follow the presentation in Hirschfeld

(1e7e).

Let rz *bæ * 1 be an irreducible quadratic over GFph) and let ,C be the

pencil of conics

¿-{Qx: À€ GFP\u-}

where for À € GFph) the conic Q¡ has equation

r2o +brou + r? + ),nl : g

tr

tZ :0'
and Qoo has equation

183



The additive group of. GF(zh) has subgroups of every order dividing 2à

4.2.8 Theorem [Denniston (1969)]

Let H be a subgroup of the additive group of GF(zh) of order rz, where n divides

2h. Let C be the set of points of PG(2,2h) which lie on some conic Q¡ for ), e H.,

so that

n_L/- PePG(2,2o), P€ u 8À
.\€¡I

Then C is a maximal (k, n)-arc of. PG(2,2h)

other (maximal) (22^ -22^ +2*,2*)-arcs of. PG(2,2'^) are constructed by

Thas (1,974). In Cossu (1961) it is shown that there does not exist a (maximal)

(21,3)-arc in PG(2,9). This result is obtained as a corollary of the following.

4.2.9 Theorem fThas (1975)]

In PG(2,g) where e:3h and h ) 1, there are no (maximal) (2q + 3,3)-arcs.

As we shall see, the connection mentioned between the partial ú-spreads and

the fr-sets and (k, n)-sets occurs between partial f-spreads of. PG(3t f 2, g) and

k-sets and (,t,n,)-sets of. PG(2,gt*t), for t ) 2. The following Theorem holds in

the special case of t : L.

4.2.LO Theorem

Let II : PG(2,q) b" a projective subplane of order q of II : PG(2,g2). Suppose

that II contains amaximal (k,zz)-arc C. If C is aproper subset of a (8, n)-arce of.

rthenE<q2+n.

Proof: As d is a (I', n)-atc, no line of II can contain more than n points of

C. A point of II is either a point of C or is a point not on C through which there

pass exactly q + t - ql, n-secants of C, so that no point of II can be a point of d.
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Thus C h.s exactly (" - 1)q f n points in fI, namely the points of. C. Lny points

of d which lie in E-II must lie on lines which are the extensions to Í of 0-secants

oL C ín II. Any such line may contain at most n points of Z. Thus

E.@-1)q *n*nro

where 16 is the number of O-secants of. C in fI, which it (q(q + 1 - "D1". So we

have
E.Ø-1)q *ntq(q+L-n)

- q2 *n.

4.2.LL Corollary

If a maximal (/c, n)-arc of PG(2,g2) contains the points of a maximal (k, n)-arc of

a Baer subplane PG(z,g), then n:2.

Proof: Suppose that C is a maximal (8, n)-arc of. PG(2,g2), then by Defini-

tion 4.2.4,

E:(n-t)q2 +n.

By Theorem 4.2.10, we see that

Esq'+n'

These can be equal only in the case n:2. u

\Mhen n : 2, g is a power of 2 and the (k, rz)-a,rcs are just k-a¡cs. This

Corollary shows that an oval of PG(2,,q') it the only maximal (k,n)-arc which

can admit a subset being a maximal (k, n)-arc in a subplane of orcler q. Suppose

that the oval C is the set of points of an irreducible conic together with its nucleus

ín PG(2,q). If weextend GF(q) to GF(q2) ard PG(2,s) to PG(2,s2) then the

conic extends to a conic of. PG(2rq2) with the same nucleus. This is the situation

described in the Corollary 4.2.11.
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4.3 k-SETS oF PG(3t * 2, q)

In Thas (1971) a construction is given for ,t-arcs of the space 5",(M"(Gf(q))),

where a k-atcof the space S^(M"(Gf(q))) is a set of k points of S,-(M.(G.F(q))),

every n'¿+7 of which are in clear position. Under the bijection / of Theorem 1.6.2,

this k-arc corresponds to a set of k pairwise skew (n - l)-dimensional subspaces

of PG((m*l)n -!,,e), every m*L of which span PG((** 1)r-1,g). It was

this construction which motivated the definiiion of k-sets of (n - l)-dimensional

subspaces h PG(Sn - I,q.) given in Casse and Wild (1983). The following is

a generalisation of that definition. We wiII adhere to the notation used in the

previous Section and Chapters, that is we will put n - t + 1 and n't,: s.

4.3.1 Definition

A lc-set of PG((s + t)(t + 1) - 1, q) is a collection of k Í-dimensional subspaces,

any s * 1 of which span PG((s + 1)(t * 1) - 1, q).

In this Section we will be interested particularly in the k-sets of PG(3t12,q),

or collections of fr ú-dimensional subspaces of. PG(3t *2,q.), any three of which

span PG(3t * 2,q).

The following constructions appear in Thas (1971). They show a natural

connection between the É-arcs of. PG(2,q'+t) and the k-sets of. PG(3t ¡2,1)-

4.3.2 Constructions [Thas (1971)]

(1) There exist (gt+l f l)-sets in PG(3ú + 2,q).

(2) If I :2h there exist (gt+l f 2)-sets in PG(3t + 2,q).

proof: (1) Let GFçnt+r), be an extension (of degree ú + 1) of G]¡(q) and let

PG(3t +2,qr+t) be the corresponding extension of PG(3t ¡2,ø). Let fI be an
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imaginary plane of PG(3t + 2,,q'+t). Then the Ú f 1 conjugates of II under the

collineation induced by the automorphism a i a è rq of' GF(qt+r¡ span the whole

of pG(3f +2,qr+t).Each point P of II is imaginary (see Theorem 1.4.8 (3)), and

by Definition L.4.7 (f ) and Corollary 1.4.10 (2) the t * 1 conjugates of P span a

f-dimensional subspace L(P) of PG(3f + 2,q'+t) which meets PG(3t f 2, q) in a

Í-dimensional subspace. The points of a (gt+r * l)-arc C in II determine a set of

qr17 + 1 t-dimensional subspaces K of PG(3t 12,,q). Ar no three points of. C are

collinear, any three of them span fI. The set of all conjugates of any three points

of C span a space of dimension 3ú f 2, and so any three elements of K span a space

of dimension 3ú * 2. Thus K is a (q'+t + l)-set of PG(St ¡ 2,a)-

(2) If q.:2h,, we repeat the construction with C . (qt+t f 2)-arc of II' tr

4.3.3 Theorem

If K is a fr-set of PG(3t + 2,q) arising from Construction 4.3.2 then the corre-

sponding k-arc C used in the construction is a partial projective indicator set for

K,.

