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Abstract

The aim of the thesis is to extend the notion of A space from its historical
context in the work of Herz and to recognise such spaces as preduals of spaces
of intertwining operators of induced representations as suggested by the work of
Rieffel. This generalisation of A? spaces involves considering tensor products of a
given norm of L, spaces of Banach space-valued functions (the spaces of induced
representations) and constructing a convolution of functions of such spaces. First,
the analysis is carried out when the tensor product space is endowed with the
greatest cross-norm, and sufficient conditions for the existence of the integral of
the convolution are established. Most of this analysis depends upon an identity we
derive of Radon-Nikodym derivatives of measures on homogeneous spaces involved.

The elements of the generalised A} space are shown to be cross-sections of a
Banach semi-bundle over the double coset space corresponding to the groups from
which the representations are induced, and their properties are duly discussed.
In particular, the generalised form of the classical result L, * L, C L,, where
1/r = 1/p+1/q — 1, is shown to be true in this situation. The result that the
Af space is the predual of the space of intertwining operators is then established,
under the condition that the intertwining operators can be approximated, in the
ultraweak operator topology, by integral operators.

Sufficient conditions under which the above analysis can be carried out, when
the tensor product space is endowed with either p-nuclear norm or the Hilbert-
Schmidt norm are then given.
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Chapter 1

Introduction

The study of intertwining operators of induced representations on Hilbert spaces
was begun by Mackey [31, 32, 33]. He generalized the notion of a representation
of a finite group by linear transformations to the case in which the group is a
separable locally compact topological group and the linear transformations are
unitary transformations on Hilbert spaces. His main results include a generalized
version of the Frobenius Reciprocity Theoremn, the Intertwining and the Strong-
Intertwining Operator Theorems.

To explain these results, let G be a group, let H and K be two subgroups
of (7, and let 7 and v be representations of [ and K, respectively. If G is finite,
Mackey’s results assert that the intertwining number (Sec.2.4) of the two induced
representations U™ and U7 ol (7 (Sec.2.5) can be expressed as a sum of intertwining
numbers of the representations 7#° and 4Y of the subgroups H* N KY, z,y € G.
In the case of an infinile group, if the subgroups are open and closed, a similar
characterization is possible especially when 7 and 4 are one-dimensional. 1 the
subgroups arc closed, Mackey showed that the above criteria for computing the
intertwining number holds for the space of those opcrators which are in the Hilbert-
Schmidt class.

Moore [34], in 1962, continued this study. The fact that every continuous
linear map of an L; space into a separable reflexive space can be better represented
as an integral operator led him to extend the concept of induced representations to
include the action of a group on a Banach space by isometries. He proved that the
Frobenius Reciprocity Theorem remains true under these modifications and the
assumption that the corresponding (G-coset space possesses an invariant measure.

Among other developments that arc important for us, the first 18 the work
ol Rieflel[37] on Banach G-modules and their products. He proved, in particular,
that
(V®s W)= Homs(V,W™),

where S is a set, V and W are two S-modules, @5 denotes the projective tensor
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product of V and W and Homg(V,W*) is the space of intertwining operators of
the Banach G-modules. Applying this to L,(G) spaces (1 < p < 00) of complex-
valued functions defined on a group G, Rieffel obtained the result that, under
certain conditions, the corresponding intertwining operators (multipliers) form the
dual space of the space of functions AZ: a subset of an L, space (where r is related
to p and q as described in Prop.2.7.1) consisting of those functions which can be
written as a sum of convolution of functions from L, and L,. This is the context
in which we shall set our study of intertwining operators, that is, regarding the
space of such operators as the dual of a tensor product space.

The next development of importance to us in this regard is that of Herz
[25]. He studied the predual of the space of intertwining operators of the regular
representations of G on L, and L,. He was able to show, in particular, that the
tensor product space is an algebra of functions on G and, in some sense, a natural
analogue of the space of absolutely convergent Fourier Series. Our aim is to extend
the Herz- Rieffel results from regular representations which may be seen as induced
representation from the trivial subgroup to arbitrary induced representations.

In order to complete the programme we shall need to go beyond spaces of
functions on G to sections of Banach (semi-)bundles on G. The concept of a Banach
bundle was developed by Fell in 1977 and we shall use it as the appropriate device
for the study of the tensor product spaces. Unfortunately, in the most general
case, our semi-bundle will fail to be a bundle in the complete sense, but will be
more akin to the objects studied by Dauns and Hofmann[5].

The structure of the thesis is as follows. Our first aim is to construct A? spaces
using projective tensor products of L, spaces of induced representations. The first
task in the construction of AJ spaces using L, spaces of Banach space valued
functions is to define a ‘convolution’ formula as the image of a linear map ¥ on
L,(7)® Ly(v*), where ¢’ denotes the conjugate exponent defined by 1/¢+1/¢' = 1.
(It is known that L,(u, X)* = Ly(p, X*) if and only if X* satisfies the Radon-
Nikodym property (Definition 2.5.3) with respect to the measure p; the spaces
involved in our work are assumed to have this property.) As Hérmander has shown
in the case of complex-valued functions, we see that, under certain conditions, the
space L,(m) ®c Ly (v*) 2 0 when 1/p+1/¢ < 1,1 < p,qg < oo and G/H and G/K
are non-compact. In the case where these homogeneous spaces possess invariant
measure, the convolution formula turns out to be

(WS 8 9))(@,9) = [, S fi(ot) Oy 9:(yt)dhiny (),
TFnRY
where (i, is a suitably chosen quasi-invariant measure on G/H* N KY and @,
is the tensor product on a quotient Banach space A, of H(m) ® H(y) (Definition
4.1.2). In the absence of invariant measures on homogeneous spaces, we need
to modify the integrand in the above formula using corresponding A-functions
(Radon-Nikodym derivatives of measures mentioned above), in order to make it
integrable and well defined on G/(H” N KV). A substantial part of our analysis
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becomes possible because of an identity we derive regarding the A-functions:
Air(zts™, 8) Ak (yts™t, 8) Aganky (t,s71) = 1

for all s,t € G and almost all (z,y) € (G x G)/(H x K).

The space A is defined to be the range of ¥ with the quotient norm (Def-
inition 4.3.3.). For z,y € G we see that the values of the elements in A? spaces
are in the spaces A, ,, and these spaces may not be the same for different (z,y) in
general. We show that the collection of these spaces A, , forms the bundle space
of a Banach semi-bundle (Sec.4.2) . In the general case, we see that the elements
of A7 are cross-sections of this Banach semi-bundle.

When p-nuclear norms are considered, we see that similar results can be
obtained at least in the case where the representation spaces of the subgroups are
Lebesgue spaces. Considering Hilbert-Schmidt norms, we derive an isometry

Ay(, p) ®c As(d,77) — As(T ®c p, Y ®c )

which is similar to Herz’s result (Herz[25],Theorem B)in this regard.



Chapter 2

Basic concepts

This chapter is devoted to some background information involving induced repre-
sentations and A7 spaces sufficient for our purposes.

2.1 Notations and terminology

We shall assume throughout that all the topological spaces under consideration
are second countable.

Let X be a locally compact topological space; let C(X) denote the algebra
of complex-valued, continuous functions on X. The algebra of functions in C'(X)
with compact support is denoted by Co(X). The space of real-valued, positive con-
tinuous functions on X with compact support is denoted by Cg (X). The space of
complex-valued continuous functions vanishing at infinity on X forms a Banach
space, denoted by C (X)), with norm || f|| = maxzex |f(2)|. Co(X,Y) denotes the
space of continuous functions with compact support on X, mapping to the topolog-
ical space Y. For 1 < p < o0, L,(X) is the Lebesgue space on X while L,(X,Y, u)
denotes the set of (equivalence classes of) all y-measurable functions f on X map-
ping to the Banach space Y such that the map « — || f()||” is p-integrable where
|| || denotes the norm in the Banach space Y and p is a positive measure on X.
Lo (X,Y, ) denotes the space of all p-measurable, essentally bounded Y-valued
functions on X. The norm of such a function is its p-essential supremum. The
composition of two mappings f and g is denoted by f o g, whenever it is defined.
If fis a function defined on a group G, then . f denotes a function on G defined
by »f(y) = f(zy). The support of a function f, denoted by supp(f), is the closure
of the set of all points « where f(z) # 0.

The dual pairing between a space V and it dual V* (see Definition 2.4.2) is
denoted by (,). For any set of indices J, the closed linear span of a set of vectors
{uo : @ € J} in any given vector space is denoted by ({uq : @ € J}).



Let G be a locally compact topological group. We denote the right-invariant
Haar measure on G by vg. e denotes the identity element of the group. For a
subgroup H ol G, the canonical mapping from G to the set of right-cosets G/ IT is
denoted by py.

Let R, C, @, Z and N denote the set of real numbers, the set of complex
numbers, the set of rational numbers, the set of integers and the set of positive
integers respectively, with their usual algebraic and topological structures. Let
denote a directed set.

For any number p, | < p < 0o, we let p’ denote the conjugate cxponent of p
defined by 1/p+1/p' = 1.

The symbols = and =~ indicate an isometric isomorphism and a topological
equivalence, respectively.

2.2 Borel Spaces, G-action and quasi-invariant
measures.

Definition 2.2.1 (¢f.Gaalf19],p.234) Let X be a topological spacc and let G be a
locally compact topological group. We say that G acts on X on the right if X s
endowed with an external law of composition (s,x) — x.s for which G is the set of
operators, satisfying the following conditions:

(a) the mapping (s,x) — .5 of G x X into X 1is continuous;
(b) (z.t).s = z.(ts) for all s,1 € G and z € X

(c) the mapping © v 2.3 is a homeomorphism for every ¢ € G.

If z.s = z for every s € G and © € X we say that (G acts trivially on X.
( is said to act transitively on X (and X is called a transitive G-space ) if for any
ordered pair (2, x) there exist an s in GG guch that z;.s = 4. For each ¢ € X the
set ©.G = {z.5: s € G} is called the orbit of z, and the set of all s ¢  such that
x.s = z is called the stabilizer of z which is a subgroup of (/. The relation R on
X defined by z ~ y iff  and y belong to the same orbit is an equivalence relation
on X and the equivalence classes wilh respect to this relation are the orbits of
the points of X. The topological space X/f is called the orbit space of X or the
quotient space of X by the group (¥ and is denoted by X/G. The topology of X/G
is the quotient of the topology of X by R.

If H is a closed subgroup in the locally compact topological group G then
G acts on the homogeneous space X = G/H of right G-cosets via the mapping
(s, Hz) — Huz.s. This action is transitive and has the properties (a) and (b) in



Definition 2.2.1. In particular, if we consider the action of a closed subgroup K
of G on the homogeneous space G/H we see that the orbits are in one-to-one
correspondence with the double cosets H : K. The stabilizer of Hx € G/H under
the action of K is H* N K.

Definition 2.2.2 (c¢f.Hewitt and Ross[26], p.118) Let X be a topological Hausdorff
space. The o-algebra A(X) generated by the open subsets of X is called the Borel
o-algebra on X ; the Borel subsets of X are those that belong to A(X).

The following well known results which deal with properties of the Borel
structures of G/H and G are of fundamental importance to the development of
our work.

Throughout this section, let X denote the transitive G-space G/ H.

Lemma 2.2.3 There exists a Borel set B such that

(a) B intersects each right G coset in ezactly one point, and

(b) for each compact subset K of G, (pi' (pu(K))) N B has a compact closure.

Proof: See Mackey[31], p.102, Lemma 1.1.
O

A set B with the properties described in Lemma 2.2.3 is called a regular Borel
section of G with respect to H.

Lemma 2.2.4 A subset E in X is Borel if and only if pi (E) is Borel in G. A
function f on X is a Borel function if and only if fopy : x — f(pg(x)) is a Borel
function on G.

Proof: See Mackey[31], p.103, Lemma 1.2.
O

A Borel measure g on X is a countably additive, non-negative, extended
real-valued set function defined on A(X) which is finite on compact sets. It is
called quasi-invariant if the null sets of X are G invariant i.e. p(FE) = 0 if and only
if u(E.s) = 0. In other words, every translated measure p;, defined by pu,(F) =
p(E.s), must be equivalent to p. A detailed study of these quasi-invariant measures
on homogeneous spaces is given in [31], including the analytic properties of the
Radon-Nikodym derivatives of their translates.

For a given group G and o € G, let us write Ag(o) for the constant Radon-
Nikodym derivative of the measure £ — vg(oFE) with respect to the measure
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E — vg(E). Ag is a continuous homomorphism of G into the group of positive
real numbers and is called the modular function of G. For a given subgroup H of

(3, the modular function Ay is defined similarly. A group G is called unimodular
if Ag(o)=1forall 0 € G.

Lemma 2.2.5 Let G be a locally compact group and H a closed subgroup of G.
There exists a strictly positive, real-valued continuous function pg on G such that

pu(hz) = (Au(h)/Ac(h))pn(z) (2.1)
for allz € G and h € H.

Proof: See Mackey[31], p.104, Lemma 1.4 or Gaal[19], p.260, Proposition 4.
O

A Borel function with properties stated in the above Lemma will be called a
p-function. The existence of a strictly positive p-function satisfying the functional
equation (2.1) has been established in a number of places in the literature. In
particular, it is known that for every closed subgroup H in G there exists a function
B on G with [ f(hz)dvg(h) =1 for all z € G which gives rise to a p-function of
the required nature. The details of such a S function are given in the following
Lemma.

Lemma 2.2.6 For every closed subgroup H of a locally compact group G, there
exists a function B on G with the following properties:

(a) if K is any compact set in G, then B coincides on the strip HK with a function
in CF (GQ);
(b) [y B(hz)dvg(h) =1 for all z € G.

Proof: See Reiter[35], Chapter 8, section 1.9.
O

A function 8 on G satisfying the properties stated in Lemma 2.2.6 is called
a Bruhat function for H.

Given a Bruhat function g for a closed subgroup H, a p-function can be
obtained by letting

pr(e) = [ B(h)Ac(h)An(h™)dva(h).

Then pg is continuous (cf. (a) and [35], Chapter 3, section 3.2, Remark), pg(z) > 0
for all z € G and py satisfies (2.1).



For a given p-function p(sy)/p(s) is a Borel function of s and y which is
constant on the right H xG cosets in GXG. Since there is a natural homeomorphism
from this coset space to X X G, these p-functions give rise to a unique Borel function

A, on X x G such that

Ao(pu(8),y) = play)

for all s and y in G.

Lemma 2.2.7 The function A, has the following properties:

(a) forallz € X and s,t € G, X,(z,st) = A, (z.8,8) A (,);
(b) forall h € H, )\,,(pH(e), h) = AH(h)/Ag(h);

(c) M,(pu(e),t) is bounded on compact sets as a function of t.
Proof: See, for example, Gaal[19], p.263, Lemma 10.

Lemma 2.2.8 Let p be an arbitrary p-function on G. Then there exists a quasi-
invarianlt measure p in X such that for all y € G, the corresponding A-function
A\, has the property that A\,(-,y) is a Radon-Nikodym derivative of the measure i,
with respect to the measure .

Proof: See Mackey(31], p.105, Lemma 1.5.
O

Let us write g > X to mean that for all y € G, A(-,y) is a Radon-Nikodym
derivative of the measure y, with respect to p.

Theorem 2.2.9 There are quast-invariant measures on X. Any two have the same
null sets and hence are mutually absolutely continuous. A Borel set E in X is a
null set if and only if pg (E) has Haar measure zero. The relations u = \ and
A = )\, between quasi-invariant measures, A-functions and p-functions have the
following properties:

(a) Every A-function is of the form A,; A, = A,, if and only if p1/p2 is a constant.

(b) For every A-function there is a quasi-invariant measure u such that p > X ;
if iy = X and pz > X then py s a constant multiple of yis.

(c) For every quasi-invariant measure p there is a A-function such that p > \. If
p = A and p = Ay then for all t, M(-,t) = Aa(-, ) almost everywhere in X.

(d) If u > A, and p = X, then p1/p2 is constant almost everywhere.



Proof: See Mackey[31], p.106, Theorem 1.1.
O

The quasi-invariant measure on the homogeneous space G/ H of a subgroup
H of a group G will be denoted by ygx and the Radon-Nikodym derivative of the
measure E +— pg([Ely) with respect to the measure py is denoted by Ag(.,y).

Given a p-function pg for a closed subgroup H of G, it is possible to construct
a p-function for a conjugate subgroup H® (¢ € G) in an obvious manner. Following
Lemma has the details.

Lemma 2.2.10 Let pg : G +— (0,00) be a continuous p-function for the subgroup
H. Then, for x € G,

pr=(y) = pu(zy)As(z),y € G, (2.2)

defines a positive continuous p-function for H®.

Proof: See Gaal[19], Chapter VI, Sec.10, Lemma 3.
(]

For simplicity of notation, Ag(pu(x),y) will be written as Ag(z,y), or by A(z,y)
if the subgroup H is clearly understood.

Corollary 2.2.11 For z € G let = py(z). If p denotes the quasi-invariant mea-
sure corresponding to the function p then

| 1@ @)dva(@) = [, [ f(ha)dva(h)du(z), f € Co(G).

Proof:See Gaal[19], p.263, Corollary to Theorem 9.
O

Finally we shall discuss the notion of disintegration of measures which has been
dealt with in a number of places in the literature (see, for example, Mackey[31],

Halmos[23]).

Let 1 be a finite measure on X and suppose that there is an equivalence
relation R given on X. For ¢ € X let r(z) € X/R be the equivalence class to
which z belongs. The equivalence relation is said to be measurable if there exists a
countable family Ky, K, ......... of subsets of X/R such that r~!(E;) is measurable
for each i and such that each point in X/R is the intersection of the E; which
contain it.

Let H and K be closed subgroups of G. We say that H and K are discretely

related if there exists a subset of G whose complement has Haar measure zero and
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which is itself the union of countably many H : K double cosets. H and K are
said to be regularly related if there exists a sequence Fy, E1, Es, ......... of measurable
subsets of G each of which is a union of H : K double cosets such that Ey has Haar
measure zero and each double coset not in Ej is the intersection of the E; which
contain it. Hence H and K are regularly related if and only if the orbits of G/H
under the action of K, outside a certain set of measure zero, form the equivalence
classes of a measurable equivalence relation.

The following Lemma states that a measure ¢ defined on X may be decom-
posed as an integral over X/R of measures p, concentrated in the equivalence
classes.

Lemma 2.2.12 Let ji be the measure in X/R such that E C X/R is measurable
if and only if r~1(E) is p measurable and that ji(E) = p(r=1(E)). Then for each y
in X/ R there exists a finite Borel measure p,, in X such that py(X —r~*({y})) =0
and

[ 1@ [ s@du(@)dity) = [ f(r())g(w)dn(e), (2.3
whenever f € Li(X/R, i) and g is bounded and measurable on X.

Proof: See Mackey(31], p.124, Lemma 11.1 or Effros{13], Lemma 4.4.
O

Lemma 2.2.13 Let the measure g on X be quasi-invariant. Then, in the disin-
tegration of p as in Lemma 2.2.12, almost all of the y, are also quasi-invariant
under the action of GG.

Proof: See Mackey[31], p.126, Lemma 11.5.

2.3 Banach Bundles

The following definitions and the results in terms of Banach bundles are due to

Fell (see [15], Chapter 2 and [16]).

Definition 2.3.1 A bundle B over a Hausdorff space X is a pair (B,0) such that
B is a Hausdorff space called the bundle space of B and 0 : B +— X is a continuous
open surjection called the bundle projection of B. X is called the base space of B,
and for x € X, 07 (z) = {£: 6(§) = z,& € B} is called the fibre over X and is
denoted by B,.

10



Definition 2.3.2 A bundle B = (B,0) over X is a Banach semi-bundle over X
if we can define a norm making each fibre B, into a Banach space satisfying the
following conditions:

(a) &€ — ||é]|| is upper semi-continuous on B to R.
(b) The operation + is continuous on the set {({,m) € Bx B :60(§) =0(n)} to B.
(c) For each X in C, the map € — A.£ is continuous on B to B.

(d) Ifz € X and {&} is a net of elements of B such that ||| — 0 and (&) — =,
then & — 0y, where 0, denotes the zero element of the Banach space B,.

A bundle B = (B,0) over X is called o Banach bundle if it satisfies (b), (c)
and (d) above together with the condition that

(&) € ||€]] is continuous on B to R.

Given a Banach space A and a Hausdorff space X, it is easy construct a Banach
bundle by letting B = A x X and 6(§,z) = . Then (B,0) is a bundle over X and
if we equip each fibre A X {z} with the Banach space structure making ¢ — (¢, z)
an isometric isomorphism, then it becomes a Banach bundle. The Banach bundle
(B, 0) so constructed is called a trivial Banach bundle.

Let X and Y be any two Hausdorff spaces and ¢ : Y — X be a continuous
map. Suppose B = (B,0) is a Banach (semi-)bundle over X. Let B#* be the
topological subspace {(y,£) : y € Y,€ € B,¢(y) = 0(§)} of Y x B; and define
0# : B¥ Y by 0%(y,£) = y. Then 6% is a continuous open surjection since 6 is
open. Hence (B#,0#) is a bundle over Y. For y € Y, we make B¥ = 0#_1(y) into a
Banach space in such a way that the bijection { — (y, ) of By(,) onto B# becomes

a linear isometry. Then (B#,0#), denoted by B¥, becomes a Banach (semi-)bundle
which is called the Banach (semi-)bundle retraction of B by ¢.

Let i# : B¥ = B be the surjection given by i#(y, &) = €. Then, we have the
following diagram:

B* %,
o* | 16
v x
Since 8(i#(y, £)) = 0(€) = ¢(y) = ¢(6#(y, £)), we have 0i# = ¢6* and the diagram

commutes.

Suppose B = (B,0) and D = (D, ) are Banach (semi-)bundles over the same
base space X. Let u : B — D be a map for which the diagram

11



B+= D
ANV,
X
commutes, so that 8(€) = J(u(f)) for £ € B. Let Y be another Hausdorfl space

and ¢ : Y — X be a continuous map. Let B# and D# be the retractions of B and
D by ¢ respectively . Define the map j#(u) : B¥—~D# by

7* (), €) = (y,u(8))-
Then
I*(7#(w)((9,6))) = 9*((y,u(€)) = y = 0%(y,¢),
for (y,£) € B¥*, so that the diagram;

p# W p#

0#\ /19#
¥

commutes.

Suppose u : B — D is a continuous and open map. It is clear that the map
j#(u) is the restriction of the map (j,u) : Y x B — Y x D, where j is the identity
map from Y to itself and (j,u)(y,€) = (y,u(£)). Clearly, (j,u) is a continuous,
open map. Let U c B* be an open set. Then there exists an openset U C Y x B
such that U = U N B#. Let j#(u)U = V and (j,u)(U) = V. Now V is an open
set in Y x D and V C V N D#*. Note that if (y,¢) & B¥, then ¢(y) # 6(¢), and
therefore J(u(€)) = 0(¢) # ¢(y), which implies that (y,u(¢)) & D¥. Therefore, if
x € V N D# is the image of z € U, then z cannot be outside of B#. This implies
that V = V N D#, which shows that V is an open set in D#. Hence j#(u) is an
open map.

Now we turn to the construction of a particular type of Banach
(semi-)bundle. Let the Banach (semi-)bundle B = (B, ) over X with B = Hx X be
such that H is a Banach space, X is a Hausdorff space and 8(¢,z) = z. Suppose that
there is an equivalence relation R given on X. Let r be the canonical mapping from
X to X/R. For z € X, let r(z) € X/R be the equivalence class to which z belongs.
Define B = (B%, 6%) over X/R by letting BE = H x X/R and 8%(¢,r(z)) = r(z).
Clearly, both bundles B and BE are trivial bundles with constant fibre H (see
Section 2.3, p.10).

Proposition 2.3.3 The Banach bundle retraction
BR# — (BR# HR#)

of B by r is topologically equivalent to B = (B, 8).
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Proof: The two Banach bundles ﬁR# and B have the same base space X.
B = {(@,(&7(2)) : 0(6,(2)) = r(2'), 7',z € X, € € H}
= {(#,(¢r(2)) : 2" € r(2),2' 2 € X, € € H},

and for x € X, B, = {(§,z) : £ € H}, while Bf# = {(z, (&, r(2))) : € € H}.
Clearly, the mapping (¢,z) — (=, ({,7(z))) is a homeomorphism.

O
Definition 2.3.4 A cross-section of B is a function f : X — B such that f(z) € B,
for each x € X. The linear space of all continuous cross-sections of B is denoted
by C(B) and the subspace of C(B) consisting of those cross-sections which vanish

outside some compact set is denoted by Co(B). The set of all bounded cross-sections
is denoted by B(B).

We say that B has enough continuous cross-sections if for every £ € B there
exists a continuous cross-section f: X — B for which f(6(¢)) = ¢&.

The following unpublished result about the existence of enough continuous
cross-sections has been proved by A.Douady and L.dal Soglio-Hérault .

Theorem 2.3.5 If X is either paracompact or locally compact, every Banach bun-
dle over X has enough continuous cross-sections.

Proof: See Fell[15], p.324.
|

Definition 2.3.6 (Gierz[20], p.80) Let B = (B, 0) be a Banach (semi-)bundle over
X. Let F be a subset of B. Then (F,6) is called a Banach (semi-)subbundle if

(a) 07 (z) N F is a subspace of B, for every x € X, and

(b) given £ € F and € > 0, there is a neighborhood N of 6(€) and a continuous
cross-section [ : N +— B such that f(z) € F for all ¢ € N and such that

17(8(6)) — €l < e.

Furthermore, a subbundle (F,0) s called fibrewise closed if 071 (z) N F is closed in
By for every z € X.

Definition 2.3.7 Let 1 < p < oco. A cross-section of B is said to be p**-power
summable if it is locally p-measurable and

I1£1ls = ([ 1) Pdp(@))"7? < oo.

The space of all p**-power summable cross-sections is denoted by L,(B; u).
P PRI b
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L,(B;p) is a Banach space under the norm || ||, defined in Definition 2.3.8.

Definition 2.3.8 The space Loo(B; 1) is defined to be the space of all p-essentially
bounded cross-sections of B.

Loo(B; ) is a Banach space under the norm || f|lcc = p-ess sup,cx || f(z)]l-

2.4 Banach Modules and Representations of lo-
cally compact groups

Banach modules

Let G be a locally compact group. We let M(G) denote the Banach algebra
of all finite complex-valued regular Borel measures on G. The group algebra is
denoted by L(G), and is considered to be the two-sided ideal in M(G) consisting
of the elements of M(G) which are absolutely continuous with respect to the Haar
measures on G (cf.Hewitt and Ross[26], p.269).

Definition 2.4.1 (cf. Rieffel[37], p.446.)

(a) Let V be a Banach space and A be a set. Then a left Banach A-module is
defined to be the Banach space V together with a map

AxXV =V

(a,v) — av
such that for any fired a € A, the map v +— av is a bounded linear operator.

We let ||a||v be the bound of this operator.

(b) If the set A is a locally compact group with identity e, then in addition to (a)
we require that

(1) ev =v for allv € V;
(2) a(bv) = (ab)v for all a,b€ A and v € V; and
(8) the map A X V +— V be continuous.

If ||a||v =1 for every a € A, we say that V is an isometric A-module.

(c) If the set A is an algebra then in addition to (a) we need V' to be a left module
over A in the algebraic sense.

14



(d) If A is a Banach algebra then in addition to (c) we require thal the bilinear
map A x V — V be continvous, so that there is a constant k such lhat
lav]] < kfia||||e|| for all « € A, v € V; where ||.|| denotes the norm in the
corresponding Banach spaces.

Right Banach A-modules are defined similarly.

If G is a locally compact group and V is a uniformly bounded G-module,
then it is well known (see, for example, Hewitt and Ross[26],p.269) that an action
of M(G) on V can be defined by

= dm(x
mu /Gwv m(z)

for m € M(&),v € V. With this action V becomes an M(()-module and so also
an L(G)-module.

Definition 2.4.2 (Rieffel(37],p.447) Let A be a set and V and W be A-modules.
An intertwining operator is a continuous A-module homomorphism; thal is, a
bounded linear operator T' from V to W which satisfies T(av) = a(T(v)) for all
a € A,v € V. The Banach space of all intertwining operators (with the operator
norm) is denoted by Hom 4 (V, W).

The A-module Hom(V,C) where C is the complex field, is called the dual of
V, and is denoted by V™.

