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SUMMARY

In this thesis the theory of 1-spreads of PG(3,q) is generalised to a theory
of t-spreads of PG((s 4+ 1)(t + 1) — 1,¢). There is a well developed theory for
t-spreads of PG(2t + 1,¢), but so far there are limited results in other cases.

This thesis extends much of the existing theory to the general case of ¢-spreads of

PG((s + 1)t +1) ~ 1,0)

After a short Introduction containing a literature review, Chapter One of the

thesis gives a brief account of the concepts involved.

In Chapter Two the theory of t-spreads of PG(2t +1, ¢) is revised, setting the
scene for the generalisation to come in Chapter Three. Most of the work in this
Chapter is well known, but in order to facilitate the later generalisation, some of the
presentation is different from the original. For example the concept of regularity
is presented in the light of the connection between a regulus of PG(2t +1,¢) and
the classical Segre Variety which is the product of a line and a t-dimensional space
of PG(2t + 1,¢). In addition, a new and straightforward construction is given
for a spread set (originally defined in Bruck and Bose (1964)) corresponding to a
t-spread of PG(2t +1,¢). This new construction uses the space Sm(Mr(GF(q)))
introduced by Thas (1971).

gt

Chapter Three gives results for t-spreads of PG((s+1)(t+1)—1, g) suggested
by the theory studied in Chapter Two. A generalised t-spread set of matrices for
certain of these t-spreads is found, using a construction similar to that given by
Bruck and Bose (1964). In addition, the new construction of a spread set discussed
in Chapter Two generalises naturally to give a new but related entity, to be called

a projective t-spread set. This concept is more general because any t-spread of

A



PG((s + 1)(t + 1) — 1,¢) admits a projective t-spread set, but not every ¢-spread
admits a t-spread set. Regularity of a t-spread of PG((s + 1)(t + 1) — 1,¢) is
explored using the p;‘operties of the classical Segre Variety. Different subvarieties
produce different reguli of a t-spread, and therefore corresponding different types
of regularity. It is shown, however, that all these types are equivalent and coincide
with the usual notion of regularity in the few cases where a definition has previously
been given, for example in the case of 1-spreads of PG(2s +1,¢) in Ebert (1983).
The approach developed in this Chapter leads to the construction of an indicator
set for a t-spread of PG((s+1)(t+1)—1, ¢), extending the work of Lunardon (1984).
It also yields a representation for regular t-spreads of PG((s + 1)(t + 1) — 1,9),
generalising that due to Bruck (1969) for 1-spreads of PG(3,¢). A t-spread is called
geometric if for any pair X,Y of its elements, the other elements of the {-spread
are either contained in or are skew to the space < X,Y > spanned by X and
Y. Tt is shown that a geometric t-spread allows a construction of an affine space
AG(s+1,¢'t1), and the projective ¢-spread set provides homogeneous coordinates
for the corresponding projective space. Examples are given to illustrate the ideas

presented.

The next Chapter considers certain partial t-spreads, and in particular those
called k-sets of t-dimensional subspaces. These have been studied in the space
PG(3t +2,q) by the authors Thas (1971), Declerck et al (1987), Casse and Wild
(1983), Casse et al (1985) and Wild (1986). Some new concepts and results are
given. The definition of k-sets is then extended to (k,n)-sets of PG(3t+2,¢), and
connections with work already done by Beutelspacher (1975) and Declerck et al
(1987) (in the case of s = 2) are explored. A maximal (k,n)-set is defined, and
its size is determined. A condition guaranteeing that such a set arises from the

construction of Thas is found, and applied to maximal (k, 3)-sets of PG(5,3") and

Vi



maximal (k,n)-sets of PG(3t +2,2) when ¢ > 1. An example of a 4-set ((4,2)-set)
of lines of PG(5,2) is given, which does not arise from the construction due to

Thas (1971). This set is contained in a spread which contains no regulus.

A short conclusion and suggestions for further research appear in Chapter

Five.
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INTRODUCTION

The subject of this thesis is the theory of t-spreads of PG((s+1)(t+1)—1,9).
A t-spread of PG(n,q) is a partition of the points of PG(n,q) into t-dimensional
subspaces. It is known that PG(n,q) admits a t-spread if and only if £ +1 divides
n + 1, thus we choose n +1 = (s + 1)(t +1).

Our aim is to develop a unified algebraic and geometric theory applicable to
all t-spreads of PG((s +1)(t +1) — 1,¢) and which contains the known results on

t-spreads of certain projective spaces as special cases of the new theory.

The rather natural idea of partitioning the points of a finite structure has
appeared in many contexts in the development of mathematics, particularly in the
field of abelian groups. This is especially significant because the abelian groups
have been shown to correspond to finite projective geometries, and certain parti-
tions of the abelian groups correspond to t-spreads in the projective geometries
(see Carmichael (1937)). In fact the result quoted above on the existence of -
spreads of PG(n,q) appeared in Burnside (1911) as a theorem on partitions of

abelian groups.

Tt was not until later that t-spreads of PG(n,q) were studied in their own
right. Burnside’s result was rediscovered in geometrical language by André (1954),
Bruck and Bose (1964) and Segre (1964). At the same time the connection between
t-spreads of PG(2t + 1,¢) and finite translation planes was discovered by André
(1954) and Bruck and Bose (1964) and (1966). It was shown that a t-spread of
PG(2t + 1,q) could be used to construct a translation plane of order ¢ttt and
that all finite translation planes arise from such a construction. This connection
added great impetus to the study of t-spreads, yielding many interesting results

on translation planes (see for example Ostrom (1968), Hughes and Piper (1973),



or Liineburg (1980)).

The research on t-spreads of PG(2t + 1,q) was directed by the discovery
(Bruck and Bose (1964)) that the translation plane corresponding to a t-spread of
PG(2t + 1,q) is Desarguesian if and only if the corresponding t-spread is regular.
A classification of all t-spreads of PG(2t + 1, q) would imply a classification of all
finite translation planes. Much effort has been directed to the study of regular,
subregular and aregular t-spreads of PG(2t + 1,q). The problem of classifying
the t-spreads of PG(2t + 1,¢) has only been effected in a small number of cases,
for example every t-spread of PG(2t + 1,2) is regular (see Dembowski (1968),
p221), and every 1-spread of PG(3, q) is either regular or is subregular of index 1
(see Bruck (1969) and Denniston (1973b)). Complete results in other cases seem
difficult to obtain, see for example Bruck (1969) and (1973c), Bruen (1975), Orr
(1976) and Ebert (1983). Examples of aregular t-spreads are given by Denniston
(1973a), Bruck (1969) and Bruen (1972a). An interesting result in this area is the
construction by Denniston (1976) of a t-spread which contains reguli but is not

subregular.

In Bruck and Bose (1964) and (1966), it was also shown that to a t-spread
of PG(2t + 1,q) there corresponds a set of gtt? (t + 1) x (¢ + 1) matrices, called
a spread set. This construction of a spread set enabled an easy coordinatisation
of the translation plane corresponding to the t-spread. The following characteri-
sation was given: the spread set forms a field under addition and multiplication
of matrices if and only if the t-spread is regular. Later Maduram (1975) used this
representation of translation planes to describe in terms of matrices the condition
that two t-spreads represent isomorphic translation planes, and to exhibit a new
characterisation of Desarguesian planes: a translation plane is Desarguesian if and

only if all pairs of matrix representations are equivalent.



Apart from purely geometrical arguments conducted entirely in the space
PG(2t + 1,q), an important method of studying t-spreads of PG(2t + 1,¢q) is by
indicator sets. These were introduced for 1-spreads of PG(3,¢) in Bruen (1972a),
and used for the study of the regularity, subregularity and aregularity of 1-spreads
in PG(3,q) by Bruen (1972a) and (1975) and Sherk and Pabst (1977). The gen-
eralisation to indicator sets of t-spreads of PG(2t + 1,q) was effected by Sherk
(1979), with a construction relying on knowledge of a spread set for the spread, as
defined by Bruck and Bose (1964). Lunardon (1984) was able to construct indi-
cator sets in a purely geometrical manner, avoiding the use of spread sets. Again,
this was employed to study different types of t-spreads and different translation

planes arising from the t-spreads.

The current uses of the term regularity appearing in the literature apply only
in the cases of t-spreads of PG(2t + 1,¢) (Dembowski (1968)) and 1-spreads of
PG(2s +1,q) (Ebert (1983)). A t-spread W of PG(2t + 1,q) is called regular if
given any line of PG(2t + 1, q), not meeting any element of W in more than one
point, then the elements of W meeting the line form a regulus in PG(2t + 1,¢).
A 1-spread W of PG(2s +1,¢) is called regular if given any line of PG(23s+1,q),
not contained in W, then the elements of W meeting the line form a regulus in a
3-dimensional subspace PG(3, ¢) of PG(2s+1,¢). Thus both notions of regularity
rely on the concept of a regulus of ¢-dimensional spaces in PG(2t +1,q). To be
able to extend the definition of regularity to t-spreads of PG((s +1)(t +1) — 1,9),

a more general concept of regulus is required.

This thesis addresses the problem of defining a more general regulus. We
re-examine the known case of t-reguli of PG(2t + 1, ¢), altering our point of view
into one which is easily generalised. To be precise, it is shown that a t-regulus

of PG(2t + 1,q) is just the set of t-dimensional spaces lying on a classical Segre



variety SVi+1,2 whose opposite system of subspaces consists of lines. The natural
generalisation leads us to say that the set of t-dimensional spaces lying on a Segre

variety SViq1,r+1 in PG((r +1)(t + 1) — 1,¢) is a t-regulus of rank r.

The notion of the t-regulus of rank r is used in the definition of regularity
of rank r of a t-spread of PG((s + 1)(t + 1) — 1,¢) as follows. A t-spread W of
PG((s + 1)(t + 1) — 1,q) is said to be regular of rank r if whenever S, is an r-
dimensional subspace of PG((s +1)(t+1)— 1, ¢) not meeting any element of W in
more than one point, then the set of elements of W meeting S is a regulus of rank
r in some ((r +1)(t+1) — 1)-dimensional subspace of PG((s+ 1)(t+1)—1,q). This
definition agrees with the two definitions mentioned above, which are examples of
regularity of rank 1. It is shown that a t-spread of PG((s + DE+1)—1,q) is
regular of rank r if and only if it is regular of every rank 0,1,...,s and in this case
it is called regular. It is interesting that in proving various results about regular
t-spreads of PG((s +1)(t+1) —1,¢), it is the fact that it is regular of rank s that
seems most useful, in other words, the use of the t-reguli of rank s yields the most

information about the t-spread.

Now that we have a notion of regularity for t-spreads of PG((s+1)(t+1)-1,9),
we can extend many of the known results on regular t-spreads of PG(2t +1,q)
to the general case. For example, in a representation due to Bruck (1969) it is
shown that a 1-spread of PG(3,q) is regular if and only if there is a line [ of the
extension PG(3, ¢?) skew to PG(3,¢) and meeting every element of the 1-spread,
necessarily in a unique point. We generalise this to PG((s + 1)(t + 1) - 1,q),
showing that: a t-spread W of PG((s + 1)(t +1) — 1,¢) is regular if and only if
there is an s-dimensional subspace of the extension PG((s +1)(t + 1) — 1,¢**")
skew to PG((s + 1)(t + 1) — 1,¢*) and meeting every element of the t-spread in a

unique point. This result is used to show that a t-spread of PG((s+1)(t+ 1)-1,q9)



is regular if and only if it is geometric.

One of the fundamental results we present is the connection between two
seemingly different sets, each constructed from a t-spread of PG(2t 4+ 1,q). First
there is the spread set of matrices due to Bruck and Bose (1964), which we will
call a t-spread set. Second there is the set of points of the space S1(M+1(GF(q)))
introduced by Thas (1971). This set of points is represented as a set of equivalence
classes of pairs of (¢ + 1) x (¢ + 1) matrices, where two pairs are equivalent if and
only if the matrices of one can be obtained from the matrices of the other by
multiplication by a non-singular matrix. This set will be called a projective t-
spread set. It is shown in Chapter Two that in PG(2t +1,q) a t-spread set yields
a projective t-spread set, and conversely a pro jective t-spread set yields a t-spread
set. We show that a t-spread of PG(2t+1, q) is regular if and only if its projective
t-spread set is isomorphic to PG(1,q). Since a projective t-spread set can be
constructed knowing only a basis for each element of the t-spread, this result

gives a new and straightforward construction of the t-spread set of any t-spread

of PG(2t +1,4q).

The above methods are generalised in Chapter Three to construct pro jective
t-spread sets and t-spread sets for t-spreads of PG((s +1)(t +1)—1,q), by using
the space Ss(M+1(GF(g))). It is shown that a t-spread of PG((s+1)(t+1)—-1,q)
is regular if and only if its corresponding pro jective t-spread set is isomorphic to
PG(s,¢**t'). The new definition of projective t-spread set emphasises the pro-
jective nature of t-spreads, which was possibly obscured by Bruck and Bose’s

construction of the spread set as a non-homogeneous entity.

We are able to generalise the construction of an affine plane from a t-spread

of PG(2t + 1,¢) to construct an affine space AG(s + 1,¢'*1) from a t-spread of



PG((s + 1)(t + 1) — 1,¢) with s > 1 only under the additional assumption that
the t-spread is geometric, or equivalently regular. The fact that we need to make
this extra assumption is not sufprising if we recall that in the case s = 1 our
affine plane is a translation plane, and is Desarguesian if and only if the t-spread
is regular. When s > 1 the affine space AG(s + 1,¢'*1) is always Desarguesian,
and so its subplanes are always Desarguesian. In fact these arguments are used
to give a new proof of the known result: a geometric ¢-spread induces a regular
t-spread on a (2t + 1)-dimensional subspace which 1s the space spanned by two

t-spread elements.

Now that we have constructed a projective t-spread set for any t-spread of
PG((s+1)(t+1)—1,q), we are able to construct an indicator set for any t-spread
of PG((s+1)(t4+1)—1,¢). Thus concepts which have proved fruitful in the study
of t-spreads of PG(2t + 1,¢) can now be applied to the study of t-spreads of any
projective space PG((s + 1)(t 4+ 1) — 1,¢).

In the literature, attention has also been given to partial t-spreads of PG(n,q),
where a partial t-spread is a collection of pairwise skew t-dimensional subspaces.
Particular emphasis has been given to the study of mazimal partial t-spreads,
where a partial t-spread is maximal if it is not a t-spread and further is not
contained in any t-spread as a proper subset. These are also called mazimal k-
spans (see Hirschfeld (1979)), and in this thesis will be called complete partial
t-spreads. The main interest has been in answering the questions: how many
elements may a partial t-spread have? In particular, how many elements can
a complete partial ¢t-spread have? Finally, how many elements must a partial t-
spread have to guarantee that it is contained in a unique t-spread? These questions
are not treated here, but results appear in Mesner (1967), Glynn (1982), Bruen
(1971), (1972b) and (1975), Jungnickei (1984), Beutelspacher (1975), (1976) and



(1980), Bruen and Thas (1976), Ebert (1978) and (1979), and Freeman (1980).
These results are collected in Hirschfeld (1985).

The partial t-spreads which are of interest to us in Chapter Four are those
which are connected with k-arcs and (k,n)-arcs of projective planes. This con-
nection originates in Thas (1971), but is closely related to the representation of
t-spreads of PG((s + 1)(¢ +1) — 1,¢) in PG((s + 1)(t + 1) — 1,¢**') as the set of

t-dimensional spaces meeting an s-dimensional space.

The partial t-spreads connected with k-arcs are called k-sets of PG(3t+2,q),
and are sets of k t-dimensional spaces of PG(3t + 2, ¢), any three of which span
PG(3t + 2,q) (see Casse and Wild (1983)). The connections with the space
S2(M41(GF(g))) allow the use of the projective t-spread set defined in Chap-

ter Three.

For a k-set of PG(3t + 2,¢q), it is known that k < ¢tt! 4+ 2 if ¢ is even and
k < gt*t1+1if g is odd. The only known examples of (¢*+! 41)- and (¢! +2)-sets
are constructed in Thas (1971) as follows. Let o denote the field automorphism
o1z — 2% of GF(¢'T!). Let II be a plane of PG(3t+2, q'*1) whose t+1 conjugates
ILII°,...,1I° span PG(3t+2,¢*t!). Such a plane II is called imaginary. Then II
gives rise to a t-spread of PG(3t + 2,¢) all of whose elements meet it in a unique
point. The partial t-spread comprising all the elements of the t-spread meeting II
in the points of a (¢*+1 + 1)- or (¢*+! 4 2)-arc are a (¢'*! + 1)- or (¢"+! +2)-set of
PG(3t +2,q). The points of the plane Il are a partial indicator set for the partial
t-spread whose indicator set is II. In a similar way, a k-arc of PG(2,¢'™) gives

rise to a k-set of PG(3t + 2, ¢).

The converse is an interesting question. Given a k-set K (with possibly some

restriction on the size of k) of PG(3t+ 2, q), is there always an imaginary plane II



of PG(3t +2,¢**!) meeting the extension of every element of K? Or equivalently,
is every k-set K contained in a regular ¢-spread of PG(3t + 2,¢)? This question
has been addressed by, for example, Casse and Wild (1983), Casse et al (1985),
Wild (1986) and Declerck et al (1987). They have shown that under certain
circumstances, a k-set is contained in a regular t-spread of PG(3t + 2,4) or, in

other words, arises from the construction described above.

We turn to partial t-spreads which correspond in the same way to (k,n)-
arcs of projective planes. The above connection between partial ¢-spreads and
k-arcs suggested a study of (k,n)-arcs of projective planes by the same methods,
hopefully leading to examples of maximal (k,n)-arcs, or to demonstrations of the
non-existence of these maximal (k,n)-arcs in projective planes of certain orders.
The appropriate set of t-dimensional subspaces in PG(3t + 2, ¢) will be called a
(k,n)-set. A (k,n)-set of PG(3t+2,q) is defined to be a geometric partial ¢-spread
of PG(3t + 2,q) which satisfles the additional property: no (2t + 1)-dimensional
subspace of PG(3t + 2, ¢) contains more than n elements of X, but there is some
(2t + 1)-dimensional subspace containing exactly n elements of K. It is shown that
a (k,n)-set has at most (n — 1)¢*t! 4+ n points, and that sets of this size (called
magzimal (k,n)-sets) can be constructed as above by taking a maximal (k,n)-arc

in the plane II, provided such an arc exists.

The question of existence of maximal (k, n)-sets is therefore closely linked with
the question of existence of maximal (k,n)-arcs. It is an open question whether,
for 2 < n < gt*! — 1, there exist any maximal (k,n)-arcs in PG(2,¢**!) with ¢

odd, and hence whether there exist any maximal (k,n)-sets in PG(3t + 2, ¢).

As in the case of k-sets of PG(3t + 2, q), the following question is of interest:

Do there exist maximal (k,n)-sets of PG(3t + 2,¢) which do not arise from the



above construction using a (k,n)-arc of an imaginary plane II? This question can
be rephrased in another way: Is every maximal (k,n)-set contained in a regular ¢-
spread of PG(3t+2,¢)? In Chapter Four we obtain some results towards answering

this question.

The theory presented in this thesis is an extension of the existing theory
of t-spreads. Thus any known use of t-spreads of PG(2t + 1,q), especially with
regard to regularity, spread sets or indicator sets, can now be examined for possible
extensions to the case of t-spreads of PG((s +1)(t+1)—1,¢). A few ideas on this

theme are collected into Chapter Five.



CHAPTER ONE
PRELIMINARIES AND FUNDAMENTAL CONCEPTS

1.1 PROJECTIVE SPACES AND VECTOR SPACES

In the study of projective geometry, especially from the algebraic point of view,
it is often useful to represent an n-dimensional projective space PG(n,q) over
GF(q) by an (n + 1)-dimensional vector space Vn+1 over GF(g). This equivalence
is explained in Hirschfeld (1979) and briefly is as follows:

Each point P of an n-dimensional projective space PG(n, q) is represented by
an equivalence class of (n + 1)-tuples of elements of GF(q), not all zero, written

as column vectors

P = {p(zq,21,- - ,zn)T : p € GF(q) — {0}}

where T denotes the transpose of a vector or of a matrix. Interpreted as an
equivalence class of points of an (n+1)-dimensional vector space Vn41 over GF(g),
this set of (n+1)-tuples is a line of V41 through the origin (0,0, ..., 0)T, excluding

the origin.

An m-dimensional subspace of PG(n,q) is a set of points all of whose repre-
senting vectors, together with the zero vector, form an (m + 1)-dimensional sub-
space of Vn43. We will adopt the following convention with regard to subspaces

of PG(n,q) having no common point.

1.1.1 Definition
Two subspaces S; and Sy of PG(n,q) are called skew if they have no common
point in PG(n, q). The corresponding subspaces S] and S3 of Va1 have only the

zero vector in common, and we shall say that S} and S; are skew also.

10



In this way two subspaces are skew if and only if as projective subspaces they

are disjoint, and as vector subspaces they have only the zero vector in common.

We will also be using the idea of the direct sum of two vector spaces, say Vp
and V,, of dimensions n and m respectively. The direct sum of V, and Vp, is
Vn @vm = {(-'15171:‘2,- res Ty Y1,Y2, ... ,ym)
(21,%2,...,%n) € Vn and (y1,¥2,---,Ym) € Vm}-

The point (z1,2,...,Zn,Y1,Y2,.--,Ym) is often written as

(21,22, -, ) © (Y1, U2, 1 ¥m)

The direct sum is an (n + m)-dimensional vector space over GF(g), and contains

the subspaces
S ={(z1,22,...,%n,0,0,...,0) :

(z1,%2,...,Zn) € Vn}

and
52 ={(0,0,...,O,yl,yz,...,ym):

(y1,¥2,--->Yn) € Vm}
which are isomorphic to V, and V,, respectively, and these isomorphic spaces are

sometimes identified. This definition is extended inductively to the direct sum of

a finite number of vector spaces.

In the following, the vector e; of a vector space V, will denote the vector with

1 in the sth position and with 0 in every other position.

The next result appears in Bruck and Bose (1964) in the special case of s = 1.

We will require the extended form in Section 3.2.

1.1.2 Lemma

Let V(s41)(2+1) be an (s+1)(¢+1)-dimensional vector space with a subspace V,(141)

11



of dimension s(t + 1) spanned by the (¢ 4 1)-dimensional subspaces A;, 42,..., 4,
of V(s+1)(t4+1)- Let B be a (t + 1)-dimensional subspace of V(st1)(t+1) skew to
Vs(t41)- Write V(s41)(141) as the direct sum of the spaces Ay, As,..., A, and B,
so that any element of V(,41)(t41) can be written as a1 @ a2 @ --- S a, @ b where
a; € A; for i = 1,2,...,s and b € B. Conversely any vector of this form is an
element of V(y41)(¢+1)- Suppose there exist s non-singular linear transformations
from A; onto each of A;, Az,..., A, in turn, denoted by
(1) : A1 — A;
ar a?.

Let C be any (t + 1)-dimensif)nal subspace of V(,41)(t+1) skew to Vyz41) and to
B, with the additional property that it is skew to each of the s(t + 1)-dimensional
spaces spanned by B together with s — 1 of the spaces A;,As,...,A4,. (Such a
space certainly exists, for example if each A; has a basis {mgi), :cii), - ,:cgi)} and

B has a basis {yo,%1,--.,y:} then a suitable such space C' would have basis
0P @02 Oy, s @ @ @2l Bu))

Then there exists a unique non-singular linear transformation
, . Al — B

!
a—a

such that the linear transformation
a— ab @a(z)ea-”@a(s)@a'
maps A; onto C.

Proof: Since a linear transformation is determined by its action on a basis,

it is enough to show that there exists a basis

{(1) (1) ) (2 (2) al?

a a a a a a(s) (s)
1 y 2 [ ] t+1, 1 ) 2 g ey t+1, ------ ) 1

()
,az ,...,at+1,b1,b2,-..’bt+1



of V(s+1)(t+1) such that

Al = lin {a(11)7 agl)a 3 £_1+_)1}

A, =lin agz),ag), - aﬁ_)l},

4, =tin{af?,a{?,... A
B =1lin{b,b2,...,bey1} and
c=tin{a’ o6 - @d’ ob,d’ 0o’ @ @ Bbay...... ,
atth @ ag?}-)l ®-- @a}, ® bt+1}
Then the required linear transformation ' is
a1y = B

ag-l) — b;, forj=1,2,...,t+1

We do this by choosing a basis for C, and then since the space V(,41)(t+1) is the
direct sum of A3, As,..., A, and B each basis element of C' is uniquely expressible

as a direct sum of elements of Ay, Asz,..., A, and B. In this way, suppose that
C =lin {61,62, B ,Ct+1}
zlin{ PP 0dob,d0d? @0l @b, ...... ,

o @e, 00 ol @b}

where ag-i) € A; fori =1,2,...,sand j = 1,2,...,t+ 1, and b; € B for each
7=1,2,...,t+ 1. We must show that the set of vectors {a_(ii) c3=1,2,...,t+1}
is a basis for the space A; for each ¢ with i = 1,2,...,s, and that the set of vectors
{bj :5 =1,2,...,t+ 1} is a basis for B. Then since V(,11)(1+1) is the direct sum
of A;,As,...,A, and B, the set of all these vectors is a basis for V(s41)(1+1). Now,
none of the vectors b; may be zero since C is skew to Vy(41), and no vector a( )

may be zero for ¢ = 1,2,...,s and j = 1,2,...,t+ 1 since C contains no point
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of the space spanned by B and the set of spaces A;,...,Ai—1,Ait1,...,A4;. We
now show that {b; : j = 1,2,...,t+ 1} is a linearly independent set of vectors.
Consider the equation

t+1
Zﬂibi =0, where 3; € GF(q) for:=1,2,...,t+ 1.

=1
Suppose that A; has basis {z1,22,...,z¢+1}. Then
t+1 t+1
Zﬂi(bi & z;) = Zﬂixi & 0.
i=1 i=1
The vector on the right hand side is contained in A; ® 0 and the vector on the left
hand side is contained in (4; @ B). Now A; & 0 and (4; ® B) have only the zero

vector in common so that

t+1 t+1

Zﬂi(bi ® ;)= Zﬂi«’ci ®0=0®0.

=1 =1
As {z1,z2,...,2¢+1} is a basis for A;, we have that 8; =0forall: =1,2,...,t+1
showing that {by,bs,...,bi+1} is a basis for B. The arguments for showing that

the set of elements {agi), agi), ey agi)} is a basis for A; for each ¢ are analogous.nD

Note: The proof follows easily in the case of s = 1. The space Vayq2 is
spanned by A; and B. Any space skew to both of them has basis of the form
{a1®b1, as®bs,...,a1+1Dbi+1} and none of a; or b; may be zero. Then considering
linear combinations of the a; and the b; establishes linear independence, recalling

that A;, B and C have only the zero vector in common.

We shall sometimes define incidence structures from our projective spaces.
An incidence structure is a triple Z = (P, B,I), where P and B are disjoint non-
empty sets and I C (P X B). We normally refer to the elements of P as points
and the elements of B as blocks or lines. If p € P, € B and (p,!) € I then we say

that p is incident with /, and more commonly that p lies on [ or I contains p. If [

14



and I, are two blocks of an incidence structure we say that I; meets Iy if they are
mutually incident with at least one point. We define I; N> to be the set of points

mutually incident with both blocks, and we say that [ and Iy meet in 1] N ls.
An isomorphism from T = (P,B,I) toI' = (P',B’',I') is a map
¢: PUB— P UB'

such that ¢(P) = P', ¢(B) = B' and (p,!) € I if and only if (p',!') € I' for all
p€ P andl € B.

1.2 t-SPREADS OF PG(n,q)

In this Section we will give a brief introduction to those concepts regarding t-
spreads of PG(n,q) which we will use in the following chapters. There is a good
collection of material on t-spreads contained in Dembowski (1968) and Hirschfeld

(1979).

1.2.1 Definition [Segre (1964), p23]
A t-spread W of PG(n,q) is a set of t-dimensional subspaces such that every point

of PG(n,q) is contained in exactly one element of W.

1.2.2 Theorem [Segre (1964), p23-25]
The space PG(n,q) contains a t-spread if and only if ¢ + 1 dividesn + 1. If W is
a t-spread of PG((s +1)(t + 1) — 1,q) then

Wl =3 g,
=0

Proof: Let W be a t-spread of PG(n,q). Since the space PG(n,q) is the

disjoint union of the subspaces in W, the number ﬂ%——l of points of PG(n,q)
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t+1

must be divisible by the number 97_1'—1 of points in a t-dimensional subspace.

This occurs if and only if ¢ +1 divides n+ 1, so that n = (s +1)(t+1) — 1, and the

i . . (a+1)(t+1) _
number of elements in the spread is the quotient th“__l_l of these two values.

For the converse, we will construct a t-spread of PG((s+1)(t+1)—1, ¢) follow-
ing the presentation in Hirschfeld (1979), Theorem 4.1.1, p72. Let K = GF(¢**!)
be a field extension of F' = GF(q), so that K = F(a). The elements 1,a,0?,...,a}
are linearly independent over GF(g), and any element (; of GF(¢'*!) may be writ-

ten uniquely as
¢ = Tio + Tira + -+ + z;0t, where z;; € GF(q).

In this way, an (s + 1)-tuple of elements (o, (1,...,(s) of GF(g**t!) gives rise to

the following ((s + 1)(t + 1))-tuple of elements of GF(q):

(3300,:1701,. ey T, L1059 T2y e e g LAty o e e v s Lg0yLsglye - ,.’1731).

We can interpret this ((s 4 1)(t + 1))-tuple as homogeneous coordinates of a point
in PG((s+1)(t4+1)—1,q), and similarly a point of PG((s+1)(t+1)—1,¢) is given
by an (s+1)-tuple of elements of GF(¢**!). We choose s+ 1 elements 7,71, ..., 7s

of GF(¢'*!), not all zero, and consider the set of equations in GF' (¢**1) given by

If we now write each element of GF(g'*!) as
(i =zio +Taa+ -+ zia!, zij € GF(q)
7 =yjo +yjra+ - +ya’, yix € GF(g),

then we obtain s(t + 1) linearly independent equations in the variables z;;. This

is because there are s linearly independent equations of the form

TiCj = TjCia for 7‘7.7 € {0’13' .- 73}
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involving elements of GF(¢**!), and each of these gives rise to ¢ + 1 equations
in elements of GF(g). These s(t + 1) equations in the variables x;; determine a
subspace of PG((s +1)(t +1) — 1, ¢) of dimension (s + DE+1)-1—s(t+1)=t.
Multiplying each element of the (s + 1)-tuple (70,71,...,7s) by an element of
GF(q**1) gives another (s + 1)-tuple defining the same ¢-dimensional subspace of
PG((s +1)(t +1) — 1,9), so that a point (7o,...,Ts) of PG(s,¢"*!) determines a
t-dimensional subspace of PG((s + 1)(t + 1) — 1,¢). Conversely a t-dimensional
subspace of PG((s + 1)(t + 1) — 1,¢) determines a point of PG(s,¢*t"). The set
of t-dimensional subspaces of PG((s + 1)(t + 1) — 1,¢) determined by all points
of PG(s,qtt?!) is a t-spread of PG((s + 1)(t + 1) — 1,¢). To see this, note that
PG(s,q"*?) has

(s+1)(t+1) _ 1
N=4

gt —1

points, so we obtain N ¢-dimensional subspaces of PG((s +1)(t +1) — 1,¢). This
is the number of elements of a t-spread and it remains to be shown that the
t-dimensional spaces we have constructed are disjoint. Each point of the space
PG((s + 1)(t + 1) — 1,¢) lies in at least one such +t-dimensional space, for we
can find the corresponding (s + 1)-tuple (¢o, (1, ..,(s) of elements of GF(q't1),
and produce equations of the above type in (; and 7;. The number of points
of PG((s + 1)(t + 1) — 1,q) covered by the above t-dimensional subspaces is N

multiplied by the number of points in such a ¢-dimensional subspace, or
q(s+1)(t+1) -1 y qt+1 -1
gttt -1 g—1

which is exactly the number of points in PG((s+1)(t+1)—1,¢). The ¢-dimensional

subspaces must be disjoint and so form a t-spread of PG((s +1)(t+1)—1,¢). O

The following idea of a geometric t-spread appeared in both Baer (1963) and
Segre (1964), p32, in relation to partitions of abelian groups or as a property of

the t-spread constructed in the proof of Theorem 1.2.2.
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1.2.3 Definition [Beutelspacher (1975), p212]

A t-spread W of PG((s + 1)(t + 1) — 1,¢) is called geometric if for every pair of
distinct elements X,Y of W the elements of W are either contained in or are skew
to the join < X,Y > of the spaces X and Y. The elements of W contained in
< X,Y > form a t-spread of < X,Y >, called the t-spread induced on < X,Y >
by W.

For a geometric t-spread W of PG(n, q) let T be the following incidence struc-

ture:
- the points of T are the elements of W,

- the blocks of T are the subspaces < V,V' > for any two distinct elements V
and V' of W, and

- the incidence in 7 is set-theoretic inclusion. Then the following holds:

1.2.4 Theorem [Segre (1964))
(1) If the space PG(n,q) contains a t-spread then it must contain a geometric

t-spread. By Theorem 1.2.2, this occurs if and only if ¢ 4 1 divides n + 1.

(2) If W is a geometric ¢-spread of PG((s +1)(t +1) — 1, ¢) then 7 is a projective

space of order ¢**t! and dimension s.

Proof: (1) The t-spread constructed in the proof of Theorem 1.2.2 is in fact
geometric.
(2) This follows by checking that the incidence structure 7 satisfies the axioms for

a projective space, for example those appearing in Hirschfeld (1979), p39. m]
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1.3 THE SEGRE VARIETY SV,41,41 IN PG((s +1)(t +1) —1,9)

The Segre variety SVs41,¢4+1 appeared first in the work of C. Segre in 1891 (see
Segre (1891)), where it was studied in projective spaces over infinite fields. The
Segre variety is also referred to as the Segre manifold or the Segre product of
two spaces S; and S, of dimensions t and s respectively. For a discussion of the

classical Segre variety over an infinite field, see Burau (1961) or Hodge and Pedoe

(1952).

The theory is still valid over finite fields, giving the Segre variety in the finite
projective space PG((s + 1)(t + 1) — 1,¢). There is a close connection with the
theory of spreads of PG((s+1)(t+1)—1,¢) by t-dimensional or by s-dimensional
subspaces. This connection allows us to generalise the known theory of 1-spreads of
PG(3,q), in a natural way. In the case of PG(3,¢) when s =1 =1, regularity of a
1-spread is defined using the idea of a regulus of lines, which is related to the Segre
variety SV 2. In the general case, regularity of a t-spread of PG((s+1)(t+1)-1,q)

is defined in an analogous way but using the Segre variety SVs41,141-

Here we investigate the behavior of the Segre variety over the finite field

GF(g).

Let S; and S, be projective spaces of order ¢ and of dimensions ¢ and s re-
spectively, and suppose that they have as systems of homogeneous coordinates
respectively (yo,¥1,.--,y:) and (2o,21,...,2,). Consider the ((s + D +1)-1)-
dimensional projective space PG((s 4+ 1)(t + 1) — 1, ¢), with homogeneous coordi-
nates

(200, To1s- - Tts)-
The set of points of PG((s + 1)(t + 1) — 1,¢) with z;; = y;z; for all1 =0,1,...,1

and j =0,1,...,s is a variety in PG((s +1)(t +1) —1,¢), called the Segre variety
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SV3+1,1+1 in PG((S + 1)(t + 1) -1, q).

In the following, we will occasionally use semicolons in place of commas to
break up the coordinate (s + 1)(t + 1)-tuple
(xOO, o1y 7:1:1‘.9)

into t + 1 blocks of s 4+ 1 coordinates each:

(200, Z01y -+ 3 L085T105 L11se -y Tlgjoeese- $T40, Tely- -« Lts)-

This has no formal significance, it is just done for ease of notation.

1.3.1 Lemma

(1) The Segre variety SV 41,t4+1 has two systems of linear subspaces of order ¢ lying
on it. There are ¢* +¢*~1+---4 ¢+ 1 spaces of dimension ¢, each in projective
correspondence with S; and each determined by one point (20,21, .., zs) of
S,. There are ¢t +¢*~* +--- 4+ ¢+ 1 spaces of dimension s, each in projective

correspondence with S, and each determined by one point (yo,y1,. - - ,yt) of

St.

(2) The spaces of each system are skew and there is one space of each system
through any given point of §V,41,¢+1. Therefore a space of one system meets

each space of the other system in a unique point.

(3) The Segre variety SV,41,141 has exactly

(@ +¢ 7+ kgD T+ gD

points.

Proof: (1) Fix a point (2}, 24,...,2,) of Ss, and consider the set of points of

SV3+1,H.1 given by

' ! ', ! ' ', . ' ' !
{(¥020, Y0215 - - » Y0253 Y120, Y1215+ =+ 1 Y1255+ v v Y120, Y121, - -1 YtZg)}
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for yo,y1,..-,yt € GF(q), not all zero. This set of points is a {-dimensional
subspace of PG((s + 1)(t + 1) — 1,q) since it is spanned by the ¢ + 1 linearly

independent points

(20,275 +->25;0,0,...,0;...... ;0,0,...,0),
(050 . g X05Zs Bl - 22 0 0 5. . 5 05 e o e ;0,0,...,0),
(0,0,...,0;...... :0,0,...,0;20,21,..,25)

It is in projective correspondence with the t-dimensional space S; with homoge-
neous coordinates (yo,y1,.-.,Y:). Lhere are ¢° + g* 1 +---+ ¢+ 1 choices for the
point (z},2},...,2.) of S, so there are ¢° + ¢°~! 4 -+ + ¢ + 1 such ¢-dimensional
spaces on SV 41,¢4+1. In an analogous way we fix a point (yg,y1,- -, Yz) of St, then

the set of points of V41,141 given by

! ’ T ' 1. ) ! '
{(yozoayozla"'7y0z81y1z03y1217"-’ylzaa """" 1ytz03ytzla"',ytzs)}

for zo,21,...,2s € GF(gq), not all zero, forms an s-dimensional subspace of the

space PG((s+1)(t+1)—1,9) since it is spanned by the s+ 1 linearly independent

points
(¥9,0,--+,0591,0,...,0;...... :44,0,...,0),
(0,4,0,...,0;0,y7,0,...,0;...... :0,v;,0,...,0),
(0,...,0,90;0,...,0,973; ... :0,...,0,4;)-

Each such s-dimensional space is in projective correspondence with the space S,
with homogeneous coordinates (zg, 21, . . -, Zs)-

(2) Given any two distinct points (y§, 45, .-.,y:) and (¥, y1,-.-,y¢) of St, the s-
dimensional spaces that they define are skew, and similarly any two t-dimensional

spaces on SV,41,1+1 are skew. The point

[ A Y | [ I R R | [ U I A [
(yOZanOzla"')yozmylzo,yl‘zl,"-7ylzsa """ 1Yt2or Ye21y - - -1 Yt2s
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lies on the t-dimensional space of SV41,¢+1 determined by the point (g, 27, .. -, 2;)
of S, and the s-dimensional space determined by the point (y,y1,.-.,¥:) of St,
and these spaces are unique. Conversely the #-dimensional space of SVyy1 141
determined by the point (2, 2}, ..., 2,) of S, meets the s-dimensional space deter-

mined by the point (vg,y1,-.-,Y;) of St in the unique point

P 1 P 0t 1. I 1t
(yozo,yozp---ayozs,y120ay1z1’---ay1zsa ------ yYt20s Y215 - -+ 1 Yt 2,

of SVs41,t41-

(3) The number of points of the Segre variety SV,41,141 is the number of t-
dimensional spaces on it multiplied by the number of points in such a ¢-dimensional
space. Alternatively, it is the number of s-dimensional spaces multiplied by the

number of points in such an s-dimensional space. This is

(@ +¢ 4 g+ D)@+ T+ gD,

1.3.2 Examples

The Segre variety SV 2 is a quadric in PG(3, ¢) and the Segre variety SV 3 is the
rational cubic scroll of planes in PG(5,¢). For convenience we include the trivial
cases of SV 1 which is a point, §V31 = SV1,2 which is a line, and in general

SVs4+1,1 which is a projective space of dimension s.

1.3.3 Note

By Lemma 1.3.1 (2) we see that the two systems {S,} and {S¢} of projective
subspaces lying on SV41,¢+1 are respectively a partial s-spread and a partial ¢-
spread of PG((s + 1)(¢t + 1) — 1, g), covering the same points (the points lying on
the Segre variety SVs41,:41), and such that an element of one spread meets an
element of the other spread in a unique point. This property is used in Lemma 1

of Beutelspacher (1978), where he proves that there is a t-spread in the projective
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space PG((s+1)(t+1) —1,¢) containing a partial t-spread which covers the same
points as a partial s-spread of the space. In other words Beutelspacher (1978)
has constructed a t-spread of PG((s + 1)(t + 1) — 1, q) which contains the set of
t-dimensional subspaces of a Segre variety SVs41,1+1. He uses this to prove that a

partial ¢-spread of PG(d, ¢) is contained in a t-spread of PG((d +1)(t+1) —1,9).

1.3.4 Lemma

(1) The system {S:} of t-dimensional spaces can be obtained by joining cor-
responding points of t + 1 projectively related s-dimensional subspaces of
PG((s +1)(t+1) —1,q), no t of which lie in a hyperplane. The system {S;s}
of s-dimensional spaces is obtained similarly by joining corresponding points
of s + 1 projectively related t-dimensional subspaces no s of which lie in a

hyperplane.

(2) There is a unique Segre variety SV,41,++1 containing any ¢ + 2 s-dimensional
subspaces of PG((s+1)(t+1)—1,¢), not+1 in a hyperplane. Similarly, there
is a unique Segre variety SV,41,1+1 containing s + 2 t-dimensional subspaces

of PG((s +1)(t +1) —1,q), no s + 1 in a hyperplane.