Proof: Since C lies on an imaginary plane of PG(3t *2,q'*L),, it is a set of k

imaginary points of. PG(3t +2, q'+') such that the line joining any two points of C

is imaginary. By Definition 4.L.9, C is a partial projective indicator set, and each

point of C lies on the extension to PG(3t*2,g'*t) of the corresponding element

of K. By Corollary L.4.10 (2), such a space through an imaginary point Q¿ is the

unique space L(Q¿), and thus

rc : {L(Q;) n rC(St +2,q) : Q¿ e C} .

tr

The Construction 4.3.3 can. be repeated with C a (c-arc of II, 2 < lc < *(2,q)

in which case K is a fr-set of PG(3ú ¡2,,ù. In fact it can be shown that:

187



4.3.4 Theorem [Thas (1971)]

Let K be a fr-set of PG(3t +2,q). If g is even then L < (q'*t +2), while if q is

odd then k a (q'*t + 1). By Constructions 4.3.2 these bounds are realised. tr

We have seen that if there exists a lc-arc of PG(2,qt+') then there exists a

k-set of PG(st + 2,, q). In fact these are the only examples of (qt+t + 1)-sets and

(gt+t + 2)-sets of PG(3ú +2, q) known. However, in Section 4.5 a 4-set of PG(5,2)

wilt be given which does not arise from the Construction 4.3.2. It does not have a

partial indicator set which is the set of points of a k-arc of an imaginary plane of

PG(5,22).

The converse is an interesting question. Given a fr-set K of. PG(3t t Zrq)

(with possibly some restriction on the size of lc), is there always an imaginary

plane II of PG(3t +2,q,+,) meeting the extension of every element of K? Or

equivalentlg is every k-set K contained in a regular ú-spread of PG(3t *2,q)?

This question has been addressed by, for example, Casse and \Mild (1983)' Casse

et al (1985), Wild (1986) and Declerck et al (1987). They have shown that under

certain circumstances, a k-set is contained in a regular ú-spread of PG(3ti2,q)

or, in other words, arises from the Construction 4.3.2. Some results which they

found are given in Theorems 4.3.5-4.3.8 below.

4.3.5 Theorem [Casse and \Mild (1933), Theorem 3]

Let K be a (gt+r *l)-set of PG(3f +2,q) with g odd. suppose that the projection

of K from some X e K onto a (2t + l)-dimensional subspace Szt+t skew to X

yields a regular f-spread W. Then K arises from Construction 4.3.2.

Proof: The proof uses the method of indicator sets, showing that such a set

K has a particular indicator space.with an indicator set comprising q'+r points of

an irreducible conic in an imaginary plane of PG(3t +2,q'+'). tr
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This result was improved and presented in a different wa¡ using the theory

of Generalised. Quadrangles, in Casse et aI (1985)' A (qt*t f l)-set gives rise to

difierent types of f-spreads on (2Ú * l)-dimensional spaces Szt+t¡ classified by the

nature of the space Szt+t.When q is odd these types are given as:

(a) Let K : {Xo,,Xt',-..,X0,+,'} be a (gt+t + l)-set of' PG(3t+2'q)' and let

Y; be the tangent space to K at X; for i -- 0',L''"''8't7' Let Szt+r be a

(2t + l)-dimensional subspace of PG(3ú + 2,q) skew to X¿, for some given

i. For j + i,, denote the t-dimensional subspace /-x;,x¡ > ñ ,szt+r by a¡,

where q X;,X¡ > is the subspace of PG(3t +2,q) generated by X; and X¡'

Let A¿ : Szt+tflY;. Then W : {LorAr,"',Ao'+'} is aÚ-spreadof '921"r-1 
of

type (a).

(b) f-spreads of type (b) occur only when g is even and this possibility is not

treated here.

(c) suppose q is od.d and consider a l-secant space Y¿ or K containing the point

X;forsomei' Foreachi f í''letÁ.¡:Y¡ÀY;' FurtherletA¿ -X¿' Then

Wî :{Ao,Ar,...,Ao,+,} is a t-spread of Y; of type (c)'

4.3.6 Theorem [Casse et at (1985), Theorem 2]

Let K be a (gt+l f l)-set of PG(3Ú *2,,q), where g is odd. At least one of the

t-spreads of type (a) is regular if and oniy if at least one of the f-spreads of type

(c) is regular. In such a case all the t-spreads of types (a) and (c) are regular and

K arises from Construction 4-3'2'

Proof: The proof involves the use of a generalised quadrangle arising from

the (gt+r f l)-set in PG(3f ¡2.,e) as in Casse et al (1985)' tr

The following result applies in the case g even as well as g odd' When q is
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odd it is weaker than the results above, however it is useful in the case of g even.

4.3.7 Theorem lwild (1986), Proposition 1]

Let K be a (gú+1 * l)-set of PG(3f * 2, g). Suppose that two of the f-spreads arising

from projection of K from elements say Xs and X1 onto (2úa l)-dimensional spaces

SÍiì, ""d Sj||1 skew to X6 and X1 respectively a,re regular. By Theorem 2.9.3

there exist lines t, € 4:f, and lr € flil, meeting the extension of every element

of the t-spreads "f Sj:}, a"d Sj]|, respectively, in unique points. If lo and 11 have

a common point in PG(3t + 2,,q'+t) then K arises from Construction 4.3.2.

Proof: The proof is similar to that given for Theorem 4.4.18, so it will be

omitted here.

Casse et al (1985) and Wild (1986) also present representations of fr-sets of

PG(3t ¡2, A) as sets of points in translation planes. In each case the k-sets arising

from Construction 4.3.2 are characterised in terms of these representations.