IfV and W are A-modules such that W = V*, then V is called the predual
of W.

Definition 2.4.3 (Rieffel{37],p.453) Let A be a Banach algebra and let V be an
A-module. ThenV is said to be an essential A-module if AV = {av:a € A,v € V}
s dense in V.

Definition 2.4.4 (Rieffel(37],p.453) Let A be a Banach algebra. An approximate
identity for A is a net {e,},cs, where J is a directed set, of elements of A having
the property that lim; e;a = a and lim; ac; = a for all a € A.

Proposition 2.4.5 If A is a Banach algebra with bounded approzimate identity
{e;} and if V is an A-module, then the following are equivalent:

(a) V is an essential A-module;
(b) lim; e¢;v = v for everyv € V.

c) given v € V, there exist v' € V and a € A such that v = av’.
?
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Proof: See Rieffel[37], Proposition 3.4.

O

Definition 2.4.6 (Rieffel[87],p.454.) Let A be a Banach algebra with bounded
approximate identity and let V be an A-module. Then the closed linear subspace
of V spanned by AV is called the essential part of V and is denoted by V..

REMARK 1. (Rieffel[37], p.456.) If G is a locally compact group and Z is a
(G-module, then the linear subspace of Z* on which the action of G is strongly
continuous is exactly (Z*)..

Representations of locally compact groups

Definition 2.4.7 (c¢f.Gaal[19], Chapter I1V.) Let G be a locally compact group and
H a closed subgroup of G. By a representation m of H on a Banach Space H(r)
we mean @ homomorphism h +— w(h) of the group H into the group U(H(r))
of all isometries of H(w) onto itself such that for any u € H(w) the function
h — (7(h))(u) is continuous in the norm topology on H(w). Thus in particular we

require w(h)n(t) = w(ht) and w(h™) = (x(h))™" for all h,t € H.

Definition 2.4.8 (c¢f.Mackey[33]) Given a representation © of a subgroup H of G
on a Banach space H(r), the representation ©° of the subgroup H® = z 'Hz on
the space H(x) is defined by 7%(b) = w(zbz™') for b € H”.

Let m and 4 be representations of the locally compact group GG. A bounded
linear operator 1" from H(7) to H(7) is called an intertwining operator for 7 and v
if m(z)T = Tvy(z) for all € G. The vector space of all intertwining operators is
denoted by Intg(r,7v) and the dimension (possibly infinite ) of this space, called
the intertwining number, is denoted by d(, 7).

An operator from a Hilbert space H to a Hilbert space K is called a Hilbert-
Schmidt operator if for some maximal orthonormal system {z;} ( € Z, a general
index set) in H, one has ¥;||T'z:||* < co. An intertwining operator T : H(w) —
H(7), where H(r) and H(y) are Hilbert spaces, is said to be a strong intertwining
operator if it is an Hilbert-Schmidt operator. The space of all strong intertwining
operators for 7 and + is denoted by S.Intg(w,~).

Definition 2.4.9 (¢f Gaal[19],p.152.) Two representations m and v of the group
G are called equivalent if there exists an isometry I' of H(w) onto H(vy) such that
AT =T'xr; i.e. y(z)' =I'w(z) for every z in G.
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If = and v are equivalent we write 7 & +. Therefore, 7 ~ + if and only if
Intg(m, ) contains an isometry of H(7) onto {I{¥).

For a given representation 7 of a group G on a Banach space H(r) let us
define the map 7* : H — U((H(x))") such that 7*(h) = (r(h™"))". We see that 7*
is a representation of G on the Banach space H(r*) = (H(x))*, il H(7) is reflexive
(Proposition 3.3.2). We call 7* the adjoint representation of .

2.5 The induced representations of locally com-
pact groups

Let G be a locally compact group and H a closed subgroup of (0. Suppose that
7 is a representation of H on a Hilbert space H(x). Let u be any quasi-invariant
measure in the homogeneous space X = (/H of right cosets which belongs to a
continuous p-function. Let us denote by Mg the set of all continuous functions f
from G to H(7) which salisfy the covariance condition

f(hz) = mnf(z)

for all h € H and @ € G and such that ||f(-)|| has compact support in X. The
inner product

(1, f2) = [ (file), So(a))du(a)

can be introduced since the integrand is constant on cach right coset Hz and hence
defines a function on X. We identify two elements f and g of My if ||[f—g] =0
where || - || denotes the norm derived from (-, -}. The same symbol M will be used
to denote the inner product space of equivalence classes.

The complex Hilbert space obtained by completing the inner product space
My will be denoted by La(m, 1).

Definition 2.5.1 (c¢f Gaalf19], Chapter VI, Sec. 4, Definition 1) The induced
representation “UJ : G U(Ly(m, 1)) is defined by

_— 1

(“Uy F)(2) = Mz, y)% f(zy)
for each x,y € G and [ € Ly(m, pu), where \(-,y) is the Radon-Nikodym derivative
of the measure p, with respect to the measure p.

The fact that “U] is a well defined representation is dealt with in detail in
Mackey[31] (p.107) and Gaal[19] (p.348).

Theorem 2.5.2 Let p and y' be quasi-invariant measures on X. Then there exists
an isometry W from Ly(m, u) onto Ly(r,u') such that W(*UT) = (* U)W for all

y € G. In other words, the two representations “U; and * U] are equivalent.
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Proof: See Mackey[31], p.107.
O

In Chapter 3, Section 3, we will be introducing p-induced representations U
which is a generalisation of the above to include L, spaces as the representation
spaces. In order to discuss the properties of the adjoints U;’I* ,1/p+1/p' =1, of such
representations, we need to consider the space Ly (7*). It is known (cf.Gretsky and
Uhl[21]) that the space L,(X,x)*, where X is a Banach space, is not necessarily
the same as L, (X*, u); but the equality holds if the space X satisfies the Radon-
Nikodym property. First, we will state few definitions of terms which are necessary
to define this property.

Definition 2.5.3 (Dunford and Schwartz[10], p.97) Let p be a set function defined
on the field ¥ of subsets of a set S. Then for every E in ¥ the total variation of u
on E, denoted by v(p, F), is defined as

V(s B) = sup 3 | ),

where the supremum is taken over all finite sequences {E;} of disjoint sets in %
with Ei g E.

Definition 2.5.4 (Dunford and Schwartz[10], p.131) Let v, u be finitely additive
set functions defined on a field ¥.. Then v is said to be continuous with respect to
w or simply p-continuous, if

lim,,(M,E)_,O’)’(E) = 0.

Definition 2.5.5 (Gretsky and Uhl[21], Chapter III, Sec. 1, Definition 3.) Let
(Q,%, 1) be a measure space. A Banach space X is said to have the Radon-Nikodym
property with respect to (Q, 5, p) if for each p-continuous vector measure F : ¥ —
X of bounded variation there exists g € L1(X, p) such that F(E) = [ gdu for all
E € X. A Banach space X has the Radon-Nikodym property if X has the Radon-
Nikodym property with respect to every finite measure space.

Theorem 2.5.6 Let (2,2, ) be a o-finite measure space, 1 < p < oo, and let X
be a Banach space. Then L,(Q, X, p)* = Ly(Q, X*,u), where 1/p+1/p' =1, of
and only if X* has the Radon-Nikodym property wilh respecl Lo p.

Proof: See Gretsky and Uhl[21], Chapter IV, Sec. 1, Theorem 1.
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Theorem 2.5.7 Let (Q,%, 1) be a nonatomic finite measure space and X be a
Banach space. Then L,(R2, X, p) has the Radon-Nikodym property if and only if
1 < p<ooand X has the Radon-Nikodym property.

Proof: See Gretsky and Uhl[21], Chapter V, Sec.4, Theorem 1.

2.6 Tensor product spaces

Let X and Y be vector spaces. Then there is a vector space W and a bilincar map
w: X xY — W such that for any bilinear map % : X x Y +— V, where V is a
vector space, we can find a linear map ¢ such that the diagram

XxY &S W

vl ¢
Vv

commutes. Il X and YV are normed vector spaces then W can be given a norm in
such a way that w is continuous. If # is continuous so is ¢. Evidently in this case

[l < llelille]]-

Let Bilin(X x Y, V) denote the space of all (bounded) bilincar operators from
X xY to V and let L(W,V) be the set of all continuous linear opecrators from
W to V. Define Qy : LW, V) — Bilin(X x Y, V) by Qu(¢) = dw. (||| = [|w)|
unless V is the zero vector space.) We have the following definition:

Definition 2.6.1 (c¢f.Gaal/19], Chapter VI, Sec.3.) A tensor product of (normed)
vector spaces X and Y is a pair (W,w) where W 1s a (normed) vector space and
w: X XY — W is a (bounded) bilinear opcrator such that for every (normed)
vector space V the map Qv is (an isometry) a bijection. In olher words, (W,w)
is a tensor product of X and Y if and only if for every V and every (bounded )
bilinear operator v : X x Y +— V there exists a unique (bounded) linear operalor
¢: W — V such that the above diagram is commutative (and ||$|| = |¢¥|).

Lemma 2.6.2 Suppose that (W,w) is a tensor product of X and Y. Then W is the
smallest linear subset generated by the elements of the form w(z,y),x € X,y € Y.

Proof: See, for example, Gaal[19], Chapter VI, Sec.3.
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Definition 2.6.3 (Light and Cheney[29], p.2) When X and Y are vector spaces,
the above defined tensor product is called the algebraic tensor product of X and Y
and will be denoted by X @ Y. The element w(z,y) is denoted by ¢ @ y.

Since w is bilinear, we have the following computation rules:

(z4+2)Ry=2Qy+2' Ry, zRy+y)=zQy+zy,

and
(Az2)®y =20 (M) =Az®y)=Iz®y.

From Lemma 2.6.2 it is clear that every element of X @ Y can be represented
in the form z = ¥?z; ® y; where z4,...,2, € X , y1,...,y, € Y.

Lemma 2.6.4 Every expression ) i, z; ®y; s equivalent to either 0@ 0 or to an
expression L a; Q@ b; with n < m, where {as,...,a,} and {by,...,b,} are linearly
independent sets.

Proof: See Light and Cheney[29], p.2.
O

If X and Y are normed spaces, it is possible to construct norms in X @ Y
using those in X and Y. A norm a in X @ Y is called a cross-norm (cf. Light and
Cheney[29)]) if it satisfies a(z®@y) = ||z||x||y|ly. Among many ways of constructing
a norm on X ® Y, the following four (which are known to be cross-norms,) are of
great interest to our work.

Definition 2.6.5 (¢f. Light and Cheney[29]) For z=3%" 2, Q@y; € X QY,

(1) the greatest cross-norm o of z is defined by

o(z) 1= inf{Y aulllyil : @i € X,ps € V)

1=1
where the infimum is taken with respect to all representations of z;

(2) the least cross-norm v of z defined by
1) 1= sy (3 o)y ()] 27 € X7 €Y7 a7 = Iyl = 1
(8) for 1 < p < o0, the p-nuclear norm «, of z is defined by
() 1= i ) - 30))
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where pip(yn, - yn) 1= sup{(ly [9(w)P)> : ¢ € Y™, gl = 1} for 1 <
P < 00, and poo(y1,. - Ya) = sup{ max 1<i<a[¥(yi)| 1 ¥ € Y, |[9]| = 1}
The infimum is taken with respect to all representatons of z, and (3%, ||:vi||”)%is
understood to mean max;||z;|| when p = oo;

(4) when X andY are Hilbert spaces, the Hilbert-Schmidt norm ((z) of z is defined
by

n

B(2) = {30 Sz, 25)x (o i)y 1,

1=1 j=1

where (-,-)x and (-,-)y are inner products in X and Y respectively.

It is known that the above norms are well defined in their tensor product
space (see, for example, Light and Cheney[29]). The completion of X ® Y with
respect to a norm « is a Banach space (resp. Hilbert space) denoted by X ®“Y,
whenever X and Y are Banach spaces (resp. Hilbert spaces).

Let V and W be Banach spaces, and let & be a norm on VQW. Let L(V, W*)
be the set of all continuous linear operators from V to W*. For A € L(V,W*), the
supremuin,

sup{| Zn:(Aa:Z)(yzﬂ : a(zn: ;i ®y) =1,z; € V,y, € W},

Ti¥i =1 i=1

is denoted by ||A|l«- The set of all operators having ||A||, < oo is denoted by
Lo(V,W*).

It is well known (see, for example, Light and Cheney[29], p.15) that if o is a
cross-norm on V ® W, then

VW) = Lo(V,W). (2.4)

In particular,

(a) if we choose « to be the greatest cross-norm o, we have

(VW) = LV,W); (2.5)

(b) in the case where V and W are Hilbert spaces, if we choose the cross-norm
B, we have

(VW) = HSV,W*), (2.6)
where HS(V,W*) denotes the space of Hilbert-Schmidt operators from V to W*.

Let GG be a locally compact group and V and W be left Banach G-modules.
Let L be the closed linear subspace of V ®* W spanned by elements of the form

aww-—-—vQuwa, a€GuveV,weW.
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The quotient Banach space (V @*W)/L is called the G-module tensor product, and
is denoted by V@&W. Then we have a nalural isometric isomorphism

Homeg(V,W*) =2 (VezW)" (2.7)

where Homg(V, W*) is the space of intertwining operators from V to W*. If the
greatest cross-norm is considered (2.7) will be written in the form

Inta(V,W*) = (VRLW), (2.8)

where Intg(V, W*) denotes the Banach space of all continuous intertwining opera-
tors from V to W™ with the operator norm. In the case of Hilbert spaces, we have
the analogous result

(VREW)Y = HSe(V, W), (2.9)

where HSq(V, W=) denotes the space of all intertwining operators from V to W*
with finite Hilbert-Schmidt norm (See Rieffel[37], Corollary 2.13 and Light and
Cheney[29]).

Let t € V@gW with an expansion of the form { = 32, v; @ w; for v, € V
and w; € W (see Grothendieck[22]). Then the linear functional F' on Intg(V, W*)
which corresponds to ¢ has value Y22 {w;, Tv;) at T € Intg(V, W*). Therelore the
topology on Intg(V, W*) defined by the these linear functionals corresponds to the
weak*-topology on V@qW.

Definition 2.6.6 (Rieffcl[36], p.73) The topology on Into(V,W*) which corre-
sponds to the weak*-topology on VRgW is called the ultraweak*-operator topology

Finally, we statc a few important results regarding p-nuclear norms o, which
will be used in Chapter 5.

Theorem 2.6.7 Let S be a finite measure space and 1 < p < co.

(a) IfY is a Banach space such that, under the natural map,
Ly(5) @Y =Y g L,(S5),

then
L(S)Y®* Y = L,(S,Y).

(b) IfT is a finite measure space then, under the natural maps,

(1) Lp(S) @ Lp(T) = Ly(T) @ Ly(5); and
(2) Ly(S) @ L,(T) = L,(S x T).

Proof: See Light and Cheney|[29], Theorems 1.50, 1.51 and Corollary 1.52.
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2.7  Theory of A spaces

In the classical theory, A spaces were constructed using the usual Lebesgue spaces
L,(G), where G is alocally compact topological group. First we state the following
Proposition which motivates the Definition 2.7.2.

Proposition 2.7.1 Let f € L,(G) and g € Ly,(G), where 1 < p,q < oo.

(a) Suppose G is compact. Then the convolution

(F*9)@) = [ Slay)gly™)dva(y)
is defined almost everywhere, f x g € L,(G), and

1S+ gllr < W f1lllglla,

where r is defined as follows:

(1) if1/p+1/q>1, then1/r=1/p+1/q—1;
(2) if1/p+1/q <1, then r = oo. In this case, f * g € C(G).

(b) Suppose that G is not compact and 1/p+1/q¢ > 1,1 < p,q < co. Then f g
is defined almost everywhere and

1(26(-))7 £ % glle < 11 Flpll9 s

where 1/r =1/p+1/q—1. If1/p+1/q =1, then (Ag())%(f*g) € Coo(@).

Proof: See Rieffel[36], Prop. 3.1 and 5.3.
O

Let f € L,(G) and g € L,(G), where 1 < p,q < 00. Define a bilinear map b
from L,(G) x Ly(G) into L.(G) or C(G) by

b(f,9) = (Ac(-))" f*g, f € Ly(G),g € L(G).

(Note that this is the same formula as in (a)(2) of the above Proposition, since
compact groups are unimodular.) Then ||b|| < 1, and we can lift it to a linear map
B from L,(G) @’ L4(G) into either L,(G) or C(G), depending upon the value of
r, with ||B]| < 1.

Definition 2.7.2 (cf Rieffel[36], Definition 3.2.) The space Al is defined to be
the range of B, with the quotient norm.
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Considering the fact that an element of L,,(G) @ L,(G) has an expansion of
the form 3772, f; ® gi, we see that the elements of A9 consist of those functions h
on G which have at least one expansion of the form

1
h=(Ac()" 521 fi * gi,

with f; € L,(G), g; € Ly(G) and 2, || fill,llgill; £ oo with the expansion converg-
ing in the norm of L,(G) or C(G).

The following is a summary of some well known, important results in this

regard (cf.Rieffel[36]).

Theorem 2.7.3 Let L be the closed subspace of L,y(G) @7 Lqo(G) spanned by ele-
ments of the form (¢* f)® g— f ® (¢*g), where ¢ € L1(G), f € Ly(G),9 € Ly(G)
and ¢(x) := Az ")p(a™"). Let Ly(G) @% Ly(G) denote the quotient Banach space
L,(G)®° L,(G@)/L. Then,

(1) if G is compact, 1 < p,q < 00, and either p < oo or q < 0o, we have the
isometric isomorphism

Ly(G) ®G Le(G) = Ag;

(2) if G is non-compact and 1/p+1/¢ < 1,p < 00,q < 0o, then
Lp(G) @G Le(G) = {0};

(3) if G is non-compact and 1/p+1/q > 1,1 < p,q < oo, then L,(G) ®% L,(G) =
A2 if and only if every element of Homa(L,(G), Ly(G)) can be approzimated
in the ultraweak operator topology by operators of the form Ty : f — fx¢, f €
L,(G),¢ € Co(@), the space of continuous functions with compact support.

Proof: See Rieffel[36], Theorems 3.3, 4.1 and 5.5.

O
It is known that if G is an Abelian or compact, every element of Homg(L,(G), Ly(G))
can be approximated in the ultraweak operator topology by operators of the form
T4 (see Figa-Talamanca and Gaudry[18], Theorem 1 and Rieffel[36], p.79).

Theorem 2.7.4 Let G be an Abelian group. Let M denote the space of bounded
operators T on L,(G) to Ly(G), (1 < p,q < 00), which commutes with translations;
that is, 7,T = Ty, for all z € G, where 7, f(y) := f(z +y). Then the space M is
isometrically isomorphic to (A3)*, the (topological) dual of Af.
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Proof: See Figa-Talamanca[l7, 18].
O

Herz[25] defined AJ spaces using Banach spaces of representations of a locally
compact group as follows. Let 7 be a representation of a group G and H(w) be
the corresponding Banach space. Let the map II(7) : H(x) ® (H(7))* — Cu(G),
where C,(G) is the space of bounded uniformly continuous functions on G in the
supremum norm, be defined by I(7) : (f ® g)(z) = (n(z)f,g). The quotient
of H(m) ® (H(r))* by the kernel of II(r) is called the space of w-representative
functions, and is denoted by A(r).

In particular, if the right (resp.left) regular representation A,(C) (in Herz’s
notation in [25],) on an L, space is considered, the corresponding A(),(C)) space
is denoted by A,.

The following are the main results in [25], regarding A, spaces:

Theorem 2.7.5

(a) Ifr is a representation in a p-space H(w), then multiplication of funtions gives
a morphism

A, ® A(T) — A,.

(b) A, is a Banach algebra under pointwise addition and multiplication of func-
tions.

() If p< q<2o0rp>q>2 then multiplication of functions gives a morphism

A,Q Ay — A,

Proof: See Herz[25)].
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Chapter 3

Preliminaries

This Chapter has two main aims:

(a) to present some new definitions, notations and results which are essential
for later use; and

(b) to state and prove some interesting results on p-induced representations
which came to light as a consequence of our theory.

The contents of the three sections (which are independent of each other)
are as follows: Section 3.1 is devoted to proving some important results regard-
ing A-functions (see Sec.2.2) which are used as essential tools in the calculations
throughout our work. Lemma 3.1.3 describes an identity among A-functions of a
particular set of subgroups of a given group, which plays an important role in the
development of the theory. Section 3.2 deals with some new notations and results
on Banach (semi-)bundles. Section 3.3 consists of results on adjoints of represen-
tations and p-induced representations. In particular, Moore’s version of Frobenius
Reciprocity Theorem (see Moore[34]) is dealt with in a general setting, where the
corresponding coset spaces do not have to possess an invariant measure.

3.1 Some important results on A-functions

Lemma 3.1.1 Let G be a locally compact group. Let H and K be closed subgroups
of G with K C H. Then there exist positive quasi-invariant measures pux on G/ K,
pg on G/H and i on H/K such that, for F' € Co(G/K),

[ F@anta) = [L( f, 2L e o) (31)

X /\H(y$t)

whenever the integrals exist.
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Proof: By Reiter[35], p.158,(scc also Mackey[31]), there exists a continuous, strictly
positive function px on (¢ and a positive measure g on G/K such that

[ () = ([ s () s, (32
for f € Co(G).

Also, by the same reasoning, there exists a continuous, strictly positive func-
tion py on G and a positive measure py on G/H such that

[ Fe)dvtn) = f (] —~ Ehi) F(ht)dvir(h)) dpn ().

Let g = pre/pu. We see that

plsz) = px(sz)/pu(sz) = (Ax(s)/Au(s))d(x),

for s € K and = € GG. Thus p, restricted to H, is a p-function for the homogeneous
space H/ K. If we let i be a quasi-invariant measure associated with this p-function,
we have

[t = [, [ (B syt (o)) dien(t) 5

By Reiter[35], p.165, for a given I' € C(G/K), there exists a function
f € C(G) such that

F(2) = ./I( 1 )f(sz)dyl\'(s), (341)

pr(sz

where 2 = pk(z). Comparing equations (3.2) and (3.3), and using (3.4), we see
that

[ FGauz) = [ [, 2 by ny

x £ pr(y)pn(yt)
Ak (y,1) ) )
F(yt)da(y) |dun(t),
fg( 4 \r(y,1) (yt)dily) |dpum(t)
for any F € Co(G/K), and (3.1) is proved.

O

Let gy be a given quasi-invariant measure on G/H with the correspond-
ing A—function Ag. Consider the homeomorphism ¢, : G/H® — G/H given by
¢.(u) = zu. Define a measure pg= on G/H® by pyg=(E) = pun(¢.(L)) whenever
[2 is such that x.E is mcasurable. Clearly, pp- is quasi-invariant if and only if pg
is. The corresponding A—function of pg- is denoted by Ag=. The following result
states the relationship between Ay and Aze-.
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Lemma 3.1.2 For z,l € G and for almost all v e G/H
A=z l0,t) = Ag(v,t). (3.5)
Proof: For f € Co(G/H), we have
f@)n) = [ f@udun(hw)
- /  Flaw)dpgrs (u). (3.6)

HT

mlm\

Changing variables u +— ut, the above gives

[ f@)pn) = [ el 0)f ut)dpsz-(u)

HT

- /g A= (2710, 1) f(vt)dpm(v). (3.7)

On the other hand, changing variables v + vt in the integral f% f(v)dun(v), we
obtain

/Qf(v)dﬂH(v) = fg A (v, ) f(vt)dpum(v). (3.8)

H
Hence, comparing equations (3.7) and (3.8), we have
)\Hm (x_lv, t) = )\H(U, t)

for z,t € G and for almost all v € G/ H, as required.
O

Let us turn to the most important result in this section; namely, an identity
among A-functions of certain subgroups of a given group G.

Let A = {(z,z) : ¢ € G} be the diagonal subgroup of G x G. Consider the
right action of A on the coset space (G x G)/(H x K). The stabilizer of the coset
(Hz,Ky) is (H x K)®¥ N A and the orbit is the double coset (H x K)(z,y)A.
Let T be the set of all double cosets (H x K) : A of G x G} that is, the set of all
orbits. For each (z,y) € G x G, let k(z,y) denote the (H x K) : A double coset
to which (z,y) belongs. If v is any finite measure in G X G with the same null
sets as Haar measure we define a measure pi(z,x) on T by pm,x)(F) = vo(k™(F))
whenever F is such that k~'(F') is measurable. Using Mackey’s terminology, we
call such a measure an admissible measure in T. We obtain the following result as
a consequence of Lemma 2.2.12.

Lemma 3.1.3 Suppose that H and K are regularly related. Let A be the diagonal
subgroup of G x G and Y denote the set of all (H x K) : A double cosets in G x G.
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Then for each double coset D(z,y) = H X K(z,y)A there exists a quasi-invariant
measure py, on G/(H*NKY), z,y € G, and Ag=nky with gz > Agenky such that

A (zts™, ) Ak (yts™, ) gsngs(t,s7') = 1, (3.9)

forall s,t € G, and for almost all (z,y) € (G x G)/(H x K). Moreover, Agz=ngy(t, )
is defined everywhere and continuous on (G/(H* N KY)) x G.

Proof: Choose two quasi-invariant measures pg and ux on G/H and G/K respec-
tively, which correspond to two continuous p-functions. Define a measure pgyg
in (GxG)/(H x K) by paxx = pu X pix (see, for example, Halmos[24], p.144).
Obviously, pgxk is quasi-invariant to the action of A. Let vy be the measure in
(G x G) defined by vo(pi' x(F)) = taxx(F). Let pm x be an admissible measure
in T corresponding to vp.

Let f be a function defined on (G/H) x (G/K). Suppose
f% Jg f(z,y)dpm(x)dpk(y) is integrable. Changing the variables z — zs and
y — ys, we get,

[, J, 1@ v)inn(@inx(v)
= /% /— Au(2, )Mk (y, 8)f (2, ys)dpuss (@) duxc (y)

= /GxG Au(z,8)Ak(y, ) f(zs,ys)dpuxk(z,y).

Hx XK

For each (z,y) in (G x G)/(H x K) let r(z,y) = k(pgxx(z,y)). If H and K are
regularly related then r defines a measurable equivalence relation(see Sec.2.2).
Then, by Lemma 2.2.12, pgxk is an integral of measures y, ,, where D(z,y) € T,
with respect to the measure pg,x in Y. By Lemma 2.2.13, each p,, is a quasi-
invariant measure on the orbit 7~!(D(z,y)). Using this decomposition, we have

[ A1)\, 9) (5, y3)dpsnac(,9)

HxK

= /DeT /ie A (zt, s)Ak (yt, s) [ (zts, yts)diuq, () dum x (D),

- &5
(HxK)\®¥lna

where (z,y) is the coset representative of the coset D(z,y). Identifying the space

AJ((H x K)® 0 A) with G/(H® N KY) we can regard p,, as a measure on
G/(H® N KV). Then we have

)‘H(xa S))‘K(ya S)f(:l,'s, yS)dNHxK(x, y)

GxG
HxFK

/DeT/t o Au(at,s)Ak(yt, s) f(ats, yts)due,,(t)dpm,x (D),

€HTARY
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Changing variables ¢ — ts~!, in the integral on the right-hand side, we get

[ M5 Nsc 0 8)F (5,55 g ()

HxiK

— -1 ' 1

B ~/DET/te-H:—ﬁKg AH(MS ;S)Aﬁ(yt.s ,S)f(mt,yt)
)\H’OKU(tjS_l)dﬂz,y(t)dﬂH’K(D)_ (310)

On the other hand, if we start with ff%f(m,y)dnyK(:r,y) and use Lemma
2.2.12, we have

f]axcf(xay)d#ffxx(w,y)

HxXK
. /DET ./te a f(CUt,yt)dﬁm,y(j)du(}]’[{)([))’

(HxK)=¥)Ina

- /DET]te o St yt) ey (t)dpcr (D). (3.11)

HENKY

Hence from (3.10) and (3.11) we have
/\H(Q’fts_l,S)AK(yt.S_ljS)AH:nKy(t’Sil) = 1,

for all s € G, for almost all t € G/(H” N K¥) and for almost all
(z,y) € (G x G)[(H x K). For each such (zq,y0) € (G x G)/(H x K),

Ar(wots ™, 8) Ak (Yats ™, 8)Apzonkwa (f,s77) = L. (3.12)

By continuity of Ay and Ak, we see that (3.12) is true for all £ € G/(H™ N K%).
Furthermore, (3.12) implies that Agsnxs(t, s) is defined everywhere and continuous
on (G/(H* N KY)) x G, which proves the Lemma.