Proof: (1) We choose a convenient system of homogeneous coordinates for

the space PG((s + 1)(t + 1) — 1, ¢) so that the s-dimensional spaces are:

{(zo,z1,.-.,%6;0,...,0;...... :0,...,0): z; € GF(q)}
{(0,...,0;z0,%1,...,26;0,...,0;...... :0,...,0): z; € GF(q)}
{(0,...,05...... :0,...,0;20,21,...,25) ¢ i € GF(q)}.

For zb,z},...,2 € GF(q), not all zero, construct the ¢-dimensional space spanned
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by the points

! ! [N . .

E Tk - 2. 0l 0.0, 0. . e ;0,...,0),

©,...,0;z), 2! 1.0,...,0; 0,...,0)

PR 1 A WU Y 1 N | HI :0,...,0),
: N R ! !

(0,...,0;...... :0,...,0;20,T7,...,%5)

The set of t-dimensional spaces constructed is the set of t-dimensional spaces of a
Segre variety SV 41,¢41, and they can be used to give all the s-dimensional spaces
as in Lemma 1.3.1 (1). Similarly we can choose homogeneous coordinates for the

space PG((s + 1)(t + 1) — 1, ¢) so that the given ¢-dimensional spaces are:

{(z0,0,...,0;21,0,...,0;...... :24,0,...,0): z; € GF(q)}
{(0,20,0,...,0;0,21,0,...,05...... :0,24,0,...,0): z; € GF(q)}
{(0,...,0,20;0,...,0,21;...... :0,...,0,z:): z; € GF(q)}.

For zl,...,z} € GF(q), not all zero, construct the s-dimensional space spanned

by the points

(z4,0,...,0;21,0,...,0;...... 1 z3,0,...,0),
(0,z5,0,...,0;0,23,0,...,0;...... :0,24,0,...,0),
(0,...,0,25;0,...,0,2%;...... :0,...,0,z}).

The set of s-dimensional spaces constructed is the set of s-dimensional spaces of a
Segre variety SVs41,¢+1, and they can be used to give all the t-dimensional spaces
as in Lemma 1.3.1 (1).

(2) Through a general point of PG((s + 1)(t + 1) — 1,¢) there passes a unique
t-dimensional space meeting each of t + 1 skew s-dimensional spaces, no t in a

hyperplane. This space is called a transversal space to the s-dimensional spaces,
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and meets each of the s-dimensional spaces necessarily in a unique point. So given
t + 2 s-dimensional subspaces of PG((s + 1)(t + 1) — 1,¢), no t + 1 lying in a
hyperplane, there are ¢° + Q“"l + .-+ 4 g + 1 t-dimensional spaces meeting all
of them, each in a unique point. These ¢-dimensional spaces are pairwise skew
and together with the s-dimensional spaces they define a Segre variety SVot1 141
Similarly, through a general point of PG((s+1)(t+1)—1, ¢) there passes a unique
common transversal s-dimensional space to s + 1 skew t-dimensional spaces, no s
in a hyperplane. So given s 4 2 t-dimensional spaces in PG((s +1)(t + 1) — 1,9),
no s+ 1 in a hyperplane, there are ¢ +¢*~! +---+ ¢+ 1 s-dimensional subspaces
of PG((s + 1)(t + 1) — 1,¢) meeting all of them, each in a unique point. These
s-dimensional spaces are pairwise skew and together with the ¢-dimensional spaces

they define a Segre variety SV,11,641- m|

We now investigate the properties of Segre subvarieties of a Segre variety, an

idea which will become important later.

1.3.5 Lemma

The Segre variety SV,41,¢+1 admits Segre subvarieties SVr41,1+1 for every value of
r with 0 < r < s. The t-dimensional spaces of the subvariety are all ¢-dimensional
spaces of SV 41,441, and the r-dimensional spaces of SVr41,1+1 are subspaces of

the s-dimensional spaces of SVs41 ¢41. In particular, SV,41 41 lies in a subspace

of PG((s + 1)(t + 1) — 1,¢) of dimension ((r 4+ 1)(t + 1) — 1).

Proof: Let S, be one of the spaces of dimension s lying on SVs41 141
For any value of 7, with 0 < r < s, let S, be a subspace of S, of dimension
r. The t-dimensional spaces of SV,s41,¢+1 meeting Sy in points of S, are the
¢-dimensional spaces of a Segre variety SVr41,1+1. Each element of the system

of r-dimensional subspaces on §V 41 ¢+1 is found either by intersecting the -
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dimensional spaces of SV,41,1+1 With the s-dimensional subspaces of SV,41,¢41 Or
alternatively by finding the r-dimensional subspace of each s-dimensional subspace
of SV s41,t41 which is projéctively equivalent to the subspace Sr of S; under the

original projectivity relating the s-dimensional spaces. m]

1.3.6 Examples
(0) t =1 and r = 0. The Segre subvariety SV12 of §Vsq1,2 is just a line of the

Segre variety.

(1) t =1 and r = 1. The Segre subvariety SV 2 of §Vst1,2, 8 > 3 is a quadric
surface in a 3-dimensional subspace of PG(2s + 1,¢). For example if s = 3
then we see that the cubic scroll in PG(5, ¢) has exactly ¢*> + q + 1 quadrics
on it, each lying in a 3-dimensional subspace of PG(5,¢), and each pair of

them having a line in common, which is necessarily a line of the scroll SV3 ».

(2) t=1and r = 2. The Segre subvariety SV3 2 of SVst1,2, s 2 4 is a rational

cubic scroll in a 5-dimensional subspace of PG(2s + 1, ¢).

1.4 THE STRUCTURE OF PG(n,q%)

Lunardon (1984) used the idea of imaginary point and imaginary subspace of
PG(2t — 1,¢'). This refined the approach of Sherk (1979) who used the concept
of linearly independent direction numbers of a line to describe the same phe-

nomenon. In this Section we discuss imaginary subspaces of a general projective

space PG(n, ¢?).

1.4.1 Definition
Let K be a field extension of the field F. Then PG(n, F) is said to be embedded
in PG(n,K). If K is not equal to F' then the embedding is called proper.
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PG(n, F) is also said to be a subgeometry of PG(n,K), as in Hirschfeld
(1979), p87. For each divisor d; of d, the projective space PG(n,q%) is embedded
in PG(n,q%). A point P of PG(n,q?%) is said to lie in PG(n,q%), if when P is
normalised (so that one of its coordinates is 1), then all the coordinates lie in
GF(¢%). If ¢ is not prime there are other spaces embedded in PG(n, %) but these

shall not concern us here.

If S is a subspace of PG(n, g) then we will denote its extension to PG(n,¢%)
by S.

1.4.2 Definition

A point of PG(n,q) will be called a real point of PG(n,q?). A k-dimensional
subspace of PG(n,q%) will be called real if it intersects PG(n,q) in a subspace
of the same dimension k. A point or subspace which is not real will be called

non-real.

1.4.3 Example

Let ¢ = 2 and d = 4. Now PG(n,2%) has the two spaces PG(n,2) and PG(n,2?)
properly embedded in it. Let w be a primitive element of GF (2%), so that GF(2*)
is the set of elements {0,1,w,w?,...,w'*} where w'® =1 and w4 wi4+1=0.
Then GF(2?) = {0,1,w%,w!} with primitive element w® and GF(2) = {0,1}.
The points of PG(n,2), or the real points of PG(n, 2%) are the (n + 1)-tuples of
elements of GF(2) and the points of PG(n,2?) are the (n + 1)-tuples of elements
of GF(2?) where one of the elements is 1. The points of PG(n,2%) r;ot lying in
PG(n,2?) are those points which have at least one coordinate in GF(2*) no matter

which coordinate representation of the point is used.

Let o denote the field automorphism, called conjugation, of GF(q?), that is,
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for = € GF(q%),

o: z— .

The map o induces a collineation on PG(n,q%) which will also be called o. The
image of a point P under o will be denoted by P? and more generally the image

of a subspace S of PG(n,¢?) under o will be denoted by S°. More precisely,
0: P=(z0,%1,...,Zn)
P° =(z},z},...,z%)
and

0':S={P,‘:Pi€ S}HSU?-{P;’:P,'E S}
Note that P°* = P for all P since z¢° = & for all z € GF(¢%).

1.4.4 Definition

Given a point P € PG(n,¢%), the d points

d—1

P,P° P” ... P°

are called the conjugates of P.

1.4.5 Lemma

(1) If P € PG(n,q?) then P = P ifand only if P € PG(n,q).

(2) If Sy, is a subspace of PG(n, ¢%) then S, is fixed by o, not necessarily point-
wise, if and only if Sy, intersects PG(n,¢) in a space of the same dimension

m.

(3) If P € PG(n,q%), then P°% = P if and only if d; is a divisor of d and
P € PG(n,q%).
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Proof: (1) If z € GF(¢%) then z? = z if and only if z € GF(g) and (1)
follows since P € PG(n,q) if and only if all the coordinates of P are in GF(q)
when one of the coordinates is 1.

(2) In the special case of n = 2d — 1, this result appears as Lemma 1, p719 of
Lunardon (1984). The proof in the general case is analogous. Firstly if Sy, is
a subspace of PG(n,¢?%) meeting PG(n,q) in a space of dimension m, then it is
spanned by m + 1 linearly independent points P, P1, ..., Pm of PG(n,q). Since
P¢ = Py, P = Py,...,Pl = Pn, we see that

S =lin {P§,P’,...,Py}
= lin{Py, P1,...,Pm}

which is S,,. The converse is proved by induction. If m = 0 then Sy, is a poinf and
the property (2) is true by part (1) of this Lemma. Next suppose that any subspace
of PG(n,q%) of dimension k — 1 which is fixed by o meets PG(n, g) in a space of
the same dimension k — 1. Let Sk be a k-dimensional subspace of PG(n, ¢%) with
5S¢ = S, and suppose that Sk meets PG(n,q) in a space of dimension ¢, where
t < k. Let H; and H, be two hyperplanes of PG(n;q), so that their extensions
H, and H, are hyperplanes of PG(n,¢%). By the first part of (2) already proved,
both H; and H, are fixed by o. Suppose further that neither of Hy, H; contains
Si. Then the spaces S; = Hj N Sk and S, = H, N Sy, are both fixed by o (as H,
H, and Sy, are all fixed by o) and both have dimension k — 1. By the inductive
hypothesis S; and Sz meet PG(n,q) in (distinct) spaces both of dimension & —1,
and so S meets PG(n,q) in a space of dimension k.

(3) First suppose that d; divides d and that P € PG(n,q%) C PG(n,q?). The
coordinates of P lie in GF(¢%), and = € GF(q%) implies that 4" = z so that
P = P. Conversely if P € PG(n,q) and P°Y = P then 29 = z for each
coordinate z of P. But 2991 = 1 = or(¢"-1) for any r and « a primitive element

of GF(q%), so that z = or@* -1/ -1 But GF(¢%) has primitive element
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o2 =D/% 1) 5oz € GF(¢%) with d; a divisor of d as required. o

1.4.6 Example

We return to the Example 1.4.3. The automorphic collineation o of PG(n,2%) is

o: GF(2) —» GF(2*)
x> g
Now z2 = z if and only if z = 0 or 1, that is, if and only if x € GF(2). The
elements which satisfy z2° = z are the elements 0,1,w% and w® of GF(2?). All

elements of GF(2*) satisfy z?° = «.

1.4.7 Definition
(1) A point P € PG(n,¢?) is called imaginary if the subspace L(P) spanned by

its d conjugates P, P?,... ,P"d_1 has dimension d — 1 in PG(n, ¢%).

(2) An m-dimensional subspace Sy, of PG(n,q?) is called imaginary if the sub-
space L(Sm) spanned by the d conjugates Sm,Sm,---» S;’nd—l has dimension
d(m 4+ 1) =1 in PG(n,¢%).

1.4.8 Theorem
(1) If P is an imaginary point of PG(n,q%) then L(P) meets PG(n,q) in a space

of dimension d — 1.

(2) If Sy, is an imaginary subspace of PG(n,q?%) then L(Sm) meets PG(n,q) in

a space of dimension d(m + 1) — 1.

(3) If S, is an imaginary subspace of PG(n, ¢%) then all its points are imaginary.
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Proof: (1) Now

(P = (1 {P, P",...,P”""})”
— lin {P", o ,P”"",P}
= L(P)
and so by Lemma 1.4.5 (2), L(P) meets PG(n, ¢) in a space of dimension d — 1.

(2) Similarly _
(L(Sm))” = (lin {Sr Sty e o355 H
= lin {s;',,, .. ,s;',["l,sm}
= L(Sm),
so by Lemma 1.4.5 (2), L(Sn ) meets PG(n, ¢) in a space of dimension d(m+1)—1.
(3) Suppose that Sy, is an imaginary subspace of PG(n, ¢%) containing a point P

which is not imaginary. There exists a basis P, X1, X2,...,Xm for Si and

L(Sn) = lin {sm,s;,...,s;d“}
d—1

:lin{P,P",...,P" ,

o [
X1, X7, X7,

X, X, ... ,X"“"}
=lin {L(P), L(Xy), ..., L(Xm)}-

Now L(P) has dimension less than d — 1, so that L(Sy) has dimension less than
d(m + 1) — 1 contradicting Definition 1.4.7 (2). o

1.4.9 Theorem

Let P be a point of PG(n, ¢%). Let o € GF(g?) be such that GF(¢*) = GF(¢)(a),

so that P can be written uniquely in the form

P=Py+Pa+Pa®+ -4 Pyi_10%!
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where Py, P, ..., Ps_1 are real points of PG(n, q%). Then

L(P) =lin {P, pP° P ... ,P"d_l}

=1in{P0,P1,...,Pd_1}.

Proof: The d conjugates of P are:
P =P+ Pia+ Pya® ++++ + Pg—1a®7,
P? = Py + Pi(a?) + Py(af)* + -+ + Py_a(a)",
P = Pyt Pi(a®) + Pa(a®') -+ Paca(a®)
Pt = Byt Pt ) 4 Pa(at' ) e Paca(ed™)

This can be written as

1 1 1
o af at’”’
2 (@) e (@)
(P)“'aPa ):(PO""VPd—l) N .'
. i _. i
ol (a)th L (-ozqd D) '

where each of the elements P and P; is an n X 1 column vector over GF(q%)

or GF(q) respectively and the matrix is d X d over GF(¢?). The matrix is a

o . T o 2 d—1
Vandermonde matrix, which is invertible because the elements a,a?,a9 ,...,af

are distinct (see Finkbeiner (1960), p96). Thus, over GF(q%), the space spanned

by the columns of
(p p° P ... P"TV)

coincides with the space spanned by the columns of

(Po P1 P2 Pd-—l)

and the result is proved. o

32



1.4.10 Corollary
(1) A point P = Py 4+ Pia + Pya?® + -+ + Pj_1a% ! of PG(n,q?), where P; is real
fori=0,1,...,d — 1, is imaginary if and only if the points Po, P1,...,Pi-1

are linearly independent over GF(g) and hence over GF(¢?).

(2) If P is an imaginary point of PG(n,q%) then L(P) is the unique (d — 1)-
dimensional subspace of PG(n,¢%) containing P and meeting PG(n, ¢%) in a

space of dimension d — 1.

(3) If Sq—1 is a (d — 1)-dimensional subspace of PG(n,q), then there exists at

least one imaginary point P of PG(n,¢?) such that L(P) = Sa-1.

Proof: (1) By definition, P is imaginary if and only if L(P) has dimension
d —1in PG(n,q?). But by Theorem 1.4.9,

L(P) =]‘in{P0)P17"'an—1}

and this has dimension d— 1 in PG(n, ¢?) if and only if the points Py, P1,..., Pi—1
are linearly independent over GF(q%).

(2) This follows since the points Py, P, .., Ps—1 are uniquely determined by P.
(3) Suppose that Xo,X1,...,X4-1 are linearly independent points of PG(n,q)
such that

Sd—l = lin{Xo,Xl,. o ,Xd—l} S

Then the point

P=Xo+Xia+ X0+ + X4

is imaginary (by Theorem 1.4.9) and lies in

L(P) =lin {Xo,X],. .. ,Xd-—ll} .
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1.5 THE SEGRE VARIETY 8V, 41 IN PG((s + 1)(t +1) — 1,¢**)

In Chapters 2 and 3 (particularly Sections 2.9 and 3.9) we will be interested in
the regularity of t-spreads of PG((s + 1)(t + 1) — 1,¢), and it turns out that
this idea is closely related to the Segre variety, and also to the embedding of
PG((s +1)(t+1)—1,q) in PG((s +1)(t+1) —1,¢*"!). In this Section, therefore,
we shall investigate the properties of the Segre variety SV,41,t+1 when embedded

in the space PG((s +1)(t +1) —1,¢"t1).

In the following, let GF(¢'*!) be a field extension of GF(q), and denote the
corresponding extension of PG((s +1)(t+1)—1,¢) by PG((s+1)(t+1)—1,¢"t1).
Recall Definition 1.4.2, so that a point of PG((s +1)(t +1) —1,¢) will be called a
real point of PG((s + 1)(t + 1) — 1,¢**!). Similarly, a k-dimensional subspace of
PG((s+1)(t+1)—1,¢"*") will be called real if it intersects PG((s+1)(t+1)—1,q)

in a subspace of the same dimension k.

Recall also that o denotes the field automorphism, called conjugation, of

GF(¢'t?), that is, for z € GF(¢'t),
o:z— zi.

The map o induces a collineation on PG((s + 1)(t + 1) — 1,¢**!) which fixes
PG((s+1)(t+1)—1, ¢) pointwise, and this collineation will also be called 0. The
image of a point P under o will be denoted by P? and more generally the image

of a subspace S of PG((s + 1)(t + 1) — 1,¢"*!) under o will be denoted by S°.

Let SV,41,0+1 be a Segre variety of PG((s + 1)(t + 1) — 1,9). We extend
SVet1,e41 to PG((s + 1)(t + 1) — 1,¢*+?) to obtain SVet1,t41. This could be
achieved by first extending s + 2 of the ¢-dimensional spaces of SVs41,¢41, D0 s+1

in a hyperplane, to PG((s + 1)(t + 1) — 1,¢"*!). As in Lemma 1.3.4 (2), the
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resulting ¢-dimensional subspaces of PG((s + 1)(t + 1) — 1,¢*™") define a Segre
variety SVst1,041 in PG((s + 1)(t + 1) — 1,¢*t!). We could also have done the
same thing using s-dimensional subspaces of SV,41,141. Alternatively we could
view the equations of the Segre variety SV, 41,141 as equations over GF(¢**!), and
then 8V,41,¢41 is the set of points of PG((s+1)(t+1) —1,¢*™) which satisfy the

equations.

The t-dimensional spaces of SV,41,¢+1 extend to t-dimensional spaces of
_S_vs+1,t+17 so that S_V-s.|.1,t+1 has ¢* 4+ ¢*~! + .- + ¢ + 1 real t-dimensional spaces.
Similarly the s-dimensional spaces of SV,41,¢+1 extend to s-dimensional spaces of
SVot1,041, 50 that SVey1 141 has ¢' +¢' 71 + - - + ¢ + 1 real s-dimensional spaces.
]éut SVe41,041 has gDt 4 g(HDE=D .. 4 ¢#+1 4 1 s-dimensional spaces and

g(ttDs 4 g(+D(e=1) ... 4 g*+1 1] t-dimensional spaces. Thus it has
QD (DG 4t T (gt 4 gt e g4 )

non-real s-dimensional spaces and
q(t+1)s + q(t+1)(s—1) 4ot qt+1 +1— (qs + qs—l 4+t g+ 1)

non-real #-dimensional spaces. Since through each real point of W3+1,t+1 there
passes a real t-dimensional space and a real s-dimensional space of gl_)-3+1,t+1
(namely the extensions to PG((s+1)(t+1)—1,¢*t") of the t-dimensional space and
s-dimensional space of SVs41,¢41 through that point), no non-real s-dimensional

space or non-real t-dimensional space of @3+1,t+1 may contain any real point (see

Lemma 1.3.1 (2)).

A real t-dimensional space of S_V-3+1’t+1 has ¢t + ¢'~1 + -+ + ¢ + 1 real points

and _
q(t+1)t+q(t+1)(t-1)_|_”__|_qt+1 +l—(g g g +1)
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non-real points. A non-real t-dimensional space of 3-173+1,t+1 has
q(-t+1)t+q(t+1)(t—1)+”_+qt+1 +1

non-real points. Similarly, a real s-dimensional space of Wﬂ.l,t.*.l has ¢° +¢*~ 1+

++++ ¢+ 1 real points and

q(t+1)s + q(t+1)(s—1) ot gt 1 — (g b g+ ])
non-real points. A non-real s-dimensional space of 373+1,t+1 has

gD 4 (D=1 Ly g+ 4
non-real points.

A real point of SV,41,+1 lies on a real t-dimensional space and a real s-
dimensional space of SV,41¢+1. A non-real point lies on a ¢-dimensional space
and an s-dimensional space of ﬁ-‘g_*_l’t.}.]_, where the t-dimensional space and the

s-dimensional space are not both real. The Segre variety SV 41,041 has
<q(t+1)s gD Ly gty 1) (q(t+1)t 4t oy gty 1)

points, of which exactly

(@ +¢t+ g+ (@ +d T+ g+ 1)
are real.

Let T be an s-dimensional space of SV41,141, skew to PG((s+1)(t+1)—1,9).
The set S of the t-dimensional spaces of :S_ljs.}.l,t.*.] which are the extensions to
PG((s + 1)(t + 1) — 1,¢'*!) of t-dimensional spaces of SV,41,141 meet I in a set
Bof ¢+ ¢ V4. -4 ¢+ 1 points. Now B is an s-dimensional subspace of T

having order ¢. This is because the extensions of the (real) t-dimensional spaces
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in S meet T in a set of points which is the projective image of the set of points
of any of the s-dimensional subspaces of the Segre variety SVst1,t41, that is, an

s-dimensional projective sp-ace of order g¢.

Conversely, let B be an s-dimensional subspace of order g of the s-dimensional
space I. Then the set of ¢-dimensional spaces of SV 411,641 which meet it (each in
a point) are the extensions of the t-dimensional spaces of a Segre variety SVoq1,t41
of PG((s +1)(t+1)—1,¢) which extends as above to the Segre variety SV ot1,t41

containing the space I'.

Now a t-dimensional space of SV,41,t+1 meeting I' in a point P is real and
so contains all the conjugates P, P7, P"z, e ,P"t of P. Thus any t-dimensional
space of Ws+1,t+1 meets all of I',T7,. .. ,I“’t, each in a unique point. As these

spaces all have dimension s, they are s-dimensional spaces of §Vs41,1+1-

In this way, each s-dimensional subspace B of order ¢ of I' determines a Segre
variety SV41.¢+1 containing I' and each of the conjugates I'?, I“’z, ceey T, This
means that we have projective correspondences Ty, 72,...,7: between T’ and each
of I‘”,I“"z, e ,1'“" respectively such that the t-dimensional spaces of '§I_J-S+1,t+1
are the t-dimensional spaces joining a point P of T' to the corresponding points
P pPT2 ... P7of I'7, re* ey re' respectively. The real t-dimensional spaces of
WQHJH are exactly those spaces meeting I' in the points of B, and these are the

joins of a point @ in B to the points Q7, Q"z, . ,Q"t of I‘”,I“’z, et ,I“’t. Thus

on the points of B, the projective correspondences 71, T2,...,Tt determined by
=~ . . . 2 t
SV,41,141 coincide with the maps 0,02,...,0" from T' to each of ', T'7 ..., re
in turn.

Conversely, suppose we are given projective correspondences Ti, T2,...,Tt

from I' to each of 1'“’,1""2,. .. ,I“’t respectively. Then these determine a Segre
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variety Ws+1,t+1 containing each of I, I'?, I“’z, - ,I“’t . Since S_V—s+1,t+1 contains
¢® + ¢ 1+ .-+ + g+ 1 real t-dimensional spaces, there exists an s-dimensional
subspace B of T of order ¢ such that the projective correspondénces Tly T2y---, Tt
coincide with the maps o,02,...,0! from T to each of I'?, re’ S ,I‘”t on exactly

the points of B.

1.6 THE SPACE S,,(M.(GF(q)))

This space was introduced by Thas (1971), and we will give a short introduction to
it in this Section, using the same notation. Let Mn(GF(q)) be the set of alln xn
matrices over GF(g). There are ¢" of them, and the number of n X n matrices of
rank k over GF(q) is

k—1 ; ;
(" — ¢ )q™ = ¢°)
gk — ¢

j=0
Consider the collection of (m 4 1)-tuples of elements of M,(GF(g)), written as
column vectors, say (o, €1, - . ,Em)7, such that & € Mn(GF(q)) and, over GF(q),

€o
&1

rank | . | =n.
m
We will usually interpret this as an (m+1)n X n matrix over GF(g). We introduce

an equivalence relation on this set of (m + 1)-tuples of elements of Myn(GF(q)),

so that two such (m + 1)-tuples (.f(()i), E"),... ,E,(,i))T and (f(()j), §"), - ,55,{))71 are

equivalent if there exists a non-singular n X n matrix p over GF(q) such that
eD = ¢y forall k=0,1,...,m.

1.6.1 Definition [Thas (1971)]

The space S (M (GF(q))) is the set of equivalence classes of such (m 4+ 1)-tuples
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of elements of M,,(GF(q)), and each equivalence class is referred to as a point of

Sm(Mn(GF(q)))

The space Sm(Mn(GF(q))) reflects the “homogeneous” nature of pro jective
spaces, except that in this case the homogeneity is with respect to multiplication

by non-singular matrices.

A set of k points P, Py, .., Pe of Sm(Ma(GF(q))), with 2 < k <m +1, is

said to be in clear position if, given that P; = (5(()1‘)’ §i), e ,§$,?)T,

(1) (2) E(k)
0 0 .o e 0
(1) (2) g(k)
rank 1. 1_ T 1_ = nk.
SO

This matrix will be referred to as the coordinate matriz P12,...k of the points
Py, Ps,...,Py. If P, P,,..., P are in clear position, then they define a (k —1)-
dimensional subspace, to be denoted by Sk—1(Mn(GF(g))), of S (Mn(GF(q)))
as follows: the points of Sg—1(Mn(GF(q))) are defined to be prgcisely those points
(€0, €1y -5 €m)T of Sm(Mn(GF(g))) which satisfy

€o oy
'51 a2
.| =Pi2,. 0k

gm (647

where ai,as ..., ax vary among all the elements of M,(GF(q)) which satisfy

ay

23]

rank | . =n.

473
Now any k points Py, Ps,..., Pr of Sm(Ma(GF(g))) belong to an [-dimensional
subspace Si(Mn(GF(q))) if and only if their coordinate matrix Pj 2,...,x has rank
less than or equal to n(I+1). A subspace Sm—1(Mn(GF(q))) is called a hyperplane,

a subspace of dimension 1 is called a line and a subspace of dimension 0 is a point.
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A hyperplane has tangential coordinates [mg, 71, . .., Tm], Written as a row vec-
tor, with each matrix m; € Mn(GF(g)), and the rank of the matrix of tangential co-
ordinates is n. A point P = (£y,&1,---,&m)T and a hyperplane of Sp(MA(GF(q)))
are said to be in clear position if the matrix [moéo + m1&1 + - -+ + Tm&m] has rank

n.

1.6.2 Theorem [Thas (1971)]
There is a bijection f of the space Sm(Mn(GF(g))) onto the set of all (n — 1)-

dimensional subspaces of a projective space PG((m + 1)n — 1, ).

Proof: To any point of Sp(Mp(GF(q))) there corresponds an (n — 1)-
dimensional subspace of PG((m + 1)n — 1, ¢), defined in the following way. Let
P = (&,61,...,6m)T be apoint of Sin(M,(GF(g))). Then P is mapped under the
bijection to f(P) which is the (n — 1)-dimensional subspace of PG((m+1)n—1,q)
spanned by the n columns of P over GF(q), recalling that P has rank n. f(P)
is well-defined since if Q@ = ((o,(1,--.,¢m)T is another representation for the
point P then by definition there exists a non-singular matrix p such that for each
i=0,1,...,m we have (; = {;p which implies that Q = Pp. The columns of ) are
just the coordinate vectors of the columns of P under the change of basis reflected
in the matrix p. Thus the (n — 1)-dimensional subspace of PG((m + 1)n — 1, ¢)
spanned by the columns of @ colincides with the space spanned by the columns of

P.

Now let S,-.1 be an (n — 1)-dimensional subspace of PG{(m +1)n —1,¢) and
let p = (o, p1,- .., fin—1) be a basis for Sp—1. Then f~#(Sp_1) is defined to be
the point P of S;n(Mn(GF(q))) with coordinate matrix (o, &1, .- ,&m)T whose
columns are fig, f41,- .-, #n—1. This is well defined since if v = (vo,v1,...,Vn-1)

is another basis for Sp_; then the matrix Q = ((o,(1,---,(m)T whose columns

40



are vg,¥1,...,Vn~1 Will represent the same point P of Sm(Mn(GF(g))). Thisis
because if p is the (non-singular) transition matrix from the basis p to the basis v

then (; =&pfori=1,2,...,n. m|

Thas (1971) showed that for 2 < k < m +1, k points of Sm(Mn(GF(q))) are
in clear position if and only if the k corresponding (n — 1)-dimensional subspaces

of PG((m + 1)n — 1, ¢q) span a space of dimension kn — 1.

The points of a subspace Sk(Mn(GF(q))) correspond under the bijection
to the set of (n — 1)-dimensional subspaces of PG((m + 1)n — 1,¢) lying in a
subspace PG((k + 1)n — 1,¢). A point and a hyperplane of Sm(Mn(GF(q))) are
in clear position if and only if the corresponding subspaces Sn—1 and Spyn—1 of

PG((m + 1)n — 1, q) are skew.

In the next theorem, O; is the (m + 1)n X n matrix which in block form has
an n x n identity matrix in the it* row and zero matrices in every other row. E is
the matrix with the identity matrix in every row in its block form. A collineation
of Sm(Mn(GF(q))) is a map which involves first applying a field automorphism
to the coordinates of each point and then multiplying the coordinate vector by a

non-singular matrix of appropriate size.

1.6.3 Theorem [Thas (1971)]

Given a set of m + 2 points Py, Py, ..., Pmt1 of Sm(Mn(GF(g))) such that every
m+1 of them are in clear position, there exists a collineation 2 of Sy (Mn(GF(q)))
such that

Q0;)=P;, fori=0,1,...,m

QE) = P,.

41



CHAPTER TWO

+-SPREADS OF PG(2t+1,q)

2.1 INTRODUCTION

In this chapter we revise much of the theory of t-spreads of PG(2t+1, ¢), although
sometimes from a different point of view, setting the scene for the generalisation
to come in Chapter Three. A very useful reference for the theory of t-spreads
is Dembowski (1968) who directs the reader to the original works. More recent
texts are Hirschfeld (1979) and (1985). Thus most of the work in this chapter is
well known, with the exception of Sections 2.5, 2.8 and 2.9 which I believe to be

original.

Let W be a t-spread of PG(n, ¢) as defined in Section 1.2. In the following we
will set n = (s 4+ 1)(t + 1) — 1, since by Theorem 1.2.2, ¢ + 1 must dividen + 1. In
this Chapter we make the further restriction that s = 1, so that we are considering
only t-spreads of PG(2t + 1,¢). The case of general s will be tackled in Chapter
Three.

So for this Chapter, let W be a t-spread of PG(2t +1,¢). Thus W comprises

q'*! +1 pairwise skew t-dimensional subspaces covering the points of PG(2t+1, ).

2.2 t-SPREAD SETS

In their papers of (1964) and (1966) Bruck and Bose showed how, given a t-spread
of PG(2t +1,q), one could construct a spread set. A spread set is a set of linear
transformations of the (¢ + 1)-dimensional vector space corresponding to one of
the t-spread elements, under the correspondence explained in Section 1.1. The
linear transformations can be represented as (t + 1) x (¢.4 1) matrices, and the

set of such matrices is also called a spread set. We will in general identify a linear
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transformation of a (¢t + 1)-dimensional vector space with the (¢t 4+ 1) x (¢t + 1)
matrix that it determines. The construction of a spread set will be generalised in

Chapter Three so we give the construction of Bruck and Bose (1966) in full here.

Because our coordinate vectors are written as column vectors while Bruck and
Bose (1964) and (1969) used row vectors, our linear transformations will act by
premultiplication by a (¢ + 1) X (¢ + 1) matrix instead of postmultiplication by a
(t +1) x (t + 1) matrix. The matrices of the spread set constructed here are just

the transposes of the matrices constructed in Bruck and Bose (1964).

Let W be a t-spread of PG(2t+1,¢). As in Section 1.1 we represent the space
PG(2t +1,q) as a (2t + 2)-dimensional vector space Vas42 over the field GF(q).
Then W becomes a collection, still denoted by W, of (¢ + 1)-dimensional vector
subspaces of Va2 pairwise having only the zero vector in common and satisfying

the property that each non-zero vector of Va4 lies in exactly one element of W.

Let A, B and C be an ordered triple of distinct (¢ + 1)-dimensional vector
subspaces of V42, pairwise skew (in the usual sense that pairwise they have only
the zero vector in common). We will write V;¢42 as the the direct sum of A and B.
Then applying Lemma 1.1.2 we see that there exists a unique non-singular linear

transformation

tav—a
of A onto B such that the linear transformation

a|—>a®a'

maps A onto C. To each linear transformation X of A to A over GF(q) there

corresponds a unique (¢ + 1)-dimensional subspace J(X) of Var42 given by

J(X)={Xa®ad :a€ A}
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In particular (with the following convention for oo, and denoting the zero linear

tr_ansformation by 0 and the identity transformation by I),
J(0)=A={a:ac€ A},
J(0)=B={d :a€ A}, and
JI)=C={a®ad :ac A}.

Conversely each (+1)-dimensional subspace J of Vy¢4.2 whichis skewto A = J (c0)

has the form J = J(X) for a unique linear transformation X of A onto itself.

2.2.1 Lemma
Let X and Y be linear transformations of A into itself. Then
JX)NJ(Y)={Xa®a :a€ A and (X —Y)a =0}

={Ya®d :a€ A and (X —Y)a =0}
Proof: Suppose z € J(X)N J(Y). Then for unique elements a,b € 4,
t=Xa®d =Yba V.

This can occur if and only if @' = b’ and Xa = Yb. Now o' = V' implies that a = b
and Xa = Yb implies that

(X-Y)a=0

and the result follows. o

2.2.2 Corollary

Two spaces J(X) and J(Y') are skew if and only if X — Y is non-singular.

Proof: J(X) and J(Y) have only the zero vector in common if and only if
the equation

(X-Y)a=0
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has only the trivial solution a = 0. This occurs if and only if the matrix X —Y is

non-singular. m]

Now let A, B and C be an ordered triple of three distinct elements of the
t-spread W. In terms of the above representation, W corresponds uniquely to a
collection C = C(4, B, C) of linear transformations of the vector space A onto itself

over GF(q) with the following properties:

(i) C contains 0 and I,

(ii) If X and Y are distinct elements of C then X — Y is non-singular, and
(iii) If b,c € A with ¢ # 0 there exists a unique X in C such that Xc=1b.

To establish these properties, first note that the spaces B and _C give rise to
the elements 0 and I of C. If X and Y are distinct elements of C, they correspond
to distinct elements J(X) and J(Y) of W. These are skew, so by Corollary 2.2.2,
X — Y is non-singular. To show (iii), recall that any element of Vai42 skew to
J(00) can be written uniquely as b @ ¢’ where b,c € A and ¢ # 0. Then b ® c'is

contained in a unique element J(X) of the t-spread W, so that
b e J(X)={Xa®d :a€ A},

and so ¢! = a' implying that ¢ = @ and b = Xc¢. These results suggest the next

definition.

2.2.3 Definition [Bruck and Bose (1964)]
A t-spread set is a set C of linear transformations of a (¢ + 1)-dimensional vector
space onto itself satisfying the following conditions:

(i) C has ¢'*! elements,

45



(i1) C contains 0 and I, and
(iii) ‘If X and Y are distinct elements of C then X —~ Y is non-singular.

We call the set of linear transformations a t-spread set instead of a spread set

to emphasise the fact that it corresponds to a t-spread.

Conditions (ii) and (iii) above ensure that every non-zero element of C is

non-singular.

2.2.4 Theorem [Bruck and Bose (1964)]
Let C be a t-spread set and let {a;i,az2,...,at+1, b1,b2,...,be41} be a basis of
a (2t + 2)-dimensional vector space Va¢42. Let J(oo) be the subspace of Vargo
spanned by the vectors ai,as,...,at+1 and for each C; € C let J(C;) be the
subspace

J(C;) =1in {Cia1 @ by, Ciaz ® b2, ..., Ciary1 ® br41} -
_Then the set
W = {J(0)} U{J(Ci): Ci €C}

is a set of pairwise skew (¢ + 1)-dimensional subspaces of Vaiy2. It therefore
represents the set of elements of a t-spread W of the corresponding projective
space PG(2t + 1,q). Conversely every such t-spread may be represented in this

manner by a t-spread set.

Proof: The t + 1 vectors spanning each of the spaces J(co) and J(C;) for
C; € C are linearly independent, so each element of W is a (¢ + 1)-dimensional
subspace of Va;4+2. Now J(0o) has only the zero vector in common with each space
J(C:), and by Definition 2.2.3 (iii) and Corollary 2.2.2 we see that J(C;) and J(C})
are also skew for all i # j. Thus W is a set of ¢'*! + 1 pairwise skew (t + 1)-

dimensional subspaces of V412, corresponding to a t-spread of PG(2t+1,¢). The
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converse, that every t-spread of PG(2t + 1,¢) can be represented in this manner

is demonstrated in the construction by Bruck and Bose (1964) given above. i

2.2.5 Remark
It is worthwhile to note that in this construction of a t-spread set, a procedure of

a “non-homogeneous” nature was used. Suppose that instead of considering the

spaces

JX)={Xa®ad :a€ A}
we had used spaces of the form
J(M,N)={Ma@® Nd':a € A}

where N is a linear transformation of A and M is a linear transformation of B

then J(oo) would have arisen as
J(o0) = J(I,0)
and any other space would be

J(X) = J(X,I).

The construction of the t-spread set is reminiscent of the process of restricting

a projective line
l={(z,y):z,y € GF(q)}
to an affine line

I={(z,1): z € GF(¢)} = {(z): z € GF(q)}

by deleting the point (c0) = (1,0).
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2.3 CONSTRUCTION OF AN AFFINE PLANE OF ORDER ¢‘*!

Bruck and Bose, again in their papers of (1964) and (1966) developed a very
important technique, that of constructing an affine plane of order ¢**! from a t-
spread of PG(2t+1,q). This affine plane can be completed to a projective plane of
order ¢'*! in the usual way, and is in fact a translation plane. As this construction

will be generalised in Chapter Three, it is given in full here.

2.3.1 The construction [Bruck and Bose (1964), p88]
Let W be a t-spread of PG(2t + 1,¢), and embed PG(2t 4+ 1,¢) as a subspace of
PG(2t +2,q). We define an incidence structure Il = (P, B, I) as follows:

- The points of II are the points of PG(2t + 2,¢) — PG(2t + 1,q).

- The lines of I are the (t+1)-dimensional projective subspaces of PG(2t+2, q)

which intersect PG(2t+1, ¢) in a unique element of W, and are not contained

in PG(2t + 1, ¢).

- The incidence relation of IT is that induced by the incidence relation of

PG(2t +2,q).

2.3.2 Theorem [Bruck and Bose (1964), p88]

The incidence structure II is an affine plane of order ¢*.

Proof: The theorem is proved by checking that the incidence structure II
satisfies the axioms of an affine plane of order ¢*. The details appear in Bruck and

Bose (1964), p88-89. i

The affine plane II may be completed to a projective plane in the usual man-

ner. Since each element X of the ¢t-spread W corresponds to a class of parallel lines
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of TI, namely those containing X, we adjoin each such X to Il as a “point at infin-
ity.” The t-spread W fills the role of the “line at infinity.” Hence the corresponding

projective plane has a concrete representation in terms of this construction.

2.3.3 Remarks

(1) The affine and projective planes constructed in this Section need not be De-
sarguesian. In fact it is proved [Bruck and Bose (1966), Theorem 12.1] that
the construction yields a Desarguesian plane if and only if the ¢-spread W is

regular (see Section 2.4 for the definition of regular).

(2) It is interesting to note that the t-spread W acts like the projective line in
this construction, (compare this with Remark 2.2.5). More will be said about

this in Section 2.7 and, in the general case, in Chapter Three.

2.4 t+-REGULI AND REGULAR t-SPREADS OF PG(2t+1,q)

These are very important ideas in the study of ¢-spreads and, as they too will be

generalised in Chapter Three, a brief introduction is given here.

2.4.1 Definition [Dembowski (1968), p220-221]

A t-regulus in PG(2t 4+ 1,q) is a set R of t-dimensional subspaces such that
(1) R has ¢ + 1 elements,

(ii) the elements of R are pairwise skew, and

(i) if a line I meets three distinct elements of R, then it meets them all.

Such a line [ is called a transversal of R. A transversal meets every element
of R in a unique point, and conversely every point of a transversal belongs to a

unique element of R.
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There is a unique transversal through each point of an arbitrary element of
R, so that in particular all transversals of R are pairwise skew. The existence
of t-reguli is well known; in fact the non-degenerate quadrics of index ¢ + 1 in

PG(2t + 1, q) are always covered by reguli.

2.4.2 Lemma [Dembowski (1968), p220-221]
Given any three pairwise skew t-dimensional subspaces A, B and C'in PG(2t+1, q)
there is a unique t-regulus R = R(A, B, C) containing A, B and C.