4.4 (k,n)-SETS OF PG(}t+2,q)

The connection between the k-sets of. PG(3t ¡ 2,e) and the k-arcs of. PG(2,q'+1)

has been explored in the previous section. It suggested that a study of (k, n)-

arcs of projective planes by the same methods would hopefully lead to examples

of maximai (k, n)-arcs, or to demonstrations of the non-existence of these max-

imal (fu, n)-arcs in projective planes of certain orders. The appropriate set of

f-dimensional subspaces in PG(st ¡ 2,a) will be called a (k, n)-set.

4.4.L Definition

A (k,n)-set K of. PG(3t I2,q) is a set of fr pairwise skew ú-dimensional subspaces

of PG(3t ¡2,t) satisfying:
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(i) rc is geometri,c, as in Definition 4.1.2,

(ii) No (2t + l)-dimensional subspace of PG(3t +2,q) contains more than n ele-

ments of K, but there is some (2f + l)-dimensional subspace containing exactly

n elements of K and skew to every other element of K. A (k, rz)-set K is called

complete if there is no (k f 1, n)-set containing it.

A (k, n)-set of. PG(3t ¡ 2,e) is a geometric partial ú-spread of PG(3t ¡ 2,a)

which satisfies the additional condition (ii) of Definitio¡ 4.4.L. The largest value

of i for which K admits i-secants is i : n.

4.4.2 Examples

(1) when ú:0 then PG(gt+2,q) is a projective plane and a (k,n)-set is just

a (k, n)-arc of the plane. The elements of K are points and the (2t + l)-

dimensional subspaces are lines. Condition (i) is satisfi.ed automatically-

(2) If n:2 then a (fr, n)-set is just a k-set of PG(3f + 2,q).

(3) Any (n - l)-geometric partial ú-spread K is a (k, n)-set of PG(3t*2,q). Such

a (,t,n)-set admits only O-secants, L-secants and n-secants since if a (2t + 1)-

dimensional subspace contains two elements of K then by definition it must

contain exactly r¿ of them. Declerck et al (1987) showed that such a set K

satisfies n-I divides k -I, and also that k < (n - l)gt+t f n, with equality

if and only if f is (n - l)-uniform. This is a generalisation of Theorem 4.1.5

which characterises the l-uniform partial t-spreads of PG(3t ¡2,ù as k-sets

of PG(3t + 2,q).

As we will be interested particularly in ihe application of (k, n)-sets to maxi-

mal (k, n)-arcs, we need to know how r4any points a (k, n)-set may have. This is

found in Theorem 4.4.4, but first we need a definition.
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4.4.3 Definition

Let K: {Xr ,X2,.. . ,Xx} be a (k, n)-set of PG(3f ¡2,1). Lel 521¡1be a (2t + 1)-

dimensional subspace of. PG(3t +2,,q) skew to X; for some given i with I < i < k.

For j f i, let Aj :( X¿,Xi ) lì S21.r-1 where 1 X¿,X¡ > is the (2¿ + 1)-

dimensional subspace of PG(3t +2,, q) spanned by X¡ and Xr'. Since K is geometric,

the spaces A¡ are skew or coincide. The set of distinct A¡ form a partial f-spread

of S2¿a1, called the partial t-spreail arísing from th,e projection of K onto Szt+t

from X;.

The elements of K which lie in a secant (2t + l)-dimensional space .92¿11 lie

in the pa,riial f-spread arising from the projection of K from any elemeú X of. K

skew to Szr+r.

4.4.4 Theorem

Let K be a (k,n)-set of PG(3t ¡2,ø).Then k S (n - 1)g¿+1 a n.

Proof: Let X be an element of K and let .5zr+r be a (2t * l)-dimensional

subspace of PG(3f *2, g) skew to X. The (2t*1)-dimensional subspaces joining X

to other members of K meet Szr+r in the elements of a partial Ú-spread W of. Su+t,

and by Theorem 1.2.2 W has at most gt+l * 1 elements. So there are at most

q'*t + 1 such (2¿ + l)-dimensional spaces, and each contains at most n elements of

K including X. Each element of K lies in one of these spaces by construction, and

since K is geometric each element of K intersects exactly one of the spaces. Thus

k < (q'+t+1X"-1)+1

: (, - l)qt+t + n. tr

When ú : 0 we get the classical result, see Theorern 4-2.4.

This result can be slighily improved under further assumptions. For example
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if we assume that an element X of. K lies on an m1-seca$t (2t + l)-dimensional

subspace,thenfr <(n- l)qt+t *mt.

4.4.6 Definition

A (k, n)-set K is called manimal if.le : (n - L)q'+r + n.

4.4.6 Theorem

Let K be a maximal (fr, n)-set of PG(3t + 2, q). Then K admits only O-secant and

n-secant (2t + l)-dimensional spaces. \Me can say that K has type (0,t).

Proof: Let S241be a (2t* 1)-dimensional subspace of. PG(3t *2,q), and let

W be the partial f-spread arising on ,Szt+r by the projection of K from an element

X of K skew to ,52¿41. The elements of rc - {X} lie in the (2t * l)-dimensional

subspaces which are the joins of X to the elements ofW. Since Ie : (n- 1)g¿+1 +n,

and no (2t + l)-dimensional subspace of PG(3t + 2,q) may contain more than n

elements of K, it follows that W is a ú-spread of Szr+t and the (2ú + 1)-dimensional

subspaces joining X to the elements of.W are all n-secants of. K, so that X lies on

exactly qt*l + 1 n-secants and no others. There is a (2t * l)-dimensional subspace

of. PG(3t ¡ 2,ø) skew to each element of K, so that every element of K lies on

exactly q'*r + 1 r¿-secants andno other secants. Because a secant which is not a

0-secant contains an element of.W, it is an n-secant and the result follows. tr

4.4.7 Corollary

A maximal (/c, n)-set of PG(3ú +2,q) is an (n - l)-geometric and (n - l)-uniform

partial t-spread, and conversely.

Proof: Firstly let K be a maximal (k,n)-set of. PG(3t ¡2,ø). Then it is a

partial ú-spread and by definition it is geometric. Since it is of type (0, n) the space

joining any two of its elements contains exactly n elements of K, so K is (" - 1)-
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geometric. Since lc : (n- 1)qt+t + n, by Example 4.4.2 (3), K is (n - l)-uniform.

Now suppose K is an (rz - l)-geometric and (n - l)-uniform partial f-spread of

PG(3t ¡ 2, t) with k elements. By Example 4.4.2 (3) we have h : (n - I)gt+L ¡ n.