O

The following result is a consequence ol Lemma 3.1.3.

Corollary 3.1.4 Let (z,y) € G x (G such that the identity (3.9) holds. Then for
se H* N KY ,
Ag(h)Ar(k)
Ag(S)AH:nKy(S)
1

where h = x5z~ and k = ysy™'.

1, (3.13)

Proof: Let ¢t = s in the identity (3.9). Then we have

AH(.CC,S)/\K(y,S)A}]:nKy(S,S_]) = 1. (3]4)
By Lemma 2.2.7 (a) this simplifies to
Az, 8)Ak(y,8) = Anznks(e,s). (3.15)
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Consider s € H®*N KY. Then s = z7'hz = y~lky for some h € H and k € K. For
such an s, we have by Lemma 2.2.7 (a),

)\H(:L‘,S) = /\H(:E,x_lhx)’
= (b, z) g (z,z7R),
= Xu(e,2)Am(e, B)Au(z,27"),

= Jnle,h),
— izg:g (3.16)
Similarly,
wns) = T (3.17)
and
Y- é*Z—g’éyT(s) (3.18)
Using (3.15),(3.16),(3.17) and (3.18), we obtain
Au(h) Ax(k) - Anenie(s) (3.19)

Ag(h) Ac(k) Ag(s)
But Ag(h) = Ag(z™'ha) = Ag(s) = Ag(ytky) = Ag(k), hence (3.19) simplifies

to
An(h)Ax (k)
Ac(8)Amenky(s)

as required.

1, (3.20)

3.2 Some special Banach bundles and Banach
semi-bundles

The principal objective in this section is to consider a special type of Banach

(semi-)bundle which arises in the construction of AP spaces, in Sec.4.2. Let the
Banach (semi-)bundle B = (B,0) over X with B = H x X be such that H is a
Banach space, X is a Hausdorff space and 6(¢,z) = z. Let R be an equivalence
relation defined on X. For z € X let r(z) € X/R be the equivalence class to which
z belongs. Suppose the Banach space H is such that there exists a collection of its
closed subspaces that can be indexed by the elements of X; that is, a collection
that can be expressed as {H, : ¢ € X}. Suppose further that H, = H, if and
only if ¢’ € r(z). For each z € X, let A, = H/H,. We want to look at a particular
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type of Banach (semi-)bundle constructed in the following manner. First, let us
introduce some new notations. Let

BU = Hx X,

Bf = HxX/R,

By = Uzex{H.x{z}},

Bff = Upex{M. x {r(2)}},

Bz = UJ;eX{A;- X {(L'}}, and

BE = Uex{d. x (r(2)}}.

It is clear that By is a subspace of By, and BT is a subspace of BE.

With j denoting any one of {0,1,2}, let §; : B; — X and BJR ; B? — X/R
be defined by 8;((,z) = z and OF(C, r(z)) = r(z), respectively, where ¢ belongs to
the corresponding Banach space. Let ¢ : By — B; be the quotient map delined by
q(h,z) = ({Hy + h},z). Similarly the quotient map gg : BE — BE is defined by
qr(h,r(z)) = ({H: + k},r(z)). We topologize B; and Bf so that the map ¢ and

gr arc continuous and open.

Lemma 3.2.1 Suppose X/R is Hausdorff. Then, B; and Bf are Hausdorff for
each j € {0,1,2}.

Proof: Clearly, By and Bf are Hausdorff, being products of such spaces. The
result is valid in the cases of B; and Bf’, since they are subspaces of By and B[}f
respectively.

Let us show that Bf is Hausdorff. The proof for the case of B; is similar.

Let ¢ : BE — BE be defined by ¢(¢,z) = ({H, + (},z). Consider (¢,z) #
(¥',y) in B. Then there exist ((,z), (¥,z) € BE such that ¢({,z) = (',x) and
q(9,y) = (¥',y) with ({,z) # (9,y). We have the following cases:

(i) If x # y , consider disjoint open sets around z and y (this is possible since
the space X/R is Hausdorff) which will give rise to open sets (05*)~!(z) and
(95)71(y) which are disjoint.

(i) If z = y, choosc open sets U and V of H/H, such that H, +( C U and H, +
9 C V. Since the canonical map p, : H — H/H, is continuous, there exist U
and V' in H such that p,I/' C U and p,V' C V. Then, U = U x X/R C BE
and V = V' x X/R C BE with ¢(U) N ¢(V)=0.

Hence BF is Hausdorff. A similar argument works for Bs.

Define B; = (B;,0;) and ﬁf = (B;R, Hf), for j =0,2.
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Theorem 3.2.2 B; and Bt

B}, for j = 0,2, are bundles over X and X/R, respec-
tively.

Proof: Clearly, 6 : Bo — X and 65 : B¥ — X/R are continuous open surjections.
Consider #; : By — X. We have the diagram

By B,

b 0
X

First we show that 0, is open. For any open set U in B;, ¢ *(U) is an open set in
By by definition of the topology of B;. Then, 85 being an open map, we see that
02(U) = 86(¢~1(U)) is an open set in X. Hence #, is open.

To show 8, is continuous let V C X be an open set. Then, #y being contin-

uous, 851 (V) is open. By definition of the topology of Ba, ¢(05'(V)) = 83" (V) is
open, giving the required result.

Similarly, 0% is a continuous open map. Now the result follows from Lemma

3.2.1.

O

It is clear that B, and Bf are trivial Banach bundles (see Sec.2.3). Let us
explore the situation in B, and BE. For each z = r(z) € X/R, the fibre of Bf
over z is B, = {A; x {z}}. We sce that BE,, is a Banach space with the norm
1y 2) 55, defined by ||(7, z )ngﬁz = |Inll where ||7]] means the norm in A,. The

operations + and . in sz are defined, in an obvious manner, using + and . in A,.
We can define and topologize the fibres B, , in By and define the operations + and
. in a similar manner.

Lemma 3.2.3 (7,2) — H(T],Z)”Bézz is upper semi-continuous on BY to R. A sim-
ilar result holds in the case of Bs.

Proof: Let {(m:,2:) : ¢ € I} be a net of elements in Bf with (n;,2;) — (5,2). Then
there exist a sequence {(¢;,u;)} and an element (¢, u) in BE such that

QR((@HT‘“)) = (niazi) forallz € I ’ qR((‘Pa U)) = (naz) and (@i,ui) o (Wvu)' Now
since ||(n, 2)||8, = lIn]| = infren.|le + k||, without loss of generality we can choose
@ such that, for a given € > 0, we have

lell < lnll + e (3.21)
Also,

Inell < [l (3.22)
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for all 7 € I. Since ||¢;|| — ||¢]|, then from (3.21) and (3.22) we have

[In:ll < flmll + €,

for 7 sufficiently large.
The proof is similar in the case of B;.

O

Lemma 3.2.4 The operation + is continuous on B, x Bf, to BY,, and for each
X in C, the map b \b is continuous on BE to BE . A similar results hold in Bj.

Proof: Since the topology induced from BE on its fibres is just the Banach space
topology, the operations + and . are continuous.

Similarly for Bs.

a

Lemma 3.2.5 If 2 € X/R and {b; : 1 € I}, is any net of elements in B such
that ||b;|| — 0 and 0f(b;) — z, then b; — 0, where 0, is the zero element in By,
A similar result holds in Bs.

Proof: Any element b; € BE is of the form b; = (w; + Hy,, (i) where z; € X.
Since ||b;|| = inf{|jw; + k|| : h € Hq,}, with w; € H, there exists an h; € Hy; such
that .

[lw: + hal| < ||&|| +1/2°

for all 7 € I. This implies that the net of elements w; 4+ h; in H has the property
that w; + h; — 0, 0 being the zero element in H. If 65(b;) = r(z;) — z, this means
that bz - Oz

a
Lemma 3.2.6 5_? and B, are Banach semi-bundles over X/R and X respectively.

Proof: The result follows from Theorem 3.2.2, Lemmas 3.2.3, 3.2.4 and 3.2.5.

Proposition 3.2.7 The Banach semi-bundle retraction
# #* #
By = (By",6;")

of ﬁ? by r is topologically equivalent to B,.
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Proof: Consider the diagram

#
Bf}){# F_R) B;{#

e T T
By 5 B, BE B BE
b o 0 0 . 0%

X Ty X/R
where g% = j*(¢r) (see Sec.2.3, p.11) and j is defined so that ¢ 02 = jo ¢, ¢
being the homeomorphism stated in Proposition 2.3.3. It is clear that q}% is the
quotient map. Hence, (also by the discussion on page 11,) ¢¥ is continuous and

open. Obviously, 7 defines a bijection from B, onto Bﬁ#. We need to show that
and its inverse are conlinuous. Now ¢g is open by the definition of the topology of
B and the right hand side of the above diagram commutes. Since the maps ¢, ¢f
and ¢ are continuous and open it is clear that jis continuous and open, as required.

O

Proposition 3.2.8 Let f : X — B, be a continuous cross-section which is con-
stant on equivalence classes. Then the function g defined by g(p(z)) = ¥ (f(z)),
where @ € X, s a continuous cross-scction from X/ R to BE.

Proof:By Proposition 3.2.7, a continuous cross-section f of B, can be regarded as
a cross-seclion of ﬁf#. Define ¢’ : X ++ BE so that

g (z) = i*(f(z)) for all z € X.
(See the diagram below.)
B, = g** ¥, gr
N
X
Consider the function ¢ : X/R — B which factors through the diagram
By
g/ 1y
X+ X/R
It is clear that g is well defined since f is constant on the equivalence classes. Also,

g(p(z)) = ¢'(z) for any « € X and we see that g(z) € BS, for any z € X/R. Hence
g is a cross-section of BY. Moreover, it is continuous since p is open,

0
We need the following results, proved by Fell[16] for Banach bundles, in the

context of semi-bundles.
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Propaosition 3.2.9 Let B = (B,0) be a Banach semi-bundle. Suppose that {s; :
i € I}, is a net of elements of B, and 0(s;) — 0(s) in X. Suppose further thal for
each € > 0 we can find a net {u;} of elements of B (indezed by the same 1) and
an clement u of B such thal: (a) u; — w in B, (b) 0(u;) = 8(s;) for each i, {c)
l|s — ul| < € and (d) ||s; — wi|| < € for all large enough . Then s; — s in B.

Proof: This is proved by Fell only for Banach bundles. We give the proof for
the case of a Banach semi-bundle which follows the same reasoning as in Fell{16],
Proposition 1.4, p.12.

[t is enough to prove that some sub-net of {s;} converges to s. Since 8 is
open, for each 1 we can find an element f; such that 8(t;) = #(s;) and ¢; — s. Let
¢ > 0 be given and choose {u;} and u in B satisfying the conditions (a) to (d).
Since addition is continuous in B, we have ¢; — u; — s — u. Since ||s — u|| < ¢, by
the upper semi-continuity of the norm, we have ||¢; — u;|| < 2¢ for i large. This
unplies

1t = sill < [Its —wl| + [Jwi — s:l] < 3e,

for i large. Hence ||t; — s;|| — 0, therefore t; — s; — 0g(,). Consequently s; — s.

a

Corollary 3.2.10 Let g be o cross-seclion for ¢ Banach semi-bundle B such that,
Jor each x € X and each € > 0, there is a continuous cross-seclion [ and an
z-neighborhood U of a such that ||g(y) — f(y)|| < € for all y in U. Then g is a
continuous cross-section.

Proof: We give the proof in the casc of a Banach semi-bundle which is similar to
that of a Banach bundle as given in Fell[16], Corollary 1, p.13.

Let {x;:7 € I} be a net of elements of X such that z; — z. Let g(z;) = s;
and g(z) = s. Then 6(s;) = ©; — = = 0(s). For a given ¢ > 0, let f be a continuous
cross-section and U be an z-neighborhood of z such that ||g(y) — f(v)| < € for
all y in U. This means that we can find u; = f(z;) with v; — v = f(z) so that
lei — si]| < €, O(u;) = @; = 0(s;) and ||s — u|| < €. Ilence by Proposition 3.2.9, we
have s; — s, proving g is continuous,

O

Let Y be another locally compact Hausdorff space with a regular Borel mea-
sure v. Lel £: X X Y — X be the surjection (z,y) — . Then the Banach
(semi-)bundle retraction £ = (&,p) by « is a bundle over X x Y whose bun-
dle space £ can be identified with B x Y. The bundle projection is given by
p (& y) — (0(6),y). Tor cach x € X, Efyxy is the trivial bundle with con-
stant fibre B,. Therefore, for a given k € Cy(&) and for each z in X, the Bochner
integral [y h(z,y)dv(y) exists and will belong to B,.
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Lemma 3.2.11 For each h € Co(E) the map {(z) = [, h(z,y)dv(y) is a continu-
ous cross-section of the Banach semi-bundle B.

Proof: We use a similar argument to that of Fell[16], Lemma 2.3, p.27, where the
result is shown to be true in the case of a Banach bundle.

Let € > 0 be given. We show that £ is continuous at a fixed point zo € X. Let
the compact support of ~ be D x E in X x Y. Since h is continuous with compact
support, {h(zo,y) : y € Y} is norm-compact in B,. So there are finitely many
continuous cross-sections rq,...,r, of B such that for each y € Y we have

|A(z0,y) — ri(zo)|| < €

for some ¢ € {1,...,n}. Therefore, letting ki(z,y) = ||h(z,y) — ri(z)|| for z € X
and y € Y, we see that we can subdivide E into disjoint Borel sets F, ..., F, such
that

ki(zo,y) £ €< 2¢

for all y € E;. Now by upper semi-continuity of the norm, for all y € E; there exist
neighborhoods V,, = W, x U, of (zo,y) such that k;(z,y) < € for (z,y) € V,. Since
E;’s are compact there exist neighborhoods Uy,,...,U,, covering E;. Now the set
N;W,, x U;U,; is an open set containing zo X E, and on this set k;(z,y) < e.

Let N;W,, = W. For z € W,
— 3 Ny < .
| [, b w)dvlw) = S Eyri@)| < il [ bz, y)dvly [Ei ri(z)dv(y)|

£ E/ z,y)dv(y
< Zv(E;)e.

Let f(z) = Z;v(E;)ri(z) for all . Then f is a continuous cross-section, and

1€(2) = f(2)]| < v(E)e

for all z € W. Hence by Corollary 3.2.10, £ is continuous.

3.3 Adjoints of representations, p-induced rep-
resentations and intertwining operators

3.3.1 Adjoints of representations

Let 7 be a representation of a group G on a Banach space H(7). In Section 2.3, we
defined the map m* : G — U((H(w))*) by letting 7*(z) = (w(z™"))*, and claimed
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that 7* is a representation of G on the Banach space H(7w*) = (H(7))*, when H(r)
is reflexive.

In order to prove that 7* satisfies the required properties of a representation,
we need to prove that the function A — #*(h)u* for u* € (H(w))* is continuous in
the norm topology. We use the following result in this regard:

Proposition 3.3.1 H(w) is an essential L1(G)-module. If H(x) is reflexive, then
H(w)* is also an essential Li(G)-module.

Proof: Let R be a directed set of symmetric neighborhoods N converging to the
identity of G. Let {en}nex be a bounded approximate identity in L;(G) con-
structed in such a way that [y en(z)dvg(z) =1 and en(z) = 0 for z € N. For a
given u € H(r), we want to show that eyu — u (cf.Proposition 2.4.5 (b)). Now

lewu—ull = || [ n(euen(a)dva(z) - ul

= || [ (r(@)u — wen(@)du(@)]|

For a given € > 0, there exists a neighborhood N, such that ||(7(z)u — u)|| < €
for all € N.. Since [y en(z)dvg(z) = 1, we have ||eyu — u|| < € for all N C N..
Hence H(w) is an essential L;(G)-module.

Now suppose H() is reflexive. We want to show that the closure of L, (G). H(7)*
is the same as H(7)*. But since H(7) is reflexive, this is the same as considering

the weak closure of Li(G). H(7)*. Let v € H(r) and u* € H(r)*. Then

[[{w, (ew™ —u))|| = [[{enw — v, w7,
since the neighborhoods N € XN are symmetric. The right-hand side of the above
equality can be made as small as we wish since H(7) is an essential L;(G)-module.
Hence H(7)* is also an essential L;(G)-module.

a

Proposition 3.3.2 Suppose H(r) is reflexive. Then ©* is a representation of H
on the Banach space H(nr*) = (H(x))*.

Proof: The fact that h — 7*(h)u* for u* € (H(7))* is continuous in the norm
topology is evident from the Remark(1) in Sec.2.4 and the Proposition 3.3.1. To
complete the proof, note that for hy, hy and h in H,

m*(hihe) = m((haha) )" = m(hy Ayt )* = (n(h7"))*(w(h3"))* = 7*(ha)m*(hs)
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and

3.3.2 The p-induced representations of locally compact
groups and L,(7) spaces

Let G be a locally compact group and let H be a closed subgroup of G. Suppose
that 7 is a representation of H on a Banach space H(r). Let p be any quasi-
invariant measure, in the homogeneous space X = G/H of right cosets, which
belongs to a continuous p-function. For 1 < p < o0, let us denote by L,(7, ) the
set of all functions f from G to a Banach Space H(7) such that

(1) (f(z),v) is a Borel function of « for all v € H(r)™;

(2) f satisfies the covariance condition f(hz) = 7, f(z) for all h € H and z € G;
and

() 171> = (Jg I @)IPdu(2))” < oo.

Note that the integrand in the above integral is constant on each right coset
Hz and hence defines a function on X. When functions equal almost everywhere
are identified, L,(, u) becomes a Banach space under the norm defined by (3)(for
which we use the same symbol L,(7, p) ).

The following Lemmas 3.3.3, 3.3.4, 3.3.5, 3.3.6 and Proposition 3.3.7 describe

a few important results regarding functions in L,(7) spaces with compact support.

Lemma 3.3.3 Let f : G — H(w) be a continuous function with compact support.
Then the function 85 : G — H(w) defined by

Gi(r) = /Hﬂ'(h_l)f(hw)dVH(h)
is continuous and satisfies the covariance condition
Os(he) = w(h)8s(x) (3.23)
for all zx € G, h € H. Moreover, ||0¢(.)|| has compact support in X = G/H.
Proof:(cf.Gaal[19], Chapter VI, Sec.2, Lemma 2.) Let py : G — G/H be the

natural map z — Hz. If S is the support of f then pyS is the support of ||0,(.)]|.
Let us prove that 8; is continuous. For 21,2, € G,

[ 0sen) = Os(ea) || < [ w(h)(F(ha) = F(hea) || (),
< [, 1 f(her) = Fhaa) || dvm(h).



Since f is continuous and has compact support it is uniformly continuous. There-
fore, for a given € > 0 there is a symmetric neighborhood N of the identity in G
such that || f(z) — f(y) ||< € whenever zy~' € N. Now we fix ; and a compact
symmetric neighborhood C of z;. Then f(hz) # 0 for some z in C only if h € SC.
Hence if 2o € CN Nz, then

| 65(21) — 05(22) [|< evur (SC),

where vy (SC') denotes the Haar measure of H N SC in H. Thus 6; is continuous
at zq.

Now for any hy € H and z € G,

0;(hiz) = /H 7(h~)f (hhyz)dvi (h).
Changing variables hhy — h,
8;(hiz) = /Hvr(hlh‘l)f(hx)duy(h),
= 7(h1)05(e),
which proves (3.23).

O

Let My(m) be the subspace of those continuous functions 6 : G — H(w)
which satisfy the covariance condition and have compact support in X = G/H (cf.
Sec.2.5).

Lemma 3.3.4 Every function in Myg(x) is of the form 05 for a suitable
f € CU(G> H(ﬂ-))

Proof:(cf.Gaal[19], Chapter VI, Sec.4, Proposition 3.) Let S be the compact sup-
port of ||6(.)|| in X. Choose a continuous function ¢ : X +— [0,1] with compact
support such that ¢(z) =1 for all z € S. Then there exists a continuous function
¥ : G — R with compact support such that

#(a) = [ w(ha)dh,
(see Gaal[19], theorem V.3.7). Now let f = 8. Then f € Co(G, H(r)). For z € G,
0(x) = [ w(h™)F(ha)dva(h),
— fHz/)(h:v)w(h‘l)é(hx)duH(h),

_ /H W (ha)(z)dva(h),
= H(x)d(a).
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But ¢(z) =1 if (z) # 0, Hence 0(z) = 0(z) for all z € G.
O

We state the following well known result without proof, since it is appropriate
to include it in this section.

We use Co1(G,H(7)) to denote the set of those f which are of the form
f = ¢€ where ¢ € Co(G) and £ € H(r).

Lemma 3.3.5 Let f € Co(G,H(r)) and S be the compact support of f. Then
there is a compact set C' which contains the support of f and for each € > 0 there
is a function g = Y, fi, with f; € Co1(G, H(7)), such that C' contains the support
of g and || f— g [le<e.

Proof: See Gaal[19], Chapter VI, Sec.4, Lemma 4.

a

Lemma 3.3.6 If f € Co(G,H(r)) and the symmetric compact set S in G contains
the support of f then

104l < Iflleovmr (H 0 S%)(w(pm 5))? -

'al'-'

(3.24)

Proof: Using the definition of §; given in Lemma 3.3.3, we obtain

105l = Il [ w(h7)f(ha)dvar (B, |
< /an (ha) |dvs (1),
< | fleovun(H 0 S,

Since 6¢(z) = 0 outside the set SH, we only need to consider z of the form z = hs,
with A € H, and s € S. For such z, 0¢(z) = 0;4(s); and S being symmetric, this
implies that

105(@)I| < 1| flleorar (H 0 5%)

for every z € G. Now integrating the above inequality with respect to z, we obtain

104ll, < | flloorar(H 0 %) (u(paS))?,

as required.

a

Proposition 3.3.7 If f € Co(G, H(r)), then the map x — f of G into Co(G, H(r))

is uniformly continuous from the right.
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Proof: Let € > 0 be given. By Lemma 3.3.5, there exists a function g of the form
g =", fi, with fi € Co1(G, H(7)), and a compact set C such that C contains
the support of ¢ and || f — g ||ec< €/3. Next, g being right uniformly continuous
on G there is a symmetric neighborhood N of e such that

lg — z9lleo < €/3,
for all z € N. Now

Nf = 2flloo SN = 9lloo + lg — o9lleo + llog — = flleo <€,
for z € N. Thus if ab~! € N then with £ = ab~! we have

lof —=8fllcc = [If = aflleo < €.

O

For each z,y € G and f € L,(m, 1), let us define a mapping U] on Ly(7, i)
by

(“UTf)(z) == Mz, y)? f(ey), (3.25)

where A(+,y) is the Radon-Nikodym derivative of the measure p, with respect to
the measure p.

Theorem 3.3.8 "U™ is a representation of the group G on the Banach space
LP(W,M).

Proof: For y € G and f € Ly(m, ), we have
10 e = (o 1055 1P duta))
H

= ([ e e P )’

H

= [ /% | £) I du(Z))% =I1 £ ll,

so that “U; is an 1sometry.

Furthermore, for all z,y,t € G,

(surevrim) @

Mz, y)? (“UF () (2y),

= Az,)? May, t)? f(zyt),
= Maz,yt)? f(zyt), by Lemma 2.2.7(a) ,

= (o)
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Also, U7 f is a Borel function of y for each f € Ly(m,u). Thus, y — *UJ
is a homomorphism of the group G into the group U(L,(m, p)) of all isometries of
L,(m, p) onto itself.

Let us show that y +— *UJ(f) is continuous from G to L,(m,p) for each
[ € Ly(m, p). Given € > 0, we can choose a continuous function g € L,(7, u) which
vanishes outside a compact set such that ||f — ¢|| < e.

Now

059 -slh = (I 1Uj0(a) ~ s@)Pauts))

_ (f% 1Mz, )7 g(ay) ‘9($)||pd”(z))p’

B leg

e

= (15 N ¥ote) - 90D + (o) (M)} = N0 ) )

= (g 2 llote) — s@lrante))” + (I @A e = M) ()
by Minkowski’s inequality (Hewitt and Ross[26], p.138).

Since A(z,y) = M(e,zy)/A(e, ) is bounded on compact sets, it is clear that
we can find a neighbourhood N; of e such that

(/g A, y)ll(g(2y) = g(m»npdu(a)% <e/2,

H

for y € N;. Also, since X is continuous, for a fixed z;, there exists a product
neighborhood N(z;,¢e) C (G/H)x G such that if (z,y) € N(2;,e) = N(z;) X Ny (e)

(say) we have

1 1 €
||)\(37,y5—)\$,65 pS .
)P = Mee)F Il = g

Now {N(z;) : =; € G/H} covers the support of g; hence there exists a finite
subcover {N(z;):7=1,...,n}. Let Ny =N, Ny, (e). Then, for y € N, and
z € supp (9g),

X 9)% = AP < i

Therefore, for y € Ny N Ny
”“U;rg —glly Le

Consequently, for y € Ny N Na,

1“Uy f = flls = 1*U5(f —9) = (f —9) + (“"Uyg — 9)lly,
1“Uylle + €+ € < 3e.

IA I
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This proves that lim,_.|[*UJf — f|l, = 0 which implies that the mapping y —
“Ur(f) is continuous from G to Ly(w, u). Therefore the mapping y —* Uy is a
representation “U™ of G.

O

Theorem 3.3.9 Let p and y' be two quasi-invariant measures on X. Then there
exists an isometry W from Ly(w,p) onto Ly(w,p') such that W(*UT) = (» Uy \w

for ally € G. In other words, the two representations *U; and # U; are equivalent.

Proof: The proof follows the same argument as in Mackey[31], Theorem 2.1.

Let pg : G — X be the canonical mapping of G onto X and let ¢ be the
Radon-Nikodym derivative of y with respect to x'. Let W be the mapping

W : Ly(m,p) — Ly(m,p') defined by

W(f) := (¥ o pu)7 f for f € Ly(m,p).

Now

o=

wornt Dl = ([, oalsra)

. ||f(w)l|”du>%~

Also, every g € L,(m, i) is of the form (¢ o p)%f for some f € L,(w,p). Hence W
is an isometry from L,(m, 1) to Ly(r, ). For z,y € G, let ,(z) = ¥(zy). Since

u(B) = u(By) = [ by’ = [ (o)

I

where F is a Borel subset of X, we note that d,uy/du; = t,. Then, for f € L,(7, pn),
z € (G and for a fixed y € G,

(WHUTf)(2) = (W(pu(e))? (“ULf)(=),
= ((pa(2)))? Az, y)7 f(2y), (3.26)
by (3.25). On the other hand,
FUTWH) () = X(2,9)F(W/)(ay),
= X (z,9)F (@ (p(2v)))7 () (zy). (3.27)

In order to have equality in equations (3.26) and (3.27), we must have

(#(p(2))? Mz, y)

I

= )\'(w,y)%(l/)(p(xy)))%, for all € G and a fixed y € G,

3 =
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which is the same as

dp dp,  dp, dp,
—Ftl.ﬂ:i’;’-—pfi, for a fixed y € G.
du' dp  dy dp,
But the lasl equality is certainly true (see Halmos[24], Sec.32); and since y € G
is arbitrary, we have the desired equality for all y € . Thus, * U] and “UJ are
equivalent.

a

The equivalence class of U™ (denoted by /™) is called the representation of
G induced by the representation = of /1. The corresponding Banach space of (equiv-
alence classes) of functions is denoted by L,(7). (The most appropriate notation
for the p-induced representation (induced by =) would be U7; but, for simplicity of
notation we use U™ unless the former is necessary to avoid confusion.)

Throughout our work, we assume that the Banach space ‘H(r) of a representation
7 of a subgroup H of a group (5 stays within the class of spaces satisfying the Radon-
Nikodym property (cf.Sec.2.5).

Assume now that the Banach space H(7) is reflexive so that =* is a repre-
sentation of H. Let us consider the Banach space Ly (#*) and the induced repre-
sentation U;r,* of G. The dual pairing between L,(w) and L, (x*) is given by

(£,9) = [, (f(@), 9(@)u(a), for € Ly(x) and g € Ly(x").

H

The above integral is well defined since, for any h € H and z € G,

(f(ha),g(hx)) = (w(h)f(z),7"(R)g(=)),
= {r(B)f(z), (r(h71)g(=)),
= {/(=),g(x)).

