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Abstract

The major objective of the research described in this thesis is to describe effective

methods for the partitioning of Very Large Scale Integrated (VLSI) systems.

A comparison is made between the structural design of large progra¡ns and large

VLSI designs. A methodology for VLSI structural design is proposed based on many

of the precepts of structural program design. The methodology requires restructuring

of the design process; a specific form of design representation; and the addition of

computer aided modelling of both the algorithmic function and geometrical form of

the structural design.

The design process is divided into a designer intensive top-down planning phase, and

an automatic bottom-up construction phase.

A model of design is described in which the commonly used layered set of abstractions

are replaced by a single structural description. The language introduced for this

purpose incorporates a number of features to reduce the apparent compiexity of the

system description. The abstract representation of intermodule synchronization and

communication allows a process of stepwise refinement to be applied to these as rvell

as the more usual stmctural entities.

Two computer aided modelling tools have been developed that together constitute

a facility for rapidly analyzing alternate structural partitionings in the search for an

acceptable design.

The first computer aided modelling tool is a functional simulator incorporating a

novel interprocess communication and scheduling mechanism. This allows the ef-

ficient implementation of the description language intermodule communication se-

mantics. The interactive nature of the simulator facilitates initial debugging and

qualitative evaluation of the design. A profiling facility allows for the quantitative

evaiuation of the partitioning based on data flow and module activity.

The second computer aided modeliing tool is a hierarchical floorplanner that facili-

tates the evaluation of the embedding of the proposed structural design into the plane.

An investigation of structured floorplan design shows that the process is inherently

knowledge intensive, and that much of that knowledge is inexact. The floorplanner

incorporates several novel knowledge representations that are used to express diverse

classes of designer expertise. A representation for spatial reasoning provides for the

xl



efficient manipulation of rectangles in a mosaic. Another representation has been de-

veloped for reasoning with the inexact knowledge used by designers in predicting the

implementation of floorplan modules in a hiera¡chical design. A production system

is used as a design manager to guide the overall development of the design.

A case study is presented that demonstrates the utility of the methodology and

computer aided design tools in VLSI system design.
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Chapter 1

Introduction

The major objective of the research described in this thesis is to describe effective

methods for the partitioning of Very Large Scale Integrated (VLSI) systems.

The philosophy of. structured programming is regarded as one of the most effective

methodological tools used to manage software complexity [Dijkstra, 1972]. The ap-

plication of structured programming techniques to VLSI systems was proposed by

Carver Mead at Caltech [Mead & Conway, 1980] and has since been widely adopted

for the design of custom integrated circuits.

A central principle of this structured VLil ilesign methodology is the partitioning

of systems into a hierarchy of modules. However techniques for generating such a

structure are not well developed. In this thesis the inherent difÊculties of partitioning

VLSI systems are examined and methods proposed for solving the problem. These

structural VLSI design methods are intended to complement those of the established

structured VLSI design methodology.

The concepts involved in the structural design of programs [Yourdon & Constan-

tine, 1975] are used in this thesis as an aid to the development of a methodology

for structural VLSI design. It will be argued that the horizontally layered abstrac-

tion used for design representation in structured VLSI design are well suited to the

structural planning task. An alternative method based on the parallel development

of algorithrnic function ar,,d physical form wlII be described.

Central to the methodology are a design specifi.cation language and two interlinked

design aids for modelling the structural design. The architectural specification lan-

guage provides for the abstract representation of the structure and function of the

1



proposed design. The first modelling aid is a simulator for the language that is used

to evaluate the functional partitioning of the design. The second modelling aid is

a knowledge-based floorplanner that assists in the evaluation of the partitioning on

the two dimensional silicon surface. The use of knowledge-based techniques allows

the floorplanner to operate in a top-down design style and incorporate principles of

structured VLSI layout design. These two design aids constitute a facility for rapidly

analyzing alternate structuraJ. designs in the search for an acceptable result.

In the remainder of this chapter the problem of VLSI design complexity is described

together with the established structuring techniques used in its control. The defi-

ciencies of such techniques are discussed and the relevance of structural d"esign is

introduced.

In Chapter 2 a description is given of the methods developed for the creation and

evaluation of structural designs for programs. The difficulties of partitioning VLSI

systems are examined, and the similarities and differences between the two domains

identified. A structural VLSI design methodology is then described based on a reorga-

nization of the VLSI design process. This allows softwa¡e structural design techniques

to be used in VLSI given the existence of appropriate ianguages and design aids.

A language designed for the abstract description of VLSI designs is described in Chap-

ter 3. The ianguage has a number of features that assist in the abstract description

and refinement of structure and communication in the design.

The functional modelling of VLSI designs is discussed in Chapter 4. A simulator

is described that models the behaviour of a design to aid in the evaluation of the

functional partitioning.

The issues involved in producing a system partitioning suitable for physical design-

floorplanning-are examined in Chapter 5.

In Chapter 6 a knowledge-based floorplanner is described that allows for the mod-

elling of the structural design in terms of its realization as a floorplan.

An example of design using the previously described methodology and design aids is

documented in Chapter 7.

FinaIIy conclusions and suggestions for further research that arise from this thesis

are given in Chapter 8.

2



l-.1- VLSI Systern Design Complexity

In 1964 Gordon Moore predicted that integrated circuit complexity (as measured by

device count) would continue to double every year: the ubiquitous "Moore's Law"

fNoyce, 1977]. Since 1970 however this line has only been held to by memory de-

vices. Less regular designs have fallen below the predicted complexity as shorvn in

Figure 1.1(a) [Moore, 1979]. This lag exemplifies the problem that now faces VLSI

design: the complexity of the design task has risen to the point where it is difficult for

designers to create systems that make full use of the available fabrication processes.

This has resulted in an exponential rise in design effort as illustrated in Figure 1.1(b).

1960 1965 1970 1975 1980 1985 1960 196s 1 970

(b)

1975 1980

Figure 1.1: Trends in integrated circuit complexity [Moore, 1979]

The complexity of VLSI design may be attributed to two related phenomena: the

Iack of structure in, and difficulty of. comrnunication on, the silicon surface.

The structuring problem results from the essentially unstructured nature of the VLSI

medium-there is no a priori partitioning imposed on the design. According to

Séquin [Séquin, 1983] this may result in a d,angerous situali,on where the complexity

witltin a large, unstructured d'omain simplE oaerwhelms the desi,gner'

Large digital systems are typically exhibit a great deal of physical partitioning. Tran-

sistors are integrated into IC's, IC's are placed onto PC boards, PC boards are

connected to mother boards, mother boards are packaged into cabinets and intercon-

nected with backplane buses.
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The partitioning of systems into such a packaging (or physical) hierarchy is guided

by factors such as division of labor, clarity of design, ease of manufacture, function-

ality, communication requirements, reliability, testability and maintainability. This

structure is an artifact imposed by d,esign influenced by physical considerations, not

an innate property of the medium - one could (however inadvisably) attempt to

design and build a complex digital system on a single circuit board in a completely

unstructured manner.

There is no innate structuring imposed by the physical nature the VLSI medium.

The entire planar silicon surface is available, and any structure is imposed by the

designer.

Some VLSI design problems are inherently well structured. Memory design, for

instance, has achieved high circuit densities limited mainly by fabrication technology

rather than design complexity [Taylor & Johnson, 1985]. This may be attributed to

the their simple regular structure and consequent design in which a small number

of circuit blocks are designed and replicated for placement in a regular pattern of

interconnection. For designs with less inherent structure such as those based round

instruction sets and protocols, the additional design complexity has a profound effect

on designer productivity. This is illustrated in Figures L.2(a) and 1.2(b). In memory

design an economy of scale is achieved: as the number of devices increases, design

productivity increases. In the design of less well structured elements, not only is

productivity about an order of magnitude less, it actually decreases with circuit

complexity.

50 1S0 2OO 50 150
Complexity (Thousands of Devices) Complexity flhousands of Devices)

Figure 1.2: Designer productivity [Fey,.1985].
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The general approach to improving designer productivity in such cases is to utilize

the freedom that exists in the VLSI domain to impose different structuring schemes

on the silicon surface in order to reduce design complexity. Prior to introducing tlvo

broad classes of structuring VLSI designs it is useful to briefly examine the issue that

differentiates them: the design of the interconnecf used for communication rvithin

the structure.

There are three primary costs associated with integrated circuit interconnect

7. Area. Longer wires consume more design area. This results in less functionality

being implemented in a given area.

2. Speed,. Longer wires result in greater RC time delays for a fixed sized driver.

3. Power. Greater capacitive loads on drivers result in higher power consumptions.

Interconnect length and complexity has in fact been identified as one of the primary

fundamental limits on circuit integration [Keyes, 1981]. I(eyes also notes that it is

one of the few such limits for which there is no underlying physical theory, furiher

complicating design near that limit.

The need to reduce interconnect length must be traded off against the need to simplify

design to increase productivity. This trade-off may be observed between the two

major classes of VLSI structuring: híghly partitioned and functionally partitioned

systems fFerry, 1985]. They are described in the following two sections.

1.1.1 Highly Partitioned Systems

It is possible to impose a structure similar to that use in conventional digital design

onto unstructured silicon. Gate array arrd standard ceII "semi-custom" design styles

cluster the atomic components of the design, the transistors, into small functional

units. These are then placed and routed such that area and interconnect length

are minimized. The procedure is quite analogous to the production of printed circuit

boa¡d designs, and a large number of algorithms have been created or adapted for the

automation of this design task, a recent example being simulated annealing [Sechen

& Sangiovanni-Vincentelli, 1985]. These design styles are termed lùighly partitioned,

in that they are structured into a large number of small partitions.

b



The primary disadvantages of such design styles stems from the expense incurred

by communication between the components on the two-dimensional surface. I(eyes

refers to a typical gate-array design of 1496 gates in which 0.26cm2 of the total chip

area of 0-32cm2 is used for the running of. 4m of interconnect [I(eyes, 1981]. This

implies an active are of or'ly 2070, the remaining 80% being utilized for long rvire

runs with their attendant disadvantages.

In summary, highly partitioned styles have the advantage of being amenable to design

by automated techniques because of the simple formulation of design as place and

route. However the large area consumed by wiring precludes them from achieving

transistor packing densities suffi.cient for VLSI leveis of integration (> 105 transistors

per die).

t.L.2 Functionally Partitioned Systems

In order to achieve VLSI levels of integration it is necessary to resort to design

styles based around functional partitioninq. In these styles the system is decomposed

into modules that are functionaliy related, resulting in a reduction in the amount

of communication that occurs between partitions. The increased circuit densities

achievable with this form of partitioning may be attributed to an associated reduction

in interconnect. Ferry's results suggest Lhat auerage interconnect lengths in a VLSI

circuit that is functionally partitioned d"o not continue to increase as d,euice sizes

a,re scaled d,own and chips become more d,ensely paclced, [Ferry, 1985]. He cites the

functionally partitioned design of the HP 32b microprocessor. It contains 1.3 x 105

gates with 5rn of interconnect, implying a factor of 70 reduction in the wiring length

per gate ratio over the gate array design referred to previously. Ferry relates the

success of functional partitioning to a reduction in information flow between design

partitions, a concept discussed further in Chapter 2.

Functionally partitioned designs are generally produced using a full custom design

style. Not only is the design functionally partitioned, but the design of the resuiting

layout takes into account the geometrical interactions of the connecting modules.

This minimizes inter-partition communication costs. In this way modules may be

designed so as to combine their function with the needs of system communication, a

classic example being the barrel shifter (Figure 1.3). The interconnect required by

the shifter matches the global interconnect strategy of the data-path illustrated in

6



Barrel
Shifter

Figure 1.9

Literal (ln/Out)

Bus A

Bus B

Bus A

Bus B

Shift output

Shift constant out

Shift conslant in

Figure 1.3: A structured layout design for a barrel shifter [Mead & Conway, 1980, p

1611.

The use of functional partitioning and custom design techniques adds considerably

to the complexity of the design task compared to highly partitioned design styles.

Not only must module interfaces be carefully designed to decrease interconnect costs,

but the higher resulting device densities increase the number of components in the

design.

Fey's research [Fey, 1985] supports the contention that the primary complexity prob-

lem of VLSI design is that of interconnect: the productivity model he describes

predicts that a custom circuit of 106 devices will take about 400 man years of ef-

fort to design in 1989, however an increase in the complexity of interconnect could

increase this by an order of magnitude.

In the following section an examination is made of some general complexity manage-

ment techniques. The application of these techniques to functional partitioning in

structured VLil design is discussed in Section 1.3.

L.2 Complexity and Structure

In order to provide a basis for the discussion of structured design as a complexity

management technique, the relationship between design complexity system structure

shall be examined in this section.
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T}ne complerity of a system comprised of a number of parts may be defined as th,e way

in uhich a uh,ole is different fr:om th.e compositi,on of the parts lYan Emden, 1975]. In

other words, complexity is that property of a system that arises from the fact that it

is a composition of a number of parts: before the parts were composed they may be

regarded as having zero complexity as a reference point. This definition emphasizes

that aspect of complexity of particular interest in system design: that the complexity

of a sgstem is due to the interaction of its parts.

\Me can express the complexity of a system in terms of the interactions between its

parts as follows. For the system ,5 composed of atomic components V1..r, illustrated

in Figure 1.4 the complexity C(,S) may be expressed in terms of -R, the interaction

between atomic components as:

c(s) R(v',vr) + R(v',%) +''' + R(v'.,v")

t R(Vz,%) + ... + R(V\,U") + .--

...+C(VL)+...+C(v")

S

oaa Vn-l

Figure 1.4: An unstructured system ,S composed of atomic components Vr .. .U"

In accordance with Van Emden's definition only the difference between the total

complexity and the sum of the complexities of the atomic components is of interest:

c(s) - c(vt) c(h):
R(V,,V") * R(Vr,%) + . . . + R(V,V")

+ R(V2,yr) + ..- + R(V2,U") + .. .

The sum of the atomic component complexities may then be treated as a zero level

of complexity finally giving the complexity of the system as a sum of the interactions

of the parts:
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c(s) R(V,v") + R(vt,%) +''' + R(vr,v")

+ R(V2,7.) * ... + R(V2,U") + .. . (1.1)

The structure of a system is the manner in which the component parts are organized

to form a whole. \Me shall present a system as having two classes of structure: implici,t

ar.d explicit.

Impli,cit structure. The implicit structure of a system is a property of its basic cor¿-

struction, not its description. The implicit structure tends to be intricate as it covers

a systems function, physical partitioning and any other features of its operation and

appearance. Systems have a corresponding implicit complexity [Séquin, 1983] that is

a function of their construction: the number of components and their interactions.

Erpli,cit structure. The explicit structure of a system is a property of a particular

representation used to describe it to an observer. The explici,t complexifE [Séquin,

1983] implied by such a structure is a function of the representation, and as such is

amenable to reduction by judicious choice of representation.

For example, a VLSI chip has an intricate implicit structure of perhaps hundreds of

thousands of transistors each carrying out complex manipulations of charge carriers

across junctions, and communicating via current carrying wires and capacitive cou-

pling. When describing such a device, structuring and abstraction techniques may

be used to generate a description that implies a much simpler explicit structure, and

a correspondingly reduced explicit complexity.

A general approach to the problem of reducing explicit system complexity is to pro-

duce a simple explicit structure by describing the system in a structured rr.anner:

simplifying part (component) interactions by means of. hierarchy and regularity.

L.2.L Hierarchy

One of the simplest forms of structuring that may be applied to a system is that of

partitioning. Recursive application of partitioning gives rise to a hierarchical system:

a syslem tltat is composed, of intemelated subsystems, each of tl¿e lat|er being, in turn

h,ierarchícal in structure until we reach son"te lowest leuel of elernentary subsystem

[Simon, 1962].
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The components of a subsystem typically have non-uniform intensities of interaction.

This non-uniformity is a useful basis for defining a hierarchical partitioning of the

system. Strongly interacting components may be clustered into subsystems, and

the resulting subsystems interact in relatively less complex manner. If a system

is amenable to such a recursive partitioning it is known as nearly decomposable as

opposed lo a decomposable system in which the subsystems are effectively independent

[Simon, 1962].

The judicious application of hierarchical structuring techniques to a system can re-

duce the explicit complexity of that system in a number of ways which may be

qualitatively described as foliows:

1. The task of dealing with the system is simplified because only the components

and interactions of a single subsystem need be considered at a time.

2. Sufficient application of hierarchical partitioning results in simple elementary

component. (Vr..").

3. In each subsystem, each child subsystem may be represented by an interface

that hides information other than that relevant to the composition of the child

subsystems.

Van Emden [Van Emden, 1975] presents the following analysis of the effect of usìng

hierarchical structures. If the whole is different from the parts then this difference

is due to the interaction of the parts. The magnitude of this interaction is equal to

the difference between the complexity of the whole and the sum of the complexities

of the parts. For the system ,S composed of subsystems ,S;¡ and atomic components

V1.., illustrated in Figure 1.5 the complexity C(,9) may be expressed in terms of .R,

the interaction between subsystems as:

C(S) Ã(^9', ^s2) + C(s') + C(Sz)

E(st, ,sr) + ,R(srr, srr) * R(sn,, srr, sr")

+ c(s") + C(Sn) + C(S2t) + C(522) + C(Sn)

This decomposition can be continued to give C(^9) as a function only of subsystem

interactions and C(Vt).-.C(V"), the complexities of the atomic components:
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aaaaaa

Figure 1.5: A simple hierarchically structured system

C(S) Ã(sr, ,sr) + R(Srr, Srr) + R(Srr,522, S2s) I
.-.+c(u)+...+c(v")

Under Van Emden's definition only the difference between the total complexity and

the sum of the complexities of the atomic components is of interest:

c(s) - c(v) c(u") :
ft(St, sr) + Ã(Srr, Srr) + R(Srt,, Srr, Sr") t '''

The sum of the atomic component complexities may then be treated as a zero level

of complexity finally giving the complexity of the system as a sum of the interactions

of the parts:

C(s) : J?(sr, Sr) + ,l(.5rr, Srz) + R(Srr, Szz, Szs) t . . (1 .2)

The advantages of the hierarchical structuring compared to the non-hierarchical case

(Equation 1.1) are:

1. There are typically fewer ^R (interaction) terms to be considered: only one for

each subsystem. This contrasts to the non-hierarchical case in which there was

an -R term for each pairwise combination of atomic components.

2. The -R (interaction) terms are independent: each subsystem ,S¿¡ appears only

in one term. This simplifies the design of subsystems that minimize interaction

with other subsystems.

11



Quantification of the interaction of the parts (rf) is domain dependent, and rvill

be discussed further in Chapter 2. The effectiveness of a partitioning at reducing

complexity within a particula¡ level of the hierarchy may however be expressed in

terms of two basic concepts: coupling ard cohesion, [Yourdon & Constantine, 1975].

Coupling is a measure of the interaction between subsystems: Iower coupling implies

less interaction and hence less complexity. Cohesion is a measure of how well the

components of a subsystem belong together. Coupling and cohesion may be used as

criteria for designing system partitions, and will be discussed in deiail in Chapter 2.

The vocabulary for the description of hierarchical systems varies with the domain

under study and often even within a domain. In this thesis, general subsystems

will be referred to as mod,ules, subsystems composed of further subsystems wiil be

referred to as comTtosition modules, subsystems that are components of a composition

shall be referred to as subrnodules, and elemental subsystems will be referred to as

Iea,f modules. The terms module and cell are synonymous, although module will be

preferred.

L.2.2 Regularity

The explicit representation of regularity in a system description is a powerful struc-

turing technique. For example two systems -4 and B rrray be composed of a similar

number of components with similar amounts of interaction and hence have similar

implicit complexity. However if the structure of A can be expressed in terms of the

simple replication of some module and its interconnections, then the explicit com-

plexity of A relative to B is greatly reduced. Here v/e suggest that this reduction in

complexity has two sources:

7. Regularity of function. Systems such as A contain a degree of redundancy in

their implicit structure that may be made use of by judicious partitioning into

identical modules. These may then be expressed as the multiple instances of a

single module definition. Explicit complexity is reduced as only the definition

must be considered in depth, each instance simply being a replication of the

definition. This form of complexity reduction may be quantified by a simple

regularity factor: the total number of components divided by the number that

must be individually constructed. This is also illustrative of the difference

between explicit and implicit complexity. The actual number of components
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(implicit complexity) is unchanged, but their description (explicit complexity)

has been simplified.

2. Regularity of intera,ction In a system such as A that is amenable to division into

identical modules, the interaction patterns between the identical instances will

also tend to be regular. Such regular patterns of interaction reduce complexity

simply by reducing ,R, the degree of interaction between subsystems.

The need to distinguish between these two classes or regularity arises because one

may occur without the other. In particular, regular interaction patterns may be used

to add structure to a system that has littie functional redundancy in its implicit

structure. Examples of functional and communication regularity in a VLSI system

are given in Section 1.3.6.

1-.3 Structu.red Design

T}ae structured, design style is a loose collection of techniques and principles that

aid in the development systems in a structured manner in order to control design

complexity.

The early formalization of structured design evolved in the domain of complex soft-

ware systems. The increasing size of software projects in the 1960's gave rise to a

situation in which few systems met goals, schedules or budgets [Brooks, 1975]. Re-

searchers perceived that the problem was in part at least due to a lack of structure

in the design domain, and this drove the development of a number of software struc-

turing techniques that have become known collectively as structured prograrnming

[Dijkstra, t972]. These techniques are quite diverse and based on number of prin-

ciples including: abstraction, modularity, hierarchy, information hiding, regularity,

and step-wise refinement.

The principles of structured programming have been widely adopted and are regarded

as instrumental in controlling the compiexity of the software problem fBrooks, 1975,

p. Laal.

The application of structured design to VLSI followed from the realization thai in

common with software design, VLSI design had reached a crisis point in complexity

and this was to a considerable degree due to a lack of structure in the design process
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(Section 1.1). The formulation of structuring techniques for VLSI design is typified

by the Caltech Structured Design Methoilologg promulgated by Mead and Conrvay

fMead & Conway, 1980]. Many of these techniques have been adapted from structured

programming to the two dimensional domain of VLSI design.

The remainder of this section provides an overview of the principles of structured

VLSI design derived from a number of sources including [Mead & Conway, 1980;

Buchanan, 1980; Rowson, 1980; Trimberger et aJ., 1981; Mudge et a1., 1980b; Tucker

& Scheffer, 1982; Lattin et al., 1981]. \Mhere appropriate, parallels between struc-

tured VLSI design and structured programming will be drawn.

L .3.1 Abstraction

Structured system are particularly amenable to the application of. abstraclion as a

means of simplifying their descriptions. Abstraction involves the development of a

vocabulary that is well matched to the problem domain, suppressed irrelevant detail,

that is translatable into the target vocabulary of the design.

In programming, high level ianguages (HLL) can be used to provide just such an

abstraction. Each HLL construct is an abstraction of the underlying instruction set

that performs some function appropriate to the problem domain. Examples include

if...then for the expression of alternation and for...do for the expression of iteration.

The task of translating an HLL to machine code, though not trivial, requires only a

small "conceptual distance" to be bridged as there is a simple relationship bets'een

mariy of the concepts in both the HLL and machine language: for example many

architectures provide an subroutine call instruction, well matched to HLL procedure

call constructs.

In VLSI, the conceptual distance between the system specifications and the target

vocabulary (a mask description language) is far greater: the two have very few con-

cepts in common. The response to this has been the development of a series of.leaels

of abstraction. The levels suggested in the Caitech design methodology are:

L. Beho,uioural. Description of the system function without necessarily specifying

any structure. For instance ISPS [Barbacci, 1981] represents behaviour in terms

of an instruction set specification.

2. Structural. Description of the system as a set of interconnected components,
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each contributing to the overall behaviour.

3. Physícal. Description of the system as a set of interconnected phgsical compo-

nents, each having a direct implementation as a mask entity.

In each case the upperrnost Ievel is intended to provide a vocabulary suited to ex-

pressing the system behaviour, and successive levels are designed to provide represen-

tations incrementally closer to the target mask level. The sequence of levels divides

the large conceptual distance into smaller steps that can each be bridged by the hu-

man designers assisted by computer, or in some cases by translation or compilation

prograrns alone.

Silicon compilers attempt to bridge the conceptual distance between system specifi-

cation and mask in a single step, and typically this can only be done by narrorving

the problem domain of a such compiler to a single target architecture: this allorvs

the creation of a set of simple abstractions that can be used during the translation

of specification to layout. Silicon compilers that generate high quality layout across

a spectrum of architectures do not appear likely in the near future [\Merner, 1932].

L.3.2 Modularity

The advantages of decomposing a system into a number of interacting components

or modules rÃ/'as described in Section 7.2.L. In VLSI design the basic gains are in

both ease of design and reduction in computation. The functional description can

be partitioned into modules, reducing the complexity of individual design tasks, and

allowing the application of multiple-person design teams working on independent

problems. The actual amount of design work that needs to be performed may be

reduced by the development of libraries of commonly used modules. The partitioning

of a VLSI system is more complex than that of a software system because of the added

physical constraints of shape, size and geometrical signal interface that exist in VLSI
at the physical layout level.

. Modularity achieves computational gains in the area of design verification: only

modules that have been altered need be re-verified by for instance simulation and

design rule checks, traditionally expensive procedures.

The motivations for the use of modularity in software are very similar. The main dif-

ference is the implementation of the principle in the two domains and the complexity
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of the partitioning task. Re-use of modules in software (for instance math libraries)
is more common as interfaces are simpler, having only logical and not physical man-

ifestations. Typically an analogy is drawn between modules in VLSI and procedure

calls in software, however a more appropriate analogy is that of coroutine or process

structures [Hoare, 1978] in which the entities have a continuous existence and carry
out computation in parallel. This hardware/software relationship can be used to
advantage as will be shown in Chapter 4.

1.3.3 Hierarchy

The use of hierarchy malies it possible to decompose the design in order to control
the number of submodules that occur in a particular composition module, allorving

control of composition module complexity. In irregular design sections, the hierar-
chy may be made deeper with a lower branching factor to keep the module count

in the realm of Miller's estimate of human information processing capacity of seven

items [Miller, 1956]. In regular sections of design, the branching factor can be in-

creased to make use of repetition of identical modules and communication patterns
(Section 1.3.6).

A particular aspect of the use of hierarchy in structured VLSI design is the restriction
l,o a seytarated hierarchy lRowson, 1980]. In such a hierarchy a distinction is made

between those cells that comprise the leaf nodes of the hierarchy and all other non-

leaf nodes. Actual active circuitry may only be present in the leaf nodes, all other
nodes consisting of simple interconnections of leaf or non-leaf nodes. This separation
of hierarchy allows the definition of mathematical operators for operations on the
hierarchy, treating it purely as a recipe for the combination of functional units (the
leaves). Such operators have been defined for analysis [Rowson, 1980] and structural
assembly [Watson, 1985] of separated hierarchies.

An unresolved issue in structured VLSI design is whether there should be identical
hierarchies used in the description of the system at different levels of abstraction, or

whether for the sake of simplicit¡ there should only be a single hierarchical structure.
This issue is addressed further in Chapter 2.

In the software domain, hierarchical decomposition is used in design in a similar
martner to reduce complexity. Typically the elements of the hierarchy are subroutines

rather than processes.
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L.3.4 Information Hiding

Closely tied to the principles of modularity and hierarchy is that of. inforrnation

hiding: in the construction of a composition module from a number of submodules,

the submodules are represented by an interface that presents only that informaiion

relevant to composition task. The nature of these interfaces varies over the range

of design abstractions. At the structural level an interface may consist only of the

names and types of logical signal pathways into the module, while at the physical level

the interface must include information about port positions, layers, and module size

and shape amongst other things. Figure 1.6 illustrates some of the interface criteria

at different levels of abstraction. At all times the interface should only specify the

minimum necessary information to keep the intellectual complexity of the design task

as low as possible. Information hiding by means of module interfaces plays a major

part in top-down design: submodules may be used as components in a composition

prior to their implementation.

Structural lnterface Definition Lavout lnterface Definition

ln : DatalnputType;
Out : DataOutptttType;
ClockA : ClockType;
ClockB : ClockType;
Vdd : PowerType;
Gnd : Groundïype;

Figure 1.6: Information hiding by module interface design.

Information hiding in VLSI and software engineering are analogous: in softrva¡e

the details of a subroutine's implementation may be specifically separated from its

interface.

1.3.5 Limited Constructs

One method for reducing the ease with which designers may create invalid layout

structures is to limit the nature and number of the components that may be used

in the design, and limit the means for composing them into larger structures. In
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structured VLSI design this principle is applied in several areas. Firstly, designers

are only permitted the use of "Manhatten" geometries in which all edges meet at

right angles (Figure 1.7). This makes designs clearer in intent, reduces the margin

for error by reducing for instance the number of confi.gurations of transistors, and

simplifi.es the constmction and computational cost of design and verification tools.

Secondly, layout modules may only have rectangular boundaries which must not

overlap during composition and module interconnection may only occur over adjacent

edges of modules via pre-defined ports: this simplifies the tasks of module composition

and verification.

Figure 1.7: A layout using only "Manhatten" geometries.

The structured programming principle of limiting program structures to those of con-

catenation, limited selection and iteration based round the theoretic work of Böhm

and Jacopini [Bôhm & Jacopini, 1966] is analogous to the limited structures of struc-

tured VLSI design. In addition the syntax rules of a HLL preclude the generation

of certain errors resulting from incorrect use of the limited constructs available. The

limitation that layout modules communicate only through predefined ports is closely

related to the software concept of pa.rameter passing in function calls: data should

only be transferred through explicitly decla¡ed channels, not via global accesses. Al-

ternately, since in software modules communicate by means of controi transfers in

addition to data transfers, it is possible to equate communication through module

ports with the avoidance of goto based global control transfers [Dijkstra, 1968].

1.3.6 Regularity

As discussed in Section 7.2.2, there are two aspects to regularity in structured sys-

tems: function ar'd ínteraction. Regularity in function is achieved by the imposiiion

of an appropriate partitioning on the design. Replicating modules has a number of
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advantages. The complexity of the representation is reduced, leading to greater per-

pescuity. Design and computational savings are made in that only a single module

need be designed/verified and then simply instanced a number of times. Figure 1.8

illustrates how functional regularity appears at the layout ievel, and how it may or

may not be accompanied by regular communication patterns.

Figure 1.8: Functional regularity in a register set with (a) and without (b) regular

interconnect.

Functional regularity tends to be a property of the low levels of large system hierar-

chies: within such elements as registers, adders and multipliers. At higher.levels large

systems (other than memories) are in general composed of non-identical modules. It
is at this level that regularity in communication may be used to lower the complexity

of module interactions. Figure 1.9 illustrates a data path in which the component

modules have been designed with the aim of being interconnected according to a
regular pattern.

Bus A Bus A

Bus B EL¡s B

Figure 1.9: A data path segment: elements are connected in a regular fashion [Mead
& Conway, 1980, p. 166].

The most appropriate software analogy to functional regularity is the application of
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a function to a regular data structure. For example an image may be represented as

a two dimensional array, and then the iterative application of a simple function to

that array may be used to process the image-a single piece of code is used a number

of times over a regular structure.

The use of interconnect regularity in software is less apparent, as the relative sim-

plicity of intermodule communication makes it less necessary.

L.3.7 Design Procedures

Both structured VLSI design and structured programming are amenable lo top-down

design procedures in which the initial specifi,cations are decomposed into smaller

subproblems, a process that is applied recursively until the subproblems are small

enough to be simply implemented by a block of layout or code. This process has been

characterized in software as one of "stepwise refi¡rement" [Wirth, 1971]. At each step

in the decomposition, a set subroutines is proposed that when connected via their

interfaces will perform the desired composite function. In this way the interfaces

are designed first and guide the later implementation of the subroutines. Top-dorvn

design in structured VLSI is an analogous process in which modules are refined into

interconnected submodules [Van Ginneken & Otten, 1934]. There are two primary

differences in the application of stepwise refinement in the two domains:

1. The decomposition in the VLSI domain forms a plan that is used for the even-

tual bottom-up assembiy of the layout blocks into a final design. In softrvare

there is no analogous assembly process, the "plan" simply being the procedure

call sequence.

2. In VLSI systems, intermodule communication occurs through physical rvires

whose lengths affect the design quality. Additionally, these wires are con-

strained to share the same two-dimensional plane of the chip surface as the

active circuit physical geometry. These additional constraints require that im-

plementation be taken into account whilst the top-down decomposition process

is carried out. Thus VLSI design tends to be a compromise between top-do'rvn

decomposition to manage complexity and intermodule communication costs

and bottom-up design to allow for performance effects and the diffi.culties of

implementing active circuitry.
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The primary advantage of applying top-down design to VLSI is that it emphasises

the design of communication over other considerations. Lipp [Lipp, 1983] sites the

following additional advantages of top-down design in VLSI:

1. It generates stable interfaces between functional components.

2. Design may be initiated before processes are stablized.

3. The bulk of a design will be technology independent, only the lower levels

needing redesign for transfer of process.

4. It supports design by independent groups.

Not all structured VLSI design is carried out in top-down manner. In cases where

modules have been predesigned for performance, or are created by generators, a

bottom-up approach is required since the interfaces are not alterable. Most designs

are actually created with a combination of top-down and bottom-up procedures.

Even in the case of a purely top-down procedure, the requirement that a module

be eventually implemented effects the design of the layout interface, introducing an

element of bottom-up design.

L.4 Structural Design

Both structured VLSI design and structured programming are metl¿odologies, not

algorithms, for design. As such they share a number of problems:

1. Theg are inforrnal. Both methodologies are comprised of a number of seemingly

ad hoc techniques, advice and restrictions.

2. They are not well matched, to full automat'i,on \Mhilst it is possible to ¿ssisú

design (language directed and symbolic editors for instance) it is difrcult to

remove the designer from the process. Even attempting to automate only the

layout phase is a complex task [Ackland et al., 1985].

3. Their effectiueness is ilfficult to eualuate. Even after a considerable research,

there are still no widely recognized techniques for evaluating the quality of

software (Section 2.1). Similarly the effectiveness of structured VLSI design

appears to have evaded strict analysis.
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Although some more rigorous analytic techniques have been applied to programming

[Dijkstra, 1976] and VLSI design [Barrow, 1984] these are largely concerned with the

aerif,cation of design correctness rather than the synthesis itself.