Since K is (n - 1)-geometric, it is certainly geometric, and in fact since the space

joining any two of its elements contains exactly n elements of K, no (2t + 1)-

dimensional space may contain more than n elements of. K. Thus K is a maximal

(fr,n)-set of PG(3t ¡2,ø.). tr

The discussion prior to Theorem 4.1.3 showed how to construct an incidence

structure from any geometric partial ú-spread of PG(d,q). Itt the case of a (k, n)-

set of PG(3t + 2,q) more can be shown. As in Section 4.L, we construct an

incidence structure I : (PrB, -t) whose points are the elements of K and whose

blocks are the r¿-secants of K. Incidence is set-theoretic inclusion. Then I is a

2 - ((" - 1)gt+t I nrtu,1)-design. (For a discussion of designs, see Hughes and

Piper (1e85).)

4.4.8 Theorem [Declerck et al (1987)]

Let K be a maximal (k, n)-set of. PG(3t + 2,q).

(1) If n: qt+r * 1 then I is a projective plane of order gr+1

(2) If n : q'*t then Z is an affine plane of order gt+l.

(3) If 21n l rttt -1then thenumberof n-secants of K through apoint of

PG(3t ¡ 2,,e) not contained in any element of K is equal to

^t+l
qt*t + t -l- .

Thus n divides gr*1. tr

we now turn to the question of existence of maximut (k, n)-sets. If. n -- 2
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then k : qt+r * 2 and g must be even by Theorem 4.3.4. Therefore there do not

exist maximal (fr,2)-sets when g is odd. When g is even, examples of (Ot+t +2,2)-

sets have been given in Construction 4.3.2 (2). For n ) 3 the situation is more

difficult. However, if there exists a (k,n)-arc in a projective plane PG(2,nt+t) for

some value of f , then \4/e can construct a (lc, rz)-set K in PG(3t + 2, q) in a manner

analogous to that used in Construction 4.3.2.

4.4.9 Construction

Let GF(qt+t) be an extension (of degree t + 1) of Gl¡(q) and let PG(st +2,q'+t)

be the correspondingextension of PG(3t¡2,A).Let II be an imaginaryplane of

PG(gt +2,q,+,). Then the ú * 1 conjugates of II under the collineation o induced

by the automorphism ø | lD t--+ xq or. GF(ot+t¡ span the whole or. PG(3t +2,q.'+t).

Each point P of II is imaginary (see Theorem 1.4.8 (3)), and by Definition 1.4.7 (1)

the ú * 1 conjugates of P span a t-d.imensional subspace L(P) of. PG(St +2,q'+t)

which meets PG(st+2,q) in a Ú-dimensional subspace (corollary 1.4.10 (2))' The

points of a (k, n)-arc C in II determine a set K of fr f-dimensional subspaces of

PG(3t+2,q). To show that K is a (k, n)-set we need to prove that K is geometric,

and that there is no (2t*l)-dimensional subspace of PG(3t+2, g) containing more

than n elements of K, while some (2t + l)-dimensional subspace contains exactly

n elements of K. These properties both follow from Corollaries 4.4.L1 atd 4.4'\2.

4.4.LO Theorem

Let I be a line of II, with points Ps, Pr,...,P,,¡r. For i e {0,1,...,qt+l} Iet

r@): lin{P¡, Pi,..., P{'}. Then

W : {L(Pi) n PG(3ú +2,q) : i :0, 1,...,qt*t}

is a regular ú-spread of. a (2t 1L l)-dimensional subspace of PG(3t +2,,q).
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Proof: Since II is imaginary, each point P; is imaginary, thus by Defi.nition

1.4.7 (1), L(P¿) has dimension ú in PG(3f + 2,q'+t) and meets PG(3t f 2, g) in a

space of dimension t. By Lemma 2.8.5, the spaces L(P¿) and I(P¡) are skew for

i + j. For each i:0,1,..., q'+t, L(P;) is contained in the (2ú* l)-dimensional

space .D(/). By Theorem 2.9.3 the Í-spread W of.I(l) is regular. tr

4.4.LL Corollary

There is a natural isomorphism between the plane II with its points and lines and

certain ú-dimensional and (2t + l)-dimensional subspaces of. PG(3t +2,q). The

(,b, n)-set K of PG(3t+2,g) is isomorphic to a (k, n)-arc c in II, with the i-secants

of K corresponding to the i-secants of C.

Proof: we define an incidence structure I on PG(3t + 2,q). The points

are the ú-dimensional subspaces spanned by a point of II together with all its

conjugates, md the blocks are the (2ú + 1)-dimensional subspaces of PG(3t ¡2,ù

spanned by a line of II together with its f conjugates. The incidence is containment.

Then I is a projective plane of order gf+l, isomorphic to II. A (k' n)-atc C of' lI

determines a (k, n)-arc Ct of. T and the i-secants of the (k, n)-arc in II determine

the i-secants of the (lc,n)-atc Ct ínT. tr

4.4.12 Corollary

The (k, n)-set f arising from Construction 4.4.9 is contained in a regular t-spread

of PG(3t +2,q).

Proof: The elements of the regular ú-spread are the subspaces L(P¿) of

PG(3t +2,q) corresponding to the points P¡ of tI. tr

4.4.L3 Corollary

Let K be a (k,rz)-set arising from Construction 4.4.9. The ú-spread arising from
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the projection of K from X e K onto a (2t + 1)-dimensional subspace .92¿11 skew

to X is a partial t-spread lying in a regular f-spread.

Proof: A partial ú-spread arising from the projection of K from an element

X onto a (2t* 1)-dimensional space skew to X is contained in the regular f-spread

in Corollary 4.4.12. tr

4.4.L4 Examples

(1) If n:2 then k : qt*L *2 and by Theorem4.3.4,, g must be even. There do

not exist maximal (k,2)-sets when g is odd.

(2) In PG(2,2ä), there exist maximal (,b, n)-arcs for every integer n dividing

2h, see Theorem 4.2.8. \Me can use the Construction 4.4.9 to construct in

PG(3t *2,q),, with q even, maximal (fr,n)-sets for every integer n dividing

q'+'.