Also, for any y € G,

UTWEUE W) = [ 9)7 Flan), A2, 9)7 gley))du(e)

H

. fg M, y)(f(zy), g(zy))dp(x)
= (f,9),

the last equality of which was obtained by changing variables ¢ — zy. This implies
that

UL () = U™ = (U] (), forall y € G. (3.28)

Next we turn to a result on the space L,(w); we show that L,(r) is an 1;(G)-
module for 1 < p < oo.
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Lemma 3.3.10 Let 1 < p < oo. For g € Ly(w) and f € Li(G), the convolution
g *x f defined by

(9% £)(@) i= [ Onla,y™) g™ S (w)dvey)

belongs to L,(r).

Proof: For g € Ly(r) and f € Ly(G), we have
lo =1l = [ W= @I dun(z),
< [ (L 10w ater ) duna),
= [ (L00ae,y™) gy 17 @)DF W) dvo(y)) du (@)

H

Using Holder’s inequality (Hewitt and Ross[26], p.137),

lox 72 < [ (L0nGs ™oty ™) 1@l I71F) dun(@),

H

— W, 1 Oy aay™) V@) dvot)dun(z),

= 1A [ (] 1 Qrla,y™)3g(ay™) I dun(@)) £ W)ldvo(y),
W (3.29)

< Q.

Il

To complete the proof we note that, for h € H and z € G,

(9 N(ha) = [ Aalha,y™)Fg(bey™)f(v)dvalv),

_ 7r(h)/G)\H(x,y_l)%g(xy_l)f(y)dVG(y)a
= W(h)(g*f)(w)>

which proves that g x f satisfies the covariance condition.

Lemma 3.3.11 Under the convolution * defined in Lemma 3.3.10, we have
gx(hxf)=(gxh)*f
for all g € Ly(7) and h, f € L1(G).
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Proof: For g € L,(x), h, [ € L1(G) and z € G, we have
(g k) * f)()
= [ wey ™) g0 m) ey )W) duew)
- /c;)‘H(fﬂ,y ™) /*H a2 g(ay ™ s () fy)dve (2)dua (y),
= [ [ e e aler™ () fw)dve(2)dvaly).
On the other hand,
(g+(h+ N)@) = [ M,z Vglez™ )(hx f)(2)dva(2),

= [ ] 22 A,y (e~ ) (y)dve(y)dve(z).
Changing variables zy~1— z,
(9% (hx f))e) = / | P glay™ 2 h(=) f(y)dvalz)dva(y),
= ((g*1)+ f)()

for any & € G. Hence the result.

Proposition 3.3.12 L,(7) is an Li(G)-module.

Proof: For any fixed f € Li(G), the map Ty : L,y(7) — L,(7) given by T¢(g) = g* f

is clearly lincar, and is bounded since

ITr ()l = llg = FII < Nallollf ], (3.30)
by (3.29). Also, (3.30) implies that, the bilinear map L1(G)x L,y(7) v+ L,(7) defined

by the convolution is continuous. llence the result is an immediate consequence of
Lemmas 3.3.10 and 3.3.11.

a

Proposition 3.3.13
Homa(Ly(r), Ly(v)) = Inte(U;,U]). (3.31)

Proof: Let 7" be any bounded lincar operator from L,(7) to L,(y) and T* be its
adjoint operator. For any g € Ly(x), f € L1(G) and k € Ly(v*),

T(g= )k = (9= f,T7k),
/G(/C,(A(w ™) g(ay ™) (W) dvo(y), T k(x))dpn (),

_ /f y)/ (Ul(y (@), T* k() dpp (z)dve (y),
N /G FUT(™)g, T*kYdvs(y).
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Hence,

(Tgx k) = [ F@TU;Eg, hdve(y). (3.32)
On the other hand,

(T(o)* fk) = [L(T(o)* 1)z}, k(z))dux (),
= [ Oy N T(6) ey ™)), K@) dure(@)dvely),
/f ) [ AT @), )i ()dvaw)

Therefore,
T+ £,K) = [ SOV, kdvo(y). (3.33)

If T € Homg(Ly(), Ly(7)), we see, by (3.32) and (3.33), that
TU;(y)g = Uj(y)Ty, (3.34)

for almost all y € G. By continuity, (3.34) is true for all y € G. Hence
T € Intg(UJ,UY). Conversely, T' € Intg(U],U]) implies
T € Homg(Ly(7), Le(7)), by (3.32) and (3.33). Hence, (3.31) follows.

Theorem 3.3.14

Intg(Ug, UJ) = (Ly(7) &G Ly (77))"

P?7q

Proof: We will give a direct proof of this result even though it immediately follows
from (2.8) and Proposition 3.3.13 above.

Under the isometric isomorphism (L, (7)®% Ly (7*))* = La(Lp(7), Le(7y)) (see
(2.4), Sec.2.6), an element © € (L,y(7m) ®* Ly (v )) defines an element
Ao € La(Ly, (), Lqy(7)) by

(A@(f),g) = ®(f®g), for f € Lp(ﬂ') and g € Lq’(7*)-

We can consider © as an operator on (L,(m)®&Ly (7)) if and only if it vanishes
on

L = {{Uys)feg—foU])(s)g): seG} (3.35)
That is, if and only if

O(U; (s)f ®9) = O(f @ (U])(s)g),
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for f € L,(n), g € Ly(~*) and for all s € G. This implies that the corresponding
Ae has the property,

(AU ()(£),5) = (Ao(), (U7)"(s)g) for all s € G.
Therefore, we have for all f € L,(7),g € Ly(v*) and s € G,

O € (Ly(m) @ Ly (17)) == (AeU7(s)(f) 9} = ((U])(s)Ae(S), g)
— A@U;(S) =S U;(S)Ae,

as required.

O

Moore’s version of the Frobenius Reciprocity Theorem for the induced rep-
resentation U] is restricted to the situation where the corresponding homogeneous
space possesses a right invariant measure (see Moore[34]). Here, we prove the
result in a more general setting.

Theorem 3.3.15 Let G be a locelly compact group and let K be ¢ closed subgroup
of G. Let v and 7 be representations of K and G, on the separable Banach spaces
H(v) and H(r), respectively. If (7)x denotes the restriction of w to K then,

Intw (v, (M)k) = Intg(U7, ).

Proof: Let B € Initx (7, (7)k). We define a mapping ¢ : Intx (7, (7)k) > Inte(Uy, )
by

B = [ 77 BI(s)dpx(s) for f € Li().

X

It is easy to observe that the integral is well defined since the integrand can be
regarded as a function on the coset space, and #(B) is bounded with norm < || B]|.
Now to show thatl ¢(B) € Inig(U{, ), consider

Tep(B)f = /G W;l_le(S)d,uK(S) for t € 4.
w
Changing variables s — st, we get

fg  BAk (s, ) f (st)dpr(s) = H(B)UT(1)]),

for all f € Li(y), proving thal ¥ (B) € Intg(U{, ).

Now we need to prove thal ¢ is a bijection. Fix a regular Borel section S of
K in G, and observe that G/K ~ 5. Let f € Ly() be continuous with compact
support. By Lemma 3.3.3 there exists a corresponding [unction
g € Li(S,H(v)) with compact support, and by Lemma 3.3.4, every continuous
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function in L;(S,H(vy)) with compact support arises this way. (We view g as a
measure on S.) Then the operator 1(B) is represented as

Y(B)S = [ 77 BS(s)dux(s),

where f € Li(S, px,H(7)) is continuous with compact support. Since the set of
continuous functions with compact support is dense in L1(S, px, H(7)), we have

Y(B)f = [ 7 BI(s)dux(s),

for any f € L1(S, px, H(7)). Suppose that ¢(B) = 0 for some B € Intk(y, (7)k).
Then for v € H(y) and g € Co(S, ix), 9(s).u € Mgk(y) and we have

/Sg(s)(ws_lBu,v)d,u(s) = 0 for all v € H(x)*.

Therefore we have (r;!Bu,v) = 0 almost everywhere on S. Let N be a null set
on which (7! Bu;,v;) = 0 for all ¢, j where {w;} and {v;} are countable dense sets
in H(y) and H(7)* respectively. By continuity of (r;'Bu,v) in u and v we have
that (7;'Bu,v) = 0if s ¢ N for all u and v. Now (r;2,,Bu,v) = (7, 7 Bu,v) =
(r;1Byyu,v) = 0 for k € K and s ¢ N. The complement K.N of K(S — N) is a
Haar null set in G, and therefore (v Bu,v) = 0 almost everywhere in G. Now by
continuity, it is zero everywhere on G. Therefore B = 0 and ¢ is injective.

Let T': Ly(S, H(7y)) — H(x) be a bounded linear operator. For u € H(7y), we
define a linear map 7T, : L1(S, ux ) — H(7) by Tu(g) = T(g.u) where g € L1(S, pk).
Since | Tu(¢)|l = |T|lg-w|| < ||1T||||«||lg||, we see that T, is bounded and its norm
|Tu|l < ||T||l|z||- By Dunford and Schwartz[10] Theorem 10, p.507, there exists an
essentially unique Borel function y,(s) on S to H(w) so that

1u(9) = [ 9()xuls)dpc(s),

with ess sup || xu(8)|| < ||7||||u||- Let A be a countable dense subset of H(r) and a
vector space over the field @(y/—1) of complex numbers of the form a + bi with
a and b rational. We can find a null set N so that each of the countable number
of relations xau(3) + Xou(8) = Xautbu(s) and ||xu(8)|| < ||| T|| for u,v € A and
a,b € Q(v/—1) hold simultaneously for s € N. Then the map u — ., (s) uniquely
extends to a bounded linear map x(s) from H(y) to H(r) with ||K(s)| < ||T|| for
s ¢ N. If we define x(s) = 0 for s € N, x(s)u = xu(s) almost everywhere on S
and for each u, so that

Lu(9) = [ x(e)udux(s)

Since finite sums of the functions of the form g.u for u € H(y) and g € L1(S, px)
form a dense subspace of Lq(S, px, H(y)) we see that for g € L1(S, ux, H(v)),

T(g) = [ x(s)g(s)duxc(s) (3.36)
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where x(s) is essentially unique and ess sup ||x(s)|| < ||T'||.

Let T € Intg(U{,n). We want to show that T' = 1(B) for some

B € Intg(y,(m)k) with ||B|| = ||T||- Let ® be the mapping from the set of
continuous functions with compact support in L;(S, H(y)) to that in L,(y) and
let f = ®g. Clearly, g(s) = f(s) for s € S. Since the set of continuous functions
with compact support is dense in L;(S, H(7)), the mapping T'® can be extended
to an operator from L(S,H(y)) to H(r), and hence has a representation of the
form (3.36). Consequently, there exists a mapping x from S to the set of bounded
linear maps from H(y) to H(w), so that for any continuous function f € L;(y)
with compact support, we have

Tf=Tog) = [ x(s)g(s)dux(s). (3.37)

Now using the Borel isomorphism G ~ K x S, any t € G can be written as
t = k(e,t)l(e,t) where k(e,t) € K and £(e,t) € S. Both k and £ are Borel functions
on S x G. Define a function & on G by «(t) := x({(e,t))y((k(e,t))™"). Using the
fact that f(s) = g(s) for s € S, we can rewrite (3.37) as

Tf = / (8)duxc (2),

and the integral is well defined since for any k; € K and t € G/ K,

r(kat) (ki) = x(€(e,t))v((kik(e, )™ )v(ka) F(2)
X ((es )y ((R(e, 1))y (k™ )y (Ra) £(2)
= w()f(1).
Since the set of continuous functions with compact support is dense in L;(y) we
have

Tf= / (t)dux(t),
for any f € Ly(y). Let us write m(t)x(t) = B(t). Then, for any y € G,
"W = [ ) BOSdux(r).
On the other hand,
TUIB)) = [, 7 OBOM)fE)dus(?),

X

= [y By f(t) (),

X

on changing variables ¢ — ty~!. Consequently, we have B(ty~') = B(t) for almost
all t € G and all y € G. In particular, for some %,

B(toy™) = B(to),
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for all y € G, which implies that B(t) is equal to a constant B for almost all ¢ € G.
Also,

(@) = [ 7 OBF(t)dux(t)

X

_ /g 7Y (kt)Bf (kt)dux (1),

K

/Q 77 (t)(n 7 (k) By(k)) f(t)dpx (1),

K

Il

implying that
7~ (k)By(k) = B for all k € K.

Hence B € Intk(y,(7)k) so that 3 is surjective. Finally,
[¥(B)|| = |IT|| = |C|| > ess sup [|x(s)|| = ess sup [ B(s)|| = | B,

which, together with ||¢(B)| < ||B||, implies that ¢ is an isometry, which estab-
lishes the theorem.

(]
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Chapter 4

Projective tensor products and
A} spaces

The aim ol this chapter is to extend the notion of Af space from its historical con-
text and to recognise such spaces as preduals of spaces of intertwining operators.
Considering the theory already established along these lines, the most closely re-
lated results to our work are those of Rieffel[36] and Figa-Talamanca[l7]. In both
cases, the authors dealt with the intertwining operators of regular representation.
The situation in [17] is even more special in that the group G is assumed to be
Abelian. Here, we seek the relationship belween the two spaces in a more gencral
setting.

Throughout this chapter we shall let G be a second countable locally compact,
group, with closed subgroups H and K. Thus, the corresponding homogeneous
spaces are Hausdorff and second countable, which in turn implics that any Borel
measurc on such spaces is regular. In addition, we will assume thal f/ and K
are regularly related (Sec.2.2, p.9). py and pgx will denote fixed quasi-invariant,
measures on (¢/H and (//K, respectively. We choose a family of quasi-invariant
measures {p., : ¢ € G/H,y € G/K}, where i, is a measure on /(H® N KY),
in such a manner that for a function f defined and integrable on (G/H) x ((/K),
we have

flasw)dun(@)dpxty) = [ Flat,yt)duey (dprac(D),

fc/y G/K D(z,y)eT /terxﬁ}ﬁr

by disintegration of measures discussed in Lemma 3.1.3. For a given i, ,, pr=nkv
and Agengs will denote the corresponding p-function and the A-function respec-
tively. For any z € G, the quasi-invariant measure pg= on G/H” will always
considered to be pys = py o @, where ¢, : G/II* — G/H is the homeomorphism
given by ¢y(u) = zu (see Lemma 3.1.2). By py- we mean the corresponding
p-function of the above pp-.

7 and v will denote representations of H and K on Banach spaces H(7) and
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H(7), respectively.

Section 4.1 discusses the construction of the convolution formula when the
corresponding tensor product spaces are endowed with the greatest cross-norm.
The proofs of the existence and the finiteness of the integral mainly depend on
the properties of M-functions (see Sections 2.2 and 3.1) and the most important
identity (3.9) among such functions:

Ag(zts™, s) Ak (yts™, 8) Amenke(t,s7') = 1.
(See Chapter 3 for details).

In Sec.4.2 we discover the fact that the range space of the convolutions has
a Banach (semi-)bundle structure. Most of the terminology and the results in this
section are dependent on the knowledge of Banach (semi-)bundles as discussed in

Sec.3.2.

The definition of the space Af is given in Sec.4.3 and some of its properties
are then discussed.

We consider the relationship between the A? spaces and the intertwining
operators in Sec.4.4. The main result in this section states that the A spaces are
preduals of the corresponding spaces of intertwining operators if and only if the
intertwining operators can be approximated (in the ultraweak™- operator topology)
by integral operators. Here, also, we see that the simplifications of the formulas
are possible because of the identity (3.9) among A-functions.

4.1 Construction of the convolution formula

Recall (Sec.2.7) that the space AJ in the classical case consists of convolutions of
complex-valued functions of L,(G) and Ly(G). Our aim is to construct A% spaces
using spaces of induced representations, L,(7) and Lg(v*), which are spaces of
vector-valued functions. Therefore, our task is to construct a formula (see 4.15)
for a convolution of functions in L,(7) and Ly (v*). The case where G/H and G/K
are not compact is similar to that in the classical case in the sense that the non-
triviality of the tensor product L,(7)®% Ly(y*) depends on the value of 1/p+1/¢’
as the following theorem shows.

Theorem 4.1.1 Let 1/p+1/¢ < 1,1 < p,¢’ < oco. Suppose that for any given
compact set F in G, there exists x € G such that HFzNHF = () and KFzNKF =
0. Then

Ly(7) @G Ly (v*) = {0}.

Proof:(cf.Hérmander[27]) Note that if H = K and is compact in G, and G/ H is not
compact then there exists @ € G such that HFeNHF = §; for, if HFzNHF # ()
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for all z € G, we find that for each z € G there exist h,h' € H and ¢, € F,
such that hcx = h'c’. That is, x = ¢ 1h~A'c’ for each z € G. But this means that
G = F1HF, and hence compact; which is a contradiction.

Let T € Homg(Ly(r), Ly(v)) and f € L,(r). Suppose that

ITflle < Cllflly (4.1)
where C is a constant. T, being an intertwining operator, gives us
ITf+UTfll, = 1T +UZN)la < CUF+UZ fllp. (4.2)

Let us write f = £y + €5, and T'f = £, + ﬂ; where ¢; and £, have compact support
HD and KD’ in G respectively and ||£2]|, < € and ||4,||, < € for given € > 0. Let
D U D' = F. Under the assumptions of the theorem, there exists * € G such that
HFzNHF =0 and KFzNKF = 0.

Thus, for such z € G,

N+ U, = 2¢|élp

I+ Uzl = 20l (4.4)
Also,

162 + Uglallp < (|2l + |Uz2]l, < 2¢ (4.5)
and

16"+ Uz lp < Nl Nl + 1UZ 6 lp < 2, (4.6)

as UT is an isometry. Therefore,
I+ Uz lle < o+ UZbllp + |16 + Ul
< 25|yl + 2, by (4.3) and (4.5). (4.7)

But £y = f — £, implies that |1, < || fllo + [[€2llp < || fll» + € This, together with
(4.7), gives

17+ Uz Sl < 251l +€)+ 26
< 27| f||, + 3¢, since 1 < p < oco. (4.8)
Similarly,
ITf+U3Tflly = €1+ U2y — €2 + U],
> 24|, — 2¢, by (4.4) and (4.6),
> 2%||Tf||q — 3¢, since 1 < ¢’ < 0. (4.9)
Using (4.2),(4.8) and (4.9) we have

23| Tfll, —3c < C(2%|fl»+3e),
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which, in turn, gives

26T flls < CE#Ifl) + (3 +30)e. (4.10)
Since (4.10) holds for any € > 0,

2Tl < CEFIl),
and therefore,

ITfl, < 257 Clfll (4.11)

But since 1/p + 1/¢' < 1, if we choose C' = ||T||, eqn.(4.11) leads us to a contra-
diction unless C' = 0; in which case T' = 0. Hence the result.

a

We do not know whether Theorem 4.1.1 is true in the absence of the condition
that there exists an element £ € G such that HFzNHF =0 and KFaNKF =

for a given compact set F'in G.

Let us turn to the construction of the convolution formula. The following
proposition states a result that equips us with the necessary ground work.

Proposition 4.1.2 Let 1 < p,¢’ < oo. For 22, fi ® g; in Ly(7) ® Ly (v*) and
for almost all x € G/H and y € G/K,

Zfz ® gi(y) € H(r) @ H(v").

Proof: We want to show that Y22, || fi(z)|||lg:(v)|| < oo for almost all z,y € G. For
any two compact sets I{; € G/H and K, € G/K, and for a fixed n,

Jor s 2 V@M )
= Z Lo @) ldpa () (v),

- Z S W) () [ lgs(w) e (). (4.12)

If p=¢ =1, (4.12) implies that
| S 5@ ) dur (@) dpnc(v)

xK2 ;2

< Y Il
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Taking the limit as n — oo, we get

[ S wdun(z)dur) < 3 il il
1 =1

xK2 ;33

the right hand side of which is finite since Y32, f; ® ¢; € Lp(7) Q% Lyt (7*).

If 1 < p,q¢ < oo, using Holder’s inequality on the right hand side of (4.12),
we get

L 1@t ldpn ()

xK2 ;¢
n

< ([ 1t@Irdunta))

=1

B =
QU=

(ua(K) ([ Nos)I” duxe (@)’

< (pm(K)¥ (ux () lelelpllgzllq

Taking the limit as n — oo in (4.13), we get

i S (@) (o)l duar () e ()

xKz ;=

\I'-‘

< (MH(Kl)) (px(K2)) Z”fz”p”gt“q

=1
The last expression is obviously finite since } 32, fi ® ¢; € Ly(7) % Ly (v*). 1t is
clear that we can achieve the desired result in the case where p =1 and ¢ >1 (or
p>1and ¢’ = 1), by using (4.12) and an argument similar to that which leads to

(4.13). Hence >2, || fi(2)||ll9:(y)]| < oo for almost all z,y € G, which proves the
Proposition.

O

Our objective is to define a mapping on L,(7) ®7 Ly (v*) so that its image
space is a generalisation of the space of convolutions as in the classical case. Let
us consider the integral

| J(at) © g(ut)dva(t) (1.14)

where f € Ly(7),g9 € Ly(v*) and (z,y) € G x G. It is easy to see that the norm of
the integrand is constant on the subgroup H*N K of G| for, if t = 2~ hz = y~lky
for some h € H and k ¢ K, then f(zt) ® g(yt) = 7(h)f(z) ® v*(k)g(y). This
implies that the space over which we integrate must reduce to G/(H* N KY), in
order to avoid the integrand becoming too large. The integrand is constant over a

given coset of G/(H* N KY) if
f(zst) @ g(yst) = f(at) @ g(yt),

57

(ur (K2))7,

(4.13)



forall s € H* N KY. But

flzst) @ g(yst) = n°(s) fzt) @ v*(s)g(y1).

This suggests that the integrand must have its value at (z,y) in the quotient space
of H(x) ®" H(v*), in which we have the equality

() f(xt) ® v (s)g(yt) = f(wt) @ g(y1).

This calls for the following definition.

Definition 4.1.3 FIor any z,y € G, the subspace H,, of H(7) @° H(v*) is defined
to be the closed linear span of elements of the form

()R —£® (y'(D),

where b € H* N KY, £ € H(w) and n € H(y*). The quotient Banach space
H(x) @ H(v*)/Hzy ts denoted by A, .

Note that, using the notation in Sec.2.6 (see (2.7)), A, , can be written as
H(7®) @frznics H(Y™)-

Proposition 4.1.4 The spaces {H,, : ¢,y € G}, and hence the spaces
{A;, : 2,y € G}, satisfy the properly that

st,ys - Hm,y and Axs,ys = -A..-:,y, (415)

for any s € G.

Proof: For s € G, the space Hys s 1s the closed linear span of elements of the form
() ®@n — £ (v (D)™,
where b€ H** N K* £ € H(w) and n € H(vy) with
(b)) = m(zsbs'z™) = x%(shs7H).
Since b € H* N KV, there exist h € II and k € K such that

b=s"1z" hes = s7 'y Tkys. Hence sbs™! = 27 hz = y~'ky, showing that
shs™! € H® N KV. Therefore,

T () @7 — £ @ (v (b)) = 7" (sbsT')E @ — £ @ (v¥(sbs™H))"n,

with shs™' € H* N K¥,§ € H(x) and n € H(y). This implies that Hysys € Hey,



which in turn gives us that Hyy = Hyss—1 yss—1 C Hasys, for all s € G. Hence (4.15)
follows.

O

For u®v € H(7)®, H(7*), we use the notation u®; v to denote the element
of A;, to which u ® v belongs. Then the integral (4.14) must be written in the
form

| o $@) @as g(ut)dins ) (4.16)

for a suitably chosen quasi-invariant measure p;, on the homogeneous space
G/(H® N KY). For each z,y € G, the value of the integral belongs to the quo-
tient Banach space A,,. The next obvious step in this construction is to check
whether the integral is finite and, to this end, we see that a further modification
of the integrand is necessary. Propositions (4.1.5) and (4.1.6) state the conditions
under which this modified integral is well defined and finite, respectively.

Note that if we define a function pg, , on G by pn, , := prsnks/py=, we have

pH,,(82) = pHonKv(52)/pH=(32) = Apsak(s)/An=(s)pn,,, (#),

for s € H* N KY and z € G. Thus pp, ,, restricted to H?, is a p-function for the
homogeneous space H*/(H” N KY). We let pg, , be a quasi-invariant measure as-
sociated with this p-function and Ag, , be the corresponding A-function. Similarly,
we can define a p-function pg, , for the homogeneous space K¥/(H* N KY) and the
corresponding A-function will be denoted by Ag, ,.

Proposition 4.1.5 Let p,q and m be positive real numbers with 1 < p,q¢ < oo.
Then, for Y232, f; ® gi € Ly(7) ®° Ly (v*) and z,y € G,

1
7

to S (e, D i)y i (4 ) i) (417)

=1 )\Hany(C, t)m

is a mapping on the coset space G/(H* N KY) in each of the following cases:

(a) p = m and G/K having invariant measure (or ¢ = m and G/H having
invariant measure);

(b) G/K and G/H both having invariant measures;
() p=q=m
(d) H*/(H®* N KY) and KY/(H® N KY) having inveriant measures.

Proof: First let us consider the expression

1 1
)\H(Sc,t)l’)\[{(y,t)q'

1
AHmnKy(e, t) m

]
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under the cases (a), (b) and (¢).

Consider (a). Assuming p = m and using the identity (3.9), we have,

A (z,t) )lp i
_AHEH Y ey Y
(/\H‘nli'sf(ea "f) . (J )

If the measure on G/ K is invariant, then Ag(y,t) = 1; hence

/\H(T‘ E)P,\]\(J, )HT —Ak (1)' )
/\me'\"n(ea't)

__|._

ik
P=1.

A similar argument holds in the case where ¢’ = m and G/ H possesses an invariant

measure. In the case of (b), Ag(z,t) = Ak (y,t) = 1, and then by identity (3.9),
)\H.rnKy(e, t) = 1, giVing

1 1

Mz, )P A (y,t)7

T
AHany (6, t) m

—xlv.

Clearly, under condition (c),

1
q

)\H(mat) )‘K(ya )

)\Hany (6, t) m

_ (,\H(ﬂf,t))\ff(y’t))% =1,

Ai=nicv(e,t)
using the identity (3.9).
Therefore, under the conditions (a), (b) or (c), (4.17) can be simplified to
t o L2, fi(2t)®ey9:(yt),

which is constant on each coset of H* N KY in (. Hence it is a mapping on the

coset space G/(H” N KY).

For the case (d), it only remains to show that

1 i 1 1
_L)‘H(x,St) )‘K(yast)l - —L)‘ ( ) )‘K(y’ ),7
)\HmnKy(e,St)m )\HmnKy(e,t)m
for s € H* N KY. Letting s = 7 'ha = ytky, for h € H and k € K, we have
1 1

—n(z, st)P)\K(y,st)
AHInKy (6, St)

preak(e) \ m pr(hTt)\ 3 px (kyt)\ &
(PHwnKy(St)) ( pu(z) ) ( px(y) )

AGs HxnKyvlE #AHh H:l:t%A k Ktl,
( (s) »p (())( (gp())( ()P(y))
)
)

Agenky(s) prenky(t) AG(h pu(z) Ag(k) px(y)
s A

Ag(s) \m/Ar(h)\; (Ak(k . L
(AHznf(@)(s)) (AGEh ) ( Ek;) \ gz, t)? Ax(y,t)7 (4.18)
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Since we assume that H?/(H*® N KY) has invariant measure, we have (see Reiter[35]
p-159),

PH.,(8)  Apznku(s)
. (e, s) = PHeaS) —1.
o) = ) T A (o)

Now H and H* are closed conjugate subgroups of G under an inner automorphism
7 : G+ G given by 7(y) = 27 yz. Since 7 is a topological isomorphism of H onto

H® we have Ay = Age7. This implies that Ag=(h*) = Ag(h). Hence we have
Au(h)  _ _Ax(k)
Agenks(s) Apgenky(s)

for s € H* N KY with s = 7 hz = y~'ky. Consequently,

=1, (4.19)

( Ag(s) )#(AH(h))%(AK(’C))i = Ag(s) )71;—%-3
AHany (S) AG(h) AG(’C) AHmnKy(S)
Considering the identity (3.13) and using the fact that H*/(H* N K¥) and KY/(H”* N KY)

possess invariant measures, we have
Ac(8)Agznks(s)

Ar(h)Ak(k)

Ac(8)Apanks(s)

AHz(S)AKy(S) ’
Ag(s)
Ags(s)’

Ag(s)
Agengy(s)’
where the last two equalities are obtained by using (4.19). By (4.20) and (4.21)
we obtain

(4.20)

1

(4.21)

1
7

Ac(s) ym(Bu(k)\; Ax(k)\g _
G Ga®) (Gem)” =t
Thus, (4.18) simplifies to

1
7

1 ) 1
Ar(z, st)r Ak (y, st)q _ M (z,8)P Ak (y,t)7
)\H.’L‘nKy(e, St)m )‘HEnKy(e, t)H

for s € H* N KY and therefore, the integral (4.17) is well defined in case (d) as
well, completing the proof of the Proposition.