Even with their deficiencies, the structured design methodologies are regarded as

being instrumental in the control of complexity [Séquin, 1986; Brooks, 1975], and

work continues on their expansion and refinement.

For example although it provides a base for the design of complex software systems,

structured programming is lacking in any precise procedures or criteria for the task of

system partitioning. The design process was defined by step-wise refinement as a top-

down development of interfaces followed by implementation. However the definition

of these interfaces remained ad hoc,leading to low consistency and repeatability in

software design.

The work of Yourdon and Constantine [Yourdon & Constantine, 1975] is aimed at

finding more formal methods for partitioning software systems. Their techniques

assume the r:nderlying presence of structured, prograrnrning to manage low level com-

plexity and introduces the concept of structured d,esign for the management of higher

level system complexity.

In order to avoid confusion in terminology, in this thesis the task of designing the

structure of a system, that is the partitioning architecture, will be termed structural

design after the suggestion of Yourdon and Constantine [Yourdon & Constantine,

1975, p. xvi].

Similarly to structured programming, structured VLSI design does not provide a
basis for the design of partitions in VLSI systems, other than to suggest that it is

generally achievable by way of a top-do,v\¡n procedure. The partitioning problem is

far more complex in VLSI than in software because of the constrained nature of the

VLSI medium. Not only must the problem be partitioned, but module interfaces

must promote regular and space effi.cient function and interconnect patterns, and

interconnect must meet performance requirements.

The need for the research into structural VLSI design described here has been moti-

vated by several factors:

1. Prior to VLSI levels of integration, partitioning and module communication

design were not difficult problems. The growing level of VLSI integration sug-
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gests that larger complete systems are to be placed on single chips. Clearly this

wili produce greater complexity in the partitioning and module communication

design [Ferry, 1985].

2. Some aspects of structured VLSI design do not encourage the creation of well

partitioned designs. In particular the typical abstraction levels used make good

interface design difficult as described in Section 1.3.1.

3. The major a,reas of VLSI CAD tool activity have been in the verification and

assembly fi.elds. There has been little software created to assist in the planning

of design, their structural design in particular (Section 2.6).

This resea¡ch will concentrate on the development of structurøl VLSI design tech-

niques. In the next chapter an examination is made of the problems of software and

VLSI partitioning. Changes and additions to the structured VLSI design methodol-

ogy are then proposed that allow the use of software structural design techniques in

ihe VLSI domain. Subsequent chapters describe a description language and related

computer aided design tools that assist the modified design methodology.

1-.5 Summary

The scale of current VLSI designs is limited not by technolog' but by design limiia-

tions. There are several properties of VLSI devices that make their design particularly

susceptible to complexity problems:

1. The large number (> 105) of interacting components.

2. Ttre inherently unstructured nature of the domain.

3. The planar nature of interconnect.

Without appropriate complexity management problems these factors my combine

to overwhelm the capabilities of the designer and design tools. This is a particular

problem with the functionally partitioned design styles that must be adopted in order

to achieve VLSI circuit densities. Such styles are inherently complex as they are based

on detailed design of module interactions.
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The description of VLSI designs as structured systems offers the opportunity to man-

age such design complexity, and structured design methodologies have been developed

for this purpose. Many of these techniques have been previously applied to softrvare

design in struclured programming.

Structured VLSI design does not however address the issue of formalizing the parti-

tioning process and it is this issue of structural VLil design that provides the central

theme of this research.

The work described in this thesis contributes to the fi.eld of VLSI design methodology

and computer aided design in a number of ways:

1. It describes an alternative style of design representation that uses a single struc-

tural description hierarchy within a designer intensive planning phase. This fo-

cuses the designer's attention on system planning issues rather than d.istributing

such decisions across a series of layers of design abstraction.

2. This representation is matched by a design methodology that emphasises the

top-down specification of structure accompanied by parallel modelling of algo-

rithmic function and physical form. One aim of the methodology is to encour-

age the use of software structural design techniques for partitioning the \¡LSI

system.

3. It introduces a structural description language that supports the design method-

ology by encouraging the stepwise refinement of structural, communication, and

functional primitives.

4. It describes a firnctional simulator that employs scheduling techniques that

efficiently model the description language communication primitives. The sim-

ulator has facilities for aiding the qualitative and quantitative evaluation of the

structural design.

5. A knowledge-based floorplanner is described that enables the designer to model

the physical form of the structural design. The floorplanner uses inexact rea-

soning to perform physical design in a top-dorñ/n manner without fully formed

components. Appropriate domain knowledge enables it to incorporate struc-

tured design techniques in its results.
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Chapter 2

Structural VLSI l)esign

As suggested in the previous chapter, there has not been a great deal of research

in the structural design of VLSI systems. There is however a considerable body of

literature associated with the stmctural design of software. It is only natural then to

examine structural software design techniques in order to determine how they may

be used in VLSI design. In this chapter, the criteria used in software partitioning are

introduced, followed by a description of some of the more common structural softrvare

design methods. The criteria relevant to VLSI partitioning are then examined rvith

the conclusion that the problems of VLSI partitioning present a suyterset of those

of software partitioning. A design philosophy and associated design aids are then

described. These allow the designer to select a structural design method appropriaie

to the problem at hand and apply the method to partitioning the design. Finally the

methods described are compared to existing research in the fi,eld of VLSI partitioning.

2.L Software Partitioning Criteria

There has been considerable research in the field of software engineering towards find-

ing reliable metrics for the evaluation of the complexity of programs. Amongst other

properties, such a metric should be sensitive to the quality of the structure chosen

for the program. In the words of Evangelist [Evangelist, 1983], "*" expect a good

complexity metric to reward weil structured programs by assigning to them a lower

measure of complexity than would be given to equivalent, unstructured programs".

The two most studied metrics are those of Halstead [Halstead, 1977] and McCabe
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[McCabe, 1976]. Another interesting measure is that of Henry and Kafura [Henry &
Karfura, 1984] which is particularly sensitive to partitioning and resultant interface

complexity.

Ideally such metric would provide quantitive guides as aids to the partitioning of

progiams. Indeed early empirical studies of these metrics indicated that there was

a correlation between program complexity and the quantities derived [Baker, 1979;

Henry & Karfura, 1984; Gordon, 1979]. More recent studies [Evangelist, 1983; I(ear-

ney et al., 1986] suggest however that the correlation is weak: the results of previous

studies being misinterpreted as justification of the metrics. In fact Evangelist main-

tains that none of the metrics provides a better measure of complexity than a simple

count of program source statements.

Given that there has been little success in deriving quantitative metrics program

structure, it is appropriate to examine qualitative measures developed for the same

purpose. Though not as useful for direct comparison of structures, qualitative mea-

sures may be used for both stmctural comparison and design, as they provide intuitive
guides to partitioning.

Amongst the most useful [Bergland, 1981] of these qualitative metrics are coupling

ar'd coh,esior¿ introduced by Yourdon and Constantine [Yourdon & Constantine, 1975].

Coupling and cohesion may be used to evaluate the quality of a decomposition with
respect to the complexity that results from the decomposition. Although developed

to express concepts in the dataflow design methodology (Section 2.2.2), coupling

and cohesion are relevant concepts in many domains and st,¡'les of structural design

[Séquin, 1983].

In the remainder of this subsection the two concepts are introduced in terms of their

original softwa¡e design application.

2.L.L Coupling

Coupling is a measure of the strength of interaction between modules in a partitioned

design. Coupling is closely related to system complexity as defined in Section 1.2 as

that property of a system that arises from the interaction of its parts. In structural

design it is advantageous to reduce the interaction between modules, making them

as independent as possible. In fact a zero point of coupling can be defined for two

modules when they are completely independent of each other and the function of
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each may be understood without reference to the other.

Coupling may seem at first a candidate for quantitative measure. For instance it
might be possible to define coupling as the total data flow through an interface, and

in fact Henry and Kafuras's complexity measure [Henry & Karfura, 1984] makes

use of this. Closer éxamination reveals however that there are a number of different

factors that influence coupling, and many of these are inherently qualitative [Yourdon
& Constantine, 1975].

Complexity of interface. The more complex an interface is, the higher the coupling

associated with it. This may be viewed as a measure of the "width" of the connection,

the number of distinct paths that may be used to access the module. Yourdon and

Constantine suggest that the number of parameters in an argument list is a reasonable

estimate of this complexity. It is interesting to note that the measure is basically one

of informatior diuersiÍy, without emphasis on the mass of the information.

Type of connection. Software modules pass information of two distinct classes

between one another data and control. There are two limiting types of connection

for passing data and controi between modules: minimal ar'd pathological. Control

is transferred over a minimal connection by naming the module to which control

is being transferred to. That module has only one entry and exit point, and con-

trol return to the original caliing point. Data is passed over a minimal connection

by associating real values with named parameters in the called modules argument

list. Minimally connected systems lead to low coupling because the interface of the

module specifies all its external coupling: the control connection and the data con-

nections. Pathological control connections are exemplified by the ubiquitous global

goto statement which allows the transfer of control to some arbitrary point outside

the module. Pathological data connections are made when a reference is made to a

variable outside the module. In both cases in order to understand the function of the

module it is necessary to refer to external modules, thus increasing the coupling.

Typ" of information flow on the connection. The simplest form of information

that can be carried on a connection is data as it is clearly the minimal requirement for

two data processing modules to cooperate. Data can exist in the absence of control

if for example the modules operate synchronously. Adding control to a connection is

often necessary, but does increase the coupling of the connected modules.

Binding time of the connection. The later that binding of variables to specific
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referents occurs in the coding/compiling/linking/running cycle, the lower the inter-

module coupling. For instance a screen editing program may have a module that

contains all code referring to a specifrc terminal type. If modules may only by in-

serted at compilation time then to build the editor for a new terminal will require

complete recompilation. If separate linking is available, a new terminal may be set

at link time. If dynamic (run time) linking is available, the terminal need not be se-

lected until execution time, obviously the preferable case for a text editor. Delaying

binding in such a case clearly reduces coupling by reducing the number of steps that

a connection must be processed through.

Common environments. When two otherwise independent modules both connect

to a third module, then a common environment connection is created in which one

module may well be implicitly coupled to the other via their common interest in the

third module.

Yourdon and Consta¡rtine suggests that systems may be decoupled by:

1. Planning of the system structure

2. Replacement of implicit references by explicit references: this reduces coupling

as it easier to understand what can be seen than what is hidden.

3. Standardization of connections means that each new connection requires only

an incremental amount of information to fully describe it, thus reducing the

complexity of the interface.

4. Localization of the contents of common environments so that the amount of

sharing and hence coupling is reduced.

2.L.2 Cohesron

The choices which guide the division of a system up into modules are not arbitrary:

they can effect the structural complexity of the system. An important aspect of this

is how closely the components of a particular module relate to each other: this is

termed the functional relatedness ot cohesior¿ of the module. Clearly coupling and

cohesion are related: in general, the greater the intramodule cohesion, the lower the

intermodule coupling. Yourdon and Constantine suggest however that it is more

useful to focus on cohesiveness in structural optimization.
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Level of Cohesion Scaling Example

Coincidental 0 Repeated code

Logical 1 Input operations

Temporal 3 Initialization operations

Procedural Ð Iterative loops

Communicational 7 Checking & sorting

Sequential I Data flow

Functional 10 Square root

Table 2.1: Levels of Cohesion

In evaluating the functional relatedness of any two components in a module it is

necessary to define a characteristic that the two share with respect to which their

cohesion may be evaluated. These characteristics are quite general, and as such form a

set of levels of cohesion. Yourdon and Constantine have defined these levels as shorvn

in Table 2.1, their choices being guided by "...experiment, theoretical argument, and

the practical experience of many designers" [Yourdon & Constantine, 1975, p. 1a6].

The scale attached to the levels is intended as a relati,ue evaluation of the utility of

the form of cohesion in reducing the complexity of a structured system.

Coincidental Cohesion. If the components of a module have little or no apparent

relation then they are associated by coi,ncid,ence. This occurs most often in cases

where a piece of code is repeated, but the fact that the repetition occlus at all is

coincidence. The code length may be reduced by replacing the repeated section rvith

a subroutine call. The problem with this is that a change to that subroutine code

may have undesirable effects as the call may have quite different meanings in different

places. Coincidental cohesion increases the risk of errors in modification and reduces

understandability.

Logical Cohesion. If the components of a module may be considered as being

related at some "abstract" or "logical" level then they arc logically associated. Ex-

amples of logical association classes are input, output, and cornputation. Logical

cohesion is stronger than coincidental because it implies a structure that is more

strongly related to the problem structure.

Temporal Cohesion. If the components of a module have a relationship bound
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by time, then they are temporøl/y associated. A typical example is at initialization

module that perforrns a number of functions associated only by the fact that they

need to occur at the same time. Temporal cohesion is stronger than logicai because

if logical associations are made in the absence of temporal associations, the code

becomes convoluted as the program itself is basically a time ordered process.

Procedural Cohesion. If the components of the module are related by being

sited in the same iteration loop or decision making clause then they are procedurally

associated. The advantage of procedural cohesion is that it is quite strongly related to

the problem structure. Its main weakness is that it tends to be fragmented in terms

of function: a single loop often performs a number of parts of disparate functions,

thus making it difficult to give a simple functional definition of such a module.

Cornmunicational Cohesion. If the components of a module operate on the same

input data and produce the same output data then they are cornmunicationally as-

sociated. Communicationally cohesive modules are related to the problem structure

through the dataflow graph, and thus present the possibility of being derived in a

reasonably objective manner. A datafl.ow graph is one in which the nodes of the

graph represent processes'and the edges represent flows of data between processes

(Figure 2.1).

c

Transformation

A Data Flow

Figure 2.1: Example of a data flow graph.

Sequential Cohesion. If modules are designed such that the output of one module

serves as the input to another, then the modules are sequenti,ally associated. This is

a higher level association than those considered so far and is cleariy strongly problem

related. A sequential module des however suffer from the fact that it may perform a

number of functions and so still allows the possibiiity of division along non-functional

lines.

Functional Cohesion. If the components of a module are related by the fact that

D

B
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they perform a single function then there is said to be a function¿l association. Ev-

ery component in the module contributes to and is necessary for the realization of

the function. A simple class of functionally cohesive modules are those that perform

mathematical functions: a subroutine for calculating a square root for instance has a

single input, a single output and performs a single well defined operation. Yourdon

and Constantine defi.ne a functionally cohesive module by negatives: if the associa-

tions in the module do not include any of those weaker association mentioned above,

then it is functionally cohesive.

2.L.2.L Summary

In an ideal system all modules are functionally cohesive. This ensures a strong rela-

tionship between the problem and the programming solution, greatly aiding designer

understanding of the program. Making incremental changes to the program then

becomes easier as altering one function is less likely to alter another by side effect as

a high cohesion results in a low coupling. The practical problems of designing purely

functional systems produce varying degrees of cohesion, all weaker than functional

cohesion.

2.2 Structural Software Desigtt

A number of design methodologies have been proposed for the structural design of

software systems. Aspects of each of these methodologies are relevant to structural

VLSI design. In this section a selection of three of these that are broadly representa-

tive [Bergland, 1981] of the methods in use wili be presented. Bergland also discusses

prograr.Lrning calculus [Dijkstra, 1976] however this is primarily a means of. uerifying

the correctness of. programs.

2.2.t Functional Decomposition

Functional decomposition is the most intuitive software design methodology as it is
based on the traditional problem solving technique of. diuide and conquer. The tech-

nique is well established in softrvare design under a number of synonyms including

"top-down design" [Dijkstra, 7972] and "step-wise refinement" [\Mirth, 1971]. The
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first formal application of functional decomposition to software design is often at-

tributed to Dijkstra [Dijkstra, 1970]. The three basic phases of design in functional

decomposition have been defined [Linger et al., 1979] as:

1. Clearly state the intended function.

2. Divide, connect, and check the intended function by reexpressing it as an equiv-

alent structure of properly connected subfunctions, each solving part of the

problem.

3. Divide, connect, and check each subfunction far enough to be comfortable.

This process can be viewed as one of. step-wise refinemenf in which the programmer

ttsolves" the problem using a small set of "proposed" high level problem oriented

instructions. Each of these powerful instructions is then implemented in turn rvith

less powerful ones, and the process repeated until the instructions of the target pro-

gramming language are reached.

Advantages. The primary advantages of functional decomposition are its intuitive

nature and wide applicability. Partitioning a system in such a fl.exible top'down

mariner encourages the designer to investigate alternative partitioning schemes: this

is inrportant because of the qualitative judgements that need to be made in designing

a good partitioning. By Yourdon and Constantine's measures of cohesion (Table 2.1)

the functional cohesion produced by functional decomposition is the most effective

cohesion class.

Disadvantages. The main disadvantage of functional decomposition stems from its

gerrerality: by not specifying exactly wl¿at is the basis for creating a decomposition,

thc technique can give rise to a large number of alternate implementations of a design.

A problem may be decomposed with respect to sequence, data access or data florv

depending on the views of a particular designer.

Bergland suggests that functional decomposition serves as a base for many of the

other programming methodologies. These are basicaliy concerned with specifying

iess general criteria for carrying out decomposition, resulting in less variabiiity and

greater repeatability of structural designs.
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2.2.2 Data Flow Design

The technique of data flow design was first embodied in Yourdon and Constantine's

"transform-centered" design strategy þurdon & Constantine, 1975]. Data flo'w is

a specialization of functional decomposition in which each module is a "black box"

in the engineering sense: a device that transforms an input stream to an output

stream. These "boxes" are then interconnected to solve the problem. The most im-

portant transformation that takes place in the strategy is that required to transform

the "flat" data flow graph representation of the system into a hierarchical program

structure. This is done by frrst identifying the most abstract input ("afferent"),

output (ttefferent") and processing ("central transform") modules. This process is

applied recursively to each of the top level modules in order to construct a hierarchy.

Ideally the resulting system morphology is one is fuily "factored": all function is

in the leaf modules, the composition modules simply being present to structure the

system. This design procedure is illustrated in Figure 2.2 and may be summarised

AS:

1. Model the program as a data flow graph: a graph of single input/single output

nodes.

2. Identify the two top level afferent and efferent modules and any number of

central transform modules.

3. Factor the afferent, efferent and central transform modules to form a hierarchy.

Factoring proceeds breadth first: all the subordinates of a module must be

defined before any of them are further decomposed.

4. Write the code.

Advantages. Being based on data fl.ow, the structure resulting from this technique is

sequentially cohesive, and hence of high quality according to Constantine's measures.

The greater formality of the decomposition should result in increased consistency of

design.

Disadvantages. It is not clear how well this structure maps onto real problems

and hence may result in poor problem/program structure correspondence. The more

confined style discourages the designer from exploring alternatives. Bergland sug-

gest that although the top level tra¡rsformation from the data flow graph results
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Figure 2.2; Procedure for data flow design.

in sequential cohesion, the factoring process may result in less desirable procedural

cohesion.

2.2.3 Data Structure Design

The data structure design method developed by Jackson [Jackson, 1975] is perhaps

the most systematic of the available structural design procedures. The basic proce-

dure is to design a hierarchical set of data structures that closely relate to the real

world problem. Program structures are then built around these data structures re-

suiting program that contains a correct model of the real world. The procedure has

the advantage that it consists of a number of independent steps, thus reducing the

complexity of the design procedure as well as that of the design itself. The procedure

may be summarised as [Cameron, 1983]:

1. Draw a system network diagram that models the problem.

2. Draw structure diagrams to represent each data structure input or output from

the program.

3. Form the program structure diagram by merging the various data structure

diagrams.

4. Make up a suitable set of elementary operations out of the programming lan-

guage to be used and allocate these into the program structure.
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5. Translate the prograrn structure diagram into a program text

This process is illustrated in Figure 2.3

I.MODE.SÍEP

2. DATA STEP

4.OFERAT]CIISSÍEP

3.PrcMMSIEP

s.TEXTSTEP

Figure 2.3: Procedure for data structure design.

Advantages. The primary advantage of the technique is that it is constructed of

a number of well defined steps, resulting in reduced complexity of application and

increased consistency of designs. Bergland suggests that it leads to functional or

communication cohesion, both desirable.

Disadvantages. The main disadvantages are that the procedure has not yet been

developed for application to large systems, and the initial choice of "correct" data

structures is not always simple. In addition the real world modelling is done via the

data structures, so it may not be clear how well the final structure corresponds to

the problem.

2.2.4 Summary

Functional decomposition provides the greatest possible number of alternative struc-

tures thereby opening up the possibility of getting either a very good or very poor

result, depending on the skilt of the designer. Problem modeling and program con-

struction are performed simultaneously, increasing the intellectual complexity of the
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task.

Data fl,ow ilesign produces a good sequentially cohesive structure at the top level but

otherwise shares similar properties to functional decomposition. The data flow chart

provides a mechanism for separating problem modeling and code writing, but the

exercise of converting the graph to a calling hierarchy may produce an inappropriate

structure.

Data structure design is the most repeatable method as it is based on a well defined set

of independent operations and relies least on the skiils of the individual prograrnmer.

Basing the program structure on the data structures tends make analysis of the

resulting structure in terms of cohesion rather difficult.

Bergland [Bergland, 1931] suggests that none of these methods is sufficient by itself,

but that a combination of methods may be used successfully for most software design

problems,

2.3 VLSI Partitioning Issues

The issues in the design of large software and VLSI systems are similar in many

respects. VLSI does however present a relatively constrained medium, and this gives

rise to a number of differences. In this section the similarities and differences in

design between the two domains are examined. This will serve as an introduction to

the structural design philosophy described in the next section.

2.3.L Large Systems

Early LSI circuits integrated only a few gates onto a single chip. The device densities

achievable with VLSI have introduced the integration of complete systems containing

over 105 devices onto single dies. The large amount of functionality available on

a chip has enabled designers to implement VLSI systems of similar complexity to

conventional large software systems (Brooks defines a large program as having greater

than 30,000 instructions [Brooks, 1975, p. 90]). Additionally, many of the systems

now being implemented in VLSI are functionally similar to those that commonly

appear in software. Function has been migrated to VLSI typicaily in order to achieve

higher performance.. For example language interpreters [Sussman, 1981], high level
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image processors [Petajan, 1986], and speech recognition devices [Mudge et al., 1934].

2.3.2 Llnstructured Mediums

Both software and VLSI design take place within relatively unstructured mediums

on which the designer is free to impose an appropriate structure. It is this freedom

that raises the issue of structural design. The basic intent of this structure in soft-

ware is to control complexity þurdon & Constantine, 1975]. Software systems are

hierarchically partitioned to ensure that the complexity that must be dealt with by

a designer at a particular time is kept low. The concepts of. coupling and col¿esion

assist in the design of partitionings that reduce this complexity. The situation is

similar in the case of VLSI design, with the additional problem that the constraints

of the silicon medium must be taken into account as described in the remainder of

this section.

2.3.3 Concurrency

In many software systems components are distributed across time, only one element

performing a function at a time as directed by the calling hierarchy. VLSI systems

are however inherently concurrent in nature. The system components are distributed

across a surface, not time, and hence are capable of operating in parallel. The con-

current properties of a VLSI system allow the designer to maximize performance by

partitioning the problem into the maximum number of simultaneous operations. Se-

quin has identifi.ed seven classes of concurrency that appear in VLSI designs [Séquin,

1933]. These are shown in Tabie 2.2.

The great scope for concurrent operations is VLSI is one of the reasons it is possible

to achieve high performance implementations of algorithms but it adds greatly to the

design complexity. Concurrent execution gives rise to a number of possible errors

that do not occur in sequential systems. These errors are listed in Table 2.3.

The use of concurrent elements in a system increases its complexity by increasing

the coupling between the components. The intermodule connections are not simple

"one-shot" control and data transfers. Instead a complex interaction involving data

being ready at a particular time is maintained continuously as VLSI modules exist

continuously unlike software subroutine modules.
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Class Example

Bit Concurrency n-bit parallel adder

Vector Operations matrix multiplication

Pipelining overlapped instruction execution

Set Concurrency evaluation of alternatives

Specialist Functions co-processors

Task Concurrency communicating processes

Random Concurrency everything else

Table 2.2: Classes of concurrency [Séquin, 1983].

Deadlock cyclic data dependencres

Timing data read before settled

Buffering unequal rates of data production/usage

Table 2.3: Classes of errors in concurrent systems

\Mhilst the bulk of software is sequential, the appearance of parallel architectures is

driving the development of techniques for software development in concurrent envi-

ronments. These are in the main notations and mechanisms for implementing parallel

algorithms [Hoare, 1978; Hillis, 1986; Ahuja et al., i986] that will be examined further

in Chapter 4.

2.3.4 Communication

Communication between modules in a VLSI system is carried out at a quite consid-

erable cost. Wires used for interconnection use up chip area, introduce signal delays

and increase po'ffer consumption. This cost affects partitioning decisions in two lvays:

1. The number of interconnections between modules should be minimized. This

corresponds to minimizing module coupling and maximizing module cohesion

during partitioning.
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2. The length, of interconnections between modules should be minimized. Given

fixed position modules it may be possibie to reduce the length of interconnect

by migrating function across module boundaries. The issue of selecting module

placement to minimize communication length is dealt with in the follorving

subsection.

Intermodule communication in software has very little cost. The number of inter-

connections corresponds to the number of variables passed to a subroutine. The cost

of variable passing is negligible unless they are to be copied for use by the receiver.

Minimization of coupling is performed to reduce conceptual complexity rather than

for performance reasons. Similarly there is no strong analogy to the lengtlt of con-

nections except that accessing data widely distributed through memory may entail

delays due to swapping.

2.3.5 Packaging

In a VLSI system, the modules and their interconnect share a two dimensional surface.

This constraint gives rise to two interrelated issues that affect the partitioning of the

system: module placement and module interface design.

Module Placernent. Two primary factors guide the selection of positions and orien-

tations of rectangular layout modules on the chip surface: total area ard interconnect

length minimization. The two are not independent so finding an optimal placement

solution often involves a compromise between the two.

Software running on hardware with limited real memory may require a degree of

manipulation of module placement in the memory space. This may be necessary in

order to fit the code and data into available memory or it may be desirable to localize

accesses to avoid paging from slow secondary memory. In general however softrvare

module placement is not a high level design issue.

Module Interface Design. The design of a module interface in a software system

typically only requires the specification of the identifying name of the module and

formal parameter names of the variables. This can be done without reference to

the actual contents of the module or the underlying machine implementation. In

VLSI layout design the situation is far more complex. The module interface design

is influenced by:
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1. The external connections of the module.

2. The external space in which it is intended the module should fit.

3. The internal connections of the module.

4. The internal space required by the layout contained within the module.

Design of a VLSI partitioning involves not only allocating firnction to particular

modules, but also the physical design of the module interfaces. As illustrated in

Figure 2.4 interface design affects both the packing density and area occupied by

interconnect.

(a) (b) (c)

Figure 2.4: Interface design: (a) poorly designed for space packing, (b) poorly con-

strained by interconnection and (c) well designed for packing and interconnect.

2.3.6 Regularity

Regularity appears in software as multiple calls to the same subroutine. Such calls

may be of general use and appear in functionaliy unrelated places, for example input-

output routines. Some subroutines are more specific in use, but are called inside

iterative loops to carry out repetitive functions on regular data structures. Both

classes of software regularity provide leverage by reusing a single code section a

nu¡nber of times. In VLSI design, regularity appeaxs in three classes: functional and

interconnect.

2.3.6.L Regularity of Function

In many large VLSI designs it is possible to reuse module definitions in a number

diverse of places. In the TFB chip [Eshraghian et al., 1984] for example there are

B
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multiple uses of the same adders, multipliers and memory blocks. This form of

repetition reduces the firnctional and layout complexity of the system.

2.3.6.2 Regularity of Interconnect

A powerful method of reducing the complexity of a VLSI layout is to provide for

regular communications between the various layout modules. This is one of the

advantages of layout regularity: the use of identical modules gives rise to regular

interconnect. At a higher level however it is possible to design the layout interfaces

(port position and module sizes) in such a way as to provide regular module intercon-

nect. The most common example of this is data path layout. Rather than design the

components in isolation and th,en attempt to interconnect them, component modules

are designed so as to have compatible interfaces'

2.3.7 Performance

The instruction sets of digiial computers provide a clean and well characterised tar-

get for the translation of high level languages. Although the overall efficiency and

performance of a software system must be considered during partitioning design, the

execution times of individual instructions typically do not predicate the correctrless or

failure of a design. VLSI designs are far more dependent on timing issues. Individual

modules perform their functions in finite times, and these results are communicated

between modules also in fi.nite times. The use of global clocks for synchronization

red,uces the complexity introduced by such delays (Chapter 4). Timing issues do

however remain a major concern in meeting VLSI performance specifi.cations, in

particular the effect of long wiring runs in the layout design and the delays they

introduce.

2.3.8 Discussion

The tasks of software and VLSI design share the following characteristics:

1. A large number of interacting components (instructions and devices respec-

tively).
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2. Complex functionality of a similar nature: exemplified by the migration of

algorithms from software to VLSI for additional performance.

3. Unstructured domains in which the designer has control over the physical struc-

turing that is to be used.

4. Concurrent functionality in which a number of computational elements perform

calculations in parallel and pass data and control to one another. This is more

common in VLSI, but a growing area of software design.

5. Regular functionality in which it is useful if the same definition of a component

may be used a number of times'

The tasks of software and VLSI design differ in that:

1. Communication is expensive in VLSI: communicating components should be

physically close. There is no strong analogy in software.

2. Area is expensive in VLSI: components must be designed and packed together

such that they consume minimum area. Though space is a consideration in

software, it is usually not a major design criteria for optimization.

3. Performance is a major issue in VLSI: all VLSI systems are "real time" and are

required to meet timing constraints. Only a portion of software systems have

similar constraints.

4. Regular interconnect is useful in VLSI: it reduces the complexity of layout mod-

ule interfacing and reduces interconnect. The simpler and relatively inexpensive

data passing mechanisms of software make this a less important issue.

These similarities and differences suggest lhat: structural software design tech'niques

are appropriate to the structural d,esign of VLfi systems given that allowance can be

made in the d,esign process for the constraints implied by ph,ysical layout.

2.4 Abstraction and l{ierarchical Equivalence

As indicated in Section 1.3.1, structured VLSI design is typically carried out within

three levels of abstraclion: behauioural, slructural ald physical.
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Horizontal abstraction schemes of this general fo¡m have the following advantages

[Stefit et a1., 1981b]:

1. The design description at each level that is free of certain classes of design

errors ( "bugst').

2. The form of design description at each level serves to narrow the designerts

attention to particular concerns, reducing the complexity of the design task.

3. The powerful domain oriented abstraction provided by the higher levels support

the rapid sea¡ch by the designer through alternate solutions for an optimum.

Such schemes of horizontal levels of abstraction do however have a number of prob-

lems when viewed as environments for structural design:

1. Whilst initial partitioning may be specified at the highest level, actual geo-

metrical layout information does not appear till the lowest level. The initial

partitioning takes place without any geometrical information being available

till a level transformation has taken place. Layout has been relegated to a very

low level detaíIing task'whereas in custom VLSI design it must be considered

at an early stage, with floorplans providing a suitable abstraction away from

the detailed mask geometry.

2. The increased chance of errors being introduced during the translation between

the relatively several levels.

3. The lack of the descriptive capability to add in more detailed design information

in a continuous manner. For instance if a designer wishes to add clocking

strategies into a portion of a behavioural design, the entire module must first

be translated to the structural description level.

An additional problem that arises from the use of horizontal description levels is that

of. hierarchical equia alence.

Rowson relates the function of composition modules in a separated hierarchy to

combinators [Rowson, 1980]. He then proves that even given that two hierarchies

operated on the same set of leaves, the issue of whether the two hierarchies are

topologically identical is undecidable. This result implies that ihe only practical way

of managing a design at multiple description levels is to require that the component
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hierarchy be identical at each description level. If this is the case then it is possible

to at least partition the cross-description veriflcation problem to one of verifying the

consistency of individual modules rather than the entire system.

The need for equivalent hierarchies can be seen to be contradictory to a methodology

employing multiple levels of description. By definition the issues addressed in the

design at different levels are dissimilar and are likely to lead to variations in the

design partitioning.

2.5 Structural VLSI Design

In this section an approach to structural VLSI design is outlined that is intended to

aid the development of complex VLSI systems. The approach is designed to support

the application of software structural design techniques such as those described earlier

in this chapter to the VLSI domain. In addition, the generality of the approach

ensures that further developments in software structural design-those in concurrent

system lwitt, 1985] for example-may also be adopted.

It is necessary to support a spectmm of structural design techniques rather than

a single method because of the varied nature of the systems being implemented in

VLSI. Some systems are amenable to a function decomposition style of design, a

typical example being a 32 bit processor [Krambeck et al., 1932]. Signal processing

systems fall into a data fl.ow style of design [Ligtenberg & O'Neill, 1985; Jhon et al.,

1985; Denyer et al., 1982]. Systolic array architectures are often well matched to a

data structure style of design [Navarro et al., 87]. The designer should be able to

select the appropriate strategy based on the functionality of. the system under design,

not the limitations of the VLSI design methodology.

The strategy to be adopted is based on dividing the VLSI design process into a

designer intensive planning phase and an automatic construclion phase. lVithin the

planning phase the design is represented as a single structural hierarchy as is the case

with software design. The particular constraints an optimizations required of a VLSI

implementation of the structural design are examined by means of computer aided

mod,elling.
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2.5.L Planning and Construction

Typically structured VLSI design is regarded as being a process of successively refin-

ing descriptions from the behavioural level to the layout level through one or more

intermediate levels. The planning of. the design occurs at each level of description

at different times. By contrast, in software design, planning occurs in the top down

successive refinement of the design hierarchy it øt a single leael of description This

description level is provided by the programming language itself. The transforma-

tion to a lower level of description, that of the machine instruction set, is carried out

automatically by a compiler. As discussed earlier (Section 1.3.1) there are diffi.culties

in creating a broad spectrum compiler for custom integrated circuit layout. There

are however a number of techniques for assembling porlions of designs into complete

layouts given an appropriate plan ['Watson, 1985; Wardle et al., 1934].