It is an open question whether, for 3 ( n ( gt*r - 1, there exist any maximal

(k, n)-arcs in PG(2,gt+t) with g odd, and hence whether there exist any maximal

(,t, n)-sets in PG(3t + 2,q).

As in the case of k-sets of PG(3t * 2, q),, the following question is of interest:

Do there exist maximal (k,n)-sets of. PG(3t¡2,e) which do not arisefrom the

Constructior. 4.4.9? In other words, given a maximal (k, n)-set K of PG(3t i2,q)

does there exist an imaginary plane of. PG(3t+2, g) meeting the extension of every

element of K? Such a plane, then, is a plane Pc(z,g'+t) containing a maximal

(k, n)-arc. This question can be rephrased in another way: Is every maximal

(k,rz)-set contained in a regular Í-spr.ead of PG(3t *2,q)? In the following we

obtain some results towa¡ds answering this question.
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4.4.15 Theorem [Thas (1971), (1975) and Denniston (1969)]

(1) If n:2 then there exist maximal (ft,n)-sets in PG(3ú +2,,q) arising from

Construction 4.4.9 only if g is even.

(2) In PG(3t*2,q), g even, there exist maximal (k,n)-sets arising from Con-

struction 4.4.9 for every integer n dividing qt+l.

(3) In PG(3t+2,g), g:3-, with m ) 1, there does not exist a maximal (k,3)-set

arising from Construction 4.4.9.

Proof: (f) See Example 4.4.14 (I).

(2) When g is even, by Theorem .2.Sthere exist maximal (k, n)-arcs in PG(2,gt+t)

for every value of r¿ dividing gt*r. We apply Construction 4.4.9.

(3) Suppose that there exists a maximal (k,3)-set in PG(3ú l2,q),, with g : 3*,

m ) I arising from the Construction 4.4.9. Then there is a maximal (k,3)-arc in a

plane PG(2,nrn(t+t)¡ where 3 divides rn(t+ 1) and m(t* 1) > 1. This contradicts

Theorem 4.2.9. tr

We may apply the classical results on (k, n)-arcs of projective planes, (see for

example Hirschfeld (1979)), to obtain other results about (k, n)-sets of. PG(3t+2,q)

arising from Construction 4.4.9, for example: if K is a ((n - 1)qt+t * n - 1, n)-set

of. PG(3t ¡2,g) arising from Construction 4.4.9, then it is incomplete and can be

completed in a unique manner to a (maximal) ((" - l)g'+t * n, n)-set by adjoining

the ú-dimensional subspace which is the intersection of all its (ú - 1)-secants. Also,

if n does not divide g¿+1, and 2z-n < qt+r then a (/c,n)-set of PG(3t ¡2,a)

satisfies k <(" -l)q'+t *n-2. L(k,3)-set of PG(3ú *2,q),q> 3 andn ) 2

satisfies Ic 1 2qt+t ¡ I.

The following concept is important in deciding whether a certain (,b, n)-set
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of PG(3t+2,q) a¡ises from the Construction 4.4.9. It appeared implicitly in the

work of Casse and'Wild (1983).

4.4.16 Definition [Declerck et al (1937)]

Let W be a partial ú-spread of PG(3t I 2,q). A secant (2t + 1)-dimensional

projective subspace,szt+r of PG(3ú +2,,q) is called projection stable with respect

io W if the pa,riial f-spreads arising from the projection of W onto 52¿11 from any

element X eW skew to Sx+t belong to a fi.xed f-spread of Szr+r.

If W is a maximal (k, n)-set of PG(3ú ¡2,A) then the partial ú-spreads arising

from the projections of W onto Sz¿+r from each element of W skew to Szr+r are ail

f-spreads and so must coincide. Declerck et al have shown that if K is a maximal

(k,n)-set of. PG(3t ¡2,g) such that every seçant (2t + 1)-dimensional space is

projection stable with respecl lo K, then K arises from the Construction 4.4.9.

This idea could be usefui in spaces PG(st ¡2,ø) for which there are few ú-spreads

in PG(2t + 1, q).

4.4.LT Lemma

Let K be a (,t,n)-set of PG(3ú ¡2,t). Suppose there exists a secant (2¿ + 1)-

dimensional subspace Szt+t of K such that the elements of K which lie in Szt+t

are embeddable in a unique t-spread of ,Szt+r. Then Szt+t is projection stable

with respect to K.

Proof: Let X be an element of K skew Io 521¡y. Then the elements of ,521-,-1

lie in the partial ú-spread arising from the projection of K from X onto Szr+t.

Since the elements of K in ^9zr+r lie in a unique ú-spread say W, then the partial

ú-spread arising from the projection of K from X. onto Szt+t lies in the fixed f-

spread W. By definition, since X is any element of K skew to ,52¿11, we see that
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Szt+t is projection stable with respect to K

. 
The condition of projection stabiiity can be relaxed a bit, as in the next

Theorem. If .9 is a subspace of PG(3t * 2,g), we will denote its extension to

PG(3t +2,q'+t) bv ,S.

4.4.L8 Theorem

Let K be a maximal (k,n)-set in PG(3r ¡2,,e). suppose K admits a secant

(2t + 1-)-dimensional subspace ,So with the property that there exist two distinct

elements Xt,Xz of K skew to ,90 such that the two Ú-spreads on ^9s arising from

the projection of K onto ,50 from each of Xt,Xz coincide (this would occur, for

example, if ,So were projection stable). Denote this Í-spread by Wo. The (2t+1)-

dimensional space sr :( xt,,xz ) is a secant of K meeting ,9s in an element of

Wo. Let X6 be an element of K in Wo, skew to ,9r, and let the t-spread arising

from the projection of K onto ,Sr from Xo be denoted Wr. Note that Xr ,, X2 and

So fì.9r are all elements of Wr. Suppose Wo and W1 are both regular Ú-spreads.

Then there exists a line lo in the space Fs-which meets the extension of each

element of Wo in a unique point, and a line 11 in the space t which meets the

extension of each element of. Wt in a unique point. If these lines /6 and 11 have a

common point (in PG(3f +2,q'+t)), then K arises from the Construction 4.4'9.