, (4.22)

]

Recall, from the discussion preceding Lemma 3.1.3, that T denotes the set
of all double cosets H x K : A of G x G. For z,y € G, let

(75) | (20 _
MY :/ e Ao, (e@)dpm, (o) and Nojy :/ o AKay (€ E)dpk,, (£).
HEAKY T AKY
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Proposition 4.1.6 For >, fi ® ¢; € L,(7) @ Ly(y*) the integral

- 1 1 El

[ S e 0 A0 e DT () (123)
HEARY i=1 Agenkv(e, 1)

is finite for almost all D(z,y) € T in each of the following cases:

(a) p =1 and G/K having finite invariant measure (or ¢ = 1 and G/H having
fintte invariant measure);

(b) G/K and G/H both having finite invariant measures;
() p=¢ =1

(d) 1 < p,¢ < oo withl/p+1/¢ > 1 and, H*/(H* N KY) and KY/(H® N K?)
being compact for almost all v,y € G with (z,y) — Mgy Ny, being a bounded
function from YT to R.

Proof: First let us consider the cases (a), (b) and (c). Using the disintegration of
measures as in Lemma 2.2.12 in the spaces involved, we get

3 e foo Dot a0 (D)

HXNKY

- fl S V@) ostw)) () ),
- iufinluginl.

Now if

(a) p =1 and G/K has finite invariant measure (or ¢’ = 1 and G/H has finite
invariant measure),

(b) G/K and G/H both have finite invariant measure, or
(C) p=¢=1,

we know that

> Ul < 3 il

Since 32, fi ® ¢i € Ly(7) ®% Ly (1*), we see that 52, || fll»llg]lg < co. Hence we
have the desired result.

Now let us consider the case (d) where H*/(H® N K¥) and KY/(H® N KY)
are compact for almost all z,y € G, together with 1/p+1/q’ > 1. In the remainder
of the proof, Agznxs(-,-) will be written as A(+,+), for simplicity of notation. First,
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let us consider the expression )\H(x,t)%)\x(y,t)i/)\(e,t). Using the identity (3.9)

we see that
(o, )P Ak (1,07 (@, )7 Ak (y,1)7
)‘(e’t) )‘H(xat))‘ (yat) ’

Q=

_ ()\K(ya )>_’<)\H($,t)>%. (4.24)

Let 1/p+1/¢ —1 =1/r. Then 1/p' =1 -1/p =1/¢ —1/r = 1/¢'(1 — ¢'/7).
Similarly, 1/¢ = 1/p(1 — p/r). Therefore,

An(z, )7 e (3, 1)7 _ (’\K('/a ))L’(l gri)(/\fi(.’l:,i))%(l_g)
e, 1) N A, t) Me, t) '

Hence we have

(4.25)

A, )7 A (y, )7
o) = [, LD ety oot (0

HENK

1-2

= [ M Plow0r? ) () i)
((A;{(iy;)))%ll i(yt)ll)l_%’dﬂx,y(t). (4.26)

Using Corollary 12.5 of Hewitt and Ross[26], the above can be simplified to obtain

1

(o,0) < ([ 1@l )7 duas (1)) x

A (z,1) » T AR, 2=t
( )\(e,t) ||fz($t)|| d#x,y(t)) ( ){((e,t) ||gz(yt)|| dyw1y(t)> (4_27)

where the three integrals are over the coset space G/H* N KY. Let us consider

J e (A(e yAu(z,t) || fi(zt) |7 )d,u(ﬁ v (t). By Lemma 3.1.1, there exists a quasi-
invariant measure pup, , on H”/(H® N K¥) such that

[, o Ve 1P e

HTnK

AMa,t) Ag(z,at) ,
= [ | e (oS faat) P Ydn, (@) dun(0)

HTNKY

For o« = x71hx with h € H,
Au(z,at) = Ag(hz,t)Ap(z,q),
= Apg(z,t) u(z,a),
= Ag=(e,t)Ag(z,a), by Lemma (3.1.2),
= Ap=(a,t)Am(z,a).
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This, together with the fact that A(e, at) = A(e, t)A(e, @), gives us

Ma,t) Ag(z,at) _ A (z, @) _ Am=(e, @)
Aa=(a,t) Ae,at) Ae, @) Me,a)

But
Ae, @)
Ag=(e, o)
AH,, being a A-function for H*/(H® N KY) corresponding to the measure ug, .

Using the assumption that H*/(H® N K¥) is compact and the fact that g, (e, @)
is bounded on compact sets (see Lemma 2.2.7 (c)), we have

A, , (€,0), (4.28)

(/_)
/Hz A, (e, 0)dpg, (o) = Mgy™
HZNKY

Thus

[, (e IP)ducent

HTNK

(75)
< MG [ lfat) Py (2

HT

(?qi—l) P —1)
= M5 [ I@IPdpn(t) = M3
H

1115 (4.29)

(see the discussion about ppg- at the beginning of this Chapter). Similarly, if
KY/(H® N K¥) is compact,

[ G a1 )duew®) < ME I, w30

The inequalities (4.27), (4.29) and (4.30) imply that

Kew) < ([, IREOPIsGOI dues(®) %
HINKY
"(21)

1
Moy | FIPC7 ) Nyl ? (4.31)

Note that

L
Py

(/D(x,y)c.T(/ g iAH(f;,ﬁl:’{jﬂ’)) 1At lgs(yt)) o >)’duH,K<D>)

irzh'y i=1

- (LG, T ) (D))

Sl Arenk(e,t)

(oo}

- (/D(z,y)er (ZI(:B Y ) d:U'H,K(D))%,
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Using generalised Minkowski’s inequality (see Dunford and Schwartz[10], p.529)
we see that

(/D T(ZI z y)) duHK(D))* < g(/m(z( )) dyHK(D)>(%4 32)

Let ess supp(s,y){(Me,yNoy)"} = S7. Then, by (4.31) and (4.32) we have

(/D(m,y)er<zl x y> d'uH.K(D)>%

- 0 'q’_Tl rq' (B2
< Z(“fi“ P gl )
i=1
JrmperMestes ([ ||fi($t)||”||9i(yt)||""dﬂx,y(t))dMH,K(D)>,
D(zy)€Y HTARY
< (. ,.p(y’q#) rg'(251)
< Z(s AT gl
i=1
L1, ||fi($)||p||gi(y)||q’dMH(fC)duK(y)) (4.33)
r ptr P( ¢'+rg’ (221) .
= S (s a7 st
=1

where (4.33) is obtained using disintegration of measures (see proof of Lemma
3.1.3). Since p/r +p(¢' - 1)/¢' = p(1/r +1-1/¢') = p(1/p) = 1, and similarly
q¢/r+¢(p—1)/p =1, we obtain

(e (5 1) dic(2))” <55 Ul (435
This proves the finiteness of the integral (4.23) for almost all D(z,y) € T under
condition (d) together with 1/p +1/¢" > 1.

Now let us consider the case (d) together with 1/p+1/¢' = 1.
Using Hélder’s inequality, we get

[ S v N P WS FHCO PR
> A (e, f)% . g
S ; (/Hznl(y ( A(e )1 || fZ( t ” ) d'ux,y(t)> *

i 1
7 I

/. (RS w1 i)
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9=

= (/oD e 1P Ydne®))

(/—Gy (A;{(iyt? | :(wt) I )iy (t))

i
2

By (4.29) and (4.30) we have

[ a2 tx)f:,@(y’ 1 10t 1 9:60) | disoy®

Hany 1_1

< MyyNgy Z ”fi“p”gi”P"

1==1

Again, since 372 f;i®g; € LP(W)@)(&LQ'( ) we see that 372, ”f“p”g“q < 0.

Hence the result follows.
|

In view of Propositions 4.1.5 and 4.1.6, we can formally define the convolution

of functions in Ly(m) and Ly (v*).

Definition 4.1.7 Let H and K be regularly related. For each x,y € G let pig, be a
quasi-invariant measure on the homogeneous space G/(H® N KY) so that the iden-
tity (3.9) holds. Let p,q be positive real numbers. The map U on Ly(7)®,Lqg(7*)
is defined by

(\I}(Eiﬁlfl ® gi))(w,y) = (436)
o0 1 1 L’ r
/HL S (e ) F O (@) @e A (4, )7 9 (1) Ao (1)

whenever one of the following conditions holds:

(a) p=1 and G/K has finite invariant measure (or ¢ =1 and G/H has finite
invariant measure);

(b) G/K and G/H both have finite invariant measures;
() p=¢=1
(d) 1 < p,¢ < o0 with 1/p+1/¢ =21, H°/(H* N KY) and KY/(H* N KY) are

compact and possess invariant measures for almost all x,y € G and the map

(z,y) — Mgz yNy, ts bounded from Y to R.

It is clear that for each (z,y) € G x G, the value of (V(X2, f; ® ¢:))(z,y)
belongs to the quotient space A,,. We investigate the properties of the image
space of U in the following section.

66



4.2 The structure of the image space of ¥

The image space of ¥ is contained in a space of mappings acting on G' X GG, whose
values at (z,y) € G X G belong to a collection of Banach spaces

{A;y : (z,y) € G x G}. This suggests that the image space has the structure of
the space of cross-sections of a Banach bundle or a Banach semi-bundle where
the bundle space is a union of quotient spaces of a given Banach space. We
considered the generaliscd version of such a situation in Sec.3.2 and shall adopt
similar notations for the Banach bundles in this special case.

Let

Bo = H(r)®° H(v") x G x G,

B = H(x)2° H(Y") x (G x G)/A,
Bl S U(a:,y)EGxG{HI,y X {(‘E!y)}}a

BIA . U(ﬂf,y)EGXG{HI.y x {(way)A}}:

B, = U(x,y)EGxG{-Ar,y x {(z,y)}}, and

BzA . U(a:.y)GGxG{Ar,y X {(lay)A}}

It is clear that By is a subspace of By, and B2 is a subspace of Bg.

With ;j denoting any one of {0,1,2}, let §; : B; — G x G be defined by
8;(¢,(z,y)) = (z,y), and let 6 : BS — (G x G)/A be defined by 82(¢, (z,y)A) =
(z,y)A, where ( belongs to the corresponding Banach space. Let ¢ : By — B; be
the quotfient map given by ¢(h,z) = ({Hs + A}, x). Similarly, the quotient map
ga : B8 — B2 is given by qa(h,r(z)) = ({Hz + h},r(z)). Bo has the product
topology, and we topologize B2 so that the map pa is continuous and open.

Define B; := (B;,0;) and B := (B2,0%), for j € {0,1,2}.

3?72

Obviously, B, and 53 are trivial bundles with constant fiber
H(m) @ H(~*). The space (G x G)/A is Hausdorfl since A is a closed subgroup
of G x G.

It is clear that this is a particular case of the general structure of the Banach
(semi-)bundles discussed in Sec.3.2 (p.32). The results in Sec.2.3 lead us to the
following conclusion.

Proposition 4.2.1

(i) BS and By are Banach bundles over (G x G)/A und G x G respectively.

(ii) BS and B, are Banach semi-bundles over (G x G)/A and G x G respectively.
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Proof: (i) is clearly true since ﬁé and B, are trivial bundles (see the discussion
preceeding Lemma 3.2.3). (ii) is just a special case of Lemma 3.2.6.

O

It is possible for B2 to become a semi-subbundle of B, when the subgroups
H and K are related in a manner described in the following definition.

Definition 4.2.2 The closed subgroups H and K of G are said to be smoothly
related if, for a given (zo,y0) € G X G, an element by € H*™ N K* and € > 0, there
exists a neighborhood N of (zo,y0) and a continuous map ¢ : N — G such that
c(z,y) € H* N KY and the distance d(c(zo,yo), bo) < €.

We turn to some examples.

(1) Let G be an Abelian group. Then for any (z,y) € GXG, H*NKY = HNK.
Therefore, for any by € H® N K%, we can choose a neighborhood N of (zo,yo)
and a map c : N — G such that ¢(z,y) = by, which satisfies the conditions given
in the definition.

(2) Let H be a normal subgroup of G. Then H* N KY = (H N K)?, for
any (z,y) € G x G. If by € (HN K)%, then b € HN K, and therefore,
b ¥ € (HN K)Y = H* N KY, for any (z,y) € G x G. For any neighborhood

N of (zo,y0) define ¢ : N — G such that c¢(z,y) = b Y. This has the required
properties given in the definition.

(3) Let us give an example of a case where the above condition does not hold.
Let H be a closed subgroup of a group GG which has the property that H*NH =e
unless z € H (see example (1) of Chapter 6). Choose (zo,y0) = (e, €) and let by be
any element of H other than the identity e. Suppose there exists a neighborhood
N of (e,e) and a continuous map ¢ : N — G such that ¢(z,y) € H*N H = e and
d(c(zo,Yo), bo) < €. The continuity of ¢ implies ¢(z,y) = e for all (z,y) € N. Then
by triangle inequality,

d(c(‘ra y)u bO) < d(c(wa y)) c(x07 yo)) + d(c($07 yo)’ bO) <€

This means d(c(z,y), bo) = d(e, bo) < €, which contradicts the fact that by # e.

Proposition 4.2.3 If H and K are smoothly related then EIA is a semi-subbundle
of BS.

Proof: Clearly, B2 is a subset of B and 65 ((z,y)A) N B2 = Hy,y x {(z,y)A},
is a subspace of H(7) ®, H(v*) X {(z,y)A}. Given (z0,y0) € G X G, let ¥ €
Hzo,y- The Proposition is proved if we can show that for a given € > 0 there

exists a neighborhood N of (zo,%0) and a continuous cross-section a of B§ and
|a(zo, y0) — || < € (see Definition 2.3.6 (b)).
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Now 9 € Hgy,,y, can be approximated in norm by elements of the form
Y (@ (Bi)é @ mi — & ® (v (b)) i),

=1

where b; € H* N K* ¢ € H(r) and n; € H(v*). Without loss of generality, we
can assume that

¥ = 77(bo) ®@n — € (v*°(bo))™n,

with bp € H® N K*. Let € > 0 be given. Since kb — w(h)(u) and k& — v(k)(v)
are continuous from H to H(r) and K to H(y) for any v € H(r) and v € H(v)
respectively, there exist positive numbers §; and é; such that

whenever d(h, ho) < 61 and d(k, ko) < ;. Let § = min(éy, 62).

Since H and K are smoothly related, there exists a neighborhood N of (zo, yo)
and a continuous function ¢ from N to G such that ¢(z,y) € H®* N KY and the
distance

d(c(z0,Y0), bo) < 6.
Define a mapping o : N — B5 by

a(z,y) = 7 (c(2,y))E®@n—EQ (v¥(c(z,y))) . (4.37)

Obviously, a(z,y) € Hy,. Since we have ¢ continuous, ¢ — ztz~! continuous for
any t € G and h — 7w(h)(u) continuous for any u € H(r), we see that

(z,y) — 7(c(z,y))¢ is continuous. Similarly, (z,y) — ~¥(c(z,y))n is continuous
so that «, as defined by (4.37), is continuous. Now

le(zo, 30) — |
= [|(7® (c(zo, y0))€ ® 1 — € ® (% (c(x0,v0)))*n) —
(7™ (bo)€ @ 1 — € ® (v (b)) I,
= || (7*(c(w0, y0))& — 7 (Bo)€) ® 1 — £ ® (" (c(wo, y0))n — ¥ (bo)n)
< (77 (w0, 90))& — 7™ (Bo)é) Il + IEN (v*° (c(0, w0) )1 — 4 (o)) I

But since

d(zoc(zo, yo)zg ', zobozyt) = d(c(zo, Yo), bo) = d(yoc(zo, ¥o)ys s Yoboys ') < 6,

we have

(7 (clz0, )6 =7 (B0)€) | < 57— and || (v**(elo, yo) I — % ()] | <

I
20l 2/léll”
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Hence
|a((z0,30)) — V|| < e.

B

The next important result required for the study of the space of cross-sections
of these Banach (semi-)bundles was dealt with, under a more general situation, in
Proposition 3.2.7. We shall state the result in this special case.

Proposition 4.2.4 Let pa be the canonical mapping from G x G to (G x G)/A.
The Banach bundle retraction

# #
B* .= (BA*,00%)

of B5 by p is topologically equivalent to B,.

Proof: This is a consequence of Proposition 3.2.7.

4.3 The space A]

First we shall show that the image space of ¥ consists of mappings which are
constant on the right cosets (G x G)/A under the conditions (a), (b) and (c) of
Definition 4.1.7.

Proposition 4.3.1 Let a be an element of the image space of ¥. For any
ho € H ko € K, z,y € G and s € G/(H" N KY)

ol hozs, kuys) = (ko) ® 7 (o)ax(z,1)
under the conditions (a), (b) and (c) of Definition 4.1.7.

Proof: By Proposition 4.1.4 we have
Hasys = Hayy

for all z,y,s € G.

Now any element w ®;, o of Az, is of the form

w@z,yngx,y+w®Q
= {="(0)¢en—£& (1" (b)), be H"NK*,{ € H(r),n € H(7)}) +w @ o

If this element is translated by 7(ho) ® v*(ko) from the left, we get
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T(ho) ® 7*(ko)(w ®z,y 0)
= ({7 (ho)m(5)E@7"(ko)n—m(ho)E@7" (ko) (v*(b))"n; b € H*NKY})+7(ho)w®7"(ko)o-
But

m(ho)m*(b)€ = m"0% (b)m(ho)€ and 7 (ko) (v(b))*n = (v"¥(8))*v* (ko)

hence

7 (ho) ® ¥*(ko)(w s,y 0)
= ({r"*(b)m(ho)¢ ® 7*(ko)n — w(ho)€ @ (¥*°¥(8))"y*(ko)m; b€ H™* N K*¥})
+7 (ho)w ® v (ko) e,
Hhoakoy + 7 (ho)w ® ¥"(ko)o,
= 7(ho)w @hoz,koy 7" (ko)e- (4.38)

Any o in the image space of ¥ can be expressed as ¥(3 -2, f; ® ¢;). Without
loss of generality, we consider an element of the form ¥(f®g); the argument is then
valid for any « by linearity. Consider the homeomorphism ¢, : G/(H* N KY) —
G/(H® N KY)*® given by ¢4(v) = s7'v, (as in Lemma 3.1.2) and use the fact that

Pzsys = Hay O s to get
(T(f ® g))(hozs, koys)
1 1 1
= / )AH(xsat)pf(wSt)®xs,ys/\K(y3,t) qlg(ySt)d,"L(ws,ys)(t)

stﬁj(ys A(H.any)s(e, t

Aienky (€, s) )\H(CC,St) 1
P t ®$S S
/ﬁm Ag=nrv(e,st)’ Ag(z,s) )P f(25t)Rzsy

Ayt
)‘K(yv 5)
= [ (G ) )G (G ) o) 1)
AH"'\K”(67 3)

B Ma(z, s)%)‘K(y, S);lr (m(ho) @ 7" (ko)X (f @ 9))(z, ).

Hence we see that

)?g(ySt)d/‘(xs,yS) (t)7

a(hozs, koys) = m(ho) ® v*(ko)a(z,y)
only if
)\Han.u(e, S)
)\H(x’ S);)‘K(y, S)?

for all s € G/(H® N KY). It is clear that this last condition is true in the cases (a),
(b) and (c) given in Definition 4.1.7.

=1

a

71



Lemma 4.3.2 Consider the conditions (a), (b), (¢) and (d) of Definition 4.1.7.
For Y22, fi ® ¢i € Ly(7) ® Ly(7y), the element U(322, fi ® gi) is a cross-section
of BS, if the integral (4.36) is constructed under one of the conditions (a), (b) or
(c). It is a cross-section of By if it is constructed under the condition (d).

Proof: This is an immediate consequence of Proposition 4.3.1.

O

Definition 4.3.3 The space Af is defined to be the range of ¥ with the quotient
norm.

In other words, Af is contained in the space of cross-sections of the Banach

semi-bundle B2 in the cases (a), (b) and (c) of Definition 4.1.7. In the case (d), it
is contained in the space of cross-sections of the Banach semi-bundle B,.

By a continuous family of functions we mean a family of functions {8, : ¢ € G}
such that (z,t) — B;(t) is a continuous map from G x G to R.

Proposition 4.3.4 Suppose that the spaces G/H,G/K and the numbers p,q sat-
isfy one of the conditions (a), (b), (c) or (d) as described in Definition 4.1.7.
Suppose further that there exists a continuous family {B., : (z,y) € G x G} of
functions where By, is a Bruhat function for H* N KY. Let f and g be functions
with compact support from Ly(7) and Ly (y*) respectively. Then,

1 1 1
(z,y) — /ngK WAH(w,t)Pf(fvt) ®z,y Ak (2, )7 g(yt)dpcz, y)(t)
(4.39)

is @ continuous cross-section of the corresponding Banach semi-bundle.

Proof: For any z € G and f € L,(7), the function . f defined by

f(t) = f(at)

is a function in L,(7®) since

f(h°t) = f(za™ hat) = w(h)f(1).
Similarly, a function g € Ly (vy*) gives rise to a function 4¢ in Lg(v*).

Now suppose f and g are continuous with compact support. Then there exist
compact sets Gy and Gy of G such that H*G; and KYG, are the supports of ,f
and ,g respectively.

Recall (Lemma 2.2.6) that a Bruhat function f,, for H* N KV is a function on G
satisfying the following conditions:
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(i) if F is a compact set in G, then f;, coincides on the strip (H* N KY)F with a
function in Cf (G), and,

(1) [yenmy Bey(st)dvhenky(s) =1 for all t € G.

Suppose that the integral in (4.39) is constructed under one of the conditions (a),
(b), (c) or (d) of Definition 4.1.7. Consider the map

(©,9,2) > By (D Aa(z, )7 () ® Aic(y,8)7 g(yt)

from (G x G X G) to Bp. This is a cross-section of the Banach bundle retraction
of Byby p: G x Gx G+ G xG. It is a continuous cross-section since, under the
assumptions, {B:y : (z,y) € G X G} is a continuous family of Bruhat functions.
Therefore, we can form the integral

Fe,9) 1= [ Bosl®)ha(2,t)7 £(at) ® Mc(y, OF glyt)dva(t)

(see the discussion on page 36) and by Lemma 3.2.11, we see that T is a continuous
cross-section of By.
Considering the diagram

Bo+ B,
1 7z,
GxG
where q(¢,2) = ({Hs + €}, ), we find that

Dey) i= [ Boa®Ma(e,1)% £(2t) @y My, OF g(ut)dui(t)

is a continuous cross-section of B,. Note that the Theorem 2.2.9 (a) implies that
we can assume pgsniu(e) = 1, for all z,y € G. Using Corollary 2.2.11, we get

1 1
I(z,y) = /L /Hmm ﬂm.y(st)m/\H(m,St)”f(fcst) By

HTNKY
A (9, 5)7 g(yst)dvir(s)dpiay (). (4.40)
But under the conditions (a), (b), (c) or (d) in Definition 4.1.7, (4.22) implies that,
for s € H* N KV,
(e, st)P Ak (y,s)7  Am(e, )P Aec(y, 1)
Mpe=nky (e, st) - Msnku(e,t)
Therefore the integral (4.40) can be simplified to give

=

L=

MNz,y) = H(:v,t)%f(xt) Ry A (z,1)9

1
P t) X
/L Ag=niv(e,t) 9(v?)

HTNKY

(/Hmm ﬁw,y(St)dVHwnKy(s)) dpig (1),

- / <} . )\H(m,t)%f(a:t) ®z,y )‘K(%t):’l—'g(yt)d”’%y(t)'

HTAKT )\HmnK!l(e, t)
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Hence the mapping given by (4.39) is continuous in the Banach semi-bundle B,. In
the case of (a), (b) or (¢) in Definition 4.1.7, we can consider the mapping (4.39) as
a cross-section of the Banach semi-bundle retraction §2A# of B5 by the cannonical
mapping p : G X G — (G x G)/A. By Proposition 3.2.8, this cross-section gives
rise to the continuous cross-section in §2A given by (4.39), as required. In the case
(d), the mapping given by (4.39) is continuous in the Banach semi-bundle B,, as
required.

O

Proposition 4.3.5

(1) If A3 is constructed under the conditions (a), (b) or (c) of Definition 4.1.7,
then A3 C L\(BS;umx). In particular, if G/H and G/K possess finite
invariant measure and 1/p+1/q' > 1, then AL C L,(QZA; LK) where
1/r=1/p+1/¢ —1.

(2) If AY is constructed under the condition (d) and if 1/p+1/¢' > 1, then
A C L,(BS; umx) where 1/r =1/p+1/q¢' — 1.

(3) If A% is constructed under the condition (d) and if 1/p+1/¢' =1, then
A2 C Loo(Ba; prrx)-

Proof: (1) Consider the space AZ under any of the conditions (a) to (c) given in
Definition 4.1.7. According to the calculations in Proposition 4.1.6, we see that

/Du,y)ep (S fi © ¢:) (2, 9) (2, y) < 3 1 Fillollgiller

i=1 =1
for any 322, fi ® ¢: € Lp(m) ® Ly (), showing that A? C Li(BS; pu k).

If G/H and G/K have finite invariant measure gy and px respectively, we
see that pg- and pkv are finite invariant measures on G/H® and G/ KY for z,y € G.
Hence Ag=(z,t) =1 = Agy(w,t) for z € G/H®, w € G/KY and t € G. Using the
identity (3.9), we see that Agsnkxy = 1, for almost all (z,y) € (G x G)/(H x K).
Therefore, for f € L,(),

o WeOPdnny(®) = [ [ . 2Ry gy, (cdun(0)

HZNKY HeNK )‘H’(a’t)
where pg, , is the measure on the coset space H®/(H® N KY) as defined in Lemma
3.1.1 which is finite and invariant (see also the proof of Proposition 4.1.6). Sim-
plifying,
[ o WPy = [, [ . If@)IPdun., (@)dun=(2
TENRY wr J mEaRe

HINK HEINK

= [ Ifet) P dun=(t)

T

H
ILF15-

Il

T4



Similarly,

/ o Nt dpey(t) = llgll%,

HTNKY

for g € Ly. Therefore, using Corollary 12.5 of Hewitt and Ross [26] we obtain

[ o 1O lo(t)ldnay ()

= /mgw_<Ilf<wt>||’”||g(yt>nq’>% SO gt diey (1),

< (], WPl d®) (| 1P, (0) * x
(/. oty (0) ™

= ([ o llf(wt)llpllg(yt)Ilq'd#x,y(t)>%llfllﬁ(I gl 7,

which is similar to the right hand side of (4.31) (Proposition 4.1.6). Note that
L

(/D( ”\I} Zﬁ ® i)( >y)||rdﬂH,K(.’E,y))

< (rmer U 25 1000 500 0) dins())
: (/D(w'y)ﬂ (Z /Hx—nxy fi(zt)llllg: () lldpse,o (2 )>rd,UH,K(D)>%

Using the same notation as in (4.31), by generalised Minkowski’s inequality (see
Dunford and Schwartz[10] p.529) we obtain

=

</D(m’y)€T ”‘I’(i fi @ )z, )| dpa (2, y))

1=1

- Z (/D(r,y)e‘r y))"duH,K(D))

Hence using the same calculations which follow inequality (4.32), we achieve the
required result

1

T

I fi @ gl < D0 W fillollgallor-
=1 1=1

(2) This is evident from (4.35) (Proposition 4.1.6).

(3). Suppose that H*/(H* N KY) and KY/(H® N KY) are compact for almost all
(z,y) € G x G, and p = ¢. Consider the supremum norm on B(B). For any
X321 fi ® i € Ly(7) © Ly (7"),
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[U(C21 fi ® 9i)lleo =

1
ess sup(yeanctl 2 J_a ) phu (e, O fi(et) @ny My, 17 gi(yt)ditag ()]}

HTNKY

Now, following the argument in Proposition 4.1.6, we see that
[T fi ® gi)lloo < ess fup){Mx,ny,yZ I£illollgillor} < Sl fillolgillers
=1 Ty i=1 i=1

where S = ess sup(,,) Mz yNs,y is a constant, as required.