These factors lead us to observe that design be separated into two weli defined phases

planning ar.d construction.

The planning phøse may be characterized by the rapid generation by stepwise refine-

ment of possible design solutions in an abstract representation. Solutions are evai-

uated with respect to estimates of functionality, efficiency and performance. This

process results in a set of. plans that can be used for the construction of the actual

layout. Plans are comprised of:

1. A structr:ral description of the design.

2. A description of the algorithmic function of each module in the structural de-

scription.

3. A description of the physical form for each module in the structural description.

The physical form may be represented by module floorplans in the non-leaf modules,

and circuit diagrams in the leaf modules.

These elements of a plan are illustrated in Figure 2.5.

The construction phase may be characterizedby the use of the plans to design and

assemble components to form a complete layout. The construction process involves:

1. Using leaf module floorplan and circuit diagrams to create leaf module circuit

layout.
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i:= l+ 1;
WRITE(OutPut,i);
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Structure Form

Figure 2.5: Elements of a plan.

2. Using the functional description of each leaf module to verify the correct func-

tion of each leaf module layout.

3. Using the floorplans as a guide to assembling the leaf modules into a final

layout.

With existing CAD technology it is possible to automate the bulk of the construction

phase. Expert systems are avaiiable for leaf module layout [Kimm et al., 1984;

Kollaritsch & \Meste, 1984; \Matson, 1987]. Given a functional description, verification

against a circuit simulation is feasible [Dickinson et al., 1937]. The construction of

layout based on hierarchical floorplans is well documented flMatson, 1985; \Mardle et

al., 19841.

The planning phase is still largely a human activity. The complex tradeoffs involved

in the design process are concentrated in planning. Lipp llipp, 1983] notes: ...manual

design in generøI is not guided by a set of forrnalized, criteria. Instead of pure metrical

rneasures, a comçtlícated mixture of metrically and, intuítiuely based, eaaluation rules

preaaíls uhich, ca,nnot be m,o,pped, successfully for automated d,esign.

This form of separation has the advantage that the designer's attention is focussed

on system-level decisions that are made during the planning phase. Additionally, the

bulk of technology dependent factors may be relegated to the automatic construction

phase. This eases the designer work load and encourages the transfer of system design

across technologies.

The implementation of a full design system based on this approach is described

eisewhere [Dickinson et al., 1987]. The objective of this thesis is to examine in detail

the requirements of the planning phase of the design.

A B c

D E
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2.5.2 Design Description

The primary element planning a complex system has been identified as the design of

a structure for the system. \Me shall propose that this should be the central element

of our approach to planning. The structure is a separated hierarchy (Section 1.3.3) of

modules. The creation of the structure is guided by two primary considerations: the

algorithmic function and physical form of that may be realized with that structure.

In fact function and form will be regarded simply as aspects of the modules in the

structure as suggested by Figure 2.5.

Unlike the more usual model of horizontal abstractions (Section 1.3.1), this presents

a aertical arrangement in which a single hierarchy is incrementally developed. This

removes the problems of multiple hierarchies for each abstraction level (Section 2.4).

Such a structure is also the prima^ry means of controlling the complexity of a system

(Section 1.2).

The structuie, when taken in conjunction with a functional description of each mod-

ule, may be treated as a program that implements the same function as the VLSI

system. This establishes a link to software design, and presents a base on which

software structural design techniques may be applied. The application of these tech-

niques does require that considerable effort be put into the appropriate design of the

language to be used. Existing programming languages provide insufficient support

for describing VLSI concepts in a manner appropriate to structural design: commu-

nication and regularity in particular. The design of such a language is described in

Chapter 3.

2.5.3 Modelling Algorithmic Function

The nature of software design is such that after specifi.cation it is possible to compile

and run the program that is the specification. The feedback from this assists in the

discovery of errors, and eva,luation of the design with various tools for analyzing the

running code. In order to carry our analogy with software further, it is necessary to
provide a means of compiling, running, debugging and profiling the VLSI functional

specification as an aid to design evaluation.

The modelling of a VLSI structural design is particularly important as the cosi of

intermodule communication is often the limiting factor in the degree of integration
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possible (Section 1.1.2). In Chapter 4 a functional simulator is described that aids

the designer in evaluating relevant properties of the structural design, together rviih

validating the correctness of the functional decompositions used in the design.

2.5.4 Modelling Physical Form

The risk of applying these software techniques is that the import ance of forr¿ in VLSI

design be ignored. It is not appropriate to insist that the designer specify the precise

physical form of each module as required by some languages [Segal, 1981; German

& Lieberherr, 1985]. This detracts from the application of good structura,l design

techniques: the additional effort required by the designer to specify the physical form

produces a reluctance to examine alternative solutions. The form of the proposed

structure should be modelled by the automatic generation of floorplans (Chapter 6)

as an aid to design evaluation.

2.5.5 Structural Design: Requirements

In summary, the support of this approach to structural design requires the follorving

elements:

I. A high leuel language for the specification of the system structure and the

function of each module in it.

2. A. simulator llnat allows lhe function to be modelled as design proceeds

3. A, floorplanner that ailows lhe form to be modelled as design proceeds.

The design of all three of these elements is affected by the need that their mode of use

be compatible with software structural design techniques. This requires that their

design vary from that found in existing hardware description languages, simulators

and floorplanners. These variations will become apparent in subsequent chapters

that describe the respective elements.
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2.6 Related Research

Comparisons between this design approach and other research into VLSI partitioning

is complicated by the fact that the area of stnrctural VLSI design being addressed here

is one that has received little direct attention. As this structural design philosophy is

intended as lo supplement rather Iharr suppløzf structured VLSI design, a comparison

is not appropriate between the two. The following subsections do however describe

items of research that are at least partiaily connected to the partitioning problem

described here. The particular design language and related design aids that are

described later in this thesis will be compared to similar research in their respective

chapters.

2.6.L Graph Partitioning

There has been considerable research into the problem of general digital system parti-

tioning [Kernighan & Lin, 1970; Schweikert & Kernighan,lg72; Breuer, 1976; Payne

& Van Cleemput, 1982; McFarland, 1983; Lauther, 1979; Healey & Gajski, 1985]. In

such systems an existing structural arrangement is re-arranged using a graph par-

titioning algorithm. The result is in general a set of clusters of the basic design

elements. The elements in each cluster are related by some cornmon factor: usually

their connectivity [Schweikert & Kernighan, 1,972] or their need to access a shared

resource (an ALU for instance) [McFarland, 1983]. This tends to be bottom-up in

style only, and can only improve the design within the constraints provided by the

predesigned components. One of the primary problems is that in general the number

and nature of the partitions must be chosen prior to the application of the procedure.

The various design components are then allocated into one or other of the partitions

in order to minimize lhe cost function.

2.6.2 Stepwise Layout Refinement

Otten [Van Ginneken & Otten, 1984] introduces the concept of the stepwise refine-

ment of floorplans. This is a top-dowrl process as is the case with program design.

Otten does not however deai with the issue of relating function and form through

the use of a structural description: the primary thrust is that floorplans may be

stepwise refined by the use of hierarchical slicing trees. The modelling of function is
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not introduced. The use of a slicing structure in the development of fl.oorplans has

the disadvantage that it encourages oaercorLmitment: once a component has been

allocated into a slice it may not be moved at a later stage in the design.

2.6.3 Partitioning Evaluation

Resnik [Resnik, 1986] describes an aid to system partitioning. It is a "spread sheet"

progra¡n that assists the designer by allowing evaluation of the effect of various par-

titionings on a number of metrics of design quality. The program does not however

provide a basis for design: neither form nor function are modelled.

2.6.4 Integrated Descriptions

A number of systems have been described [Buchanan, 1980; Segal, 1981; German &
Lieberherr, 1985; Morel et al., 1982] that have design representations that allow the

designer to specify the module physical form in the same textual description as the

structure and fr:nction. Clea¡ly this is useful in that it makes it easy for the designer

to specify the physical form of a r.nodule in with its function. However this has several

disadvantages in the context of structural design:

1. The designer is required to create a nev¡ floorplan for each alteration in struc-

ture. This discourages experimentation with structure.

2. There is no evaluation of the floorplan, it is simply specified and accepted.

3. The floorplan description is embedded in the structural description. There

may however be a number of alternative floorplans for a particula,r module,

and these evolve during the design as more constraints are created. Including

the floorplan in the structurai description precludes this mutability.

There are functional simulators associated with each of the languages, however they

do not provide facilities for the specific analysis of. structure other than to allow the

specification to be executed.
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2.7 Summary

The concepts of coupli,ng arld cohesion provide a basis for the qualitative evaluation

of structural designs, particularly in respect to managing complexity.

There are a number of software structural design techniques, but none is regarded

as completely general: often a mixture of the techniques is required in a design. If
such techniques are to be successfully adopted to VLSI design, a design representation

must be selected such that the task appears as similar to the software case as possible:

this will ensure that present and future developments will be useful in VLSI.

There are a number of similarities between the tasks of software and VLSI structural

design. In particular the issues involving algorithmic function in the two domains

are closely related. Many of the complexity management issues are similar due to

the unstructured nature of both domains. The two diverge however over the issue of

physical form. Software in effect has no physical form: in most cases the translation

to machine code is transparent to the designer. In VLSI however the constraints of

the medium require that the form be considered from the earliest stages of design.

VLSI design may be divided into a designer intensive plo,nning phase and an au-

tomated construclion phase. This partitioning of the task allows the designer to

concentrate on the critical planning phase of structural design.

A structural VLSI design philosophy may be based round the concept of a single

structural hierarchy of modules. Associated with each module is an algorithmic

function (a section of code) and a physical form (a floorplan).

The structural description together with the function of each module may regarded

as a softwa.re implementation of the VLSI system, and software structural design

techniques applied to it. In order to provide the designer with continuous feedback

on the quality of the partitioning being developed it should be possible to model

the structural design both in terms of its function and form. Function may be mod-

elled with a functional simulation and analysis tool. Form may be modelled with a
floorplan generator. Both modelling design aids must be suitable to use within the

framework of software structural design techniques.

In subsequent chapters a structural and functional description language will be de-

scribed, together with design aids for modelling the function and form of the design.
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Chapter 3

A VI,SI Description Language

3.l- Introduction

A central feature of any design system intended to support the structural planning

methodology outlined in Chapter 2 is a descri,ption language. Such a language is used

by the designer to formally specify a structural design as a precursor to modelling

its function and form. There are a variety of requirements that must be fulfilled'by

such a language: of particular interest here is the ability to describe complex \¡LSI

systems in a manner that both reduces explicit complexity and aids the application

of structural design techniques.

This chapter describ es Pinlc, a language for the hierarchical specification of the struc-

ture and function of VLSI systems. Whilst based on a conventional programming

language, there is a set of additional features that support structural VLSI design:

1. A model of intermodule communication that allows information to be moved be-

tween modules with or without signal delay specification. This enables designs

to be prototyped rapidly without the inclusion of intricate delay information,

and successively refined into a more detailed delay based description ii required.

2. A model of module functionality that allows for the preservation of control state

between module invocations. This allows descriptions to include timed pauses

at a particular point in the functional description.

3. A general syntax for expressing regularity in the structure of the design.
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4. A model of structure and an associated hierarchical naming scheme that allows

for the clean specification of module definitions, module instances and ports.

Function is specified in the Modula-2 [Wirth, 1982] language with a number of ad-

ditional primitives. This approach has the advantages that designers require little

additional expertise to program in the Pascallike syntax, and the simulator (Chap-

ter 4) can make use of Modula-2 compilers to produce an efficient simulation rather

than having to interpret the firnctional specif.cation.

As background to the language, an overview of existing research in VLSI hardrvare

description languages will be given. The language itself (known as Pink) is then

described, followed by some examples of its use in system description.

3.2 l{ardware Description Languages

The need for designers to specify and simulate digital designs prior to fabrication has

motivated the development of a variety of description languages. These languages

are quite diverse in terms of the paradigms they use for design representation. In

this section four overlapping classes of description language are described in terms of

their basic philosophy, advantages and disadvantages.

3.2.L Register Transfer Descriptions

Register transfer languages may be characterised as those that express the function

of a system in terms of the transfer of data between registers: elements that may

preserve state. Register transfer languages are largely functional: the level of descrip-

tion does not record a great deal of structural information, it is intended that this be

added at a later stage in the design process. Instead the register transfer language

description represents a uirtual architecture without implementation details. One of

the most widely known register transfer languages is ISP (Instruction Set Processor)

fSiewiorek et a1., 1932] and related languages including ISPS [Barbacci, 1981] and

ISP' [Rose et a1., 1983]. ISP is aimed specifically at the description of computer

architectures. The basic execution paradigm is one of interpretation of instructions

in an instruction register giving rise to data accesses, data transformations and data

stores. A further example of a register transfer language is the clocked register level
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of the Palla,d,io system [Stefik et al., 1981b]

The basic advantages of register transfer languages stem from the high level of ab-

straction they provide. By supplying a single class of structural component (the

register) and a single mode of operation (instruction interpretation) the description

of a processor may be made clearly and. concisely. Alternative implementations of

the design may be rapidly proposed and evaluated.

There are however several disadvantages to this class of description:

7. Laclc of generality. Thelanguages are ta.rgeted at particular classes of hardrvare.

For instance ISPS is useful for describing instruction set based machines, but

may be less applicable to other architectures.

2. Infl,exib\e Abstractions. The basic entities of the register transfer language a.re

fixed. This reduces the ability of the designer to firstly build up higher level

abstractions that may be used to represent complex designs more simply. Sec-

ondly it limits the designer's ability lo refine the design down into an arbitrarily

detailed form as required in a process of successive refinement. In some rvell

structured cases (such as MacPitts [Southard, 1983]) the register transfer level

may provide all the information needed to produce a suitable hardware archi-

tecture. In the general case however far more data on the detailed structure of

the design will be required in order to construct a real system.

3.2.2 Token Passing Descriptions

Although register transfer descriptions are simplified to the extent that they are

basically formed from descriptions of data transfers, they do not constrain the nature

of those transfers: it is still quite possible create descriptions that contain errors. A

means of detecting such errors in a description is that of. tolcen passing. Elements of

the design may be specified in terms their input and output: inputs absorb tokens

and outpuls emit them. The token paths between modules a¡e combined with a

restricted set of composition rules. Correctly designed, such a system will exhibit

the provable properties of a Petri net lPetn,1966; Peterson, 1977]1. A Petri net is a

graph around which tokens are passed in a structured manner. Once a design has

been clescriberl in a, srritable form, the resuits of Petri net theory may be used to

prove certain properties of the description: in particular that data is not being used
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before it is settled and that deadlock conditions do not arise.

One widely known token passing language is that of Linked Module Abstraction

(LMA) proposed for Palladio [Stefrk et al., 1981b; Brown et al., 1933]. Other appli-

cations include general digital design [Azema et al., 1975] and asynchronous system

design [Misunas, 1973].

Token passing techniques have the advantage that they guarantee that certain classes

of errors will be detected in a description [Feldbrugge, 1980]. Unfortunately they are

of littie assistance in detecting a wider range of errors. They also suffer from the

restrictions placed on the nature and composition of intermodule communications,

reducing the designers freedom to express the design in the most perspicuous manner.

3.2.3 Provably Correct Descriptions

One of the most attractive description techniques is that of proving that a design

meets its specifications. If the top level of a hierarchical description is taken as the

specification, then it is desirable to prove that the subsequent hierarchical decom-

positions of that top level are equivalent to it in function. A number of approaches

have been developed, one of the best known work being that of Gordon [Gordon,
1979]. In this work the function of each module in the design is specified in a Higher

Order Logic (HOL) form. Given a particular module's specification in HOL, and

the specification of its component parts, it is possible to prove that the function of

the interconnected components is the same as that of the original module. This pro-

cess may be repeated to verify the correctness of the entire design. Gordon's work

has been extended by several groups [Birtwistle et al., 1986; Barrow, 1984] to the

verification of reasonably complex designs.

The advantages of such techniques are clear: the hierarchical decomposition of the

design into its components is proven correct. There are however a number of limita-

tions in current techniques:

1. Complerity. The verification process is complex and as yet only partially au-

tomated. Considerable mathematical insight on the part of the designer is still

required in order to prove equivalence.

2. Language. Expressing functionality in HOL is not likely to be well received by

designers more familiar with conventional prograrnming languages.
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3. Completeness. Although techniques for purely functional verification have been

developed, there are a number of areas in which proof techniques are still want-

ittg. For instance the issue of detailed circuit function (timing in particular)

and its equivalence to the functional description: given a functional description

of a leaf cell and a circuit layout intended to emulate the function it is still

difficult to prove equivalence.

3.2.4 Generalized Descriptions

The largest class of description languages are those that represent structure and

function in some generalized way. These languages typically resemble programming

languages, and in fact many are derived from such languages. They are based around

the observation that many of the concepts and structures developed for programming

are applicable to describing hardware systems. Examples of recent generalized de-

scription languages include: VHDL [Shadad et al., 1985]; ZeuslGerman & Lieberherr,

19351; KALL-II [Hartenstein, 1986]; FUNSIM [Foyster, 1986]; ICSYS [Buchanan,
1980]; Salcura [Suzuki & Burstall, 1982]; Conlan [Piloty & Borrione, 1985]; ard SPAM

[Segal, 1981].

Generalized description languages have a number of advantages:

1. Flexibility. The generality of the languages make it possible to express most

hardware structures in an intuitive form.

2. Simulation. The similarity of the languages to programming languages makes

it simpler to write portable and fast simulators.

3. Familiørity. Designers are often familiar with conventional programming lan-

guages, making it more natural for them to express hardware designs in a

related description language.

The disadvantages of generalized languages include stem from their general nature:

L. The often irregular syntax and semantics of the languages make automatic

veriflcation difficult.

2. There is no simple register/interpreter structure as in register transfer descrip-

tions.
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3. Data transfers are relatively unconstrained and do not exhibit the self-checking

properties of token passing paradigms.

4. Limitations of the underlying programming language may sometimes make the

syntax and semantics somewhat clumsy for hardware description.

3.3 Language Requirernents

In this section an examination is made of the facilities available in a modern pro-

gramming language, and their applicability to VLSI design description. This results

in the identification of a number of points at which additional support is needed in

order to facilitate the extension of a programming language to VLSI design.

3.3.1 Function

A general purpose programming language provides a useful basis for the expression of

function. The various arithmetic and logical operators, together with comprehensive

data structuring facilities allow for the concise expression of functionality. The basic

block structured syntax that is used in conjunction with flow control operators such

as FoR, l.lHILE and IF allows for the clear specification of flow-of-control within a

functional description.

3.3.2 Structure

Both software and hardware rely on the concept of partitioning to control compiexit¡

and many of the issues in developing a structural design are common to both domains

(Chapter 2). The actual mechanism for representing the partitioning may however

differ. The basic structuring mechanism within a typical programming language such

as Pascal [Jensen & Wirth, 1978] is the proced,ure. Procedures are parameterized en-

tities that a¡e invoked with a procedure call in order to perform a particular function.

There are several properties of procedures that make them unsuitable for the struc-

turing of VLSI descriptions. Although we may regard tlne defini,tions of. procedures as

permanent with respect to time, they are inuoked, rather tlnan instanced. This means

that a procedure in general is called, performs its function, and then terminates, re-

turning controi to the caller. Thus the structure of a program is sequential in nature,
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and a software hierarchy such as that shown in Figure 3.1(a) has an implied time

domain unlike that of a VLSI structural design such as that shown in Figure 3.1(b).

Hardware modules exist continuously and perform computation in parallel. Thus

they have a continuous state, and are able to accept new data at any time.

Only one set of procedures
and communications paths
active at a time.

(a)

All modules and communications
paths active at all the time.

(b)

Figure 3.1: Software (a) and hardware (b) hierarchies.

3.3.3 Communication

Data is passed into a procedure by means of. gtaramefers. This may be represented

as the creation of temporary paths along which data may travel in at the instant of

invocation of the procedure and out at its termination. There is no analog to this

in the hardware case: as modules exist continuously, the data connections to them

must also exist continuously. Also, data comrnunication in a programming language is

synchronous with the procedure invocation, whereas in hardware there may be actual

time delays associated with the transfer of data. It should be possible to declare these

delays when appropriate as they comprise part of the design specification. This will

not always be required, as the synchronous clocking methodology often applied in

structured VLSI design [lvlead & Conway, 1980] may be used to provide a level of

abstraction behind which timing details are hidden and signals are presumed to arrive

synchronously [Chen & Mead, 1983].

3.3.4 Reusability

A concept common to both hardware and software design is reusability. A definition

acts not only as a means of partitioning a d"rigrr, but also as a \tvay of representing
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it more succinctly. A single procedure definition may be inaoked, in a number of

different places in a program in order to perform similar functions. In the same vray,

a ha¡dware module definition may be instanceil a number of times in different paris of

the design to perform similar functions. This is particularly useful given the expense

of communication in VLSI (Section 1.1.2). It may be less expênsive to duplicate

functional circuitry rather than provide interconnect to a single instance.

3.3.5 Regularity

There concepts of regularity in software and hardware description are loosely related.

In software, regularity usually occurs in data structures such as arrays. A single

function may be applied a number of times on each element in the array, and such

an operation may be expressed succinctly with for instance a FOR loop.

Regularity in VLSI is similarly concerned with the regular use of modules. It is

different to the software case in that the modules are all created at the same time in

some regular manner rather than as a result of a sequential application. In addition

it is necessary to represent the regula,r patterns of interconnect between the modules

(Section L.2.2).

3.3.6 Discussron

From the above observations it is possible to compose a set of requirements that were

used in the design of the language to be described in the following sections. They

are:

t. Function. The basic syntax of a block structured programming language pro-

vides a useful basis for expressing module function.

2. Structure. The structuring facilities provided by programming procedures are

not appropriate to VLSI hardware representation. VLSI modules must be rep-

resented as entities that exist with continuous state and a¡e able to perform

function in parallel. Not that there is still a distinct hierarchical organization,

and that its management will require additional facilities as it is not partitioned

sequentially into a single stream of invocations.
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3. Communication. The interconnect between VLSI modules must exist continu-

ously as do the modules themselves. The management of the additional com-

plexity introduced by synchronization and time delays must also be addressed

in the representation.

4. Reusability. Tlne need for module reusability suggests that as with a softrvare

procedure, a hardware module must have a d,efinition which may be instanciated

in a number of places in the design.

5. Regularity. The particular needs of regularity in VLSI designs suggests that

special declarative constructs a¡e needed to conciseiy describe regular instanci-

ation and interconnect.

3.4 A Prototype of the Language

The need for a description language to aid in the specification and partitioning of a

VLSI design was made apparent during the development of the TFB chip, a 200,000

device general purpose signal processing chip [Dickinson, 1984b; Eshraghian et a1.,

1985]. The Tic?oc [Dickinson & Eshraghian, 1984] language and simulator rvere

rapidly developed in Modula-2 [Wirth, 1982] and used as a system design aid for

that project [Schomburg, 1984; Murphy, 1984].

The design and implementation of. TicTochad two fundamental limitations:

1. Intermodule communication could only take place across clock phases. Clocks

were a special case of signals and modules could only input signals that had

been output from another module in preceding cycles. This design decision

was based on a limitation in the simulator implementation, and justified in

terms of this being a "safe" methodology for clocked synchronous systems.

Unfortunately this led in practice to designers "clumping" functionalit¡' into

single modules that should have been decomposed.

2. There rvas no faciliiy for the multiple instanciation of modules: each module

had to have a textually separate definition which also acted as its instanciation.

As well as requiring a great deal of source code, this did not allow for the explicit

expression of regular structures in the design. Again this design problem was

a result of an implementation decision. Hardware modules were mapped to
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directly to Modula-2 modules, and although intuitively appealing, the static

textual nature of the modules was inappropriate for the task.

These quite severe problems witln TicToc motivated the complete redesign of a system

structural design language, the result being Pink.

3.5 Selection of a Base Language

There are a number of languages that have potential as a basis for a VLSI description

language. One of the simplest and important criteria is based on the observation in

that the base language is more useful for the expression of function rather than

structure. Thus a language with a clean, easily understood and sufficiently general

syntax is appropriate. In addition it is useful if the language is widely available

to ensure portability. The Modula-2 [Wirth, 1982] language fits these criteria rvell:

it is based on Pascal and hence has a simple, well understood syntax, but has been

improved to include systems prograrnming and modularity concepts. It is also widely

implemented, being available on a wide range of machines of different sizes. There are

a number of other reasons for selecting Modula-2 over other languages, but these are

based on the implementation of the Pir¿fr simulator, and are covered in Section 4.3.1.

It is interesting to note at this point that Pink, has been designed in such a way that

translation ftorn Pinh, to Modula-2 (for simulation purposes) may be achieved on a

statement-by-statement basis. That is, the translation process need only look at a

single line of Pinlc in order to produce the translated code it represents.

3.6 Structural Description

The descriptive properties of the Pizfr language may be classified into two catagories:

description of structure and function. In this section the language syntax and the

underlying semantics that support the description of structure is described. The mode

of language description is informal as the syntax of the Pink additions to Modula-2 is

quite straightforward. The bulk of the syntax is simply that of standard Modula-2 as

described formally by \Mirih [Wirth, 1982]. This follows the precedent of Buchanan

[Buchanan, 1980] for embedded description languages.

Structural description in Pinlc may be regarded as d,eclaratiu e. Unlike other languages
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such as Zeus [German & Lieberherr, 1935] and VHDL [Shadad et al., 1985], the struc-

ture of the design is not created by procedural code, bui by specialized declarative

statements that define the structure itself. This approach has the advantage that

the structure is far more explicit in the description: there is no code that must be

mentaily "executed" in order to visualize the structure being implied.

3.6.1 Hierarchy

Basic to any language that is intended to describe system structure is the ability

to express hierarchy in a concise and intuitive manner. In Pink the expression of

hierarchy is based on there being two distinct partitioning entities: ilefini,tions and

instances.

A d,efinition is the "prototype" of a module in the design, defining its structure but

not itself appearing as a component of the system description. All of the definitions

in a single system exist in a flat namespace: they must each have a unique name.

Definitions are analogous to procedure declarations in a programming language.

Definitions are created using the DEFINITI0N construct:

DEFINITI0N <definition name);

END <definition name);

There are two major classes of definition: topological arrd functional. Topological

definitions are used to create definitions that are composition modules: those that are

created from the interconnection of a number of subordinate modules. Functional

definitions arc leaf mod,ules that have no subordinate modules: rather they contain

code that directly implements the function.

Within a defi,nition a topology may be declared using the T0P0L0GY construct

TOPOLOGY

ENDTOPOLOGY
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Similariy a function may be declared using the FUNCTIoN construct

FUNCTÏON

ENDFUNCTION

Ãn instance is the "realization" of a prototype provided by a definition. Instances

are created and named using the Makelnstance procedure in the T0P0L0GY section

of a definition:

Makelnstance(<definition name>, (instance name)) ;

The naming of instances follows a quite different strategy to the naming of definitions.

This is a result of the fact that a single definition may be instanced any number of

times in different contexts. It is important that there be a consistent naming scheme

that uniquely identifies each instance in a design. To facilitate this, instances are

named according to a hierarchical strategy. Instance names need only be unique

within the definition that declares the instances. Every module instance in a system

is uniquely identified by its full "path" name, where a path is a concatenation of the

ancestor instances, the separator being the "/" character.

For example (Figure 3.2) a definition ,4. may contain two instances Y and Z of.

definitions B and C. \Mithin the definition,4. the instances will be referred to as X

and Y. The definition /. may in turn be instanced twice as ,/ and If. The resulting

fourinstances of B and C will benamed JlY, JlZ, K/Y andKlZ.

With this naming scheme it becomes possible to access specific instances in either an

absolute way, from the top instance in the hierarchy, or in a relative manner from

a specific instance. In addition to being useful in specifrcation, this allows simple

examination of the structure in the simulator (Section 4.10.3).

3.6.2 Interconnect

Composition modules are constructed by creating instances of module defi.nitions and

interconnecting them. Conrrecl,iolìs are made to ports that are declared in a definition

as the only means of providing data input and output to the module instance. Ports
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Definilion of A

Definilion name

An irstance:

lnstance narne

Figure 3.2: An example of the hierarchical naming scheme.

are analogous to procedure parameters in this regard, however they are more complex

in that they allow a fl,ow of data throughout the life of the module unlike parameters

that only provide an initial input and final output function.

Ports have th¡ee basic attributes:

!. Name. The name of each port must be unique within a definition.

2. Data Tgpe. Ports may be of two types: BIT and INT. A BIT type can assume

three values only: HI, L0 and UN representing high, low and undefined binary

values respectively. An INT type can assume ariy integer value (the actual range

being limited by the internal integer representation of any machine used as a

simulation host). Only port of the same data type may be interconnected.

3. Signal TUp". The type of data fl.ow through the port: any one of INP (input),

oUTP (output), I0P, (input-output), ewn (power). GND (ground), cL0cK (clock).

Ports are declared in the STATE section of a definition:

STATE
(port name>, (port name), : PortType;

and described in the PORTS section

PORTS

DeclarePort(<port name), (port tyPe>, (port direction)) ;
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In addition to single channel ports, Pinlc provides a facility for describing multi-

channel ports or buses. A bus is in effect an array of ¡lt type ports that may be

treated syntactically as a single entity. Buses are declares in the STATE section:

STATE
(bus name), (bus name), : ARRAY [0..<upper bound)] 0F PortType;

and described in the PORTS section:

PORTS

DeclareBus(<bus name), (port direction)) ;

The naming of ports (and buses) is closely related to the naming of instances. Within

a definition the ports of that definition are known by their decla¡ed names. However

from the outside of a definition the ports are'named by concatenating the instance

name and the port name together. Thus if a port is named -R in a definition A, then

if ,4. is instanced with an instance name J, the port may be referred to as J f R.

Ports are connected together to form composition modules inside the T0P0L0GY sec-

tion of a definition using the Connect procedure:

Connect(<port name) & (port name) & ...);

A <port name> will appear either as a simple name referring to a port on the cur-

rent definition or as a (instance name)/<port name> pair referring to a port on a

subordinate instance to the definition. Additionally any name may be that off a bus

with a single index of the form (port name) [<index>].

Entire buses and subranges of buses may be connected by specifying ranges as the

indices as in:

Connect(<port name> [(lower>. .<upper>J &

(port name) [<1ower>. . <upper>J ) ;

where the ranges must be off the same extent.

The connection mechanism in Pink differs significantly from that used in languages

such as VHDL. In these languages a signal or net entity must be declared for each

node that is to be created when one or more ports are connected. The connection is

made by using the signal in instance declarations. This procedure requires that new

entities be declared and is considerably less intuitive than the Pink slrategy.
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3.6.3 Structural Regularity

As indicated in previous chapters, a great deal of reduction in explicit complexity

may be achieved by making use of the inherent regularity present in many structured

VLSI designs. This regularity has a number of different facets, and in order to

represent it fully it is desirable to incorporate a general and yet clear mechanism into

the language. The representation should be d,eclarafiue rather Lhan procedural as the

regularity is static and should be described as such. (Some languages such as VHDL

[Shadad et al., 1985] require the designer to represent regularity using procedural

constructs such as for loops).

The declarative mechanism for describing regularity in Pinle is based on an integer

subrange syntax that may be used in a variety of situations. The basic operation of

the syntax is to take any language statement in which a regular subrange appears

and expand it for each step of the subrange. The use of the facility is best illustrated

by an example of it common usage with the Makelnstance and Connect procedure

calls:

o Makelnstance(adderbit, adderslice(0. .31>) ; declares 32 instances of the

definition adderbit, named in the sequence addersliceO, adderslicel,
adders1ice31.

o Connect (adderslice(O . .3O)/cout & adderslice(1 . .31>/cin) ; declares

the connection of the carry out port of each instance to the carry in port

of the subsequent instance.

The () syntax may be used in many other positions including declarations. For ex-

ample: DeclarePort(cout(O ..7), BIT, 0UT); describes eight portsnamed coutO,

coutl , cout7.

The notation may be extended to more than a single dimension of regularity by

using multiple ranges. The particular range is then identified by its position in

a sequence of ranges, with the earlier ranges being cycled slower. For exam-

ple: Makelnstance(rnult,mult(1. .3><1. .3>) ; would generate instances named

¡nult11, nu1t12, nult 13, mu1t21 ¡nu1t33.
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3.7 Specification of F\rnction

The language has been designed so that the contents of the FUNCTION section of a

functional definition appear as similar as possible to Modula-2 as defined by Wirth

[\Mirth, 1982]. Most Pink, operators appear to be Modula-2 procedure calls, albeit

with unusual argument syntax where an optional number of arguments may be re-

quired.

The remainder of this section describes the basic format of a functional description

of a module. The issues of timing and communication are dealt with in the follorving

section.

3.7.L Declarations

Variables local to a definition may be declared in the STATE section of a definition.

Standard Modula-2 syntax must be used. Two additional predefined types, STATEBIT

and sT¡TEINT are provided for declaring variables that hold values of the BIT and

INT port types. Note that the variables declared in a definition are static: they may

be treated as maintaining their values continuously.

The Modula-2 keywords C0NST and TYpU may be inserted above the STATE keyrvord

to allow for the declaration of constants and types.

3.7.2 Initialization

The INIT section of definition may contain any code that is suitable for use in the

FUNCTI0N section. This code will however be executed only once for initialization

purposes.

3.7.3 Functional Code

The syntax expected in the FUNCTI0N section is a superset of standard Modula-2.

Function is expressed by using the Pink port communication operators (Section 3.7.4)

in conjunction with standard Modula-2. A number of additional utility functions a¡e

provided to simplify the description of the function:
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. T00B00L( <BIT value) ); Converts a value of the BIT type to a B0OLEAN

Only valid if the BIT value is HI or L0.

¡ FR0MB00L( <BO0LEAN value) ); Converts a boolean into a HI (TRUE) or a L0

(flfSf) value suitable for writing to a port.

fn some cases it is desirable to define Modula-2 procedures to perform often used

functions in a description. Pinlc allows these to be defined in the normal manner

anywhere outside a DEFINITION with the Modula-2 PROCEDURE construct.