Prooft Since projecting K from X1 onto ^9¡ yields the t-spread Wo, we denote

the points of lo as follows:

P¡ 1Xt, ¡) f-l^90 fl lo, for j lt

Then Pr. is the point of fs belonging to that element of Wo arising from the

projection of X¡ onto So from Xr. The points P¡ are not all distinct, in fact each

of the qi+r + 1 points of Io occurs ?? - 1 times among the points P¡. In a similar
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way we denote the points of f1 by:

Q; : < Xo,X¡ ) lì^91 fì /1, for i 10.

Now II :( fo, lr ) is a plane of PG(3út 2,, e'*L ), and the extension of each element

of K contained in ^90 or .Sr meets II in a unique point. We show that this is also

true of elements of K skew to ,Ss and Sr . Let X ¡ be an element of K not lying in ,9s

or ,91, and not contained in the space ( Xo, Xt ). The space <To,4 , meets fI

in the lirre PsQ¡. The space a Xi,,E > meets II in the Lirre P¡Q1. These lines are

distinct and so meet in a unique point r?¡. Since \ :an,h > n < X¡,Xt ,,

then R' e4 and X¡ meets fI in the unique point .R¡. Lastly let X¡ be an

element of K skew to ,96 and ,S1 but contained in ( Xo ,,Xt ). Then X¡ is skew

to ( X¡ ,Xz ) so we just repeat the above argument replacing Xt by X2 to show

that aiso $ meets II in a unique point. Thus the extension of every element of

K meets II in a unique point and K arises from Construction 4.4.9. EI

A maximal (k, n)-set K arising from Construction 4.4.9 has the property that

the projection of K onto a secant (2ú*1)-dimensional space Szt+t from any element

X skew to ,Szr+r is a regular f-spread. In some cases the maximul (k, n)-sets can

be characterised in terms of this property as in Theorerns 4.4.21 and 4.4.22. We

use Theorem 4.4.18 and Lemma 4.4.19.

4.4.L9 Lemma

Let K be a maximal (,t, n)-set of PG(3t ¡ 2,ø) with n ) 3. Suppose that if. q :2

then ú ) 2,, and that if g > 3 then ú ) 1. Let Sx+t be an n-secant (2t+L)-

dimensional subspace of. PG(3t¡2,e). Suppose that the ú-spreads of Szr+r arising

from the projections onto Szt+t from each element of K skew to Sz¿+r are all

regular. Then Szt+t is projection stable with respect to K.

Proof: We denote lhe le -n elements of K skew to Sx+t by Xr ,X2r. . . ,Xk-n
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and denote the f-spread arising from the projection of K from X¿ onto Sz¿+r by

W¡, for i : Lr...rk -n. Note that the n elements of K in Szt+t, denoted by

X*-n+t, Xk'-n+z, . . . , X*-t, X¡, all belong to each of the ú-spreads

W1rW2,... rWk-n

Now by Lemma 2.4.2 lhe three elements X*-zrXx-trX¡, of' K üe in a unique

f-regulus of rank 1 Îd in Szt+t, and we denote the g - 2 further f-dimensional

subspaces of ,9zr+r in the t-regulus by Zrr22,...rZc-z. Some of these elements

could be elements of K, since ^92¿..1 is an n-secant of K. Since each of the f-spreads

W1 rW2, . . . rWk-n is regular, the subspaces X ¡-2, X *-t, X*, Zt, . . -, Z q-2 belong

to each of them.

LetY, be an element of the ú-spread W1, not iying irrß. The space 1 Xt,Y, )

is an n-secant of K, and contains either n-2 or n-1 elements of K distinct from X1

and skerv to ,Sz¿+r according as whether }! is in K or not. In either case ( Xt,Y )

contains at least n - 2 elements of K distinct from X1 and skew to Sx+t The

Í-spreads of ,Szr+r arising from the projections of K onto ^92¿11 from X1 and these

further n - 2 elements of K all contain the subspaces X x-2, X k -r, X n, Z t, - . ., Z q-2

and Y,. Since by Corollary 2.9.5 a regular ú-spread of Szt+t is uniquely determined

by one of its Í-reguli of rank 1 together with one further f-dimensional space of

the ú-spread, the n - I f-spreads above are all identical lo Wt For this choice of

Y, there are at least n - 2 elements of K whose projections of K onto ,52¿a1 yield

ú-spreads identical to Wt. There are qt+1 - g such spaces Y", so that there are at

lea,st (n - 2)(qr+t - q) t-spreads W; identical to Wt \Mithout loss of generality

suppose the ú-spreads Wr ,... rWqn-z)(qr+1-q)t1 are identical'

Consider Xt e. K, skew to Sz¿+r, and such that Wr differs from Wr. Then

X¿ must lie on a'secant joining Xr to an element of R. Similarly, since W¿ differs

202



from W2, X¿ must lie on a secant joining X2 to an elemenl of.'ll. In this v/ay rÃ¡e

see that the joins of. Xt to each of. Xt, X2r - . . , X6-z)(qt+r-q)*1 must meet S2¿.r-1 in

elements of 1l and so X1, Xz, . . . , Xçn-z)(øt+r-q)*t must all lie on secants joining

X¡ to an element of.'lt. But the number of elements of K distinct from Xt and

skew to szt+tlying on secants joining xl to elements of 7l is at most

3("-2)+(q-z)(n-I).

This is a contradiction because

[(" - 2)(q'+' - q) + t] - [a(n -2) +(q - zxn - t)]

: (n - 2)(q'+t - 2q - 1) - q + g

which is greater than zero for all q > 3, n )- 3 and ú > 1. If 4 : 2then it is also

greater than zero for all n 2 3 and ú I 2. Note particularly that in the case of

g:2the argumentfaiis if.t: l since n divides qt*l andn 2 3 imply n24' tr

4.4.20 Theorern

Let Kbe a maximal (k,n)-set of PG(3Ú +2,2) with r¿ à 3 and t > 2. Then every

r¿-secant (2t + 1)-d.imensional subspace is projection stable with respect to K.

Proof: Let .Szt+r be a secanf (2t+L)-dimensional subspace of PG(3f +2,2).