4.4 Induced representations and Integral Inter-
twining Operators

In this section we shall investigate the possibility of generalising Rieffel’s result
(see Rieffel[36] Theorem 5.5) on classical A? spaces which asserts that such a space
is the predual of the space of intertwining operators if and only if those operators
can be approximated, in the ultraweak*-operator topology, by integral operators.
To begin, we shall give the definition of an integral operator from L,(7) to L,(y),
and discuss some of its properties.

Definition 4.4.1 Let T' be a bounded linear operator from L,(m) into L,(y). T is

called an integral operator if there exists a pg X px measurable function ®, called the
kernel of T', from G/H x G/K to L(H(x),H(7)) such that for a given f € L,(r),

(1) the function z — ®(y,z)f(z) is integrable for almost all y € G/ K,
(2) y = Jg ®(y,z)f(x)dpn(z) belongs to Ly(y) and

3) (THly) = f% O(y,z)f(z)dpu(z), for almost all y € G/ K.

The next result describes the properties of the kernel of an intertwining
integral operator. The existence of such operators will be discussed in Proposition
4.4.3 and in Section 4.4.1.

Proposition 4.4.2 Let © be the kernel of a given integral intertwining operator
for induced representations Uy and U]. Then @ satisfies the following properties.

(1) For almost allz € G/H, y € G/K and for all s € G,
)\H(:c,s_l)l%q)(y,:cs_l) = )\K(y,s)%q)(ys,x). (4.41)
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(2) For dllh€ H, k € K, and for almost all x € G/H, y € G/K,
O(ky, ha)m, = P(y,x). (4.42)

(83) Under the conditions given in Definition 4.1.7, ®(y, ) is an intertwining op-
erator of the representations m* and ~¥ of the subgroup H®* N KY of G for
almost all z € G/H and y € G/ K.

Proof : (1) Suppose that T' is an integral operator from L,(7) to Le(y) with the
kernel ®. Then for f € Ly(7) and y € G,

(TH(w) = [, 8(y,2)f(@)dpn(x).

H

In addition, if T € Homg(Ly(7), Ly(7y)) then
(TUT f)(y) = (UJT f)(y) for almost all y € G/K and for s € G.

Now

TN = [, 0y, 2) U7 f)dun(z),

H

= [, oy, 2 ule,5)" f(25)dun ().

H

Changing variables zs — z, we find

U H)w) = [, @ 25 Male,s™a(es™, )5 F(e)dpn ().

H

Since, by Lemma 2.2.7(a), Ag(z,s ") Ag(zs™,s) = 1, the above integral simplifies
to

(TUING) = [, ®(,es™)al(z,s™)7 f(2)dun (). (4.43)

mlm\

On the other hand,

(UITHy) = Ixl(y,s)
= Ak(y,s)

(T f)(ys),
[ @ys, ) f(@)dpn(z). (4.44)

H

Therefore, by (4.43) and (4.44), property (1) follows.
(2) For k € K and y € G,
W)= (THky) = [, ky,)f(2)dun(2),

H

= [ @(ky, ha)mf(2)dun(a), (4.45)

= Al

=
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for h € H. On the other hand,

WIHW) = % [, Oy, 2)f(@)dpn (). (4.46)

H

It is clear that property (2) follows from (4.45) and (4.46).
(3) We want to show that

VWO(y,z) = @(y,z)my, (4.47)

for all b € H*NKY and for almost all 2 € G/H and y € G/K. For any b€ H*NKY
we have b = y~ky = 27 ha for some h € H and k € K. Using (4.42),

Yyby—1 (I)(ya :C) . q)(yby_ly, xbw_lx)ﬂ-xbx—%

which implies

SR

Y

e (y,z) = @(yb,zb)r
nd
= M‘P(y,m)ﬂf, by (4.41),
)‘K(y7b)

1
= " 7 ®(y, )7y, by Lemma 2.2.7 (a) (4.48)
Ag(z,b)? Ak (y,b)s

Under conditions (a), (b) or (c) of Def.4.1.7, (4.48) simplifies to (4.47), as required.

~—

Q=

Now suppose that the condition given in (d) of Definition 4.1.7 applies. Con-
sider the right hand side of (4.48). We see that

j ;= ()‘H;ﬁKy(Zab))V()‘H/\anU(Z’ b))‘"’, by (3.9),
A (z, 6% Ak (y, b) k(y,b) u(z,b)
3 (/\Hm-y(e, b))# (Amm(e, b)
- /\Ky(e,b) )\Hx(e,b)

Under the condition that H*/(H*NKY) and KY/(H*NKY) have invariant measure,
we have

1
) q, by Lemma 3.1.2.

Amenkv(e,b) _ Amenks(e,b) _
Ang=(e,b) Akv(e,d)
(see (4.19) in the proof of Proposition 4.1.5). Therefore,

% 2(y,z) = @(y,z)my, (4.49)
for all b € H* N K¥ and for almost all z € G/H and y € G/ K. Hence the result.
O

Following an argument similar to that of Moore[34], we shall obtain a result
for intertwining operators between L,(7) and L,(y),q > 1.
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Proposition 4.4.3 Let UT and U be induced representations of the locally com-
pact group G with the corresponding Banach spaces of functions Li(7) and L,(v)
(g > 1), respectively. Then, if the Banach space H(r) is separable, the intertwining
operators T for these representations are integral operators with the corresponding
kernel ® satisfying

ess sup,eg (g [0y, ) iduxc ()7 < |

Proof : The proof is in two parts:

(1). Let S and R be fixed Borel cross-sections of H and K in G. Then G/H =~ §,
G/K ~ R and we regard ppg and px as measures on S and R . Let (7 be a contin-
uous linear map of L¢(S, H(r), px) into L,( R, H(7y), ux). Firstly we prove that C
is an integral operator. For u € H(x) define C\, : L1(S, prr) — Ly(R, H(7), ux) by

Culg) = Clgu), (4.50)

for g € Li(S, py)- Cu(g) is bounded since |Cy|| < ||C||.||#]|. Then by Dunford and
Schwartz[10], Theorem 10, p.507, there exists a py-essentially unique bounded
measurable function x,(.) on S to a weakly compact subset of L,(R,H(7), px)

such that
Culg) = [ xuls)g(s)dun(s)

and ||Cy| = ess sup || xu(s)||. Let Kyu(.,s) = xu(s)so that K, : RxS — H(v). Then
K, is gy X pg measurable (see Dunford and Schwartz[10], Theorem 17 p.198), and
we have

(CloNt) = [ g()Kulty s)d(s) (451)

with ess sup, ([ || Ku(t, 3)||qd,uK(t))% < |ICI||u]]- Now let Ag be a countable dense
subset of the scalar field A of H(r) and let A be a countable dense subset of H(r).
Then, since the countable number of relations

Kault, ) + Koult,8) = Kourpu(t,8) and || Ku(os) <[ C |- u

for a, # € Ag and u,w € Ag fails to hold only on a g x pgy null set, it is possible
to find a null set NV in R x S so that they all simultaneously subtend for (¢,s) & N.
Then the map u — K,(t,s) uniquely extends to a bounded linear map K(¢,s) of
H(m) to H(y) with || K(s,1) ||[<|| C ||. Now define the map K on R x S such that
K(t,3) = 0 for (t,s) € N and K(t,s)u = K,(¢,3) otherwise, for cach u € H(r).
Then, by (4.50) and (4.51), we have

Clgu)(t) = [S K(t, )g(s)udu(s)
and ess sup,.s([p K”:'ﬁ = qd,uK(t))lE < ||C|| for any u € H(r), which implies that
ess sup,es( /g ||K(t,s)|]qdu[((t))%' <||C||- Hence for g € L(S, H(r), i) we have

(Ca)t) = [ Kt 9)g(s)dpn(s). (4.52)
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(2). Secondly, we prove that the intertwining operators T' from Ly(7) to Li(7y) are
integral operators.

Observing that G ~ H xS, for a given continuous function f* € L;(S, H(w), pa)
we can define a function (®,f*) € Ly(7) by

(®1)(y) = 7(R)f'(s),

where y € G with y = hs for h € H and s € §. Similarly, since ¢ ~ K x
R, for a given continuous function g € L,(v), we define the function (®,9) €
LQ(R) H(’Y),PJC) by

(®,9)(r) = g(r)
for r € R. Clearly, || f'[|1 = [|(®1/)]|x and ||g[ls = [[(P9)]].

For a given intertwining operator 1" from L, (7) to L,(~) we define an operator
T on the space of continuous functions in L;(S, H(x), urr) to Ly(R, H(7), ux) by

T:=0,T9,.

Since the space of continuous functions in L1 (S, H(7), g ) is dense in L,(S, H(x), pm),
we have the following commutative diagram:

La(S, H(m), i) 5 Lo Ry H (), pixc)
®, | T @,

Ly(m) ¥ Ly()

with T(f") = ®,T®(f') for f' € L1 (S, H(r), puxr). Clearly, | T|| = ||T||. Using the
result in part (1), we see that there exists a map K from S x R to the set of
bounded linear maps from H(7) to H(v) such that

(T = [ K(t,9)f (s)duuls),

for f* € L'(S,H(7), ) and ¢t € R. Using the Borel isomorphism G' ~ K x R any
y € G can be written as y = k(e,y)é(e,y) where k(e,y) € K and £(e,y) € R. Both
k and £ are Borel functions on R x G. Then, for [ € Lq(7)

(TH) = (@, T (N)y) = k(e )T (Ee,v),
= ylk{esy) [ K(Ees), (@) )) s)dnen(s)

But since (®,~"f)(s) = f(s), we have
(TNW) = k) [ Kee,y), ) ()dun(s)

Now the Borel isomorphism G >~ H x S, allows us to express any z € G in the form
z = h(e,z)m(e,z), where h and m are Borel functions on H x S, h{e,z) € H and
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m(e,z) € S. If we define ®(y, z) = y(k(e,y)) K (€(e,y), m(e,z))n(k(e,z))", then we
bave [[8(y, )| = | ((e, ), m(e, )] and

THW) = [[2@,)f(s)ds = [, 8y, )f(@)dun(z), (1.53)

—

with ess sup,eg;r(fo/k [|®(y, ©)||%ux(y))s < ||T]|. Therefore T is an integral
operator.

a

4.4.1 Group theoretic conditions for integral intertwining
operators

In the case where both G/H and G/K possess finite invariant measures, we can
show that the intertwining operators can be approximated by integral operators
at least under the conditions given in the Lemmas 4.4.4 and 4.4.5.

A set U in G is said to be invariant under the action of H (or H-invariant ) if
for each u € U, h"'uh = u for all h € H.

Lemma 4.4.4 Suppose G/K and G/H have finite invariant measures. Suppose
further that every neighborhood of e contains a neighborhood which is invariant
under the action of H. Then, il is possible to select an approzimate identity

{Jnv : N € G}, of norm 1 in L1(G), where G is a directed set of H-invariant
neighborhoods of the identity e of G, so that the operator defined by Ty, f := Jn*f is
an intertwining operalor from Ly(n) to Ly(x). Moreover, Jyxf — f for f € Ly(x).

Proof : We show that we can select an approximate identity {Jy} of norm 1 in

L(G) so that

(a) the convolution (Jx * f) is well defined in the sense that
JallIn(zy™) (g)lldve(y) < oo,

(b) Ty, f € Ly(x) for all f € Ly(x),
(c) Ty, 1s an intertwining operator for the two spaces involved, and

(d) Jy* f— ffor feL,(n).

Let J be an element of Ly(G) with compact support.
(a) For f € Ly(n),

(11)(@) = (T = =) = [ Iay™)f(w)dvaly).
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As G/ H has invariant measure, by Corollary 2.2.11, we get

L@y ) ldva(y)
= o J, W@ ) dvm (R (),

< [ / (g D) dvir () dpn (y): (4.54)

Let F(u) = [y |J(uh™")|dvg(h). Since F' has compact support and is bounded,
there exists a constant C' such that

S IFOIFEydan(s) < € [ @ lduato) = Ol

which implies that [ ||/ (zy™")f(y)||dve(y) < oo, as required.

(b) Let f € Lyi(w) and J be an element of L;(G) with compact support and F' be
defined as in (a) above. Then,

(/s

H

hS ( /g ( /g IF@)IIE (fcy‘l)lduH(y))pduH(m)) , using (4.54), (4.55)
/g (/g ”f(y)”plF(xy_l”pdﬂH(w))%d,uH(y), by Minkowski’s inequality ,

L @I, 1F @y Pdus(@))? dusu).

- L

II(J*f)(w)IlpdﬂH(w))

3 =

VAN

Since F'(u) is bounded and has compact support, there exists a constant D
such that

[ @[, 1@y Pdun(@) dpn(y) < D [ 1 @)ldunv) = DUflh,

which is finite as f € Ly(7). To complete the proof of (b), we need to show that Jx* f
satisfies the covariance condition (J * f)(hz) = w(h)(J * f)(z), for all h € H and
z € (G. Assume that we have selected a directed set G of H-invariant neighborhoods
of the identity e of GG, which is appropriate to obtain the limit in (d). For such
a neighborhood N € G, let Jy be a function in L;(G) which is a positive scalar
multiple of the characteristic function of N and which has L;(G)-norm 1. We have

(v H)(he) = [ Inhey™)f(@)dve(y).

Changing variables y — hy, we find,
(I * F)(ha) = [ In(hay™ k) f (hy)dva(y).
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But, under our assumption on N, Jy(hzy™'h™') = Jy(zy?) for all z,y € G.
Therefore,

(v *Hlha) = (8) [ Inay™)f(y)dve(y)
= 7(h)(In * f)(z).
Thus, Ty, f € L,(x) for all f € Ly(r).

(c) Let J be of the form Jy as defined in part (b). We show that T is an
intertwining operator. For f € Li(7) and s € G,

(UZT1f)() = (Tof)(s2) = [ I(s2y™)-FW)dva(y)
Changing variables y — yz,
UITsf)s) = [ Iy F(ya)dvaly),
= LI U )W),
= (TAVZN6).
Hence Ty is an intertwining operator for the spaces Ly(x) and L, ().

(d) Let f € Ly(w) with compact support. Then,

1

es-al = (f, uJ*f(w)—f(x)llpduH(@)%,

= (/ | [ I (ye)dvoly) - (>||PduH<m>)”.

Letting m = [; J(y~')dve(y), we can now write the above in the form

N

(/G | [ 76 e)dvaly) — - /GJ(y_l)‘f(w)dVG(y)||pduy(w))

H

o=

< (| (12 ns0) - shasato)) donte))
< [ IIJ(yT(mf(yw) ~ @) IPdpr (@) Pdaly)

by Minkowski’s inequality (see, for example, Hewitt and Ross[26], p.138). Hence

1o s =1l < [ 7 ) — flldvaty) (4.50)

Since f € L,(m) has compact support, then by Lemma 3.3.4, f is of the form 6,
for a suitable £ € Co(G,H(n)). This means that for z € G, we have

F(2) = buz) = /Hvr(h‘l)ﬁ(hw)dyH(h).
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Now

lof = Fle = ([, 10y2) = 0ula) P (),
< ([ ([ Vethge) = ech)don () (@)

G
H

==

In order to estimate the measure of the set where the integrand does not
vanish we proceed as follows. Let S be the compact support of the continuous
function £. Il « € G but o & HS then ™' ¢ S~'H and so Se™' N H = . Hence if
a & HS then vg(Se ' NH)=0.1a€ HS then ¢! € S7'h for some A € H and
so Sa~! C SS~'h, IHence

vi(Se ' N H) <vg(8S'hN H) = vg(S5~' N H).

We have proved that for every a € ¢ we have vg(Sa™' N H) < co. Since ¢ has
compact supporl it is uniformly continuous from the right (scc Lemma 3.3.7).
Therefore, given € > 0, there is a neighborhood N of e in G such that
|é(yhz)—E(hz)|| < € for every h € H provided y € N. Let N, be a neighborhood of
the identity contained in N which is invariant under the action of H. If we choose
Je such that [, J(y)dva(y) =1 and J(y) = 0 for y ¢ N, then

[€(hy) — E(hz)l| < [[€(yhe) — E(hz)[] <€
for every h € H and y € N,. Hence

lof = fllp £ evu(SS™ N H)un (G/H).

However, since A is continuous, if N, is sufficiently small we can approximate
1 by A(y~!) in N. and then m is arbitrarily close to 1 since

' -1 -1 ~ _
| I™A Yvey) ~ [ 1y)dvaty) = 1.
Therefore, (4.56) gives,

1T+ [ = fllp < evu (S50 H)p (G H).

Now let G denote the set of all neighborhoods N of the identity of &G, sym-
metric and invariant under H. Letting Ny < N, if N; D N; we obtain a directed
set. For a given N, choosing a non-negative funclion Jy from L1(G) such that
Jo In(z)dve(z) =1 and Jy(z) = 0 for © &€ N, we can construct a net Jy(N € G).
From above we see that Jy * f — f for every f € L,(m) as required in (d}.

a
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Lemma 4.4.5 Suppose G/K and G/H have finite invariant measures. Suppose
further that H < G and there ts a continuous map ¢ — Ay from G to the set of
isometries from H(w) to itself such that

m(n®) = AJ'n(n)A,,

for n € H. Then, it is possible to select an approzimate identity {Jy : N € G} of
norm 1 in L1(G), where G is a directed set of neighborhoods of the identity e of G,
such that the operator Ty, defined by

(T @) 1= (I D)@) = [ In(oy™) Auys f(y)dvio(y)

is an intertwining operator from Lyi(w) to Ly(w). Moreover, Jy x f — f for

f € Ly(x).

(Note the different notations Jy * f and Jy* f of convolutions defined in Lemmas
4.4.4 and 4.4.5, respectively.)

Proof: Let J € L;(G) be with compact support and [ J(y)dve(y) = 1. We follow
the same steps as in lemma 4.4.4.
(a) First we shall show that

(Taf)(e) = (T @) = [ Joy™) An f)dvo(y)

is finite, for f € Li(r). Using Corollary 2.2.11, and the fact that G/ H has invariant
measure, we have

L@y ™) Ay S (9) dva(y)
= Jo f W@y H ) Auyes Sk || dvm () ()
< Jo J, V@ R A S ()| dvm(R) (),
= [, 15wl / ey~ h™)dvir (B dps (), (4.57)
where the last equality is obtained by using the fact that A, is an isometry for

z € G. This is the same as the eqn (4.54) in lemma 4.4.4; and therefore, following
the same reasoning, we see that

L@y ™) Any £ ldva(y) < o

(b) We shall show that (J* f) € Ly(7) for f € Ly().

o -

(/.g 17+ f)(x)ﬂpduH(x))
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o=

= ( Jouf J(:cy‘l)Amy—lf(y)d#H(y)lldeH($)) :

1

< (U 1 P@ ) dun)

by (4.56), where F(u) = [y |J(uh™")|dvy(h) as in the proof of Lemma 4.4.4 (a).
The last inequality above is the same as (4.36) in part (b) of previous lemma.

We shall now show that (J = f) satisfies the covariance condition. For z € G and
heH,

( he) = [ Iy~ Ay (yha)dva(y).

Now f(yhr) = f(yhy JI) = w(yhy™")f(yz) since H < G, and 7 satisfies the
condition 7 (yhy™!) = (k¥ ) = A__lﬂ'(h) y-1 for y € G and h € H. Thus

(J=Nha) = w(0) [ I A f(yz)dva(y),
= w(h)(J* f)(z).
forhe Hand x €.

(¢) We shall show that T is an intertwining operator. For z,s € G,
CITaf)s) = [ J(say™) Awny S(W)dvely).
Changing variables y — yz,
I = [ sy A Slyz)dvaly),

N fG J(sy™ ) Agyr (UL N)(w)dvaly),
= (TJ(U;rf))(S)a
as required.

(d) Let f € Ly(w) with compact support. Then,

=

e = Al = (175 1) - fa)Pdunt)

1
P

(o196 A v fmiva) - FOPdun(s))

Il

Letting m = [ J(y~")dve(y), we can now write the above in the form

1

( S a4 fmdvety) - = [ J(y-l)f(zmua(y)updmm)’"
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o=

IA

([ 020 0) - S (=)

m

A

L2 s plye) - ePdn(z) P dvay),

m

by Minkowski’s inequality. Hence
J(y™t
157 = fl < [ T m(Ay0),f — Fllpdvety)

But
[m(Ay-1)yf = flls < {[Ay=2(m(f) = Dlls + 1[(Ay-2f = DI,
< e f) = Hllp + 1Ay = HI-

Now y — A,-1 being continuous, for a given ¢ it is possible to find a neighborhood
U of the identity e such that ||(Ay-2f — f)|| < €/2 for all y € U. We could choose
pg to be the Haar measure on G/H since H is a normal subgroup of G. Then
we see that the map y — ,f of G/H into L,(r) is uniformly continuous from the
right. Hence, there exists a neighborhood N of the identity e in G (considering
the canonical mapping G — G/H,) such that ||,f — f|l, < €/2. Let N. = NN U.
Now we choose J, such that [ J.(y)dvg =1 and J(y) = 0 for y & N.. Since A is
continuous, if N, is sufficiently small we can approximate 1 by A(y~!) in N, and
then m is arbitrarily close to 1 since

L I)A@™dve(y) ~ [ Jdw)dvaly) =1

Then we have

T imy = Flydvaly) + /2 < e

m

1 xr=flb < [

Therefore, using the same argument as in the last paragraph of the proof of the
previous Lemma, we conclude that we can construct a net Jy for N € G, where
G denotes a directed set of symmetric neighborhoods of the identity e, such that
Jyx f — fforall fe Ly(r).

O

Lemma 4.4.6 Suppose G/K and G/H have finite invariant measures. If either

(a) every neighborhood of e contains a neighborhood which is invariant under the
action of H,

or
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(b) H < G and there is a continuous map x — A, from G to the set of isometries
from H(r) to ilself such that

m(n®) = A]'n(n)A,, for everyn € H,

then the intertwining operalors of the induced representations U] and UY can be
approzimated in the strong operator topology by integral operalors.

Proof: Let T : L,(7) — L4(y) be an intertwining operator.

(a) Let Ty, be defined as in Lemma 4.4.4. Then T o Ty, : Li(7) — Ly(v) is an
intertwining operator. By Proposition 4.4.3, T o T, is an integral operator.

Now
|7 e Tay(f) =T(DI = ITWUn=f— DI (4.58)

Lemma 4.4.4 asserts that the expression on the right hand side of (4.58) can be
made as small as we wish. Hence the intertwining operator 7' : L,(7) — Ly(7) can
be approximated by the integral operators T'o T}, in the strong operator topology.

(b) Let Ty, be defined as in Lemma 4.4.5. Then, ToTy, is an integral intertwining
operator from Ly(x) to Ly(y). Moreover,

T o Ty (f) = THII = IT(n*f = Fl. (4.59)

By Lemma 4.4.5, the right hand side of (4.59) can be made arbitrarily small, hence
we have the required result.

O

4.4.2 The space A] as the predual of the space of inter-
twining operators

We are now in a position to state the main result of this section, which is a
gencralisation of Rieffel’s result({36] Theorem 5.5) on classical A? spaces.

Theorem 4.4.7 Suppose that the space Af, (¢ > 1,) s constructed under one
of the conditions given in Definition £.1.7. Then the following stalements are
equivalent.

(a) Ly(m) ®F Ly(y*) =~ AL

b) Every element of Intg(UT,UY) can be approximated in the ultraweak*-operator
TY P q P
topology by integral operators.
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Proof:(b)=-(a) Suppose that every element of Intg(U],U]) can be approximated
in the ultraweak*-operator topology by integral operators. First we show that
the kernel of ¥ contains the subspace L of L,(7) ® Ly(~*) (cf. Sec.2.6, p.22 and
eqn.(3.35) ) given by
={Up(s)f®g—f®(U;])(s)g: s € G}).

That is,

V(B2 U™ ()i @ 9i) = V(EZ, fi ® (U)"(s)g:)
for s € G. In the following we write A(+, ) for Agznks(-,-). Now

U3 U7(5)f: © 9)(z.)

t)AH(x,t)%AH(xt, 8)? fi(2t3) @y A (4, 1) 7 i (yt)dptay (1),

= /H G i)\(i ))\H(:v ts) fi(xts) @y Ak (y,1 )%

Lo

&3
HFNKY 1= 1

i(yt)dpay (1),

‘1) ety (0 (o) ©r My 7P 341 s 1)

on changing variables ts +— t. Since A(t,s71)/A(e,ts™1) = 1/\(e, t), and
Me(y,t87Y) = Ak (yt, s71) Ak (v, t)(see Lemma 2.2.7, (a)),

ZUW fz X i (.’L‘ y)
- /_yz e )7 fi(ats) @y

)‘K(y) t)zli)‘K(yt, 3—1) B gi(yts_l)d:u%y(t)’
A (8,807 i(at) ©ay (U7 ()9s(ut) s 1)

e 1
N /H—ygﬁ(
- \P<§fi®(U”)*<s)gi)-

Now it only requires to prove that the kernel of ¥ is contained in L. To achieve
this, it suffices to show that any bounded linear functional F' on L,(7) ®% Ly(7)
which annihilates L also annihilates the kernel of U. Since F' annihilates L, there
exists T' € Intg(UJ,UY) such that

[eo]

=1
for any r € L,(7) ®% Ly(v*) with the expansion
r= Z [i ® gi.
i=1
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Suppose now that r is in the kernel of W. Then,

Z /\( ) ———Au(, )7 fi(@t) ®uy Ak (Y, )7 gi(yt) 1y (1) = 0. (4.61)

=1 Han
By (4.60), it suffices to show that

(e}

D g, Tf)=0

=1

Under the assumption that the operator T can be approximated by the integral
operators {T; : j € I'} in the ultraweak*-operator topology, we have

i(gi, T;fi)— i(gi—, Tf:).

Hence in order to prove }32,(¢:, T'f;) = 0, it is sufficient to prove

o0

Z(gia Tsz) = O»

=1
for each 7. Since Tj is an integral operator, we have
(L)) = [, 05(y,2)fi(w)dpn(2),
H

where @, is the kernel of T; as described in Definition 4.4.1. Thus,

[e.o]

> {96, Tifi)
= Z Jo ), (TR @)y,
- Z - g Jo 100,500 @) (@) o),
= 3 [ (6:0), 25y, ) i) s (2, ),

i=1 HxK

= /D o f {gi(yt), @i(yt, xt) fi(wt)) dpiay (V) dprcar ) (D),

H’nK

using disintegration of measures as explained in Lemma 3.1.3. (Also, see the dis-
1

cussion preceeding the Lemma). By Proposition 4.4.2 (1), Ag(zt,t71)? ®;(y,z) =

)\K(y,t)%tbj(yt,wt) for almost all z € G/H.

Therefore,
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[ee}

> {gi, Tif:)

=1

Apr(zt, 1™ )L' .
= 3 [ ] o o) et nE )i O 0 (D)

Ha:n}(y

From the identity (3.9), we see that

Am(at,t1)7 1 1
T T T
)\K(y,t)q )\H(.’I,',t)P')\K(y,t)q

Consequently,

[e.e]

Z(gHTfZ>

= Ehet ot

=1 HInK

(3, )7 gi(yt), B5(y, @) Au(z, 1)7 fi(at))

By Proposition 4.4.2 (3), ®;(y, ) € Intgznxy(H(7*), H(¥")) under the conditions
given in Definition 4.1.7. Hence there exists
0;(y,z) € (H(7") Qu=nrv H((7¥)*))* such that

o0

> (k(y, t)#gi(yt), ®;(y, z)Au(z, t)%fi(wt»

i=1

A1
Py

i Ap(z,t)? f; (2t) Qo Ak (y,t)7 gs (1), 0;(z,v)),

(see (2.7)). Therefore we have,

o0

E(gz, T;f;) =
Z /DET /szc)(z T TS t) )\H(iU, t) fz(mt) O,y )\K(y, )_’g (yt), Gj(:v, y))
Atz y (t) A iy (D). (4.63)
Hence, by (4.61),
Z(g“TJ.ﬂ) = O)

as required.