\4odu1a-2 library procedures [Wirth, 1982] for tasks such as textuai input, output

and maths may be imported with the Modula-2 IMPORT construct positioned after

the SYSTEM statement.

3.7.4 Specification of Time and Communication

One of the most diffi.cult aspects of representing hardware in a descripiion language

is that of intermodule communication and the related issue of timing. Most softrvare

systems are sequential in nature: data is passed into a procedure on invocation and

passed out upon termination. Conversely hardware modules are constantly active

and may input and output data at any time. The timing model adopted by most

hardware description languages is constrained by the limitations of the underlying

software simulator: each module instance must produce ne\Ã¡ outputs at a lirrre after

the inputs are changed. The disadvantage of this class of description language is that

it requires that the designer begin to consider timing issues at an early stage in the

design.

A primary motivation for the design of the Pinlclangvage \Mas to enable a designer to

rapidly develop and evaluate alternative abstract designs. The need to specify specific

delays \Mas regarded as an unsuitable constraint in for this class of language and

hence a demanil iJriuen approach to data transfer has been developed based in part

on Communicating Sequential Process (CSP) [Hoare, 1978] semantics. The result

is a communication model that supports the instantaneozs transfer of data betrveen

modules in addition to the more common delayed transfer. Additionally facilities

may be built into the language simulator to detect pathological data transfers in

a simila¡ manner to that described previously for token based descriptions. The

communication strategy may be implemented in a particularly efficient fashion for
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simulation. These last two issues are discussed further in the next chapter.

The syntax and semantics of time and data transfer in Pinlc arc described in the

remainder of this section.

3.7.5 Description of Time

Time is represented in the description in terms of. ticlcs relative to the current time.

Ticks are atom'i,c: they represent the smallest time that may pass between time

separated events. Ticks are generic time units: the user may treat them as whatever

real time units are appropriate to the system being described (e.g. nanoseconds,

picoseconds etc). Module descriptions have no mearrs of accessing absolute t\me:

instead they must specify time relative to the current system time.

The Pause procedure provides a mechanism for an instance to pass time without

any activity: Pause(<ticks>); causes the instance to suspend activity for (tícks)

amount of system time after which activity is resumed with the subsequent statement.

3.7.6 Outgoing Communication

There are two primitive operations for the output of data from a module through

one of its ports: !{RITE and DELAYEDI¡IRITE.

The I'IRITE procedr:re allows for the writing of a value to a port instantaneously. Any

module connected to the port will receive the new data without any apparent delay.

The syntax of the command is:

IIRITE(<port name), (value)) ;

The DELAYEDI,IRITE procedure allows for the output of a value to a port after some

finite d,elay specifi.ed in ticks. The effect of a delayed write is that any modules

connected to the written port will not receive the new data till the specified delay

has elapsed. The activity of the writing instance is not halted however: activity

continues im¡nediately with the subsequent statement.

The statement has the following syntax

DELAYEDI,¡RITE(<port name), (value), (ticks)) ;
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3.7.7 Incoming Communication

The basic entity for data input to an instance is the READ function which retu¡ns a

value read form a port. Thå semantics of a READ require that the value it immediately

returns is the final value that will be assigned to that port in the current time interval

(tick) rather then the value that it might have at the current time. This raises the

issue of deterministic as opposed to non-deterministic scheduling which will be dealt

with in the next chapter. From the point of view of the description however, it is

suffi.cient to assume that the value returned by a READ call is simply a valid value for

the port at the current time.

The statement has the following syntax:

(variable) := READ(<port name));

3.7.8 Synchronization

The various modules in a system design must be synchronized in order to function

in a coherent fashion. The Pinklanguage provides a set of explicit waiting operators

in order that instances be able to operate in synchronism with each other by pausing

till particular ports are written. By far the most common mode of use for these

operators is to wait for a clock signal to be asserted.

There are two related procedures for waiting. The first, ÏlaitFor, causes activation

of the instance to be halted till one of the named ports is written. The statement

has the syntax:

trlaitForCase((port name 1) I <port name 2) I ...)

The second and more comprehensive form, WaitForCase, allows for the specification

of different actions depending on the name of the written port:

tilaitForCase((port nane 1) I <port name 2) I

Signal (port name 1) Has Action
)

Signal (port name 2) Has Action
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END;

The presence of explicit synchronization calls in the description ensures that the style

of synchronization being used is explicitly represented, thus aiding comprehension of

the description.

3.7.9 Bus Operations

The writing and reading operators described above may be used on individual ele-

ments of buses as each of these is a simpie BIT port. In addition however several

bus-specific operators are provided. The BUSI^¡RITE and DEL¡,yEDBUSI,¡RITE procedures

are identical to their BIT counterparts except they expect decimal integer values as

arguments that are then converted to binary BIT values and written onto the bus

itself. Similarly the BUSREAD procedure reads the bus and returns a single decimal

integer value representing the binary bus value.

WRITEBUS(<bus name), (vaIue)) ;

DELAYEDI^IRITEBUS (<bus nane), (value), (ticks)) ;
(variable) := READBUS(<bus narne)) ;

3.8 Systems, Subsystems and Libraries

Ã Pink description is contained in the basic context of. a system. A system is declared

with the SYSTEM construct:

SYSTEM (systen name);

BEGIN

END (system name)
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In any system one and only one insta¡rce must be declared as the root instance to

which all other instances are subordinate. The root instance is declared with the

MakeToplnsta¡ce procedure which must appear thus:

SYSTEM (systen name);

BEGIN

MakeToplnstance(<aetinition nanne), (root instance name)) ;

END (system name).

In addition to complete systems specified in a single file, it is desirable to have

a facility that allows the description to be spread across a number of fiIes io aid

structuring of the description and separate compilation. This same facility may be

used for the collection comrnonly used definitions in libraries. The SUBSYSTEM facility
provides this by allowing definitions to be created and then imported into the main

SYSTEM description for instancing:

SUBSYSTEM (subsystem name) ;

DEFINITI0N <definition name)

END <definition name);

END (subsysten name).

The definitions contained in the subsystem may be imported into the system descrip-

tion with the Modula-2 IMPORT facility:

SYSTEM (system name);

FROM (subsystem name> IMP0RT <definition name);

END (system name).
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Note that definitions do not have to be explicitly exported from the subsystem: all

definitions in a subsystem are automatically exported.

3.9 Pararneterization

Several researchers [Buchanan, 1980; German & Lieberherr, 1985]ltave emphasized

the importance of parameteri,zation of hardware modules. This refers to the asso-

ciation with a definition of parameters that set certain numerical features of that

defi.nition. The number of bits in an adder for example. In such a scheme, when a

module is instanced, the number of bits may be set at the same time. This is useful

in that it reduces the number of different definitions that may be required. There

are two observations that may be made on this issue:

1. The run-time parameterization of modules disrupts the clean mapping betrveen

definitions and instances. A number of physically different instances may have

the same definition, varied only by parameters. When decomposition of such a

definition takes place, the decomposition must be parameterized, and this may

be difficult. \Mhen the defi.nition comes to be realized at the circuit level, simìlar

allowances must be made for parameterization, and quite different circuits may

be required for different values of the parameters.

2. The range of different parameters used in a definition is likely to be small. For

instance within the one system there are unlikely to be more than say 8, 16

and 32 bit adders in use.

3. The parameterization only refers to structure, and this is a static property of the

description. There is no need to carry out parameter expansion of definitions

in a fully executable form.

These observations ied to the inclusion of. furtualparameterization of. Pink definitions.
The C preprocessor [Ritchie & Kernighan, 1978] is used to provide a "macro" facility
that can be used to create several versions of a definition, one for each set of parameter
values. For example an adder definition may be parameterized as:

#def ine AdderDef initionMacro (Nane,MaxBit)
DEFINITION Name;
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Makelnstance (AdderBit, Bit<0 . .MaxBit>) ;

END Name;

A 32 bit version of the adder definition named Adder32 and a 16 bit version of .the

adder definition named Adderl6 may then be created:

AdderDef init ionMacro (Adder3 2, 32)
AdderDef init ionMacro (Adderl 6, 1 6)

This mechanism is appropriate for several reasons

1. Its use as an aid to speeding the construction of a description is explicit: there

are still different definitions for different types of instances, so the mapping

between definitions and instances is not confused.

2. There are only likely to be a small number of variations on a particular defi-

nition, so the additional textual overhead of processing separate code for each

definition is not high.

3. The expansion takes place during preprocessing, thus a simulator need not deal

with the additional complexities of parameterized definitions.

3.10 Limitations

The primary limitation of the language arises in the description of feedback paths

without delays. Any such path may give rise to a situation in u'hich it is not possible

to find a stable value for a given node: an inverter with its input and output connected

together for instance will cycle between HI and L0 states within the same instant of

time. Given some delay in the feedback path however means that the circuit values

will alternate within each delay interval.

This is not in general regarded as a critical restriction. The normal timing methodolo-

gies of structured design suggest an even more significant restriction: that feedback

paths be interrupted by a clocking signal to ensure that only fuily clock-synchronous

operation may occur. This decreases the complexity of circuit function, and is a basic

rule in design for testability fGerner & Johansson? 1986].
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3.11- An Example

In this section some of the description concepts outlined in this chapter will be

illustrated with an example: the various levels of. Pinlcdescription of a thirty-two bit

adder. An example of more significant complexity is described in Chapter 7.

Note that there are two comment mechanisms in the language

1. The Modula-2 based multiline comment initiated with "(*" and terminated

with "*)".

2. The single line comment initiated with ('--)).

Five different levels of description of a simple thirty-two bit adder wili be described.

Each level is a successive refinement of the previous level created by refrning abstrac-

tions in the previous level.

The first description is comprised of only a single functional block with integer inputs

and output:

DEFINITI0N Adder32;
STATE

Ainput, Binput, 0utput : PortType;
PORTS

DeclarePort(Ainput, INT, INP) ;

DeclarePort (Binput, INT, INP) ;

DeclarePort(Output, INT, OUTP) ;

FUNCTION

I,IaitForAny(Ainout I Binput) ;

Ï,lRITE(Ouput, READ(Ainput) + READ(Binpout) ) ;

ENDFUNCTION;

END Adder32;

The second description may be created by refining the INT ports into bitwise descrip-

tions:

DEFINITI0N Adder32;
STATE

Ainput, Binput, Output : ARRAY [0..31] 0F PortType;
-- Now use bitwise buses rather than integers.

PORTS
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DeclareBus(Ainput, INP) ;

DeclareBus(Binput, INP) ;

DeclareBus(0utput, OUTP) ;

FUNCTION

TlaitForAny(Ainout I Binput) ;

I.¡RITEBUS (ouput , READBUS (Ainput) + READBUS (Binpout) ) ;

ENDFUNCTION;

END Adder32;

In the next refinement, clocks are added to provide explicit synchronization. In this

case the clock only generates HI signals, and the modules that use this clock use it
only for synchronization, and never read the actual value. Usually the clock would be

obtained from a definition library, however here it is explicitly defined for illustration:

DEFINITI0N Tr¡oPhaseClock ;

STATE

Phasel, Phase2 : PortType;
PORTS

DeclarePort(Phase1, BIT, CLOCK) ;
DeclarePort(Phase2, BIT, CLOCK) ;

FUNCTION

.l"lRITE(Phase1, HI) ;

Pause(10); -- The module idles for 10 ticks
I'IRITE(Phase2, HT);
Pause(10);

ENDFUNCTION;

END TwoPhaseClock;

Such a clock could be connected to an instance of the following definition in order to

provide synchronization:

DEFINITI0N Adder32;
STATE

Phasel, Phase2 : PortType;
Ainput, Binput, Output : ARRAY [0..31] 0F PortType;
Temp : STATEINT;

PORTS

DeclarePort(Phase1, BIT, CLOCK) ;
DeclarePort(Phase2, BIT, CLOCK) ;

DeclareBus (Ainput, INP) ;

DeclareBus (Binput, INP) ;

DeclareBus (Output, 0UTP) ;. 
FUNCTION
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t'laitForAny(Phasel I Phase2) ;

-- Wait until there is some activity on Phasel or 2.
I,ÍRITEBUS (output , READBUS (Ainput) + READBUS (Binpout) ) ;

ENDFUNCTION;

END Adder32;

The fourth description may be constructed by creating a partitioning of the adder

into thirty-two components:

DEFINITI0N AdderSingleBit ;

STATE

Phasel, Phase2, A, B, CarryIn, Carry0ut, Out : PortType;
êv, bv, cinv, coutv, outv : B0OLEAN;

PORTS

DeclarePort(Phase1, BIT, CLOCK) t

DeclarePort(Phase2, BIT, CL0CK) ;

DeclarePort(CarryIn, BIT, INP) ;

DeclarePort(CarryOut, BIT, OUTP) ;

DeclarePort(A,BIT, INP) ;

DeclarePort (B,BIT, INP) ;

DeclarePort (Out,BIT, OUTP) ;

ÏNIT
FUNCTION

WaitFor(phasel I phase2);
av := TOBOOL(READ(l));
bv := ToBOOL(nu¿o(g));
cinv := T0B00L(nEm(CarryIn)) ;

outv
OR

(av AND NOT bv AND NOT cinv)
OR

(ltOT av AND NOT bv AND cinv)
OR

(NOT av AND NOT cinv AND bv);
coutv .= (av AND bv) 0R (av AND cinv) 0R (bv AND cinv);
vtRITE(out, FRoMB00L(outv) ) ;

!üRITE(CarryOut, FR0MB00L(coutv) ) ;

ENDFUNCTION;

END AdderSingleBit;

DEFINITI0N Adder32;
STATE

Ainput, Binput, Output : ARRAY [0..31] 0F PortType;
PORTS

DeclarePort (Phase1, BIT, CLOCK) ;
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DeclarePort(Phase2, BIT, CLOCK) ;

DeclareBus(Ainput, INP) ;

DeclareBus (Binput, INP) ;

DeclareBus(Output, OUTP) ;

TOPOLOGY

Makelnstance(AdderSingleBit, BitSlice(0. . g1>) ;

Connect(gitstice<O. .31>/Phasel & Phasel) ;

Connect(gitStice<O. .31>/Phase2 & Phase2) ;

Connect (gitstice<O . .31>/A & Ainput [<O . . et>] ) ;
Connect (gitstice<O. .31>/B & Binput [<o. . s1>] ) ;

connect(gitstice<0. .31>/Out & Output[<0. .91>]) ;

Connect(gitSlice<O. .3O>/Carry0ut & BitSlice(1. .3l>/CarryIn) .

Connect (gitSticeO/Carryln & Fixedlo) ;

ENDTOPOLOGY

END Adder32;

In the final stage of refinement, delay information is added into the adder bit slice

output (all other text is unchanged):

DEFINITI0N AdderSingleBit ;

DELAYEDI^IRITE(out, FR0MB00L(outv) , 40) ;

DELAYEDI¡IRITE(CarryOut, FR0MB00L(coutv), +O) ;
ENDFUNCTION

END AdderSingleBit;

3.L2 Comparison

It is not practical to carry out an extensive comparison between Pink and the large

number of current hardware description languages. However an extensive comparison

between VHDL and eight other languages clearly demonstrated that it is broadly

representative of current research [Aylor et a1., 1986]. It is appropriate then to use

VHDL as a basis for comparison of the features of. Pinlc intended for design complexity

management and structural design. The information on VHDL used in this section

for comparison is drawn from several sources [Aylor et al., 1986; Lipsett et al., 1986;

Nash & Saunders, 1986]. VHDL is a hardware description language developed for the

Very High Speed Integrated Circuit (VHSIC) program and has many of the features
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and much of the syntax of the Ada language [Shadad et a1., 1985]. VHDL is the

result of a large resea¡ch and standardization effort, an the language is very rich in

data typing and softwa¡e organization facilities such as paclcages. It is not the intent

here to show that Pi,nk can compete on the basis of size and flexibility. Rather that

qertain features of. Pinlc do not appear in VHDL, and that such features may provide

superior facilities for structural design.

3.L2.L Structural Description

In VHDL a defi¡rition (declaration) of a module may be instanced and connected
in order to create structural entities. The instanciation of a module is expressed
in a similar manner to that used for procedures in software. Each "pa.rameter" to
the instanciation is a "signal" that is declared to act as a node in the design. The
signal is bound to the relevant port in the definition. For example, the following is a
structural description (down to the gate level) of an adder single bit:

architecture STRUCT of HADDER is
block

component nandgate port (A,B: in BIT; C: out BIT);
component xorgate port (A,B: in BIT; C: out BIT);
component inv port (l: in BIT; B: out BIT);
signal T1;

begin
Z7: xorgate port (X,Y,SUM);
22: nandgate port (X,Y,T1);
23: inv port (T1,Cout);

end block
end H.ADDER

The components may only be connected to declared signals or ports on the parent

module. To actually comprehend the structure of the design, the connections must

be derived by checking each instanciation statement for common signal names. In

Pink the connections are made explicitly with a Connect statement.

It is not ciear from the literature whether or not there is any form of general hierar-

chical naming system for VHDL instances and ports.

Regularity is expressed in VHDL wiih the generate statement. For example:

foriin0toTgenerate
BfT: adder( );

end generate;
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This style of proceilurøl description of regularity is very general, but has the disad-

vantage that the structure it describes is implicit rather than explicit. The Pink
equivalent would be:

Makelnstance(adder, Bit<O . .Z>) ;

which is both more explicit and concise.

3.L2.2 Functional Description

Functional description in both languages is similar: VHDL uses an Ada-like syntax,

and Pinlc uses Modula-2 for the description of algorithms. The VHDL syntax is

complex, but provides a very rich programming environment. The Pi,nk syntax is

simple, but does not have the same data structuring facilities as VHDL for example.

As VHDL is not however a true superset of Ada, there are in fact some facilities

missing: dynamic objects may not be created for example, and this is a disadvantage

in some applications [Nash & Saunders, 1986]. Pinlc allows the incorporation of all

such Modula-2 facilities in a description.

3.L2.3 Timing

Although delays may be specified on VHDL signals, there is no mechanism in the

language analogous to the PinlcPause statement. Thus it is not possible for a mod-

ule to simply suspend operation for a fixed amount of time. This is seen by most

researchers as a major omission in the language [Nash & Saunders, 1986].

VHDL provides means of specifying both delayed and undelayed signals. An unde-

layed signal is simply delayed by a very small amount of time referred to as "delta".

This is quite different from the concept of an instantaneous signal in Pi,nk. The later

implies a higher level of abstraction. The data driven semantics of an instantaneous

signal are such that an abstraction is formed that does not deal with time or sequence

at all: the selection of correct sequencing within the instant becomes a property of

the language, not the particular design description.
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3.13 Sumrnary

Tlne Pinlc language provides a number of features that facilitate its use as a structural

design language:

1. It provi des definition and instance constructs that are suitable for the structural

description of VLSI systems.

2. It is based on Modula-2 which provides a suitable means of expressing algorith-

mic function.

3. It provides a means of interconnecting module instances with typed data car-

rying paths.

4. Data input and output operations are provided that may be used to express

abstract (instantaneous) or detailed (delayed) data transfers between modules.

5. Preservation of control state allows the description to incorporate pausing for

a period of time at specifi.c points in the code.

6. A syntax for the general expression of regular structures allows for the declar-

ative rather than procedural description of regular structural entities.

7. A macro expansion facility is used for the construction of parameterized module

definitions.

The intent of these features is to provide the designer with a facility for expressing a

design with the minimum explicit complexity. In addition, the software flavour and

refinable abstractions of the language encourage the use of software structural design

techniques in the creation of a VLSI design.

Chapters 4, 5 and 6 examine the issues involved in modelling the algorithmic function

and physical form of. a Pinlc description. The overall structural design procedure that

may be used given lhe Pinlc language and modelling aids is described along with a

system design example in Chapter 7.
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Chapter 4

Modelling Function: Sirnulation

4.L Introduction

Tlne Pink language described in the previous chapter provides a basis for the abstract

description of a structural design of a VLSI circuit. In addition it enables the designer

to specify a function for the leaf modules in the design. By itself, such a description

may serve to unambiguously defrne the structure and function of a design. The

utility of describing a system in such a v/ay may be greatly increased however by

modelling the system description. This involves actively simulating system function

and thus providing information about its behaviour that may be used in evaluation

of the proposed design. Additionally, the modelling process may be used as an aid

to verification of the functional decomposition and overall system integration.

The evaluation of the quality of a software design is eased by the relationship betrveen

the design and the result. A program is typically designed in the implementation

language, and may be incrementaJly decomposed and executed to provide feedback.

Clearly the fabrication delays involved in VLSI make this form of design difficult.

However, given an appropriate description of the design, and suitable tools, it is

possible to simulate the design in order modei its behaviour.

This chapter will examine the task of actively modelling the composite function of.

a Pi,nk description with a functional simulator. Primary design motivations for the

simulator are to encourage interactive investigation of the system partitioning by the

designer, and to provide facilities for the evaluation of competing designs. The first

is catered for by supplying the simulator with a user interface based on familiar and
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intuitive concepts adapted from various sources. The evaluation of of alternative

structural partitionings is in turn catered for by facilities for the profiIing of system

performance: the collection of statistics on data flow activity.

The simulator implementation is based on a process based representation of module

instances. Process scheduling is directed by the pattern of data flow between modules,

allowing the implementation of the Piz,b language instantaneous mode of intermodule

communication. A simple extension of this scheduling algorithm is used to introduce

the concept of time into the simulation, thus implementing d,elayed communication

semantics. This implementation results in effi.cient simuiation as the invocation of

functional module code is kept to a minimum.

The implementation makes use of a number of features of the Modula-2 [Wirth,
1932] language to provide a facility for user written extensions to the simulator: a

parsing facility that enables users to rapidly define translations between Pinlc and

other languages; and a structure that allows users to specify new commands to the

simulator command interpreter.

This chapter will firstly provide an overview of the simulator requirements, follorved

by a description of the implementation. The different modelling modes made avail-

able by the simulator are then described. An example of functional modelling in a

structural design procedure is given in Chapter 7.

4.2 Functional Modelling Requirements

The basic requirement on a functional simulator is that it be able to precisely and

efficiently model the design as it is described in the description language, in this case

Pink. There are however a number of additional activities that must be supported

by the functional simulator in order to facilitate the modelling of the design. In this

section the various facilities required to perform these activities are described.

4.2.1 Architectural Evaluation

The primary aim of the Pink rnodelling facility is to allow the designer to examine

arrd evaluate the partitioning proposed in the Pink description of a system. There

are two basic means of using the simulator for this purpose: by gathering statistics
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on system activity that may be used as a basis for quantitative evaluation, and by

interactive examination of the system behaviour for qualitative evaluation.

4.2.L.L Quantitative Evaluation

Ferry [Ferry, 1935] presents data that suggests that the quality of custom structured

design layout is a property of lhe fl"ow of informationin the system design. By parti-

tioning the design by function, the amount of information flowing between partitions

is reduced, and this corresponds to a reduction in the average interconnect length of

a design. This suggestion that partitioning based on functional issues and minimiza-

tion of information flow is well matched with the concepts of cohesion and coupling

in software structural design (Section 2.1). The greater interactions resulting from

low cohesion and high coupling result in:

1. Greater functiona,l interdepend,ence between modules resulting in greater con-

ceptual complexity and less reusability of module designs.

2. More interconnections resuiting in greater area and po'vl¡er use.

3. Longer interconnections resulting in greater area and pov/er use, and slo'lver

signal propagation.

The slower signal propagation speeds that are a result of (3) are exacerbated by

the fact that with greater interactions, more data is required to be transferred over

interconnect per unit time. This places even greater constraints on maximum clocking

speeds and maximum interconnect lengths.

To aid in the qualitative evaluation of a proposed partitioning, particula^rly with

respect to coupling, the following statistics may be gathered during a simulation:

7. Link Volume: The total volume of data that passes through a link in a given

time.

2. Link Saturatiou The percentage of the total time that a link is being used for

the transfer of data. A saturation of 100% implies that the link is in continuous

use.
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Typically the gathering of statistics would be done whilst running a set of verification

test vectors (Section 4.2.2) as they are typically chosen to strongly exercise module

function.

Tlais profiIing activity has a close analogy to that carried out in software design. In

order to analyse the computational performance of a program, designers often use a

profiling design aid to provide statistics on how much time is spent by the program

in each procedure under typical circumstances. This acts as a guide to finding ihe

bottlenecks in the aigorithm and its implementation. Once identified, these areas

may be given special attention in order to improve the perfoûnance of the program.

The cost factors in VLSI design are quite different to those in software design (Sec-

tion 1.1.2). In software the limited resource is computation as the host has finite

processing.power. In VLSI the limited resource is cornmunication as the chip has

limited area. Hence the proposal to primarily profile data fl,ow rather than compu-

tation time. The resulting statistics assist the designer in identifying:

1. Tradeoffs between wide/slow and narrow/fast communication paths.

2. Tradeoffs between additional communication/duplicated functionality.

3. Underutilized (space consuming) communication paths.

4. Overutilized (time consuming) communication paths.

5. Heavily interacting modules.

In addition to collecting communication statisitics, it is also useful to have a measure

of computation load for each module similar to that found in conventionaL soft*'are

procedure profiling. The equivalent here is to measure percentage of the total during

which each module is activated. This figure assists in identifying parallelism in the

design. In a highly parallel design the modules will all have similar percentages of

activation. A relatively low activation measure for a module suggests that it has a

low computational utilization and may require further investigation.

Interpretation of the statistics may require an interactive simulation session with test

vectors being selected to highlight the problem area. Eventually enough information

will be collected to allow the proposal of a new partitioning, or if a comparison

of several alternative partitionings is made the highest quality partitioning may be

selected.
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An example of using the profiling statistics as a form of quantitative evaluation may

be found in Chapter 7.

4.2.L.2 Qualitative Evaluation

The commands provided in the simulator should enable the designer to interactively

examine the static structure created by the description. The connections between

ports have been resolved into single nodes in the simulator and hence the ports that

share the same values become explicit. These operations are an aid to the designer

in observing the total interconnect structure and the qualitative partitioning that

implies. This function is also an aid when the communication metrics described in

the following section are being used to pinpoint problem areas in the partitioning.

The interactive dynamic simulation facilities such as vector stimulus, watches, breaks

and plots may be used by the designer to observe system communication dynamics as

the simulation proceeds, aiding in the evaluation of communication traffi.c patterns

and densities.

4.2.2 Functional Verification

In its most broad sense, functional verifi.cation refers to the need to verify that a

description performs its intended function. Design wilh Pinlc involves the successive

refinement of abstractions into more detailed descriptions. One of the most common

refinements is the hierarchical decomposition of an abstract module into a set of

interconnected submodules. Another class of refinement occurs when detailed time

delay information is added into a data communication description. In either case it is

necessary to verify that the new refinement is equivalent in function to the previous

more abstract description.

There are two basic approaches to the verification problem:

L. Proaing Correctness. This is the most intellectually satisfying method of func-

tional verification: proving that the composition of the functions of the subor-

dinate components is logically identical to the parent module's function. This

task is itself an area of considerable ongoing research [Birtwistle et al., 1986;

Barrow, 1984; Gordon, 1979]. The structure of the Pinlc language does not
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preclude the use of proof techniques, but such verification is seen as beyond the

scope of this research and in the area of challenging future work.

2. Validati,ng Correctness. A less satisfying but more accessible method of func-

tional verification involves the use of a simulation of the description. Upon

defining a module, the designer specifi.es (perhaps with the aid of specific de-

sign tools) a set of input and output test vectors that purport to exercise the

module's function. The assumption is then made that any entity that claims

to emulate the module's function (a decomposition of that module in terms

of interconnected subordinate modules, for instance) must produce the same

output vectors upon being stimulated by the input vectors. Thus in order to

verify a decomposition the designer feeds the test vectors to a simulation of that

decomposition and compares the output with the specified vectors. If there is

no difference, the designer has ø degree of confidence that the decomposition is

correct. Clearly unless the set of test vectors is complete (usually impractical

due to the large number of states of a module) this ualid,ation process is not

as reliable as a proving process. There is considerable ongoing research in the

area of automatic generation of test vectors [Gerner & Johansson, 1986].

Although less formal than a proof, validation does however have several advan-

tages:

(a) Implementation is much. simpler.

(b) The description language does not have to cater to the requirements of an

automatic theorem prover.

(c) The test vectors provide a general means of verifying more than simply

functional descriptions: they may be used for verifying the correctness of

circuit layouts, and the functionality of the fabricated circuit itself.

In this case of Pinlc description verification, the validation process is regarded as

having two aspects:

1. The informal, interactive simulation of a description by a designer that is typ-

ically used to discover straightforward errors in the design.

2. The more formal verification produced by the use of test vectors that the design

performs its intended behaviour with respect to some other model of the design.
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4.2.2.L Informal

The input of a system description involves the designer creating the text that de-

scribed both the function of modules and their interconnect. Such a process is, like

programming, inherently error prone and likely to lead to syntactic and semantic

errors. Basic syntactic and structural errors may be caught by the compiler and

run time system. To aid the designer in finding more subtle errors, the interactive

simulator interface allows the designer to treat the description as a program to be

debugged. Commands are available to stimulate the system, observe system activity

in a running simulation, halt the simulation and examine its state. This environment

is similar to that provided by an interactive source level debugger for software, and

in fact the intent is the same: detection and tracing of specification errors.

4.2.2.2 Formal

\Mhilst the informal interactive procedure outlined above is useful for the initial
debugging of a description, it does not address the problem of more formal functional

verification. For this purpose a process of. ualiiJation in the form outlined above

has been adopted. The file based stimulation (4.10.5.2) and observation (4.10.7.1)

facilities of the simulator may be used to feed test vectors into a module and record the

result. It is a simple task to automate the process using operating system command

files that appropriately invoke the simulator with the test vectors as input, then

compare the output files generated with the required result, flagging any differences

between the two. The interactive facility may then be used to debug the description.

Test vector generation and validation may also be carried out by testing modules

defined in Pinlc code and connected to the module being validated. An example of

this is shown in Section 3.11.

4.2.3 Systern Integration

A VLSI circuit is usually only a single component of a larger system that consists of

a number of hardware and software components. A working simulation of the system

such as that supplied by the Pinls simulator may be substituted for the actual chip

during the development of software for the chip and the design of other hardware that

must interface to the chip. This ailows bystem hardware and software development

88



to be carried out in parallel to the chip design and fabrication.

Hardware interface design may be carried out by creating Pink descriptions of the

interconnected system components and connecting them up to lhe Pink description

of the chip. The.success of the interface design may then be verified by simulation.

Software development may be carried out by downloading the code into the memory

part of a simulation (using the file based stimulation facilities) and running the

simulation to observe software behaviour.

4.3 Design and Implementation Overview

There primary issues in the design and implementation of the Pink simulator are:

t. Accurafe modelling of the language.

2. Efficienl modelling of the language.

These a,ffect all areas of the simulator design, but the major impact is in the area of

communication and scheduling (Section 4.8). It is in this area that this implementa-

tion most differs from existing functional simulators.

The implementation of a simulation of. a Pinle description involves the the follorving

phases:

1. Translation of lhe Pinle description into Modula-2.

2. Compilation of the Modula-2 source into object code.

3. Linking the object code derived from the description with both the run time

system object code and the object code representing any library modules used

in the description. The linking process results in an executable image.

4. Running the executable image as the simulation.

The Moduia-2 code produced by the translation process assumes the existence of a

number of external routines that serve to connect the code to the run t'i'rne system.

The run time system is a large body of code that provides:

1. Data structures that represent the interconnections between modules.
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2. A means of implementing instances as processes.

3. A scheduling mechanism that controls the activation of instances given specific

patterns of data transfer between the instances.

4. Monitoring of data flow and module activation.

5. A command interpreter that enables the user to control the simulation.

6. Interactive and hardcopy display of system activity.

7. User accessible facilities for language parsing and additional command defini-

tion.

4.3.L The Implementation Language

Several reasons for choosing Modula-2 [IVirth, 1982] over other available program-

ming languages as a basis for Pinlc descriptions v/ere given in Section 3.5. There are

a number reasons that Modula-2 is an appropriate language based on its suitability

as an implementation language for the simulator:

1. The language provides excellent facilities for developing large, well structured

prograrns. In particular there is strong control over the import and export

of entities across software module boundaries. Module interfaces are defined

and the module implementations hidden, thus reducing the interaction between

software modules to well defined routes.

2. The language provides facilities for the programmer to create and manipulate

simple processes. A process may be created within which a procedure may

execute with its own state: variables and program counter. This facility is

typically implemented as coroutines on a uniprocessor. Processes are used in

the simulator as a basis for the implementation of instances.

3. Procedures are defined as a first class data type and thus may be assigned to

variables. This is required as procedures a.re to be assigned to be executed in

processes.

4. The language is strongly typed, a property that is generally regarded as leading

to the creation of more robust software as a number of ciasses of errors may be

detected synt actically.
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5. There a e a number of implementations of the language on different machines

and operating systems ensuring the portability of the simulator.

Modula-2 has severa,l disadvantages as an implementation language:

1. Procedures may only have a fixed number of actual parameters. Variable pa-

rameter lists for commands such as Connect must be implemented by the macro

preprocessor.

2. The terminal and file input/output procedures are not standard, being provided

by implementation-dependent libraries. This may cause portability problems.

3. There is no standard method of declaring text strings of dynamically varying

length. The nature of the task is such that this would be a useful attribute.

In balance however the advantages of Modula-2 were judged to outweigh its disad-

vantages.

In addition to Modula-2 there are a number of languages that might be used to

form the basis of a VLSI description language. The following is a brief iist of these

languages and their characteristics:

!. Lisp: The macro facility is very useful for embedded language definition, and

symbolic processing may be appropriate. Object oriented extensions such as

Flaaors [Weinreb & Moon, 1981b] would provide a basis for instance state

representation. Automatic memory management with garbage collection is an

advantage, but has an efficiency overhead as do tagged data types. There are

no standard means for specifying processes.

2. Simula: The class stmcture is particularly valuabie in design representation

[Buchanan, 1980]. The syntax is Algol-like and somewhat lacking in famil-

iar control structures. There is not a great deal of availability on a range of

machines.