Since everv ú-spread of. PG(2t + 1,2) is regular (see Theorcrn2.4.6), ail the t-

spreads arising from the projection of K from any element of K skew to 52¿11 are

regular. By Lemma 4.4.19,, Su+t is projection stable with respect to K. tr

4.4.2L Theorem

Let K be a maximal (fr,3)-set in PG(5, g), where by Theorem 4.4.8, g is a power of

3. Since ú : 1 we see that K is a (k,3)-set of lines. The projection of K from any

one of its elements onto a 3-secant 3-dimensional subspace 53 yields a l-spread on

that 3-secant. Suppose that all such l-spreads on each such ,S3 are regular. Then

K arises from Construction 4.4.9.
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Proof: Choose X e K and denote the 92 * 1 3-secant 3-spaces through X by

,Så,,93,...,,91'*t.Fori: Lloq2{l,theprojectionof KontoSjfromanyelement

of K skew to it yields a regular 1-spread of ^9j. By Lemma 4.4.Lg, the space ^Sj

is projection stable and we will denote the l-spread on it arising from any such

projection of. K by W¿.

Ler GF(q') b" a field extension of GF(q), and denote the corresponding

extension of PG(5,q) bv PG(5,q2). For each i from 1' to q2 * 1 there are two

imaginary skew lines in PG(5, q2) which meet the extension of each element of.W;

in a unique point (see Theorem 2.9.3). These lines are a conjugate pair, that is

they are images of one another under the collineation induced by the automorphism

x -- 12 of. GF(q2). We thus have 2(qt + 1) lines, occurring in conjugate pairs.

Since X lies in each of.Wt,W2r...,Wor¡¡ it follows that the extension X of X

to PG(5, 92) meets each of the imaginary lines, in exactly one point. X meets a

conjugate pair of lines in conjugate points of. X.

Now since Ï h.r q2 - q imaginary points, occurring in conjugate pairs, and

since 2(q2 + 1) > q2 - q, it follows that there is at least one imaginary point of F

lying on at least two of the imaginary lines listed above. Theorem 4.4.L8 gives the

result. tr

The proof of Theorem 4.4.27 fails for t > 2 at the following point: the number

of imaginary lines meeting X is shown to be (t + f )(qt+t + f ) while the number of

imaginary points in the extension X which is a f-dimensional space is

q,'(q, - 1)+ nt(t-t)çot-t - r)+...+ qt(q-t)

and the desired conclusion can only be arrived at in the case ú : 1.
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4.4.22 Theorem

Let K be a maximal (fr,n)-set of PG(3t+2,,2) with n ) 3 and t > 2. Then K

arises from the Construction 4.4.9.

Proof: We show that K is contained in a regular ú-spread of PG(3f * 2,2),

which is sufficient to prove the result. Let X be an element of K. As in the remarks

preceding Theorem 4.4.8, the elements of K and the n-secant (2ú + 1)-dimensional

subspaces form a 2-(("-1)2t+t ln,nrL)-design. Therefore through X there pass

m - 2ttt * 1 such n-secants, say 51, S2r... rSrn. For each value of. i, L 1 i I m,

the projection of K from a given element X¿ skew to .9¿ yields a f-spread W; of ,5;.

Since g:2, by Theorern2.4.6 each ú-spreadW¿ is regular, and by Theorem 4.4.20

.9¿ is projection stable. Now by Theorem 2.9.3 there exists a set of f f 1- conjugate

imaginary lines in PG(St *2,2t+t¡ meeting the extension of every element of the

t-spread W¡ in a unique point. Thus there exist 2¿*1 * 1 sets of f * 1 conjugate

lines in PG(st *2,2'+L), each such line meeting X in a unique point. Now X has

exactly (2t+r -2')lQ - 1) :2¿ imaginary points, and since

(ú + 1) (zt+r - 7) > 2'

there is an imaginary point of F through which there pass at least two such lines.

Suppose that these two lines are the lines meeting the extension of every element

of the t-spreads W; and W¡ in the secants ^9¿ and ,5r'. By applying Theorem

4.4.18, choosing So and ^91 as the two secants ^9¡ and ,S¡, we see that K arises from

Construction 4.4.9. tr

4.6 MORE ABOUT (,t,n)-SETS oF PG(3t+2,q)

Let K be a (k,n)-set of PG(3ti2,q), with n ) 2 so that the remarks in this

Section apply to /c-sets and (k,rz)-sets of. PG(3t ¡2,ø). Suppose that K ariçes

from the Constructíon 4.3.2, or 4.4.9, so that there exists an imaginary plane II

205



of P G(3t + 2, q'+t) meeting the extension of every element of. K , each in a unique

point. (In fact the set of these points of II is a (k,,n)-arc of II).

The regular f-spread W of. PG(3t +2,q) all of whose elements meet fI in a

unique point is a regular f-spread of PG(3t +2,, q) containing the elements of K. In

Corollary 3.9.5 we showed that such a ú-spread W has a projective f-spread seL PC

of 3-tuples of (f * 1) x (t f 1) matrices isomorphic to fI. The matrices all belong

to a field (C,+r.) of order gt+l, and rve can use this field as GFçot+r) in order

to coordinatise PG(3t + 2,qt+t). Under this coordinatisation the isomorphism

between II and PC is the identity, and

çÍi),.I,0) : i : !,2,...,qt*t)

(cÍi), c[ù,t) : i : t,2,...,q2(¿+1)]

An elemen t W of W corresponding to the element ((áo), €Í'), €Ít)) of the projective

ú-spread. meets fI in the point with coordinates ({Át),(Ío),€ln))'. The elements

of W meet fI in a (/c, rz)-arc of II and so the elements of the partial projective

ú-spread set PPC corresponding to W are a (,b,n)-arc of PC. It seems that trying

to construct a(lc,n)-set of PG(3t +2rq) is as hard as constructing a (k,n)-arc of

PG(2,st+1).

However these ideas can be used to test whether a certait (k, n)-set K of

PG(3t + 2,q) arises from Construction 4.4.9. We would simply find the partial

projective ú-spread set corresponding lo K, and see whether each of the elements

could be multiplied by a non-singular (f * 1) x (¿ + 1) matrix to obtain an identity

matrix in the last non-zero position. If this is not possible then K does not arise

from Construction 4.4.9. If ii is possible, we still need to check whether all the

matrices appearing in the partial projective f-spread set come from a field of order

qt+l. If they do, then that field gives the regular ú-spread containing K. Otherwise,
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K is not contained in a regular ú-spread and so does not arise from Construction

4.4.9.