Proof: Through a fixed point of A, there passes a unique line meeting both

B and C, necessarily in a unique point. Thus A, B and C admit
0=¢"+¢ 7+ +g+1

transversal lines {l; : i =1,2,...,0}, which are pairwise skew. The {-dimensional
spaces A, B and C determine a projective correspondence between /; and another
transversal line /; as follows. The image of the point P4 = ANl of I; is the unique
point P&j) = ANI; of ;. Similarly, the points Pg = BN [y and Pc = CNl of
I; have images Pg) = BNl; and Pg) = C N j of lj, respectively. These three
pairs of point and image determine a unique projective correspondence between
l; and l; for each j = 2,3,...,6. The space joining a point @ € l; to its images
Q. QB ... Q¥ on each of I, ls, ..., respectively is a t-dimensional subspace
of PG(2t + 1,q), and two such spaces Sg and Sg for Q,R € [; are skew. We
have therefore constructed a set R of ¢+ 1 pairwise skew t-dimensional subspaces,
each meeting each of Iy, ls,13,...,ls in a unique point. If a line of PG(2t +1,¢)
meets three elements of R then it must be one of the lines I1,13,13,...,1s since
through a point of PG(2t + 1,q) there passes a unique transversal line to two
skew t-dimensional spaces. By Definition 2.4.1, R is a t-regulus containing A, B

and C. It is unique because of the uniqueness of the projective correspondences
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2.4.3 Definition [Dembowski (1968), p220-221]
A t-spread W of PG(2t+1, q) is t-regular (or just regular) if whenever A, B,C € W,
then R(4,B,C) CW.

2.4.4 Remark

It is worth noting the connection between the t-reguli of PG(2t+1, ¢) and the Segre
variety SV 1+1- The set of ¢-dimensional subspaces in a t-regulus R together with
all the transversal lines is a Segre variety SV ¢+1 in PG(2t+1,¢). This is because,
as we have already seen, the t-dimensional spaces of the t-regulus R determine a
projective correspondence between each pair of transversal lines, and in a similar
way the transversal lines determine a projective correspondence between any pair
of t-dimensional spaces. Any three of the ¢-dimensional spaces determine the
Segre variety, and any t + 2 of the transversal lines determine the Segre variety.
It is this observation which leads to the generalisation of the idea of t-regulus of
PG(2t +1, q) to that of t-regulus of rank r of PG((s +1)(t+1)—1,¢) as we shall

see in Section 3.4.

2.4.5 Theorem
Let W be a t-spread of PG(2t + 1,¢). Then W is regular if and only if given any
line I of PG(2t 4 1,¢) not meeting any element of W in more than one point, the

elements of W meeting [ form a t-regulus in PG(2t + 1, q).

Proof: Suppose that W is regular. Let [ be a line of PG(2t + 1,¢) not
meeting any element of W in more than one point, and let A, B and C be three
distinct elements of W meeting I. Now by Lemma 2.4.2, A, B and C are in a

unique t-regulus R(4, B, C), and this t-regulus has [ as a transversal line. Since
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W is regular, R(A, B, C) is contained in W and thus the elements of W meeting
[ (which are exactly the lines of R(A4, B, C)) form a t-regulus.

Conversely, suppose that given any line [ of PG(2t + 1,¢) not meeting any
element of W in more than one point, the elements of W meeting ! form a t-regulus
of PG(2t+1,q). Let A, B and C be three elements of W and let ! be a transversal
line of A, B and C. The elements of W meeting [ form a t-regulus R(A, B, C),
the unique t-regulus containing A, B and C. Thus R(4, B,C) is contained in W

and W is regular. m]

2.4.6 Theorem

Every t-spread of PG(2t + 1,2) is regular.

Proof: Let W be a t-spread of PG(2t+1,q). Now a t-regulus of PG(2t+1, q)
has three elements, thus any three elements A, B and C of W determine a unique
t-regulus R(4, B,C) = {4, B,C} which is contained in W. By Definition 2.4.3,

W is regular. O

2.5 CONSTRUCTION OF A PROJECTIVE t-SPREAD SET

In this Section we give a construction for a t-spread set corresponding to any i-
spread of PG(2t + 1, ¢) by a method which is easier than finding a set of matrices
satisfying the requirements of Definition 2.2.3. For the approach developed in this

Chapter, all we need is a basis for each of the subspaces of the t-spread.

The projective t-spread set is constructed by an entirely different method from
that used in Section 2.2. In fact we will use the space Sm(Mn(GF(q))) defined in
Thas (1971) and introduced in Section 1.6.

Under the bijection f of Theorem 1.6.2, points of the space Sm(MA(GF(q)))
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are mapped into (n — 1)-dimensional subspaces of PG((m + 1)n —1,¢). Thus to
apply these ideas to t-spreads in PG(2t + 1,q), we need to put n = ¢+ 1 and

m = 1.

Thus a t-dimensional subspace of PG(2t + 1, ¢) gives rise to a homogeneous
pair of (¢ + 1) x (¢ + 1) matrices, or a point of §;(M+1(GF(g))). We show that
the t-spread sets of Section 2.2 arise naturally from the construction by simply
“non-homogenising” the homogeneous pairs of matrices found. The construction
given in this section has a “homogeneous” or “projective” flavour and we will call

the resulting structure a projective t-spread set.

2.5.1 The construction

A t-spread W of PG(2t + 1, ¢) maps under the bijection f ~1 (see Theorem 1.6.2)
into a set of ¢'t1 + 1 points Py, Py, ..., P+ of S1(M4+1(GF(g))), each pair of
which is in clear position. Note that the idea of clear position can only be applied
to pairs of points in S;(M+1(GF(q))) since m 4+ 1 = 2. If we choose any three
points from among Py, Pi, ..., Pyt+1, we may use Theorem 1.6.3 to map them under
a collineation of Sy(M4+1(GF(g))) to the points Op, 01 and E. Thus without loss

of generality suppose that

r=(5): n=(3) = n=())

where each submatrix is (t+1) x (t+1). Recalling that under the bijection f~*, a

t-spread element W; is the space spanned by the columns of the coordinate matrix

(1)
P ()

we see that this process is equivalent to choosing a basis (e1,ez,...,¢e2:42) for
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PG(2t +1,q) so that the t-spread W contains the ¢-dimensional spaces
Wo = lin {et+2, €43, - -, €242}
W1 e lin{el,eg, . ,6t+1} 5

Wy = lin{e; + €42, €2 + €443,- -, €41 + €2042)
and Vau42 is the direct sum of Wy and W;. Now any point P; is represented by a
column vector of two (¢ + 1) x (¢ + 1) matrices (ﬁgi), g"))T, fori =0,1,...,q¢"%.
Since every pair of points P;, P; for 4,5 € {0,1,...,¢"*'} is in clear position, the

following matrix has rank equal to 2(¢ + 1):

(4) f(i)
( ) ?i)) :
& &
These results suggest the following definition.

2.5.2 Definition
A projective t-spread set is a set PC = {(6(()’.),{9)) 11=0,1,...,¢""!)} of pairs of

(t +1) x (t + 1) matrices such that
(i) PC has ¢'*! 4 1 elements,

(ii) For each 1,

(¥)
rank <€‘(’i)) =t+1,

1

(i) If (53"), fii)) and (§éj ), §j )) are distinct elements of PC then

@ ¢
L&

A projective t-spread set is said to be normalised if it satisfies the additional

property,

(iv) PC contains the elements (0, I), (I,0), and (I, I).
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We have shown that every projective t-spread set can be normalised, which
just corresponds to choosing a convenient coordinatisation for PG(2t+1,¢). Thus
we shall usually assume that a projective t-spread set has been normalised, except
where we explicitly mention a non-normalised set. In a normalised projective

t-spread set, condition (ii) is implied by (iii) and (iv).

2.5.3 Remark

Referring again to Remark 2.2.5, the projective t-spread set of matrices arises
naturally as a set of homogeneous pairs of matrices. In this case it is easy to
“non-homogenise” to get the t-spread set of matrices, (see Theorem 2.5.5 below).
Only one t-spread element A = J(o0) is ‘lost’ in the sense that it does not have
an element of the t-spread set corresponding to it. In the standard treatment of
Section 2.2, J(0o) is recovered as the points of PG(2t 41, ¢) not lying in any other
t-spread element. In contrast, the projective t-spread set has a specific element
describing J(co). The advantages of using a projective t-spread set are more
obvious in the general case of s > 1 given in Chapter Three. In this situation, not
every t-spread has a t-spread set, and any eventual ¢-spread set comprises elements
of different natures corresponding to different ¢-spread elements. The homogeneous
form is preferable as there is only one type of element of the projective ¢-spread

set corresponding to each of the t-spread elements. For the details see Chapter

Three.

2.5.4 Theorem
Let W be a t-spread of PG(2t + 1, ¢). Then there exists a projective t-spread set,

and conversely every projective t-spread set gives rise to a t-spread.

Proof: If W is a t-spread of PG(2t+1, ¢) then writing the elements as points

of the space S1(M+1(GF(q))) yields a projective t-spread set by the arguments
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preceding Definition 2.5.2. Conversely if PC is a projective t-spread set then we
may interpret its elements as points of the space S1(M4+1(GF(g))). Since these
points satisfy Definition 2.5.2, they in turn correspond to elements of a ¢-spread

of PG(2t +1,q). o

2.5.5 Theorem
Given a projective t-spread set we may construct a t-spread set, and the t-spreads

defined by each of them are isomorphic.

Proof: Let PC = {P; = (E((,i), p) :i=0,1,...,¢"7! + 1} be a projective

t-spread set of matrices. Without loss of generality we assume that it is normalised

so that Py = (I,0), P; = (0,I) and P, = (I,I). Since for i # 0, the point P; is in
clear position with the point Py,

I W
rank (0 g?i)> = 2(t + 1).

1

Therefore it follows that the matrix fii) has non-zero determinant and the point P;
: i W\ —1

may be written in the form P; = (C;, I) where C; = f((,')(ﬁiz)) isa(t+1)x(t+1)

matrix, for i = 1,2,...,¢'"!. Note that C; =0 and C; = I.

The set C of matrices {C; : i =1,2,...,¢""'} forms a t-spread set, and in fact
the t-spread that it defines (in the sense of Section 2.2) is exactly the t-spread W

above.

To see this, first note that C has ¢**! elements and that it contains the matrices
0 and I. Second, choose two elements C; and C; of C. Since the corresponding

elements of the t-spread are skew, the corresponding points P;, P; are in clear

& &
I I
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has rank 2(¢+1) and so has non-zero determinant, and this implies that the matrix

(C; — C;) has non-zero determinant.

To show that C is a t-spread set for W, we need to remember how the bijection
f of Theorem 1.6.2 maps a point of the space 51 (M+1(GF(q))) to a t-dimensional
subspace of PG(2t + 1,¢). The point P; = (C;, 1) is mapped to that subspace S;

spanned by the columns of the matrix

(%)

T

The columns of the matrix have 2(t + 1) entries and are points of the 2(¢ + 1)-
dimensional vector space say Va2 which corresponds to the projective space
PG(2t+1,q), and since the matrix has.rank t+1, the ¢+ 1 points corresponding to
the columns are linearly independent and so span a (t + 1)-dimensional subspace
of Varrz. We show that this space is J(C;), then the two t-spreads have exactly

the same elements.
Let the subspace of Vai4+2 corresponding to the point Py be
J(o0) = {(z1,2%2,...,Te+1,0,. .. ,0)T : z; € GF(g), not all zero}
and let the subspace corresponding to the point P; be
J(0)={(0,...,0,z¢42,Te43,---  T2eq2)] : zi € GF(q), not all zero}.

We now write Varys as the direct sum J(co) & J(0). As a (¢ + 1)-dimensional

vector space, consider J(co) to have the basis
a1 =(1,0,...,0)7,

az =(0,1,0,...,0)7,

a1 =(0,0, vee ,0, l)T
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and as a (t 4+ 1)-dimensional vector space, consider J(0) to have the basis
b1 =(1,0,...,0)7,

b, =(0,1,0,...,0)T,

bey1 =(0,0,...,0,1)T.

Let ' denote the non-singular linear transformation

"1 J(o0) — J(0)

:a; — b,
so that for example
J(I) = {a; ® a; : a; € J(00)}
=5 {(scl,xz,...,xt+1,x1,m2,,...,mt+1)T : z; € GF(q), not all zero}.

Now the columns of the matrix
C;
]
are ¢; @ by, c2 ® by, ..., Cie1 ® b1 where ¢j € J(00) is the jth column of C;. As

aj is a t X 1 column vector with 1 in the jth position, ¢; = Ciaj. Thus the space

spanned by these columns is
lin {c; @ b1,c2 D ba,...,Ceq1 D big1}
=lin {Cia; ® b1,Cia; ® ba,...,Ciart1 D bit1}
= lin {Ciay ® a1, Ciaz & ay,...,Cias1 @ a't_H}

which is J(C;) (see Theorem 2.2.4). o

2.5.6 Theorem
Given a t-spread set we may construct a projective t-spread set and the t-spreads

of PG(2t + 1, q) defined by each of these are isomorphic.
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Proof: Let C = {C;:i=1,2,...,¢" '} be a t-spread set of matrices, with
C, = 0 and C; = I. Consider the set P = {P; : i = 0,1,...,¢"""} of points of
S1(My+1(GF(q))) defined as follows:

P, = <é>’ and P,-=<CI’_’.), for 1 =1,2,...,q4".

I C;
rank(o 7 ) =2(t+1)

Since

and by the definition of t-spread set

C; Cj
rank( T IJ) =2(t+1),

any pair of points of P are in clear position and so map under the bijection f of
Theorem 1.6.2 to ¢'*! + 1 pairwise skew ¢-dimensional subspaces of PG(2t +1,¢).
This is a t-spread W of PG(2t + 1, q), and the set

P={(CD):i=12...,¢"}U{(,0)}

is a (normalised) projective ¢-spread set. Theorems 2.5.4 and 2.5.5 show that
the t-spreads defined by the projective t-spread set and by the t-spread set are

isomorphic. O

2.6 COORDINATES FOR THE AFFINE PLANE II

We use the notation of Section 2.2. Let W be a t-spread of PG(2t+1, ¢), and embed
the space PG(2t+1,¢) as a hyperplane in the projective space PG(2t+2,49). Asin
Section 1.1 we represent PG(2t+1, q) as a (2t +2)-dimensional vector space Vai42
over the field GF(q), embedded as a hyperplane in the (2t + 3)-dimensional vector
space Va;43. Then W becomes a collection, still to be denoted by W, of pairwise
skew (¢ + 1)-dimensional vector subspaces of Vas42 over GF(q) which satisfles the

property that each non-zero vector of V¢4 lies in exactly one element of W.
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Without loss of generality we may give a special role to some (arbitrarily
chosen) ordered triple J(co), J(0) and J(I) of distinct elements of the t-spread W.

Then we may assume that, in the notation of Section 2.2,
W = {J(c0)} U {J(C;): C; € C}
where C is a t-spread set. Then Vaiqo = J(00)®J (0) has a basis of 2t + 2 elements

{al,ag,.. . ,at+1,b1,b2,. . ,bt+1}

and we need only add one single element e* say of Vai43 which is not in Var42 in

order to obtain a basis for Vayy3.

Each point of the affine plane II constructed in Section 2.3 is a 1-dimensional
vector subspace of Voi43 not contained in Vat42 and so has a unique basis element
of the form

ztDy de*
where y' € J(0) so that = and y are in J(co). Thus we define the coordinates
of that point of II to be (z,y). Every ordered pair (z,y) of elements of J(o0)
represents a unique point of II corresponding to the subspace  ®y' @ e* of Varqs.
By definition, a line of IT is a (t + 2)-dimensional subspace of Va¢43 meeting Voryo

in an element J of W, and so has the form
< J(z,y) >=<Jzdy De* >

provided (z,y) is one of its points, or correspondingly, the (¢ + 2)-dimensional
space contains the 1-dimensional space z @ y' @ e*. These lines may be divided

into two types:
(1) Linesy =t. If s,¢ € J(oo) the point (z,y) of Il lies on the line < J(00),(s,t) >
if and only if

t@y De* €< J(0),(s,t) >=<{a: a€ J(o)},sdt e >
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which occurs if and only if ¥’ = ¢’ thus if and only if y = ¢.

(2) Lines (z —s) = Ci(y —t). If 5,4 € J(c0) and J(C;) € W, the point (z,y) lies
on the line < J(C;),(s,t) > if and only if
z®y De* €< J(C)),(s,t) >=< {Cia+a': a€ J(c0)},sDt' De* >

if and only if y = a+t and ¢ = Cia+s, that is, if and only if (z—s) = Ci(y—1).

We have specified all the points and all the lines of II by coordinates and linear
equations, respectively. We can actually introduce a coordinate ring (R,+,-) by
taking R to be J(co) and defining addition in R to be the addition in J(co) as a
vector space. To specify multiplication in R we choose a non-zero element of R

or, equivalently, we must pick a unit point of Il. We pick the point
I=(L)=101 e

where 1 is any fixed non-zero element of R. To each z € R there corresponds a
unique matrix X € C such that £ = X1, by property (iil) immediately following
Corollary 2.2.2. Then for z,y € R we define

zy = (X1)y = Xy.

2.6.1 Theorem [Bruck and Bose (1966)]
The system (R, +,) is a coordinate ring for II, and (to within isomorphism) every
coordinate ring of the affine plane II (though not of the corresponding projective

plane) may be obtained in this manner.

Proof: See Bruck and Bose (1966), p158-159. o

2.6.2 Theorem [Bruck and Bose (1966)]
(1) The system (R, +, -) is a division ring precisely when C is closed under addition,

and then (C,+) is an abelian group isomorphic to (R, +).
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(2) The system (R,+,") is a nearfield precisely when C is closed under multipli-
cation, and then (C — {0}, ) is a group isomorphic to (R — {0}, ).

(3) (R,+,-) is a field precisely when (C, +, ) is a ring, and then (C,+,-) is a field
isomorphic to (R, +,").

Proof: See Bruck and Bose (1966), p159. 0

2.6.3 Corollary [Bruck and Bose (1966)]
Let W be a t-spread of PG(2t + 1, q) with t-spread set C.
(1) The t-spread W is Desarguesian, that is, the affine plane II defined by W

is Desarguesian, if and only if the system (C,+,-) is a field isomorphic to

GF(¢*).

(2) Further, C contains the set of matrices {kI: k € GF (¢)} which is isomorphic
to GF(q).

Proof: (1) See Bruck and Bose (1966), Theorem 11.3, p161.
(2) See Bruck and Bose (1966), p163. o

2.7 REGULAR t-SPREADS OF PG(2t +1,q)

The affine plane, and hence also the projective plane, constructed from a t-spread
of PG(2t+1,q) are Desarguesian if and only if the system (R,+,-) is a field, that
is, if and only if the t-spread set C is a field. In this case, as mentioned in Remark
(2) of 2.3.3, the t-spread W is acting like a projective Galois line, the line at
infinity of the translation plane constructed from the t-spread. We see that the set
of matrices C is a field of order ¢**! and is a non-homogeneous coordinatisation
of this line. By Theorem 1.2.4 (2),.if W is geometric then it is isomorphic to

the projective line, and in fact the t-spread elements provide an affine coordinate
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system for this projective line. What we have done in this Chapter is to provide
projective coordinates for such a line by using the projective t-spread set. Note
that there is a slight difficulty when we try to use the projective ¢-spread set as
projective coordinates for the line, for the pair (X, I) is projectively equivalent to
the pair (pX,p) where p may be any non-singular (t + 1) x (¢t + 1) matrix. We
are no longer assured that the projective “coordinates” (pX, p) are elements of the
field C. To get a projective coordinatisation for the projective line we just allow a

pair (X, I) or (I,0) to be multiplied only by elements of C.

2.8 t-SPREAD SETS AND INDICATOR SETS

Sherk (1979) used a t-spread set of a t-spread W of PG(2t + 1,¢q) to construct
a set of ¢'*! points in an affine space AG(t + 1,¢'"1) called an indicator set
for W. Lunardon (1984) produced a geometric definition of indicator set, and
showed that Sherk’s indicator set can be regarded as an example of the geometric
construction for a particular choice of indicator space. Lunardon’s main criticism
of the construction used in Sherk (1979) was that he needed to know a t-spread set
for the t-spread, or equivalently, a quasifield coordinatising the translation plane
constructed from the t-spread. In the light of Section 2.5, this criticism is no longer
valid since given any t-spread, we just need to identify points spanning each of its

elements and this immediately gives a t-spread set.

In this Section we re-examine the construction of an indicator set as in Sherk
(1979). We modify the construction slightly in view of the ideas presented in this
Chapter, giving in some sense a more natural definition of indicator set without
losing the spirit of the theory as introduced by Bruen (1972a), Sherk (1979) and
Lunardon (1984). The modification involves using a projective t-spread set to

define the indicator set, plus another minor alteration. The main advantage of the
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modification is that the new construction can be generalised in a natural way to

t-spreads of PG((s +1)(t + 1) — 1,9).

This new definition is more natural in another sense because it gives the
indicator set in a geometric setting similar to that in Bruen (1972a) and Lunardon
(1984), where the indicator set is found by intersecting the t-spread elements with

a certain affine space. Thus the algebraic and the geometric approaches are unified.

2.8.1 Construction of an Indicator set [Sherk (1979)]
Let W be a t-spread of PG(2t +1,¢) and let C = {C; : ¢ = 1,2,...,¢"t1} be a

t-spread set for W, where

) (8) (2)

€11 €y 7 G
(9) () ()
C; = €21 €2 77 Catpa
(i) (i) (i)
Ciy11 Ci+12 7 Ct41t41

and the t-spread is W = {J(C;) : i = 1,2,...,¢"t'} U {J(c0)} as before. Let
GF(q'*!) be a field extension of GF(g) and let GF(¢tt!) = GF(q)(a). Define a
set Z of points T = {P; : ¢t = 1,2,... ,qt*;l} of a (t + 1)-dimensional affine space
AG(t +1,¢'1) as follows:
Pi=(1,a,0%,---,a"C;
= (@ + o+ e,

cglz) + cg;)a + - Bl + Cgi)_lzat,

C§Zt)+1 + Cgtt)-i-la +-ot cgiltﬂat) .

Then T is called the indicator set of the t-spread W and AG(t + 1,q'"1) is
called the indicator space. The subspace J(co) is not represented by a point of

the indicator space, and this difficulty is overcome by adjoining to the indicator
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space a single ideal point, denoted by the symbol co, with the property that it lies
on every line of AG(t + 1,¢"t1). The set T* = T U {00} is called the augmented

indicator set of the t-spread W.

The direction numbers of the line joining the points P; = (p(li), pgi), e pgil

and Pj = (p(lj),pgj), . ,pgfl) are the t 4+ 1 elements

@ =), B = o), ..., (0¥ — py)-

The indicator set Z has the characteristic property that the line joining any two
of its points P; and P; has direction numbers which are linearly independent over
GF(q). To see this, note that the line joining P; to P; has direction numbers
(AV1,AVs, ..., AViy1) where Vi is the kth column-of the matrix C; — C; and A
is the row vector (1,a,a?,...,a’). These numbers are linearly independent over
GF(q) if and only if the vectors W, ..., Vi41 are linearly independent over GF(q),

which occurs if and only if the matrix C; — C; is non-singular. This follows since

C; and C; are elements of the t-spread set of W (see Definition 2.2.3).

2.8.2 Definition of the indicator set from the projective t-spread set

In order to generalise the construction of an indicator set to indicator set of a
t-spread in PG((s+1)(t+1) —1,¢), we prefer to use the projective t-spread set to
define the indicator set. This enables us to give an indicator set for a wider class
of t-spreads than just those possessing a t-spread set. The first step is to use the

projective t-spread set of a t-spread in PG(2t + 1,¢) to define an indicator set.

We are going to modify Sherk’s definition of indicator set, and the reason for

this modification is illustrated with the following example.

2.8.3 Example Thecaset=1..

Let W be a 1-spread of PG(3,q) and let PC be a projective 1-spread set for W.
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Then PC = {(I,0)} U{(Ci,I) : i = 1,2,..:,¢°} as in Theorem 2.5.6, where the

matrices {C;} form a 1-spread set. Now each matrix C isa 2 X 2 matrix over

GF(q), say
o= (4 4)-
€21 Ca2
Let GF(¢?) be a field extension of GF(g), and let GF(¢?) = GF(q)(a). The points

of the indicator set in an affine space AG(2,¢?) in the definition of Sherk given

above are

P, =(1,a)C;
= () +fla, o) +chia)
satisfying the condition that the direction numbers of the line joining any two
points of the indicator set in AG(2, ¢?) are linearly independent, or in other words

that the determinant of every matrix C; — C; with j # ¢, is non-zero.

Now we wish to use the projective 1-spread set to define the indicator set.
It would seem natural to use the following definition: The indicator set of the

1-spread W is the set of points

Qi =(L,a)(Ci 1)

_(cl +021a’ cgi.’)"‘cglz)a, 1, a)'

This is a set of g2 points lying on the space spanned by the vectors
e1,€e2, €3 + ey

which is a 2-dimensional projective subspace PG*(2, ¢*) of PG(3, ¢*) which meets
PG(3,q) in the 1-dimensional subspace spanned by e; and e3. This coincides with
the definition of indicator space given by Bruen (1972a), but not the definition of
indicator set given there since a point of this new indicator set need not automati-
cally lie on the 1-spread element that it indicates. In the notation of Sherk (1979)

the indicator space is the affine space PG*(2,¢?) — PG(3,¢) and the points of the
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indicator set are exactly the points with affine coordinates (c + cgl) ) 5 + c2 a).
What we have done is bring the algebraic construction due to Sherk (1979) closer

to the natural geometric setting used by Bruen (1972a).

Now as we have seen in Section 2.5, if we consider the element (Ci,I) of the
projective indicator set as a point of the space §1(M2(GF(g))), thenit corresponds
under the bijection f of Theorem 1.6.2 to a unique line I; of the space PG(3,9).

This line is spanned by the columns of the matrix

(%)

considered as points of PG(3, ¢), and so can be written as

={($)(2): ecrovio)

: g 2 . T
= { (o + e + 1) s AR U

This consideration suggests the following definition of indicator set I' of a

1-spread of PG(3,q). Let 7' = {Q; : ¢ =1,2,...,¢*} where

Ci 1
%=(7) ()
i ) i 3 T
= ("3&1) == 52)0" cgl) +cg2)a, L, 0‘) .
The set T' is different from the indicator set Z given by Sherk (1979), but it does
satisfy the characteristic property that if Q; and @, are points of Z' then the

non-zero direction numbers of the line Q;Q; are linearly independent over GF(q).

This follows since the direction numbers are actually
1 1 13 1 1
(2=, Q- (L) mma (- @) (3):

These are linearly independent over GF(g) because the rows of the matrix Ci-C;

are linearly independent over GF(q).
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It is interesting to note that in fact Z' is the indicator set under the construc-

tion due to Sherk (1979) of the 1-spread with projective 1-spread set

{(o,NYyu{(CF,n:i=1,2,...,¢°}.

The points Q; of I' all lie in the same indicator space, but now we have the
added property that the point Q; of the indicator set which indicates the line [; of
the 1-spread actually lies on the extension of that line. This is the description of

indicator set exactly as in Bruen (1972a).

It is natural to augment the indicator set with the point

I 1
o= (1) (o)
=(1,,0,0)T.
This is no longer an ideal point of the affine indicator space as in Sherk (1979), but

a specific point of the line at infinity spanned by the elements e; and e, giving a

more satisfactory augmented indicator set.

We now present the new construction of an indicator set in the general case
of a t-spread in PG(2t+1,¢), and show connections with the work of Sherk (1979)
and Lunardon (1984).

2.8.4 The construction

We return to the notation of Section 2.2, and suppose that A, B,C is an ordered
triple of distinct (¢ + 1)-dimensional vector subspaces of Va4, pairwise having
only the zero vector in common. Write Vo2 = A® B and let ' denote the unique
non-singular linear transformation of A to B such that the linear transformation
defined by a — a @ a' maps A onta C. Then given any linear transformation C; of

A to A over GF(q) there corresponds a unique (¢4 1)-dimensional vector subspace
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J(C,) of V2t+2 where
J(C;)={Cia®d :a € A}.

Conversely any (t + 1)-dimensional vector subspace of Vai42 having only the zero
vector in common with A may be written in this form. We know that J(C;) and
J(C;) have only the zero vector in common if and only if the matrix C; — C; has

non-zero determinant.

Let GF(g'*!) be a field extension of GF(g) and let GF(¢**!) = GF(g)().
Let PG(2t + 1,¢'t!) denote the corresponding extension of PG(2t + 1,¢). If
A is a subspace of PG(2t + 1,4q), we will denote its corresponding extension to

PG(2t +1,¢*t?) by A. To each subspace J(C;) we associate a point

1
C; o
at
= (g, ¢, a5ha)T

of PG(2t +1,¢'*1) — PG(2t + 1,q). Now each point Q; is
Qi=W +Vaa+ ...+ Viq1af
where V; i1s the ith column of the matrix
Ci
T
Since the columns Vi, Vs, ..., Viy1 are linearly independent, by Corollary 1.4.10

Q; is imaginary.

Let o denote the automorphism o : z — z? of GF(¢'™!), an also the auto-

morphic collineation of PG(2t 4+ 1, ¢) induced by o.

2.8.5 Lemma ‘
(1) 7(C) =10 {Q:, Q7. Q' }-
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(2) Two distinct spaces J(C;) and J(C;) have only the zero vector in common if

and only if the line joining the points @Q; and Q; is imaginary.

Proof: (1) Now J(C;) is a t-dimensional subspace of PG(2t+1, g't1) meet-
ing PG(2t + 1,¢) in a t-dimensional subspace J(C;). The imaginary point Q; lies
in 7(0’_,-), and by Corollary 1.4.10 (2) L(Q;) is the unique such subspace. Thus
J(Ci) = L(Qy)-

(2) Now J(C;) and J(Cj) are skew if and only if J(C;) and J(C;) are skew. This

occurs if and only if the points @;,Q7,..., Q;’t Q;, Q7. ,Q;’t span a space of di-
mension 2t +1, and this occurs if and only if the lines Q;Q;,(Q:Q;)%,-- -, (Q,-Qj)"t
span a space of dimension 2¢ + 1, that is, if and only if the line Q;@Q); is imaginary

(see Definition 1.4.7 (2)). m|

2.8.6 Remark
The points Q; all lie in the projective subspace PG*(t+1,¢"t!) of PG(2t+1, ¢'t1)

which is spanned by the vectors

t
€1,€2,.-+,Ct41,€t42 + Q€43 + - + €242

and this space meets the space PG(2t+1, ¢) in the t-dimensional subspace spanned
by the vectors ey, €3, . . ., es41. Thisis the subspace J(o0) = J(I,0) of PG(2t+1, q).

In fact each point @Q; lies in the affine space
AG*(t+1,¢") = PG*(t + 1,¢"tY) — J(o0).

Now let W be a t-spread of PG(2t 4 1,q) containing the subspace J(co).

Suppose it has a projective t-spread set

PC = {(I,0)} U{(C;, I) 1 i =1,2,...,¢"""}
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as in Theorem 2.5.6. We will denote by J(C;) either the t-spread element cor-
responding to the element (Cj;,I) itself or the corresponding (t + 1)-dimensional
subspace of Vayp2. Let the set of points of AG*(t+1, q**1) corresponding to these
t-spread elements be

1
: a
I={Qi:i=12,...,¢""} WhereQi=< ) :

at

-9

2.8.7 Theorem
In the definition of Sherk (1979), AG*(t + 1,¢'*") is an indicator t-space for the
set of t-dimensional subspaces of PG(2t + 1,q) skew to J(oo). Further, T is an

indicator set for the t-spread W' where W' has projective t-spread set

PC' = {(I,0}u{(CF,I): i=1,2,...,¢}.

Proof: The construction of an indicator t-space appeared in Sherk (1979),
p212-213. He showed that there is a one to one correspondence between the points
of AG*(t+1,¢'t!) and the t-dimensional subspaces of PG(2t+1, ¢) skew to J(o0),
as described in 2.8.4. Since

a=(F)| ¢ |- @arayz o)’

Olt

the direction numbers of the line joining any two points of Z are linearly indepen-
dent over GF(q). Thus the set of points 7 in AG*(¢ +1,¢**?) is an indicator set
for the t-spread W', see Sherk (1979), p213-215. m]

2.8.8 Theorem
The space PG*(t+1, ¢'*1).is an indicator (t41)-space and the set T is an indicator
set on PG*(t +1,¢'*!), in the sense of Lunardon (1984).
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Proof: The space

PG*(t + 1, qi"'l) =lin {61, €2,...45€141,Ct+2 =+ Qe43 4+ o4 at62t+2}

is a (t + 1)-dimensional subspace of PG(2t +1,¢"*!) which meets PG(2t+1,¢) in
a space of dimension ¢, namely the space S; spanned by e1,ez,...,er1. Further,

PG*(t +1,¢'*!) contains the imaginary point

t
P=¢e12+ aeiyz+ -+ aeay

which is not contained in S;. The conjugates P, P",...,P"’ of P span a t-
dimensional space which is skew to S; since S; = lin{es,ez,...,et+1}. Thus
we have shown that PG*(t + 1,¢'*!) is an indicator (* + 1)-space under Defini-
tion 3 of Lunardon (1984), p721. The set T of points ; comprises ¢'t! points
of PG*(t + 1,¢"t') — S; and it is an indicator set in the indicator (¢ + 1)-space
PG*(t +1,¢**?) if it satisfies the property (c) of Definition 4, p721 of Lunardon
(1984), that the line joining any two of the points meets S, in an imaginary point.
Let Q; and Q; be two points of 7. These are imaginary points (see Construction
2.8.4) and since the line Q;Q; is imaginary by Lemma 2.8.5 (2), all its points must
be imaginary by Theorem 1.4.8 (3). In particular the point of intersection of Q:Q;

with S; is imaginary. O

2.8.9 Remark

The element J(co) = J(0,I) of the t-spread W has no point of the indicator set
associated to it. Sherk (1979) adjoins an ideal point oo to the affine indicator space
AG*(t +1,¢'*?) and lets this point represent J(c0). Under our new construction

of indicator sets, however, it seems natural to let the point

o= (1)
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represent the t-spread element J(oo0). Then Qo lies on the hyperplane at infinity
of AG*(t +1,¢'t!) and so is still in some sense an ideal point of the affine space,
but it is a particular point of the corresponding projective space. Further, Qoo has
the added advantage that it is imaginary and J(o0) = L(Qw) N PG(2t + 1,¢), a

property that holds for every other point @; of the indicator set Z

2.8.10 Theorem
The set of points PZ = {Qeo, @1, Q2, ..., Qg +1} constructed as above is a projec-

tive indicator set in the sense of Lunardon (1984).

Proof: We check that PZ satisfies the properties listed in Definition 2, p720
of Lunardon (1984), with : replaced by t + 1. Firstly, PZ comprises ¢t +1
imaginary points of PG(2t+1,¢"*1), and by construction the line joining any two

of the points is imaginary (Lemma 2.8.5 (2)). w

2.8.11 Theorem [Lunardon (1984)]

If PT is a projective indicator set of PG(2t + 1,¢'*!), then the set
W= {L(Q:)NPG(2t+1,q): Q: € PI}
is a t-spread of PG(2t 41, q).
Proof: The proof appears in Lunardon (1984), Lemma 2, p720. a

It is also noted in Lunardon (1984) that a t-spread of PG(2t +1,¢) may have
many projective indicator sets. It is enough to choose an imaginary point in the
extension to PG(2t + 1,¢'*1) of each element of the t-spread. In this Chapter, we
have used the normalised projective t-spread set to construct a projective indicator
set which contains an indicator set in the indicator space AG*(t +1,¢*™!). We

shall show that conversely an indicator set gives rise naturally to a normalised
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projective t-spread set (Theorem 2.8.13), but that in general a projective indicator
not containing an indicator set corresponds to a projective t-spread set which is

not normalised (see Theorem 2.8.12).

Let P = {Qco, Q1,Q2,--.,Qq+1} be a projective indicator set in the space
PG(2t +1,¢"*!), corresponding to the t-spread

W={L(Qi): i=00,1,2,...,¢"}.

Let o € GF(g**!) be such that GF(¢'t') = GF(¢)(a). Each point Q; may be

o [
Q: = ( (i)) :
( :

where for k =1, 2, C,(ci) is a (t + 1) x (t + 1) matrix over GF(q).

written as

2.8.12 Theorem

The set
PC={(¢{?,¢): i=00,1,2,...,q4""}

is a projective t-spread set, corresponding as in Section 2.5 to the t-spread W. It
is not in general normalised. Conversely, any projective t-spread set for W gives

rise to a projective indicator set for W.

Proof: We check that PC satisfies the conditions of Definition 2.5.2, then it
is a projective t-spread set. Firstly, it comprises ¢! + 1 pairs of (¢ +1) x (t +1)

matrices. Since each point Q; = (Céi), fi)) is imaginary, by Corollary 1.4.10 (1)

C(i)
rank (C%i)) =t+1.

1
Two elements Q; = (C((,i),Cl(i)) and Q; = (Céj), fj)) can be considered as points

of the space S1(My4+1(GF(q))) with the corresponding t-dimensional subspaces
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of PG(2t + 1,q) being f(Q:) = L(Qs) and f(Q;) = L(Q;). The line QQ; is
imaginary so the spaces L(Q;) and L(Q;) are skew, so that the points Q;: and Q;

are in clear position (see Section 1.6) and therefore
(1) ()

¢ _
rank ((:%i) %j) = 2(t + 1).
1 1

To show that PC is a projective t-spread set for the t-spread W, for each Q; € PC,

we need to show that the subspace spanned by the columns of

i
(&)

is precisely the space L(Q;) N PG(2t + 1, ¢). This follows since the space spanned

G
(cf"’ )

is a t-dimensional subspace of PG(2t 4 1,¢) whose extension to PG(2t + 1, ¢t

by the columns of

contains the point Q;. However by Corollary 1.4.10 (2), L(Q;) is the unique such

space. The converse follows by reversing the arguments. o

2.8.13 Theorem

Let PZ = {Qoo, Q1,Q2,. .., Qg+1 } be a projective indicator set in PG(2t+1, ¢'t).
Suppose the points {Q1,Q2,..., Qg +1} of PT are an indicator set, and so all
lie in a (t + 1)-dimensional affine subspace AG*(t + 1,¢'t!) of PG(2t + 1, g'th.
Suppose further that the projective space PG*(t+1,¢'™!) obtained by completing
AG*(t+1,¢'t!) meets PG(2t + 1,¢) in a t-dimensional space PG(%, ¢), such that
Qoo € PG(t,q). Let a € GF(gtt!) be such that GF(¢'t!) = GF(¢g)(«).Then in a
certain coordinatisation of PG(2t + 1,¢**?), the t-spread W corresponding to PZ

has a projective t-spread set of the form

PC = {(I,0)} U{(C;,I): i=12,...,¢""}
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where

1 1
Qm=(é) a , and Q:’Z((?)
at Ct’t

The converse is also true.
Proof: The converse of this result was demonstrated in Construction 2.8.4.
For the forward argument, choose coordinates for PG(2¢ + 1,¢*+?) so that
PG(t, q) = lin {61,62, e ,6t+1}
Qoo = €1 + aes +---+atet+1

PG*(t + 1,qt+1) = lin{el,eg, ceey€t41,6t42 F €3+ at62t+2} .

Then
PG*(t+1,¢"") N PG(2t +1,9) = PG(t,g), and
AG*(t+1,¢'"") = PG*(t + 1,¢"") — PG(t,q).
Now
Qoo =(1,a,...,a%,0,0,...,0)T
1
={0 E
O."
and

Qi= (", ¢, 0,00

where for k =1,2,...,¢'t! we have cgj) = cscil) + cgjz)a +--+ ci?ﬂat.

If we denote by C; the (¢ + 1) x (¢ + 1) matrix whose elements are the csc?,

then
1

Qi = (Cf) c:y

Ck't
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The t-spread of PG(2t + 1, ¢) corresponding to PZI is
W={L(Q:)NPG(2t+1,q): t=00,1,2,... ¢t}

and by Theorem 2.8.12, this is also the t-spread corresponding to the projective
t-spread set PC. w

These last two theorems give a geometric interpretation of the procedure of
normalising a projective t-spread set. A projective t-spread set corresponds to a
projective indicator set for a t-spread W. Then W has another projective indicator
set, but one that contains an indicator set. This is obtained geometrically by
intersecting the elements of W with an indicator space. The projective t-spread

set corresponding to this new indicator set is in the normalised form.
2.9 ¢-SPREADS OF PG(2t+1,q) IN PG(2t + 1,¢'t")

In the study of sets of ¢-dimensional subspaces of a space PG(2t+1,¢), it is often
useful to know whether such a set is contained in a regular t-spread. There is
a representation of regular ¢-spreads which can often be applied to answer this
question. It was introduced by Bruck (1969) for regular 1-spreads of PG(3, ¢), but
it can easily be extended to regular t-spreads of PG(2t + 1,¢) as we shall show
below. The representation has the advantage that it yields easily many of the

properties of the t-reguli in a regular ¢-spread.

In the following we shall use the notation and the ideas of Section 1.3. Theo-
rem 2.9.2 is a special case of Theorem 2.9.3. The theory developed in this Chapter
allow a simple proof of Theorem 2.9.3, and therefore also of 2.9.2. We shall, how-

ever, give an indication of the original proof of the first part of 2.9.2 due to Bruck

(1969).
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2.9.1 Lemma [Bruck (1969)]
Let R be a regulus of PG(3,q) and let ! be a line not meeting the quadric @

defined by R. There exists exactly one regular 1-spread W of PG(3, q) containing
both R and .