3. C: Yery widely available. Not a simple syntax, and has poor software manage-

ment facilities. Has a useful preprocessor for macro expansion. Does not have

coroutines facilities.

4. C+ +: An object oriented version of C, it has a number of faciiities that make

it suitable for embedded language applications. It was not available at the time

of the design of the Pink, sirnulator.
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6. Pascal: Simple syntax, but has no software management facilities, nor corou-

tines.

6. Ad,a: Large enough to provide virtually all of the functionality of the previously

described languages. Does not however have a familiar syntax, and is not as

yet available on a wide range of machines.

4.4 Translation to Modula-2

One of the considerations in the design of the language was to mafe it syntactically

similar to the Modula-2 base language in order to simplify and hence speed the trans-

iation process. This simplification was aided by the close relationship between the

structural specification of hardware and software. The result is that the translation

to Modula-2 is quite simple with most Pinlc constructs being implemented simply as

syntactic fitacros. Macros are a means of specifying a template for translating one

textual entity into another.

The macro definitions fall into three classes:

1. Those that translate into a simple token in the result, and thus only provide

substitute a preferred keyword. For example lhe Pink, DEFINITI0N keyu'ord

translates directly to the Modula-2 PROCEDURE keyword.

2. Those that translate into a number of statements. For instance lhe Pink STATE

keyword translates to:

VAR

INSTANCENAME : string;
READYT0DODECS : BO0LEAN;

SIGNAL : node;

The Modula-2 VAR keyword initiates variable declarations, the three subsequent

declarations are for variables which are used in the result of the translation but

never seen by the user.

3. Those that serve to translate argument lists from the form used in Pinlc to

valid Modula-2. For example the Pink proc.erhrre call DeclarePort (Carry0ut,

BIT, 0UTP) translates to:
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a

declareport(INSTANCENAME, "Carryout", Carryout, BIT, oUTP)

The INSTANCENAME variable is used to pass the name of the instance the call

occurs in (only known at compile time) to the run time system. The string

"CarryOut" passes the name of the port to the run time system. The vari-

able identifi.er CarryOut passes lhe aariable representing the port to the run

time system. The identifi.ers BIT and OUTP are passed to the run time system

unchanged.

In the current implementation of the simulator the C ianguage fRitchie & Kernighan,

1973] macro preprocessor is used to perform macro expansion. Oniy two pages of

macro definitions are required to perform the entire translation. The C preprocessor

aiso perform the expansions of user defrned macros for parameterization of definitions

(Section 3.9).

One aspect of the Pinfr language that cannot be translated with simple macros is the

syntax developed to express regular structures (Section 3.6.3). This syntax is unlike

any existing Modula-2 construct and so must undergo a more complex translation.

Additionalty the syntax is quite general: it is intended to be used even in user defi.ned

procedure calls. The chosen solution is to implement the syntax as an unusual form

that is similar to a macro in that involves text-rewriting, but r-rrlike a macro in that

it does not follow the conventional form of identifier and argument list. Instead the

source text is processed unchanged statement by statement, until one or more (a. .b)

type constructs are identified in a statement. The statement is then re-written for

each step of the expansion, with the (a..b) token replaced by an integer index in

the stated range. For example the statement:

Connection(AdderBit<O. . 6>/Carry0ut & AdderBit( t. .7> /CatryIn) ;

is translated to

Connection(AdderBitO/CarryOut & AdderBitl/Carryln) ;

Connection (AdderBit6/CarryOut & AdderBitT/Carryln) ;

In the current implementation, the expansion of regular syntax expressions is per-

formed by a progra,m written in C in conjunction with the LEX lexical analysis facility

[Leske & Schmidt, 1975].
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The complete Pinlcto Modula-2 translation process consists of first passing the source

through the regular syntax expansion program and then the macro expansion pro-

gram.

4.5 Internal Representations

An fundamental task in creating a simulation of a description is to represent the

structure and function implied by the description in the memory of the machine to

be used for the simulation. The choice of these representations are critical as they

must support algorithms that implement the semantics of the description language.

They must do so efficiently in terms of both memory space and compute time, as the

intent is to support the modelling of large, complex systems.

In the following subsection some of the typical simulation representations and their

limitations will be described in order to place the decisions made in this implemen-

tation in perspective. This is followed by a description of the methods chosen to

represent definitions and instances in lhe Pink simulator. This section is intended to

describe those aspects of the system that are in a sense static during the simulation.

In a subseqúent sections the more d,ynami,c aspects of the simulation process will be

described.

4.5.L Conventional Representations

The conventional means of representing an instance in a functional simulation is

as a normal procedure. Each time one of the input ports receives a netñ/ value the

procedure is called. It must then run through to completion and terminate, returning

control to the procedure that invoked it. Although almost trivial to implement, this

structure has a number of severe limitations including:

7. Inefficiency. Every time a module input changes the relevant procedure must

be invoked, typically generating some new output which in turn causes other

procedures to be invoked. In many cases it should be possible to only execute a

section small section of code before suspending till further required data arrives.

This would reduce execution time within the instance, and reduce the amount

of unnecessarily propagation which occurs between instances.

94



2. Pausing. It is often convenient to express function in terms of. ti,me pauses

in which the module's function is suspended for a specifred length of time (as

lacking but suggested for the VHDL language [Nash & Saunders, 1986]). As

it is not possible to suspend a normal procedure midway through its execution

and restart another, it is not generally possible to implement pausing with a

pro cedural represent ation.

The following subsections describe the process based representations used in the Pir¿ft

simulator that do not share the above limitations.

4.5.2 Definitions

A, Pink definition serves as a template for the creation of instances, and as such does

not appear as a connected part of the internal representation of the structure implied

by the description. Instead the definition is translated into a procedure: a piece

executable code which may then be used as a template for constructing instances

each time a Makelnstance of that definition appears.

The d.efinition procedure for a topologiial definition has the form:

PROCEDURE <definition name) ;

VAR

--- Declare internal variables.
--- DecLare user variables for ports and state.

BEGIN

--- l{ait for "initialization" signal.
--- Describe ports.
--- Describe instances to be made.
--- Describe interconnection of ports.
--- trlait for the end of the sinulation, doing nothing.

END <definition name);

The definition procedure f.or a functional definition has the form:

PROCEDURE <definition name) ;

VAR

--- Declare internal variables.
--- Declare user variables for ports and state

BEGIN

--- Wait for 'rinitialization" signal.
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--- Describe ports.
--- I'lait for "simulation begin" signal.
LOOP

--- Execute code that e¡nulates module function.
--- Repeat the execution for the duration of the sinulation.

END;

END <definition name);

The following two subsections describe the means by which definition procedures are

used to create instances and interconnect respectively.

4.5.3 Instances

A instance is an instanciation of a definition. For reasons that will become clearer

later in this chapter, there are two basic requirements for such as instanciation:

!. Preseruation of control state. A single instanciation should be preserved for

the entire life of the simulation and have the capability of being activated and

deactivated as required for the simulation.

2. Preseruation of uariable state. The values held in the variables tied to an

instance should be preserved for the entire life of the simulation.

Conventional procedure call semantics do not fulfill these requirements as they imply

the existence of only a single linear calling hierarchy (usually implemented with a

single stack). This implies firstly that the only means of creating an activation

of a procedure B is to call it from the currentiy active procedure A. B may call

subsequent procedures, however eventually it must terminate if procedure activation

,4, is to continue. Hence there is neither a means to activate and deactivate a single

activation of a procedure, as required for preservation of control state, nor is there a

means of preserving variable state as when a procedure terminates, all state is lost.

A set of semantics that do fulfiIl the requirements outlined above are those associated

wil}: simple processes. Here a simple process is defined as providing an environment

in which a procedure may be activated and may preserve its control and variable

state indefinitely. Simple (or light ueight) processes are typically implemented by

providing a procedure with an individual stack upon which it may allocate space.

Control is switched between procedure activations by a switching of stacks, only one
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being active at a time. Light weight processes differ îrorn heaag weigh,t processes in

that the later also provide a complete memory space for the procedure to execute

in. Light weight processes are exemplified by those in the Lisp Machine [Weinreb &

lVloon, 1981a] operating system. Heavy weight processes are exemplified by those in

operating systems such as UNIX [Ritchie & Thompson, 1974].

The Modula-2 language provides a facility for the creation of light weight processes.

This facility is independent of the operating system as the processes are implemented

using a simple coroutine structure on uniprocessor machines [Wirth, 1982]. The

interface to the processes moduie is via two procedures:

1. NEI^IPR0CESS Allows for the creation of a new process running a user specified

procedure.

2. TRANSFER Allows for the transfer of control from the current process to some

other specified process.

The NEI,IPROCESS procedure may be used to create an instance of a definition by pass-

ing it the name of the definition procedure for the required instance. The TRANSFER

procedure may be used as the basis for process scheduling and signaling as described

in a later section (4.8). For the moment it is sufficient to assume that processes

may be created within which procedures may be run, and that there is a signaling

mechanism with which processes may suspend their execution and await the arrival

of synchronizing signals.

trVhenever a Makelnstance appears in the description, a simulation representation of

the instance is created by passing the instance's definition procedure to NEI'IPROCESS

which created a lighi weight process within which the instance may execute.

4.6 Initialization

The initialization phase of the simulation is defined as that between the initial invo-

cation of the simulator and the appearance of the command line interpreter prompt

that indicates that the program is ready to begin simulation. During initialization

the definition procedures are used to create the internal representations of structure

ancl interconnect.

This process is described in the following sections
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4.6.L Genesrs

The program begins execution with ihe statements in the top level block of the main

software module. This contains only one statement: a call to MakeToplnstance.

In effect this simply calls the more general Makelnstance procedure with the name

of the top level definition to be instanced and the narne to be given to that in-

stance (the operation of Makelnstance is described in the following subsection).

This call takes place within the only process that exists at that time which is named

"ParentProcess". For the duration of the simulation ParentProcess serves as the

control process ot sch,eduler: all other processes are associated with particular module

instances.

The code executed by the parent process during the initialization phase may be

summarised as:

1. Create the top instance, thus recursively creating the instance process hierarchy.

2. Send the initialization signal, causing all instance processes to execute their

port declarations, thus completing the interconnect data structure.

These phases are described in more detail in the following sections

4.6.2 Instance Creation

A call to Makelnstance has the effect of creating an insto,nce process. This process is

set to run the definition procedure of the instance requested. Just before it is about

to return to the caller, lhe Malcelnstance procedure suspends the current process

and activates the instance process it has just created, thus beginning execution of

the associated definition procedure. Makelnstance appends the new instance narne

to the name of the instance process that made the Makelnstance call and passes

the resulting name to the new process in order that it may be have a record of its

full name (Figure a.1). The name is stored in the INSTANCENAME variable of each

instance process. This is passed as a parameter in most procedure calls into the

run time system in order that the system have knowledge of the name of the calling

insta¡rce process. This is particularly important in dealing with ports, as within a

definition they appear only as simple names such as CarryOut however if an operation
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on that port is to be described usefully to the simulation user it must be appended

to the full name of the instance, Adder/AdderBitl5/Carry0ut for example.

AtBtc

3

AIBID

A-

I

ParentProcess

5

1. The parent process creates a process for
the root instance A and passes it control
andthe nameA.

2. The root process A creates a process
for the instance B and passes it control
and the name Ay'B.

3. The FVB process creates a process
forthe instance C and passes it control
and the name y'VBC.

4. NBIC has no subinstances, so h suspends
and returns controlto its creator, A,/8.

5. The Fr/B process creates a process
lorthe instance D and passes it control
and the name A/BD.

6. ¡úB/D has no subinstances, so it suspends
and returns controlto its creator, Ar/8.

7. A/B has no more subinstances, so it suspends
and returns controlto its creator, A.

8. Once A has created allof its subinstances
it returns controlto its creator, the parent
process, which then begins running the
scheduler for simulation.

6

7A/B
I

I

2

Figure 4.1: The ¡ecursive assembly of the instance process hierarchy.

4.6.3 Instance Hierarchy Creation

If the newly created instance process has an associated topological definition proce-

dure, the process immediately begins to execute any Makelnstance calls contained

in that definition. The effect then is to recursively build the entire instance hierarchy

up in a depth fi.rst manner. This process is illustrated by example in Figure 4.1.

Eventually in any given instance process, processes will have been created for all the

subordinate instances and control will return to the given instance process.

4.6.4 Connection Creation

Once all of the Makelnstance calls have been completed by an instance process

involved in creating a topology, any Connection procedure calls are proceeded lvith.

The names of the ports be be connected are passed in as a single string. This string

is parsed by the run time system. If any ports are listed that have not yet been
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created, they are created on the appropriate instance. The ports are connected by

the creation of a node data structure that is pointed to by all connected ports. The

connection process is illustrated in Figure 4.2. Afler completion of connections, the

instance process suspends its operation pending an initialization signal.

NbdeN

Figure 4.2: The statement Connect(A/x ¿¿ B/y & C/Z); creates the above data

structure. The node N is implicitly created in order to provide a common data

area for values written and read by the three ports.

4.6.5 Port Declaration

Once all the instance processes have completed their instancing and connection tasks

their suspension causes reactivation of the parent process. The next operation carried

out by that process is to broadcast the initialization signal that causes all instance

processes to execute their DeclarePort procedure calls. Although it seems counter-

intuitive to do this øfter the ports connections have been made, this ordering is

necessary. Completing all the connections in the system ensures that for every set

of connected ports, a single node structure now exists, to which a pointer has been

generated. One of the functions of DeclarePort is to now set the local variable

representing the port to point at that node. As a result, any read or write operation

that is carried out on a port identifier will cause a direct reference to lhe node

connecting the ports, not to a single port. This data structure is illustrated in

Figure 4.2. In addition of course the DeclarePort call provides information on port

type and data direction. If any connections have been made to ports that now found

lnstance Clnstance A lnstance B

PorlZPort X Porl Y
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, fatalnever to have been declared, or there are port type and direction

errors are generated.

At this point the entire function of all the topological instance processes has been

completed. They proceed to suspend their execution and wait on a signal that is only

sent out at the termination of the simulation session that causes them to terminate

with all other processes.

4.6.6 Function Creation

Instance process that have functional rather than topological definition procedures

move directly to waiting for the initialization signal as soon as they are created. On

receipt of this signal they execute their port declarations and then rather than sus-

pending and waiting for a termination signal, they suspend and wait for a "simulation
begin" signal which is not sent out till it is desired that the functional code begin

execution. The signalling mechanism will be described in Section 4.8.

4.7 Active Simulation

Once all instance processes have completed their initialization code and are suspended

waiiing for signals, control again returns to the parent process. The parent process

then invokes the command line interpreter to allow the user to set up the simulation

parameters before initiating the simulation. Once the user has used the command

interpreter to set up the environment for a particular simulation session, the run
command is given. This causes the command interpreter to return and the parent

process proceeds to send out the t'simulation begin" signal causing the functional

instance processes to begin operation. The parent process then begins running the

process scheduler code and continues to do so for the remainder of the simulation

session whenever when it is activated. The basic mechanisms of the scheduler are

described in the following section. The scheduler is also responsible for invoking

the command interpreter upon user request, and continuing execution whenever the

command interpreter is exited (the run command). The simulation is terminated by

the user giving the quit command to the command interpreter, which resuits in the

execution of the Modula-2 HALT procedure in thc main proccss, causing an exit from

the program:
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4.8 Comrnunication and Scheduling

Given that instances are represented as processes as described in the prevrous sec-

tions, the major remaining simulator design issues in the simulator implementation

become:

1. ProvidiÍg a cornflLunication mechanism that allows data to be transferred be-

tween instance processes in fashion that accurately implements the Pir¿k com-

munication semantics.

2. Providing a scheduling mechanism to select which of the instance processes is

to be next activated in order that the simulation proceed in a deterministic

fashion.

In fact the provision of these two mechanisms is a closely related problem, and the

that data flow patterns within a particular design may be used to guide the scheduling

in such a v/ay as to produce an effi.cient impiementation of the Pinlc cornrmtnication

semantics.

The mechanism developed is related to several techniques in parallel programming

research: Hoare's Communicating Sequential Process (CSP) notation [Hoare, 1978]

ard d.ata fl,ow programming [Dennis, 1980].

The following subsections discuss the Pink comrntnication semantics, the problems

that occur in implementing these semantics, and the mechanism developed to imple-

ment them efficiently in the simulator.

4.8.1 Comrnunication Semantics

The basic Pinlc cornrntnication semantics may be regarded as being associated l'ith
three major activities: waitíng, uriting and reading. The semantics associated with

each may be concisely defined as follows:

Waiting. Suspend operations until one of the listed ports has a value written to it

from outside the module.

'Writing. Write a nerv value out through the port to all connected external ports,

perhaps after a specified delay.
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Reading. Read a value from a port such that the value is the correct value for this

insta¡rt in time.

These semantics vary from this in existing functional description languages in that

a delay need.not be specified or implied in the write operation. A write without a

delay implies that the node connecting the ports changes its value instantaneousl¡

thus stimulating the connected instances at this same instant, perhaps causing them

to generate new outputs at the same instant. In this manner a complete system may

be stimulated a number of times without any passing of simulation time (the utility

of such a timing abstraction is discussed in the previous chapter).

4.8.2 The Scheduling Problem

The scheduling algorithm is responsible for selecting which of the instance processes

is to be made active and allowed to proceed with execution. The current imple-

mentation of the simulator is on a uniprocessor, thus limiting the size of the set of

active processes to one. However in a multiprocessor implementation this set could

be greater in size with active instance processes being allocated to processors.

The scheduling of instance process should not be visible to the designer, rather the

designer should only be abie to perceive that the semantics of the communication

operators has been correctly emulated. This is necessary as modules in a VLSI system

operate with complete parallelism and any appearance of sequential operation in the

simulation is highly undesirable as it would violate the parallel nature of the module

entities in the description.

The instantaneous communication semantics in Pi,nk present a challenging implemen-

tation problem: uhen an instance requests the ualue of a nod"e by reading frorn a port

at a particular instant in time, the aalue returned, must show tl¿e result of ang writes

that take place to lhat node il,uring th'e same instant.

How then is scheduljng to be directed? Instance processes must be activated by the

scheduler if simulation is to proceed, but no process must be activated that uses the

value of a node if that node may be have a nell¡ value written to it during the same

instant. This dilemma is illustrated by example in Figure 4.3.

The solution to this problem presented in the following subsection relies on varl-

ous properties of the description language, properties of VLSI systems design and a
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X

Figure 4.3: The scheduling dilemma. Instance A may only be activated if node Y

is not to be written by instance B in the current instant. Similarly Instance B may

only be activated if node X is not to be written by instance A in the current instant'

number of software techniques.

Tl¡e delayed communication semantics h Pinlc may be implemented as an extension

of the mechanism for implementing instantaneous semantics and are described in

subsection 4.8.5.

4.8.3 Interprocess Communication Techniques

As a prelude to describing the scheduling algorithm, some of the parallel process

communication structures that have infl.uenced the design will be introduced.

One of the most widely know models for interprocess communication is that proposed

by Hoare know as Communicating Sequential Processes (CSP) [Hoare, 1978]. Com-

munication is based on two operators, one for input (t'?') and the other for output

("!"). Interprocess communication takes place when an output operation specifies

that data be output to a second process and the second process requests input from

the first process. The operation (input or output) which is requested first is delayed

by suspending the process iill the other is requested, thus ensuring synchronization

(Figure 4.4).

Although not strictly only a parallel processing method, data flnw techniques have

been used for the programming of parallel machines [Dennis, 1980]. In a data florv

language, rather than evaluate expressions in a fixed sequential order, operators are

evaluated only when their operands are ready to be processed. Thus as operands

are generated as the result of operations, they propagate outward and allow further
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BA

t1

Request Data

Suçend

Receive Data

Proceed

J
3
(D

t2Send Data

Figure 4.4: An example of CSP semantics. The process A requests input from B at

time t1. The data is not available, so A is suspended. The process B does not become

ready to output data till time t2 ) f1. As A has indicated it is ready to receive data,

the transfer takes place and both processes continue.

operations to take place (Figure 4.5)

Operation

+ Operand/Result

Figure 4.5: Example of a data flow evaluation. Each arithmetic operation only

executes when all of the required operands have arrived.

4.8.4 Demand Driven Scheduling

The algorithm developed for scheduling and communication in the Pinlc sirnulator is

know as d,emand, d,riuen sclt eduling. The majority of the scheduling function is in fact

clistributecl into the implementation of the port writing and reacling opera,tions.

\Mhen an instance process attempts to read, from a port one of two events may take
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place:

1. If the attached node has been written during the current time (ti,ck) then the

read returns with the current value of the node as the result. This is the correct

action because the language semantics require that a node not have more than

a single value written to it during a single time interval. Multiple writes may

occur, but they must place the same value onto the node as any previous writes

in that interval. Thus it is safe to return the node value as there is no way it
may change to another value during the current instant.

2. If the attached node has r¿of been written during the current time (ticb) then

it is not yet possible to return from the read as in this some instant another

instance may yet write a new value to that node. The problem is deferred by

suspending the process that requested the read operation. A note is attached to

the node that this process (and any others) are in a state of suspension pending

a write to this node.

When an instance process attempts to write to a port several events take place:

1. The value of the node is updated to the new written value and a note of the

writing time is made on the node.

2. The iist of process that suspending pending activity on this node is examined.

Each process is resumed in order that the original read each requested may

return the new value.

As each of the reads in (2) above completes, the instance that is reactivated may in

turn generate writes, and these in turn may cause the activation of other suspended

process. Thus the effect of a single write (such as to a clock line) may propagate out

thorough the structure causing processes to execute functional code.

The I'laitFor operation is implemented simply by suspending the requesting process

and making a note on the specified node that the process is to be resumed when the

node is next written. !ilaitForAny extends this to a number of nodes, the writing of

any one of them causing a reactivation. The wait operations, when combined with

the write operations may be viewed and used ari an interprocess signaling mechanism.

In fäct the internal control signaling referred to in Section 4.5.3 uses this mechanism,

the signal channels being simple nodes as used in circuit descriptions.
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The relationship between the Pi,nk scheduling mechanism and CSP semantics stems

from the behaviour of the read operation. 'When a read occurs, if there is no rwite

in place on the node, the reading process is suspended. This is similar to the wa,v- in

which an input and output operation are synchronized in CSP. They two diverge on

write/output semantics however. Whilst a CSP p ocess will suspend till an input is

found to match output, a write in Pink is allowed to complete immediately if there is

no matching read. Here the Pink sernantics approach those of data flow: if there ¿re

outstanding reads on a node, and that node is written to, the immediate response is

to allow the waiting processes to proceed as they now have the values they require

to continue operation.

The basic scheduling is then based on interactions between the writing, reading and

waiting operations. In most specifications this process will continue for an interval

until there are no more instance processes that are ready to run: the system requires a

write operation to occur before further progress may be made. Control automatically

reverts to the parent process which is at this stage running the scheduler code. There

are two distinct situations that may give rise to this situation, and two corresponding

responding responses:

1. There are no outstanding reads on nodes. All simulation of this time instant

has been completed. The event list (subsection 4.8.5) is examined for the next

event scheduled at a future time, the current simulation time is updated to that

time and the event processed causing the simulation to proceed as required.

2. Tl¿ere are outstand,ing reads on nodes. Simulation of this time instant has not

been completed: one or more instances that required a node value as part of

their computation did not receive a value because the node was not written

during this instant. It is assumed that at least one of the reads was intended to

return a value written to the nodes at a previous time. Once this node has been

identified the current value of the node is in fact returned and the suspended

instance processes reactivated causing the resumption of simulation during this

instant.

The situation described in (2) above requires that a means be found of identifying

a node (or set of nodes) that may have the old value of a node returned to them.

The procedure adopted is to examine all of the ports that are connected by the

node and disqualify the node if any one port is not an input port. An output or
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bidirectional port might yet cause a write to the node in this instant, unless the

module is suspended pending a write lo th.is node. Ii will not write to this node if it

has just read from it in the same instant.

The above procedure does not guarantee that a suitable node wiII be found. If not,

and arbitrary choice is made between the nodes and one is returned with old values.

If this choice is in error, the node will in fact be written during this instant after it

has been read (for its old value). Such a sequence is however illegal (a node must not

be used before it is written in any one instant) and an error will be signaled to the

user. In the unlikely event of this happening the user is required to select a port in

the description and use a simulator command to label it as an "old value" port that

when read always expects to be returned a value that was written to the node at a

previous time. This removes the ambiguity from selecting such a node, and at the

same time does not effect the description: the exercise is associated with a limitation

of the simulator, not the description'

4.8.5 Delay Driven Scheduling

The previous section has desiribed the mechanism by which the instantaneous write,

read and wait operations are implemented. Time must of, course be introduced into

the simulation since the description allows the use of time specifications in delayed

rvrite and pause operations. The concept of time is introduced into the schedul-

ing/communication mechanism by means of two related entities: current time and

an:- eaenl list. The current time is simply an integer representing the current tick of

system time. The event list is comprised of records of future events that are sorted

on the basis of the time at which they are scheduled to occur, the soonest at the head

of the list. There are two types of simulation event that may appear on the list:

1. Write eaents. Whenever a delayed write is requested by an instance process,

the delay interval is added to the current time, a record of the resulting time

and the details of the write is created, and the record is sorted into the event

list according to its scheduled time. The delayed write request then returns

allowing the instance process to continue immediately. \Mhen a write event is

executed at a later time, it simply results in an instantaneous write thorough

the specifi.ed port.
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2. Resume euents. \Mhenever a pause is requested by an instance process the

delay interval is added to the current time, a record of the resulting time and

the details of the process to be resumed is created, and the record is sorted

into the event list according to its scheduled time. The instance process is then

suspended. \Mhen a resume event is executed at a later time it simply results

in the suspended process being resumed from the pause request.

As noted in the previous section, whenever there are no more instance processes

in a state to run, controi is returned to the parent process which is running the

scheduler. The scheduler examines the next event on the event list. If the next event

is scheduled to occur at the current time, that event is taken from the head of ihe list

and executed, causing a write or resume operation to take place. If on the other hand

the next event is scheduled to take place at a time greater than the current time,

the scheduler first ensures (using the mechanism described in the previous section)

that all outstanding events in the current instant have been performed. The head of

the event list is then examined again and the process repeated until there is an event

scheduled for a future time on the list and the operations for the current instant are

complete. This state implies that the next simulation event must be that specifred

by the record at the head of the list, and that it mubt occur at the scheduled time.

The current time is update to that time, and the event removed from the head of the

list and executed.

In this manner simulation time progresses forward, the current time only ever taking

up values associated with specific events: if nothing is scheduled to happen at a

particular time, that time is skipped over.

Note that in addition to write and resume simulation events the event list is used

for scheduling simulation control events such as user requested interruptions of the

simulation.

4.8.6 Discussron

There are several advantages to the scheduling algorithm that has been described

above:

1. The algorithm allows for the implementation of the Pink simultaneous com-

munication scheme. By avoiding the arbitrary scheduling of instant processes
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within a particular instant, it is possible to model design descriptions that do

not specify delays.

2. Instance processes preserve control state as well as data state between activa-

tions. Thus an instance process may express interest only in a subset of the

instance ports, and will only be activated when one changes. This reduces the

number of instances that must be activated.

3. The bulk of the scheduling is distributed, the scheduler only being activated

when there are no more activities that may be carried out within the current

instant. Ghosh [Ghosh, 1986] suggests that such distributed scheduling schemes

are applicable to multiprocessor implementations.

4.9 Software Organization

In the current implementation, the Pinlc to Modula-2 translation process is carried

out by passing the source code through the C program that performs the regular

syntax expansion, and then through the C preprocessor to expand both predefined

and user defined macros.

The run time system is comprised of software modules that when linked together form

the complete system. This may then be linked with the user code that describes the

design. The software modules and associated functions are:

Icernel The kernel module implements memory allocation, process creation, process

scheduling, data transfer and simulation monitoring.

userifc The user interface module implements the command interpreter and associ-

ated utility routines.

ute Tlne utility module implements widely used routines that are not functionally

interrelated

hash The hash table module implements a fast facility for hash table access of port

records by way of their names.

plot The plotting module implements procedures for plotting graphs of the simula-

tion

uisí00, uisí50 Modules that implement terminal drivers for the respective terminals.
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osint The operating system interface module implements calls into the operating

system. In the current implementation ihis is UNIX.

floyd The Floyd paxser module implements a back end for translating Pinlc to a form

suitable for the floorplanner Floyd (Chapier 6).

The structure of the simulation software is such that each time a user creates a

simulation of a new description a new executable image is generated by relinking the

software modules. It is then quite possible to let the user supply software modules

other than those created by translating the Pinlc description. This is made use of

by supplying the user with access to two software facilities: one for the creation of

translators from Pinlc to some other structurai definition language, and another for

adding user defined commands into the command interpreter syntax. The first is

used for example in translating a Pinlc description into a form suitable for input to

the floorplanner described in Chapter 6. The second facility is useful when users

which to extend the range of available simulator commands, perhaps by tailoring

commands to the particular description being modelled.

A.LO The Simulator Interface

This section describes the simulator facilities that enable the designer to actively

model Pink syslem descriptions. This is not intended to be a comprehensive descrip-

tion of the simulator usage: the purpose is to describe the basis for the various design

decisions made in the simulator construction. A complete description of simulator

operations is made in the user manual [Dickinson, 1987].

The main objective in the design of the command interface was to make it as fa-

miiiar and intuitive as possible. Familiarity has been achieved by where appropriate

adopting concepts and commands from familiar sources such as operating system

user interfaces ("shells") and debugging programs.

4.L0.1 Translation and Compilation

The process of creating a simulation representation of a Pi,nlc description held in one

or more files is carried out by one simple command. This first invokes a procedure

to translate the Pink, description into Modula-2. This is then compiled and the
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resulting object code linked with a run time system to produce an executable image.

This image may then be executed in the normal fashion and serves as a simulator of

the original Pinle description. Typically the only user interaction required prior to

the simulation run itself is the correction of any syntactic errors in the Pink sot:rce

that cause compilation errors.

4.10.2 The Comrnand Interpreter

The structure of simulator commands is hierarchical: each is introduced by a single

verb such as "show" or "set" followed by a number of qualifying verbs, nouns and

identifiers. This approach makes it simpler for new users to become familiar with the

commands as the structure resembles English:

clear break port CarrY0ut

("Clear [the] break [on the] port CarryOut") for example. For more experienced

users the verbs and nouns may be shortened to unambiguous abbreviations:

c1 b p Carry0ut

for example. An interactive help facility provides information about the commands

their arguments.

4.L0.3 Browsing the Description Structure

In a heavily partitioned structural design the number of modules, the depth of the

module hierarchy and the module interconnections result in a structure that may

have considerable implicit complexity. It is important that this be reduced as much as

possible by providing the user with a simple and consistent conceptual representation

of these structuraJ. features. Such a representation and commands for manipulating

maJ<e it simpler for the user to comprehend and "move around" in the hierarchical

structure during a simulation session.

This problem of representing a design hierarchy is analogous (though not identical)

to that of representing a hierarchical file system to the user of an operating system

command interpreter (or "shell"). In the UNIX [Riichie & Thompson, 1974] file

system directories and files are presented as being similar entities: directories and

files are uniquely identified by either a full "path name" including the root directory

or a path name relative to a "current directory". The contents of a directory are listed

with the Is command and the current directory is changed with the cd command.
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To make use of the familiarity users generaliy have with these concepts the Pinlç

simulator uses ls and cd in a similar manner. The ls command causes a listing of

the structural information about an instance: firstly all of the subordinate instances

are listed if the instance is topological, then a list of all of the ports on the instance

are given. The cd command changes the current defauit instance. The combination

of these two (often familiar) command.s provides a simpie and effective facility for

dealing with a complex structural design.

4.LO.4 Error Detection and Notification

The simulator has the capability to detect several classes of error that may exist in

the description, or occur during the simulation. These include:

1. Errors in port connection: mismatched data types (nft and INT), and mis-

matched signal types (rur, ourP, clocK, Potr¡ER, GND, and rOP), and mismatched

bus sizes.

2. Errors in leaving ports unconnected.

3. Errors caused by writing to a node more than once with different values in one

instant.

4. Errors caused by reading a node after a preset amount of time has passed during

which charge would have leaked off in a physical implementation.

Should one of these classes of error occur the simulation is halted, and and error

message displayed. If the error is such that the simulation may be recovered and

continued, the command interpreter is invoked to await further commands. If the

error was fatal to the simulation, a special version of the interpreter is invoked that

enables the user to examine the state of the simulation in the normal way, but not

continue any further with actual simulation.

4.1-0.5 Systern Stimulation

In order to make use of the active model of the system provided by the simulator it

is clearly necessa.ry to stimulate the system or the portions of it that are of interest

to the designer. The simulator provides a number of means of stimulation, each
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applicable to particular styles of modelling. These methods and their applications

are described in the following subsections.

4.10.5.1 Interactive

For informal debugging and "browsing" investigations of system behaviour, particu-

larly when a description is being first simulated, an interactive style of stimulation is

appropriate. The user may use interactive commands to attach input vectors to par-

ticular ports and buses, and then continue the simulation and observe the resulting

activity.

The basic command for interactive stimulation has the syntax:

set vector (port) (vector)

The identifier <port) may refer to any port or entire bus. The vector is actually

attached to the node that comprises all of the ports that connect to (port), and

ali such ports will be supplied with values from (vector).

The identifier.(vector> has a variable syntax depending on the nature of the port

specified by (port): this syntax is described in the user manual [Dickinson, 1987].

There are several points to be noted with regard to the semantics of using the vectors

described above for stimulation:

1. The fi¡st time that a node is read at a particular time it will return a nelv

vector from the vector of values.

2. If. a node that has a vector attached is read more than once at a particular time

it will return the same value from the vector of values.

3. It is not valid to write to a node that has an attached input vector as this 'lvould

lead to conflicts over which source to use for the nodes value.

4.LO.6.2 File Based

In a number of modelling applications, particularly verification (Section 4.2.2) it \s

necessary to stimulate the system with a very large number of values. To this end
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the simulator provides a facility for stimulating nodes with values obtained from data

files.