(a)= (b) Now suppose that the kernel of ¥ is L. We want to show that the
integral operators of the form Ty f(y) = [/ ¢(y,2)f(z)dpn(z) form a dense set
in Homg(Ly(7), Ly(7)) in the ultraweak*-operator topology; or equivalently, the

91



corresponding linear functionals are dense in (L,(7) ®¢ Ly (7*))* in the weak™*-
topology. Hence, we only need to show that the annihilator of these functionals,
regarded as functionals on (L,(7) ®, Ly (v*))*, is L. But by (4.63) we see that the
annihilator of these linear functional is the kernel of ¥ which is equal to L under
our assumption. This concludes the proof of the Theorem.

O

Corollary 4.4.8 Suppose that every element of Intg(U],UY) can be approzimated
in the ultraweak*-operator topology by integral operators. Then the intertwining
number O(UJ,UY) is equal to the dimension of the space of all functions ® given
in Definition 4.4.1. Moreover, if H and K are discretely related,

oUT, U = 3 dy,

JdeT

where dy is the dimension of the set of all functions ® which vanish outside the
double coset V.

Proof: Let T' € Intag(U],U]). By (4.63) we have

o0

Z(giani> E /DGT(‘I’(CC,:U),G(w,y»d,u(H,K)(D)= (7, 0). (4.64)

=1
Now using Theorems 3.3.14 and 4.4.7,
(AZ)* ~ Homg(Ly(T), Le(7))-

By (4.64), the intertwining number 0(UJ,U) is equal to the dimension of the
space of all functions © which, in turn is equal to the dimension of the space of all
functions ®.

If H and K are discretely related, G is a union of a null set and a countable
collection of double cosets. By Proposition 4.4.2 (2), the value of ® on ¥ is uniquely
determined by its value ®(zo,yo) at (zo,yo) where (zq,y0) € J.

Hence
B(U;,U;') = Z dg.

JeD
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Chapter 5

p-nuclear norms and
Hilbert-Schmidt norms

In the construction of AJ spaces in Chapter 4, the corresponding tensor products
of L, spaces were endowed with the greatest cross-norm. Iere, we investigate
the possibility of using the p-nuclear norm and the Hilbert-Schmidt norm in this
regard.

We let G be a second countable locally compact group with closed subgroups
H and K. m and v will denote representations of H and K on Banach spaces H(r)
and H(7), respectively.

5.1 p-nuclear norms

Recall, from Definition 2.6.5 (3), that for Banach spaces S and R and
z=3%" 2, Qy; € S® R, the p-nuclear norm a,(z), (1 < p < 00,) of z is defined
by

ap 1nf{ (Z ||:||? ) ot (Y1y eneey Yn) 2 2 = ZZ:;%(X) yi},

where .
_I

pop (Y15 evee ,yn—sup{(2| ¥, i) )

for 1 < p’ < 0o and

b eV vl =1,

s s ) = s0p{ masicalt ] € VIl = 1}

bRl

The infimum is taken with respect to all representations of z and < i [|wi||p>

is understood to mean max;||z;|| when p = oo.
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The first problem that arises is to show that

Zﬁ ® gi(y) € H(r) @ H(y),

for 0, fi ® gi in L,(n) ®** L,(¥) and x,y € G. We see that this is true at least
in the case where H(7) and H(y) are L, spaces of finite measure. To achieve this,
we use the following result.

Proposition 5.1.1 Let ST, X, and Y be finite measure spaces and 1 < p < oc.
Then

Lp( X, Lp(S5)) @7 Ly(Y, Ly(T)) = Lyp(X X Y, Lp(5) @ Ly(T)).

Proof: Let Ty be the natural embedding of L,(X) @ L,(S) to Ly(X, L,(S)) given
by

Z £i®a) Zfz (2)g:-
i=1
By Theorem 2.6.7 (a), I'1 is an isometry. Therefore,
Lp(X) @ Lp(5) = Ly(X, L,(5)) (5.1)
Similarly,
L(Y) 0% L(T) = L(Y,L(T)) (52)
By Theorem 2.6.7 (b) (1), the natural embedding I'y of L,(X) ®** L,(5) into
L,(X x S) given by
(T1(Z, fi @ g:))(w, 8) = EiLy fi(z)gi(s)
is an isometry. Hence, using (5.1) and (5.2), we get
Lo(X, L,(9) 2 Lp(X x 5) and LY, L,(T)) = L,(Y x T). (5.3)
Therefore,
Lp(X, Ly(5)) @7 Ly(Y, L,(T))
L,(X x S)e™ L,(Y xT), by (5.3),
L,(X xS xY x1), by Theorem 2.6.7 (b) (2},
L(X xY xSxT),
L(X xY,L,(5xT)), by (5.3),
Ly(X %Y, L,(S) @ L,(T)), by Theorem 2.6.7 (b) (2),

as required.

R R

O

The above result shows that, in the case where ¢/ H and G/ K possess finite
measures and H(7) and H(y) are L, spaces, we have a corresponding result to
that of Proposition 4.1.2, in terms of a, norms.
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Proposition 5.1.2 Let H(w) = L,(S) and H(y) = L,(T) where S and T are
finite measure spaces. For L™, f; ® ¢; in L,(7) @ Ly(y) and z,y € G,

Zfi(w) ® gi(y) € Ly(S) ®@°% Ly(T),

=1

for almost all z € G/H and y € G/K.

Proof: This is an immediate consequence of Proposition 5.1.1.
a

Throughout the remainder of this section, we assume that H(w) = L,(S) and
H(y) = L,(T') where S and T' are finite measure spaces.

Theorem 5.1.3 Suppose that the homogeneous spaces G/H and G/K are finite
measure spaces. Let p be a real number with 1 < p < co. Then

m aP Y~ ,"_®C¥p,y
Ur @ UY ~ U™,

where 7 @ v : H x K +— U(H(7) @ H(y)) is the representation given by
(r @ 7)(h, k) = 7 (h) @ y(k).

Proof: For simplicity of notation we will write U™ for U]. By Proposition 5.1.1
there exists an isometry I' from L,(7) ®** L,(¥) to L,(7m ®°? ). For

z =32, fi®gi € Ly(w) @°? Ly(y), let F' be the image of z in L,(m @*7 v) under
I’ so that

(T2)(z,y) = F(z,y) = Zfi ) ® gi(y

We have to show that F' satisfies the covariance condition

F(hz, ky) = 7(h) @ y(k)F(z,y) (5.4)
for h € H and k € K (see Sec.2.5). Without loss of generality, we let
F(z,y) = f(z) ® g(y), and the result follows for any F' by linearity. Now

F(he,ky) = f(ha) ® g(ky),
= 7(h) @1(k)(f(z) ® 9(y)),
= 7(h) ®1(k)F(z,y),
as required. Also, we see that I' is an intertwining operator for U™ and U™ ® U".
For t1,t; € G,

(Uggzrz)(:ﬂ,y) . F(wtl’yt2)7
f(a"tl) ® g(ytz),
(U5 (=) ® (Ugg)(w),

_ <F<Ugf® U{ig))(w,y),

= (s e U 0 ) (@),
= (U] @ UY)2)(z,y).
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Hence,
U™ T =T{U"®U"),
as required.

O
For z,y € G, let ,;H,, be the subspace of H(7) ®*? H(y) which is the closed

linear span of elements of the form

() @n—E® (v(b) ',

for be H* N KY, £ € H(r) and 5 € H(y) (cf. Definition 4.1.3). Let ,A;, be the
quotient Banach space H(m) ®@*? H(y)/,Hy,y. Clearly, (as shown in Proposition
4.1.4,) yHesys = pHey and pAgsys = pAsy, for any s € G. Here again, for

u®v € H(r) ®* H(y*), we use the notation u ®,, v to denote the element of
» Az y to which v ® v belongs. We have the following analogous results to those of
Propositions 4.1.5 and 4.1.6.

Proposition 5.1.4 Let p and m be real numbers with 1 < p < oo. Let H and K
be regularly related, closed subgroups of the locally compact group G. Suppose G|H
and G/K are finite measure spaces. Then, for S0 fi® g; € L,(7) @2 L,(v*) and
z,y € G,

b Y da(e, 0 e Bay (3, O g (t) (5.5)
i=1 /\Hany(e t)

is a mapping on the coset space G/(H* N KY) in each of the following cases:

(a) p=m;
(b) G/K and G/H both having invariant measures;
(¢) H®/(H®* N KY) and KY/(H* N K¥) having invariant measures.

Proof: The fact that the mapping (5.5) is a well defined function on the space
G/(H® N KY) is clearly true just as it is in Proposition 4.1.5, since the norm of the
underlying tensor product space plays no role in the calculations.

a
Using the same notations as in Chapter 4, p.62, let

_1) p—1
My = [ (e, 0)dpm, (o) and N5 = [, e, (e 8)diuc,, (6).
HTAKY HTNKY

Proposition 5.1.5 For }_i, fi ® gi € L,(7) @ Ly(v*) the integral
= 1 1 1
/ o T (@ )7 fi(2t) Ry Ak (3, 1) 9i(yt) dpia,y (t) (5.6)
7Ry im1 Aenku(e,t)

is finite for almost all D(z,y) € T in each of the following cases:
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(a) p=1;
(b) G/K and G/H both having finite invariant measures;

(¢) 1 <p<2and H°/(H* N KY) and KY/(H* N KY) being compact for almost
all z,y € G with (z,y) — M, N, being a bounded function from T to R.

Proof: Let
I(z,y) = / - D= =
HTnKY =1

Following the same argument as in Proposition 4.1.6, we have, under the conditions

(a) or (b) above,

)\HwnKy(e t) Au(z, t)Efi(xt)®m’y)\K(y’ t);gi(yt)dﬂm.y(t)-

n
1< 2 1 illallgi s
i=1

under the condition (¢) with 1 <p<2and 2/p—1=1/r,

21l < 832 1 Fillollg:lls
=1

where S = ess sup(, ) {Mz,y Vz,y }; and under the condition (c) with p = 2,

(2, )| € My Nay 311 fillllg:ll,-

=1
Since, in each of the above cases, the right hand side is a finite sum of finite terms
(as f; € Ly(r) and g; € Ly(v*) for each ¢), we have the required result.

Note that in the case of either (a) or (b), we can achieve the result as follows.

Loy 11 16 D)

< (L[ o W Ft) @y 50 oyt D),

Hany i=1

< o) o I ) © 600y (i (D),

= [ /I ;m) ® :(9) les i () dpxc(v),

where the last equality is obtained by disintegration of measures as in Lemma
2.2.12 (see also, Lemma 3.1.3). But under the assumption that G/H and G/K are
finite measure spaces, we have

J: ), 135 5:2) © 659t (2)dr )

K =1

( /% /g I ;fi(iv) ® gi(y)lli,,de(x)de(y))”. (5.7)

=
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By Theorem 5.1.3, 1wy fi ® ¢; € Lp(7 ®*# v*). Hence we see that the right hand
side of (5.7) is finite, which leads us to the required result.

O

We are now in a position to define the map ,U*? as a mapping on
L,(r) @ L,(v*) using the integral (5.5).

Definition 5.1.6 Let H and K be regularly related, closed subgroups of the locally

compact group G. Suppose G/H and G/K are finite measure spaces. The map
¥ on Ly(m)a @2 Ly(v*) is defined by

[\I’(Z £ @ g))(2,) (55)

. /_ Z ﬁ)\y(x,tﬁ Fi(@t) @2 Ak (1, 1) 9i (y) dpt(og (1)

G
HEAKY ;=1 AH=nKy

whenever one of the following conditions holds:

(a) p=1;
(b) G/K and G/H both have finite invariant measures;

(¢) 1 < p<2 H*/(H*NKY) and KY/(H* N KY) are compact and possess in-
variant measures for almost all x,y € G and the map (z,y) — My Ny, is

bounded from Y to R.

The image space of ,¥®» has a similar structure to that of ¥ in Chapter 2;
it has the Banach bundle structure where the tensor products of Banach space are
endowed with the a;, norm. We use the following notation (cf. p.65).

Let

Bo = H(m) @ H(v*) x G x G,

By = H(m) @ H(y*) x ((G x G)/B),

pB1 = U(z,y)EGxG{Hx,y X {(-'an)}}a

PBlA = U(w,y)GGXG{HSC,y X {(:I:,y)A}},

B2 = U(z,y)erG{Ar,y X {(z,y)}}, and

PBzA . U(:c,y)erG{-Aac,y x {(z,y)A}}.
It is clear that ,B; is a subspace of ,Bo, and B2 is a subspace of ,B5. With j
denoting any one of {0,1,2}, let ,8; : ,B; — G x G be defined by ,0;(¢,(z,y)) =
(z,y), and let 05 : ,BY = (G x G)/A be defined by ,07(¢, (z,9)A) = (z,9)A,
where ( belongs to the corresponding Banach space. We define the quotient maps
q: pBo + By and qa : ,BE — B in a similar manner to those in Sec.3.2 (p.32)
and topologize ,B; and ,B5 so that the maps ¢ and gaare continuous and open.
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Define ,B; := (,B;,,0;) and ,B5 := (B2, ,02).

jopP
Since the nature of the norm of the underlying Banach space did not play
a role in our arguments in Chapter 3, we see that Propositions 3.2.1, 3.2.2, 3.2.3,
3.2.4 and 3.2.5 hold in the present situation, leading us to the fact that ,B; and
,B2 are Banach semi-bundles over G x G and (G x G)/A. The analogous result
to that of Lemma 4.3.2 is as follows.

Lemma 5.1.7 For 3%, fi ® g: € L,(7) & Ly(7), the element ,W(E", [i®g:) is a
cross-section of ;B3 , if the integral (5.8) is constructed under one of the conditions
(a) or (b). It is a cross-section of ,B, if it is consiructed under the condition (c).

Proof: This follows immediately from the analogous result (in o, norms) to that
ol Proposition 4.3.1.

|

The preceding discussion and results lead us to the following definition.

Definition 5.1.8 The space , A} is defined to be the range of ,W? with the quotient
norm.

In other words, ,A? is contained in the space of cross-sections of the Banach
semi-bundle ,B85 for cases (a) and (b) of Definition 5.1.6.

We have the following analogous results to those of Propositions 4.3.4, 4.3.5
and Theorem 4.4.7.

Proposition 5.1.9 Suppose that the spaces G/H,G/K and the real number p
satisfy one of the conditions (a), (b) or (c) given in Definition 5.1.6. Suppose
Jurther that there ecists a continuous family of Bruhat functions B, on H* N K¥
for (z,y) € G x G. Letl f and g be functions with compact support from Ly(7) and
L,(~) respectively. Then,

1

1 1
: (e, ) fat) ®ey Axc(x, )P g{yt)dpts (¢
(a",y) i /;?/HEDKU )\HanU(e,t) H(w, )pf(x )® ¢ K(‘T ) gty ) # ,y( )

8 a continuous cross-section of the corresponding Banach semi-bundle.
Proof: The result does not depend on the norm of the underlying Banach space

Ly(7)@% L,(~). Hence the proof is exactly the same as that of Proposition 4.3.4.
O
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Proposition 5.1.10

(1) Let ,A% be constructed under condition (a) or (b) of Definition 5.1.6. Then
pAL C Li(B5; ). In particular, if G/H and G/K possess finste invariant
measure and 2/p > 1, then ;AP C LT(EQA;#H’K) where 1/r =2/p — 1.

(2) If pAL is constructed under the condition (c) together with 1 < p < 2, then
pA’,; Q Lr(ﬁé\; ,uH,K) where
1r=2/p—1.

(3) If ,A% is constructed under the condition (c) together with p = 2, then
p AL C Loo(Ba; paxk)-

Proof: These results were established in the proof of Proposition 5.1.5.

a

Proposition 5.1.11 Suppose the representation spaces H(z) and H(~) are L,
spaces of finite measure. Suppose further, that the space , AP, (p > 1,) is con-
structed under one of the conditions (b) or (¢) given in Definition 5.1.6. Then the
following statements are equivalent.

(a) Lp("r)@gpl'p(')’) = pAg-

(b) Every element of Intg(U;’,U;*) can be approzimated in the weak*-operator
topology by integral operalors.

Proof: This is similar to that of Proposition 4.4.7 (a), and will be omitted.

5.2 Hilbert-Schmidt Norms

Now we turn to the construction of A spaces where the spaces involved are Hilbert
spaces. Recall, from Definition 2.6.5 (4), that for Hilbert spaces V and W and
z=3%1,z;®y; € V ®W, the Hilbert-Schmidt norm on V & W is defined by

B @ w) = (3Dl e) s

j=1li=1
We shall now consider another definition of the Hilbert-Schmidt norm given

in several places in the literature, which will be shown to be equivalent to Definition
2.6.5 (4). Theorems 5.2.1 and 5.2.2 explain this new definition.
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If V and W are complex Hilbert spaces then by an antilinear map T : V > W
we mean a continuous additive operator such that T'(cx) = aT'(z), for all z € V
and o € C. If the range of the linear map T is finite-dimensional then it is called
an operator of finite rank.

Theorem 5.2.1 An algebraic tensor product of the Hilbert spaces V,W is the vec-
tor space VQ W of all antilinear maps T : W — V of finite rank together with the
operation (z,y) — © @ y where ¢ @ y maps z into (y, z)z.
Proof: See Gaal[19], Theorem 1, Sec.3, Chapter VI.

a

Theorem 5.2.2 The topological tensor product V ® W can be interpreted as the
space of antilinear Hilbert-Schmidt operators T from W to V with the inner product
(S, T) = ¥2,(S(y:), T(v:)), where {y; : ¢ € N'}, is a mazimal orthonormal set in
w.

Proof: See Gaal[19], Theorem 2, Sec.3, Chapter VI.

0

Theorem 5.2.3 The two norms on V @ W defined in Definition 2.6.5 (4) and
Theorem 5.2.2 are equivalent.

Proof: By Theorem 5.2.1, for every antilinear map 17" : W +— V of finite rank, there
exist {z;:1=1,.n} CV and {y;:4=1,..n} C W such that

T-—-Zmi@yi.

=1

Let {zx : kK € N'} be a maximal orthonormal set in W. Then,

K

I = > NT (ol

o~
1l
—

I
8

n@ 2 ® v:)(2)|I,

1D (s )il
=1
n

E yz,zk yj7zk (xiawj)a
1i=1

ES
1l
-

I
]38

ES
Il
—_

i

I
NgE
M:

=
]
A

J

il
NE
M:

oo
(i, ;) Z (Yi> 26)(Yis 2k)
11 k=1

1

.
Il
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n

= i(xi,f%)(yi,yi)’

1=1:=1

n
1>z @uill3,
=1

as required.
O

It is easy to see that § is a cross-norm (see, for example, Light and Cheney[29],
Lemma 1.34). The result stated in Theorem 5.1.3 is well known in the present
context of Hilbert spaces, but will be stated here as it is necessary for our purposes.

Theorem 5.2.4
La(m) ®° La(p) = La(r @ p),

where ™ @F p is the representation on H(m) @° H(p).

Proof: See Gaal[19], Theorem 1, Sec.8, Chapter VI.
a

The 2-nuclear norm and the Hilbert-Schmidt norm on L,(7) ® Lz(p) are
equivalent at least under special conditions, as the next Proposition shows.

Proposition 5.2.5 Let H(7w) = L3(S) and H(y) = Lao(T) where S and T are

finite measure spaces. Then

Ly(m) @ La(p) = Ly(m) ®2 La(p).

Proof: By Theorem 5.2.4, we have
La(m) ®° La(p) = La(m ® p),
= L,((G/H) x (G/K), Ly(S) ®° Ly(T)). (5.9)
By Theorems 5.2.4 and 2.6.7 (b) (2), we find that
Ly(S) ®° Lo(T) = Ly(S x T) = Ly(S) @2 Ly(T). (5.10)
(see also, Light and Cheney[29], Theorem 1.39). Therefore by (5.9) and (5.10), we

obtain

Ly(m) @ La(p) = La((G/H) x (G/K), La(S) @ Ly(T)),
Lo(G/H, Ly(S)) ®*2 Lo(G/ K, La(T)), by Proposition 5.1.2,

Ly(m) ®*2 La(p),

(o
[
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as claimed in the Proposition.
O

As a consequence of the above result, we see that the above theory on ,AP
spaces provides us with a theory for ; A2 under the condition that the Hilbert spaces
H(w) and H(y) are L, spaces of finite measure. This condition is not necessary in
the case of A2 spaces, as Proposition 5.2.6, 5.2.7 and 5.2.8 show.

Proposition 5.2.6 For Y, f; ® g; in L,(7) ®° L,(y) and z € G/H,y € G/ K,

Zﬁ ) ® gi(y) € H(r) @ H(v),

for almost all z,y.

Proof: We want to show that

1
2

ﬁ(éﬁ ®gi) = (Zj: Zn)(fi(x),fj(x)>(gi(y),gj(y))> = 55,

=1 j=

ey

Since Y2, fi ® ¢; in L,y(7) ®° L,(7y), we have

Zn:Z (fir fi)9:, 95)

=1 j=1
Therefore, for any compact sets Cy and Cy in G/H and G/K respectively,
L [ X @), £5@)0u(w), 5 0)) s () (o)

2 j=1 j=1
n n

- /G,H/G/KZZ fi(e (9i(v), 9i(¥))dpn (x)dpx (y),

1=1 j=1

Hence

Zfz ) ® gi(y) € H(r) ®° H(v),

for almost all z,y, as requlred.

O

Proposition 5.2.7 Let H and K be reqularly related, closed subgroups of the lo-
cally compact group G. Then, for Y fi ® g; € La(w )®g Ly(y) and z,y € G,
- 1
D Y e (GO GO IR (5.11)
=1 )\Hn:nKy(e

is a mapping on the coset space in each of the following cases:
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(a) m =2;
(b) G/K and G/H both having invariant measures;
(¢) H®/(H" N K¥) and KY/(H* N KY) having invariant measures.

Proof: The proofs of (a), (b) and (c) are identical to those of Proposition 4.1.5
(a),(b) and (d) respectively.

d
Proposition 5.2.8 For Y. i ® ¢; € La(m) ®% Ly(v), the integral

| e (e, e Ak i en(t) (5.12)

HinKy 1—1 )\Hzn]('y(e i)

is finite for almost all D(z,y) € T in each of the following cases:

(a) G/K and G/H both having finile invariant measures.

(b) m=1, H*J(H* N KY) and K¥/(H* N KY) being compact for almost all z,y €
G and (z,y) — My Ny being a bounded map from T to R.

Proof: The proof of (a) is similar to that of (b) and the proof of (b) is exactly the
same as that of (d) in Proposition 5.1.5. As we saw in the proof of Proposition

5.1.5, we can achieve the result in the case of (a), also using the following method.
Let

@)= [ . Z—A (20} Fi(@t) a9, ) i 1) g (8,

FIARY i=1 Agenky(e,1)™

Then

Loy 1@ Dlldzse D)

< (/j ||ifi(ﬂ)®r.ygi(yi)||ﬁdﬂx,y(t)dﬂﬂ.K(D),

HInK!J =1

1A

L I Fitet) @ gt lodiesa () (D),

H""‘ﬂ}'{y =1
= [ IS @) © 0l lodan (s (),
E'E  i=1
where the last equality is obtained by disintegration of measures as in Lemina

2.2.12 (see also, Lemma 3.1.3). But under the assumption that (/H and G/K are
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finite measure spaces, we have

[y J, V5 50 @ ol (o)

-

2

< ([, 1S A@ @ awlidun(iun)’ (5.13)

By Theorem 5.2.4, 3%, fi ® g; € L,(m ®° ). Hence we see that the right hand
side of (5.13) is finite, which leads us to the required result.

O

The above results lead us to the following definition of the map ,¥” :

Definition 5.2.9 Let H and K be regularly related, closed subgroups of the locally
compact group G. For z,y € G let us choose a family of quasi-invariant measures
fz,y on the homogeneous spaces Gf(H® N KY) so that the identity (3.9) holds. The
map V7 on Ly(7) 87 La(y) is defined by

(2‘I’ﬁ(zn:fz' ® g:))(z,y) (5.14)

i=1

7= ]G Z—l_—LAH(x’t)%fi(wt)@)w,y)\ff(yat)%gi(yt)dﬂx,y(t)

7oKV i=1 Agzaxu(e, i)™

whenever one of the following conditions holds:

(a) G/K and G/H both have finite invariant measures;

(b) m =1, H*/(H* N K¥) and KY/(H* N KY) are compact and possess invariant
measure for almost all x,y € G and (z,y) — My Ny 15 ¢ bounded map

from T to R.

The discussion on Banach semi-bundles leading to the defimtion of the space
AP in terms of Hilbert-Schmidt norm and the material discussed in Lemma 5.1.7,
Propositions 5.1.9, 5.1.10 and 5.1.11, including proofs, is word by word applicable
to the present situation, and will be omitted. The corresponding dcfinition of Af
and the analogous result to that of Theorem 4.4.7 (a) will be given below since
they are necessary to discuss the main result in this section.

Definition 5.2.10 Let 2U” be defined as in (5.14). Then the space Ay(w, ) is
defined to be the range of ;WP with the quotient norm.

We shall state the following definitions and well known results regarding 2-induced
representations, which will be used iu the proof of the main result.
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Definition 5.2.11 (Gealf19], p.377.) The space L(x, p) is defined to be the space
of all such functions x : G x G — HS(H(p)", H(r)) which satisfy the follwing
properties:
(1) For everyz,y € G and h e H, k € K,
x(hz, ky) =7 @ p(h, k)x(z, 7).
(2) For every fized pair of vectors u € H(x),v € H(p),
(z,9) = (x(z,y)u,v)

1s measurable on G X G.

Since quasi-invariant measures on each of G/H and G/ K form a single equiv-
alance class the following result is independent of the choice of py and pgk.

Proposition 5.2.12 If x1,x2 € L(7,p) and ||xx(z,y)||(k = 1,2) is finite for al-
most all (£,m) € (G/H) x (G/K) then

(IL‘, y) e (Xl(xa y)) Xg(:l?, y))
is a function defined on (G/I) x (G/K) and is measurable. Furthermore,

|Oca(e,9)s xa(@, 9D < N, w)-lixale, vl
for all x € £,y € n and almost all (€,n) € (G/H) x (G/K).

Proof: See Gaal[19], Proposition 3, Sec.7, Chapter VI.

Using the quasi-invariant measures uy and pg, we can define
1]l for x € L(, p) by

P = [, [, IxCeu)l dus()dux (n)
H"K
If x1,x2 € L(m, p) and ||xa|[, || x2| are finite then we can introduce the inner product

(X1, X2) =/§ /g(xl(w,y),Xz(w,y))duﬂ(ﬁ)dw(n)-

Definition 5.2.13 (Gaal[19], p.378.) Let L*(w,p) be the inner product space of
equivalence classes of functions x in L(m, p) for which ||x|| is finite.
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Theorem 5.2.14 The inner product space L(x, p) is a complex Hilberl space.

Proof: See Gaal[19], Theorem 5, Sec.7, Chapter VL
O

The following result describes the rclationship between the spaces HS(L2(p)*, La(7))
and Ly(7, p).

Theorem 5.2.15 A linear operatorT : Ly(p)* — La(w) belongs to HS(Ly(p)*, La(7))
if and only if there is a x in L(7, p) such that

(Th5) = [, Jo @) @)oo )dinc ()

for every g € Ly(m) and f € Ly(p)*. The kernel x is uniquely determined by T
and the map T — x is a norm preserving isomorphism of HS(L2(p)*, L2(7)) onto

L7, p).

Proof: Gaal[19], Theorem 11, Sec.7, Chapter V1.
|

Let us denote the set of intertwining operators with Hilbert-Schmidt norm
by Inta(La(p)" La())

Proposition 5.2.16 For a given intertwining operator T' € Intg(La(p)*, La(m)),
the corresponding kernel x : G x G — HS(H(p)*, H()) satisfies the condition

Anle, ) Ak (y, 5) i x(0s,u8) = x(ay), (5.15)

for all s € G, for almost all * €¢ G/H and y € G/K, in addition to the two
condilions mentioned in Definition 5.2.12.