Proof: This is proved using the 1-spread set. u|

2.9.2 Theorem [Bruck (1969)]
Let W be a regular 1-spread of PG(3,¢). There exists a line [ of PG(3,¢?) skew
to PG(3,q) such that [7 is also skew to PG(3,¢q) and

W = {PP° N PG(3,q): P€l}.

The lines [, are imaginary and are uniquely determined by the 1l-spread W.
Conversely any line | of PG(3,¢?%) skew to PG(3,¢) yields a regular 1-spread of
PG(3,¢) in this manner.

Proof: This result appears as Theorem 5.3 (i) in Bruck (1969). The second
statement is proved in an analogous way to the corresponding statement in Theo-
rem 2.9.3. To prove the first result, we note that if R is a regulus in W then it is
one set of lines of a quadric surface @ in PG(3, ¢) with extension Q to PG(3,4%).
A line I of W not in R meets Q in two distinct points P and P? which do not lie
in PG(3,q). The two distinct lines m and m? of the opposite system of lines of
Q through P and P? respectively define a regular 1-spread of PG(3,¢) containing

R and l. By Lemma 2.9.1, this regular 1-spread is W. O

We now give the proof of this result generalised to t-spreads of PG(2t +1,¢).

The proof relies on the projective t-spread set.
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2.9.3 Theorem

(1) Let I be an imaginary line of PG(2t +1,¢'*"). The set

W = {lin {P,P”,...,P”'}nPG(2t+1,q): Pe 1}

t

is a regular t-spread of PG(2t + 1, ¢) meeting each of [,17,...,17 .

(2) Conversely a regular t-spread of PG(2t + 1,¢) can be represented in this

manner for a unique set of lines (1,17,..., 1o ).

Proof: (1) Let ! be an imaginary line of PG(2t + 1,¢**') and let P and
Q be distinct points of I. By Theorem 1.4.8 (3), P and Q are imaginary and by
Definition 1.4.7 (1) each of the spaces

L(P) = lin {P, P”,...,P"‘}

and
L(Q) = lin {Q,Q”,...,Q”’}

has dimension t in PG(2t+1, ¢**1) and so by Theorem 1.4.8 (1) meets PG(2¢+1,¢)
in a t-dimensional subspace. By Lemma 2.8.5, L(P) and L(Q) are skew. Thus W
is a set of ¢'t! + 1 pairwise skew t-dimensional subspaces of PG(2t +1,¢) and so
is a t-spread. We must show that it is regular, according to the Definition 2.4.3.
Let A, B and C be three distinct elements of W, let R be the regulus that they
define in PG(2t + 1,¢) and let R* be the regulus that their extensions A, B and
C define in PG(2t + 1,¢'*!). Now [ meets each of the three distinct elements A,
B and C of R* and by the remarks immediately following Definition 2.4.1 [ is a
transversal of R*. An element of R, extended to PG(2t+1,¢"*!), is an element of
R* and therefore meets [ in a unique point. So the extension of every element of
R meets [, and by Corollary.1.4.10 (2) this must be the unique real ¢-dimensional

space meeting [ in a given point, and so is in W.
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(2) Now let W be a regular t-spread of PG(2t + 1,q). To show that W can be
represented in this manner, we show that there exists an imaginary line [ which

meets the extension to PG(2t + 1,¢'*™!) of every element of W. In this case,
W = {lin {P,P“,...,P”‘} NPG(2t+1,q): P€ l}

and the uniqueness of the set of lines [,17,..., 1°" follows by Definition 1.4.7 (2).
We will prove the result for a particular extension PG(2t+1,¢*t!) of PG(2t+1, ),
and the result follows since all extensions of the same degree are isomorphic. As

in Section 2.5, W gives rise to a normalised projective t-spread set
PC ={(C;,I): C;eC}U{(,0)},

where the set C of matrices is a field of order ¢**! under addition and multiplica-

tion. Let £ € GF(q**!) be such that GF(¢'™!) = GF(q)(£), then
GF(¢") = {0 + 1€ + 2262 + -+ 248t z; € GF(q)}

where the multiplication is the field (matrix) multiplication of GF(¢**!). By
Corollary 2.6.3 (2) C contains the subfield {kI : k € GF(q)} which we shall
denote by GF(q). Let

{61,62,. .. ,62t+2}

be a basis for PG(2t+1, ¢) over GF(q) and hence of PG(2t+1, ¢'t1) over GF(¢'*1).
The following set ! of points of PG(2t + 1,¢**1):

I ={e1Ci+ eabCi+ -+ erq18'Ci+ erpal + eogsbl + -+ eaqny€'I: Ci €C)
U{erl +e2b+ -+ erg1€'}
= {(CtC..., ECi 1, 6T CieC)
U {(I,g,...,g’,o,...,o)T}
_ {c,- (L,E,...,€,0,...,0T +(0,0,...,0,L&,....£)" : C; ec}
u{(,¢,...,£,0,0,...,0)T}
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is a line of PG(2t + 1,¢"t!). Since [ is
1= (L&, & (IE,...,€)"
=PoQ
the space L(l) spanned by its ¢t + 1 conjugates is the join of the spaces L(P)
and L(Q) spanned by the ¢ + 1 conjugates of P and the ¢ + 1 conjugates of @
respectively. Now each of P and @ is imaginary by Corollary 1.4.10 (1) and so

L(P) and L(Q) have dimension ¢, and further by construction L(P) and L(Q) are
skew so that L(I) has dimension 2¢ + 1. By Definition 1.4.7 (2), [ is imaginary.

Now recall that because PC is a projective t-spread set for W, we have
W = {W; = J(C;,I): Ci€C}U{We =J(I,0)}.

We will show that the point (I,¢,...,£%,0,..., O)T of [ lies on the extension W,

of W to PG(2t + 1,¢'t!), and the point
t T
(Ci)£Ci>"'a€ Ci7I,£7"',§)

of [ lies on W; for each i = 1,2,...,¢"t!. Then the line ! is the line required for

proof of the result as it is imaginary and meets the extension of every element of

W.

We recall some notation. The element J(I,0) of W has basis {e1,€2,...,et+1}
and the element J(0,I) has basis {e¢t2,€t43,..-,e2t42} . The vector space Vatt2

corresponding to PG(2t + 1, ¢) has basis {e1, e2,...,€e2t42} so that
V2t+2 S J(I,O) (&) J(O,I)

Also, ' denotes the (non-singular) linear transformation
"+ J(I,0) — J(0,1)
€k E(t41)+E
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Then
Weo =J(I1,0) = {a: a€ J(I,0)}
={(a1,az,...,a:+1,0,...,0)T : a; € GF(g), not all zero}
so that
Woo ={(€1,62,...,641,0,...,00T 1 & € GF(¢"™), not all zero}
={¢: £eTT0)}.

We can put

£= (s b01,0,...,00T = (LE,...,6,0,...,0)" € T(I,0)

and thus the point

Similarly,

Wi =J(Ci,I)={Cia®d' : a€ J(I,0)}

aq aq
(05 ao

= ¢ C} : o . : a; € GF(g), not all zero
41 Qt+1

where the @ denotes the direct sum of the first vector which is an element of

J(I,0) and the second vector which is an element of J(0, I). Therefore

W; = J(C;, I)
& &1
&2 &2 (t+1
= ¢ @5 ) @ i : €, € GF(¢'"), not all zero
§e+1 §e+1

={citoe: €T, 0)}
Again we can put

{=(£1>§2a"'a§t+1701'-')O)T: (I,E,...,Et,o,...,O)T € J(I70)
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so that ¢' = (0,...,0,1,¢,... ,{t)T € J(O,T). and the point

(Ci,6Ciye o 80 L6, )T = Ci (L&, €) @I (1,6,
€W
Thus we have shown that the extension of every element of W meets the imaginary

line ! of PG(2t + 1,¢'*?), which is enough to prove the Theorem. m|

2.9.4 Corollary
A regular t-spread of PG(2t + 1,¢) has an indicator set comprising the gttt +1
points of an imaginary line of PG(2t + 1,¢'t!) and conversely an imaginary line

of PG(2t +1,¢'t!) is an indicator set for a regular t-spread of PG(2t +1,¢).

Proof: Let ! be an imaginary line of PG(2t + 1,¢**!). The set
W = {lin {P,P”,...,P”‘} NPG(t+1,q): Pe z}

is a regular t-spread of PG(2t + 1,¢q) and the points of the imaginary line [ are
an indicator set for W as they are imaginary points and one point lies on the
extension of each t-spread element. Also, the line joining any two such points is
and is therefore imaginary. Conversely, given a regular i-spread of PG(2t + 1,¢),
there exists an imaginary line [ of PG(2t + 1, ¢'™!) meeting the extension of every

t-spread element. Such a line gives an indicator set for the t-spread. a

2.9.5 Corollary

A regular t-spread W of PG(2t + 1, ¢) is uniquely determined by a t-regulus R of

W and an element of W not belonging to R.

Proof: Let W be a regular t-spread and let [ be an imaginary line of the space
PG(2t +1,¢'t!) meeting the extensions of every element of W. The extensions of

the elements of a t-regulus R contained in W meet ! in the points of a projective
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subline I of I, and the extension of a further element Xo of W meets [ in a point
P not belonging to I. Let W' be a regular t-spread containing the elements of
R and the element Xo of W. We will show that every element of W is also an
element of W' and the result follows. Choose elements X; and X of R. There is
a unique t-regulus R' of PG(2t+1,¢) containing Xo, X3 and X2, which is distinct
from R. The line I is a transversal to the extension of R', thus the extensions of
the elements of R’ all meet I. But the t-dimensional spaces of PG(2t +1,¢) whose
extensions meet [ are exactly the elements of W. Thus every element of R' is an
clement of W. Now since W' is regular, it contains every element of R', which
are all elements of W. We repeat the argument using different elements of W' to
define t-reguli, all of which are shown to belong to W, continuing until we have

shown that every element of W' is also an element of W. a

Theorem 2.9.3 can be interpreted from the point of view of the Segre variety.
Any three distinct elements Wy, Wi and W of a regular t-spread W of PG(2¢+1, q)
are contained in a unique t-regulus R (see Section 2.4). The g+1 elements of R are
all elements of W and form the set of t-dimensional subspaces of a Segre variety
SV3 141 in PG(2t+1, q) with lines as its opposite subspaces (see Remark 2.4.4). We
now embed PG(2t+1,¢) in PG(2t+1,¢'"!) and extend V2,41 to 2 Segre variety
SV2.t41in PG(2t+1,¢"*!) as in Section 1.3. Then SV3, 441 has g+ 1 t-dimensional
subspaces which meet PG(2t +1,¢), and the remaining g% — ¢ subspaces are skew
to PG(2t +1,q). Since the lines [,17,... ,1%° meet all ¢ + 1 elements of SV 41
which are extensions of elements of R, they must be lines of ng,H_l. In fact the
extensions of the elements of R meet [,17,... ,l‘rt in the points of a projective
subline of each of ,17,... ,l"t , respectively. The properties of projective sublines
of a projective line of PG(2t + 1,¢'*1) can be used to demonstrate properties of

t-reguli and regular ¢-spreads, as in the following.
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2.9.6 Corollary

(1) Two t-reguli in PG(2t + 1, ¢) have either 0, 1, 2 or ¢ + 1 lines in common.
(2) A regular t-spread of PG(2t + 1, ¢) with (¢ 4 1,2) = 1 is the union of
¢+ T+ g+l
disjoint ¢-reguli.

(3) A regular t-spread of PG(2t + 1,¢) has N reguli,where

t 2t+2_1
N2l )

¢* -1

Proof: (1) follows since three points of a projective line [ of order gtt!
determine a projective subline of order gq.
(2) Noting that a such a line ! is the union of ¢*4+¢*~! +- - -+¢+1 disjoint projective
sublines of order ¢ yields (2) (see Hirschfeld (1979), Theorem 4.3.6, Corollary 1,
p92).
(3) Recall that since a projective subline of order g 1s determined by three points
of 1, the number of such sublines is the number of distinct triples of points of [

divided by the number of distinct triples in a subline of order ¢, giving:

+1
(*7™

(3"

which is N. O
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CHAPTER THREE

t-SPREADS OF PG((s + 1)(t 4+ 1) — 1,9)

3.1 INTRODUCTION

This Chapter generalises the work of Chapter Two to the case of t-spreads of
PG((s+1)(t+1)—1,q). In Sections 3.2 and 3.5 we investigate the construction of
t-spread sets and projective t-spread sets corresponding to t-spreads of the space
PG((s + 1)(t + 1) — 1,4), showing the connection between these two ideas. We
generalise the construction of an affine plane from a t-spread of PG(2t+1, ¢) to the
construction of an affine space AG*(s + 1, qt+1) in Section 3.3, and in Section 3.6
we use the projective t-spread set to provide coordinates for AG*(s + 1,¢'*?). In
Section 3.4 we use the Segre variety to investigate the phenomenon of regularity of
t-spreads of PG((s+1)(t+1)—1,¢q). Section 3.8 generalises the work on indicator
sets to define a projective indicator set of a t-spread of PG((s+1)(t+1)—1,q) and
Section 3.9 shows a representation of a t-spread of PG((s +1)(t +1) —1,¢) when
embedded in PG((s+1)(t+1)—1,¢**1). The ideas developed in this Chapter are

demonstrated by two examples given in Section 3.10.

For this Chapter, let W be a t-spread of PG((s +1)(t +1) — 1,q). Then W
comprises w = ¢°(tt1) 4 g(s—DE+Y) L.y ¢t 4+ 1 pairwise skew t-dimensional

subspaces covering the points of PG((s + 1)(t +1) — 1, ).

3.2 t-SPREAD SETS

In this Section, we generalise the construction of Bruck and Bose (1964) and (1966).
Where the t-spread set in the case of s = 1 is a set of matrices, the t-spread set
in the case of general s is a set of s-tuples, (s — 1)-tuples, ... , 2-tuples and single

(t+1) x (¢ + 1) matrices.
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Let V(s4+1)(t+1) be an (s 4 1)(t + 1)-dimensional vector space over GF(q) and

let V,(z41) be a fixed s(t + 1)-dimensional subspace.

Let Ay, As,...,A, be s distinct (¢ + 1)-dimensional subspaces of V(,41)(141)
spanning Vy(z41) and write Vy(;11) as A1 @ A2 @ -+ @ A,. Define s non-singular
linear transformations (i) mapping A; to A;, for i =1,2,...,s, so that

(1) : Ay — A;
at— a(i).
Let B and C be an ordered pair of skew (¢ + 1)-dimensional vector subspaces of
V(s+1)(t+1), both skew to Vy(;41), and such that C is skew to each of the s(t + 1)-
dimensional spaces spanned by B together with s —1 of the spaces Ay, Az,..., A,.
Consider V(s41)(z+1) to be A1 @ A2 @ --- ® A, ® B. The existence of C is shown

in Lemma 1.1.2, and we apply this Lemma to show that there exists a unique

(non-singular) linear transformation

IZAl—)B
!

ar—a

of A onto B such that the linear transformation
aHa(l)@a(2)®...@a(3)@a’

maps A; onto C. Now to an s-tuple of (14+1)x (t+1) matrices (X1, X2,...,X,) over
GF(q), there corresponds a unique (¢ +1)-dimensional subspace J(X1,X2,...,Xs)

of V(3+1)(t+1) skew to V_.,(H.]) given by
W56, 0% . . . , Xgh= {Xla(l) DXa® @ ®X,a® @d 1ac Al} .

The s-tuple of (¢ + 1) X (¢ + 1) matrices can be interpreted as s linear transforma-

tions of the spaces A;, As,..., A, respectively. In particular, (with the following
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convention for the case 0o, and denoting the (t +1) X (¢ + 1) zero matrix by 0 and

the (t + 1) x (¢ + 1) identity matrix by I),
J(oo)=A; ={a:a€ A}

J(0,0,...,0)=B={d":a € A1}, and
J(I,I,...,I)=C={a(l)eaa(z)@...@a(s)@a' ta € A}

Conversely each (t + 1)-dimensional subspace J of V(s+1)(14+1) Which is skew to
Vi(e41) has the form J = J(X1, X,...,X,) for a unique s-tuple of (t+1) x (t+1)
matrices (X1, X2,...,X,) over GF(qg).

3.2.1 Lemma
Let (X1, X2,...,X,)and (Y1,Y2,... ,Y,) be two s-tuples of (t+1) % (t+1) matrices.
Then

J(X1,X2,..., X )NJ(Y1,Y2,...,Y5)
= {Xla(l) P X6 @D Xea® B a€ A and
(X — Yl)a(l) @ (X - yz)a@) @ B(X,s — Ys)a(") — 0}
= {Yla(l) oY,dP @ Y,a"® @ d': a € A; and

(Xi = Y1)a® @ (X2 - ¥2)a® @ --- @ (X, — Ya)al) = 0} .

Proof: Suppose z € J(Xi1,Xs,...,Xs)NJ(Y1,Y2,...,Ys). Then for unique

elements a,b € Aj,
= X100 @ Xa@ @ 0 X0 @d = V10V @ ¥2bD @ @Y, @Y.
This implies that

X1a® = V0 @ X20®@ — V5@ @+ @ X0l — Vb @d - ¥ = 0.
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Recalling that the spaces A, As,...,As, B pairwise have only the zero vector in

common, this can occur if and only if @' = b' so that a = b, then we have
(X1 — Yl)a(l) & (X, — Yz)a(Q) @ ®(X, — Ys)a(”) =0

and the result follows. u]

3.2.2 Corollary
Two spaces J(X1,X2,...,X,) and J(Y1,Y2,...,Y;) are skew if and only if a =
(0,0,...,0)T is the only common solution to the equations (X; — Yi)a = 0 for

1=1,2,...,s.

Proof: Since the spaces A;, As,..., A, have only the zero vector in common,

then if

(X, - Y1)aD & (X2 - V2)a® @ & (X, — Yy)al) =0

with (X; — Y;)a® € 4; for all i = 1,2,...,s it follows that
(Xi —Y)a®) =0 foralli=1,2,...,s.

Now J(Xi,Xa,...,X,) and J(¥1,Y3,...,Y,) have only the zero vector in common
if and only if @ = (0,0,...,0)T is the only common solution to the equations
(X; —Y:)a®) =0 for i =1,2,...,s. As the linear transformations (i) : A1 — 4;
are non-singular, this implies that a = 0 is the only common solution to the

equations (X; —Y;)Ja=0for¢=1,2,...,s. m|

Now let W be a t-spread of PG((s +1)(t + 1) — 1,¢), with the property that
there exists an (s(t + 1) — 1)-dimensional subspace Sy(¢+1)—1 = PG(s(t+1)—1,q)
such that any element of W is either contained in Sy(;41)—1 or is skew to it. Asin
Section 1.1 we represent PG((s + 1)(t +1) — 1,¢) as an (s + 1)(¢ 4+ 1)-dimensional

vector space V(s41)(t+1) over the field GF(q). Then W corresponds to a collection,

89



still denoted W), of (¢ + 1)-dimensional vector subspaces of V(st1)(1+1) over GF (¢)
pairwise having only the zero vector in common and satisfying the property that
each non-zero vector of V(s4+1)(t+1) lies in exactly one element of W. The space
Ss(t4+1)—1 corresponds to an s(t + 1)-dimensional subspace V,(141) of V(s41)(t41)-
Any element of the t-spread W not lying in the space Vs(t+1) has only the zero

vector in common with it.

Suppose there exist elements Ay, Az, ..., As, B,C of the t-spread W such that
the elements A1, Asg, ..., A, span the space Vy(141), the elements Ay, Ag,.. A B
span the space V(,41)(1+1), and further any s+ 1 of the spaces Ay, Ay, ..., 45, B,C
span V(s41)(t+1)- In particular, the last condition implies that C is skew to Vy(141)
and to B. The elements A1, As,...,As, B can always be found, and when W is
geometric (see Definition 1.2.3) an element C satisfying the requirements can be
found. To see this, note that there are vectors of V(et1)(t+1) skew to each of the
s(t 4+ 1)-dimensional spaces spanned by s of the elements A1,Az,...,As,B. Any
one such vector must be contained in an element C of W, and since W is geometric,

C is skew to each of the above s(t + 1)-dimensional spaces as required.

In terms of the above representation, W gives rise to a unique collection
Cy = Co(Ay, Az, ..., As, B,C) of s-tuples of (t +1) x (¥ + 1) matrices over GF(q)

satisfying the following conditions:
(i) Cs contains (0,0,...,0) and (I, 1,...,I),

(i) If (X1,Xs,...,Xs) and (¥1,Y2,...,Y;) are distinct elements of C, then a =
(0,0,...,0)7 is the only common solution to the equations (X; —Yi)a =0 for

i=1,2,...,s, and
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(iii) I z1,22,...,%,y € A1 with y # 0 then there exists a unique s-tuple
(X],.Xz,...,Xs) € C,
such that xgl) = Xy, $g2) = Xoy®, ..., wgs) = X,y®).

To establish these properties, first note that the spaces B and C give rise to

the elements (0,0,...,0) and (I,I,...,I) of Cs. Two distinct elements
(X1,Xs,...,X,) and (¥1,Y2,...,Y5)

of C, correspond to distinct elements J(X1, Xa,... ,Xs) and J(Y1,Y2,... ,Ys) of
W. These are skew, so by Corollary 3.2.2, a = 0 is the only common solution to
the equations (X; — Yi)a = 0 for i = 1,2,...,s. To show (iii) recall that since
the spaces A1, Aa, ..., As, B span V(sy1)(141) and Ay, As, ..., As span Vy(z41), any

vector of Vie41)(t+1) — Vs(t+1) can be written uniquely in the form
xgl) @ mgz) @ . @xgs) @ yl

where z1,2,...,Zs,y are all elements of A; and y #£ 0. Since W is a t-spread of

V(s41)(t+1)s this vector is contained in a unique element J(X1, X3, ... ,Xs) of W.

Thu_s
P osPa-- 00y e {X1a(1) S XaP @ - ®X,a@®d ac Al}

and (iii) follows since y' = a' implies that y = a.

3.2.3 Definition
An (,t)-spread set is a set C; of i-tuples of (¢ +1) x (¢ + 1) matrices satisfying the
following conditions:

(i) C; has ¢*(**1) elements,
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(ii) C; contains (0,0,...,0) and (I,1,...,I), and

(iii) If (X1,Xs,...,X;) and (Y1,Y2,...,Y;) are distinct elements of C; then a =
(0,0,...,0)7 is the only common solution to the equations (X; —Y;)a = 0 for
17=12,...,1

We can also represent the i-tuples of (¢ + 1) x (¢ + 1) matrices in the set C;
by i-tuples of linear transformations of 7 skew (¢ + 1)-dimensional vector spaces
A1, Az, ..., A; respectively. We will say that C; is an (¢,t)-spread set of linear
transformations or an (z,t)-spread set of matrices if we need to distinguish between

these two definitions.

3.2.4 Theorem

Let C; be an (,t)-spread set and let
{a(l) agl), ag_li_)l,agz), (2) . 51)1’ ...... agl), agl), ag_zl, b1, b2, .. bt+1}

be a basis of an ((z + 1)(t + 1))-dimensional vector space V(it1)(t+1)- Let Vige41)

denote the subspace spanned by the vectors

{aﬁl),agl), 1)@ o ) QIO ) }

at+1,a1 9 gy t+1’ ------ ,al ,(12 ,...,at+1

For each (Cy,Ca,...,Cs) € Ci let
J(C1,C,..,Ci) =lin {Cr1a{) & CoalV @ - @ Cuay) @ b : k= L.t +1}.
Then the set
W; = {J(CI(J)’C(J) ,C9y . P, 0. ., ey e Ci}

is a partition of V(it1)(t4+1) — Vi(e+1) into pairwise skew (¢ + 1)-dimensional sub-

spaces. It is therefore the set of elements belonging to a partial t-spread covering

92



the points PG((s + 1)(t + 1) — 1,¢) — PG(i(t + 1) — 1,q) of the corresponding
projective space. Conversely let W; be a partial t-spread covering the points of
PG(G+1)(t+1)—1,¢) — PGt +1) - 1,¢) and suppose that there exist ele-
ments A1, As, ..., Ai, B,C of W; such that A, Az,..., A; span PG(i(t+1)—-1,q),
Ay, A, ..., Ai, B span PG((i+1)(t+1)—1,¢) and any ¢+1 of A, As,...,A;,B,C

span PG((i + 1)(t + 1) — 1,¢). Then W; can be represented in this manner.

Proof: TFor the second statement, such a partial ¢-spread W; covering the

points of

PG((i + 1)t +1) — 1,q) — PG(i(t + 1) — 1,9).

has an (i,t)-spread set as constructed in this Section. This (,t)-spread set has
the required form. To show the first statement, suppose that C; is an (i,t)-spread
set. We have to show that the set W; comprises ¢'(*tD) pairwise skew (t + 1)-
dimensional subspaces of Viiq1)@+1) — Vi(e+1)- An element of W; is a (¢ + 1)-
dimensional subspace of V(it1)(t+1) since the set of spanning vectors is linearly
independent. To see this, let (Cy,Cq,...,Ci) be an element of C, and suppose

that for zg,21,...,%t € GF(q)

t
Emk(Ca ®CaP @ @ Ciall @bk) 0.

k=0

This implies that

EB Cm (xoao ™) + x4 a(m) cOCRRE $tat ) (zobo + 101 +--- + z¢be) = 0.

Now the first term on the left hand side is in Vj(z41), and the second term is
in B = lin{b1,b2,..-,bt+1}, and since B has only the zero vector in common
with Vj(¢41), both parts of the left hand side of this equation must be zero. But
{b1,b2,...,bt41} is 2 linearly independent set of vectors as it is contained in the

basis for V(it1)(t+1), and this implies that zo,z1,...,%¢ are all zero. Thus W
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certainly comprises ¢*(*t1) (¢ 4 1)-dimensional subspaces of V(iy1)(t41) — Vi(e41)-
Let J(CP,09,...,¢?) and J(C{™,c{™,...,C{™) be distinct elements of
W. By Corollary 3.2.2, they are skew if and only if a = (0,0,...,0)T is the only
common solution to the equations, (C,(cj) — C,(cm))a =0 for k=1,2,...,7. Thisis

true by Definition 3.2.3 (iii) of (z,t)-spread set. i

3.2.5 Remark
The (4,t)-spread set of (t+1) x (¢ +1) matrices as defined here is limited in that it

only describes elements of a partial t-spread W; covering the points of the subspace

PG((i +1)(t +1) — 1,¢) and skew to a certain subspace PG(i(t +1) — 1,9).

Now supposé that we start with a t-spread W of PG((s + 1)(t + 1) — 1,4),

where W contains a partial t-spread W, covering the points of
PG((s + 1)t +1) — 1,9) — PG(s(t + 1) — 1,0).

Suppose further that W, has elements A1, A2,..., Ay, B,C where A3, Az,..., As
span PG(s(t+1)—1,q), A1, As,...,A,, B span PG((s +1)(t+1) —1,¢) and any
s+1of Ay, As,...,As,B,C span PG((s + 1)(t + 1) — 1,¢). Then by Theorem
3.2.4 we can construct an (s,t)-spread set for W,. However there is no information

gained about the elements of W not contained in W.

To try to overcome this difficulty, we suppose further that there exists an

((s = 1)(t + 1) — 1)-dimensional subspace PG((s — 1)(t + 1) — 1,¢) such that the
elements of the t-spread W lying in PG(s(t + 1) — 1,q) are either contained in
PG((s —1)(t + 1) — 1,q) or are skew to it. Suppose further that W has elements
1, AY,...,A'_,,B',C" such that A}, 4},..., A,_; span PG((s—1)(t+1)—1,9q),

' AL, ... A" _,,B' span PG(s(t+1)—1,q) and any s of A}, A5,..., A,_;,B",C"

span PG(s(t + 1) — 1,¢). Then we can construct an (s — 1,t)-spread set corre-
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sponding to the partial t-spread of elements of W which are (entirely) contained
in PG(s(t +1)—1,9) — PG((s — 1)(t +1) — 1,9).

We could proceed in this mz-mner, provided that the following condition 1s
satisfied. Suppose that we are concerned with the elements of W contained in the
subspace PG(k(t+1)—1,q). This is the kth stage of the process. We require that
there exists a ((k — 1)(t + 1) — 1)-dimensional subspace PG((k — 1)(t + 1)-1,q)
of PG(k(t + 1) — 1,¢) such that the elements of W in PG(k(t + 1) — 1,q) are
either contained in PG((k — 1)(t + 1) — 1,¢) or are skew to it. We require further
that W has elements AV, AY,...,AY_,,B",C" such that Af, by...,Al_; span
PG((k—1)(t+1)—1,q), A}, AY,...,A{_;, B" span PG(k(t+1)—1,q) and any
kof AV AY,...,AY_,,B",C" span PG(k(t + 1) —1,g). Then we can construct a
(k — 1,t)-spread set corresponding to the elements of W in PG(k(t+1)—1,9)—
PG((E 1)t +1) - 1,9).

Note that in the case of a geometric t-spread W, the condition can always be
satisfied at every stage, and in fact the space acting as Ag_1 in the kth stage can
be used as B in the (k — 1)th stage. The spaces A;, 4, .. , Ag—a of the kth stage
are used as A1, As,...,Ax—2 in the (k — 1)th stage.

We obtain an (s,t)-spread set, an (s — 1,t)-spread set, and so on until we
get a (1,t)-spread set, with a single element PG(t,¢) € W remaining. The (1,t)-
spread set is a set of ¢**! single matrices corresponding to the elements of W in a
subspace PG(2t + 1,¢) but skew to PG(t,q). This is the t-spread set constructed
by Bruck and Bose (1964), see Section 2.2, and the space PG(t,q) is any t-spread

element which is chosen to be J(o0).

The above remarks could be summarised as follows:
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(s):

(s —1):

(2):

(1):

Elements of W in PG((s + 1)(t +1) — 1,q) — PG(s(t + 1) — 1, ¢) give rise to
¢**1) s-tuples of (¢t + 1) x (t + 1) matrices

{(ng)’ C(J) ‘9 C.gj)) : j = 1’ 2, b 7q8(t+1)} ?
Elements of W in PG(s(t + 1) — 1,¢) — PG((s — 1)(t + 1) — 1,¢) give rise to
g~ 1(+1) (5 — 1)-tuples of (¢t + 1) x (t + 1) matrices

{(€9,0,...,c00) 1 j=1,2,...,¢0 70},

Elements of W in PG(3(t+1)—1,¢)—PG(2t+1, ¢) give rise to (1) 2-tuples
of (t +1) x (t + 1) matrices

[P0 i=12....8¢],

Elements of Win PG(2t+1,¢)—PG(t, q) give rise to ¢! single (t+1)x (t+1)

matrices

(60 =125},

(0) The last remaining element of W is PG(t,q) = J(0).

The matrices appearing in the i-tuple at each stage could be taken to be linear

transformations on the appropriate (¢ + 1)-dimensional vector spaces.

We demonstrate the reverse procedure in the case that W is geometric. We

choose a basis for PG((s + 1)(t + 1) — 1,¢) such that the elements

Ay, Ag,... Ay, Agyy = B, Agpa =C
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of W are as follows:

A; =lin {agl), agl), - oy ag_)l}
= J(o0),

pa = in{a®,0®, ..,
€ PG(2t+1,q) — J(o0),

Az = lin {ags), aga), e agi_)l}

€ PGB(t+1)—1,9) - PG(2t +1,9)

A, =lin {ags),ags), . ,agj_)l}
€ PG(s(t+1)—1,q) — PG((s — 1)(t + 1) — 1,9),
Aspy =lin {a§3+1), agsﬂ), Bl ,agfil)}

€ PG((s + 1)(t+1) —1,q9) — PG(s(t + 1) — 1,49),

so that
1 1 1 2 2 2
{a‘g ),ag)a---,agfl;ag),ag),...,ag_*_)l; ...... y
ag‘g),agS), . ,(15:.)1; a§s+1),ags+l), v ,G.Ei—il_l)}

is then a basis for PG((s + 1)(t +1) — 1,¢).

The elements of W in PG((s + 1)(t +1) —1,q) — PG(s(t + 1) — 1,¢) are
Jc?,cf,...,c9)
= {Cij)a(l) ® Céj)am - aCPa? @ ™V ae Al}

for j =1,2,...,¢°C¢tD),

The elements of W in PG(s(t + 1) — 1,¢) — PG((s — 1)(t + 1) — 1, ¢) are
J(c?,cP,...,c)

_ {ij)a(l) aCcPdPg... 0 cW atVga: ac Al}
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for j =1,2,...,¢¢ D) and so on.
The elements of W in PG(3(t + 1) — 1,q) — PG(2t + 1,¢) are
J(ij),Céj)) _ {ij)au) o ng)a(z) a®: ac A1}
for j =1,2,...,¢20ttD,
The elements of W in PG(2t + 1, q) — PG(t, q) are
J(C;j)) S {ij)a(l) +a®: ac Al}
for j =1,2,... ,.q“'l. The remaining element of W is A;.

These considerations suggest the following definition.

3.2.6 Definition

A t-spread set C is a collection of ¢°(t+1) s-tuples, gD+ (5 — 1)-tuples, ..

]
¢2(tD) 2-tuples and ¢t single (t + 1) x (¢ + 1) matrices such that for each ¢ =

1,2,...,s the i-tuples of matrices form an (¢,t)-spread set.

3.2.7 Definition The Shell Property
Let W be a t-spread of PG((s+1)(t+1)—1,¢). Suppose that PG((s+1)(t+1)-1,q)
admits subspaces PG(t, ¢), PG(2t+1,q), PG(3(t+1)—1,9),..., PG(s(t+1)—1,q)

such that the sets of points
PG(t,9q),

PG(2(t+1)-1,q) — PG(t,q),

PG(s(t+1)—1,9)— PG((s —1)(t +1) - 1,9),
PG((s+1)(t+1)—1,9) — PG(s(t +1)—1,9)
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are disjoint and so form a partition of PG((s + 1)(t + 1) — 1,¢). We shall call a

set of points

PG((k+1)(t+1),q) — PG(k(t +1) — 1,9)

a shell of PG((s +1)(t +1)—1,q) for k=1,2,...,s. W is said to have the Shell
property with respect to this partition of PG((s + 1)(t + 1) — 1,¢) into shells if

(i) every element of W is contained in exactly one shell and has no point in any

other shell, and

(i) for each k = 1,2,...,s there are elements Ai1,As,..., A, B,C of W such
that Ay, As,..., Ay span PG(k(t +1) — 1,q), the elements A1, 4,..., A, B
span PG((k 4+ 1)(t + 1) — 1,9) and any k + 1 of Ay, As,..., Ak, B,C span
PG((k+1)(¢ +1) ~ 1,9)

When s = 1, every t-spread W has the Shell property with respect to any
partition of PG(2t + 1,q) into shells, provided that in that partition the shell
PG(t,q) is an element of W.

3.2.8 Theorem _

A geometric t-spread of PG((s + 1)(t + 1) — 1,¢) has the Shell property 3.2.7
with respect to any partition of PG((s + 1)(t + 1) — 1,¢) into shells where each
shell entirely contains at least one element of W. Conversely if W is a t-spread
of PG((s + 1)(t + 1) — 1,¢) with the Shell property 3.2.7 for any partition of
PG((s + 1)(t + 1) — 1,q) into shells, where there is at least one element of W

contained in each shell, then W is geometric.

Proof: Let W be a geometric t-spread of PG((s + 1)(t + 1) — 1,¢). Choose
any element Wy of W, then this is a space PG(t,q) of PG((s + 1)(t +1) — 1,9).

Now choose another element W, of W distinct from Wy. These two spaces span a
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(2t 4 1)-dimensional subspace PG(2t + 1,q) of PG((s +1)(t + 1) — 1,¢) and any
element of W either lies in PG(2t + 1,q) or is skew to it. Further there exists
another element C of W in PG(2t + 1, q) skew to PG(t, ¢) and to Wy and any two
of Wy, W1, C span PG(2t + 1,q). Now choose an element W; of W not lying in
PG(2t 4+ 1,q). Then Wy, W; and W, span a (3(f 4+ 1) — 1)-dimensional subspace
PG(3(t +1) ~1,q) of PG((s + 1)(t + 1) — 1,q), and every element of W is either
contained in PG(3(t + 1) — 1,q) or is skew to it. Further, there exists another
element C' of W in PG(3(t + 1) — 1,q) skew to PG(2t + 1,q) and to W, such
that any three of Wy, Wy, Wa,C' span PG(3(t + 1) — 1,¢). We continue in this
way until we reach the following: choose an element W, of W not lying in the
subspace PG(s(t +1) — 1,q) of PG((s +1)(t +1) — 1,¢). Then Wo, W1,..., W,
span PG((s +1)(t +1) — 1,¢) and there exists an element C" of W such that any
s+1of Wo, Ws,...,W,,C" span PG((s+1)(t+1)—1,q). PG((s+1)(¢t+1)—1,9)

is thus partitioned into shells

PG(t,q),

PG(2(t + 1) - 1, q) - PG(taQ),

PG((s+1)(t+1)—1,9) — PG(s(t +1)—1,9)
and by construction every element of W is contained in exactly one shell and has

no point in any other shell. Given a partition of PG((s + 1)(t + 1) — 1,¢) into

shells where each shell contains at least one element of W, choose one element

from each shell and let these be Wy, W1, ..., W, as above, and W has the Shell

property 3.2.7 with respect to this partition of PG((s+1)(t+1) —1, g) into shells.

Conversely, suppose that W has the Shell property 3.2.7 with respect to any

partition of PG((s 4+ 1)(t + 1) — 1,¢) into shells where each shell contains at least
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one element of W. Choose X,Y € W and choose X = PG(t,q) as the first
shell and Y as an element of the second shell PG(2t + 1,q) — PG(t,q). By the
Shell property 3.2.7, every element of W — {X} is contained in or is skew to
PG(2t +1,q) — PG(t,q). Thus every element of W is contained in or is skew to

the (2t + 1)-dimensional space < X,Y >, and W is geometric. m|

It is interesting to ask if there are any t-spreads which are not geometric but
which have the Shell property for some division of PG((s + 1)(t + 1) — 1,¢) into
shells.

3.2.9 Theorem

Let C be a t-spread set as above, so that
¢ = {(C{f),céj),...,cf")) Ci=1,2,...,8 j= 1,2,...,qi(H_'1)}.

Suppose that PG((s + 1)(t + 1) — 1, ¢) has a basis

{a§1)7agl)a e (15_::_)1; a’§2)7ag2)’ v )a’gi)l; """" ) a",(la)a a’gS)’ tet agfl-)l;
Ao, D)

and that
J(c0) =lin {agl),agl), . ,ag_li_)l} .

For each element (C§j), C’éj), S C,-(j)) of C, let
s e,....o

=lin {Cf")aﬁ) eCPdP @ -0CPdP @altV: k=1,2,...,t+ 1} .
Then

W = {J(C{J’>,c§f>,...,c§f>) L i=1,2,...,8, j= 1,2,...,q"<t+1>} U {J(c0)}

is a partition of V(,41)(t+1) into pairwise skew (¢ + 1)-dimensional subspaces. This
gives a t-spread W of PG((s + 1)(¢t + 1) — 1,q) with the Shell property 3.2.7.
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Conversely every t-spread of PG((s+1)(t+1) —1,¢) which has the Shell property

3.2.7 may be represented in this way by a t-spread set.

Proof: The fact that every t-spread of PG((s + 1)(t + 1) — 1,q) with the
Shell property 3.2.7 has a representation as a t-spread set was demonstrated in
the construction in Remark 3.2.5. Now let C be a t-spread set, and let W be
the set constructed as in the statement of the Theorem. By definition, for each

1=1,2,...,s, the set
a:{«#%@”vnxﬁb:j=L2rnﬂmﬂﬂ

is an (i,t)-spread set. This means that, by Theorem 3.2.4, the set
ma:{J«ﬁﬁmgﬁrn,cﬁb;j::Lzr.qu+”}

is a partial t-spread of PG((: +1)(#+1)—1,¢) — PG(i(t +1)—1,¢). Then Wy is a
partial t-spread of PG(2t + 1, ¢) covering the points of PG(2t +1,¢) — J(00), W2
is a partial t-spread of PG(3(t+1) —1, ¢) covering the points lying in the subspace
PG(3(t+1)—1,9) — PG(2(t + 1) — 1, ¢), and so on until we reach W, which is a
partial t-spread covering the points of PG((s+1)(t+1)—1,¢)— PG(s(t+1)—1,9).
Thus,

W=UMUU®H

=1

is a t-spread of PG((s +1)(t +1) — 1,q). To show that W has the Shell property,
first note that PG((s + 1)(t + 1) — 1,q) has been divided into shells and that

each element of W is contained in exactly one shell. To show condition (ii), for
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1<k <s,let
A =lin {a(ll),agl), S ,agi)l

Ay =lin {a?), ag2), SR ag_)l}

Az =lin {ags), ags), B aﬁ_)l}

A =lin {agk),agk), 5 agi)l} .
Further, let
B=1ln {agkﬂ),agkﬂ), - ,aETl'l)
Cc=JI1,...,I)
where (I,I,...,I) is in Wk, that is, it is a k-tuple. Then A1, Ay, ..., A span
PG(k(t + 1) = 1,q), A1,As,..., Ak, B span PG((k + 1)(t + 1) — 1,¢), and any
k+1of Ay, As,...,Ax, B,C span PG((k+1)(t+1)—1,¢). Thus W has the Shell

property. -

3.2.10 Corollary
Let W be a t-spread of PG((s + 1)(t + 1) — 1,¢) with the Shell property 3.2.7.
Suppose that PG((s + 1)(t + 1) — 1,¢) has a basis

17383 yee ey Biyy3 Gy 58y gy Gy g s M DN A YT

(0,0, a5, 2, .., 0 (8) (o) (s) ,

(s+1) (s+1) (s+1)
al ,(12 ’...,at+1

and let
A; =lin {a(ll), agl), e aﬂ_)l

Az =lin {agz),agz), . agi)l}

Az =lin {a§3), a§3), . ,ag_)l}

A, =lin {ags), ags), TN agi)l}

Agy1 =lin {ags—H), a§’+1), . ,agj_-';l)} :
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For each k with k = 1,2,...,s + 1, let (k) denote the following (non-singular)

linear transformation:

(k): A — Ax
aEl)v—»agk) for I1=1,2,...,t+1.
For 1 <i < s, given any ¢ + 1 elements
a1 € Ay, a3 € Ag,..., a; € A;, and y € Ay,
there exists a unique element (C’%j ), Céj ), ceey C’i(j )) of the t-spread set C of W such

that

ay = C’;j)y, ag = C’éj)y,.. .y Q= Ci(j)y.