The basic command for file based stimulation has the syntax:

set infile (port) (filename)

The file identified by (f ilename) contains data that is treated with the same se-

mantics as the contents.of the vectors described in the previous sections. The syntax

is however slightly different and is described in the user manual [Dickinson, 1987].

4.10.5.3 LanguageBased

In some modelling situations the most convenient means of generating stimulation

vectors is to build a "generato¡" module within the Pinlc description itself. This

generator may then be connected up to the system under examination and the sim-

ulation run with the generator providing the stimulus. The most common example

of this is the use of clock generators. Such a generator is described in Section 3.11 of

the previous chapter where it is used to provide clocking stimulus to an adder.

4.1- 0.6 Systern Observation

In the same way that it is necessary to stimulate the system being modelled it is

clearly necessary to be able to observe and record its behaviour. The simulator pro.

vides a number of facilities for aiding the designer's observation of system behaviour,

each intended to provide for different styles of modelling. These are described in the

following subsections.

4.LO.7 Interactive

As indicated previously, for casual "browsing" investigations of system behaviour an

interactive style of stimulation is appropriate. To facilitate this style of modelling the

simulator provides a number of methods of interactively observing system behaviour.

Commands are provided that aliow the user to interrupt a simulation at any time and

proceed to examine the state of the ports and nodes before continuing the simulation
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run. Additionally however there are a number of faciiities for examining a running

system.

The first and most general of these is the watch^ A watch can refer to either a single

port, node. or entire bus. After a watch has been set on a port or node, if a read

or write activity takes place associated with the watched item during simulation, a

message is displayed to the user indicating the name of the item accessed, the name

of the accesser, the time of access and the items new value.

The second active observation method is via brealcs. A break is similar to a watch

except that as soon as an access occurs on an item with an attached break, the

simulation is halted and control is returned to the user via the command interpreter.

The commands for observing the state of the static may then be used.

The third active observation method is plotting. Aty single BIT item or bus may

observed using a graphical plotting facility. The plot may cover a number of different

items over any reasonable amount of simulation time. A facility is available for

obtaining hard copies of the piots.

A.LO.7.L File Based

In a number of modelling applications, particularly verification (Section 4.2.2) it is
necessary to stimulate the system with a large number of test vectors. Typically

ihis will produce a correspondingly large number of output vectors. The simulator

provides a facility for recording these vectors in files analysis. This is particularly

useful in situations where simulations are not run at all interactively but instead as

background or batch jobs. Output data then needs to be recorded for later analysis.

4.LO.7.2 Language Based

In the same way that Pi,nlc code may be written to stimulate a system description,

code may also be written to observe system behaviour. A module may be created

that reads the values that are of interest through its ports and compares them with

expected values. The following is an example of a Pinfr module that both stimulates

and observes the behaviour of an adder:

DEFINITI0N AdderTester;
STATE
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TestA, TestB, Result, Carry : ARRAY [0..7] 0F PortType;
A,B,R:INTEGER;

PORTS

DeclareBus(4, OUTP);

DeclareBus(8, 0UTP);
DeclareBus (Result, OUTP) ;

FUNCTION

A := RandomO;
B := RandomO;
R:=A+B;
IFR<255THEII

IIRITEBUS(TestA, A);
WRITEBUS(TestB, B);
IF READBUS(RESUII) <> R THEN

l,lriteString("Adder error" ) ;

FatalError;
END;

END;

ENDFUNCTION

END AdderTester;

4.LL Limitations

Ideally the simulator should be able to model any Pink description. However the

scheduling algorithm does place a basic limitation on the nature of the data depen-

dencies within a structure: it ís not possible to simulate structures in wl¿ich th,ere

are instantaneous multiway d,ata d,ependencies. Such a dependency occurs when for

instance two connected modules rely on each others output in order to generate their

own output. An example of one such self timed circuit is shown in Figure 4.6(a). Such

self timed circuits are not common as most structured circuit design styles [Mead &

Conway, 1980] utilize clocking strategies that avoid them. Note that the function of

such a circuit may be simuiated at a higher level in which the composition is repre-

sented by a single functional module as indicated in Figure a.6(b). Simulating the

actual decomposition requires iterative techniques that are far more computationally

expensive than is acceptable in a functional simulator. An alternative solution is to

move to a multilevel simulation in which the selftimed sections are modelled at the

circuit level.

Limitations are also placed on simulations sizes by the nature of the implementation.

A typical instance process requires several hundred bytes of data space, and if there
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Result Out Result Out
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Figure 4.6: The self timed circuit in (a) finds the position of the least significant set

bit in the input word. The expense of iterating to find a solution suggests the use of

the abstraction in (b).

are more of these processes than may be placed in a machines main memory at a

particular time, the simulation will cause system paging, thus reducing performance.

This is a "soft" Iimitation as it causes performance degradation.

There are two basic "hard" limitations that could potentialiy cause a simulation to

fail. The first is if the simulation is of such a side that it exceeds the operating

system/machine virtual memory limit. The second is the exceeding of the basic

integer size of the machine by by either the value placed on an INT port or by the

total of simulation ticks exceeding that number. The first may be circumvented

by using a BIT bus of suffi.cient width. The second is most unlikely owing to the

simulation time that would have to pass to exceed this limit: if necessary it could be

avoided by breaking the simulation into a number of shorter runs.

4.L2 Surnrnary

The fabrication of VLSI designs precludes the rapid feedback on design decisions that

is typical of software design. This can be alleviated by the functional mod.elling of. a

VLSI design description in software. A functional simulator has been described that

provides for:

1. The qualitative evaluation of the design by way of interactive observation of

performance.
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2. The quantitative evaluation of the design by way statistical profi,Iing of data

fl,ow within the design.

3. The interactive "debugging" of design descriptions.

4. The verification of design decomposition and refinement by means of test vector

validation.

5. The prototyping of software that is to be run on the VLSI device.

An internal simulator representation of the design has been described that features:

1. A process based representation of functional module instances.

2. A process coûrnunication technique based on Communicating Sequential Pro-

cesses in which processes are suspended until required data is supplied.

3. A process scheduling algorithm that is guided by data flow and efficiently im-

plements ttre Pinlc instantaneozs and ilelayed communication semantics.

Having described a means of modelling the algorithmic function of a structural design

in this chapter, the following two chapters examine the partitioning and modelling

of a VLSI design in terms of its physical forrn.
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Chapter 5

Partitionittg for Physical Form

5.1- Introduction

The impact of structural partitioning on the functional design of VLSI systems has

been examined in previous chapters. In this chapter the impact of such a partitioning

on the physical form of the design will be presented.

Whilst it reduces the explicit complexity of a design, partitioning also has the effect of

changing the nature of the design problems that occur. This is particularly so in the

physical domain in which there is a great deal of constraint imposed on the design by

the VLSI medium. This chapter will begin by describing these basic constraints and

the cost functions that are used to evaluate physical design quality. An examination

of the va¡ious physical design partitioning strategies will then be made. Of particular

interest is the practice of structured floorplanning. Floorplans are the geometric plans

that describe the physical form that may be used to rcalize the structural hierarchy on

the silicon surface. Structuredfloorplans utilize a number of complexity management

techniques to simplify this planning task.

The central objective of the chapter is to present a broad classifrcation of the knorvl-

edge and techniques used in custom design to create these structured floorplans. This

classiflcation will serve as a prelude to Chapter 6 in which the evaluation of the phys-

ical partitioning implied by a structural design will be described. This evaluation

is based around an automatic floorplanner embodying aspects of the floorplanning

knowledge described in this chapter.
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5.2 Constraints in Physical Design

There are two major sources of constraint introduced into the design process by

moving to a physical design. The first is the planar nature of the medium in which

all componênts are placed and connected in several planes resulting from different

process layers. The second source of constraint results from the electrical properties

of the components (devices) *d their interconnect (wires). The wires in particular

must be regarded as "imperfect" in that a long wire will introduce signifi,cant signal

transfer delays into a design due to its RC properties.

The basic aims in producing a physical implementation of a system description are

to minimize the silicon area and to maximize the circuit speed. Optimizing around

these features minimizes cost and maximizes performance. These objectives must be

traded off against design time and cost.

In creating a design to perform a particular specified function, it is clear that the

total number of devices in the implementation is not likely to vary greatly as a result

of design decisions. Some optimization is possible, particularly in a component such

as a PLA, but in general area/speed optimization is not strongly affected.

The greatest possible source of area/speed optimizations is in device interconnect as

this is governed by device placement, over which the designer may exert considerable

control. In the remainder of this section the constraints that are placed on inter-

connect by the design medium are discussed as these guide the strategies adopted to

optimize design. This discussion is carried out in terms of. components arrd connec-

tions. A component may be as simple as a single device, or may be a complex module

created from a number of devices. Even though the following discussion is focused on

connection, it should be noted that the optimal placement of the components is also

affected by their shape: the rectangular modules must be placed in order to minimize

"white space" in the floorplan.

5.2.L Connection Length

Connection length affects optimization in two ways: speed and area. The issue of area

is treated in the next subsection, here only the speed factor wili be considered. The

speed of the circuit is not affected by the total, or even average length of intcrconncct.

Rather it is affected by the length of specific critical paths. These paths are those that
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govern the maximum speed of the circuit, for instance the carry chain in an adder

circuit. Such paths are higtrly circuit dependent and it would be a false efficiency to

attempt to optimize the length of aII wire runs based on the assumption that they

lay in a critical path. Instead it is necessary to use tools such as timing simulators

fJouppi, 1983] to locate these paths and then utilize techniques such as manual or

automatic [Hedlund, 1987] transistor sizing to reduce the critical path delays. This

may in general be performed as an optimization phase in the design process, much

as software is often optimized in detail once it has been broadly designed.

5.2.2 Connection Area

Total connection area is clearly a critical issue in the optimization process as it
directly consumes chip area. Total connection area is affected both by the length

and number of connections. The number of connections is an invariant if a design is

viewed as a simple net of wires connecting devices, however in a hierarchical design

this is not the case: the function and interconnect of hierarchical modules is affected

by the chosen partitioning. The total connection length in a design is primarily

governed by the choice of placement position of the components in the plane. It
should be noted that minimizing the number of connections is an aim shared rvith

partitioning in the functional domain (Section 2.1), whereas connection length, has

no such functional analogue.

5.2.3 Connection Planarity

Often when a number of connected components are to be placed in the plane, the issue

of. planarity arises: can the components be placed in such a r,¡/ay that their connections

do not cross? The problem is not one of finding a strictly planar solution. This is

desirable, but not strictly necessary because of the presence of a number of available

layers for creating connections on the chip su¡face. There are commonly two metal

and one polysilicon layers available in current processes. The set of layers introduces

the possibility of changing layers to avoid what shall be called planarity faults as

illustrated in Figure 5.1(a).

Planarity faults are costly because:

1. Vias are recluired in order to change routing layers consuming area and adding
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Figure 5.1: (a) Changing layers in order to resolve a planarity fault. (b) The use of

a small rather than large crossover in resolving a planarity fault.

capacitance.

2. The cross-over layer may be in a less electrically desirable material than the

routing run: polysilicon as compared to metal for instance.

3. The crossover layer may be better reserved for another purpose such as polver

or clock distribution.

Thus one of the design objectives is minimizing the number of planarity faults. In the

case that they cannot be avoided, the expense incurred should be minimized. This

may be achieved for instance by crossing smaller rather than larger routing runs as

illustrated in Figure 5.1(b). 'Within hierarchical design, there are alternative methods

for the resolution of planarity faults. These a¡e discussed in Section 5.5.5.

5.3 Physical Partitioning Techniques

There are a number of different techniques that have been developed for the VLSI

physical partitioning. They reflect the completely different partitioning philosophies

outlined in Section 1.1 of highly ar..dfuncti,onally partitioned designs. In this section

the ramifications of these two different styles are analysed with respect to the phys-

ical layout domain. Of particular interest here is the style of physical design that

corresponds to the functional partitioning approach.
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5.3.1- Highly Partitioned Designs

As d.escribed in Section 1.1, highly partitioned designs are those in which there are

a great number of fairly simple components. Even though the actual specifi.cation

of design may be performed in a functionally partitioned manner in for instance a

schematic editor, the circuit is flattened into a single group of interconnected gates

before layout cornmences. In a gale alray design, gates are already placed in rows

on the silicon surface. Channels are made available for the interconnection of gates.

Physical design is simplified to the task of selecting actual gates to implement logical

gates in such a way that they may be connected (routed) together. There is no

area advantage in minimizing routing as the channels have already been allocated

as routing area. As long as the routing fits in the channels, and that critical timing

paths have been checked, the design is regarded as complete.

Clearly the gate array design style has advantages in terms of simplicity of creating

Iayout. Its major disadvantage is the area inefficiency. Unused gates and unused

routing channel capacity absorb area. A great deal of the design is in fact taken

up with routing channels because the patterns of communication are irregular and

inefficient due to the limited options available in the relative positioning of layout

gates.

Standard cells are a form of design that is less highly partitioned than gate a.rray'

but still has a number of advantages in design simplicity. Rather than using a fixed,

predefined gate layout, standard cells are only a design style: the medium is still an

unstructured silicon surface. The design task is kept simple however by allowing the

user to only select from a predefined set of component standard cells, each imple-

menting a function usually of the complexity of several complex gates. The layout

of the cells is fixed, but their position in the layout is not. Typically the cells may

be placed in any one of a number of rows separated again by routing channels' This

system has a number of efficiency advantages over gate array designs:

1. Cells have greater individual complexity than gates, and so a higher order of

function is contained within them, leading to less area being required to achieve

those functions than would be the case with equivalent gate array implementa-

tions.

2. Cells may be moved between rows and within a roïr¡ in order to minimize routing

distance.
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3. The rows may be moved in order to change the widih of routing channels,

thus taking advantage of the minimized route area by minimizing the channel

widths.

In comrnon with gate array design, the algorithms required to automatically perform

standard cell placement are relatively simple lHild & Piednoir, 1985]. The design

style is still limited in an area efficiency sense however as the cells themselves must

conform to common shape and interconnect standards for the process to work. There

is no capability to shape the cell interfaces to optimize layout quality as described in

the next section for custom design styles.

5.3.2 Functionally Partitioned Designs

Although simple to implement, the highly partitioned layout styles outlined in the

previous section suffer from problems of performance and area inefñciency owing to

excessive interconnect. One means of obtaining better layout densities is to adopt the

full custom design style. This typically involves performing design almost completely

manually, each device being individually placed and corrnected. The intricate nature

of such a design has meant that often a single designer has performed the bulk of the

work. This has led to a complexity problem with current large designs: layout must

be performed by a single (or at best several) designers because of the complexiiy of

the unstructured interactions between parts of the design. The use of so few designers

obviously leads to strict limitations in the speed with which a new design may be

produced.

A basic tool of the custom designer is the fl,oorplan: a geometrical plan that describes

one or more of the location, shape, and interconnect of the various parts of the chip

design. There a e a variety of styles of floorplans and methods of using them. These

vary from informal abstract sketches such as that illustrated in Figure 5.2 to detailed

geometrical layout. In the following section, a particular style of structured floorplan

is describes is used in this thesis as the basis for the evaluation of the physical form

of a design partitioning.
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Figure 5.2: An informal floorplan.

5.4 Structured Floorplans

Many of the features of the Caltech Structured Design Style (Section 1.3) are em-

bodied in the concept of. structured fl,oorplanning. Structured floorplans are abstract

representations of the chip surface that delineate the general layout of the design.

Such floorplans are not formally defined, however a number of research efforts have

described there use. In this thesis the basic structured floorplan style is adapted from

that described by Mead and Conway fMead & Conway, 1980] and Mudge [Mudge et

al., 1980b; Wardle et a1., 1934]. The following sections provide an overview of struc-

tured floorplan and an examination of their structuring features.

Each module has an external interface and an internal construction in terms of the

floorplan. The external interface consists of:

1. A rectangle that represents the outer boundary of the module. All of the

components of the module lie within the proscribed area.

2. A set of. ports that lie on the the rectangular boundary. This provide the only

points to which connections may be made to the module geometry.

The external interface of a module is illustrated in Figure 5.3(a).

The internal implementation of a cornposition module consists of:

1. The external interface of the module that specifies the boundary and the ex-

ternally connecting ports.

2. A set of submodule externai interfaces. These are placed such that none overlap

and there is no free space.
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Figure 5.3: The external interface (a) and internal implementation (b) of a structured

floorplan.

3. A set of connections. Connections between submodule ports, and between

submodule ports and the module ports, may only occur over boundaries that

abut one-another.

The internal implementation of a module is illustrated in Figure 5.3(b).

The internal implementation of. a kaf module is a section of actual layout. Hence

ieaf modules are treated in floorplans as having only external interfaces: internal

construction is carried out as a separate process.

There are a number of advantages to be gained from adopting a structured floorplan-

ning design style:

!. Functional Partitioning. The designer is free to allocate functionality to the

various elements of the partitioning. This freedom encourages the use of a

common structural partitioning for function and physical form.

2. Hierarchí,cal Partítioning. The designer can subdivide the design into sections

that each contain a small number of modules. This is important as there is a

low limit (perhaps as low as seven [Miller, 1956]) on the number of disparate

objects with which the designer can successfully deal with simultaneously.

3. Top-Down Design. Design may proceed top-down because the predicted exter-

nal interfaces of modules may be used in the composition. The modules may

be implemented at the next lower level of design according to the constraints

of the interfaces.

4. Simple Abstract Interfaces. The simple interfaces reduce the complexity of
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interactions between modules. Rectangles are relatively simpier to pack than

irregular polygons. Providing ports as the only access to the module contents

simplifi,es design. \Mell defined interfaces for a module also facilitate design

by separate groups. Interfaces simplify by fiItering the amount of information

supplied in a composition.

5. Flex,ible Interfaces. As designers have control over the design of the external

interfaces of modules, they may be designed to minimize interconnect costs and

maximize regularity.

6. Short Interconnect. The restriction to interconnect only being allowed across

the boundaries of adjacent modules leads to shorter routing runs between mod-

ules.

7. Sirnple Interconnecf. The restriction to interconnect only being allowed across

the bor:ndaries of adjacent modules leads to only simple channel routes being

required between modules (Figure 5.4).

Figure 5.4: Edge to edge communication restrictions simplify construction routing

requirements.

There are however a number of difficulties that arise in designing structured floor-

plans:

7. Large Search Space. The large number of degrees of freedom open to the de-

signer in the design of a structured floorplan has the result of generating a large

number of alternative design.
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2. Poorly Defined Cost Functi,ons. Large search spaces are best handled rvith

simple and effi.cient methods for evaluating the qualiiy of alternative designs.

No such functions exist for structured fl.oorplanning. The quality of a design

is dependent on a large number of factors including the amount of intercon-

nect, length of interconnect, packing of modules, suitability of module external

interfaces to eventual implementation, and regularity.

3. External Interface Desi,gn. In a top-down design procedure, external interfaces

are designed prior to the implementation of modules. This must be countered

with an element of bottom-up design in order to ensure that the implementation

is reasonably feasible.

4. Planar Interconnecú. The designer is required to deal with the issue of produc-

ing a planar design by appropriate selection of module positions and structu¡al

changes to the partitioning.

5. Tecltnology Inilepend,ence. It is desirable that the floorplans being produced

be technology independent so that a consistent floorplanning approach ma,rt be

used across a set of technologies. Routing in particular is technology dependent,

so it is necessary to relegate routing related functions Lo construcÍion rather

lhan planning.

Means for dealing with these problems are examined in the next section within the

context of the floorplan design task.

5.5 Creating Structured Floorplans

The most direct method of modelling a structural design in the physical domain

is to automatically create a structured floorplan for that design. As a prelude to

designing a program that can provide the designer with this facility (Chapter 6), an

examination of the techniques used by floorplan designers rvas undertaken. These

techniques were derived from a variety of sources. Initially the literature provided

a useful reference of simple structured floorplans. The bulk of the material however

was gained from the author's involvement with a number of research projects and

VLSI design groups. The primary sources and their influence are summarised below.
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1. The theses of Rowson [Rowson, 1980] and Buchanan [Buchanan, 1980], together

with the book by Mead and Conway provided a useful overview of floorplanning

in the Caltech structured design style.

2. Case studies of VLSI chip designs that document floorplan design. Specifically

a floating point processor by Digital Equipment Corporation [Mudge et al.,

1980a] and a 32-bit processor by AT&T [Krambeck et al., 1982].

3. The author's involvement in the design of of a medium scale NMOS chip [Dick-

inson, 1982] provided useful initial first hand experience in floorplan design. A

later review of the design by Carver Mead [Mead, 1982] provided a valuable

critique of the design style adopted.

4. The author developed the hiera¡chical floorplan editor for the Sprint design

system [Wardle et al., 1984]. This development took place in parallel to the

design of a complex VLSI design [Mudge et al., 1984] providing an excellent

opportunity to interact with floorplan designers and examine their methods.

5. The Cadre project [Ackland et al., 1985; Ackland et al., 1984] involved the coor-

dination of multiple expert systems in order to carry out complete structu¡al to

physical design translations. A major part of the knowledge acquisition carried

out for this project involved experienced designers performing system design

under carefully controlied and monitored conditions. Although the primary

objective of the exercise was to gain information about the processes used to

direct the overall design process, the author was able to make additional use of

the exercise to record and analyse floorplanning design decisions.

6. The VLSI design group at Symbolics Inc. are involved in the design of large

VLSI processors. The author was able to hold discussions with experienced

layout designers on the techniques they used in the design of large systems

including the MIT Schen¿e chip [Shrobe, 1985].

The intent here is to not simply list the techniques obtained from the above sources,

but rather to classify them into a small number of distinct classes of designer knowl-

edge. This classification rvill serve as the basis for the design of the floorplanner

described in the next chapter.
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5.5.1 Design Procedures

As with any design task, structured floorplanning involves a class of knowledge as-

sociated with reasoning about the design task itself, the "meta-knowledge" [Lenat et

al., 1983] required to apply the "domain knowledge" to the design.

As noted in the previous section, the large number of degrees in freedom involved

in a structured floorplan design lead to a large search space. Much of floorplanning

meta-knowledge consists of techniques for traversing this search space in a manner

designed to find a good solution in the minimum time. Much of this knovledge

consists of techniques that are applicable to design tasks in general and as such are

not floorplanning domain specific. These will be introduced in the next chapter.

However some aspects of the meta-knowledge required for floorplanning are specific

to that domain and they are described here.

In a design task such as floorplanning that involves the assembly of a number of com-

ponents (the modules) the sequential nature of the assembly task introduces several

problems. Every time a new component is added into the ongoing design it affects

those componetrts already in place: these effects are usually quantifyable. Hot'ever

they also affect the in a far less easily quantifyable way the placement of later com-

ponents. This effect in floorplan construction is illustrated in Figure 5.5. The most

expensive means of avoiding ihis is to make the mistake, and then backtrack, undoing

design work, and attempting the design again without error. This is inefficient as it
requires destroying earlier work. A more efficient technique is to use planning and

careful sequencing to minimize errors in the forward design path.

5.5.1.1 Planning

Designers create plans that will be used in guiding the floorplanning task. This is

done at an early stage of the design. The most common form of plan is that formed

by recognizing a regular structu¡e in the input description. Once such a structure

has been noted, constraints can be generated that ensure that the layout will occur

in a particular regular fashion. The additional constraints will serve to remove a

large number of possible configurations of the modules concerned, thus reducing the

search space and making design more efficient. In addition an abstraction may be

formed in which the chrstererl modrrles are treated as a single larger entity further
increasing the efficiency of the design process. This is illustrated in Figure 5.6.
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Figure 5.5: In the upper sequence the position selected for module B forces C into a

position that increases the area of blank space in the floorplan. In the lower sequence

the position of module B does not preclude a satisfactory position for C.

Figure 5.6: Combining a regular group of modules into an abstraction simplifles the

search space.

5.5.L.2 Sequencing

The order in which components are selected to be inserted into the design can be

critical in deciding the success or otherwise of a particular design exercise. As the

design proceeds it becomes more constrained and there is more difrculty in meeting

the connection requirements of modules as they are added. Designers minimize this

problem by using a number of criteria in selecting which module shall be added next

into the design:
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1. Prefer a module that has a large number of connections to modules already in

place. The later this module is inserted, the more difficult ii wiil be to find it
a position.

2. Prefer a la,rge module because as the design progresses available large vacant

spaces become more diffi.cult to find.

3. Prefer a module that is part of any plan (for instance a regular structure being

assembled) as it will have a relatively unambiguous target position.

4. Prefer a module that has a minimum number of possible positions at which it
may be inserted into the design due to connection adjacency constraints. As

the design progresses such positions will become even less available.

These issue of techniques for effi.cient guidance of the design procedure will be dis-

cussed further in the next chapter.

5.5.2 Designing with Rectangles

The most basic operations performed by floorplan designers are thosed concerned

wiih the direct manipulation of the interconnected rectangles that are used to rep-

resent module instances. In order to generate floorplans of the stmctured style de-

scribed in the previous sections, the rectangles must be placed according to a number

of constraints. These constraints are based round the size, shape and connections of

each rectangle. In placing another rectangle into the growing design, the designer

must consider a number of factors:

1. What spaces are available that will accept a rectangle of this size and shape

without significantly adding to the overall area of the floorplan?

2. \Mhai spaces are available that allow the new rectangle to be adjacent to all or

most of the rectangles it must connect to?

3. \Mhat spaces are available that fulfill both the above criteria?

4. \Mhat spaces might be used without significantly hindering the incorporation

of as yet unplaced rectangles?
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The mechanism that designers use to perform the above analysis of the design are

complex. They appear to rely on an innate ability to manipulate geometrical entities

such as rectangles in complex systems of constraints. One common observation is

that the designer uses visua.l aids such as a paper and pencil to record the current

state of the design. This aids in the interp¡etation of the changing constraints on

the rectangular components as the design progresses, md reduces the need of the

designer to maintain a¡rd reason with the complex interplay of geometric constraints

in short term memory.

In the initial stages the rectangles are represented as simple abstractions without size

or shape, but still in general interacting with each other as rectangles. Positions are

recorded as relative to other rectangles rather than as absolute coordinates. As more

components are introduced into the design, the rectangles are attributed properties

such as size, shape and orientation and eventually absolute position.

Although the specifi.c methods used by designers to achieve these firnctions a¡e ob-

scure and diffi.cult to represent, it is possible to imitate such behaviour once it has

been isolated as a particular class of knowledge. The processes developed for doing

so will be described in the next chapter.

5.5.3 Hierarchical Interactions

In a pure top down design, component interfaces are designed based on composition

criteria: the components must interact in an optimal fashion. The implementation

of the component as specifred by the interface is treated as a separate design issue.

This style of design is viable in for instance in software design. A procedural interface

(name and parameters) may be specified prior to implementation, and wiii not in
general overly constrain the possible implementations. The success of pure top down

techniques is then dependent on the quality of the abstraction of the implementation

that may be provided by the interface.

The application of pure top down design procedures to structured floorplanning suf-

fers from strong interactions between module interfaces (size, shape and port po-

sitions) and implementations (internal layout). If a design is created under the

assumption that module interfaces may be optimized for the composition level ir-

respective of component module implementation issues, the implementation of the

components may become so difficult that the composition level gains are lost. There
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are several alternate approaches to pure top down design that may be applicable to

floorplanning:

L. Bottom up d,esign involves constructing the implementations prior to the in-

terfaces. This ensures that the implementation is efficient, but introduces the

opposite problem of perhaps producing interfaces that are inappropriate at the

composition level as they require large areas of routing. This is to be strongly

avoided as routing presents one of the major costs structured floorplanning is
intended to reduce.

2. Specifying stønilard, i,nterfaces ensures that there are neither major connection

nor implementation probiems. It is not then possible however to make optimiza-

tions of either connections or implementations that may be possible with less

constrained interfaces. The resulting design suffers from the same inefficiencies

as standard cells.

3. Mod'ified top down d,esign involves considering the implications of interface de-

sign decisions on possible module implementations during interface design at

the composition level. This involves a complex trade-off between what is opti-

mal at the composition level and what is optimal at the implementation level.

Experienced structured floorplan designers typically adopt the procedure outlined

in (3) above. Whilst a floorplan is being created, as weil as considering the com-

position issues of inte¡connect, size and shape optimization, the designer uses past

design experience to predict the effect of interface design constraints on the eventual

implementation of each module. This procedure is illustrated in Figure 5.7.

The knowledge used by designer to perform modified top down design has several

basic features:

1. It is erpert and ilomain specific: only used by experience practitioners in floor-

planning.

2. It is complet for each module there may be a number of alternative imple-

mentation styles, and the effect of interface constraints on the viability of each

must be taken into consideration.

3. It is imprecise: the designer uses the knowledge of implementations only an

approximate guide dr:ring interface design. This must be the case as the im-
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Figure 5.7: The interface in (a) results in a floorplan implementation that contains

blank space. The interface in (b) results in a more efrcient implementation.

plementation has not as yet been created, and hence only imprecise knorvledge

of its construction is available.

5.5.4 Structuring Techniques

There are two primary techniques used to impose structure on floorplan designs:

regular instance creation and regular interconnection.

\Mhen a number of instances of the same module definition are connected to one

another they resulting layout is often that of a linear array as illustrated in Fig-

ure 5.8. Linear array configurations have a two primary advantages: there only need

be one layout of the instance which may then be repeatedly used, and the instances

communicate by direct abutment saving routing area. Candidates for linear a-rray

structures can be recognized in the structural description and then careful interface

design is used by the designer to ensure that the set may be implemented as an array

structure.

Two dimensional array structures also occur, however these are commonly imple-

mented using two linear array structures at different hierarchical levels as shorvn in

BA c

B

A c
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Figure 5.8: A linear array constructed from identical module instances.

Figure 5.9

(s) (b)

Figure 5.9: A two-dimensional module array (a) may be structured as a trvo

one-dimensional arrays (b).

A common pattern of interconnect found in structural descriptions is that illustrated

in Figure 5.10(a) in which the disparate module instances are connected via a common

bus. It is possible to design the module interfaces in such a situation so as to ensure

a regular pattern of interconnection between the instances, forming a data path

structure. The presence of such buses is often a central constraining feature in a

floorpian. Such regular interconnect have the potential of saving large areas of routing

compared to an implementation in which the bus exist as a separate floorplan entity as

illustrated in Figure 5.10(b). Designing at this level does however require interaction

with implementation knowledge as the buses must be run through modules, possibly

affecting their implementations.

5.5.5 Maintaining Planarity

Planarity faults occur when there a,re no positions remaining in a design into rvhich

a modulc may bc placed such that it will be adjaccnt to all modulcs to which it
must connect. One method of dealing with this situation is the baclctrack through
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(a)

Figure 5.10: (a) Modules connected by an inserted bus. (b) Modules connected by

an external bus module

the design, investigating alternative positions for modules that may not lead to the

planarity fault. This approach has a number of difficulties however as it is unclear

how far to backtrack, and how to proceed again in order that neither the current

fault nor a nerv fault occur. Additionally the backtracking process is inefficient as

it involves discarding existing design work. The issue of backtracking in general is

covered in the next chapter.

Although by appropriate selection of module positions the number of planarity faults

that occr:r may be minimized, many partitionings are inherently non-planar and

require further action in order to produce a planar embedding. Designers typically
proceed by:

1. Temporarily repeatedly discarding small connections until a planar position

may be found for the module.

2. Continuing with the design without the small connections.

3. \Mhen all modules are placed, Iocating shortest paths through the design along

which the discarded connections may be inserted.

4. The routes may then be implemented by a mixture of two methods

(a) Inserting t'route modules" that relocate the crossing over of interconnect

into a leaf module, thus preserving the planarity of the composition module

(Fisure 5.11(a)).

(b) Where appropriate, merging the connection into an existing module along

the path. The construction and orientation of some modules is such that

(b)
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an insertion of this nature is not disruptive to their implementation (Fig-

ure 5.11(b)).

Figure 5.11: Use of a route module (a) and an insertion block (b) to resolve a planarity

fault.

5.5.6 Technology Independence

Floorplanning is largely technology dependent. The rectangular module abstractions

may have their sizes and position may be given in dimensionless quantities as they

really only imply relative sizes and shapes in a top-down design style. Actual sizes

and positions need only be considered during the constructions phase.

As noted earlier however, ihe primary aspect of technology dependence that impinges

on floorplanning results from routing related issues. In particular, the nature and

number of the layout leveis available for routing affect the connection of the modules.

The basic objectives of planarity and abutting connection remain applicable horvever

regardless of the routing layers available. Connection lengths affect performance, and

vias use area, so locality of connection remains important.

A more complex issue is raised by the alternatives that arise when a designer must

planarize a design. Additional routing layers make it simpler to maintain a planar

design, and affect the use of the route and insertion module techniques described in
the previous subsection.

In order to preserve the technology independence of the floorplanning task, it is

suffi.cient to define the floorplan as a placement of all of the modules such that

A

c
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the majority of connections may be made edge-to-edge. Any other connections will

have abstract paths specified for their routing through the floorplan, but the actual

method of implementing the path shall be transferred to the bottom-up construction

process which contains technology dependent routing information by defrnition as it

is required in order to connect the modules. For the objective of this research into

the evaluation of the structurai design, these abstract routing paths are suffcient in

themselves to provide feedback to the designer on floorplan planarity.

5.6 Evaluating Form with Structured Floorplans

The connection between floorplanning and the evaluation of physical form is direct:

the floorplan is simply an abstract representation of the physical form, and as such

provides an excellent basis for the qualitative and quantitative evaluation of the

partitioning. Figure 5.12 illustrates how feedback from the floorplan may be used in

order to optimize a structurai design for layout.

A1 B A2

(b)(a)

Figure 5.12: The structure proposed in (a) leads to an inefficient floorplan imple-

mentation. Dividing the module A into two modules results in a structure that can

be more successfully mapped into a floorplan (b).

The form of structured floorplanning outlined in this chapter is particularly appro-

priate to the floorplanning task because it may be performed in a top down manner.