Proof: By Theorem 5.2.15, for every ¢ € Ly(7), f € Li(p)* and s € G, we find
that

(UL ) = [ [ o)ty ) T ws), o e)dg ),
- / / (2,y5)Mcly, ™) E £ (), 9(2))dpusa (2)dpurc (), (5.16)

by changing variables y +— ys™! and using Lemma 2.2.7 (a). T being an intertwin-
ing operator for the representations U/?" and U™, we have

(TUf‘f’g) - (U:vag):(TfaU:*g)' (517)
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Using Theorem 5.2.15, we see that
(CLUTe) = [, [ o)) dnle,s™)hglas ™ dun(@)dr(y)
/ j x(s,9)f(y), Arlz, )  g(@))dp(2)durc (v),  (5.18)

by changing variables & +— s and using Lemma 2.2.7 (a). Now using (5.16), (5.17)
and (5.18), we obtain

Ak(y,s™)ix(z,ys ™) = Au(e,s)ix(es,y), (5.19)
for almost all x € G/H and y € GG/ K. Replacing y by ys, we find that
)\K(ys,s"l)%x(:r,y) = )\H(x,s)%x(:vs,ys). (5.20)

Now Lemma 2.2.7 (a) implies that Ax(ys,s ) Ax(y,s) = Ax(y,¢) = 1, hence,
,\H(m,s)%)\g(y,s)%x(ws,ys) = x(z,y), for s € G, as claimed.

O

The set of all functions y with the three properties (a), (b) in Definition
5.2.12 and (5.15) above will be denoted by L%(x, p).

Proposition 5.2.17 Suppose that the space Ax(m,v) is constructed under one of
the conditions (a), (b) or {c) given in Definition 5.2.9. Then

Lo(m)® La(7) = Ag(m, ).

Proof: The result can easily seen to be true by using Theorem 5.2.15 and an
argument similar to that of Theorem 4.4.7 (a).

O

Corollary 5.2.18

(La(m*) &7 La(p*))" = (La(m) @ La(p)).

Proof:We sce that the space £2(m,p) is isometrically isomorphic to the Hilbert
space of the induced representation U™®#? of G x G. Hence we have

Ly @° p) = L%(m,p). (5.21)
By Theorem 5.2.16,

HS(Lx(p)", La()) = La(w,p). (5.22)
Now (2.6) (see p.19) implies that

HS(La(p)", Lo()) = (La(m™) @7 La(p*))". (5.23)
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From the isometries (5.21), (5.22) and (5.23), it is clear that
(La(7) @° La(p™))* = Lay(m @7 p). (5.24)
Therefore, ( Ly(7*) ®° La(p*))* is reflexive, hence by Schattes[40], p.141,
(La(7™) @ La(p™))" = (La(m) ®° La(p)),
as claimed.
O

Recall, from Sec. 2.6, that (Lg(ﬂ')@é[)g(p)) is the quotient space of (Lg(m) &7
Lq(p)) and the closed linear subspace L which is spanned by all the elements of
the form

Uifeg—folf)g, sed.
In view of the isometry given in [heorem 5.2.4, let L be the closed subspace of
La(r @* p) corresponding to L in (Ly(m) @7 La(p)). Tt is clear that L is the linear
span of the elements of the form

An(-,8)EAk(8)EF(()s, ()3) = F(, ),
where ' € Ly(m®P p) and s € G. The quotient space La(m @7 p)/[? will be denoted
by Ly(r @2 p). Therefore we have
Lo( ®g p) = (La(w) ®g La(p)). (5.25)
Obviously, £%(r, p) and Ly(7 @ p) are identical. We now come to the main result

of this section.

Theorem 5.2.19 Let 7, p, pand « be representations of the closed subgroups H, K, M
and N of G. Suppose that the spaces Ay(m,p), Az(p,7v) and As(r @G p, 0 Rc ) are
constructed under conditions (a), (b) or (c) given in Definition 5.1.9. Then there
exists an isomorphism

Ax(m,p) ® Ax(e,7) = As(T B¢ py 0 @6 7):

Proof: Hence, using (5.25) and Proposition 5.2.17 under the conditions given in
Theorem 5.2.18, we see that

As(m,p) 2 Lo(7) @5 La(p) = La(m @G p).

This gives us the diagram
(La(m) ®c La(p)) B (L2(p) @ L2(7)) = La{7 @6 p) @c L2(0 ®c 7)

T 1T i
Az, p) ®a Az(p,7) — As(m @ p, 0 Q6 )

where [T represents an isometry, and the theorem is established.
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Chapter 6

Examples

In the following examples, the identity element of the group is denoted by e. For
simplicity of notation (¥(332, fi ® ¢:))(z,y) will be written as ¥y, ,.(z,y).

Example (1) Let G = SO(3) be the group of rotations of the 3-dimensional
euclidean space around the origin. Let H = K C G be the subgroup of rotations
hs about the north pole:

cosp —sing 0
hy =| sing cos¢ O
0 0 1

with 0 < ¢ < 27. H is isomorphic to the group SO(2) of plane rotations. Any
element ¢ € SO(3) is given by three Euler angles ¢,8,1 such that ¢(¢4,0,¢) =
h3hghS, where hi, is a rotation about the ith coordinate axis through an angle o. It
is known (see Vilenkin[44], p.106 ) that the rotation ¢(¢, 8, ) has the matrix form

t(¢,0,%) = 1(¢4,0,0)t(0,0,0)t(s,0,0) (6.1)
with

cos¢p —sing 0
t(4,0,0) = ( sing cos¢p 0 ) )

0 0 1
1 0 0
t(0,0,0) = 0 cosf —sind |,

0 sinf cost

giving

cospcosyp — singsinpcosd —cospsinyg — singcosipcosd  singsind
t(4,0,9) = | singcosp + cospsinipcosd —singsinyg — cospcosipcost —cospsind

stnysing cospsin cos
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The coset space G/H can be identified with the sphere
SP={zec R :|z|=1)
and the coordinates of any point z on S? can be expressed in the form
z = (0,0,1)t,(p,0,%) = (sinpsinb, cosysinb, cost),

where g — t; is the cross-sectional function from G/ H to (. Since the coordinates
of z are independent of ¢ we can write

= (0,0,1)1,(0,6,%)

with 0 < 0 < 7 and 0 < 1 < 27. Let m,,n € N, be a representation of H defined
by 7,.(hg) = €™. In order to consider integration on (3, consider its volume element
dt = dvgduy, where dvy = (27)"'d¢ is an invariant volume element of H and
dprr = (47m) 'dlsingdg is the element of surface area of S?. Then the space L,(7,)
is defined by

Ly(n,) = {f:GC: flhag) =™ f(g),hy € H g € G;
1l = (f, 1@ Pdun()F < oo},

Given f € Ly(w,) we can define f : S* — H(x) by

f(i) = J(tz)
and the induced representation (/™ is given by
(U7 (@) = f(tzs)-
But if £z = hyty, then y = (0,0,1)t,s = zs. Hence tzs17} = hy. Therefore,
(U7 )(z) = ™ f(zs),
with hy = tgst;l. Also,

17l = ( [, 1F(e)Pdun( m)) (=" jo’r|f(9,¢)|1’smad9d¢)%.

Consider the space AD,p > 1 formed by L,(7,) and Ly(7}) together with the
projective tensor product.

Case 1: n=1m

We see that

Hey = {{m(0)@n—E@m (b)), be H* NHY, £ neC},
= 0.
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Therefore A, , = C. Since G/ H has finite invariant measure (cf. Lemma 4.3.2 (b)),
the corresponding Banach bundle B = (B, ) is given by

B=Cx(GxG)/A

and
0(z, (z,y)) = (=,y).

By Proposition 4.3.1, the elements in AP are cross-sections of the form

Ujgi(2,y) = lpfe,ge(xy—l7 e),
and hence can be thought of as a mapping of one variable. We have

o) = [ 3 fut)g()dna(0)

HUYNH =1

If u g H, then H* N H = {e}, giving

\Il(u) = -/G!io;fi(ut)gi(t)dllg(t).
If w € H, then
Vo) = [ 2 filut)gi(t)dun (),

H =1

= /G if,-(uvt)g,-(vt)dpg(t), for v € H,

H i=1
= [, [ ¥ flwot)gi(ot)dva(v)dun 1)
7o
since H is compact. Therefore for any u € G,
Vo) = [ 3 fiut)gi(t)dvalt).
=1
But for u € H,

Finl) = 3 el

= 6i”¢/GEjfj(t)gj(t)dVG(t)- (6.2)
On the other hand, for u € H,

Vaalw) = [, 3 At O (e
=l iﬁ((o,o, 1)ut)g((0,0, 1)) du (t),
= [ 3 H0.0.108(0.0,0)dun ),
S A CHOTEO! -
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By equations (6.2) and (6.3), it is clear that Uy, ,.(u) = 0 for v € H. Therefore,
letting §(t) = g(t™"), the elements Wy, ;. of the space AP are of the form

S0, for i), ifug A,
\I’fe,gi(u)z{(), o) g() ifugH,

Case 2: n # m. In this case,

0, zyt¢H,
H:l:,y - { Ca wy-l € -H7

and therefore,

A 16 ey ¢H,
YT 10, zy~te H.

The Banach bundle B = (B, 6) is given by
B={(C(z,9)A) :ay™ ¢ H}U{(0,(z,y)A) : 2y~ € H},

and
0(2’, (‘7"7 y)) - (.’L', y)-
Now let us consider the elements of the space A}. When u € H,

Von) = [ 3 (o) (6.4)
= ma(u) /gifi(t)gi(t)dw(t)- (6.5)

On the other hand,

/g ifi(ut)gi(t)d,u;{(t) = fﬁ 2 fi®)gi(u™ ) dpun(t), (6.6)
= ) [, 3 a0 (1). (1)

By (6.5) and (6.7), we see that

/G if?(t)gi(t)dﬂy(t) = 0.

H i=1

Therefore,
Vs og(w) =0, foru € H.
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Now for ey~! ¢ H, H*¥~' N H = {0}. Therefore,

Uy, 0i(u /Zfl (ut)gi(t)dvg(t) for u & H.

Hence, in this case too, the elements Wy, ;. of the space AJ can be described are of
the form

Yooy fi* gi(u), ifugH,
\Ilfi.gi(u):{(), ! () ifugH,

For the remaining part of this example, let m and n be any two positive
integers. Since any u € G can be expressed in matrix form as in (6.1), we see
that Wy, . (h3hgh3) = e™Pe™¥ Wy, o.(hy). Therefore || Uy, 5. ()| depends only on 6
and we can regard ¥ as a function on the double coset space H : H = [0, 7]
(cf.Proposition 4.3.1). Suppose f; and g; are continuous for each ¢ and let u — hy
where v € G and h, € H. In oder to show ¥y, . is continuous, it is sufficient to
consider the elements of AP which can be expressed in the form of a finite sum

™, fix3i(u), since an infinite sum of the form Y32, fi*§;(u) can be approximated
by finite sums. Letting u = hgv we have v — e, and

“\Iin,gi (u) = W, 0:(hg) ”

= e [ 3 Ao Bdus) - € [ 3 Dadrve(o)]
< /Zuf<vt O 19:(2) 1 dva(t),
< Z( 150 = @I dva@)F (| gl dve()

Now (fe llg:(2) [P dva (1)) = (Jg Ju lg:(hO|I” dvr () dpure (2 )7 = llgilly- Simce f;

is continuous; for a given € > 0 there exists a neighborhood U; of e such that

1 fi(vt) — fit)]l < €/(2llgillyr) for v € U;. Hence,

€
50 (u) = g, 0 (Rg)|| < Z o < e
=1

This is a consequence of the general result given in Proposition 4.3.4; it is trivial
that there exists a continuous family of Bruhat functions 8,, for v € GG, namely,
B.(t) = 1for all t € G. Hence by Proposition 4.3.4, the cross sections are continuous
when the corresponding f; and g; are continuous with compact support.

By Proposition 4.3.5 (1), A» C Ly(H : H), where Ly(H : H) can be identified
with L;([0, 7], sin d6). Note that Li(H : H) is a commutative algebra under the
convolution.
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Example (2) We will construct A? space (where the norm on the underlying
tensor product space is the greatest cross-norm) in the case where G =R H = Z
and K = 3Z. Let the representations 7 of H and v of K be given by

To(h) = e for h € H,

and .
vs(k) = e** for k € K,

where a, 3 € R. The homogeneous spaces are G/H = [0,1) and G/K = [0,3).
Hence, for 1 < p < oo,

Ly(x) = {F : G = C: f(hw) = €"f(2),h € Hz € G, | fll, = (J} |f(@)lPdo)F < o),
Ly(v) ={9: G~ C: f(kz) = e *f(a),k € K,z € G, |lglly = ()5 19(2)|" de)¥ < oo}
The corresponding induced representations are defined by

(U7 (=) = f(z +1), (U7 g)(2) = g(z + t)for f € Ly(r),g € Ly(7") and t,z € G.

It is clear that H* = H, KY = K, H*"NKY = K = 37 for all z,y €
G, (GxG)/A~R,G/(HNK)=10,3) and the double coset space
H: K ~[0,1). Therefore

Avy = ({En(e®™ — ™) 1 ¢,n € O

Hence,

] ifta=-4,
'A”'y_{O, if a# —0.

This implies that
Al =0if o # B.

Let us consider the case where @ = —f. Now since G/H and G/K have
finite invariant measure, by Proposition 4.1.5 and 4.1.6 the integral (4.19) is well
defined and finite. Hence we can consider the space A? (p > 1) whose elements are
cross-sections of the trivial bundle B = (B, 6) where B = C x R, and 0(z,z) = z,

by Proposition 4.3.2. Hence we can regard the elements of A} as functions
Y0 0 [0,1) — C and the equation 4.19 can be simplified to give

bra@) = (WX £ 80)(,0) = 5 [ 3 e + Do),
=1 =1
where f; € L,(7),9; € Ly(7*). Letting gi(t) = ¢:(t™*), the above can be written as
P10:(2) = Zfz * gi(w).
=1
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Proposition 4.3.4 states that the cross-sections ¢y, ,, are continuous for continuous
fi € Ly(w) and g; € Ly (y) . We will show this directly. It is sufficient to consider
elements of A? which can be expressed in terms of finite sums since the infinite
sums can be approximated by finite sums.

[6102) = a0 = 3l [32 e + 000 = o),

< 33 [ WG+ ) = SO
< 3,,2 [ sz + 6~ Al
< 32 toonra)” ([ s +0 - o)

- ;Z it ([ 5= +) - fi(t)ll”dtf-

Since f; is continuous for each 7, for a given ¢ > 0 there exists a neighbourhood
N;(0) of 0 such that ||(fi(z +1) — fi(D)|I”’ < €/2%||g:|l,» for all z € N;(0). Therefore
we have for z €Nizy N;(0),

€

(gillp 577—=—)

|‘1/)fiy i(z) . ¢fi, ;(0)” < ;
’ ’ = 2 gl

NgE

(A
NE

- = €,

21

-
Il
—

as required.

We will show that Proposition 4.3.5 is true in this case. This now states that
Aﬁ C Li(R). For f; € Ly(7),9: € Ly ("),

11 3.
Isall = [ 15 [ 3 file + Dg0)dtldz,
=1

IN

>3 1 UG + Dl

IA

> 5 ) e [ 1 + 0ol
=

<

l|gillp 1l fillps

Ll

showing that AP C L([0,1)). By Hewitt and Ross[26], Theorem 20.18, we see that
¥fi:(z) € Lim[0,1),
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where 1/m =1/p+ 1/q' — 1 which confirms Proposition 4.3.5 (1).

It is clear that every neighborhood of 0 is invariant under the action of H.
Therefore, by Lemma 4.4.6 and Theorem 4.4.7, we have for 1 < p < oo,

Ly(7) ®a Ly () = A,

1276
Example (3) Consider the group G = {zg.4 = (60 6”2,,45) 1z €C,0<
ei21rt9 P
6, < 1}, with subgroups K = {kg. = ( 01 ) :z2€C,0<0 <1},
iy & 1 =

H:{hz,dJ:(O eigmp):ZEC,OSQSSl},N:{nZZ(O 1)1266}7
Amfas=(L2 0 V. o<op<tandB={oo=(%" 9):0<o<1

= {ag = 0 eizrd |- < ¢ <1} an = {by = 0 1 /:0=90< }.

Note that G/H ~ B, G/K ~ A, K = N.B, H = N.A, N is abelian and

ANN=BNN = (1) (1) . Also, 29,4 = h,4bs = kg ,e—i2nsay. We shall use the

method of Little Groups (see Serre[41]) to construct irreducible representations of
H and K. Let 2 be the trivial representation of N. Then the stabilizer of : under
the action of K is K itself. Now %, : B+ C, n € N, defined by 7,(bs) = €?*™?  is
a one-dimensional representation of B. Then

Yn = Yn O PK,

where px : K — K/N is the canonical mapping, defines an irreducible represen-
tation of K, by the method of Little Groups.

Similarly, for m € N, we can define an irreducible representation ,, of H
by letting
Tm = T © PH
where 7, : A — C is a representation of A defined by #,,(as) = €™ and
pg : H — H/N is the canonical mapping. The induced representation spaces
L,(m,) and Ly (v;) are given by

Ly(mm) = {f G = C: f(w0,9) = €™ (bo), ([ 11 (b)]Pd8)5 < o0},

: Y
Lo(3) = {9 G 1= C : glaans) = €™ g(ag), ([ (eI d8)¥ < o0},
The corresponding induced representations U;™ and U;Y,:’ of G are given by

(U;er ($0»2'¢)f)(g'9'72'1¢') = f(x0+0’,zei2"¢' +z’e"2"9,¢+¢’),
for f € Ly(my,) and

(Upr (26,5,)9)(01,21,61) = 9(T o191 seirndt yoreizns gypr);
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for g € Ly(7)). Now H* = H KY = K and H° N KY = N for all z,y € G. For

s€ H*NKY, m°(s) = n(zsz™!) = (7 o py) (é i) = 1. Similarly, v¥(s) = 1.

Since G/H and G/K have finite invariant measure, we can construct A?
space for 1 < p,q < oo, formed by f € L,(7) and Ly (y;) together with the
projective tensor product (see Propositions 4.1.5 and 4.1.6).

Therefore
Acy = {(F*()E®@n—E@ (F(s))™n) : s € N,E,n € CY,

= {{(@n—¢(®n):En el
= C.

1

Note that the double coset space H : K = {e = 0

4.3.1, for h,, € H, kg, € K and s € G we have
Uy gi(hags, kozs) = m(hag)y(ks)¥si (e, e),

_ 12mné _i27rme¢
e T

(1) )}, hence by Proposition

il 0
0 eiwqﬁ

€

SinceG/(H“”ﬂKy):{< ), 0<0,0<1} for any z,y € G,

Vo) = [ 3 (0) @ue gilt)i,

HNK ¢

= 3 [ gag)ds. [ T fba)do (6.8)

In the case of p = ¢’ =2, (6.8) can be written as
Usgi(e,e) = Zfz(n)ﬁz(m)a (6.9)

where fi and g; represent the Fourier transforms of f; and g; respectively. Therefore
Uy, 0. (has, kys) = e?™Pei2mmé 570 f.(n)d;(m). In this case, it is clear that Uy, ,, is
ei21rt9 2

continuous. This is to be expected by Proposition 4.3.4, since ( 0 e | =

#e"zP for z € C,0 < 0,¢ <1 defines a Bruhat function of N. In the case n = m,
(6.9) can be further simplified to

o0

Usole,e) = Z(fz*gz)A(n) (6.10)

=1
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Example (4) Let G = II x C, the semi-direct product of the circle group II and
the set of complex numbers C. The binary operation in G is given by

(ew, z)(ei¢,w) = (ei(a""b), ey + w),

where 0 < 0, ¢ < 27 and z,w € C. The identity e = (1,0). Let H = K =1II. Then
G/H=G/K~C~H:H.

Let m,,n € N be a representation of H defined by m,(e*,0) = e'"’. Then,
the space L,(7,) is defined by

Ly(ma) = {f 1 G = C: (e, w) = (e, 0)(1, w)) = € f(1,w), ([ 1£(1, w)|Pdw)* < oo},
The corresponding induced representation Uz on G is defined by

(U3 (4, w)f)(e",2) = F(E@+9), 62 + w).
For ¢ = (¢4, w),

H® = {(e7, —e "w) (e, 0)(e"*,w) : 0 < 0 < 27} = {(e*, w—e"w) : 0 < 0 < 27}.

Since (€, w — e?w) € H only if w =0 or ¢ = 1, we have
< ) {(1,0)} forz¢ H,
H”H_{H for o € H,

which then implies

H forz ¢ H,

H/(HNH®) ~ { {(1,0)} for z € H.

Clearly, H/(H N H”) has finite invariant measure for all z € G, hence by Propo-
sitions 4.1.5 and 4.1.6, ¥ is well defined on L,(7,) ®% Ly (xk,), for n,m € N, and
the elements of the space A} are defined by

Ualew) = [ 3 Fet)a(u)dey o)

HZNHY =1
If 2y~' = h = ('%,0) € H, then H®N HY = HY. This gives

Uy, 0(z,y) = /G ifi(hyt)gi(yt)dum(t),

HY i=1

= /g io fi(ht)g,-(t)de(t), (see Lemma 3.1.2,)

= [ 3 FOatdpn(),
H =1
= \I}fi,gi(wy_lve)'
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If zy=' ¢ H, then H* N HY = {(1,0)} and hence

Wselay) = [ 3 Flathgilyt)dve(t).
=1
But since the Haar measure on G is left- and right-invariant, we have
Vi (@,9) = [ 3 ey Dgi()dua(t) = Uslay™ ).
=1

Consequently we have, on writing u for zy~!,

Uygi(u) = f Zfz (ut)gi(t)dpm(t), for v € H,

H =1

- /G;f,-(ut)gi(t)dz/g(t), for u & H.

Uy, 4 can be shown to be continuous for continuous f;, g;, using a similar
argument to that of Example 1, p.114.

Now let us calculate Wy, ;. (u). Consider the case where n = m. Letting
u = (e, 2) we get
W L@g)E ) = [ 3Rl 2)(e?, w)gl(€4, w))dgdw,
=1 1=1
= [ SR, 6 w64, )b
=1

For either f € L,() or f € Ly(x*) define f(w) = f(1,w). Since
(eit+9) eitz 4 w) = (019 0)(1, ez + w),

Wpn(€%2) = [ YOOz + w)e ™ i(w)dgduw,
Gz
. 27 oAU
= eme/ / 3 fil€?z + w)gi(w)dpdw.
0 weC ;3
Letting ¢;(w) = gi(—w), we see that the above can be written as

lI’fngt(e )y @ = ””9/ Zfi *g’b WS ¢

Suppose p = 2. Then, for each z, f; and §; can be regarded as functions in Ly(C) .
Hence f1 * g; = h for some h € L1 (C). Therefore, we have

3 . 2 .
Upale?,2) = & [ hez)dg. (6.11)
0
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For z = z + iy, let €z = (z cos ¢ — ysin @) + i(xsin ¢ + y cos ¢ = Ry(z,y). Then
2T i 2w .
/ h(ez)d¢ = / / h(u, v)e™ )-Relew) gy dydg,
0 0o JRr2
2 :
- / / h(u, 0) e R-4@0)-@9) dydudg.
0o Jr2
Changing variables (u,v) — Ry(u,v), we obtain
2T . . 2T
/ / h(u, v)e2 o) @o) dydpdg = / g2milun) (o) / h(Ry(u, v))de)dud.
0o Jr2 R2 0

Change variables (u,v) to polar cordinates (r, §) and assume that [Z™ h(Ry(u,v))d¢
is independent of 0. Letting k(r) = [Z™ h(Ry(u,v))d¢, we obtain

] 2w
[, e [ h(Ry(u,v)dg)dudo
R2 0
o 2 , .
= / k(T')/ g?mi(rcosbyrsinb)-(2.9) . g 49,
0 0

o0 2m ; .
= / k(’f‘) / e21rz(a:'r cos 8+yr sin 6) dOrdr.
0 0

0

Letting w = e*, we see that

(z—iy) -1 (z4iy)
7 ety g

- ) . eZm’rw
/ e2m (zr cos 0+yr sin §) do = f ‘ dw’
0 Jwl=1 1w
1

- [ _em"r(w2+ ﬁ)dw

=1 1w

Letting tw = v, the above gives

2m , . o,
/ 621”(1:7' cos §+yr sm¢9)d9 — /l ie”rr(vz—;)d’v.
0 v

l:l i'v

Let ¢t = vZ/|z|. Then the above simplifies to

/‘27" 627”'(151' cos f+yr sin 6) do = / 'l67r'r|z|(t— %)dt
0 [t|=1 2t
But

1 nriz —l
Sy ez Pt = do(arl)

where Jy is the Bessel function of order 0 (see Whittaker and Watson [47], p.355).
Hence

Wy, 4. (e%) 2) = 2me™ /oo k(r)Jo(mr|z|)rdr.
0
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Index of Notations and Symbols

Notations

[ All

A(X)

Bj,j =0,1,2
BE,j =0,1,2
B =(B,9)
B#*

ER
Bf,j=0,1,2
B(B)

B,

C(B)

Co(B)

C(X)

the norm of an operator A in the space L,(V, W), p.21.
the Borel o- algebra on X, p.6.

p-32.

p-32.

Banach (semi-)bundle, p.11.

the Banach (semi-)bundle retraction, p.11.

p.-12.

p-32.

the set of all bounded cross-sections of B, p.13.

fibre of the Banach (semi-)bundle B at an element z,
p-10.

the linear space of all continuous cross-sections of (B),
p-13.

the subspace of C(B) consisting of those cross-sections
which vanish outside some compact set, p.13.

the algebra of complex-valued, continuous functions on
X, p4.

the subspace of C'(X) consisting of those functions
with compact support, p.4.

the space of all continuous functions with compact
support on X, mapping to the topological space Y, p.4.
the algebra of complex-valued, continuous functions
vanishing at infinity on X, p.4.

the space of Hilbert-Schmidt operators from V to W,
p.22

the space of all intertwining operators, p.22.

the space of intertwining operators for = and v, p.16
the space of all continuous linear operators from V to
W, p.21.

the set of all operators A having ||A|l, < oo, p.21.

the space of all p**-power summable cross-sections of B,
p-13.

p-39.

p-39.

the Lebesgue space on X, p.4.

the space of all y-measurable, p‘*-power summable
functions from X to Y, p.4.

p-106.

p-106.
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S.Intg(m,)

U(X)
V*

Special Symbols

R,C,Q,N,Z
Q(v-1)
TRy

B A

the space of intertwining operators for 7 and -« which are
in the Schmidt class, p.16

the group of all isometries of X onto itself, p.16.

the dual space of V, p.15.

p-5.

p.50.

equivalence of w and ~, p.17.

A(-,y) is a Radon-Nikodym derivative of the
measure 4, with respect to y, p.8.

isometric isomorphism, p.5.

topological equivalence, p.5.

if and only if

the value of a function at « is y; used to define
functions by their values.

a mapping from space A into space B
converges to

convolution product, p.23.

p-20.

p-59.

p-21.

the adjoint of the representation 7, p.17.

p-16.

p.-8.

the homogeneous space of the set of all right-cosets of
H in G, p.5.

the double coset space of a group G
corresponding to the subgroups H and K, p.6.
p-16.

the diagonal subgroup of G' x G, p.28.

p.6.

the canonical mapping from a group G to the space of
right-cosets G/ H, p.5.

the conjugate exponent of a number p,

1 <p < oo, p.d.

p.32.

p-32.

p-32.

p.32.

p-11.

p-11.
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p.12.

the adjoint of the operator T, p.47.

directed set, p.5.

set of all double-cosets H x K : A of G x G,
p-28

the greatest cross-norm o of z, p.20.

the p-nuclear norm ¢, of z, p.20.

the Hilbert-Schmidt norm £ of z, p.21.

the least cross-norm = of z, p.20.

the dual pairing between a space V and its
dual V*, p.4.

the linear span of vectors {u, : @ € J} in any
given vector space, where J is a set of indices, p.4.
the orthogonal complement of ({u, : @ € J}),
p-115

H is a normal subgroup in G, p.84.

the intertwining number of the representations
7 and +, p.16.

composition of the mappings f and g¢. p.4.
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antilinear operator 101
approximate identity 15

Banach (semi-)bundle 11
—retraction 11

bundle 10

bundle projection 10
Borel o-algebra 6

covariance condition 17

cross-norm 20
cross-section 13

disintegration of measures 9
directed set 15
discretely related 9

essential A-module 15
ess sup (essential supremum) 4

fibre 10
greatest cross-norm 20
Hilbert-Schmidt operator 21

intertwining operator 16
invariant set (under the action of a group) 81

kernel 76

orbit 5
operator of finite rank 101

p-nuclear norm 20
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predual 15
quasi-invariant measure 6

Radon-Nikodym property 18
regular Borel section 6
regularly related 10
representation 16

smoothly related 68
Strong Intertwining operator 16

subbundle 13

Tensor product 19

trivial Banach bundle 11
unimodular 7
utraweak*-operator topology 22
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