Proof: The vector ay @ a2 © --- D a; @ y(it1) represents a point of the
((i+1)(t+1)—1)-dimensional vector subspace of V(s41)(t+1) spanned by the spaces
Ay, A,, ..., Air1. Since W is a t-spread of V(,41)(s+1) With the Shell property 3.2.7,

this vector is contained in a t-spread element of the form
1c9,¢,...,0)
for some i € {1,2,...,s} and j € {1,2,... ,g*tt 1}, Thus
0 wme- 0oy el (c?,cf,....c)
— {ij)a(l) @ Céj)a("’) R Ci(j)a(i) oot g€ Al}

and we see that a(+1) = y(it1) g0 that ¢ = y and the result follows. a

Apart from the fact that this representation of a t-spread involves different
representations for different t-spread elements, only a limited class of t-spreads
even have a representation as a t-spread set, namely those with the Shell property
3.2.7. This situation contrasts with Section 3.5 in which we show that every t-
spread has a projective t-spread set, and the elements of the projective t-spread
set are all the same. In the case of s = 1 every t-spread has the Shell property

and this difficulty doesn’t arise.
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3.3 CONSTRUCTION OF AN AFFINE SPACE AG*(s +1,¢"*?)

This Section generalises the construction of an affine plane which has been given
in the case of s = 1. The construction yields an affine (s 4 1)-dimensional space
of order ¢{tt1). Since every (s 4 1)-dimensional space is Desarguesian for s > 2,

there are certain implications for the t-spread.

Let W= {W,,W1,...,W,}, wherew = gD 4 gle— D0+ 4 4 gt 4+ 1,
be a t-spread of PG((s + 1)(t +1) —1,¢). Embed PG((s + 1)(t + 1)~ 1,q) as a
hyperplane in PG((s+1)(t+1),¢), and define an incidence structure A= (P,B,I)

as follows:
- the points of A are the points of PG((s+1)(t+1), q)—PG((s+1)(t+1)-1,9),

- the blocks of A are the ( + 1)-dimensional subspaces of PG((s + 1)(t +1),q)
which meet PG((s +1)(t+1)—1,q) in exactly an element of the t-spread W,

and
- thé incidence is that induced by the incidence of PG((s 4 1)(t + 1), 9).

Therefore A has ¢(*TD{+1) points and ¢*(tt1« blocks. We now show that
under the assumption that W is geometric this is an affine (s + 1)-dimensional

space of order ¢(*t1), noting first that it has the correct number of points and

blocks.

3.3.1 Theorem [Hirschfeld, (1979), p39)
Let T be an incidence structure with an equivalence relation (parallelism) on its

blocks such that

(i) Any two distinct points P1 and P; are incident with exactly one block denoted
by b( Py P;).
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(ii) For every point P and block b, there is a unique block b' parallel to b and

containing P.

(iii) If b( Py P;) and b(P; P,) are parallel blocks and P is a point on b( P, Ps) distinct
from P; and P, then there is a point P’ on b(PP;) and b(Ps Py).

(iv) If no block contains more than two points and Py, Py, P; are distinct points,
then the block bs through Ps parallel to b(P; P;) and the block b; through P»

parallel to b(P; P;) have a point P in common.
(v) Some block contains exactly ¢ > 2 points.
(vi) There exist two blocks neither parallel nor with a common point.

Then T is isomorphic to the n-dimensional affine space AG(n,q) of order g,

for some n > 3. 0O

We now check that A satisfies these axioms. We say that two blocks of A are
parallel if and only if they are (t 4 1)-dimensional subspaces of PG((s+1)(t+1),4)
meeting PG((s+1)(t+1)—1,¢) in the same element of the t-spread W. Note that
parallel blocks are (¢ + 1)-dimensional subspaces of PG((s+1)(t +1), ) which are
either coincident and pass through an element of W or meet only in the points of
an element of W. Parallelism so defined is indeed an equivalence relation. Now

we check the conditions (i)-(vi) above.

(i) Let P, and P, be distinct points of A. They are points of
PG((s +1)(t+1),q) — PG((s + 1)(t +1) = 1,9),

and the line P, P, of PG((s + 1)(t + 1),q) — PG((s + 1)(t + 1) — 1,¢) meets
PG((s +1)(t+1) —1,q) in a point which lies on a unique element W; of the

t-spread W. The (¢ 4+ 1)-dimensional subspace < W;, PiP; > is the unique
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(ii)

(i)

block of A containing both P; and Ps.

Let P be a point of A and b a block of A, where P is not incident with b.
Then P is a point of PG((s + 1)(t + 1),¢) — PG((s + 1)(t +1) —1,¢g) and b
is a (t 4+ 1)-dimensional subspace of PG((s + 1)(t + 1),¢) not containing P
and meeting PG((s + 1)(t + 1) — 1,¢) in the unique element Wy of W. The
(t + 1)-dimensional space < Wj, P > is the unique block of A through P and

parallel to b.

Let (P P;) and b(P;Ps) be parallel blocks of A, so that they are (¢t + 1)-
dimensional subspaces of PG((s+1)(t+1), ¢) meeting PG((s+1)(t+1)-1,q)
in exactly the element W; say of W. The block b(P;P3) meets the space .
PG((s +1)(t + 1) — 1,q) in the element W5 say of W, distinct from W3, and
meets each of b(P; P,) and b(P;P,) in the unique point Py or P; respectively.
Let P be a point on the block b(P; P;) distinct from Py and Ps. The block
5(PP,) is a (t + 1)-dimensional subspace of PG((s + 1)(t + 1),q) meeting
PG((s+1)(t+1)—1,q) in an element W3 of W. Wy is distinct from W since
b(PP;) and b(P; P,) are not parallel blocks, and Wy is distinct from W; since
b(PP,) and b(P; P;) are not parallel blocks. Now b(PP;) and b(P;s Py) meet
in exactly a point if and only if as (¢ + 1)-dimensional subspaces they span a
(2t+2)-dimensional subspace of PG((s+1)(t+1),¢). This happens if and only
if the spaces Wy, Wz and W all lie in a subspace of PG((s +1)(t +1) —1,¢)

of dimension 2t + 1.

To see this, first suppose that Wy, W, and W lie in a (2t +1)-dimensional
space, then b(PP,) and b(P3 P,) lie in a space of dimension one greater as they
contain points of PG((s +1)(t +1),¢) — PG((s + 1)(t +1) —1,¢). Conversely
if b(PP,) and b(P3Py) span a space of dimension 2t + 2 then they meet the
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hyperplane PG((s + 1)(t + 1) — 1,¢) in a space of dimension 2t + 1. This
space contains the t-spread elements Wi and W; (since they are contained in
b(PP,) and b(P; P,)) and the point of intersection of PG((s+1)(t+1)—1,9)
with the line joining the points P and Pj, which lies in W5. As P may vary
over the block b(P;P3), and the point of intersection of the line PP3; must
remain in W, and in the space spanned by W) and Ws we conclude that W,
must lie in < Wy, W3 >. The requirement that Wa must liein < Wy, W3 > as
Wy, Ws and W, vary over the elements of the t-spread is exactly the condition

that W 1s geometric.
iv) This is satisfied vacuously since ever block has more than two points.
Y
(v) Every block has exactly ¢{t*tD points.

(vi) Let W7 and Wy be distinct elements of the t-spread W. Let b be a block of A
passing through Wj. There is a block of A passing through W, and skew to
b, since b and W; span a subspace of PG((s+1)(t+ 1), q) of dimension 2¢+2,
and joining W3 to any point not in this subspace gives a (t + 1)-dimensional

subspace of PG((s +1)(t + 1), ) skew to .

The above arguments show the following.

3.3.2 Theorem
Let W be a geometric t-spread of PG((s + 1)(t + 1) —1,¢). Then the incidence
structure Z constructed as above is an affine space AG*(s+ 1, ¢'*1) of dimension

s + 1 and order ¢*t! which may be completed to a projective (s+1)-dimensional

space PG*(s +1,¢'™).

Proof: Applying Theorem 3.3.1 we see that the incidence structure is

indeed an affine space of order ¢**! and by comparing the number of points with
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the number of points of an affine space we see that the space has dimension s + 1.
We complete the affine space to a projective space by adjoining in a special way
the space PG((s + 1)(t + 1) — 1,¢) as the s-dimensional space at infinity of order
g't! and the elements of the t-spread W as the points at infinity, one per parallel
class. We see then that the s-dimensional space of order ¢'*! at infinity has the
correct number w of points. The (i(t + 1) — 1)-dimensional spaces joining these
are the i-dimensional subspaces of the s-dimensional projective space at infinity,

as in Theorem 1.2.4. O

It is known (see Beutelspacher (1980) and Segre (1964)) that a geometric
t-spread W of PG(d,q) for d > 2t + 1 induces a regular t-spread on the space
< V,V' > for any two distinct elements V and V' of W. This result can be

recovered as a Corollary of the preceding Theorem 3.3.2.

3.3.3 Corollary
Let W= {Wy,...,W,}, w = ¢°t+D + gD+ 1 4 g1 41, be a geometric
t-spread of PG((s + 1)(t +1) — 1,¢). Then for any pair W;, W; of elements of W,

the t-spread induced on the (2t + 1)-dimensional space < W;, W; > is regular.

Proof: Since W is geometric, it induces a t-spread on any (2¢t+1)-dimensional
space < W;, W; >. Let AG*(s + 1, q'T!) be the affine space constructed from W
as above. The hyperplane at infinity of AG*(s+1,¢"t?!) is the incidence structure
T constructed on the space PG((s + 1)(t + 1) — 1,q), where the points are the
elements of W and the subspaces are the joins of these points. Thus the lines
at infinity are the t-spreads induced by W on the (2t 4 1)-dimensional subspaces
of PG((s + 1)(t + 1) — 1,q) of the type < Wi, W; >, W; # W;, and a plane of
AG*(s +1,¢""!) meets the hyperplane at infinity in a line at infinity. A plane of

AG*(s 4+ 1,¢'*1) arises from a t-spread induced by W on a (2t + 1)-dimensional
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subspace < W;, W; > of PG((s+1)(t +1) — 1, q) by the construction described in
Section 2.3. Now AG*(s+1,¢'*t!) is Desarguesian for s > 2 so any subplane of it is
Desarguesian, and thus by Section 2.7, the t-spread induced by W on < W;, W; >

is regular. m]

3.4 t-REGULI OF RANK » AND REGULAR t-SPREADS

Since a t-regulus of a (2t + 1)-dimensional projective space is just the set of all ¢-
dimensional subspaces of a Segre variety SV, t+1 in PG(2t+1, ¢), it seems natural
to generalise this to a “higher dimensional regulus” of PG((s + 1)(t + 1) — 1,9)
using the Segre variety SVst1,141 in PG((s + 1)(t +1) — 1,9).

3.4.1 Definition

For 0 <r <s,let T°T%,...,T't be t + 1 pairwise skew r-dimensional subspaces
spanning a projective space PG((r + 1)(t + 1) — 1,¢), and suppose there exist
¢ projective correspondences relating I'® to each of I'',T'%,...,T'"*. The set of ¢-
dimensional subspaces of PG((r + 1)(t + 1) — 1, ¢) joining a point P of I to the
corresponding points P, P?,..., Pt of I}, T?% ..., T is called a t-regulus of rank
r, and is denoted by R,.

The space PG({r + 1)(t + 1) — 1, ¢) may be a subspace of a projective space
PG(n,q). In this case we say that R, is a t-regulus of rank r of PG(n,g), but we
understand that R, lies in a ((r 4+ 1)(t 4+ 1) — 1)-dimensional subspace of PG(n, g).

3.4.2 Examples

(1) A 1-regulus of rank 0 is just a line in PG(n, ).

(2) A 1l-regulus of rank 1 is a regulus of lines of PG(3, ), normally defined as the

set of ¢ + 1 lines of PG(3,q) forming one system of generators of a quadric
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surface.

(3) A t-regulus of rank 1 is a t-regulus of PG(2t + 1, ¢) as in Definition 2.4.1.

3.4.3 Theorem
A t-regulus of rank r in PG(n, q) is the set of ¢t-dimensional subspaces of a Segre

variety SVr41.¢41 in some subspace PG((r + 1)(t + 1) — 1,9) of PG(n,q) and

conversely.

Proof: Let R, be a t-regulus of rank r which is contained in a subspace
PG((r + 1)(t +1) — 1,q) of PG((s +1)(t + 1) — 1,¢q). There exist ¢ + 1 pair-
wise skew r-dimensional spaces I'’,T'?,...,I'" as in Definition 3.4.1. The ele-
ments of R, are the t-dimensional subspaces of PG(n,q) joining corresponding
points of T'9, T}, ..., I'"* under projective correspondences between I'® and each of
' T2,..., T respectively. These lie in PG{(r +1)(t+1)—1,¢). By Lemma 1.3.4
(1) the set R, is the set of t-dimensional subspaces of a Segre variety SVrq1,e41
in PG((r + 1)(t + 1) — 1,¢). Conversely, let R, be the set of t-dimensional
spaces of a Segre variety SV,+1,¢+1 in an ((r +1)(¢t + 1) — 1)-dimensional subspace
PG((r +1)(t +1)—1,q) of PG(n,q). Then any t + 1 of the r-dimensional spaces
of SV,41,t+1 spanning PG((r + 1)(t + 1) — 1,¢) may be chosen as POl o lF
by Lemmas 1.3.1 (1) and 1.3.4 (1). o

3.4.4 Corollary

(1) A t-regulus of rank r R, has ¢" + ¢"~' + -+ + ¢ + 1 elements.

(2) Thereis a unique t-regulus of rank r through any r+2 ¢-dimensional subspaces

in PG((r +1)(t +1) —1,¢), no r + 1 of which lie in a hyperplane.

(3) A t-regulus R, of rank r has ¢* + ¢'~! +--- 4 ¢ + 1 transversal r-dimensional
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spaces, that is, r-dimensional spaces which meet every element of R, in a

unique point.

Proof: (1) By Theorem 3.4.3, R, is the set of t-dimensional spaces on a Segre
variety SVrt1,041 of PG((r+1)(t+1)—1,¢), which number ¢"+¢" 1+ +q+1,
by Lemma 1.3.1 (1).

(2) By Lemma 1.3.4 (2), there is a unique Segre variety SVr41,1+1 containing r+2
t-dimensional subspaces of PG((r + 1)(t +1) —1,¢), nor +1in a hyperplane.
The t-dimensional spaces of this SV,41,41 form the unique t-regulus of rank r
containing these r 4 2 spaces.

(3) By Theorem 3.4.3, R, is the set of t-dimensional spaces of a Segre variety
SVrt1.441 in PG((r+1)(¢ +1) —1,q). By Lemma 1.3.1 (1) and (2), $Vrt1,t41 has
¢' + ¢!+ -+ + g+ 1 r-dimensional spaces, which are transversal r-dimensional

spaces of Rr. m|

3.4.5 Lemma
A t-regulus of rank r admits ¢-subreguli of ranksr—1,r—2,...,1,0. The number
of t-subreguli of rank k for 0 < k <rina t-regulus of rank r is just the number

of k-dimensional subspaces of an r-dimensional projective space.

Proof: A t-regulus of rank r is the set of t-dimensional spaces of a Segre
variety SV,41,041 in PG((r + 1)(t +1) — 1,q). As in Lemma 1.3.5, this variety
admits Segre subvarieties SVi41,t41 for each value of k with 0 < k < r. The set of
t-dimensional spaces on such a Segre subvariety is then a t-subregulus of rank k of
the t-regulus of rank r. This is because the t-dimensional spaces of SVg41,t+1 are
all t-dimensional spaces of SVy41,141, again by Lemma 1.3.5. As in the proof of
that result, a Segre subvariety SV 41,141 of the variety SVr41,¢41 18 determined

by a k-dimensional subspace of one of the r-dimensional spaces of SV 41,141, 80
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the second statement of the Lemma holds. [}

3.4.6 Lemma

Let R, be a t-regulus of rank = in PG((r + 1)(t + 1) — 1,¢). Two t-subreguli Ry
and R, of R, (of ranks say k and m respectively) are either disjoint or intersect
in a t-subregulus of R, (which is also a t-subregulus of R and of Rm) of rank

less than or equal to the smaller of the two ranks k and m.

Proof: The t-subreguli of ranks k and m are defined by k- and m-dimensional
subspaces of one of the r-dimensional spaces of R, as a Segre variety (see Lemma
1.3.5). These meet in a subspace of dimension less than or equal to the smaller of
k and m, and this subspace of intersection determines a Segre subvariety which is

a t-subregulus of R, and of both the t-subreguli of ranks k and m. i

As we now have a definition for a t-regulus of rank r, we can use it to introduce
the idea of different sorts of regularity of a t-spread corresponding to the different

sorts of t-regulus which it may contain.

3.4.7 Definition

A t-spread W of PG((s + 1)(t + 1) — 1,q) is t-regular of rank r for 0 < r < 's if
whenever S, is an r-dimensional subspace of PG((s +1)(t+ 1) — 1, ¢) not meeting
any element of W in more than one point, then the ¢" + ¢l g+ 1t
dimensional spaces of W meeting it form a t-regulus of rank r. If there is no
confusion then we say that W is regular of rank r. In particular, the ¢" + ¢+
...+ q+1 lines in the t-regulus of rank r lie in an ((r +1)(t + 1) — 1)-dimensional
subspace of PG((s +1)(t +1) — 1,¢).

3.4.8 Examples
(0) Every t-spread of PG((s + 1)(t + 1) — 1,¢) is regular of rank 0, since given
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any 0-dimensional subspace of PG((s+1)(t+ 1) — 1, ¢), which is just a point,
there is a unique element of the t-spread through it, and this ¢-dimensional

space is a t-regulus of rank 0.

(1) In PG(2t +1,q), a t-spread is regular of rank 1 if and only if it is regular in

the usual sense of the word, see Theorem 2.4.5.

(2) In Ebert (1983), a 1-spread W of PG(2s+1,¢) is called regular if for any line
| of PG(2s +1,q) not contained in W, the ¢ 4+ 1 lines of W meeting I form
a regulus. This is precisely the condition that the 1-spread is regular of rank

1. Thus regularity of rank 1 coincides with the usual notion of regularity for

1-spreads of PG(2s + 1, ¢q).

The only existing definitions of regularity of t-spreads of PG({(s+1)(t+1)—1,¢)
known to the author are in the cases t = 1 with general s, and s = 1 for general ¢.
These are discussed in Section 2.4 and in the Examples above. The new definition
of regularity of different ranks given in Definition 3.4.7 does not contradict any of

the previous definitions, but refines and generalises the idea of regularity.

3.4.9 Lemma

For some integer r with 1 < r < s — 1, let S, be an r-dimensional subspace of
PG((s+1)(t+1)—1,q). Aset R, of ¢"+¢" 1 +---+q+1 t-dirﬁensional subspaces
of PG((s +1)(t +1) — 1,¢), each meeting S, in a unique point, is a t-regulus of
rank r if and only if for each line I of S, the set of ¢-dimensional spaces of R,

meeting [ is a t-regulus of rank 1.

Proof: Suppose first that R, is a t-regulus of rank r. Then it is the set of
t-dimensional spaces of a Segre variety SV 41,141 contained in a given subspace

PG((r + 1)(t + 1) = 1,q) of PG((s + 1)(t + 1) — 1,q). Now S is one of the r-
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dimensional spaces of SV 41,141, by Lemma 1.3.4 (2). Then by Lemma 1.3.5, the
set of t-dimensional spaces of SV 41,141 meeting a line [ of Sr is a Segre subvariety
SV3,44+1 contained in a (2t + 1)-dimensional subspace of PG((r+1)(t+1)—1,q),

that is, a t-regulus of rank 1.

Conversely, suppose the set of ¢ + 1 t-dimensional spaces of R meeting any
line of S, form a t-regulus of rank 1, so that they are the t-dimensional spaces
of a Segre variety SV3 ¢4+1. Let P be a point of S, and let I,ls,. .. , 1 be lines
of S, through the point P, such that l3,ls,...,l; span Sr. Let S¢ be the unique
t-dimensional space of R, passing through P. For any 1 with 1 < ¢ < r, consider
the t-regulus of rank 1, denoted by R, comprising the t-dimensional spaces of
Rr ﬁeeting I;. This is the set of t-dimensional spaces of a Segre variety SVé,t +1
which contains S; and has I; as one of its lines. Any two such varieties, for
distinct 7 and j say, have no common point apart from the points of Sy, as the Ri
meet only in the points of S;. Now two such Segre varieties S VE,H_I and SV%,t 41
lie in (2t + 1)-dimensional subspaces of PG((s + 1)(t + 1) — 1,¢) which meet in
exactly the t-dimensional space S;. This is because if they meet in more than just
S,, then they meet in a (¢ + 1)-dimensional space through S¢, and such a space
through a t-dimensional space of S Vé’t 41, which is a ruled quadric in PG(2t+1,q),
meets it in points outside S, and similarly meets SV{,.’t +1 in points outside St.
So SV;H_I and SV%,t+1 would have common points outside S;. Through any
point @Q of S there passes a line lé? of the variety & V;,t +1, and the set of r such
lines through @ span a space of dimension r as each is contained in a (2t + 1)-
dimensional space (as above) and the set of all such (2t + 1)-dimensional spaces
spans a ((r +1)(t+ 1) — 1)-dimensional space PG((r+1)(t+1)—1, q). As Q varies
among the points of S;, we obtain ¢ + ¢*~* + -+ 4+ ¢ + 1 r-dimensional subspaces

of PG((r +1)(t + 1) — 1,q), each meeting r(q* + ¢t~ 1 +---+¢q) + 1 elements of
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R.. In fact each such r-dimensional space meets every element of R, by repeating
the above argument choosing another convenient point as P. These r-dimensional
spaces define a Segre variety SV 41,141 With R, as the set of ¢-dimensional spaces,

and hence R, is a regulus of rank r. m]

3.4.10 Theorem
Let W be a t-spread of PG((s + 1)(t + 1) — 1,q) which is regular of rank r, for
some r with 1 < r < s. Then W is regular of each rank r — 1,7 —2,...,1,0, and

it is also regular of each rank r 4+ 1,7 +2,...,s.

Proof: For some value of k with 1 < k < r — 1,-let Sr—x be an (r — k)-
dimensional subspace of PG((s + 1)(t + 1) — 1, ¢), not meeting any element of W
in more than one point. This lies in an r-dimensional subspace S, of the space
PG((s + 1)(t + 1) — 1,¢) not meeting any element of W in more than one point.
The ¢" + ¢"~! + --- + ¢ + 1 t-dimensional spaces of W meeting S, are a t-regulus
of rank r by assumption, and the ¢"~% + g"% 1 4... 4+ ¢ +1 t-dimensional spaces
of W meeting Sy_x are a subregulus of rank r — k by Lemma 1.3.5. This shows
that W is regular of each rank r — 1,7 —2,...,1 and it is regular of rank 0 since

every t-spread is regular of rank 0 (Examples 3.4.8 (0)).

Now since W is regular of rank r for some r with 1 <r <s -1, then by the
first part of the Theorem W is regular of rank 1. Let Sryk, for somel <k <s-r,
be an (r + k)-dimensional subspace of PG((s + 1)(t +1) — 1, q), not meeting any
element of W in more than one point. There is exactly one element of W through
each point of Sy41, and since W is regular of rank 1, the set of ¢+ 1 t-dimensional
spaces of W meeting any line of S, is a t-regulus of rank 1. By Lemma 3.4.9,
the set of t-dimensional spaces of W meeting Sr4k is a t-regulus of rank (r + k)

and so W is regular of rank r + k. This shows that W is regular of each rank
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r+1,r+2,...,s. o

3.4.11 Definition
A t-spread W in PG((s + 1)(t + 1) — 1, q) is called reguler if it is regular of rank

r for some r with 1 < r < s, then it is necessarily regular of each rank 0,1,...,s.

3.4.12 Theorem
Let W be a t-spread of PG((s+1)(t+1)—1,¢). Then W is geometric if and only

if it is regular.

Proof: First, let W = {W;i,W,,...,W.,} be a geometric t-spread of the
space PG((s+1)(t+1)—1,q). Then W induces a regular ¢-spread on any (2¢+1)-
dimensional subspace < W;,W; > for distinct elements W; and W; of W (see
Corollary 3.3.3 or Segre (1964)). Let I be a line of PG((s + 1)(t + 1) — 1,9),
not contained in any element of W. Without loss of generality, suppose [ meets
the elements {Wy,Ws,..., W41} of W. Thén ! is contained in < W1, W, > and
since W3, Wy,...,Wyy1 all have a point in common with < Wy, W, > (which
is their point of intersection with [) then W3, Wy, ..., W41 are all contained in
< Wi, Wy > as W is geometric (see Definition 1.2.3). As the t-spread induced on
< W1, W, > is regular, the set of spaces Wi, W, ..., Wgy1 form a t-regulus which
is a t-regulus of rank 1. Thus W is regular of rank 1 and by Theorem 3.4.10, W

is regular.

Conversely suppose that W is a regular t-spread, then it is regular of rank 1 by
Definition 3.4.11. Choose W;, W; € W, with W; # Wj, and consider the (2¢ + 1)-
dimensional space < W;, W; >. Any line [ of < W;, W; > meets ¢ + 1 elements
of the t-spread W, which form a t-regulus of rank 1 in some (2t + 1)-dimensional

subspace of PG((s + 1)(t + 1) — 1,¢). Thus if / meets both W; and W then the
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elements of the t-regulus of rank 1 defined by [ all lie in < W;, W; >, since it has
dimension (2t 4+ 1). Now let P be any point of < Wi, W; >, and suppose that
P € Wy, where k # i,j. There is a line [ of PG((s + 1)(t +1) — 1, ) through P
which meets both W; and W;. This is because the space < W;, P > is contained
in < W;,W; > and has dimension ¢ 4+ 1. Thus it meets W; in a point say @, and
the line | = PQ passes through P and meets both W; and Wj. In this way we can
see that every point P €< W;, W; > lies on some element Wi of the t-spread W,

and this element must be contained in < W;, W; >, and W is geometric. m]

3.5 CONSTRUCTION OF A PROJECTIVE ¢t-SPREAD SET

This construction is different from that given in Section 3.2. A t-spread is now
shown to correspond to a set of (s+1)-tuples of matrices, or linear transformations.
The t-spread set, for t-spreads where it exists, can be obtained from this projective

t-spread set by a “non-homogenising” procedure.

Again we use the space Sm(Mn(GF(q))) introduced by Thas (1971), gener-

alising the results found in Section 2.5.

Under the bijection f given in Theorem 1.6.2, points of Sm(Mn(GF(q)))
correspond to (n — 1)-dimensional subspaces of PG((m + 1)n —1,¢). Thus to use
this space to analyse t-spreads of PG((s+1)(t+1)~1,¢), we need to put n =+ 1

and m = s.

3.5.1 The Construction
Let W be a t-spread of PG((s + 1)(t + 1) — 1,¢) and let w = |W|. Then W
corresponds under the bijection f~!, where f is as in Theorem 1.6.2, to a set

P of w points of Ss(M+1(GF(q))), each pair of which is in clear position. The
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elements of the t-spread W are represented by points of P

= (&6, )T,
for:=0,1,...,w — 1, where each submatrix fg) is (t+1) x (t+ 1) and

&y
0
1 =t+1.

rank
£
The property that every pair of points in P is in clear position means that if

Po= (69,69 eNT and P = (60,69, 6T are distinet points of P

then : ,
(1) £(5)
& &
£(i) )
rank | ! =2(t+1)
60 ¢

If we can choose a set of s + 2 points of P such that any s + 1 of them are in

clear position, then Theorem 1.6.3 allows us without loss of generality to suppose

that
Py =(I,0,...,007, P, = (0,1,0,...,0)T,..., Psy1 = (0,...,0,I)T

and

Pyo=(I,1,..., D)7

where each submatrix is (¢ + 1) x (¢ + 1). Recalling that under the bijection f, a

t-spread element W; is the space spanned by the columns of the coordinate matrix



we see that this process is equivalent to choosing a basis {e1,e2,...,¢€ s+1)(t+1)}
for PG(((s + 1)(t + 1) — 1, ¢) such that the t-spread W contains the -dimensional

spaces
Wo == 1in{61,62, BN ,et+1} 0

Wi = lin {es42, €243, -+ €2(t41) } »

Wes1 = lin {es(t41)+1) €o(t41) 425+ - - ae(s+l)(t+1)} and
Wets =lin{e1 + et4a + -+ eserny+1, €2 + €43 + -+ set1) 4200+ - )
et+1 + ea(t+1) o0 e(s+1)(t+1)} .

This is possible since if we choose the bases for the spaces Wy, Wh,..., W, as above
then Lemma 1.1.2 ensures that there is a suitable basis for W,41 so that W, has

the required basis.

These considerations prompt the following Definition.

3.5.2 Definition
A projective t-spread set is a set PC of (s + 1)-tuples of (¢ + 1) x (¢ + 1) matrices
such that

(i) PC has w = g* Ut 4 g(s=D(+) 4o 4 g?! 4] elements,

(i) ¥ P = (53"), ii), ... ,gﬁ")) is an element of PC, then

(iii) If P; = ({éi), §"), e ,52")) and P; = (.f((,j), Ej), . ,gﬁj)) are distinct elements
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of PC then

& &
6(’) 6)) )
rank 1 2 =2(t +1).

€0 ¢
A projective t-spread set is said to be normalised if it satisfies the additional

property,

(iv) PC contains the (s 4 1)-tuples

(1,0,...,0), (0,1,0,...,0),... (0,...,0,I), and (I, I,..., ).

3.5.3 Remark
A geometric t-spread has a projective t-spread set which can be normalised, since

the extra requirement is satisfied. In a normalised projective t-spread set, condition

(ii) is implied by (iii) and (iv).

The above arguments have shown the following:

3.5.4 Theorem

Let W be a t-spread of PG((s +1)(t + 1) — 1,q). Then there exists a projective
t-spread set PC = {P; : i = 1,2,...,w}. If we consider the elements of PC as
points of Ss(M¢41(GF(q))) then

W={f(P): i=12,...,w}
where f is the bijection of Theorem 1.6.2.

Proof: Let W = {W;: i = 1,2,...,w}. By the Construction 3.5.1, the
set PC = {f~1(W;): i=1,2,...,w} is a set of w points of Ss(M+1(GF(q))),

every pair of which is in clear position. We therefore have constructed a set of w

121



(54 1)-tuples of (¢t+1) x (¢ + 1) matrices satisfying (ii) and (iii) of Definition 3.5.2.

PC is therefore a projective t-spread set. Since
PC = {f—l(W,') s e=0L,2,... ,w}
and f is a bijection, we have that

W= {f(P): i=12,...,w}.

3.5.5 Theorem (The converse)

Let PC be a projective t-spread set. Then there exists a t-spread W of the space
PG((s +1)(t + 1) —1,¢) such that

PC = {f_l(W,-) : W; € W}
where f is the bijection of Theorem 1.6.2.

Proof: Let PC = {(gf,"), ii), e ,£§i)) 14 =1,2,...,w} be a projective t-
spread set, that is a set of (s + 1)-tuples of (t + 1) x (¢ + 1) matrices over GF(q),
satisfying the three properties (i), (ii) and (iii) of Definition 3.5.2. The elements of
PC may be regarded as points of the space Ss(M41(GF(g))) every pair of which
are in clear position. These correspond under the bijection f of Theorem 1.6.2 to
a set W of w pairwise skew ¢-dimensional subspaces of PG((s + 1)(t + 1)-1,9q).
Thus W is a t-spread of PG((s +1)(t + 1) —1,¢) and

PC = {f Y (W:): WieW}.

3.5.6 Theorem
Given a t-spread set, we can construct a (normalised) projective t-spread set and

the t-spreads they define are isomorphic.
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Proof: Let C be a t-spread set of matrices, so that it is a set of g* () 5
tuples of matrices, ¢(*~D(+1) (s — 1)-tuples of matrices, ... , 2D 2-tuples of

matrices and ¢**! single matrices,
c={(cP,c",....69): i=1,2,...,5, 5 = 12,.,g ).

All the above matrices are (t+1) x (t +1) and for each i = 1,2, ..., s the following

properties are satisfied:
(ii) the i-tuples (0,0,...,0) and (I,I,...,I) arein C, and

(iii) if (X1, Xa,...,Xi) and (Y1,Y,...,Y;) are distinct elements of C then z =0

is the only common solution to the equations (X; — Yi)z =0.

For each i-tuple of matrices in the set C, we construct an (s 4 1)-tuple of
(t+1) x (t + 1) matrices whose first ¢ entries are the matrices of the i-tuple in the
same order. The next entry (the (i 4+ 1)** entry) is the identity matrix and the
last (s 4+ 1) — (i + 1) entries are the zero matrix. To the set of such (s + 1)-tuples,
adjoin the (s + 1)-tuple (I,0,...,0), to obtain

PC =

{P,-,- —(CD.c9,...,cD 1,0,...,0): i=1,2,...,8 j= 1,2,...,qi(t+1)}

. U{Psx = (1,0,...,0)}.

The set PC so constructed is a normalised projective t-spread set, and we show
this by checking that PC satisfies Definition 3.5.2. First, PC is a set of w =
gD 4 gl D) 4 gt 11 (s 4 1)-tuples of (¢ + 1) x (¢ + 1) matrices
which contains the elements (I,0,...,0),...,(0,...,0,I) and (I, I,...,I). (This
follows from the fact that the i-tuple all of whose entries are the zero matrix is
in the set for every value of ¢ and performing the above construction on such an

i-tuple gives an (s + 1)-tuple with an identity matrix in position (¢ + 1) and zero
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matrices elsewhere. The (s + 1)-tuple all of whose entries are the identity matrix
is constructed from the s-tuple all of whose entries are the identity matrix.) Thus
(i) and (iv) are satisfied. Since each element of PC has the identity matrix as one

of its elements, property (ii) is satisfied.

Now we must check the condition (iii) of Definition 3.5.2. We shall consider

three cases. First, let
(Xl,Xg,...,Xi,I,O,...,O) and (Y]_,Yz,... ,Y',' I,O, ,0)

be two (s + 1)-tuples in PC. Then

X Y X1 T—-X

(% ¥ (% %ix)
rank )§i 1;‘ = rank )? Y; B X

0 0 0 0

\o o)/ \o 0 )

and we must show that this matrix has rank equal to 2(t+1). Since it has 2(t+1)
columns its rank is at most 2(t + 1). Because the first ¢ 4+ 1 columns are linearly
independent, and by property (iii) above z = 0 is the only common solution to

the equations (X; — Yj)x = 0, we see that

Y1 - X,
Y, - X,

rank P =t+1
Yi-X;

and the result follows.

Now let (Xi, Xa,...,X;,1,0,...,0) and (Y1,Y2,...,Y;,1,0,...,0) be distinct

(s + 1)-tuples in PC, and suppose without loss of generality that ¢ < j. Then the
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matrix

X Y;
3

Xi Y

I Y

0 Yiye

0 Y

0 I

0 0
\o o0/

has rank equal to 2(t +1).

Finally let (X3, X2,...,Xi,I,0,...,0) and (I,0,0,...,0) be two elements of
PC. Then the matrix

(Xl I\

X2 O
X; 0
I 0
0

\o 0
has rank equal to 2(¢ +1).

We now show that the ¢-spreads defined by the t-spread set and the projective

t-spread set are isomorphic. Let the set of vectors

1 1 2 +1 +1 +
{ag ),ag ),...,aﬁ_)l,ag ),agz),...,ag_)l, ...... ,ags ),ags ),...,agill)}

be a basis for V(,41)(t+1), the vector space corresponding to PG((s+1)(t+1)-1,9).
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Let
A; =lin {agl), agl), ag_l*_)l}

As =lin {a§2), ag2), ag_)l}

Avs =lim {0,040, a0),

For each value of i with i = 1,2,...,s + 1, define a (non-singular) linear transfor-
mation (i) from A4; to A; as follows:
(1) : Ay — A;
af)r—»ai’) for k=1,2,...,t+ 1.
The t-spread set
@@= {(C{J),C(J) .,C,-(j)): i=1,2,...,s, j=1,2,...,qi(t+1)}
defines the t-spread
W= {J(Cf”,c(” LSOy i=1,2,...,8, j=1,2,... ,qi<t+1>} U {J(co)}
where
J(C{J), C(J) C(J)) = = {C(J) (1) Y C(J) (2) @B C(J) (9 o a(‘l+1)

k=1,2,...,t+1}
and

J(o0) = Ay =lin {aﬁl),agl), ,a](‘/i)l}

The projective t-spread set
pc={P;=(c?,c{,....c2,1,0,...,0):
i=1,2...s j= 1,2,...,q"(‘+1)} U {Pwo}

where P, = (,0,...,0) gives rise to the t-spread

= {fPy) =125, 5 =120, d DU {F(P))
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where f is the bijection of Theorem 1.6.2. The vectors ey, ez, .., €(s+1)(t+1) form
a basis for V(st1)(t+1), Where e; is the vector with a 1 in its 7th position and
zeros everywhere else. We shall express V(,41)(1+1) as the direct product of s+1

(t + 1)-dimensional vector spaces as follows:

Vist1)t+1) = B1 @ B2 @ -+ @ By

where
B1 = o {61, €2,y 6t+1}

Bz = lin {6t+2, €t439+ 0y 62(t+1)}

B, =lin {6(3—1)(t+1)+1, €s(t+1)+29- > es(t+1)}

Bot1 = lin {€s(s41) 415 Es(t41)425 - - -5 €(ot1)(t41) } -

Now we write each B; as a (t + 1)-dimensional vector space, so that for each

j=1,2,...,8+1, B; has basis
B =(1,0,...,0)T
8 =(0,1,0,...,0)T
), = (0,0,...,0,1)7.

For each j = 1,2,...,58 + 1, we define a (non-singular) linear transformation (7)

as follows:

:bgcl)b—)bgcj) for k=1,2,...,t+ 1.
Now f(Ps) is the (t + 1) dimensional subspace of V(s41)(t+1) spanned by the

columns of
I

0
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The space spanned by the columns of this matrix is Bi. The space f(Pij;) is the

space spanned by the columns of

(S

c
C;gj)
I
0

\ 0. )

c11Dca1@®---DBecia @ b§i+1),

These columns are

C12®Pco2@---Dciz ® bgi“),

i+1
Crtr1 D c2ty1 B - DCit+1 D bEfH )

where cp; denotes the lth column of the matrix C,(:j) for l =1,2,...,t+1 and

k=1,2,...,i Considered as a point of the space By,
et = COb

and we see that f(P;;) is spanned by the vectors
eV @ cPbP - 0 COKP @ b,

cP 6 cPbD g ... 9 b)) @ b5+,

1) 1 (1 1)1 (2 1) 4 (2 i+1
COU, 0 0P @+ 0 CPHY, @ Y
so that
F(Pij) = {c§f)b§3) dCOP @@ CP @bt : for k=1,2,...,t+ 1} .

Since the basis {agj) ck=1,2,...,t+1, j=1,2,...,s + 1} was arbitrary, we
choose

aij)zbsc]) forj=1,2,...,s+1 a,ndk=1,2,...,s+1

128



so that

f(Px)=B1 =4
and for each i = 1,2,...,s and j =1,2,...,¢"**D
F(Pij) = {cf")bﬁj) eCP @ @ COD @b : fork=1,2,...,t+ 1}
={cPecf 0 o CPal) @l : for k=1,2,...,t+1}
=4 (C§J’),c§f), g .,C,-(j)) :

Thus the t-spreads W and W' are isomorphic, that is, one may be mapped to the
other by a homography of PG((s + 1)(t + 1) — 1,9). |

3.5.7 Theorem

Let W be a t-spread of PG((s + 1)(t + 1) — 1,¢) with projective t-spread set
PC. Suppose that W has the Shell property 3.2.7. Then we can normalise the
projective t-spread set and hence construct a t-spread set which defines a t-spread

isomorphic to W.

Proof: Let PC = {Py; = (¢§0,¢0,...,67) 14 =1,2,...,0} be a projec-
tive t-spread set. The elements of PC may be regarded as points of the space
Ss(M41(GF(q))) every pair of which are in clear position. Now W has the Shell
property 3.2.7, so that there exists a partition of PG((s + 1)(t + 1) — 1,q) into

“shells”,
PG(t,9),

PG(s(t+1)—1,q9) — PG((s = 1)(t + 1) —-1,9),

PG((s +1)(t+1)—1,¢9) — PG(s(t +1) - 1,9)

such that every element of W is contained in exactly one shell and has no point
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in any other shell. By the Shell property, there exist s + 2 elements
Ww, Wl, veey Ws, W‘g+1

of W as follows:

Weo = PG(t,9),

Wy € PG(2(t +1) —1,9) — PG(%,9),

Ws-1 € PG(S(t + 1) - 17 Q) - PG((S - 1)(t + 1) - 1’q)7

W, Wasa € PG((s + 1)(¢ +1) — 1,¢) - PG(s(t +1) — 1,9)

where every s + 1 of them span PG((s + 1)(t +1) — 1,q). The elements of the
projective t-spread set corresponding to these t-spread elements are the s + 2
elements Poo, P1, P2, ..., Psy1 respectively. When these are considered as points
of S;(M41(GF(g))), the condition that each s+ 1 of the t-sp-rea,d elements span
PG((s+1)(t+1)—1,q) means that every s+1 of the points Peo, P1, P2,.. ., Ps41
are in clear position. By Theorem 1.6.3 there exists a collineation, denoted by (,

of Ss(M41(GF(q))) such that
QU Ps) =(I,0,...,0),
Q(P) =(0,1,0,...,0),
QPp,) =(0,...,0,I),
QPoi) = (I, 1,...,1).