4.6.L Example

We use Examples 3.10.1 and 3.10.2. If we find a (k, n,)-set K of lines among the

lines /1 ,12,. .. ,121 appearing in Example 3.10.1, then the corresponding partial pro-

jective ú-spread set has matrices belonging to the field 0, I, A, B of order 4. Then

K is contained in the reguiar l-spread lt,Iz,. .. ,lzt and arises from Construction

4.4.9.

If, on the other hand, we choose a (k,n)-set from the lines ltrlz,,--.,121 orf.

the regulus free l-spread W of. Example 3.10.2, the situation is different. We try

to find a set of lines arising from Construction 4.4.9, as large as possible. As

the non-zero matrices appearing in the partial projective Í-spread set must be

invertible, we cannot choose any line whose corresponding 3-tuple P¿ contains any

of the matrices: A,BrD,ErFrG,HrJrK and -t. There is only one line 121 of.W

satisfying this condition, so there is no (k,n)-set of PG(3f ¡2,ø) with fr > 2

contained in W and arising from Construction 4.4.9.

It would be interesting to produce an example of a maximal (k, n)-set of

lines contained in the regulus free 1-spread W, answering at least in the space

PG(5,q) the question of existence of maximal (k, n)-sets of lines not arising from

the Construction 4.4.9. However the best that can be done is to find a 4-set of

lines, while a maximal k-set would have six lines. Such a 4-set of lines of PG(5,2),

not arising from the construction 4.4.9, is

K: Utrl2rl6,lsj ,, or

K : UtrI2rIT,lpj .
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CHAPTER FIVE

CONCLUSION

The apptications of the ideas of regularity, of f-spread sets and of indicator

sets in the case of t-spreads of. PG(2t+ 1, q) existing in the literature suggest many

lines of neïy research in the general case. A few ideas are presented here.

The aim of classifying the 1-spreads of PG(3, q) has led to the defi,nition of

subregular 1-spreads. A l-spread is subregular if it can be obtained by reversing

a sequence of reguli in turn, starting from a regular l-spread. The concept of

reversing a regulus involves replacing the lines of the regulus (or Segre variety

Eì./z,z) by the lines of the opposite regulus (or lines of the opposite system of lines

of. SYz,z). Reversing a regulus in a l-spread yields another l-spread. Hirschfeld

(1985) gives a good survey of results in this area.

In the case of a ú-spread W .of. PG((s + lX¿ + 1) - L, g), let R, be a t-

regulus of rank r contained in )4!/. The "opposite" regulus is an r-regulus of

rank t, since 71, is the set of ú-dimensional spaces of a Segre variety 5)r*1,r*1

whose opposite system comprises r-dimensional spaces of S}¿+r,'+r. If. t : r

then reversing 7?" yields another ú-spread of PG((s + 1)(t + 1) - 1, q). Otherwise

reversing 71., gives a partition of PG((s + 1)(¿ + 1) - 1, g) into pairwise skew f-

and r-dimensional subspaces. The results in the case of a l-spread oÍ PG(3'q)

suggest the development of a study of such partitions of PG((s + t)(t * 1) - t, q),

particularly in the case of t : s.

Another important application of 1-spreads of PG(3,g) is to the theory of

inversive planes. An inuersiue plane of oriler g, denoted by IP(q) (see Dembowski

(1968), p252) is a 3 - (q' + L,q f 1,l)-design, whose blocks are called circles.
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Bruck (1969) has shown that in PG(3,I), a regular l-spread together with its

lines and 1-reguli are arr inversive plane of order g, where the points are the lines

of the l-spread and the circles are the l-reguli of the l-spread. The incidence is

containment. Similarlg the indicator set of a regular l-spread of PG(3, g), which

is a line of PG(3,92) skew to PG(3,q), is an inversive plane of order q, where

the points of the line are the points of the inversive plane and the circles are the

projective sublines of order g. These ideas are used in Bruen (1978) to give a nery\¡

class of translation planes of order 92.

Bruck (1973a) and (1973b) has defined a d-dimensional circle geometry for

each integer d ) 2. The circle geometries of dimension 2 are precisely the inversive

planes, and a regular ú-spread of PG(2t + 1, q) is a (t * l)-dimensional circle

geometry whose points are the elements of the ú-spread and whose circles are the

f-reguli of the f-spread.

It would be interesting to define a higher dimensional inversive geometry,

which would admit not only circles (as in thê case of d-dimensional circle geome-

tries) but also higher dimensional circies. This would be anaiogous to a projective

space with its system of subspaces of different dimensions. The definition of this

(s * l)-dimensional inversive geometry fG(s * 1) of order gt would admit as an

example the regular ú-spreads of PG((s + t)(t + 1) - 1, g) in the following way: the

points of /G(s * 1) would be the elements of the t-spread, and the r-dimensional

circles wouldbe thef-reguliof rank r forr:0,1,...,s. Aninversiveplanewould

be an IG(2) of order g and a d-dimensional circle geometry would be an IG(\ of.

order qr.

There are other questions raised by the work presented here: for example the

definition of indicator sets suggests a classification of f -spreads using their indicator

209



set. This was begun for l-spreads of PG(3, q) in Bruen (L972), and Theorem 3.8.7

is also a step in this direction.

On the topic of indicator sets, the work in Chapter Four does not fully address

the question of the existence of maximal (k, n)-arcs by studying maximal (k, n)-sets

of PG(}t+2,q). It is possible that a maximal (k, n)-set of PG((s + t)(t + 1) - r, q)

not embeddable in a regular f-spread, if it does in fact exist, could be constructed

as a union of f-dimensional spaces belonging to different Segre varieties. The

requirement that such a set be geometric seems to be very strong.

The same method of studying certain sets of f-dimensional spaces of the space

PG((s + 1Xf + 1) - 1,g) could be employed for studying other sets of points in

projective spaces, for example k-caps and (/c, n)-caps of PG(s, q'+t) correspond to

certain sets of ú-dimensional spaces in PG((s + 1X¿ + 1) - 1' q).
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