This is well matched to llne structzrøl design philosophy outlined in Chapter 2. As

a design is being developed according to a particular structural methodology (data

flow, for example) the physical form of the structure may be examined in parallel

with the functional performance.
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Current research in the area of the evaluation of physical layout is in general based on

statistical analysis of existing designs applied to the design in progress. In the work of

Anceau for instance, the statistical properties of past designs are used to predict the

size and shape of the modules being designed [Anceau & Reis, 1982]. This approach

appears to have the potential disadvantages that it is technology dependent and

only provides a very abstract evaluation that is not valid of the current design style

varies greatly from previous techniques. Sparta [Resnik, 1986] is basically a spread

sheet program for evaluating partitionings. The quantitative predictions are based

on algorithms that are intended to fulfrll the same purpose as the statistical data of

Anceau's work.

The major problem with the use of structured floorplans as an aid to evaluation is

the difficulties involved in automating the design task. This problem is addressed in

the next chapter.

5.7 Construction \ iith Structured Floorplans

Although not the specific objective of this research, structured floorplans may of

course also be used as the actual plans that guide the assembly of the modules into

a layout in the construction phase.

The external interfaces that a¡e created for leaf modules in the floorplanning pro-

cess may be used as an "environment" for the implementation of active circuitry by

manual of automatic [Koilaritsch & \Meste, 1984; Kollaritsch & \Meste, 1985; Watson,

1987] means.

An appropriate method for the construction of composition modules is based on

creating a "slicing" structure for the floorplan and using this to guide the assembly

process [Wardle et a1., 1984; Watson, 1985; Van Ginneken & Otten, 1984]. Each mod-

ule floorplan is sliced as illustrated in Figure 5.13(a). The result is a slicing hierarchy

(Figure 5.13(b)) in which each node represents a binary composition which may be

achieved with a simple river or channel route. The slicing hierarchy is traversed np-

wards from the leaves, resulting in a complete layout as illustrated in Figure 5.13(c).

Power, ground and possibiy clock signals may be ignored in the floorplan and simply

automatically routed to systematically labeled ports on the modules. The routing is

simplifi,ed by the use of regular routing patterns on specifically allocated layers for
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Figure 5.13: A fl.oorplan may be sliced as shown in (a) to produce a hierarchical

slicing representation (b) that may be used as a guide to chip assembly.

5.8 Summary

The implementation of a structural design as a physical form involves additional

constraint being placed on the design. The components must be placed and inter-

connected in a plane. Total area and interconnect must be minimized in order that

adequate performance and yield be achieved.

In gate array and standard cell styles used to implemeni highly partitioned designs,

interconnect dominates and restricts the achievable level of integration. In the cus-

tom design styles used to implement functionally partitioned designs the additional

degrees of freedom in design allow for a reduction in interconnect area at the price

of additional complexity of design.

Structured fl,oorplans incorporate the complexity management techniques of hierar-

chy, regularity, and abstraction to reduce the complexity of custom layout. Thus

they present a useful technique for the layout of the functionally partitioned struc-

tural designs discussed in earlier chapters.

The creation of structured fl.oorplans is complicated by:

1. Many degrees of freedom leading to a large search space in design.

' 2. Poorly defined cost functions.
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Designers manage the complexity of the floorplanning task by applying diverse heuris-

tics. These allow the designer to reduce the search space and optimize lhe global

design based on local observations. The knowledge used by designers may be cate-

gorised into several classes:

L. Meta knowledge that defines how plans are created and the design process

proceeds.

2. Geometric lcnowledge that assists reasoning with interconnected rectangular

objects in the plane.

3. Implementati,on lcnowled,ge that uses past experience to guide the design of

module interfaces such that a reasonable implementation of the modules will
eventuate.

Structured floorplans provide an excellent basis for the evaluation of the embedding

of the structural design into the plane. They can be produced in a top-do\¡/n manner

that complements the structural design style introduced in Chapter 2. In addition

they may be used as a guide to the final assembly of the chip layout in the construction

phase of the design.

The problem of automating the top-down design of structured floorplans in order to

assist in the evaluation task is described in the next chapter.
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Chapter 6

Modelling Form: Floorplanning

6.1- Introduction

The structured floorplanning methodology c{escribed in the previous chapter offers the

possibility of using the same structural design across both function and form domains.

In order to facilitate this it is useful if the designer may model the behaviour of the

form of the structure in addition to modelling the function as described in Chapter 4.

\Mhat then does mod,elling,form entail? Modelling function involved observing the

behaviour of a specified function: once the structural design had been created, the

designer specified the function for each module explicitly. The direct analogy rvith

modelling form would be to insist that the designer specify the form by designing a

floorplan. The floorplan is however the desired result: once formed it is in itself an

evaluation.of the pa.rtitioning. If the designer is to be assisted then it is by creating

the floorplan automatically.

In this chapter an examination of existing automatic floorplanning techniques is

made. In the light of their respective limitations, and the structured floorplan-

ning knowledge described in the previous chapter, the structure of an automatic

knowledge-based floorplanner is described. This is based on several knowledge rep-

resentations designed specifically to match the requirements of the floorplanning do-

main.

An implementation of the floorplanner is described that provides a sound basis for

the continued expansion of its base of floorplanning knowledge. Although the current

implementation contains only vestigial knowledge in comparison to an experienced
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human floorplanner, it's results provide suffi,cient information to enable a designer to

rapidly evaluate the quality of a structural design in its mapping to form. It assists

this evaluation by not only creating a floorplan, but also providing feedback on rvhat

layout implementations of modules in the floorplan are most appropriate, and what

use it was able to malce of structuring methods in creating the floorplan.

6.2 Approaches to Automatic Floorplanning

The term "floorplanning" is used in a number of contexts in computer aided de-

sign research and there is hence considerable ambiguity in the term. In this thesis

there will be a distinction made between "placement" and "floorplanning" to avoid

confusion.

Placement is the task of placing a set of 
"¡Çc 

ed sized, connected items in an arrangement

that minimizes some cost function, usually reiated to total connection length/area.

There are two basic sub-classifi.cations of placement. The first is the gate axray place-

ment problem in which the items are homogeneous and interchangeable. The second

is the standard cell placement problem in which the items are non-homogeneous

rectangular blocks.

Both classes of placement problem are distinguished by the large number of items

that are to be placed in the design, and the fixed specification of each of the items.

The problem set size ranges up to about three thousand items for large gate arrays

[Sechen & Sangiovanni-Vincentelli, 1985].

There are a number of elegant and eff.cient algorithms that have been successfully

developed for, or adopted to, the placement task. The best known of these include

simulated, annealing [Jepsen & Gelatt, 1983; Sechen & Sangiovanni-Vincentelli, 1985],

min-cut [Lauiher, 1979], force directed [Quin, 1975] and Kernighan-Lin [Kernighan

& Lin, 1970]. The diversity of these techniques is indicative of the simple and general

way in which the placement problem may be stated owing to the simplicity of the

placed items and the cost function.

After placement has been carried out on a design, a routing algorithm is used to

connect up the items in the placement.

Floorplanning may be distinguished from placement primarily by the complexity of

the items being placed. Floorplanning may degenerate to placement in the case
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where the items being planned with are fixed in size. In the more general case

however floorplanning is carried out in a top-down style in which only estimates and

predictions about the nature of the items exists. As part of the floorplanning process

the sizes, shapes and connection points of the items must be selected. Floorplaruring

is generally hierarchical, with each floorplan containing only a small number of items,

and each item in general being comprised of a further floorplan (typically for the sake

of simplicity of design the items are constrained to be rectangles). In this context

the cost function becomes complex as what appears to be optimal according to a

simple connection length criteria at one level may be found to be inappropriaie

at another level higher or lower in the floorplan hierarchy. Rather than evaluating

design according to simple cost functions, human floorplan designers tend to use rvhat

is regarded as good design practice (such as structured floorplanning as described in

the previous chapter) in order to minimize global area.

In the remainder of this section the an examination shall be made of the various

approaches to automat\c fl,oorplanning, not simple placement. Unlike the placement

problem there has been relatively little work in the are of automatic floorplanning, the

more common approach being interactive manual floorplanners such as that written

by the author for the Sprint system [\Mardle et al., 1984]. There has however been

considerable resea¡ch in automatic floorplanning in the field of building design in

which it is more commonly known as spúce-planni,ng.

The space-planning problem may be defi.ned as:

...a problem which has the goal of the placement of a set of subspaces in

a particular larger space, subject to both a class of location requirements

and and to the constraint that the subspaces must entirely fill the larger

space.

[Grason, 1970]

The basic constraints and location requirements may include:

1. The spaces must ali be rectangular.

2. Some spaces will be contiguous, that is they share a wall.

3. Some spaces communicater lhat is there is a door between them.

4. There are often physical size constraints on the wall lengths.
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5. There are often constraints on the positioning of doors.

There are a mrmber of similarities with structured VLSI floorplanning. Firstly rooms,

like modules, must be contiguous (adjacent) in order to communicate (share a door

or a route path respectively). Secondly the designer must take into account the in-

ternal structure of rooms when considering the placement of doors, as must the VLSI

designer consider the internal structure of modules when allocating port positions.

The space-planning problem tends to differ from the floorplanning problem in that the

global objective is to f/l the given space, whereas the floorplanning global objective

is to minimize the area of the space. As noted previously however, in structured

floorplanning the objective is not always the local minimization of space as this does

not necessarily relate to a global minimum.

In this section a number of automatic fl.oorplanning techniques will be surveyed. Each

has particular strengths and weaknesses with regard to its ability to create fl,oorplans.

The ambiguity in the definition of the floorplanning task makes it difficult to compare

prograrns that implement the techniques in an absolute sense. Our interest here

however is the creation of structured fl,oorplans of the style described in the previous

section, hence the ability of each approach to create such floorplans will be examined.

This is not a general critique of the programs: more an analysis of the suitability of

their basic methods to creating structured floorplans.

6.2..L Planar Graph Techniques

An general method of representation for a structural design is that of a simple lin-

ear graph in which the nodes represent modules and arcs represent the connections

between them. The arcs my in fact be weighted in order to represent the relative

widths of the commr:¡rication paths. This form of representation is often referred to

as an adjacency graph and is illustrated in Figure 6.1. Adjacency constraints to the

perimeter of the floorplan may be represented by nodes representing the four external

sides of the design as shown in Figure 6.1.

Given a graph representation it may be possible to create a planar embedding of the

graph such that none of the arcs cross. If the graph is non-planar it is possible to

planarize it by suitable addition of nodes at the crossover points as illustrated in

Figure 6.2. Clearly there may be a number of embeddings of any such planar graph.
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Figure 6.1: An example of an adjacency graph.

Figure 6.2: A planar embedding may be created by ihe insertion of nodes at

crossovers

(b)(a)

The planar graph representation is useful in floorplanning because of the properties

of its d,ual graph. The dual is formed by translating each face in the graph to a

node, and each node to a face as illustrated in Figure 6.3. Given a dual graph that

is appropriately constrained (a rectangular dual graph) it may be translated into a

floorplan as shown in Figure 6.3. The constraints required on the graph are quite

restrictive [Grason, 1970] however there may be any number of floorplans achievable

from a particular dual graph.

The floorplan that result from a rectangular dual graph may be used as a basis for the

creation of a set of linear constraints that defi¡e the floorplan topology. These may be

combined with other constraints on module size and interconnect width requirements

to produce a set of linear equations that when solved supply numerical values for the

edge lengths of the floorplan. This process is well described in [Heller et al., 1982;

Maling et al., 1932].

The use of planar graph techniques was first taken up in space-planning research
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Figure 6.3: (a) A planar embedding of a graph. (b) A rectangular dual of the planar

embedding. (c) The resulting floorplan.

Number of rectangles 1 2 3 4 5 o I 8

Number of floorplans 1 1 2 I 23 116 683 4866

Table 6.1: Growth of complexity in floorplan enumeration

fGrason, 1970; Mitchell et a1., 1976; Earl, 1980; Baybars & Eastman, 1980; Ba¡'bars,

1982; Gilleard, 1978; Korf, 1977]1. The methods were later adapted to integrated

circuit floorplanning by Heller [Heller et al., 1982; Maling et al., 1982].

These methods rely in general in enumerating a large number (if not all) of the floor-

plans that may be derived from and initial adjacency graph. This is done because

there are few hueristics applied in the process: rather each floorplan is proposed and

the constraints solved in order to find the optimal of near optimal configuration.

Given that there may be a number of embeddings of the adjacency graph, a number

of duals resulting from each embedding, and a number of rectangular duals resulting

from each dual, the possibility of a combinatorial explosion is present. The actual

growth of complexity is problem dependent, but Mitchell provides the results shown

in Table 6.1 and estimates that there are over 250, 000 possibilities for a 9 compo-

nent system [Mitchell et al., 1976]. Note that each of these must be solved for its
constraints and evaluated in terms of some cost function.

The computational complexity is also increased because of the difficuliy of generaiing

aII of the rectangufar duals of a planar graph. The algorithms developed for this

A

B

c
D
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task have been exponential in growth except those developed for certain constrained

cases[Kozminski & Kinnen, 1984].

In order to prune the search space of possible floorplan configurations, most graph

based system rely on an interactive interface with which the designer specifies var-

ious initial configurations. In Heller's system for instance [Maling et al., 1982] ihe

adjacency graph is planarized and embedded manually by the designer. The system

then has a greatly reduced number of possible fi.oorplans to evaluate. The interactive

nature of the tool is also important as a method of applying designer expertise to the

problem:

...although the system accelerates the process of developing and a com-

pact and well structured layout signifi.ca,ntly, the design process is not

at all automatic. Engineering choice and judgement are required to cre-

ate a hierarchy of planar, original graphs that represent the design and

have RDG [Rectangular Dual Graph] solutions. An understanding of chip

design is essential because the POGs [Planar Original Graphs] must in-

clude reasonable wiring macros [modules] for pads, for busing and for

rearrangement of wire order at functional macro interfaces.

[Maling et al., 1932]

An analysis of the success of graph based space-planning techniques by Henrion [Hen-

rion, 1978] resulted in similar conclusions. Analysis of the performance of a number

of systems suggested that they lacked utility by not containing strong fi.oorplanning

domain knowledge . The algorithms used simply did not take into account issues dealt

with in planning by human designers. It was suggested that the programs should be

structured in such a v¡ay that the knowledge required by designers be represented

explicitly in them, and that this should be readily examinable and alterable by ihe

designers themselves to facilitate improved program performance.

6.2..2 Slicing Techniques

In Section 5.7 slicing was introduced as a tool for assembly. There are several ex-

amples of systems in which it has been used as a means of constructing floorplans

[Szepieniec & Otten, 1980; LaPotin & Director, 1985]. The general procedure in-

volves starting with an adjacency graph representation of ihe design. This is then
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bipartitioned using one of a number of algorithms such as min-cut [Kernighan &

Lin, 1970], Fidducia-Mattheyes [Fidducia & Mattheyses, L982] or Schoenberg lOtten,

1932]. The criteria for bipartitioning is usually based on minimizing the connections

between the partitions and balancing the areas between the two. The bipartitioning

proceeds recursively and the results are used to build a slicing tree as was illustrated

in Figure 5.13.

Once the slicing tree has been completed, the rectangular blocks that form the actual

floorplan must be created and oriented. Each of these forms a leaf in the slicing tree.

In Mason [LaPotin & Director, 1985] the designer suggests an aspect ratio for the

overall floorplan, and this is recursively subdivided and passed to child slices until the

leaves are reached. The modules are then oriented so as to best achieve the required

aspect ratios of each slice.

Slicing methods have the advantage of being fast: the partitioning step is rapid and

the clean structure of the slicing tree makes assembly a simple task. There are a

nurnber of disadvantages however:

1. Only the area a¡rd connectivity of the modules as a basis for the partitioning and

hence slicing structure. Shape is not considered until the slicing is completed.

2. The slicing structure places a rigid sequencing constraint of the floorplanning

process: once a module has been allocated into a slice, it must always iie in

that siice or one of its child slices. This means that it is not possible to adopt a

strategy of. defemed commitmenf in which a decision on placement is not made

until there is sufficient constraint information available.

3. It is clear that the approach is a so called wealc method [Newell, 1969] in which

there is little domain specifi.c knowledge. This reduces the ability to apply

structuring techniques to floorplan designs, thus working towards global rather

than local minima in a hierarchical design. Additionally it is difrcult to provide

the designer with specific feedback on changes to the partitioning that might

lead to an improved design.

4. The method has no knowledge of module implementation. Even though it is

possible to work with flexible modules defi,ned by various constraints on size

and port positions, these must be specified in detail by the designer.
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6.2..3 Knowledge Based Techniques

A number of automated VLSI floorplanning programs may be classifi.ed as lcnouled,ge

based. The methods used in these programs involve specifi.cally mimicking some of the

methods used by experienced human floorplan designers. Clearly in order to operate

in this manner they must in some way internally represent this designer knowledge

such that it may be applied to a range of floorplanning probiems.

The .IF program [Nixon, 1984] is based on the observation that designers often use

"standard floorplans" or "idioms" in order to realize particular structural entities as

layout. The program first performs a "clustering" phase in which regularly inter-

connected modules are grouped into single entities. A pattern recognition phase is

then used to classify particular idioms. For each class of idioms the exists an "expert

floorplanner" that contains knowledge on how to lay out a particular idiom.

The idiomatic strategy has a number of advantages. Firstly, it is time efficient: the

various algorithms used for clustering, classification and placement are not expensive.

Secondly, each "expert" only needs to have very specifi,c knowledge on how to lay

out a single floorplan structure, hence this may be done in a compact and structured

fashion.

The strategy does have a number of weaknesses however:

1. The clustering stage is critical: if this fails to separate various idioms in a single

floorplan, they will not be later recognized for layout.

2. There are only a small number of idioms, and adding additional idioms does

not seem to be a simple task. If a floorplan does not contain any known idioms,

a poor iayout will most likely result.

3. There seems to be difÊculty in constraining the form of the floorplan that is laid

out: the external shape and port positions are not constrainable and floorplans

are created purely on the basis of what is locally optimal for the idiom. Fourthly,

no allowance is made for the implementation of modules in the floorpian.

The Class program [Birmingham et al., 1985] is a design assistant that coordinates

the operation of a placer [LaPotin & Director, 1985], a router [Joobani & Siewiorek,

1935] and a cell layout generator [Kimm et al., 19S4]. It appears to be based on

an idiomatic model of floorplanning with an additional abiiity to manage design
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constraints specified interactively by the user.

The automatic floorplaner described by Jabri [Jabri & Skellern, 1986] is an extension

of the work of Heller [Heller et a1., 1982; Maling et a1., 1982]. The system uses the

graph algorithms described by Heller to enumerate all possible rectangular floorplans

that may be generated from a graph representing the functional connectivity of the

design. These are then exhaustively examined by a rule base in order to select

a particular optimal floorplan. This scheme progresses further along the line of

completely automating floorplan design than the system described by Heller, but is

accompanied by a number of disadvantages:

1. In the initial phase, a single planar embedding of the graph is chosen without

consideration of recta^ngular shapes and sizes. This occurs because the embed-

ding is performed on a simple graph which describes only connectivity. This

approach was considered in the early design of. FIoyd [Dickinson, 1985] but later

abandoned in favour of the rectangular graph approach described in Section 6.5.

2. In the floorplan enumeration phase, ail rectangular implementations of the

planar embedding are generated. This leads to problems of a combinatorial

growth in the number of alternative floorplans as described in Section 6.2..7.

3. The rule based system is required to examine each of the potentially large num-

bers of floorplans in order to select an optimal case. This methodology does not

model the behaviour of expert floorplan designers. They apply expert knowl-

edge during the deuelopment of a floorplan, not as a post-design filtering stage.

This mismatch between floorplanner and designer methodologies suggests that

incorporating designer knowledge into the floorplanner would be quite difrcult:

procedural expert knowledge have to be converted to judgemental knowledge.

The Flute floorplanner [\Matanabe & Ackland, 1986; \Matanabe & Ackland, 1987]

performs the fl.oorplanning task by applying expert knowiedge to design procedure,

not evaluation. This approach results in a modelling designer behaviour, thus easing

the problem of knowledge acquisition. In Flute modules are placed on a cartesian

grid, their position being selected by a set of rule bases invoked in step-by-step

process. Module interconnection is used as the basic criteria for placement, but this

is influenced by the size and shape of the module rectangles. Although it models

designer behaviour more closely than the previously described floorplanner by Jabri,

this approach appears to have several limitations:
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1. The use of a grid for the placement of modules implies a degree of arbitrary

constraint on the placement: relative module placements on the grid implied

constraints that were not meaningful in the context of the design. This is a

similar problem to that found in virtual grid compaction [TVeste & Ackland,

1981] where components placed corrmon grid lines are arbitrarily constrained

together in one dimension.

2. The rule bases do not appear to contain explicit knowledge on the implemen-

tations of modules. Design is carried out in the context of a single level of

hierarchy, and the feasibility of implementing the next lower level of modules

floorplans is not regarded as significant.

3. The basic control of the system is algorithmic: rule bases and procedures are

invoked according to a set procedure. This may discourage integration of control

knowledge wiih the other rule bases, removing access to the detailed state of

the design that may be relevant to the control flow. In addition, aigorithmic

representations are most appropriate for well structured, well understood and

complete domains (Section 6.3.1.3). There is little evidence to suggest ihat

the knowledge required in the control of the floorplanning process meets any of

these criteria.

6.2.L Discussron

T};.e o,Igorithmic methods of planar duals and slicing have the following advantages

as approaches to floorplanning:

1. Floorplan representations that allow for the application of well understood re-

sults from graph theory and general algorithmic techniques such as linear pro-

gramming and Kernighan-Lin.

2. Well defined, though often high, time complexities

These advantages are countered by a number of disadvantages

1. Optimization occurs based on overly simple cost functions that may not reflect

global design cost.
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2. Lack of strong domain knowledge hinders algorithms from performing "prun-

ing" of the design search space: large numbers of floorplan possibilities are

generated and must be filtered by further evaluation techniques.

3. An inability to recognize structures that are most efficiently laid out as struc-

tured floorplans.

4. An inability to explain their actions and thus assist the designer improve the

design.

5. Have no knowledge of how implementations of modules will be created, and

thus may place poor constraints on modules unless these have been specifically

stated by the designer.

The knowledge based approaches described have had a number of positive aspects:

1. They can recognize important structuring entities such as buses and create

structured floorplans based on their presence in the design.

2. They may be able to provide the designer with more information as to the

success or failure of the pa.rtitioning owing to its structuring potential. No such

facility has been reported however.

There are however a number of problems with these programs stemming from both

their incomplete floorplanning domain knowledge and their stmcturing not meeting

the design criteria considered desirable in a¡tificial intelligence systems:

1. Although they can incorporate structuring techniques into designs, these sys-

tems do not have any knowledge of module implementations and as such are

poor at top-down design.

2. Typically only a na rov/ portion of designer expertise is used, that dealing with

idioms and structuring techniques. The meta-knowledge used by designers to

control the design's progress is not explicitly represented.

3. The knowledge representations are ail hoc: distributed into various data struc-

tures and algorithms in a non-modular fashion. This makes it diffcult to
understand the program, difficult for explanations on design decisions to be

generated, and difficult for the knowledge base to be expanded by floorplan de-

sign experts. This is a weli known problem: Feigenbaum [Feigenbaum, 1977a]
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has suggested that these problems may only be avoided by using knowledge

representations that are compatible with the human expert.

From the outlines of the various approaches given here, and the description of struc-

tured floorplanning given in the previous chapter, it is clear that the automatic

generation of such floorplans requires considerable domain knowledge. This knowl-

edge however has many aspects, requires explicit and well designed representations,

and must include design task meta-knowledge.

Graph based algorithmic techniques do however provide considerable efficiency in

dealing with complex geometries by virtue of the weil defined algorithms that may

be formulated to operate on them.

6.3 Knowledge Based Design

The concept of ar ill-slruclureil problem was defined by Newell [Newell, 1969] as

one which was not structured, where a structured problem exhibited the follolving

properties:

1. It can be described in terms of numerical variables, scalar and vector quantities.

2. The goals to be attained can be specified in terms of a well-defined objective

function.

3. There exist computational routines (algorithms) that permit the solution to be

found and stated in numerical terms.

The problem of creating structured floorplans has been defined in such a way in this

thesis that it meets none of the above criteria, and is as a result ill-structured. In

fact, the lack of success of many floorplanning techniques may be attributed to the

attempted transformation of the problem into a structured, form. The resulting algo-

rithmic methods produce "good" solutions, but to the wrong (structured) problem.

Newell suggested that the only approach to solving ill-structured problems with a

computer required heuristic programming (artificial intelligence) techniques. These

are programming techniques that use processes based on human problem solving tech-

niques in order to arrive at a solution. These techniques were ciassified as either weak

or strong. \Meak techniques are general, that is they are applicable to reasoning in a
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r,vide range of domains. Strong techniques are specific, they incorporate knowledge

about a particular domain and oniy operate successfully in that domain.

After an early interest programs such as GPS [Winston, 1984], the success of rveak

methods fell into question as they were poor at solving real problems. Fa¡ more

success has been achieved with strong methods in the field of knowleilge based ot

erpert systems. These incorporate specific domain knowledge in order to solve narrow

ran ges of ill-structured problems.

The automatic floorplanner described in this thesis relies on specific (strong) domain

knowledge of the type described in Chapter 5 to generate structured floorplans.

In this section the various knowledge representations and reasoning techniques that

have been successfully applied in working knowledge based systems will be described.

This will serve as a foundation for describing the structure and representations that

are used in Floyd.

6.3.1 Knowledge Representation

One of the most critical issues in the creation of a knowledge based system is the

design of the representations that are required in order to express the various forms

of domain knowledge. Here we shall consider three broad classes of representation

are either used or have influenced the knowledge representations in FIoyd.

6.3.1.1 ProductionRules

The most common form of representation in use in knowledge based systems is the

production rule fHayes-Roth et a1., i983]. In its most general form, a production

rule consists of a left hand side predicate and a right hand side action in an IF
1 situation > THEN < oction ) form.

A typical forward chaininf production system is illustrated in Figure 6.4.

T}ae rule base is comprised of a number of rules, each representing some independent

fragment of knowledge. The working rnernory contains items that represent the state

of the system: rules may insert and delete items from working memory with their

lBackward chaining strategies are uncommon in design systems, being more amenable to analysis

and diagnosis.
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Figure 6.4: The components of a production system.

1 action ) parts. The rule interpreter test all of the rule ( situation ) parts against

the contents of the working memory. If one of the rule predicates are satisfi.ed b¡'the

contents of the working memory, the rule is "fired" allowing its action part to alter

the memory. If more than one rule is applicable, a confiict resolution strategy [Forgy,

1982] is used to select the rule to "fire" from that set.

Production rule representations may be appropriate in the following situations:

1. Where the domain knowledge may be expressed in small, discrete units.

2. Where the domain knowledge is likely to change: the addition of knowledge

by the addition of rules shouid be relativeiy straightforward if the rules are

independent.

3. \Mhere there may be a requirement for the system to explain its behaviour.

This may be done by tracing the execution order of the rules.

4. \Mhere the homogeneous representation of problem state provided by the n'ork-

ing memory does not lead to extreme ineffi.ciency.

The majority of knowledge based systems utilize rules as their primary means of

knowledge representation. These are mostly classification arrd diagnosis systems

[Davis et al., 7977; Lindsay et al., 1980; Duda et al., 1976; Feigenbaum, 1977b] but

a number of d,esign systems have also been produced:

t. Rl/Xcon: configures computer systems [McDermott, 1980].

2. DAA: produces digital system structural architectures from instruction set pro-

cessor specifications [Kowalski, L986].
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3. Tali,b: designs integrated circuit leaf cell layouts [Kimm et al., 1984].

4. Weauer: performs integrated circuit routing [Joobani & Siewiorek, 1985].

ß.3.L.2 FYames

The frames knowledge representation proposed by Minsky [Minsky, 1975] as a general

representation model for human intelligence, though the particular application he

describes is in visual scene analysis.

In Minsky's model a frame is a structure that provides a framework for representing

reality: when a nelv situation is encountered, the remembered frame that best fits

that situation is recalled from memory. Every frame consists of terminals (or slots).

Attached to some terminals are invariant data that holds true for all situations that

relate to that frame. Other terminals have attached ilefaull information that may

change in order to tailor the frame to a specific situation. Frame systems are created

when terminals have attached subfrarr¿es thus generating a hierarchy of frames.

Since the original conception of frames, the representation has received wide accep-

tance. It has also become entwined with the concept of. object oriented programming

[Weinreb & Moon, 1981b; Goldberg & Robson, 1983]. In particular the frame rep-

resentation systems incorporated in development systems such as KEE [Intellicorp,
1935] include the concept of inheritance: a new frame may inherit properties (sloi

defaults) from an existing frame.

Frames are applicable to knowledge representation in the following situations:

1. \Mhere the knowledge is structured in a hierarchical manner.

2. Where the knowledge is liable to change.

A number of knowledge based system that make use of hierarchical knowledge struc-

tures have been built around frame languages [Genesereth, 1982; Giambiasi, 1985].

6.3.1.3 Algorithms and Data Structures

There is often confusion over what defines a knowledge based system. In this thesis

it is defined simply as a program that solves ill-structured problems as suggested by

Newell. Tlne representations chosen to describe the required knowledge do not affect
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this definition, they are simply selected based on their applicability to the specific

knowledge representation task.

This suggests that the most well known of programming techniques, algorithms and

data structr:res, form a valid knowledge representation. This is particularly so in

cases where the ill-structured problem may be partitioned into subproblems, some

of which may then appear to have considerable structure. For instance the task of

finding a plumber to fix a leaking tap may be regarded as quite ill-structured overall,

but the subtask of searching for plumbers in a telephone listing may be performed

quite well by a suitable algorithm and data structure that in effect performs the same

task as the human. Algoriihmic representations may be applicable in the follorving

situations:

1. The knowledge is cornplete, that is there is not likely to arise the need to alter

the body of knowledge.

2. The knowledge contains a large number of. associatior¿s between its components.

A suitable data structure may represent these associations explicitly, making

the traversal of such associations more effi.cient with suitable algorithms.

3. The representation is not required to explain its actions.

An example of algorithmic techniques in use in a knowiedge based system occurs in

the Design Automation Assistant (DAA) [Kowalski & Thomas, 1983] in which the

estimators are implemented as algorithms, not ru-les. These estimators are responsible

for the "back of the envelope" calculations used by designers to assist in decision

making.

6.3.2 Reasoning Techniques

Related to the issue to knowledge representation is that of reasoning techniques.

This is a general term to describe a variety of methods that have been developed for

reasoning within and with the domain knowledge.

Design is often characterized in artificial intelligence as a searcl¿ through an often

large space of possible solutions. Domain knowledge plays a part in reducing the

complexity of this search by guiding the search down some pathways and ignoring

others. (This is generally known as heuristic search [Stefik et al., 19S3]). This section
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briefly describes some of the concepts that may be applied in order to apply domain

knowledge to the problem of limiting such a search.

6.3.2.1 Abstraction

The complexity of the search through a solution space may be reduced by using

abstractions of the problem space. A well known example is the task of finding a

road route between two cities [Stefik et aJ., 1983]. Searching out through all possible

roads leading from one city looking for a path to the next is usually impractical.

Instead a map that simply shows the main highways between the cities is used: the

details of getting onto and off the highways may be solved later.

By finding similar abstractions in design problems it is possible to greatly reduce the

combinatorics involved in search. The basic strategy is to search for broad solutions

under the assumption that particular details wili not greatly effeci the optimality of

the solution and may be filled in later.

6.3.2.2 Planning

Plans are basically sequences of instructions that suggest a method that may be used

to solve a particular problem. Plans are in a sense abstractions of the actual detailed

methods that will be required in order complete the task. Once a plan has been put

forward, other reasoning facilities must be available to follow the plan and fill in the

details.

There are two classes of planning that appear in knowledge based systems. The first

is that which is not specific to a particular problem, but is sufficiently general that it
may be used as a broad approach to the problems encountered by the system. This

may also be classified as metaknowledge and will be described in Section 6.3.2.5. This

form of planning knowledge is essential in giving a system some direction in solving

a problem.

The second form of planning information is that which is formulated based on the

particular problem instance. In the road example this would be a plan that described

which highways form the best route. In order to be produce a detailed solution to

the system, details on highway entrances, exits and fueling availability must be filled

in based round the outline provided by the plan. This form of planning knowledge
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serves to direct the system activities down particular paths thus speeding the search.

In addition, in systems that have only poor estimates of the quality of the incomplete

design, following a plan suggests that the design is proceeding in a fashion that may

lead to a good result.

6.3.2.3 Constraints and Least Commitment

In a typical design problem, a number of subproblems are often being solved at one

time. Typically these are not independent: decisions made in the solution of one

subproblem may impact the solution processes taking place in other subproblems.

The most common means of representing these interactions are entities known as

constraints [Sussman & Steele, Jr., 1980; Stefrk, 1980; Stefik, 1981; Sarcerdoti,7974;

Ifimm et al., 1984]. As the design progresses in a particular subproblem, constraints

tlrat represent the changes taking place in that design are generated. A constraint

propagatiorz mechanism then passes these constraints on to subproblems that may be

affected.

Stefik's program, MOLGEN, creates plans for genetic experiments. The steps in

the experiment are designed as subproblems. These subproblems may be put into a

state of suspension when there is insufficient information present to continue design

of the step. When another subproblem proceeds, constraints are generated and prop-

agate out to the other subproblems. Typically this will provide enough constraint

on another subproblem for it to continue in turn. This strategy is known as least

commitmenl: progress on an insufficiently constrained problem is halted until enough

constraints arrive for progress to be resumed.

One probiem that arises in a least commitment strategy is that at times there will
be an overall lack of constraint, and all progress in all subproblems will cease. At
this stage MOLGEN takes a guess in order to resume progress. If this guess should

later prove to have been incorrect, the design carried out since the guess is undone

in a baclctraclcing procedure and resumed with an alternative guess. Backtracking is

discussed further in the next section.

6.3.2.4 Backtracking

As mentioned in the previous section, backtracking is a procedure that is adopted in

order to undo the results of a poor decision. There are two classes of backtracking.