This corresponds to applying a homography to PG((s +1)(t + 1) —1,¢) such that
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in the new coordinate system
Woo = lin{el, €24... ,et+1} ;

Wy = lin {61:-}-2, €t+435-- e2(t+1)} ’

W, =lin {es(t+1)+17 €a(t41) 42y - » e(3+1)(t+1)} and
Wet1 = lin {6’1 + et42 + o+ €s(e1)+1, €62 T €143 o F Es(e1) 42500 )
et+1 + €2(t+1) o0 F e(s+1)(t+1)} .
Now any element Wl(j) of W lying in PG(2(t+1)—1,¢)—PG(t,q), 5 = 1,2,... i
is in the space spanned by Wo, and Wy, and so the corresponding element of the

projective t-spread set is of the form
€,6,0,...,0)

and since this is in clear position with the point Pe = (Z,0,...,0),

‘o
i 0

rank| 0 0 |=2(t+1)
0 0

and so det(fgj )) is not zero. This means that we may multiply the coordinates of

the point P;; by the non-singular matrix (f;’ ))_1 to obtain a new representation

of the same point (;f Ss(M+1(GF(q))),
P =P, 1,0,...,0).

Similarly, for each ¢ with ¢ = 2,3,...,s an element Wi(j ) of W lying in the space
PG((G + 1)t +1)—1,9) — PG(i(t + 1) — 1,¢), has corresponding element of the
projective t-spread set

Py=(Y,e9, .. ,e90,...,0).
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This point of S;(M41(GF(g))) is in clear position with the space spanned by
Py, Ps,...,P;_; and so

(53"_) I 00 0
D 01 0 0
(9D 0 0 0 .
rank | Si-1 =G+ 1D({E+1).
¢ 0 0 0 0
0

0 00

\o 000 0 0/
The matrix {Sj ) is non-singular, and we may multiply each coordinate of the point
of So(Me+1(GF(q))) by the inverse of §§j ) to obtain a new representation of the

same point:

P, =Y c¥ ...,c?,1,0,...,0).
The projective t-spread set is therefore normalised to
PC = {(c§f>,c*§j),...,c§”,1,o,...,0) Ci=1,2,...,5 §= 1,2,...,q"<t+1>}

J{(,0,...,0,)}

which contains the elements Poo, P1, P2, ..., Ps+1. We may construct the following

set

C = {(C;i),céf)’_..,ci(j)): i=1,2,...,8 j= 1,2"”,qi(t+1)}.

Now C is a t-spread set, and to see this, we check the conditions of Definition
3.9.6. First note that C comprises ¢°(*t1) s-tuples, gD+ (5 — 1)-tuples, ...,
g2(++1) 2.tuples and ¢! single (t + 1) X (t + 1) matrices. We must check that
for each i = 1,2,...,s the i-tuples of matrices form an (z,t)-spread set according
to Definition 3.2.3. The set C; of i-tuples of matrices has ¢’(*+1) elements, and
it contains the element (0,0,...,0) arising from P;—;. If (X1,X2,...,X;) and

(Y1,Y2,...,Y;) are distinct elements of C; then (X1, X2,...,Xi,1,0,...,0) and
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(Y1,Y2,...,Y;,1,0,...,0) are distinct elements of PC and

(X1 Y \
X, Yo
rank ‘}? 1;’ =2(t+1).
0 0
\o 0/
This implies that z = (0,0,... ,0)T is the only common solution of the equations

(X — Yi)z = 0. Thus C; is an (i,t)-spread set, so that C is a t-spread set and
we still need to show that PC and C define isomorphic t-spreads. The projective
t-spread PC is recovered from the t-spread set C in the manner described in the
proof of Theorem 3.5.6, and Theorem 3.5.6 shows that the t-spreads defined by

these two sets are isomorphic. O

3.5.8 Corollary
Let W be a t-spread of PG((s 4 1)(t+1) — 1, ¢) and suppose that W has the Shell
property 3.2.7. Then W has a projective t-spread set of the form

PC = {(C}f),cgf),...,c,?"),f,o,...,0) Ci=1,2,...,8, j= 1,2,...,qi<f+1>}

u{(,0,...,0,)}.

Proof: This appears in the proof of Theorem 3.5.7. a
3.6 COORDINATES FOR THE AFFINE SPACE AG*(s +1,¢'"")

In this Section we provide coordinates for the affine space AG *(s+1,¢"*!) whichis
constructed (as in Section 3.3) from a geometric t-spread of PG((s+1)(t+1)-1,9).
These coordinates are elements of the vector space corresponding to one of the ¢-

spread elements, and are determined by the elements of the normalised t-spread
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set. In this way, the work of Section 2.6 for the case of s =11s extended to cover

the case of t-spreads of PG((s + 1)(t + 1) — 1,¢).

We use the notation of Sections 3.2 and 3.5. Let W be a geometric ¢-spread
of PG((s + 1)(t + 1) — 1,¢), and embed the space PG((s + D(t+1)—1,q) as
a hyperplane in the projective space PG((s + 1)(t + 1),¢). As in Section 1.1 we
represent PG((s +1)(t +1) —1,q) as an ((s + 1)(t + 1))-dimensional vector space
V(s+1)(t+1) over the field GF(g), embedded as a hyperplane in the ((s+1)(t+1)+1)-
dimensional vector space V(,41)(t+1)+1- Then W becomes a collection, still denoted
W, of (t 4 1)-dimensional vector subspaces of V(st1)(t41) Over GF(q) pairwise
having only the zero vector in common and satisfying the property that each non-

zero vector of V(s41)(141) lies in exactly one element of W.

As W is geometric, it has the Shell property 3.2.7, and so by Corollary 3.5.8,

W has a projective t-spread set of matrices of the form

PC =
{P,-,- — (W, e, P I10,...,0): i=12,...,5 j= 1,2,...,qi(t+1)}

U{Poo':(I;O’)O’)}

where

Py =(0,1,0,...,0)

Py =(0,0,1,0,...,0)

Py =(0,...,0,1)

Psq,(..n) = (I,I,...,I).
This means that

W= {Wij: 1=1,2,...,s, J :1,2,...,qi(t+1)} U{Woo}
={7c?,cf,....c0\10,..,0): i=1,2..,5, G =1,20,¢0)
U{We = J(,0,...,0,)}
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where in particular W contains the following (¢ + 1)-dimensional subspaces of
V(s+1)(t41)}
Woo = lin(el, €2y ,6t+1) )

Wi1 = lin (ec42, €443, - -+, €2(14+1)) 5

We = lin (es(t+1)+1, o(t+1)4+25- - - > e(s+1)(t+1)) and
Wgee+n) = lin (el +etra 4 -+ es(i1)+1,€2 T s o Es(tr1) 4250 e )
et+1 + eg(e41) + oo + 6(3+1)(t+1)) .
To the basis {e1,es,...,€es+1)t+1)} fr V(st1)(t4+1) We adjoin the element e* of

V(3+1)(t+1)+1 - V(3+1)(t+1) to obtain a basis for V(3+1)(t+1)+1.

For each k = 2,3,...,s + 1, let (k) be the following (non-singular) linear

transformation:
(k) : Weo = Wig—1)1

5 CJ' — 6(k—1)(t+1)+j ‘fOI‘j = 1,2,. b B ,t + 1.

3.6.1 Coordinates for the points
By construction, each point of AG*(s + 1,¢"*!) is a 1-dimensional subspace of

V(5+1)(t+1)+1. Write
Vis+1)t+1)+1 = Weo @ W11 @ Wo1 & --- © W1 @ {e”}

so that a point of AG*(s + 1,¢'™!) has a unique basis element of the form

21 ® :ch) ® xgs) B P ng:;l) @ e*

where |
2
z1 € Weo, :z:g ) e Wi, :cff') € Wai,... ,:cgf:;l) € Wa
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and therefore

T1,Z2y--sLatl E‘ Weo.-
We define the coordinates of this point of AG.*(S +1,¢**1) to be (21,22, -, Tat1)-
Every such ordered (s+1)-tuple (21,22, ..., Zs+1) of elements of W, represents the
unique point of AG*(s +1,¢**!) corresponding to the subspace of V(e41)(t+1)+1

V(s+1)(t+1) spanned by the vector z; & :cg2) DD -'E(sf|-+11) @ e*. In this way the

points of AG*(s + 1,¢'*?) are represented by (s + 1)-tuples of elements of Weo.

3.6.2 Equations for the lines
A line of AG*(s41,¢**t?) is a (t+2)-dimensional subspace of V(s 41)(¢+1)+1 meeting

V(s+1)(¢41) 1 2N element W;; of W. Such a space has the form

< Wz‘j,(:l,'l,.'llg,. - ,IL‘3+1) >=< W,‘]‘,Jtl ® 11332) ®---D :E‘(::il) et >

where (z1,%2,...,Zs+1) is one of the points of AG*(s +1,¢"*!) belonging to that
line.
The lines may be divided into two rﬁain types:
(1) Lines passing through Weo. If
a1,02,...,8s+1 € Weo

then the point (3,22, ...,Zs+1) of AG*(s + 1,¢'*?) lies on the line

< Weo, (a1,02,- - ,8s41) >=< {a:a € W}, a1 & agz) DD agﬁl) de* >

if and only if

(2)

21 ® 2 (s+1) @) (s+1)

@Dy Be*e<{a:a € We},a1 Day & Day, De* >
which occurs if and only if

o = o, o = o, oD = ot
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and therefore if and only if

Ty = Ay, T3 = a3,.'.., Tg41 = Qg41-

(2) Lines not passing through Weo. If
a1,02,...,0s+1 € Woo
and
Wi = J(CD,cP,...,cP,1,0,...0) e W,

then the point (z1,%2,...,Zs41) =21 D :z:gz) DD zgfil) @ e* lies on the line

< J(CP,cP,...,cH 1,0,...,0),(a1, ..., Get1) >

== J(C'(") C(J), ..,C,-(j),I,O,...,O),al Gaagz) @6 agfil) det >
if and only if

T1 69:1:(2) 63---6391:5‘:__*11) ® e
€< {C}j)a @ Céj)a(z) 63‘- R ij)a(i) GaltV): ae Woo} ,

a3 E{aa(z)@---@agfil)@e*>

which occurs if and only if

Ts41 = Qs41y Ts = Agy.r0y Tit2 = Qif2
and xg_’:;l) = q(+1) ¢ agf:ll) so that a = z;41 — ai41 and thus

3’5') c'(])(5'3:+1 - 521 )

E':l” 4':1” o (e ~ oy,

2 (2) 2 2
o P = P, — ol

Ty —a; = C§j)($i+1 — Giy1)-
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As PC is a projective t-spread set of matrices, and noting the action of each non-

singular linear transformation (k), we see that

k k j k k
(-'L'gc ) — agc )) = Cl(ej)($$+)1 - ‘15+)1
= (xk . ak)(k) = C,E:j)((l?i.{_l - ai+1)(k)
= (zk — ax) = C{(zi41 — aira).

The equations of the line are:

Lot1 = Qg41y Ty = dgy...yTi42 = Ai42

and

T; —ai = Ci(j)(xi+1 - a,-+1), ceey 1 — a1 = ij)(xiﬂ - ai+1)-

In this way, every line of AG*(s+1,¢"*?) is specified by a set of s linear equations
determined by a point of the line and the element of W through which the line

passes.

We now show that, with an appropriate definition of addition and multi-
plication, the elements of W, form a field, and so they provide coordinates for
AG*(s+1,¢"*") in the usual way. Again, these results extend the results discussed

in Section 2.6.

We have already found equations describing the lines of AG*(s+1,¢'™!), and

they are of the type

=a, or (:c—a)=C,(cj)(y—b)

where z,y,a and b are elements of W, and C,(cj) is some matrix appearing in
an element of the projective t-spread set of W. We need to rewrite these with
addition and multiplication in the field replacing the vector space addition and

multiplication by a matrix in the projective t-spread set.
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As W, is a vector space, it has vector addition, and we define addition in
W to be this vector addition. In order to define multiplication, we choose a non-
zero element of W, and denote it by 1. By Corollary 3.2.10, given any element
z € W there exists a unique element (ij ), I,0,...,0) of the projective t-spread
set such that

Tn— C’fj 1.
In view of this, for z and y in W, we define
éy = (1) = ¢y,
and the equations of a line in AG*(s +1,¢**!) are written as:
z =a, or (z —a) = z(y — b)
where z is the unique element of W, such that z = ij 1.

3.6.3 Theorem

The system (Weo,+, * ) described above is a field.

Proof: We apply the corresponding result in the case s = 1 to a subplane of

AG*(s + 1,¢'*t!). Consider the (1,t)-spread set

= {(C}J’),I,o,...,()) L j=1,2,...,4%}
and the corresponding elements of W
Wi ={J (C§f),1,0,...,o) L i=1,2,...,0"]
u{J(,0,...,0)}.
Now W), contains the two elements
Weo = J(1,0,0,...,0) =lin{e1,e2,...,€e41}
Wn =J(0,1,0,...,0) = lin{et+2,et+3,...,ez(t_H)}.
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If we let (2) denote the (non-singular) linear transformation
(2) g Woo — W11 .
D ek tp14ky for k=1,2,...,t+1

then the elements of W, are Wy, and, for j = 1,2,...,¢"*"!

Wl,-=J(c§”,I,o,...,o)
= {Cij)aea a®: ac Woo} .

Therefore W; is a t-spread of the (2t + 1)-dimensional space
PG(2t + 1,q) =< W, W11 >= 1in{61, €2,... ,62(t+1)},

with projective t-spread set {(C’fj), I): j=1,2,...,¢""1}U{(Z,0)}. This t-spread
W, defines an affine plane II of order ¢'*! as in Section 2.3, which is an affine
subplane of AG*(s+1,¢**!). To see this, we follow the construction of II given in
Section 2.3, but using the space PG(2t+1, ) embedded in PG((s+1)(t+1)-1,9)
and the ¢t-spread W, as a subset of W.

Asin Section 1.1, PG(2t+1, q) corresponds to a (2t+2)-dimensional subspace

V2t+2 of V(3+1)(t+1), since
Vatta = lin{es, €2,..., €at41)}

Vier1)es1) = linfer, e, -, ety }-

Also, the space
V213.|.3 = lin{el, €240, 62(t+1), 6*}

is a (2t + 3)-dimensional subspace of

Vst (+1)+1 = lin{es, €2, .-, €(s+1)(t+1) e*}.

The points of the plane II are the elements of Vaty3—Vary2, which are also

points of AG*(s+1,¢**!) as they are elements of V(s41)(t+1)+1 = V(s+1)(t+1)- Lines
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of II are the (t + 2)- dimensional subspaces of Vas43 which meet Var41 in exactly
an element of Wy. These are also lines of AG*(s + 1,¢'*') as they are (t + 2)-

dimensional subspaces of V¢ 3+1)(t+1);+_1 meeting V(s41)(t+1) 10 exactly an element

of W.

We use the construction of Section 2.6 and the construction presented above
to give coordinates for II, both as a plane in its own right and as a subplane of
AG*(s +1,¢'™!). In both instances the coordinates come from the set We, and
we shall see that the coordinates of II as a plane in its own right occur as the
restriction of the coordinates of II as a subplane of AG*(s+1, ¢'t!) as is normally

the case.

First we give coordinates for II as a plane in its own right. A point of Il is a

point of Vatys — Vatyo and so has a unique basis vector of the form:

z1 D x§2) @ e*

for some 1,%2 € Weo. As in Section 2.6, this point has coordinates (z1,22). Now
a line of II is a (¢ + 2)-dimensional subspace of V,143 which meets Va¢41 in exactly
an element of W;. If the space passes through Weo = (I,0) and contains a point
(a1,az) of I then it is

{(z1,72): z2 = az}
otherwise if it passes through Wy; = J (C’ij),I ) and contains the point (a1,a2)

then it is

{(:1:1,:1:2) (21 —ay) = CP(zz — az)} .

Next we give coordinates to the points of II as a subset of the points of

AG*(s +1,¢**1). A point of II still has basis vector

z1 ® zgz) @ e*
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for some z1, 22 € Weo, 5o by 3.6.1 the coordinates of this point are
(1121,:1:‘2,0,... ,0)

By 3.6.2, a line of II passing through Woo = (1,0,...,0) and containing the point
(a1,4as,0,...,0) of AG*(s +1,¢"*1) is

{(331,1112,...,:534.1): T2 = 42,73 =0,...,.’L‘3+1 =0}

Similarly, a line through the element Wy; = J (C’fj ), I,0,...,0) and containing the
point (a1, az,0,...,0) of AG*(s +1,¢'t!) is

{(ml,xz,...,$3+1) . (.’1:1 - al) = ij)(.’liz —ag),mg = 0,. oy Lo4l1 = 0} )

Comparing these two coordinatisations we see that II has the same coordinates
whether considered as a subplane of AG*(s + 1,¢'™!) or as an affine plane in
its own right. In both cases the coordinates come from the set W, on which
is defined an addition (vector addition) and a multiplication. The definition of
multiplication on Wy, in Section 2.6 coincides with the definition given above,

immediately preceding this Theorem:.

Now since II is a subplane of AG*(s+1, ¢**1), it is Desarguesian. By Theorems
2.6.2 and 2.6.3, this means that the set (Weo,+,) is a field. mi

3.6.4 Corollary
Let W be a regular t-spread with projective t-spread set PC. Then PC is isomor-

phic to an s-dimensional projective space PG(s,q*t!) of order ¢ + 1.

Proof: PC is the set of all equivalence classes of (s + 1)-tuples of elements
of W, which is a field of order ¢!*1, where two such (s + 1)-tuples are equivalent

under multiplication by any element of W. ]
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3.7 CONNECTIONS BETWEEN 3.3 TO 3.6

Let W be a t-spread of PG((s +1)(t + 1) — 1, ¢) with the Shell Property 3.2.7. In

particular the smallest shell PG(t,¢) is an element of W, to be denoted by W..

By Corollary 3.5.8, W has a projective t-spread set

PC =

{Py=(CP,c{,....c,10,..,0): i=1,2,...,5 j=12,..

U{Pw = (1,0,...,0,)}

containing the elements
Py =(0,1,0,...,0)

Py =(0,0,1,0,...,0)

Py =(0,0,...,0,1)

Psq,(¢+1) =(I,1,...,1).
This means that W is of the form

W= {W,-,-: i =1,2,00. 8 j=1,2,...,qi(t+1)}U{Woo}

- {J(Cf"),cgf),...,C,.(J'),I,o,...,O): i=1,2,....8 j=12,...

U{Ws =J(,0,...,0,)}
and contains the spaces
We =lin{e1, €2,... €141},

Wii = lin {es2, €043, -, €20e41) } »

W1 = lin {es(e41)+1, €s(th1)+2 - - - €(s41)(¢41) ) and

N qi(m)}

,qi(’+1)}

Waq'("*'l) = lin {61 + ety2 + -+ es(e+141) €2 + ettt A eg(t1) 420 e ’

et+1 + eg(e+1) + o+ e(s+1)(t+1)} .
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Consider the set

PC, = {plj =P, 1,0,...,0)0: j= 1,2,...‘,qi(t+1)} U{Pw = (I,0,...,0,)}.

The set
€ = {cfj) : (c{f),f,o,...,o) € 73(21}

is a t-spread set for the t-spread W; induced by W on the (2t 4 1)-dimensional

subspace < W, W11 >.

3.7.1 Theorem
Every matrix appearing in any element of PC belongs to the set C; above, and the

set C; is a field under addition and multiplication of matrices.

Proof: We have seen that the set of matrices C; is a t-spread set for the
t-spread Wy of PG(2t + 1,q). This t-spread defines an affine translation plane as
in Section 2.3. This plane is an affine subplane of the affine (s 4+ 1)-dimensional
space defined by the t-spread W as deséribed in Section 3.3. Thus the affine
subplane is Desarguesian, and by Theorem 2.6.3, the system (Cy,+,) is a field.
It remains to show that each matrix C,(Cj) for k € {1,2,...,1}, t =2,3,...,5 and

i=1,2,...,¢¢tD is in C;.

To show that every matrix in each element of PC occurs as a matrix in Cj,
choose such a matrix C,(Cj ). Let a = C,(cj = Woeo, then by Corollary 3.2.10, there

exists a unique element

P 1,0,...,0) € PC;
such that
a= ij ).
It must be that C}j ) = C’,(cj ) and the proof is complete. ]
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3.7.2 Corollary
The field C; contains the subfield {kI : k € GF(q)} which is isomorphic to GF(g).

Proof: The set {kI: k € GF(q)} is contained in C; by Corollary 2.6.3 (2)0

3.8 t-SPREADS AND INDICATOR SETS

In this Section we extend the work done in Section 2.8 on indicator sets correspond-
ing to t-spreads of PG(2t + 1,¢). The point of view on indicator sets developed
in Section 2.8 allows a natural generalisation, enabling us to define indicator sets
for t-spreads of PG((s +1)( +1) — 1,¢). These will be called projective indicator

sets since they are constructed using the projective t-spread set.

Let W be a t-spread of PG((s + 1)(t + 1) — 1,¢) where |W| = w = ¢*(*D) ¢

gD+ 4. 4 gt 4 1. Suppose that W has projective t-spread set
PC={P =",V ..., :i=1,2,...,0}

where each matrix Eg) is (t 4+ 1) x (t + 1) and has rank ¢ + 1 over GF(g). The
t-spread W is
W= {W;=f(P)T):i=12,...,0}

where f is the bijection of Theorem 1.6.2. Further, if (ﬁ(()i), 5"),...,59)) and

(Egj), ?), e ,§£j)) are any two elements of PC then

&) &
(D) (0)
rank 1 ! =2(t + 1).
Y
Let GF(q'™!) be a field extension of GF(g), and let o € GF(¢**!) be such that
GF(¢'t!) = GF(g)(a). Let PG((s +1)(t+1)—1, g*t1) denote the corresponding

extension of PG((s +1)(t+ 1) — 1,¢).
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Consider the set of points PZ = {Q; :¢ = 1,2,...,w} where

5{,'; 1
&' o
Qi=|" ;
ggi) O!!

and the matrix PT is written as an (s +1)(t + 1) x (¢ + 1) matrix over GF(g). Qs
has (s + 1)(t + 1) coordinates and so is a point of PG((s +1)(t +1) — 1, ¢,

3.8.1 Lemma
(1) PT has w points, and for ¢ = 1,2,...,w, the point Q; lies on the extension W,

of the corresponding t-spread element Wi,
(2) each point @; € PT is an imaginary point of PG((s + 1)(t + 1) —1,¢"t1),

(3) if Qi € PT then the corresponding t-spread element f((ﬁ((,i) , §i), ey 55"))’-”) is
the t-dimensional space

L(@) =1n {Q:,Q7,..-,QF } N PG((s + (t +1) = L,0),
where o is defined by o : z — z¢, and

(4) if Q; and Q; are any two points of 7 then the line @;Q; joining them is

imaginary.

Proof: (1) First, PZ has one point corresponding to each ¢-spread element,
and the number of these is w. Each element W; of the t-spread W is the subspace
of PG((s 4+ 1)t + 1) — 1,q) spanned by the columns of the matrix
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The point Q; is a linear combination of the columns of this matrix with coeflicients

1,a,a?,...,a, that is
Qi=Vot+aVi+a’Vo +---+a'V

where V; denotes the (z 4 1)st column of the matrix

£
Since W; is spanned by the vectors Vy, Vi,...,V; over GF(¢'*!), we see that Q;
is a point of W..
(2) Since Q; = Vo + aVi + a2V, + - - - + a*'V;, where the points Vo, V4, ..., Va—y are
linearly independent over GF(q), by Corollary 1.4.10 (1) Q; is imaginary.
(3) Now Q; is an imaginary point of W;, which is a ¢-dimensional space meeting
PG{(s + 1)(t +1) — 1,¢) in a t-dimensional space. But L(Q;) is the unique such
space by Corollary 1.4.10 (2) so that L(Q:) = W;, and it follows that W; =
L(Q:)NPG((s +1)(t+1) - L,9).
(4) As Q; and Q; are imaginary, the spaces L(Q;) and L(Q;) both have dimension
tin PG((s+1)(t+1)—1,¢"!), and each meet PG((s+1)(t+1)—1,¢) in a space
of dimension ¢ which must be a t-spread element by (2). Thus L(Q;) and L(Q;)

are skew, so the points
Qi, Q7. Q7 Q5,97 ,QF
span a space of dimension 2t + 1. It follows that the lines
QiQ),(@:Q5)",- -, (QiQy)”

span a space which is actually L(Q;Q;) and is of dimension 2¢+1. From Definition

1.4.7 (2) we see that the line (QiQ;) is imaginary. ]

These observations motivate the following definition:
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3.8.2 Definition
A projective indicator set isa set PZ of w = g* (Y 4 gl DD o4 gt 1
imaginary points of PG((s +1)(t +1) — 1,¢*t") such that the line joining any two

points of PT is imaginary.

3.8.3 Theorem

Let PT be a projective indicator set. Then the set
W(PI) = {L(Q:) N PG((s +1)(t +1) — 1,9) : Qi € P1}

is a t-spread of PG((s + 1)(t +1) — 1,q).

Proof: Firstly, the set W(PZI) contains w elements, and by Corollary 1.4.10
(2) since each point @; € PG((s + 1)t +1) — 1,¢**!) is imaginary, each space
L(Q:)NPG((s+1)(t+1)—1,q) has dimension ¢. It remains to show that any pair
Wi = L(Q:)NPG((s +1)(t +1) — 1,q) and W; = L(Q;) N PG((s + 1)(t + 1)—1,q)
of elements of W(PZI) are skew in PG((s + 1)(t + 1) — 1,¢). The line Q:Q; is

imaginary, so the lines
Qi25,(@:Q))7,-- (@i
span a subspace of PG((s+1)(t+1)—1,¢**!) of dimension 2t +1. Thus the points
Q:,Q7,...,Q7 andQ;,Q7,...,Q7

also span a subspace of dimension 2t + 1, and this is only possible if the subspaces

L(Q;) and L(Q;) are skew. O

3.8.4 Theorem
Let W be a t-spread of PG((s 4+ 1)(t + 1) — 1,¢). Then there exists a projective
indicator set PZ in PG((s+1)(t+1)—1,¢**?) such that W = W(PI) constructed

as in Theorem 3.8.3.
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Proof: Let PC be a projective t-spread set corresponding to the {-spread W.
This exists by Theorem 3.5.4. Then we can construct a projective indicator set as
in the remarks preceding Lemma 3.8.1, then use the Lemma 3.8.1 to verify that it

is indeed a projective indicator set and that W = W(PI). O

A projective indicator set in PG((s+1)(t+1)—1,¢"'*') determines a t-spread
of PG((s+1)(t+1)—1, ¢) uniquely, but a t-spread of PG((s +1)(t+1)—1,¢) may
have more than one projective indicator set in PG((s + 1)(t + 1) — 1,¢"t") since
it may have more than one projective t-spread set. Lunardon (1984) was able to
improve the situation in PG(2t + 1,¢) by introducing an indicator (t + 1)-space
in PG(2t + 1,¢**!) and requiring the imaginary points of the t-spread elements
to lie in this indicator (¢ + 1)-space. This was the approach used by Sherk (1979)
and Bruen (1972a). As we saw in Section 2.8, this corresponded to constructing
the indicator set using the t-spread set (or equivalently the normalised projective
t-spread set) instead of the projective t-spread set, and since every t-spread of
PG(2t + 1,4¢) has both a t-spread set and a projective t-spread set, there was no
problem. However, the situation is different in PG((s + 1)(t + 1) —1,¢g) for s > 1
because as we have already noted, only the ¢-spreads with the Shell property 3.2.7

even have t-spread sets.

In Section 2.8 we found the projective indicator set

{Qj .7 . OO,lvza"')qH-l}
of a t-spread of PG(2t + 1,q). If a basis for PG(2t 4 1,q) and the extension
PG(2t+1,¢"1) is
{61, 62)---a62(t+1)}

then every point Q; is contained in a subspace PG*(t+1,¢'t!) of PG(2t+1, ¢t
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spanned by the vectors
: t
€1,€2,.-.,€t+1,€Et42 + @€43 + -+ + €2t 42.

In fact each point Q; apart from Qo = (€1 + ey +--- + aleiyy) is contained in

the affine space
AG*(t +1,¢") = PG*(t + 1,¢"1) — J(c0)

where

J(OO) = lin{el,GZa' Ol 7et+l} .

In the case of t-spreads of PG((s + 1)(t +1) — 1, ¢) the situation is somewhat

more complicated, as we shall now see.

Let W be a t-spread of PG((s + 1)(t + 1) — 1,¢) and suppose that W has
a projective t-spread set where the last non-zero matrix in each (s + 1)-tuple of
matrices is the identity matrix. This occurs if and only if W has a t-spread set and

so if and only if W has the Shell property 3.2.7 (see Theorems 3.5.6 and 3.5.7).
Let

PC = {Pij 1i=12,...,s, i= 1,2,...,qj(t+1)}
be a projective t-spread set for W, where

Poo =(I,0,...,0)
P1j=(01(j),I,0,...,0), j=1’2a'--,qt+1

Py =(CD,c9.10,...,0),  =1,2,...,8°¢

st e (ng)’céj)"--acgj)al')’ .7 = 172a---’q8(t+1)-
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Let a € GF(¢**!) be such that GF(¢'t') = GF(q)(a). Then the projective
indicator set PZ comprises the points
'PI={Qij 1 1=1,2,...,8, j = 1,2,...,qi(t+1)}
U{Qc}

where

-

Qi;

Qoo
at

S e

If we suppose that PG((s + 1)( + 1) — 1, ¢) has basis
{61, €244, e(a+1)(t+1)}

then we see that

Qoo = (6’1 +aex+ -+ Oltet+1)

. t
Q15 € 11n{61,62,---,6t+1,6t+2 +ae43+ -+ o 32(t+1)}a

Qij € lin {61, €25+ €i(t+1)s

€i(t4+1)+1 T @€i(t41)+2 + -+ 04t€(i+1)(t+1)} ;

Qsj € lin {ela €2,..+4€5(1+1)»
€a(t+1)+1 F Ces(er1)42 T+ F Qle(era)(t41) ) -
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Recall that W has the Shell property 3.2.7, and that the shells are as follows:
PG(ta Q) = J(Oo)a

PG(s(t+1)—1,¢) — PG((s — 1)(t + 1) — 1,9),
PG((S + 1)(t Sir 1) - I,Q) - PG(‘S(t + 1) - I,Q)

where

PG(t,q) = J(oo0) =lin{e1,€2,... €41},

PG(2(t+1)—1,¢) =lin {el, €2, ,ez(t+1)} ,

PG(s(t+1)—1,q) =1lin {el, €2, .-, es(H_'l)} ,
PG((s+1)(t+1)—1,9) =lin{e1,e2,.. ., €or1)(t+1) } -

We introduce some notation for certain subspaces of PG((s+1)(t+1)—1,¢'"!)

as follows.
J(OO) = (61 +aey +---+ atet+1)

PG*(t+1,¢'t') =1lin {el, €2,...yCt41, 042 + Q€43 + - + ate2(t+1)} ,

PG*(i(t + 1),¢'™") = lin {el, €25+ 3 €i(t+1)>

ei(t+1)+1 T @€ie41)42 T F ate(i+1)(t+1)} )

PG*(s(t + 1),¢'t!) =lin {el, €2+ -+ s Es(t+1)>
€s(t+1)+1 T Q€s(t+1)42 + - F aeay1)(t+1) ) -
Note that every point Qoo and Q;; of PT lies in the space PG*(s(t+1),¢'*1),
and in fact every point Q;; of PZ lies in PG*(s(t + 1),¢'*") — J(o0). We can
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be more specific, and investigate exactly which subspaces of PG*(s(t + 1),¢"*")
contain the various points Qo and Q;; of the projective indicator set PZ. Using
the notation just introduced for certain subspaces of PG((s + 1)(t + 1) — 1,¢"*)

and checking where the basis vector of each point @Q;; lies, we see that:

Qoo € J(00),
Quj € AG*(t+1,¢"") = PG*(t +1,¢""") — J(c0),

sz € AG*(2(t + 1),qt+1) p— PG*(Q(t + 1)’qt+1) _ PG(Q(t + 1) _ 1,qt+1)’
Qij € AG*(i(t +1),¢'"") = PG*(i(t +1),¢'*") = PG(i(t +1) - 1,¢),
Quj € AG*(s(t+1),¢"*) = PG*(s(t +1),¢"*") — PG(s(t +1) = 1,¢").

This is similar to the way that a projective space PG((s + 1)(t + 1) — 1,q)
divides into shells, see 3.2.7, and the elements of a {-spread sometimes lie entirely
within these shells. For this reason we will call this the Shell property for projective

indicator sets.

3.8.5 Definition The Shell property for projective indicator sets

Let PZ be a projective indicator set in PG((s + 1)(t +1) —1,¢**"). Suppose that
every point of PZ is contained in a certain subspace PG*(s(t + 1),¢"*!) which
meets PG((s + 1)(t + 1) — 1,¢) in a subspace PG(s(t + 1) — 1,¢). Let

AG*(s(t +1),4"") = PG*(s(t +1),¢""") = PG(s(t +1) - 1,¢"")
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and suppose that the space AG*(s(t + 1),¢"'*™!) is divided into “shells”
AG*(t+1,¢'™Y)

AG*(2(t +1), qH'l) - AG*(t+1, qt'H)

AGH(i(t +1),4") ~ AG*(( = 1)(¢ +1),4"+")

AG*(s(t +1),¢"") — AG*((s = 1)(¢ +1),¢"").

PT is said to have the Shell property with respect to this partition into shells if it
has

(1) exactly one point in AG*(t +1,¢*t1),

(2) exactly ¢**? points in AG*(2(t 4+ 1),¢"*") — AG*(t + 1, ),

(3) exactly ¢*(**1) points in AG*(3(t + 1),¢'T!) — AG*(2(t + 1), qt),
and so on until

(s+1) exactly ¢°**t1) points in AG*(s(t +1),¢'t?) — AG*((s — 1)(t + 1), g*).

3.8.6 Lemma

In the above notation, an element W of a t-spread W of PG((s +1)(t +1) —1,9)
lies in the shell

PG((i+1)(t+1)—1,9) — PG(E(t +1) - 1,9)

of PG((s+1)(t+1) —1,¢) if and only if the corresponding point @ of a projective

indicator set lies in the shell

AG*((i + 1)(t +1),¢T1) — AG*(i(t + 1), ¢'*?)
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of AG*(s(t +1),¢"™1).
Proof: An element W of W lies in the shell
PG((G+1)(t+1)—1,q9) - PG((t+1) -1, q)

of PG((s + 1)(t + 1) — 1,¢) if and only if (as in the proof of Theorem 3.5.7) it

corresponds to a projective t-spread element of the form
. c?,...,c¥ 1,0,...,0).
This occurs if and only if the corresponding point @ of the projective indicator set
18
Q €lin {61, €2, - -5 €i(t+1)s Ci(t+1)+1 T aei(t+1)+é +--+ ate(i+1)(t+1)}

€ AG*((i + 1)(t +1),¢™) — AG™(i(t +1),¢T). o

3.8.7 Theorem

Let W be a t-spread of PG((s + 1)(t + 1) — 1, ¢) with projective indicator set PT
in PG((s 4+ 1)(t + 1) — 1,¢**). Then W has the Shell property 3.2.7 if and only
if PT has the Shell property 3.8.5.

Proof: Let W be a t-spread set with the Shell property 3.2.7, so that by

Theorem 3.2.9 we may suppose that
W = {W,-J- i=1,2,...,8, j= 1,2,...,q"(’+1)} U {Weo)

where

Woo = PG(t,q)

Wi; € PG((i +1)(t+1)—1,9) — PG(i(t +1) — 1,9).
Let PT be a projective indicator set for W, so that

PI = {Pi-: i=1,2,...,s, j=1,2,...,qi(t+1)}U{Poo}
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where P;; corresponds to W;; and Py, corresponds to We. By Lemma 3.8.6,
Pij€ AG*((i+1)(t+1),¢"") — AG*(i(t +1),¢4""")

and PI has the Shell property 3.8.5. Conversely, if a projective indicator set
PZT has the Shell property 3.8.5, then again by Lemma 3.8.6, the corresponding
t-spread W has the Shell property 3.2.7. m]

3.9 {-SPREADS OF PG((s +1)(t+1)—1,¢) IN PG((s + 1)t + 1) — 1,¢"*?)

The following result in the case of ¢ = 1 appears in Ebert (1983), however without
an indication of the proof. It was used by Ebert (1983) to study the subregular
1-spreads of PG(2s + 1,2).

3.9.1 Theorem

(1) Let S, be an imaginary s-dimensional subspace of PG((s+1)(t+1)—1,¢*").
The set

W = {1in {P,P”,...,P"'} NPG((s+ 1)t +1)—1,q)
: P eSs}

is a regular t-spread of PG((s +1)(t + 1) — 1,¢9).

(2) Conversely a regular t-spread of PG((s 4 1)(t + 1) — 1,¢) can be represented

‘ . . . . ' t
in this manner for a unique set of s-dimensional subspaces (S,, S7,...,57 ).

Proof: (1) Let P and Q be distinct points of S,. By Theorem 1.4.8 (3), P

and @ are imaginary. By Definition 1.4.7 (1) each of the spaces

L(P) = lin {P,P",...,P”'}

1@ =tn {Q,Q",....Q"'}

156



has dimension t in PG((s + 1)(t + 1) — 1,¢**!) and by Theorem 1.4.8 (1) meets
PG((s + 1)(t + 1) — 1,q) in a t-dimensional subspace. By the same arguments
as those used in the proof of Theorem 3.8.3, L(P) and L(Q) are skew. Thus
W is a set of ¢°(t+1) 4 ¢~ ... 4 gt+1 4 1 pairwise skew t-dimensional
subspaces of PG((s + 1)(t + 1) — 1,¢) and so is a t-spread. We must show that
it is regular, according to the Definition 3.4.11, and in fact we will prove that it
is regular of rank s according to Definition 3.4.7. We must show that if S is an
s-dimensional subspace of PG((s +1)(t +1) —1,¢), then the set of elements of W
meeting S is a t-regulus of rank s. Let S be such an s-dimensional subspace of
PG((s+1)(t+1)—1,q). Let W1, Ws,..., Wyt be elements of W which meet 5 in
distinct points and are such that no s + 1 of them lie in a hyperplane. Let R, be
the t-regulus of rank s defined by Wy, Ws, ..., Wetz in PG((s+1)(t+1)—1,¢) and
let R,* be the t-regulus of rank s defined by their extensions Wl,Wg, TF ,WH.z
in PG((s + 1)(t + 1) — 1,¢**!). Now S, meets each of the ¢-dimensional spaces
Wi, Wa,...,Weyo in a point and Theorems 3.4.3 and 1.3.4 (2) imply that S, is a
transversal s-dimensional space of R,*. A t-dimensional space of R,, extended to
PG((S + 1)(¢t + 1) — 1,¢**!), is a t-dimensional space of R,™ and therefore meets
S, in a unique point. So the extension of a t-dimensional space X of R, meets .5,
in a point P. By Corollary 1.4.10 (2) L(P) is the unique such space meeting S,
in the point P, so that L(P)N PG((s + 1)(t + 1) — 1,¢) must belong to W.

(2) Now let W be a regular t-spread of PG((s + 1)(t +1) — l,q).. To show that
W can be represented in this manner, we show that there exists an imaginary s-
dimensional subspace S, which meets the extension to PG((s+1)(t+1)—1,¢"")

of every element of W. In this case,
W = {lin {P,Pﬂ,...,Pf"} NPG((s+1)(t+1)~1,9): P€S.,}
and the uniqueness of the set of s-dimensional subspaces S,, 57, ..., S;’t follows by

Corollary 1.4.10 (2). We will prove that the result holds for a particular extension
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PG((s+1)(t+1)—1,¢**") of PG((s+1)(t+1)—1,9), and the result follows since
all extensions of the same degree are isomorphic. As in Section 3.5, W gives rise

to a normalised projective t-spread set

PC =
{(Cf”,c,_f"),...,c,.("),I,o,...,0) L i=1,2,...,8, §= 1,2,...,qi(t+1)}

u{(1,0,...,0)},
where the set

C={C’i(j) 11=1,2,...,s, j=1,2,_“,qi(t+1)}

of matrices is a field of order ¢'*! under addition and multiplication. Let { €
GF(¢"*t1) be a such that GF(¢'*') = GF(g)(£). By Corollary 3.7.2 C contains the
subfield {kI : k € GF(g)} which we will denote by GF(q), so that

GF(g"Y) = {zo + 216 + 226 + -+ + m:€* : z: € GF(g)}
where multiplication is (matrix) multiplication in the field GF(q**!). Let
{enre2, - ety )
be a basis for PG((s+1)(t+1)—1,¢) over GF(q) and for PG((s+1)(t+1)—1, ¢t

over GF(q'*1). The set
Ss = {elcij) oy 62£C§j) +---+ et+1€t0§j)+

ecr2C8 + ecrsbC + - + eainyt ' C+
. + .
, ) 4 g 9 1ot
ei-1)e+1)+1Ci7 + -1y +1)+286C;7 + o0 F eie+1)€ G+
€i(t4+1)+1 T 6i(t+1)+2€ Sl e(i+l)(t+1)§t

ci=1,2,...,8 j= 1,2,...,q"(*+1>} U{er] + el + - - + 416’}

. O ec}u{(I,g,...,gt,o,...,o)T}
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is an s-dimensional subspace of PG((s + 1)(t + 1) — 1,¢**1) which contains no
point of PG((s + 1)(t +1) —1,q).

Since S, can be written as
Ss b (Ivga""gt)Tea (Iag"“,é-t)T@“'
® (1,€,....60"

=PoP® P,

the space L(S,) spanned by its t + 1 conjugates is the join of the spaces
L(Py), L(Py),...,L(Ps)

spanned by the t+1 conjugates of each of Py, P, ..., Ps. Noweach of Py, Pi1,...,Ps
is imaginary by Corollary 1.4.10 (1) and so L(Pp), L(Py),. .., L(Ps) each have
dimension ¢, and further by construction if ¢ # j then L(P;) and L(P;) are skew
so that L(S,) has dimension (s 4+ 1)(t + 1) — 1. By Definition 1.4.7 (2), S, is

imaginary.

Now as PC is a projective t-spread set for W we have

W =
{W,-,- = (c§f),...,C,.(J'),I,o,...,o) ci=1,2,...,8 j= 1,2,...,qi(t+1)}
U{We =J(I,0,...,0)}.
We will show that the point (I,£,...,£%0,...,0)T of S, lies on the extension Weo
of Weo to PG((s + 1)(t + 1) — 1,¢'*?), and the point

(Cp, cWe,....cWet e V¢, ... .. ... ;
c?,c¥e,...,.cHP4 Le, ... ,E‘)T

of S, lies on W;; for each i = 1,2,...,s, j = 1,2,...,¢'*t). Then the s-
dimensional subspace S, is the s-dimensional subspace required for proof of the

result as S, meets the extension of every element of W.
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We recall some notation. We can suppose that W contains the spaces

Woo = lin{el, €240y 6t+1} ,
W11 = lin {e¢42, €143, .+, €2(t+1) } 5
W1 = lin {eg(t41)+15 €s(t+1) 425 - - 1 €(s+1)(t+1) } -

The vector space V(,41)(t+1) corresponding to PG((s +1)(t +1) — 1,q) has

basis {e1,€2,..,€(s+1)(t+1)} SO that
Viet)(t+1) = Weoe ®W11 @ W1 @ -+ @ Wi.

Also, for each k = 2,3,...,s +1, let (k) denote the (non-singular) linear transfor-

mation
(k) : Weo = Wi—1n1
M A B e d e(k—l)(‘t+1)+l fOI’ l = 1,2, - ,t + 1.
Then
Weo = {a: a € Wu}
={(a1,a2,...,0t41,0,...... ,0) : a; € GF(g) not all zero}
so that |
Weo = {(€1,€2,- -, Et41,0, ..o .o ,0): & € GF(¢*t"), not all zero}
= {§ : L€ Ww} .

We can choose

€= (b1,62,++,Et41,0, e ,0)=(1,€,...,€4,0,...,0) € Weo

which shows that the point

(I,&,...,£,0,...,00T € Weo
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as required. Similarly,

Wij = {ij)a @ Céi)a(Z) S ® C,-(j)a(i) @alit) . gc Woo}

ay ay ay a

. ag ; a9 . aog a9
={c?| 7 lec?| T |e--ec?| U |e

Q41 at41 at4+1 at41

: a; € GF(q), not all zero}

and
&1 & & &1
W:‘j = C}(ﬁ 6.2 &) Céj) 6_2 @D Ci(j) 6-2 @ 5'2
6‘:“ £t:I-l 51..+1 : ft.+1

. & € GF(¢'*Y), not all zero}

—{CPe+ CPED 4. 4 COLO 46D ¢ e Woo} -

Again we choose
£=(517627"'7£t+1701"'30) =(Ia€)"'a£t707".‘)0) GW_OO

so that the point
(e, 60,0560, 0%, .. oDty L. ;
c@ cWe ... .cWeTE,...... 5‘)T
=cDUe,...,. e eCPUe,. ... 60T 0o
COL 8, €Y @ (L6 €T
€ Wij
as required. Thus the extension of every element of W meets the imaginary s-

dimensional subspace S, of PG((s + 1)(t + 1) — 1,¢**!) which is enough to prove

the Theorem. O
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3.9.2 Corollary

A regular t-spread of PG((s + 1)(t + 1) — 1,¢) has an indicator set comprising
the g°(t+1) 4 g(e=D(+1) ... 4 ¢gt+1 + 1 points of an imaginary s-dimensional
subspace of PG((s+1)(t+1)—1,¢"*!) and conversely an imaginary s-dimensional
subspace of PG((s + 1)(t + 1) — 1,¢**!) is an indicator set for a regular ¢-spread
of PG((s +1)(t +1) —1,q).

Proof: First, let S, be an imaginary s-dimensional subspace of

PG((s + 1)(t +1) = 1,¢"!). The set
w = {lin {p,PU,...,P”‘} NPG((s+1)(t+1)~1,0): PES,}

is a regular t-spread of PG((s + 1)(t + 1) — 1,¢) and the points of the imaginary
s-dimensional subspace S, are an indicator set for W as they are imaginary points
and one point lies on the extension of each t-spread element. The line P() joining
any two of the points of S, is imaginary, for if the space L(PQ) had dimension
less than 2(t + 1) then L(S,) would have dimension less than (s +1)(t +1) — 1.
Con.versely, given a regular t-spread of PG((s + 1)(t + 1) — 1,¢), there exists an
imaginary s-dimensional subspace S, of PG((s +1)(t +1) — 1, ¢'*1) meeting the
extension of every t-spread element. The points of such a s-dimensional subspace

are an indicator set for the t-spread. O

3.9.3 Corollary
A regular t-spread W of PG((s + 1)(t + 1) — 1,¢) is uniquely determined by a

t-regulus R, of rank s of W and an element of W not belonging to R,.

Proof: Let W be a regular t-spread and let S, be an imaginary s-dimensional
subspace of the space PG((s 4+ 1)(t +1) — 1,¢"*!) meeting the extensions of every
element of W.. The extensions of the elements of a t-regulus R, of rank s contained

in W meet S, in the points of an s-dimensional projective subspace S, of order
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q of Ss, and the extension of a further element Xo of W meets S, in a point P
not belonging to S!. Let W' be a regular t-spread containing the elements of
R, and the.element Xo of W. We will show that every element of W is also an
element of W' and the result follows. Choose elements X1, X2, ... , Xs+1 of R,.
There is a unique t-regulus R.,' of rank s of PG((s + 1)(t + 1) — 1,¢) containing
Xo,X1,...,Xs+1, which is distinct from R,. The s-dimensional subspace S,is a
transversal to the extension of R, thus the extensions of the elements of R! all
meet S,. But the ¢-dimensional spaces of PG((s+1)(t+1)—1,¢) whose extensions
meet S, are exactly the elements of W. Thus every element of R/, is an element
of W. Now since W' is regular, it contains every element of R, which are all
elements of W. We repeat the argument using different elements of W' to define
t-reguli of rank s, all of which are shown to belong to W), continuing until we have

shown that every element of W' is also an element of W. o

We can use the Segre variety to interpret this result. Choose any s +2 distinct
elements Wo, Wi, ..., Wes1 of the regular t-spread W of PG((s+1)(t+1)—1,9),
no s + 1 in a hyperplane, and let R, be the unique t-regulus of rank s containing
them (see Section 3.4). The ¢* + ¢°~1+---+q+1 elements of R, are all elements
of W and form the set of t-dimensional spaces of a Segre variety SVst1,t+1 in

PG((s +1)(t + 1) — 1,q) with s-dimensional subspaces as its opposite subspaces
(Corollary 3.4.4 (3)).

We now embed PG((s+1)(t+1)-1,¢) in PG((s+1)(t+1)—1, ¢**1) and extend
SV 41,141 to a Segre variety SVet1,041 of PG((s+1)(t+1) -1, ¢'*1) as in Section
1.5. Then 8Vsq1,04+1 bas ¢*+¢°* 14+ -+¢+1 t-dimensional subspaces which meet
PG((s+1)(t+1)—1,¢), and the remaining ones are skew to PG((s+1)(t+1)—1,9).
Since the spaces S, 57,..., S;’: meet all ¢* +¢°~* +-- -+ ¢+1 t-dimensional spaces

of Wa+1,t+1 which are extensions of t-dimensional spaces of R, they must belong
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to the system of s-dimensional spaces of Ws+l,t+1- In fact the extensions of the
elements of R, meet S' s in the points of an s-dimensional projective subspace of
order ¢ of S,. Twolt-reguli of the same or different ranks intersect according to
how the corresponding subspaces of order ¢ of S, intersect. The properties of
projective subspaces of a projective space in PG((s + 1)(t +1) —1,¢) can be used
to demonstrate properties of the t-reguli of various ranks and regular ¢-spreads, as

in the following.

3.9.4 Corollary
If (s +1,t+ 1) = 1 then a regular t-spread of PG((s + 1)(t + 1) — 1,¢) can be

expressed as a union of disjoint ¢-reguli of rank s.

Proof: The result follows since an s-dimensional subspace of order ¢**! can

be expressed as the union of skew s-dimensional subspaces of order ¢ if and only

if (s +1)(t + 1) = 1 (see Hirschfeld (1979), p92). O

3.9.5 Corollary

Let W be a regular t-spread of PG((s+1)(t+1)—1,¢). Then W has a projective
t-spread set
PC ={(09),05”,..-.,c,.("),r,o,...,o) ;
1=1,2,...,8, jJ= 1,2,...,qi(t+l)}
u{(Z,0,...,0)}
isomorphic to PG(s,q'*!) = S, by Corollary 3.6.4. The elements of PC which

correspond to the elements of a t-regulus R, of rank r in W are a projective

r-dimensional subspace PG(r,q) of order ¢ of PG(s,¢"*?).

Proof: We have seen that a t-regulus R, of rank s in W meets S, in a

projective s-dimensional subspace PG(s,q) of order q. As in Lemma 3.4.5, a t-
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subregulus R, of rank r contained in R, meets S, in an r-dimensional subspace

PG(r,q) of PG(s,q). o

3.10 EXAMPLES

In his paper of (1983), Ebert has given examples of 1-spreads of PG(5,2). We
use the example of a regular 1-spread appearing in Example (3), Ebert (1983) and
the 1-regulus free 1-spread of Section 4, Ebert (1983) to illustrate the ideas in this
Chapter. In the rest of this Section, we assume that PG((s + 1)(t +1) —1,¢) =
PG(5,2) and W is a 1-spread of PG(5,2) so that t =1, s =2 and ¢ = 2.

In this Section we will write points of PG(5,2) and PG(5,4) as row vectors,

for ease of notation.

3.10.1 Example

We extend GF(2) to GF(2?) = GF(4) by adjoining a primitive element w which
is a primitive cube root of unity in GF(4), so that GF(4) = {0, 1,w,w?}, where
w? = w+ 1. Let PG(5,4) be the corresponding extension of PG(5,2). As in
Example (3) of Ebert (1983), the following 21 points are points of a plane II of

PG(5,4) which has no point in common with the space PG(5,2). The plane is

I = {a(1,w,0,0,0,0) + 4(0,0,1,w,0,0) +7(0,0,0,0,1,w) :

a, B,7 € GF(4), not all zero} .

The names of the points X;; are consistent with the use of the subscripts 7j with

i=1,2and j=1,2,...,2%, together with oo, in this Chapter and will be used
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later in this example.
II =
{ X21 = (0,0,0,0,1,w), Xa2 = (1,w,0,0,1,w), Xas = (1,w,0,0,0°,1)
X4 = (1,w,0,0,w,w?), Xo5 =(0,0,1,w,1,w), Xo6 = (1,w,1,w,1,w),
Xo7 = (1,w,w?,1,w?, 1), Xos = (l,w,w,wz,w,wz), X290 = (0,0,1,w,w?,1),
Xo10 = (1,w,w,w2,1,w), Xon = (1,w,1,w,w2,1), X212 = (1,w,w2,1,w,w2),
Xo13 = (0,0,1,w,w,w2), X214 = (1,w,w2, 1,1,w), Xa15 = (1,w,w,w2,w2,1),
Xa16 = (1w, 1,w,w,w?), X11 =(0,0,1,0,0,0), X1z = (1,w,1,w,0,0),

X135 = (1,w,w?,1,0,0), X14 = (L,w,w,w",0,0), Xoo = (1,0,0,0,0,0)} .

Joining a point X;; of I to the corresponding point X7 of the plane II* which
is conjugate to II under the automorphism o : z +— z? of GF(4) gives a line E of

PG(5,4) which meets PG(5,2) in a line l;;. The set of all such lines
W= {li:i=12 j=1,2,...,22} U {lo}
is a regular 1-spread of PG(5,2).

We wish to construct a projective 1-spread set from this 1-spread W. By

Theorem 3.5.4, the appropriate set is

PC = {f(li): i=1,2 j=1,2,...,22  U{f(lx)} |

where f is the bijection of Theorem 1.6.2 and each element f71(l;) is a 3-tuple
(€1,&2,63)T of 2 x 2 matrices over GF(2). To construct f~1(l;5), recall that I;; is
the subspace of PG(5,2) spanned by the columns of f ~1(l;;) considered as points
of PG(5,2). To find the element (f~1(1i)T = (€1,&2,83)T corresponding to a 1-
spread element ;;, we reverse this process. For each line l;j of W, we identify a set

of two points spanning /;;, then write the two coordinate 6-tuples of these points
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as columns of a 2 X 6 matrix over GF'(2). We then interpret this matrix asa 2x 3
column vector whose entries are 2 X 2 matrices over GF(2). The transpose of this
column vector is the element f~1(l;;) of the projective 1-spread set corresponding

to l,'j.

For example, the point X5 = (0,0,0,0,1,w) on II has corresponding point
X3 =(0,0,0,0, 1,_w2) on IT*, and the line I; of PG(5,4) joining these two points
meets PG(5,2) in the line

I, ={(0,0,0,0,1,0),(0,0,0,0,0,1),(0,0,0,0,1,1)} .

Choosing the first two as a basis for the line, we see that the corresponding 2 x 6

matrix over GF(2) is

o= OO OO

0
0
0
0
0
1

which gives the element P2; = (0,0, I) of the projective 1-spread set.

Continuing in this way we find the whole projective 1-spread set which is,

written in the same order as the points of II above

PC = { Py; =(0,0,I), Pyy = (I,0,I), Ps3s =(I,0,4), Py =(I,0,B),
Pys = (0,1,1), Py = (I,I,I), Py =(I,A,A), P,s =(I,B,B),
Pyy =(0,1,A), Poyo =(I,B,I), Py11=(,I,A), Pz =(I,4A,B),
P13 =(0,I,B), Pya=(I,A,I), Pois =(I,B,A), Pue=(I,I,B),
Py =(O,I,0), Py, =(1,1,0), P13 =(I,A,0), Py =(1,B,0),

Py, =(1,0,0)}

0 0 I 0 1 1 01
0-—(0 0>,I=<0 I)’A=(1 0>,andB—(1 1).
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The set of matrices {0, I, A, B} forms a field GF(4) (as predicted by Theorem
3.7.1),since AB=BA=I,A’=Band B*>=A,and [+ = A+A=B+B =0,
A+B=I,A+I=DBand B+I=A. Asin Corollary 3.7.2, this field contains
the subfield {I,0} isomorphic to GF(2).

If we identify GF(2) and GF(4) in the above construction with the fields
{I,0} and {I,0, A, B} of matrices, then for example w = B and the projective
1-spread set PC is a projective plane over the field GF(4) isomorphic to II. We

shall identify II and PC as in Section 3.9, and use the ideas explored there.

We can use Theorem 3.9.5 to identify the 1-reguli contained in W. As s =2
W contains 1-reguli of ranks 0, 1 and 2. A 1-regulus of rank 0 is just a line of
W and corresponds to a 0-dimensional subspace of II which is a point of II. A 1-
regulus of rank 2 corresponds to a 2-dimensional subspace of II of order 2, a Baer
subplane. The Baer subplane B coordinatised by GF(2) = (0,I), for example,

gives a l-regulus of rank 2 in W. B comprises the points
Pe, P11, Pa1, P12, Py, Py5 and Py

and the corresponding 1-regulus of rank 2 is

Ro = {lo1, 7, li, ls, l22, l2s, lz6}-

Also, W has many 1-reguli of rank 1, which correspond to projective sublines of
order 2 of lines of II. As ¢ = 2, any three collinear points of II are a projective
subline of order 2, so that 1-reguli of rank 1 correspond to triples of collinear points

in II. Some examples of triples of collinear points of II are

(Ps2, Pais, Pr1)
(P24, Pag, Pi3)
(P2s, Py1, Po)
(P26, Pr11, Pri2)
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corresponding to the following 1-reguli of rank 1:

{laa, la1s, l11}
{la4, l2g, l13}
{las, la7, lo}

{l26, l211, li2}-

The 1-spread W is regular, and therefore is geometric (by Theorem 3.4.12)
and so by Theorem 3.2.8 has the Shell property 3.2.7 for any division of PG(5,2)
into shells such that each element of W lies in a unique shell. We can therefore
construct a 1-spread set C as described in the proof of Theorem 3.5.7. We disregard
the element Py, = (I ,-0, 0) and any other element of PC is either P; = (&1,&2,€3)
with &3 # 0 or P1; = (€1,£2,0) with £, # 0. By the property (iii) in the Definition
3.5.2 of projective 1-spread sets, an element P;; has det(€3) # 0 and can be written

Py = (&6, 6674, D).

The correspoﬁding element Cyj of the 1-spread set is
Cyj = (61671, 6265 ) for j =1,2,...,16.
Similarly, an element P;; of PC has det(é2) # 0 and can be written as
P = (&:657,1,0)
and the corresponding element of the 1-spread set is

Clj = (£1£2_1) fOI‘j = 1,2,...,4.

The 1-spread set C is, again written in the same order,
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¢ = {(0,0), (I,0), (B,0), (4,0), (0,I), (I,I),
(B,I), (A1), (0,B), (I,B), (B,B),
(4,B), (0,4), (I,A), (B,4), (4,4),

(0), (1), (B), (A)}

corresponding to the new projective 1-spread set

{Py; =(0,0,I), Pyp =(I1,0,I), Po3 =(B,0,I), Pos = (A,0,1),
Pys = (0,1,1), Pyg = (I,1,I), Por = (B,I,I), Ps = (4,1,1),
Py = (0,B,I), Pyyo = (I,B,I), Poy1 =(B,B,I), P2 = (A, B,I),
P13 = (0,A,I), Porg = (I, A1), Pais = (B, A1), Pag = (4,4, I),
Py = (0,1,0), Pz = (I, 1,0), Pis = (B,1,0), Pus=(4,1,0)}
U{ Px =(1,0,0)}.
This projective 1-spread set is also a projective 1-spread set for W as it is
obtained from the original one by multiplying each 3-tuple by a non-singular ma-
trix. This operation corresponds to fixing a particular division of PG(5,2) into

shells where each line of W is contained in a unique shell. In this case the shells

are chosen to be:

PG(1,2) =l =1lin {e1,e2}
PG(3,2) =< le, 11 >=1lin {e1,ez,€3, es}
PG(5,2) =< loo, 11,122 >=1lin {e1,e2, €3, €4, €5, es} -
From now on we shall use this projective 1-spread set for W, denoted by PC.

We now demonstrate the ideas of Section 3.9. We proceed to construct a projective

indicator set PZ and an indicator set Z for W.

As PC is a normalised projective 1-spread set for W, a projective indicator

set PTI is
PL={Qi:i=1,2 j=12,...,27} U{Qx}
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where
Qs; =(Pis)" (i) -

For example, Po; = (0,0,I) so that

0 0
0 0
0 0 1
o (w)
10
01
. (0’0,0,0, 17w)7
and Pp3 = (B,0,I) so that
01
11
0 0 1
1 0
0 1

= (w,w+1,0,0,1,w)

= (w,w?,0,0,1,w).

The projective indicator set is, therefore,
PC =
{ Qa1 = (0,0,0,0,1,0), Q32 = (1,w,0,0,1,w), Qa3 = (w,w?,0,0,1,w)
Q24 = (w?,1,0,0,1,w), Q25 = (0,0,1,w,1,w), Q26 = (1,w,1,w,1,w),
Q27 = (w,w?,1,w,1,w), Q28 = (w?,1,1,w,1,w), Q29 = (0,0, w,w?,1,w),
Q210 = (1, w,w,w?, L,w), Qa11 = (w,0?,w,w? 1,w), Qa1z = (W, L,w,0*, 1, w),
Q213 = (0,0,w?,1,1,w), Q214 = (1,w,w?1,1,w), Qo215 = (w,w?,w? 1,1,w),
Q216 = (v, 1,0?,1,1,0), Qu1 =(0,0,1,w,0,0), Q12 = (1,w,1,w,0,0),
Qs = (w,w?,1,w,0,0), Q14 = (w?,1,1,w,0,0), Qoo = (1,w,0,0,0,0)} .
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Note that PC is exactly the plane II because Q;; = X;; for all 1 = 1,2 and
j=1,2,...,2% and Qe = Xco. Now W has the Shell property 3.2.7 where the

shells are
PG(1,2) =lin {ej,e2}
PG(3,2) =lin {e1,e2,€3,€4}
PG(5,2) = lin {e1,e2,€3,€4,€5,€6} -
Let

PG*(1,4) =lin {e; +wez}
PG*(2,4) =lin {ej,e2,e3 +weq}
PG*(4,4) =lin {e1,e2,€3,€4,€5 +wes} .
Then we see that
Qoo = (1,w,0,0,0,0) € PG*(1,4)
Q1 = (a15,b;,1,w,0,0) € PG*(2,4) — PG(1,4)

Qaj = (azj,b2j, c2j, daj, 1,w) € PG*(4,4) — PG(3,4).

Thus PZ has the Shell property 3.8.5 for projective indicator sets.

3.10.2 Example
Ebert (1983), Section 4, lists the lines ly,lz,...,l21 of a 1-regulus free 1-spread
W of PG(5,2). By the same process used in Example 2.8.1, we can construct a

projective 1-spread set for this 1-spread W. We obtain the set
PC = {Pl = (AaIaB)v Py, = (I’IaB)a P = (I,CvB)') Py = (D7E7B)a

Ps = (I,F,B), Ps=(G,H,E), P; =(E,I,E), Ps=(I,0,J),

Py = (I,G,E), P =(I,H,J), Pu=(K,II), Py =(L,K,E),
Pis = (M,I,K), Puy=(G,C,I), Pis = (K,B,J), Pis =(L,G,J),
Pir = (N,I,M), Pis = (L,1,7), Piy = (B,E,I), Poo=(J,P,I),
Py =(0,0,1)}
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where

1 0 0 1 11 1 1
r=(} 0>,M_(1 0>,N_<1 0),andP—<0 -

It is impossible to normalise this projective 1-spread set, and impossible to
find a 1-spread set. The 1-spread W does not have the Shell property for any
division of PG(5,2) into shells.

We can, however, find a projective indicator set for W, as in Section 3.9 of this
Chapter. Let w be a primitive element for GF (4) as a field extension of GF(2).

A projective indicator set 1s

PT =

[Q1 = (%,0,w,1,1,0), @2 = (L,w,1,,1,0); Qs = (&, L,w,",1,0),
Qs =(0,1,w,w,1,0), Qs = (1,w,w?,w?,1,0), Qs = (w,0,0,1,w,w),

Q7 = (w,w,1,w,0,0), Qs = (©,1,0,0,0,0), Qs = (L,w,w,0,w,w),

Q10 = (1,,0,1,0,w), Qu = (0,0?,1,w,1,w), Qr2 = (1,1,0,0%,w,w),
Q13 = (,1,1,w,0,0%), Qus = (0,0,w,w*,1,w), Qs = (0,w?,1,0,0,w),
Qi = (1,1,w,0,0,w), Q17 = (w?1,w,1,1,w), Qs = (1,1,1,w,0,w),

Q19 = (1,0,&),(—0,1,(.0), Q20 = (07w,w27w713w)’ Q21 = (070,070’17w)} .

To check that the 1-spread W has no regulus, all we need to do is check that

no three points of PT are collinear in PG(5,2). This is simpler than the approach
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used by Ebert (1983), who conducted a computer search to show that no three

lines in the 1-spread have more than one transversal in PG(5,2).

In fact, the set PZ is a 21-cap in PG(5,4), having no point in common with

PG(5,2).
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CHAPTER FOUR

PARTIAL t-SPREADS OF PG((s + 1)(t +1)—1,9)

4.1 INTRODUCTION AND DEFINITIONS

In this Chapter we will consider partial t-spreads of PG((s+1)(t+1)—1, ¢), which
have useful connections with other geometrical objects. There are certain partial
t-spreads which can be used to investigate k-arcs and (k,n)-arcs of projective

planes.

Partial 1-spreads of PG(3,q) have been studied by many authors, including
Mesner (1967), Bruen (1971), Bruen and Thas (1976), Ebert (1979) and Glynn
(1982). The main work was devoted to determining the maximum and minimum
number of elements that a partial 1-spread could contain while not being embed-
dable in a larger partial 1-spread of PG(3,¢), and classifying these 1-spreads for
small values of . The concept of a partial 1-spread was generalised to cover partial

t-spreads of PG(d,q) by Beﬁtelspacher (1975).

We shall concentrate on the connections between the partial t-spreads and
k-arcs and (k,n)-arcs in projective planes. First we introduce some definitions

and preliminary results on partial t-spreads of PG(d, ¢).

4.1.1 Definition [Beutelspacher (1975))
(1) A partial t-spread W of PG(d, q) is a set of pairwise skew t-dimensional sub-
spaces of PG(d, q). In other words, any point of PG(d, ) is contained in af

most one element of W.
(2) A partial t-spread which is not a t-spread is called strictly partial.

(3) A strictly partial t-spread W not contained in any partial t-spread W' as a
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proper subset is called a complete strictly partial ¢-spread.

A partial t-spread W of PG(d,q) is a t-spread of PG(d,q) if each point of
PG(d,q) is contained in an element of W, which is necessarily unique. If W is a
strictly partial ¢-spread of PG(d, ¢) then there are points of PG(d, ¢) which lie on

no element of W.

In the literature, the idea expressed in (3) of Definition 4.1.1 is often called
“maximal”. However for the purpose of this work the term “complete” seems
more appropriate, as the concept is the same as, for example, that of complete
k-arcs (see Hirschfeld (1979), p163). We prefer to reserve the term “maximal” for
a concept analogous to that of maximal (k,n)-arcs (see Hirschfeld (1979), p324)

which will be introduced for partial ¢-spreads in Section 4.4.

The next definitions represent a generalisation of the concept of a geometric

t-spread of PG(d,q) as in Definition 1.2.3.

4.1.2 Definition [Beutelspacher (1975)]
(1) A partial t-spread W is said to induce a partial t-spread on the subspace
< W1, W, > spanned by the distinct elements W; and W, of W if any element

of W having a point in common with < Wi, W2 > is entirely contained in

< Wl,Wz >.

(2) A partial t-spread W is geometric if for each pair Wi and W, of distinct

elements of W, W induces a partial t-spread on < Wy, W, >.

(3) A geometric partial t-spread W is called p-geometric if for each pair Wi, Wp
of elements of W, the space < Wy, Wy > contains exactly (4 + 1) elements of
W.
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(4) A partial t-spread W is v-uniform if any (t+1)-dimensional subspace through
an element of W meets exactly v elements of W, each in a (necessarily unique)
point. (If such a (¢ + lj-dimensional space Sy+; through an element Wy € W
were to meet an element Wp € W in more than a point, then the intersection
Si+1 N Wy would contain a line which must then meet the first element W3 of

W, giving two elements W; and W, of W with a common point).

For a geometric partial t-spread W of PG(d,q) let T = (P, B,I) be the fol-

lowing incidence structure:
— the points of Z are the elements of W,

— the blocks of T are the subspaces < Wi, W, > where W) and W, are distinct

elements of W, and

— the incidence is set-theoretic inclusion. Then:

4.1.3 Theorem [Beutelspacher (1975), Theorem 5.1]
Let W be a geometric complete partial t-spread of PG(d, ¢), with d > 2¢+1. Then
the incidence structure T consists of the points and lines of a projective space of

dimension at least one. a

4.1.4 Corollary [Beutelspacher (1975)]
A geometric complete partial t-spread of PG(d, ¢) with d > 2t + 1 is p-geometric

where the incidence structure T is a projective space of order p. a

The following result characterises the 1-uniform partial t-spreads:

4.1.5 Theorem [Beutelspacher (1975)] .
Let W be a partial t-spread of PG(d,q). Then W is l-uniform if and only if the
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following conditions hold:

(i) Any three elements of W span a (3t 4 2)-dimensional subspace of PG(d,q),

and

(i1) for any Wy € W the set
{< Wo,W > WeW-—{Wo}}

is a t-spread of the quotient geometry PG(d,q)/Wy. Recall (see Dembowski
(1968), p25) that the quotient geometry PG(d, ¢)/ W, consists of all subspaces
of PG(d,q) containing Wy. This is a projective space of dimension d —1 —1

and order gq. 0

The (2t + 1)-dimensional subspaces of PG(d,q) are important for finding

incidence structures on a partial t-spread. We introduce the following terminology.

4.1.6 Definition

Let W be a partial t-spread of PG(d, ¢), with d > 2¢ + 1.

(1) A (2t +1)-dimensional subspace Sz¢4+1 of PG(d, q) is called an i-secant of W
if it contains exactly ¢ elements of W, and is skew to each of the remaining

elements of W.

(2) A secant of W is a (2t + 1)-dimensional subspace of PG(d, ¢) which is an

1-secant of W for some value of 1.

Not every (2t + 1)-dimensional subspace of PG(d, q) is a secant of W, as there
are (2t + 1)-dimensional subspaces of PG(d, ¢) which intersect an element W of W
in at least a point but do not contain the whole of the space W. If W 1s geometric

then every (2t + 1)-dimensional subspace which contains two elements of W is a
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secant of W. If in addition W is y-geometric then a (2t 4 1)-dimensional subspace

containing two elements of W is a (u + 1)-secant.

The methods of projective t-spread sets and projective indicator sets devel-
oped in Chapters Two and Three can be used to study partial t-spreads. We
therefore make the following definitions 4.1.7 and 4.1.9 with regard to partial ¢-

spreads.

4.1.7 Definition
A partial projective t-spread set PPC is a set of (s + 1)-tuples of (2 + 1) x (t+1)

matrices such that

(i) PPC has k elements, where

1<k<w= qs(t+1) + q(s-—l)(t+1) 4o qt+1 +1

(i) ¥ P = (5((,i), §"), ..., £Y is an element of PPC, then
2%
(1)
rank 1 == =1l

(i) If p; = (5((,"), 5"), e ,52")) and P; = ({Sj), §"), .- ,§§j)) are distinct elements
of PPC then . _
&) &
[OR6))
rank [ 7 Vo =20¢+1).

£ ¢
Arguments similar to those given in Theorems 3.5.4 and 3.5.5 can be used to

prove the next statement:
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4.1.8 Theorem
Let W be a partial t-spread of PG((s + 1)(t + 1) — 1,q). Then the set

PPC={f'(W:): W; e w}

(where f is the bijection of Theorem 1.6.2) is a partial projective t-spread set.

Conversely, let PPC be a partial projective t-spread set. Then the set
W={f(P): P, e PPC}
is a partial ¢-spread of PG((s + 1)(t + 1) — 1,¢).

Proof: Theorems 3.5.4 and 3.5.5 are proved with k = w. The same arguments
are valid when k is used in place of w, and the projective t-spread sets and t-spreads

are partial. w

4.1.9 Definition

A partial projective indicator set is a set PPI of k imaginary points of the space

PG((s+1)(t +1)—1,¢'*!), where
1<k<w= qs(t+1) + q(s—l)(t+1) e qt+1 41,

and with the added property that the line joining any two points of PP is imag-

inary.

4.1.10 Theorem

Let PPZI be a partial projective indicator set, and for each point Q; of PPI let
L(Ql) = lin {Qi, ;'Ya R Q?t} .
Then the set

W(PPT) = {L(Q:) N PG((s + 1)(t + 1) — 1,q) : Qi € PPT)
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is a partial t-spread of PG((s + 1)(t + 1) — 1, ¢). Conversely, let W be a partial
t-spread of PG((s+1)(t+1)—1,q). Then there exists a partial projective indicator
set PPT in PG((s +1)(t +1) — 1,¢"*!) such that

W = W(PPI)

constructed as above.

Proof: Again the proofs of Theorems 3.8.3 and 3.8.4 need only be modified

to allow partial ¢-spreads and partial projective t-spread sets. O

4.2 k-ARCS AND (k,n)-ARCS OF PG(2,q)

In this Section we introduce the k-arcs and (k,n)-arcs of the projective plane
PG(2,q). These are important objects in the theory of projective geometry, and
have been studied by many authors. Hirschfeld (1979) provides a very good intro-

duction to the topic with direction to the original source material.

4.2.1 Definitions [Hirschfeld (1979), p163]
(1) A k-arc C of PG(2,q) is a set of k points, no three of which are collinear.

(2) A k-arcof PG(2,q) is complete if it is not contained in a (k+1)-arc of PG(2, g).

(3) The maximum number of points that a k-arc of PG(2,¢) can have is denoted

by m(2,q), and a k-arc with this number of points is called an oval.

4.2.2 Theorem [Bose (1947), Qvist (1952), Segre (1955), Cossu (1960)]
If g is odd then m(2,q) = ¢+ 1 and an oval comprises the points of an irreducible
conic. If ¢ is even then m(2,¢) = ¢+ 2, and the ovals of PG(2, q), for g even, have

not yet been completely classified. m]
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The examples of (¢ +2)-arcs in PG(2,q), ¢ = 2", known up to 1979 are given
in Hirschfeld (1979). Glynn (1983) gives two new infinite sequences of (¢ + 2)-arcs
in PG(2,q), ¢ = 2", and gives a complete list of such (g+2)-arcs known up to 1982.
Recently a new infinite sequence of (¢ + 2)-arcs (conjectured by W. Cherowitzo)

has been verified by Glynn and Payne (1987).

The (k,n)-arc of PG(2,¢) is a natural generalisation of a k-arc of PG(2, ).
Again, Hirschfeld (1979) provides excellent introduction and list of references for

the topic.

4.2.3 Definition [Barlotti (1955))
(1) A (k,n)-arc C of PG(2,q) is a set of k points' such that some line of PG(2,q)
meets C in exactly n points and such that no line meets C in more than n

points, where n > 2.
(2) A line of PG(2,q) meeting C in exactly 7 points is called an i-secant of C.

A (k,2)-arc of PG(2,q) is a k-arc of PG(2,q). Irreducible algebraic curves
of order n in PG(2,q) give examples of (k,n')-arcs with n' < n, but very little
is known about (k,n)-arcs in general. Even the maximum value for k such that

(k,n)-arcs actually exist given ¢ and n is known for only a few values of ¢ and n.

4.2.4 Theorem [Tallini-Scafati (1966)]
If C is a (k,n)-arc of PG(2,q), then k < (n — 1)g + n. o

We shall concentrate our attention primarily on the (k,n)-arcs which admit

the largest possible value of n.

4.2.5 Definition [Hirschfeld (1979), p324]
A (k,n)-arc C of PG(2,q) with k = (n — 1)g + n is called mazimal.
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4.2.6 Theorem [Cossu (1961)]
Let C be a maximal (k,n)-arc of PG(2,q).

(1) If n = ¢+ 1 then C comprises all the points of PG(2,g),
(2) if n = ¢ then C = PG(2,q) — | where [ is a line of PG(2,¢), and

(3) if 2 < n < ¢ then n divides ¢ and the dual of the complement of C forms a

(¢(¢ +1 —n)/n,q/n)-arc which is also maximal. =]

4.2.7 Corollary [Hirschfeld (1979) p324]
A (k,n)-arc is maximal if and only if every line in PG(2,q) is a 0-secant or an

n-secant. ]

There are few results on the existence of maximal (k,n)-arcs. For ¢ = 2k there
are examples of maximal (k, n)-arcs for every value of n dividing ¢ (see Theorem
4.2.8). When ¢ is odd, there is no example of a maximal (k,n)-arc known, and
in fact if ¢ = 3* and n = 3 it is known that no maximal (k,3)-arc exists (see
Theorem 4.2.9). First we construct examples of maximal (k,n)-arcs in PG(2, 2h).
This work is due to Denniston (1969), but we follow the presentation in Hirschfeld
(1979).

Let 22 + bz + 1 be an irreducible quadratic over GF(2") and let £ be the
pencil of conics

L={Qxr: )€ GF(2")Uoo}

where for A € GF(2") the conic @, has equation
22 +brozy + 22 + X22 =0

and Qo has equation



The additive group of GF(2%) has subgroups of every order dividing e,

4.2.8 Theorem [Denniston (1969)]
Let H be a subgroup of the additive group of GF(2") of order n, where n divides
2% Let C be the set of points of PG(2,2") which lie on some conic @ for A € H,

so that

C= {PEPG(2,2"): Pe U Q,\}.

A€EH
Then C is a maximal (k,n)-arc of PG(2,2"). o

Other (maximal) (2°™ — 22™ 4-2™ 2™)-arcs of PG(2,2%™) are constructed by
Thas (1974). In Cossu (1961) it is shown that there does not exist a (maximal)

(21,3)-arc in PG(2,9). This result is obtained as a corollary of the following.

4.2.9 Theorem [Thas (1975)]

In PG(2,q) where ¢ = 3" and h > 1, there are no (maximal) (2¢ + 3, 3)-arcs. O

As we shall see, the connection mentioned between the partial t-spreads and
the k-sets and (k,n)-sets occurs between partial ¢-spreads of PG(3t¢ + 2,¢) and
k-sets and (k,n)-sets of PG(2,¢'*?), for t > 2. The following Theorem holds in

the special case of t = 1.

4.2.10 Theorem
Let II = PG(2,q) be a projective subplane of order ¢ of I = PG(2,4?). Suppose

that II contains a maximal (k,n)-arc C. If C is a proper subset of a (k,n)-arc C of

I then k < ¢* + n.

Proof: As C is a (k,n)-arc, no line of TI can contain more than n points of
C. A point of II is either a point of C or is a point not on C through which there

pass exactly ¢ + 1 — ¢/n n-secants of C, so that no point of II can be a point of C.
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Thus C has exactly (n — 1)g + n points in II, namely the points of C. Any points
of C which lie in TI-II must lie on lines which are the extensions to II of 0-secants

of C in II. Any such line may contain at most n points of C. Thus
E<(n—1)g+n+nm

where 79 is the number of 0-secants of C in II, which is (¢(¢ +1 —n))/n. So we

have _
k<(n—1)g+n+g(¢g+1—n)

= q2 + n.
4.2.11 Corollary

If a maximal (k, n)-arc of PG(2,¢?) contains the points of a maximal (k,n)-arc of

a Baer subplane PG(2,¢), then n = 2.

Proof: Suppose that C is a maximal (k,n)-arc of PG(2,¢?), then by Defini-
tion 4.2.4,

k=(n-1)¢> +n.

By Theorem 4.2.10, we see that
k< ¢ +n.
These can be equal only in the case n=2. o

When n = 2, ¢ is a power of 2 and the (k,n)-arcs are just k-arcs. This
Corollary shows that an oval of PG(2,4?) is the only maximal (k,n)-arc which
can admit a subset being a maximal (k,n)-arc in a subplane of order ¢. Suppose
that the oval C is the set of points of an irreducible conic together with its nucleus
in PG(2,q). If we extend GF(q) to GF(¢*) and PG(2,q) to PG(2,¢%) then the
conic extends to a conic of PG(2,¢?) with the same nucleus. This is the situation

described in the Corollary 4.2.11.
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4.3 k-SETS OF PG(3t+2,q)

In Thas (1971) a construction is given for k-arcs of the space Sm(Mn(GF(q))),
where a k-arc of the space Sp(Mn(GF(q))) is a set of k points of S, (Mn(GF(q))),
every m+ 1 of which are in clear position. Under the bijection f of Theorem 1.6.2,
this k-arc corresponds to a set of k pairwise skew (n — 1)-dimensional subspaces
of PG((m + 1)n —1,q), every m + 1 of which span PG((m + 1)n —1,q). It was
this construction which motivated the definition of k-sets of (n — 1)-dimensional
subspaces in PG(3n — 1,¢) given in Casse and Wild (1983). The following is
a generalisation of that definition. We will adhere to the notation used in the

previous Section and Chapters, that is we will put n =t 4+ 1 and m = s.

4.3.1 Definition
A k-set of PG((s + 1)(t + 1) — 1,q) is a collection of k t-dimensional subspaces,
any s + 1 of which span PG((s + 1)(t +1) — 1, ¢).

In this Section we will be interested particularly in the k-sets of PG(3t+2,¢),

or collections of k t-dimensional subspaces of PG(3t + 2,¢), any three of which
span PG(3t + 2, q).

The following constructions appear in Thas (1971). They show a natural

connection between the k-arcs of PG(2,q'*!) and the k-sets of PG(3t 4 2,¢).

4.3.2 Constructions [Thas (1971)]
(1) There exist (¢"** + 1)-sets in PG(3t + 2, q).

(2) If ¢ = 2" there exist (¢**? + 2)-sets in PG(3t + 2, ¢).

Proof: (1) Let GF(g**!) be an extension (of degree t 4+ 1) of GF(g) and let
PG(3t + 2,¢'*!) be the corresponding extension of PG(3t +2,¢). Let II be an
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imaginary plane of PG(3t + 2,¢'*). Then the ¢ + 1 conjugates of II under the
collineation induced by the automorphism o : z > z? of GF(¢'*!) span the whole
of PG(3t +2,¢**1). Each point P of II is imaginary (see Theorem 1.4.8 (3)), and
by Definition 1.4.7 (1) and Corollary 1.4.10 (2) the ¢ + 1 conjugates of P span a
t-dimensional subspace L(P) of PG(3t + 2,¢'*!) which meets PG(3¢ + 2,¢) in a
t-dimensional subspace. The points of a (¢**! + 1)-arc C in II determine a set of
¢'*! + 1 t-dimensional subspaces K of PG(3t +2,¢). As no three points of C are
collinear, any three of them span II. The set of all conjugates of any three points
of C span a space of dimension 3t + 2, and so any three elements of K span a space
of dimension 3t + 2. Thus K is a (¢**! + 1)-set of PG(3t +2,¢).

(2) If ¢ = 2%, we repeat the construction with C a (¢'*! + 2)-arc of II. i

4.3.3 Theorem
If K is a k-set of PG(3t + 2,¢) arising from Construction 4.3.2 then the corre-

sponding k-arc C used in the construction is a partial projective indicator set for

K.

Proof: Since C lies on an imaginary plane of PG(3t+2,¢**1), it is a set of k
imaginary points of PG(3t+2,¢'*!) such that the line joining any two points of C
is imaginary. By Definition 4.1.9, C is a partial projective indicator set, and each
point of C lies on the extension to PG(3t + 2,¢"+!) of the corresponding element
of K. By Corollary 1.4.10 (2), such a space through an imaginary point Q; is the
unique space L(Q;), and thus

K = {L(Q:) N PG(3t +2,9) : Qi €C}.

The Construction 4.3.3 can be repeated with C a k-arc of II, 2 < k < m(2, q)

in which case K is a k-set of PG(3t + 2,¢). In fact it can be shown that:
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4.3.4 Theorem [Thas (1971))
Let K be a k-set of PG(3t 4+ 2,q). If ¢ is even then k < (¢'*! + 2), while if q is

odd then k < (¢**! + 1). By Constructions 4.3.2 these bounds are realised. m|

We have seen that if there exists a k-arc of PG(2,¢'*?) then there exists a
k-set of PG(3t +2,¢). In fact these are the only examples of (¢**! 4 1)-sets and
(gtt! +2)-sets of PG(3t+2,¢) known. However, in Section 4.5 a 4-set of PG(5,2)
will be given which does not arise from the Construction 4.3.2. It does not have a

partial indicator set which is the set of points of a k-arc of an imaginary plane of

PG(5,22).

The converse is an interesting question. Given a k-set K of PG(3t + 2,q)
(with possibly some restriction on the size of k), is there always an imaginary
plane II of PG(3t 4+ 2,¢'t!) meeting the extension of every element of K? Or
equivalently, is every k-set K contained in a regular t-spread of PG(3t + 2,¢)7?
This question has been addressed by, for example, Casse and Wild (1983), Casse
et al (1985), Wild (1986) and Declerck et al (1987). They have shown that under
certain circumstances, a k-set is contained in a regular t-spread of PG(3t 4+ 2,¢)
or, in other words, arises from the Construction 4.3.2. Some results which they

found are given in Theorems 4.3.5-4.3.8 below.

4.3.5 Theorem [Casse and Wild (1983), Theorem 3]
Let K be a (¢'*t! 4+ 1)-set of PG(3t+2, q) with ¢ odd. Suppose that the projection
of K from some X € K onto a (2t + 1)-dimensional subspace So:41 skew to X

yields a regular ¢-spread W. Then K arises from Construction 4.3.2.

Proof: The proof uses the method of indicator sets, showing that such a set
K has a particular indicator space with an indicator set comprising ¢**! points of

an irreducible conic in an imaginary plane of PG(3t + 2, ¢'*1). i
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This result was improved and presented in a different way, using the theory
of Generalised Quadrangles, in Casse et al (1985). A ('t + 1)-set gives rise to
different types of t-spreads on (2t + 1)-dimensional spaces Sae41, classified by the

nature of the space Sz¢+1. When ¢ is odd these types are given as:

() Let K = {Xo,X1,...,Xg+1} be a (gtt! + 1)-set of PG(3t + 2,q), and let
Y: be the tangent space to K at X; for ¢ =0,1,... ,q'Tt. Let Sai41 be a
(2t + 1)-dimensional subspace of PG(3t + 2,q) skew to X;, for some given
i. For j # i, denote the t-dimensional subspace < X, Xj > N Sat41 by Aj,
where < X;, X; > is the subspace of PG(3t + 2, q) generated by X and X;.
Let A; = Sat41 NY;. Then W = {Ao, A, ... ,Ags1}isa t-spread of Sa41 of

type (a).

(b) t-spreads of type (b) occur only when ¢ is even and this possibility is not

treated here.

(c) Suppose ¢ is odd and consider a 1-secant space Y; of K containing the point
X; for some . For each j £1,let A; =Y; N Y;. Further let A; = X;. Then
W = {Ao,A1,..., Mg} is a t-spread of Y; of type (¢).

4.3.6 Theorem [Casse et al (1985), Theorem 2]

Let K be a (gi+! 4 1)-set of PG(3t + 2,¢), where ¢ is odd. At least one of the
t-spreads of type (a) is regular if and only if at least one of the t-spreads of type
(c) is regular. In such a case all the t-spreads of types (a) and (c) are regular and

K arises from Construction 4.3.2.

Proof: The proof involves the use of a generalised quadrangle arising from

the (g'+! 4 1)-set in PG(3t +2,¢) as in Casse et al (1985). O

The following result applies in the case ¢ even as well as ¢ odd. When ¢ is
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odd it is weaker than the results above, however it is useful in the case of ¢ even.

4.3.7 Theorem [Wild (1986), Proposition 1]

Let K be a (¢'+! 41)-set of PG(3t+2,q). Suppose that two of the t-spreads arising
from projection of X from elements say Xo and X1 onto (2t+1)-dimensional spaces
Sgg_),rl and Sgﬂ_l skew to X, and X; respectively are regular. By Theorem 2.9.3
there exist lines [y € 5(231_1 and l; € :9'—(22_1 meeting the extension of every element
of the t-spreads of Sggll and Sé:_)*_l respectively, in unique points. If I and I; have

a common point in PG(3t + 2,¢'*!) then K arises from Construction 4.3.2.

Proof: The proof is similar to that given for Theorem 4.4.18, so it will be

omitted here. o

Casse et al (1985) and Wild (1986) also present representations of k-sets of
PG(3t+2,q) as sets of points in translation planes. In each case the k-sets arising

from Construction 4.3.2 are characterised in terms of these representations.

4.4 (k,n)-SETS OF PG(3t +2,q)

The connection between the k-sets of PG(3t + 2,¢) and the k-arcs of PG(2,¢"*!)
has been explored in the previous section. It suggested that a study of (k,n)-
arcs of projective planes by the same methods would hopefully lead to examples
of maximal (k,n)-arcs, or to demonstrations of the non-existence of these max-

imal (k,n)-arcs in projective planes of certain orders. The appropriate set of

t-dimensional subspaces in PG(3t + 2,¢) will be called a (k, n)-set.

4.4.1 Definition
A (k,n)-set K of PG(3t +2,q) is a set of k pairwise skew ¢-dimensional subspaces
of PG(3t + 2, q) satisfying:
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(i) K is geometric, as in Definition 4.1.2,

(ii) No (2t + 1)-dimensional subspace of PG(3t + 2, ¢) contains more than n ele-
ments of K, but there is some (2¢+1)-dimensional subspace containing exactly
n elements of K and skew to every other element of K. A (k,n)-set K is called

complete if there is no (k + 1,n)-set containing it.

A (k,n)-set of PG(3t + 2,q) is a geometric partial ¢-spread of PG(3t +2,q)
which satisfies the additional condition (ii) of Definition 4.4.1. The largest value

of 7 for which K admits :-secants is ¢ = n.

4.4.2 Examples
(1) When t = 0 then PG(3t + 2,¢) is a projective plane and a (k,n)-set is just
a (k,n)-arc of the plane. The elements of K are points and the (2t + 1)-

dimensional subspaces are lines. Condition (i) is satisfied automatically.
(2) If n =2 then a (k,n)-set is just a k-set of PG(3t +2,¢).

(3) Any (n — 1)-geometric partial t-spread K is a (k,n)-set of PG(3t+2,q). Such
a (k,n)-set admits only 0-secants, 1-secants and n-secants since if a (2t + 1)-
dimensional subspace contains two elements of X then by definition it must
contain exactly n of them. Declerck et al (1987) showed that such a set K
satisfies n — 1 divides k — 1, and also that k < (n — 1)¢'*! 4+ n, with equality
if and only if K is (n — 1)-uniform. This is a generalisation of Theorem 4.1.5
which characterises the 1-uniform partial ¢-spreads of PG(3t + 2, q) as k-sets
of PG(3t +2,9q).

As we will be interested particularly in the application of (k,n)-sets to maxi-
mal (k,n)-arcs, we need to know how many points a (k, n)-set may have. This is

found in Theorem 4.4.4, but first we need a definition.
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4.4.3 Definition

Let K = {X1,Xa,...,Xx} be a (k,n)-set of PG(3t+2,q). Let Sz¢41 be a (2t +1)-
dimensional subspace of PG(3t + 2, q) skew to X; for some given ¢ with 1 <1 < k.
For j # 1, let A; =< X;,X; > N Sz41 where < X;,X; > is the (2¢ + 1)-
dimensional subspace of PG(3t+2, q) spanned by X; and X;. Since X is geometric,
the spaces A; are skew or coincide. The set of distinct A; form a partial ¢-spread

of Saey1, called the partial t-spread arising from the projection of K onto Syi41
from X;.

The elements of K which lie in a secant (2t + 1)-dimensional space S2¢41 lie
in the partial t-spread arising from the projection of K from any element X of X

skew to S2t+1 .

4.4.4 Theorem

Let K be a (k,n)-set of PG(3t + 2,¢). Then k < (n — 1g*t! +n.

Proof: Let X be an element of K and let Sy¢y1 be a (2t + 1)-dimensional
subspace of PG(8t+2, ¢) skew to X. The (2t+1)-dimensional subspaces joining X
to other members of K meet Sz¢41 in the elements of a partial t-spread W of Sot+1,
and by Theorem 1.2.2 W has at most ¢**! + 1 elements. So there are at most
¢**t1 +1 such (2t + 1)-dimensional spaces, and each contains at most n elements of
K including X. Each element of K lies in one of these spaces by construction, and

since K is geometric each element of K intersects exactly one of the spaces. Thus
F< (@ +Dh-1)+1

= (n-1g¢" +n. o
When t = 0 we get the classical result, see Theorem 4.2.4.

This result can be slightly improved under further assumptions. For example
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if we assume that an element X of K lies on an mq-secant (2t + 1)-dimensional

subspace, then k < (n — 1)¢**! + m;.

4.4.5 Definition

A (k,n)-set K is called mazimal if k = (n — 1)¢**! + n.

4.4.6 Theorem
Let K be a maximal (k,n)-set of PG(3t +2,¢). Then K admits only 0-secant and

n-secant (2t 4+ 1)-dimensional spaces. We can say that K has type (0, n).

Proof: Let Sys41 be a (2t 4 1)-dimensional subspace of PG(3t+2, ¢), and let
W be the partial t-spread arising on Sa¢+1 by the projection of K from an element
X of K skew to Sz¢y1. The elements of X — {X} lie in the (2t + 1)-dimensional
subspaces which are the joins of X to the elements of W. Since k = (n—1)¢**! +n,
and no (2t + 1)-dimensional subspace of PG(3t + 2, ¢) may contain more than n
elements of K, it follows that W is a t-spread of S2:+1 and the (2¢ 4 1)-dimensional
subspaces joining X to the elements of W are all n-secants of X, so that X lies on
exactly ¢**! 41 n-secants and no others. There is a (2t + 1)-dimensional subspace
of PG(3t + 2,q) skew to each element of K, so that every element of K lies on
exactly ¢*T1 + 1 n-secants and no other secants. Because a secant which is not a

0O-secant contains an element of W, it is an n-secant and the result follows. m]

4.4.7 Corollary
A maximal (k,n)-set of PG(3t +2,¢q) is an (n — 1)-geometric and (n — 1)-uniform

partial t-spread, and conversely.

Proof: Firstly let X be a maximal (k,n)-set of PG(3t + 2,¢). Then it is a
partial t-spread and by definition it is geometric. Since it is of type (0, n) the space

joining any two of its elements contains exactly n elements of K, so K is (n — 1)-
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geometric. Since k = (n — 1)¢*t! + n, by Example 4.4.2 (3), K is (n — 1)-uniform.

Now suppose K is an (n — 1)-geometric and (n — 1)-uniform partial ¢-spread of
PG(3t+2,q) with k elements. By Example 4.4.2 (3) we have k = (n —1)¢**! 4-n.
Since K is (n — 1)-geometric, it is certainly geometric, and in fact since the space
joining any two of its elements contains exactly n elements of K, no (2t + 1)-

dimensional space may contain more than n elements of X. Thus K is a maximal

(k,n)-set of PG(3t + 2, q). o

The discussion prior to Theorem 4.1.3 showed how to construct an incidence
structure from any geometric partial t-spread of PG(d, ¢). In the case of a (k,n)-
set of PG(3t + 2,q) more can be shown. As in Section 4.1, we construct an
incidence structure T = (P, B,I) whose points are the elements of X and whose
blocks are the n-secants of K. Incidence is set-theoretic inclusion. Then 7 is a
2 — ((n = 1)¢*** 4+ n,n,1)-design. (For a discussion of designs, see Hughes and
Piper (1985).)

4.4.8 Theorem [Declerck et al (1987)]
Let K be a maximal (k,n)-set of PG(3t + 2, q).

(1) If n = ¢**! 41 then 7 is a projective plane of order ¢**.
(2) If n = ¢**! then 7 is an affine plane of order ¢***.

(3) If 2 < n < ¢**! — 1 then the number of n-secants of K through a point of

PG(3t +2,q) not contained in any element of K is equal to

t+1
q+

qt+1 +1 _
n

Thus n divides ¢'*!. w

We now turn to the question of existence of maximal (k,n)-sets. If n = 2
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then k = ¢'*t! + 2 and ¢ must be even by Theorem 4.3.4. Therefore there do not
exist maximal (k,2)-sets when ¢ is odd. When ¢ is even, examples of (¢t +2,2)-
sets have been given in Construction 4.3.2 (2). For n > 3 the situation is more
difficult. However, if there exists a (k,n)-arc in a projective plane PG(2,¢*"") for
some value of ¢, then we can construct a (k,n)-set K in PG(3t +2,¢) in a manner

analogous to that used in Construction 4.3.2.

4.4.9 Construction

Let GF(g*") be an extension (of degree t + 1) of GF(q) and let PG(3t +2,¢"™)
be the corresponding extension of PG(3t + 2,¢). Let II be an imaginary plane of
PG(3t +2,¢"t1). Then the t + 1 conjugates of Il under the collineation o induced
by the automorphism o : z — z? of GF(¢"*!) span the whole of PG(3t +2, g').
Each point P of II is imaginary (see Theorem 1.4.8 (3)), and by Definition 1.4.7 (1)
the t + 1 conjugates of P span a t-dimensional subspace L(P) of PG(3t 4 2,¢"™")
which meets PG(3t+2, q) in a t-dimensional subspace (Corollary 1.4.10 (2)). The
points of a (k,n)-arc C in II determ_ine a set K of k t-dimensional subspaces of
PG(3t+2,q). To show that K is a (k,n)-set we need to prove that X is geometric,
and that there is no (2t +1)-dimensional subspace of PG(3t+2, ¢) containing more
than n elements of X, while some (2t + 1)-dimensional subspace contains exactly

n elements of K. These properties both follow from Corollaries 4.4.11 and 4.4.12.

4.4.10 Theorem
Let ! be a line of II, with points Py, P1,...,Pp+1. For ¢ € {0,1,...,¢""} let
L(P,) =1in{P;, P?,...,P?'}. Then

W = {L(P;)NPG(3t +2,9) : i=0,1,...,¢'""}

is a regular t-spread of a (2t 4 1)-dimensional subspace of PG(3t + 2, q)-
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Proof: Since II is imaginary, each point P; is imaginary, thus by Definition
1.4.7 (1), L(P;) has dimension ¢ in PG(3t + 2,¢""!) and meets PG(3t +2,¢) in a
space of dimension ¢t. By Lemma 2.8.5, the spaces L(P;) and L(P;) are skew for
i # j. For each i = 0,1,...,¢""!, L(P;) is contained in the (2¢ + 1)-dimensional
space L(l). By Theorem 2.9.3 the t-spread W of L(l) is regular. o

4.4.11 Corollary

There is a natural isomorphism between the plane IT with its points and lines and
certain t-dimensional and (2t + 1)-dimensional subspaces of PG(3t + 2,g). The
(k,n)-set K of PG(3t+2,q) is isomorphic to a (k,n)-arc C in II, with the i-secants

of K corresponding to the i-secants of C.

Proof: We define an incidence structure Z on PG(3t + 2,¢). The points
are the t-dimensional subspaces spanned by a point of II together with all its
conjugates, and the blocks are the (2t + 1)-dimensional subspaces of PG(3t+2,q)
spanned by a line of IT together with its ¢ conjugates. The incidence is containment.
Then 7 is a projective plane of order ¢'*1, isomorphic to II. A (k,n)-arc C of II
determines a (k,n)-arc C' of Z and the i-secants of the (k,n)-arc in II determine

the i-secants of the (k,n)-arc C' in T. O

4.4.12 Corollary

The (k,n)-set K arising from Construction 4.4.9 is contained in a regular t-spread

of PG(3t +2,q).

Proof: The elements of the regular t-spread are the subspaces L(F;) of
PG(3t + 2, q) corresponding to the points P; of II. 0

4.4.13 Corollary

Let K be a (k,n)-set arising from Construction 4.4.9. The t-spread arising from
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the projection of K from X € K onto a (2t + 1)-dimensional subspace Sz:+1 skew

to X is a partial t-spread lying in a regular ¢-spread.

Proof: A partial t-spread arising from the projection of K from an element
X onto a (2t + 1)-dimensional space skew to X is contained in the regular -spread

in Corollary 4.4.12. w

4.4.14 Examples

(1) If n = 2 then k = ¢'*! + 2 and by Theorem 4.3.4, ¢ must be even. There do

not exist maximal (k,2)-sets when ¢ is odd.

(2) In PG(2,2"), there exist maximal (k,n)-arcs for every integer n dividing
2k see Theorem 4.2.8. We can use the Construction 4.4.9 to construct in
PG(3t + 2,q), with g even, maximal (k,n)-sets for every integer n dividing

t+1
g'th

It is an open question whether, for 3 < n < ¢**! — 1, there exist any maximal
(k,n)-arcs in PG(2,¢'™!) with ¢ odd, and hence whether there exist any maximal

(k,n)-sets in PG(3t + 2, q).

As in the case of k-sets of PG(3t + 2, q), the following question is of interest:
Do there exist maximal (k,n)-sets of PG(3t + 2, ¢) which do not arise from the
Construction 4.4.9? In other words, given a maximal (k,n)-set K of PG(3t+2,q)
does there exist an imaginary plane of PG(3t+2, ¢) meeting the extension of every
element of KX? Such a plane, then, is a plane PG(2,¢'*!) containing a maximal
(k,n)-arc. This question can be rephrased in another way: Is every maximal
(k,n)-set contained in a regular t-spread of PG(3t 4 2,¢)? In the following we

obtain some results towards answering this question.
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4.4.15 Theorem [Thas (1971), (1975) and Denniston (1969)]
(1) If n = 2 then there exist maximal (k,n)-sets in PG(3t + 2,q) arising from

Construction 4.4.9 only if ¢ is even.

(2) In PG(3t + 2,q), ¢ even, there exist maximal (k,n)-sets arising from Con-

struction 4.4.9 for every integer n dividing ¢'*1.

(3) In PG(3t+2,q), ¢ = 3™, with m > 1, there does not exist a maximal (k, 3)-set

arising from Construction 4.4.9.

Proof: (1) See Example 4.4.14 (1).
(2) When ¢ is even, by Theorem 4.2.8 there exist maximal (k,n)-arcs in PG(2, ¢t
for every value of n dividing ¢**t!. We apply Constructidn 4.4.9.
(3) Suppose that there exists a maximal (k, 3)-set in PG(3t + 2, ¢), with ¢ = 3™,
m > 1 arising from the Construction 4.4.9. Then there is a maximal (k, 3)-arcin a
plane PG(2,¢™**1)) where 3 divides m(t +1) and m(t +1) > 1. This contradicts
Theorem 4.2.9. a

We may apply the classical results on (k,n)-arcs of projective planes, (see for
example Hirschfeld (1979)), to obtain other results about (k, n)-sets of PG(3t+2, q)
arising from Construction 4.4.9, for example: if K is a ((n — 1)¢**! +n — 1,n)-set
of PG(3t +2,q) arising from Construction 4.4.9, then it is incomplete and can be
completed in a unique manner to a (maximal) ((n — 1)¢**! +n, n)-set by adjoining
the t-dimensional subspace which is the intersection of all its (¢ — 1)-secants. Also,
if n does not divide ¢**!, and 2 < n < ¢'*! then a (k,n)-set of PG(3t + 2,q)
satisfies k < (n — 1)¢**! +n — 2. A (k,3)-set of PG(3t +2,¢q), ¢ > 3 and n > 2

satisfies k < 2¢**1 4 1.

The following concept is important in deciding whether a certain (k,n)-set
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of PG(3t + 2,q) arises from the Construction 4.4.9. It appeared implicitly in the
work of Casse and Wild (1983).

4.4.16 Definition [Declerck et al (1987)]

Let W be a partial t-spread of PG(3t + 2,9). A secant (2t 4+ 1)-dimensional
projective subspace Sa+1 of PG(3t + 2, ¢) is called projection stable with respect
to W if the partial ¢t-spreads arising from the projection of W onto S2¢+1 from any

element X € W skew to S3:41 belong to a fixed t-spread of Sa¢y1.

If W is a maximal (k,n)-set of PG(3t+2, ¢) then the partial {-spreads arising
from the projections of W onto Sz¢41 from each element of W skew to Sy¢41 are all
t-spreads and so must coincide. Declerck et al have shown that if K is a maximal
(k,n)-set of PG(3t + 2,q) such that every secant (2t 4+ 1)-dimensional space is
projection stable with respect to X, then K arises from the Construction 4.4.9.
This idea could be useful in spaces PG(3t + 2, ¢) for which there are few t-spreads
in PG(2t + 1, q).

4.4.17 Lemma

Let K be a (k,n)-set of PG(3t + 2,¢). Suppose there exists a secant (2¢ + 1)-
dimensional subspace Sz¢41 of K such that the elements of K which lie in So¢41
are embeddable in a unique t-spread of Sy¢y1. Then Speyq is projection stable

with respect to K.

Proof: Let X be an element of X skew to S2¢+1. Then the elements of Sa¢41
lie in the partial t-spread arising from the projection of K from X onto Sait1.
Since the elements of K in Sa¢4; lie in a unique t-spread say W, then the partial
t-spread arising from the projection of K from X. onto Sg¢41 lies in the fixed ¢-

spread W. By definition, since X is any element of K skew to Sa:41, we see that
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Sy¢41 is projection stable with respect to K. 0

The condition of projection stability can be relaxed a bit, as in the next
Theorem. If S is a subspace of PG(3t + 2,¢g), we will denote its extension to
PG(3t +2,¢"t) by S.

4.4.18 Theorem

Let K be a maximal (k,n)-set in PG(3t + 2,¢). Suppose K admits a secant
(2t + 1)-dimensional subspace So with the property that there exist two distinct
elements X1, X2 of K skew to Sy such that the two t-spreads on So arising from
the projection of K onto So from each of X3, X, coincide (this would occur, for
example, if So were projection stable). Denote this t-spread by Wo. -The (2t+1)-
dimensional space S; =< X;,Xs > is a secant of K meeting So in an element of
Wo. Let X, be an element of K in W, skew to S1, and let the ¢-spread arising
from the projection of K onto S; from X be denoted W . Note that X;, X, and
So N Sy are all elements of Wy. Suppose Wy and W, are both regular t-spreads.
" Then there exists a line o in the space Sy which meets the extension of each
elerﬂent of Wy in a unique point, and a line /; in the space 57 which meets the
extension of each element of W, in a unique point. If these lines lp and I/; have a

common point (in PG(3t + 2,¢'*1)), then K arises from the Construction 4.4.9.
q ’

Proof: Since projecting K from X; onto Sy yields the t-spread Wp, we denote

the points of [y as follows:

Pj:<X1,Xj>nS()ﬂlo, fOI‘j;él.

Then P; is the point of /o belonging to that element of Wy arising from the
projection of X; onto Sy from X;. The points P; are not all distinct, in fact each

of the ¢*T! + 1 points of lp occurs n — 1 times among the points P;. In a similar
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way we denote the points of /; by:

Qi=<X0,Xi>nslﬂll, forz;éO

Now II =< Iy, l; > is a plane of PG(3t+2, ¢**!), and the extension of each element
of K contained in Sy or S; meets IT in a unique point. We show that this is also
true of elements of K skew to Sp and S;. Let X; be an element of K not lying in S
or S1, and not contained in the space < Xy, X1 >. The space < X_o,fj > meets II
in the line PyQ;. The space < Y}, X1 > meets II in the line P;@Q;. These lines are
distinct and so meet in a unique point R;. Since X_] =< X_O,X_j >N< X_J,X_l >,
then R; € YJ and X_] meets II in the unique point R;. Lastly let X; be an
element of K skew to Sp and S; but contained in < X¢,X; >. Then X; is skew
to < Xy, X2 > so we just repeat the above argument replacing X; by X5 to show
that also X__, meets II in a unique point. Thus the extension of every element of

K meets II in a unique point and K arises from Construction 4.4.9. O

A maximal (k,n)-set K arising from Construction 4.4.9 has the property that
the projection of K onto a secant (2¢+1)-dimensional space Sz;+3 from any element
X skew to Sai41 is a regular t-spread. In some cases the maximal (k,n)-sets can
be characterised in terms of this property, as in Theorems 4.4.21 and 4.4.22. We
use Theorem 4.4.18 and Lemma 4.4.19.

4.4.19 Lemma

Let K be a maximal (k,n)-set of PG(3t + 2, ¢) with n > 3. Suppose that if ¢ = 2
then t > 2, and that if ¢ > 3 then t > 1. Let S3¢41 be an n-secant (2t + 1)-
dimensional subspace of PG(3t+2,¢). Suppose that the t-spreads of S¢41 arising
from the projections onto Ss141 from each element of K skew to Sy¢41 are all

regular. Then S2;41 is projection stable with respect to K.

Proof: We denote the k—n elements of K skew to S2441 by X1,X2,..., Xk—n
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and denote the t-spread arising from the projection of K from X; onto Sz¢4+1 by
W;, for i = 1,...,k — n. Note that the n elements of K in S¢y1, denoted by

Xt—nt1, Xkont2y. .+, Xk—1,Xk, all belong to each of the t-spreads
Wi, Wa,...,Wi_n.

Now by Lemma 2.4.2 the three elements Xx_2,Xx—1,Xi of K lie in a unique
t-regulus of rank 1 R in Szt41, and we denote the ¢ — 2 further i-dimensional
subspaces of Sy¢y1 in the t-regulus by Z1,Zs,...,Z¢—2. Some of these elements
could be elements of K, since Sp¢4 is an n-secant of K. Since each of the ¢-spreads
Wi, Wa,..., Wi_n is regular, the subspaces Xi—2, Xx—1, Xk, Z1,.-.,Z¢—2 belong

to each of them.

Let Y, be an element of the t-spread Wi, not lying in R. The space < X;,Y; >
is an n-secant of K, and contains either n—2 or n—1 elements of X distinct from X,
and skew to Sy¢41 according as whether ¥ is in K or not. In either case < Xy,Y; >
contains at least n — 2 elements of K distinct from X; and skew to S¢+1. The
t-sprea.ds of S2¢41 arising from the projections of K onto Sz¢41 from X and these
further n — 2 elements of K all contain the subspaces Xg—2, Xk—1, Xky Z1,-+,Z¢—2
and Y,. Since by Corollary 2.9.5 a regular ¢t-spread of S2¢41 is uniquely determined
by one of its t-reguli of rank 1 together with one further ¢-dimensional space of
the t-spread, the n — 1 t-spreads above are all identical to W;. For this choice of
Y, there are at least n — 2 elements of K whose projections of K onto Sz:41 yield
t-spreads identical to W;. There are ¢'*! — ¢ such spaces Y7, so that there are at
least (n — 2)(¢!t! — ¢) t-spreads W; identical to W;. Without loss of generality

suppose the t-spreads Wi, ..., Wn_ay(gt+1-q)+1 are identical.

Consider X; € K, skew to Sys41, and such that W, differs from W;. Then

X must lie on a secant joining X; to an element of R. Similarly, since W, differs
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from W,, X; must lie on a secant joining X2 to an element of R. In this way we
see that the joins of X; to each of X1, X2, ..., X(n—2)(¢t+1—q)+1 Must meet Sot41 10
elements of R and's<‘) X1, X2, ., X(n—2)(gt+1~g)+1 Must all lie on secants joining
X, to an element of R. But the number of elements of K distinct from X; and
skew to Sy¢41 lying on secants joining X to eléments of R is at most
3(n—2)+ (¢ —2)(n—1).

This is a contradiction because

[(n—2)(¢""" = @) +1] = [3(n—2) + (¢ — 2)(n — 1)]

=(n—-2)(¢"" —2¢-1)—q¢+3
which is greater than zero forallg > 3,n >3 and t > 1. If ¢ =2 then it is also
greater than zero for all n > 3 and ¢t > 2. Note particularly that in the case of

¢ = 2 the argument fails if ¢ = 1 since n divides ¢**! and n > 3 implyn > 4. O

4.4.20 Theorem
Let X be a maximal (k,n)-set of PG(3t +2,2) with n > 3 and ¢ > 2. Then every

n-secant (2t + 1)-dimensional subspace is projection stable with respect to K.

Proof: Let Sy141 be a secant (2t + 1)-dimensional subspace of PG(3t+2,2).
Since every t-spread of PG(2t 4 1,2) is regular (see Theorem 2.4.6), all the i-
spreads arising from the projection of K from any element of K skew to Sot41 are

regular. By Lemma 4.4.19, S2¢4, is projection stable with respect to K. |

4.4.21 Theorem

Let K be a maximal (k,3)-set in PG(5, g), where by Theorem 4.4.8, ¢ is a power of
3. Since t = 1 we see that K is a (k, 3)-set of lines. The projection of K from any
one of its elements onto a 3-secant 3-dimensional subspace S3 yields a 1-spread on
that 3-secant. Suppose that all such 1-spreads on each such S3 are regular. Then

K arises from Construction 4.4.9.
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Proof: Choose X € K and denote the ¢? + 1 3-secant 3-spaces through X by
S S ng'l'l. For i = 1 to g2 + 1, the projection of K onto Si from any element
of K skew to it yields a regular 1-spread of Si. By Lemma 4.4.19, the space S}
is projection stable and we will denote the 1-spread on it arising from any such

projection of K by W;.

Let GF(g?) be a field extension of GF(g), and denote the corresponding
extension of PG(5,q) by PG(5,¢%). For each i from 1 to ¢* + 1 there are two
imaginary skew lines in PG(5, ¢?) which meet the extension of each element of W;
in a unique point (see Theorem 2.9.3). These lines are a conjugate pair, that is
they are images of one another under the collineation induced by the automorphism
z — 2% of GF(¢%). We thus have 2(¢g?> + 1) lines, occurring in conjugate pairs.
Since X lies in each of Wi, W, ..., W24, it follows that the extension X of X
to PG(5, ¢%) meets each of the imaginary lines, in exactly one point. X meets a

conjugate pair of lines in conjugate points of X.

Now since X has ¢ — ¢ imaginary points, occurring in conjugate pairs, and
since 2(¢% +1) > ¢ — g, it follows that there is at least one imaginary point of X
lying on at least two of the imaginary lines listed above. Theorem 4.4.18 gives the

result. m}

The proof of Theorem 4.4.21 fails for ¢t > 2 at the following point: the number
of imaginary lines meeting X is shown to be (¢ + 1)(¢**! + 1) while the number of

imaginary points in the extension X which is a t-dimensional space is
2 — —
¢ (¢ =) +¢ V(@ -+ kg -1)

and the desired conclusion can only be arrived at in the case ¢ = 1.
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4.4.22 Theorem
Let K be a maximal (k,n)-set of PG(3t + 2,2) with n > 3 and ¢t > 2. Then K

arises from the Construction 4.4.9.

Proof: We show that K is contained in a regular t-spread of PG(3t + 2,2),
which is sufficient to prove the result. Let X be an element of K. As in the remarks
preceding Theorem 4.4.8, the elements of X and the n-secant (2t + 1)-dimensional
subspaces form a 2—((n—1)2'*! + n n, 1)-design. Therefore through X there pass
m = 2!*! + 1 such n-secants, say Si1, S2,...,Sm. For each value of 7, 1 < ¢ < m,
the projection of K from a given element X; skew to S; yields a t-spread W; of S;.
Since ¢ = 2, by Theorem 2.4.6 each t-spread W; is regular, and by Theorem 4.4.20
S; is projection stable. Now by Theorem 2.9.3 there exists a set of £ 4+ 1 conjugate
imaginary lines in PG(3t + 2, 2t+1) meeting the extension of every element of the
t-spread W; in a unique point. Thus there exist 2t + 1 sets of ¢ + 1 conjugate
lines in PG(3t + 2, 2!%1), each such line meeting X in a unique point. Now X has

exactly (2171 — 2%)/(2 — 1) = 2! imaginary points, and since
(t+1) (2 -1) > 2*

there is an imaginary point of X through which there pass at least two such lines.
Suppose that these two lines are the lines meeting the extension of every element
of the t-spreads W; and W; in the secants S; and S;. By applying Theorem
4.4.18, choosing Sy and S as the two secants S; and S;, we see that X arises from

Construction 4.4.9. a

4.5 MORE ABOUT (k,n)-SETS OF PG(3t +2,q)

Let K be a (k,n)-set of PG(3t + 2,¢), with n > 2 so that the remarks in this
Section apply to k-sets and (k,n)-sets of PG(3t + 2,¢). Suppose that K arises

from the Construction 4.3.2, or 4.4.9, so that there exists an imaginary plane II
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of PG(3t +2,¢'*!) meeting the extension of every element of K, each in a unique

point. (In fact the set of these points of II is a (k,n)-arc of II).

The regular t-spread W of PG(3t + 2,¢) all of whose elements meet Il in a
unique point is a regular t-spread of PG(3t+2, ¢) containing the elements of . In
Corollary 3.9.5 we showed that such a t-spread W has a projective t-spread set PC
of 3-tuples of (¢ + 1) x (¢ + 1) matrices isomorphic to II. The matrices all belong
to a field (C,+,-) of order ¢**?, and we can use this field as GF(¢**!) in order
to coordinatise PG(3t + 2,¢'*!). Under this coordinatisation the isomorphism

between II and PC is the identity, and

e ={(1,0,0} u{(CP,1,0): j=1,2,....¢*"]

u{e e j= 1,2,...,¢°" D},

An element W of W corresponding to the element (53"), 5"),55")) of the projective
t-spread meets II in the point with coordinates (fgi),ﬁgi),ﬁgi))T. The elements
of W meet II in a (k,n)-arc of II and so the elements of the partial projective
t-spread set PPC corresponding to W are a (k,n)-arc of PC. It seems that trying
to construct a (k,n)-set of PG(3t + 2, ¢) is as hard as constructing a (k,n)-arc of
PG(2,¢"t1).

However these ideas can be used to test whether a certain (k,n)-set K of
PG(3t + 2,q) arises from Construction 4.4.9. We would simply find the partial
projective t-spread set corresponding to K, and see whether each of the elements
could be multiplied by a non-singular (£ + 1) X (¢ 4+ 1) matrix to obtain an identity
matrix in the last non-zero position. If this is not possible then K does not arise
from Construction 4.4.9. If it is possible, we still need to check whether all the
matrices appearing in the partial projective t-spread set come from a field of order

¢*+1. If they do, then that field gives the regular t-spread containing K. Otherwise,
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K is not contained in a regular t-spread and so does not arise from Construction

4.4.9.

4.5.1 Example

We use Examples 3.10.1 and 3.10.2. If we find a (k,n)-set K of lines among the
lines Iy, 1y, ..., ls; appearing in Example 3.10.1, then the corresponding partial pro-
jective t-spread set has matrices belonging to the field 0,1, A, B of order 4. Then

K is contained in the regular 1-spread l,ls,...,lz1 and arises from Construction

4.4.9.

If, on the other hand, we choose a (k,n)-set from the lines l1,1ls,...,l1 of
the regulus free 1-spread W of Example 3.10.2, the situation is different. We try
to find a set of lines arising from Construction 4.4.9, as large as possible. As
the non-zero matrices appearing in the partial projective t-spread set must be
invertible, we cannot choose any line whose corresponding 3-tuple P; contains any
of the matrices: A, B,D,E,F,G,H,J,K and L. There is only one line ly; of W
satisfying this condition, so there is no (k,n)-set of PG(3t + 2,¢) with k > 2

contained in W and arising from Construction 4.4.9.

It would be interesting to produce an example of a maximal (k,n)-set of
lines contained in the regulus free 1-spread W, answering at least in the space
PG(5,q) the question of existence of maximal (k,n)-sets of lines not arising from
the Construction 4.4.9. However the best that can be done is to find a 4-set of
lines, while a maximal k-set would have six lines. Such a 4-set of lines of PG(5,2),

not arising from the construction 4.4.9, is
K:={ll,12,l6,19}, or
K ={l1,la, 17,112} .
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CHAPTER FIVE

CONCLUSION

The applications of the ideas of regularity, of ¢-spread sets and of indicator
sets in the case of t-spreads of PG(2t+1, q) existing in the literature suggest many

lines of new research in the general case. A few ideas are presented here.

The aim of classifying the 1-spreads of PG(3,¢) has led to the definition of
subreqular 1-spreads. A 1-spread is subregular if it can be obtained by reversing
a sequence of reguli in turn, starting from a regular 1-spread. The concept of
reversing a regulus involves replacing the lines of the regulus (or Segre variety
SV2,2) by the lines of the opposite regulus (or lines of the opposite system of lines
of §V3 ). Reversing a regulus in a l-spread yields another 1-spread. Hirschfeld

(1985) gives a good survey of results in this area.

In the case of a t-spread W of PG((s + 1)(t + 1) — 1,q), let R, be a t-
regulus of rank r contained in W. The “opposite” regulus is an r-regulus of
rank ¢, since R, is the set of t-dimensional spaces of a Segre variety SV, 41 1+1
whose opposite system comprises r-dimensional spaces of SViy1,r41. Ift =1
then reversing R yields another t-spread of PG((s + 1)(t + 1) —1,¢). Otherwise
reversing R, gives a partition of PG((s + 1)(t + 1) — 1,¢) into pairwise skew t-
and r-dimensional subspaces. The results in the case of a 1-spread of PG(3,q)
suggest the development of a study of such partitions of PG((s +1)(t+1) —1,9),

particularly in the case of t = s.

Another important application of 1-spreads of PG(3,q) is to the theory of
inversive planes. An inversive plane of order g, denoted by IP(q) (see Dembowski

(1968), p252) is a 3 — (¢ + 1,q + 1,1)-design, whose blocks are called circles.
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Bruck (1969) has shown that in PG(3,q), a regular 1-spread together with its
lines and 1-reguli are an inversive plane of order ¢, where the points are the lines
of the 1-spread and the circles are the 1-reguli 'ofb the 1-spread. The incidence is
containment. Similarly, the indicator set of a regular 1-spread of PG(3,q), which
is a line of PG(3,¢?) skew to PG(3,q), is an inversive plane of order ¢, where
the points of the line are the points of the inversive plane and the circles are the
projective sublines of order q. These ideas are used in Bruen (1978) to give a new

class of translation planes of order ¢2.

Bruck (1973a) and (1973b) has defined a d-dimensional circle geometry for
each integer d > 2. The circle geometries of dimension 2 are precisely the inversive
planes, and a regular t-spread of PG(2t + 1,q) is a (¢ 4+ 1)-dimensional circle
geometry whose points are the elements of the t-spread and whose circles are the

t-reguli of the t-spread.

It would be interesting to define a higher dimensional inversive geometry,
which would admit not only circles (as in the case of d-dimensional circle geome-
tries) but also higher dimensional circles. This would be analogous to a projective
space with its system of subspaces of different dimensions. The definition of this
(s + 1)-dimensional inversive geometry IG(s + 1) of order ¢* would admit as an
example the regular t-spreads of PG((s+1)(t+1)—1,¢) in the following way: the
points of IG(s + 1) would be the elements of the t-spread, and the r-dimensional
circles would be the t-reguli of rank r for r = 0,1,...,s. An inversive plane would
be an IG(2) of order ¢ and a d-dimensional circle geometry would be an IG(2) of

order ¢t.

There are other questions raised by the work presented here: for example the

definition of indicator sets suggests a classification of ¢-spreads using their indicator
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set. This was begun for 1-spreads of PG(3,¢) in Bruen (1972), and Theorem 3.8.7

is also a step in this direction.

On the topic of indicator sets, the work in Chapter Four does not fully address
the question of the existence of maximal (k, n)-arcs by studying maximal (k,n)-sets
of PG(3t+2,q). It is possible that a maximal (k,n)-set of PG((s+1)(t+ 1)—1,9q)
not embeddable in a regular t-spread, if it does in fact exist, could be constructed
as a union of t-dimensional spaces belonging to different Segre varieties. The

requirement that such a set be geometric seems to be very strong.

The same method of studying certain sets of ¢t-dimensional spaces of the space
PG((s 4+ 1)(t + 1) — 1,¢) could be employed for studying other sets of points in
projective spaces, for example k-caps and (k,n)-caps of PG(s,¢"*') correspond to

certain sets of ¢-dimensional spaces in PG((s + 1)(t +1) — 1, 9).
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