762



Chronologicalbacktracking involves simply removing ø// design carried out since the

poor decision and then proceeding with an alternative. Depend,ency d,irected back-

tracking involves only undoing that design work that was the direct result of the poor

decision. This is clearly more efficient but also more complex to implement as all

design activity must be tracable back to specific decisions.

Backtrack is always ineffi.cient as it requires undoing work, and is hence to be avoided.

Rl [McDermott, 1930] and DAA [Kowalski & Thomas, 1983] use the match reasoning

strategy that is based on the assumption that sufficient knowledge is always available

to make correct decisions: the implications of each design decision may be evaluated

fully prior to its instigation.

When used as a cure for poor decision making, backtracking has a number of prob-

iems:

1. Undoing design work is inherently inefficient. Backtracking may lead to the

depth first traversal of the solution space.

2. A great deal of state must be preserved in order to allow undoing.

3. Design elements must be labeled with their causative decisions.

4. The point at which backtracking should be instigated, and to where it should

be continued back too, is often unclear.

6.3.2.5 Metaknowledge

Metaknowledge (knowledge about knowledge) is that control knowledge used in a

system to reason with the remaining knowledge embodied in the system [Lenat et

a1., 1983]. The overall strategy used by the system in order to solve a problem is

controlled by guiding the selection of what bodies of knowledge in the system are

to be applied to what subproblems at what time. This guidance is the result of

the system selecting a particular design phase or strategy: constraint propagation,

guessing or backtracking for example.

Some systems have represented metaknowledge in forms that are explicitly different

from other knowledge: for instance predicate calculus [Genesereth, 1983]. More

commonly however the metaknowledge is expressed in the same form as the base

level knowledge, usually in rules [Kimm et al., 1984].
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A common organization of knowledge in a system is based around its division into

a number of. lcnowledge sources [Erman et al., 1930]. The various knowledge sources

are activated and deactivated according to design strategies embodied in the system

metaknowledge.

6.3.2.6 InexactReasoning

Newall observed lhat: Typicully, an ill-structured problem is fuII of aague information

[Newell, 1969].

Even given the generality of the problem , there has not been a great deal of success

in developing representations and reasoning techniques for vague information (norv

more commonly referred to as uncertaín lcnowledge).

When reasoning with uncertain knowledge, the production rule structure of IF <
situation > THEN 1 action > becomes IF < euidence > THEN t hypothesis )
where the evidence suggests the hypothesis with some strength. The diffi.culty lies in

deciding on an appropriate means of expressing the uncertainty in the evidence, the

uncertainty in the inference, and the total resulting unceriainty in the hypothesis. A

variety of methods have been suggested, the best known being:

L. Measures of belief and disbeliel[Davis & Buchanan,7977]

2. Subjectiae Bayesian reasoning [Duda et al., Proceedings AFIPS 1976 NCC]

3. The Dernpster-Shafer theory of eaid,ence [Gordon & Shortliffe, 1984].

4. Fuzzy logic lZadeh, 1979].

In this section the Mycin measures of belief and disbelief will be presented as an

appropriate model for inexact reasoning. This model, although lacking a rigorous

mathematical basis, is simple and well characterizedby its incorporation in the lvlycin

system [Buchanan & Shortliffe, 1984]. Subjective Bayesian reasoning is inappropriate

because of the need to have a wide statistical base in order to estimate the a priori

probabilities required [Duda et al., Proceedings AFIPS 1976 NCC| Frzzy sets are

as yet poorly understood and the quantification and combination of. fizzy variables

are ill defined [Shortliffe & Buchanan, 1984, p. 2a6]. The Dempster-Shafer theory of

evidence shows considerable promise [O'Neill, 1987], however there is a lack of pub-
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Iished results from working systems that incorporate the model, and experimenting

with basic models of inexact reasoning is not an intent of this thesis.

In the Mycin diagnosis system, hypothesis are proposed and then the iikelihood of

their being true is estimated based on expert knowledge encoded into rules. Proba-

bilistic techniques were judged inappropriate as experts seemed unable to estimate

a priori probabilities and the statistical distribution of diseases undergoes constant

change. The model developed has a number of informal associations with Bayesian

probabilities. In this section a subset of the model that is relevant to the prob-

Iem at hand will be described. A more detailed description of the model itself and

its empirical and theoretical justifications may be found in [Shortliffe & Buchanan,

1e841.

The basic means of expressing uncertainty in Mycin is the Certainty Factor (CF).
Each rule has a CF associated with it that is intended to quantify the expert's
certainty that if the evidence is all true than the CF reflects the degree of certainty
with which the hypothesis may be attributed. For example:

IF: t) ttre stain of the organism is gram positive, and
2) The morphology of the organisn is coccus, and
3) The growth confirmation of the organism is chains

THEN: There is suggestive evidence (0.7) tñat the identity of the
organism is streptococcus

The CF in this case is 0.7. CFs are allowed in the range [-1, +1] where positive CFs

imply belief (confirming evidence) *d negative CFs imply disbelief (disconfirming

evidence).

The accumulation of CFs as more rules fire that apply to a single hypothesis is carried

out by the assignment of. belief rneo,sures to the hypothesis. In a Bayesian model, the

lack of confrrming evidence for a hypothesis suggests that it is less likely. This may

however not be the case in the area of expert opinions and so two measures, one of

belief (M B) and the other of. d,isbelief (M D) are introduced. For each hypothesis un-

der examination, the confirming evidence is recorded separately to the disconfirming

evidence as M B and M D respectively. Both a¡e constrained to lie in the range [0, 1]

in order to emphasise their relationship to probabilities [O'Neill, 1987].

The CF implied by each rule is combined with the current belief measures (MB

and MD, initially 0) to produce the new belief measures (MB' and MD') rvith a
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combining function which may phrased as:

MB, :

MD,:

0

MB+CFx(t-MB)
0

MD+CFx(t-MD)

if MD':t
otherwise

if MB':1
otherusíse

Once all applicable rules have fired, the total CF for a hypothesis is calculated by:

C Ftotot : M B - M D The total CF for each hypothesis is then used in order to

rank the their likelihood, those with the highest CFs being the most probable correct

hypothesis.

The overall performance of this model of inexact reasoning in the domain of medical

diagnosis was found to be excellent [Buchanan & Shortliffe, 1984, p,2la].

6.4 System Overview

The desigt of. Floyd is based orL a represenlational approach in which three distinct

knowledge representations have been adopted to describe specific aspects of floor-

planning expertise:

1. The rectangular graph is a data structure and set of related operations that

assist in 'common sense' geometrical reasoning about two dimensional spatial

relationships.

2. The classes representation is an extensible mechanism for encapsulating knorvl-

edge about the abstract implementations of a variety of module layouts.

3. The most general representation is the prod,uction system, used in Floyd to rep-

resent metaknowledge (design control strategies and planning) and to perform

pattern recognition.

The overall structure of the system is illustrated in Figure 6.5. There are a total

of six subsystemr, one for each of the three knowledge representations and a further

three anciliary subsystems.

The central Design Manager is a production systern consisting of a rule set, rvork-

ing memory and rule interpreter. The design marrager controls the design process,

interacting with each of the subsystems when it requires the facilities each provides.
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Sketcher

Spacial
Reasoning

Classes

Paths Simplex

Figure 6.5: An overview of the components of the system.

The Spatial Reasoning subsystem is responsible for providing information about the

spatial relationships between the rectangles that represent modules in the ongoing

design. The subsystem is based around the rectangular graph, representation.

The Classes subsystem is actually a data base of information about the possible

implementations of modules in a floorplan and their layout properties represented by

c/øss structures.

The Paths subsystem is responsible for traversing the rectangular graph and gener-

ating a set of linear inequalities that form part of the set that may be solved in order

to create the fl.oorplan.

The Sí,mpleø subsystem is an implementation of the simplex fDantzig, 1963] algorithm

that is used to solve the set of linear inequalities that describe the floorplan. These

are derived from those constraints derived from the rectangular graph and those

generated by the design manager.

The Slcetcfr,er subsystem provides window facilities for sketching planar graphs and

floorplans to aid in both debugging newly acquired design knowledge and to provide

graphical feedback of floorplans to the user.

These subsystems are described in detail in the following sections, however discussion

of their software implementation is deferred until Section 6.11.

Desþn
Manager
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The sequence of the following descriptions has been chosen for maximum clarity of

presentation and does not in general relate to the relative signifi.cance of the subsys-

tems.

6.5 The Spatial Reasoning Subsystem

In discussing the problem of constructing knowledge based systems to perform design,

Stefik et. al. note:

Many design problems require reasoning about spatial relationships. Rea-

soning about distances, shapes, a¡rd contours demands considerable com-

putational resources. \Me do not yet have good ways to reason approxi-

mately or qualitatively about shape and spatial relationships.

fStefik et al., 1981a, p. 25]

In the previous chapter it was noted how designer use pencil and paper in order to

represent and reason with the spatial relationships used in floorplanning. This assists

them to record and observe the constraints that occur in a spatial structure. This

knowledge was identified as being quite different in nature to the "expert" knowl-

edge used for other purposes in the floorplanning problem. It appears to make use

of "common-sense", innate abilities of the designer. R¿ther then than attempt to

represent this aspect of knowledge in a general rule form, a special purpose data

structure and related operations have been designed for the task. They interact with

the remainder of the system through a well defined interface that hides the imple-

mentation such that it appears simply as an cornpetent manipulator of rectangular

fl,oorplan elements.

The data structure has been named lhe rectangular graph, (RG). It is a highly con-

strained planar embedding of an undirected graph in which the nodes represent layout

modules and the arcs imply connection constraints between modules. The represen-

tation has a number of useful properties:

1. It can be used to record the current state of the floorplan topology.

2. It provides an abstraction that allows for the incremental inciusion of detailed

size and shape information into the fl.oorplan.
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3. It can be used to effi.ciently generate the possible positions into which a con-

nected module may be inserted into the design.

4. It can be used to estimate the size and shape of the space available in a floorplan

for the placement of a new module.

5. It efficiently records the entire design history in a tree structure that facilitates

backtracking.

6. It may be used for the generation of linear equations that define the finai

floorplan.

In the remainder of this section the data structure itself is presented, followed by the

various procedures related to its use.

6.5.1 The Rectangular Graph

The original spatial representation developed for Floyd was based on a grid onto

which the various modules were placed. As noted earlier, this structure, similar to

that later used in Flute [lVatanabe & Ackland, 1986] has the disadvantage that it

places a degree of arbitrary constraint on the placement: relative module placements

on the grid implied constraints that were not meaningful.

The rectangular graph avoids this effect by representing moduie placements only by

adjacency constraints. Modules that are not required to be adjacent as a result of

a connection are free to move as necessary. This allows a natural implementation of

least commitrnent; only those constraints that are strictly required are expressed.

The basic entities of the graph are named noiles, sid,es, arcs and faces. These are

illustrated in Figure 6.6 and described beiow.

Nodes: The nodes in the RG represent modules in the design. Nodes in an RG are

denoted À[ where i : L..n for a graph with n nodes.

Sides: Each node has 4 "sides", each corresponding to the side of a square. These

are referred to informally as the the north, east, south and west sides. For-

maily a node ÀL has sides denoted ,S;,r' where j may take on a value from the

ordered sequence {rr"rs,'u.r} corresponding to the north, east, south and uesú

sides respectively. The four sides of a node correspond to the four sides of a

rectangular module.
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4,,

Figure 6.6: An example of a rectangular graph.

Arcs: A requirement that two nodes be adjacent to one another may be indicated

by and ørc joining the two. The arc associating thej nodes lÍ¿ and .ll¡ is denoted

by A¿,i. An arc may be further constrained to associate pairs of sides of nodes.

The arc associating the sides ,9¿,- and ^9¡,r, is denoted An^,i^.

Faces: As will be described, a valid RG may be represented by a planar embedding

of the graph. The closed regions bounded by the arcs and nodes are called

faces. The faces in a graph are denoted fi where i : I..n for a graph wiih n

faces. A face may be described by a clockwise sequence of the nodes Iú that

impinge upon it or a clockwise sequence of the arcs A¿^,¡n that bound it. trVhen

used to describe a face, the arcs are d,irected such that traversing the arcs in

their nominated direction causes a clockwise traversal of the face (Figure 6.7).

Figure 6.7: An RG face described by nodes and directed arcs

Aou
4,,

A.o

N.,

N-
5

N,N^
b

F"

N4 N.
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Type Turns Arc Description

L 0 Non turning opposite sides

A+ +1 Right turning adjacent sides

A_ 1 Left turning adjacent sides

s+ +2 Right turning same sides

.9_ -2 Left turning same sides

Table 6.2: Node and arc side configurations.

6.5.2 Turning

The most useful properties of the RG arise from the nature of the faces that comprise

it.

The nodes in a face each of one incoming and one outgoing arc. There are only a

limited number of arrangements of these two arcs with respect to each other:

1. The arcs are on opposite sides of the node.

2. The axcs are on adjacent sides of the node.

3. The axcs are on the same side of the node.

The possible configurations are shown in Figure 6.8 and described in Table 6.2.

Each corresponds to a different number of. turns in the face, where a turn is a right
angle change in direction. Turns arc positi,ue if they imply a righthanded change in

direction, and negative if they imply a lefthand change of direction.

L AA
+

SS
+

Figure 6.8: Configurations of arcs and nodes.
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Theorem 6.1 Th,e total sum of all the turns in a face is always /¡.

Proof 6.L A face is a closed polygon. AII of the angles in a polygon must sum to

360' . Hence the surn of the angles of each nod,e in a face must sum úo 360o : 4 turns.

6.5.3 Properties of the Embedded RG

The objective of this representation is to assist in the manipulation of rectangular

floorplans. In order that an RG be realizable as such a fl.oorplan, a number of

constraints must be placed on its construction. In this thesis a feasible RG wiil be

regarded as one that may be translated to a rectangular fl.oorplan. The follorving

subsections introduce the various constraints and their significance.

6.5.3.1 Planar Ernbeddability

Each of the nodes in an RG represent a module rectangle. Clearly if the graph is

to be used to represent a rectangular floorplan, which exists in the plane, the RG

must also be presented as embedded in the plane. Additionally, since the arcs in an

RG imply adjacency between connected nodes, they cannot cross one another. A

crossing would imply that more than the two pairs of rectangles could share edges as

illustrated in Figure 6.9 which is not physically possible as the adjacency of any two

required edges directly excludes the adjacency of the other two.

(a) (b)

Figure 6.9: The crossing of two arcs implies the unrealizable adjacency of two pairs

of rectangles.
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6.6.3.2 Side Arcs

The connections between modules in a structured f.oorplan can only occur betl'een

parallel edges of the modules as shown in Figure 6.10(a). As the arcs in the RG

represent adjacency hence possibJe connection, the arcs must be constrained to only

connect opposing sides on the nodes. Thus an arc may only connect the sides ^9¡,," to

,S;," and ^S;," to Si,- .. illustrated in Figure 6.10(b).

(a) (b)

Figure 6.10: (a) Parallel edge routing in a structured floorpla". (b) The equivalent

rectangular graph.

6.5.3.3 Triangulation

In general a planar graph will be comprised of faces of a number of different orders,

and order being the number of nodes in a face. Note that the number of nodes and

arcs in a face will always be equal as each node has one outgoing arc connecting to

the next node. In general there will be a number of ways of realizing the adjacency

constraints implied by the arcs in a face. For instance in Figure 6.11 a face of order

4 has a number of possible implementations. \Me shall postulate that this ambiguity

may be removed if. all faces in the graph are of ord,er 3.

Lemma 6.1 The lowest possible order face in a rectangular graph is 3.

Proof 6.L Faces must be comprised, of nodes anil o,rcs that form ø closed region and

hence there must be at least tl¿ree arcs as this (tri,uialy) is the fewest number of straigltt

Iines required, to enclose a region.
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D c

A B
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Figure 6.11: A face of order 4 has a number of possible implementations as a fl.oorplan.

Lemma 6.2 In order that there be no ambí,guity in the adjacency constraints between

nodes in a face, the face must be of ord"er 3.

Proof 6.2 By Lemma 6.1 all faces are of order ) 3.

In a face of order 3, each, node has an arc to eaeru other nod,e in the face, tltus

unambiguously d,efi,ning its adjacency to eaery other nod,e in that face as required.

As a node in a face can only connect to 2 olher noiles, then in a face of order greater

thøn 3, any node will haae at least one otl¿er node it is not connected to aia an o,rc,

thus generating an ambiguity in adjacency.

Theorem 6.2 In order that there be no ambiguíty in the ad,jacency constraints be-

tween sides of nod,es ín a face, the face rnusl be of comprised, only of nodes in th,e

A+, A+, S ¡ configuration (Figure 6. 1 2).

Figure 6.12: The A+,4+,.9a configuration of a face

Proof 6.2 By Lemma 6.2 the face must be of order 3 to remoue ambiguity in th,e

constraints between noiJes. If the ambiguity in sid,es is to be rernoued,, each sid,e must

A
B

c
D

A
B

D c
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haae an ürc connecting it to euery other sid,e in the face. Thus we require ø face of

order three tl¿at has three sides, one from each, nod,e, connected. Giuen the limited,

number of node connection conf,gurations, there are only two possíble faces of order

3: A+,A+,Sa and, ,9a,,9a,-L. These are illustrated in Fi,gure 6.13. Clearly only

A+,A+,,5a satisfies tlte criteria of hauing onlg three síd,es ín the face, one from, each.

node, so it is this face only that rernoues ambiguity.

Figure 6.13: Of the r4..., A+,5+ and,5..,., S+,L faces, only the fi¡st has one connected

side from each node in the face.

Thus it can be seen that in order to remove the ambiguity in the adjacencies in an

RG, that RG must be triangulatedhave all its faces of the form A+, A+, ^9... We norv

proceed to show that any rectangular graph may be triangulated if it meets certain

conditions.

First we introduce three concepts, erposure) sided,ness and reachability.

A side of a node is erposed, in a particular face if when drawn the side touches the

inside of the face. This is illustrated in Figure 6.14.

- 
f¡pesed Sides

Figure 6.14: Sides exposed to a face.

A face ís concaue if ali of the nodes in the face produce a non-negative turning. This

is illustrated in Figure 6.15(a).
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(a) (b)

Figure 6.15: A concave face (a) and a convex face (b).

A face is conuex if it is r'ot concaae. That is, it contains at least one negative turning

node. This is illustrated in Figure 6.15(b).

A face has sidedness if for each node at a time, arcs may be drawn from each of that

node's exposed sides to other exposed sides of other nodes in the graph such that

none of the arcs overlap. This is illustrated in Figure 6.16.

Figure 6.16: A sided face.

Theorern 6.3 (Tïiangulation) IÍ o face has sidedness lhen th.e face may be trian-

gulated. Clearly if all the faces in an RG meet th,is criteria, then the RG is feasible.

Proof 6.3 If a face h¿s sidedness then arcs n'LaU be iJrawn from each node tl¿at ltas a

negatiae turning coefficient. Thís may be repeated, till eaclt, of the faces thus generated

contain only faces of non-negatiue turning coeffi,cient (i.e. the face is concaae). If we

talce any node in a, concl,ue face, then tl¿at nod,e and the two connected, to it mag talce

øny of the configurations indicated, in Fi,gure 6.17. As illustraled, any of these rnay be

used, as a basis Jor trianguløtion, except tl¿at in which, tl¿e three are linearly arrangerl

If howeuer the face i¡ concave then there will exist another node í,n the face that may
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be used to brealc up the linear úrrangernent, thus ensuring that the triangulation of

the faces thus produced, mag ytroceed until completed,.

I

Figure 6.17: Possible configurations for three nodes in a concave face. All but the

Iinear configuration may be used as the basis for triangulation as illustrated by the

dashed lines.

In summary, if an RG is constructed in such a \¡/ay that each face has sidedness then

it will be possible to triangulate all of the faces in the RG. Hence the RG will be

feasible, that is it may be realized as a rectangular floorplan.

In the following sections we will examine methods of RG construction that guarantee

feasibility.

6.5.4 Ensuring Feasible Placements

\Me are working towards a method for constructing an RG from a set of node and

adjacencies such that the RG is feasible. The basic method involves adding nerv

nodes into existing faces in a feasible RG. In this section we describe a method of

checking that such a proposed placement will result in feasible faces being generated.

A placement is simply a description of a position that a node may be placed into a¡

RG. It comprises the name of the node, ltr¿ and the arcs which connect it into the

RG: A¿-,¡,. A typical placement is illustrated in Figure 6.18.

The problem may be formulated as follows. Giuen a placement that describes tl¿e

arcs A;^,¡n that d,efine the place of a node N¡ in a face F¡, check that all the faces

that would be generated are feasible.

Rather than actually inserting the node into the graph according to the placement, it
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Figure 6.18: A typical placement in an RG face.

is clearly preferable to have a method that effciently allows us to check the validity

of the placement without creating new faces.

As a first step to developing such a method, we divide the problem into two parts:

checking that the node being inserted would be sided, a¡rd checking that all of the

already piaced nodes in the face will remain sided. The first is relatively simple as

will be described, but the second is more complex and requires the introduction of a

ne'vl¡ prope rty, r ea chabili'ty.

Two connected nodes in a face ate reachable to each other if the the arc that joins

them does not imply an adjacency that cannot be realized because of the imposition

of other constraints in the face. This is iliustrated in Figure 6.19.

(a) (b)

Figure 6.19: (a) The two nodes are reachable. (b) The nodes are nõt reachable.

If a new node is being added into a face, all of its arcs must be reachable, otherwise

the faces generated by the placement would not have sidedness and thus would be

infeasible.
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Both the sidedness and reachability problems may be solved effi.ciently by turn count-

izg. Consider the situation shown in Figure 6.20. One of the arcs in the placement

is arbitrarily chosen as a starting point. The quantitiesTurn9ount and SideCount

are initialized to 0. The face is then traversed in a clockwise direction. TurnCount

is incremented or decremented so as to maintain a count of the turns the face has

taken towards or away from the starting side. SideC ount is incremented to every

time a new side of ¡tri is reached by a connection such that it represents the number

of sides of -l[ that have been traversed since the first. This proceeds until an in-place

node is reached that has a connection to N¿. The feasibility of the adjacency implied

by that connection is then determined by the values of. TurnCount. The significance

of these values a¡e described below and illustrated in Figure 6.21.

Start

-->
(1,4) (0,0)

(1 ,3) (1,0)

(0,3) (1,2)

flurnCoun[SideCount)

Figure 6.20: Examples of the use of turncounting to accept a placement (a) and to

reject a placement (b).

TurnCoun¿ < 0 The face has turned away from the last connected face of /ü¡ and

the adjacency is infeasible, making the placement infeasible.

TurnCounttSideCount) 4 The face has "spiraled in" and cut off another con-

nection. The adjacency and hence the placement is infeasible.

TurnCount:0 The face is parallel to the last connected side of Ni and thus the

connection is feasible.

TurnCounf :1 The face has turned once in towards À[. Increment SideCountby
1 to indicate the move to a new side of l/¿. For example, if the last connection

was to .ô/¿," then this one must be to I{i,".
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TumOount < 0 + >4 TurnGount=0 TurnOount=1

TurnCount = 2 TurnCount = 3 TumCount = 4

Figure 6.21: The implications of various values of the TurnCount and SideCount

variables.

TurnCount :2 The face has turned twice in towards .ly'¿. Increment SideCount by

2 to indicate the move to a new side of IÍ;. For example, if the last connection

was to N;,,, then this one must be to À4,".

TurnC ounf : 3 The face has turned thrice in towards .fI¿. Increm errt SideC ount by

3 to indicate the move to a new side of N;. For example, if the last connection

was to N;,r, then this one must be to N;,-.

TurnC ount : 4 The face has turned four times in towards .ly'¿. Increment SídeC ount

by 4 to indicate the move to a new side of N¿. For example, if the last connection

was to .ôy'¿,r, then this one must also be to À[,rr.

When a nerv connection is reached, and found to be feasible, tlne TurnCount is reset

to 0. If the connection is infeasible, the placement may be rejected, thus saving a full

traverse of the face. The procedure has been completed when either the placement

is found to be infeasible or the original starting arc is reached.

The above procedure ensures reachability and hence the sidedness of the nodes al-

ready in place. The sidedness of the node being placed may be checked at the same

time. As the face is traversed SideCount is incremented as each new side of the node

being placed is reached. To check sidedness of the node, all that need be done is that
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for each side ofthe node traversed that has no arc, a node is traversed in the existing

face that could potentially provide a side to which an arc might be attached. If no

such node is passed, then the placement is infeasible.

This procedure is quite efficient, requiring a maximum of O(n) operations where n

is the number of nodes in the face being examined. Less time is required if the

placement is found to be infeasible.

6.5.5 Placement Enumeration

In the previous section we described a method for validating the feasibility of a

particuiar placement. In this section we examine a means of generating a set of

possible placements that may be checked for feasibility.

We assume that there is a feasible RG. Into this RG we wish to find all the feasible

placements of a node -l/" that requires adjacency with a subset M of. the nodes already

in the RG.

As a first step, all of the faces in the RG are examined to find those that contain all

the nodes in M. Only such faces can offer possible placements. If there are no such

faces then a planarity faulthas occurred and the invoker of the procedure is informed

that remedial action is required (Section 6.10.11).

For each of the faces found, the following procedure is adopted to generate possible

placements for .l/" into the î.ace F¡.

1. For each of the nodes in M, note their exposed sides in the face F¡.

2. The number of useful exposed sides may be reduced somewhat by excluding

sides that would disallow other required connections. Basically if a connection is

made to the side of a node, and that node has a connection to another required

node on the opposite side, the original side is of no use (Figure 6.22(a)).

3. The number of possible sides may be further reduced by noting any ,S-,. nodes

that are required for connection. If any exist, then it must be the onlE node

that connects to that side of ¡f" as illustrated in Figure 6.22(b).

4. Generate all of the permutations of the remaining exposed sides, each permuta-

tion having one side from each of the nodes in M. Each of these permutations
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may be apossible placement of N. into the face F¡, but the feasibility of each

must first be checked with the procedure outlined in the previous section.

Connecliors are
mutually exclusive.

(a)

No furher connections
may be made to üris side.

(b)

Figure 6.22: (a) The placement may be discarded as one node will always be inter-

posed. (b) The placement may be discarded as the 
^9..,. 

node must occupy the entire

side of the inserted node.

Using the above procedure it is possible to generate all of the valid placements of a
node into an RG.

6.5.6 The RG Data Structure

In previous section the basic procedures for checking the validity of placements have

been outlined. These possible placements are supplied upon demand to the ilesign

n'Lûnz,ger. Typically at a later time the design manager will request that one of the

placements for a node be accepted. That is, incorporated into the current rectangular

graph. In this section the data structure used for representing the rectangular graph,

and procedures for its construction are described.

The initial feasible graph is represented by four nodes, each representing the outside

perimeter of the floorplan as illustrated in Figure 6.23. As placements are accepted

into the graph, the face that they are inserted into is split into a number of subsidiary

faces as illustrated in Figure 6.24. The original face is no longer actually a face in
the graph as it has been split. The actual faces of the RG are the faces that exist as

leaves of the tree.

Given this structure it is now possibie to describe a complete procedure for placement

generation and placement insertion.
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Figure 6.23: The four nodes that represent the perimeter of the floorplan.
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Figure 6.24: The splitting of an RG into a tree of faces

6.5.6.1 Placement Generation

Each placement acceptance causes a splitting of a face into a number of child faces.

When looking at generating new placements, we need only look at the new chiid faces

as these are the only faces that have not been in the graph previously. The procedure

is as follows:

1. Any proposed placement for a node that used the recently split face is invali-

dated as that face no longer exists.

2. Any proposed placement that would have included the just placed node had it
been in place previously is invalidated.

¡õr
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3. From the set of new faces, note all those that might contain placements of all

as yet unplaced nodes.

4. Use the placement generation procedure outlined previously to generate all

placements in the new faces.

This procedure has a two of useful properties

1. It is complete: all placements for all nodes a,re generated.

2. It is efficient: new placements are only generated from the new child faces. Also,

with each new placement acceptance, only some of the existing placements are

invalidated, and some new placements are generated.

The data transfer bandwidth of the link to the ilesi,gn tnanager may be kept quite

low. The manager may keep a basic set of placements, and this simply has some

placements incrementally added and invalidated as the design proceeds.

6.5.6.2 Placernent Acceptance

A placement is recorded as a node name, a destination face, and a list of in place

node and sides to which they should be connected to. Inserting a placement in the

RG simply involves finding the face, traversing from one connected node to another,

creating a netv\¡ child face each time.

An interesting representational issue arises in the generation of some faces. In the

example shown in Figure 6.25(a), the face appears to require that a node be created

that has more than one incoming and one outgoing arc. Creation of such a node would

of course invalidate many of the previously described theorems and procedures. Thìs

can however be avoided by representing the face in the form shown in Figure 6.25(b).

The nodes are split into "doubles" that appear twice in the face and each have

one incoming and outgoing arcs. Such a representation does introduce some further

"book-keeping" in the management of the face data structure, but does leave the

basic methods unchanged.
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(a) (b)

Figure 6.25: (a) This configuration requires complex nodes with more than one in-

coming and one outgoing arc. (b) The use of "double nodes" to allow the use of

simple nodes.

6.5.7 Triangulation

The rectangular graph will in general not have triangular faces. Such a graph is
Iimited in usefulness because as pointed out previously, there is a lack of constraint

in each non-triangular face. Figure 6.11 illustrates the possible interpretations of a
non-triangular face in a floorplan. Hence if the graph is to be useful we require a

means of triangulating ii. This is a non-trivial task: the additional arcs that must

be added into the face imply constraints that may strongly affect the quality of the

resulting floorplan. Figure 6.26 illustrates how a poorly chosen triangulation can lead

to bad design. As well as producing high quality triangulations, we require that the

algorithm be efrcient: as shall be seen in the next section, faces are required to be

triangulated whenever a placement is being examined for size.

There appears to be no reliabie method for optimally triangulating an RG face except

exhaustive enumeration of the triangulation possibilities, followed by transformation

to, and evaluation as, a final floorplan. Observation of designers suggested a heuristic

method for triangulation. As described previously, designers typicaliy work t'ith
pencil and paper, gradually refining the representation into a floorplan. Although
triangulation is not an explicit phase of this refinement, at some stage the designer

must move from loose abstract representations to actual rectangles. As apart of this
the constraints between the various sides of the rectangles must be specified: an

implicit triangulation phase.

The heuristic may be characterised as one of finding the longest sides of rectangles

that front onto the face, and applying constraints such that the other sides in the face
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Figure 6.26: Poor selection of the triangulation (a) leads to an inefficient fl.oorplan

realization compared to the (b).

abut to the ionger side. The method used to apply this is based on the observation

that a triangular face always has one "apex" (or .9..) node and two "corner" (or .rla)

nodes as illustrated in Figure 6.12.

The application of the heuristic to a face may be described as follows

1. Traverse the nodes in the face till a corner node is found. Propose this as one

corner of the new triangular face.

2. Assume that the nodes on either side of the corner node will form the triangular

face. One will be another corner node and the other will be the apex node.

3. The apex node is the node that has the longest inward facing side. The other

node is the corner node.

4. Split the face into two: the new triangular face and the remaining face rvhich

may or may not be triangular.

5. If the remaining face is not triangular, recursively apply this heuristic to it.

This process is illustrated in Figure 6.27

The use of the above procedure does sometimes result in an illegal face: one that is
not valid because it contains one or more of the structures illustrated in Figure 6.28.

Thus after each application of the heuristic, the faces are checked for their validity.

If invalid, there new faces is disregarded and a new corner node is selected. If there

are no further corner nodes available, the following procedure is adopted:

A c
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Figure 6.27: Selection of nodes to produce a triangular face

(c)

Figure 6.28: Structures that may occur in a face after triangularization that invalidate

the face.

1. Select an apex node in the face.

2. Use the two nodes connected to this apex node as the corner nodes in the new

triangular face.

This process is illustrated in Figure 6.29.

Figure 6.29: Alternative method of triangulating a face

(a) (b)
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The combination of the above heuristics for has been found empirically to be capable

of generating of reasonable quality (as judged qualitatively against human perfor-

mance) triangulations of rectangular graphs.

The method has the advantage that it is computationally effcient, requiring only

linear searches of the faie being split.

At this point it is necessary to describe how the data structure used to represent

the RG may be expanded to include the triangulated faces of the graph. It will be

found useful in the size calculations described in the next section to keep the graph

triangulated at all times. Thus whenever a new node is added into the graph, the

faces thus created by splitting the placement face are in turn split into triangular

subfaces. This is illustrated in Figure 6.24. The leaves of the data structure tree are

now the triangular faces, and these must be distinguished from the "virtual leaves"

that represent faces which may be used for actual placement generation.

6.5.8 Size Estimation

As part of the process of evaluating the quality of a placement, we naturally require

information on the amount of space available in the design for placement of the

rectangle being considered.

Given that the entire graph is kept triangulated, estimation of the size of the space

is fairly straight-forward. The procedure is illustrated in Figure 6.30 and described

below:

1. Temporarily place the node that is the target of the placement being sized into

the RG.

2. Complete the triangulation of the RG by triangulating the new faces created

by ihe temporary placement.

3. Starting at each side of the newly placed node, search out the longest (in terms

of rectangle sizes) path to the outer boundary of the floorplan.

4. Subtract each of these path lengths from the current total size of the floorplan

in order to calculate the total size and shape of the space in question.

The procedure may be made more efficient by labeling each node in thê RG with
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Available Width for X =
Total Width - MAX(WidthD,WidthF) - W¡dhG

Available Height for X =
Total Height - MAX(HeightA,HeightB) - Heighto

TotalWidth

Figure 6.30: Estimation of the space available for a rectangle to be placed into an

RG.

the respective distances of its sides from the sides of the complete floorplan, thus

eliminating the need to traverse paths more than once in the search.

Once this procedure has been completed, the temporary placement is stored away:

if ihat placement is actually accepted into the design, the triangulation will still be

valid and need not be recreated. In addition, when a placement is accepted into the

design, the sizing information is used to update the totai size of the floorplan if the

new placement has used up more space than was available.

6.5.9 Planarization Support

There are three basic facilities that are provided by the subsystem to support the

planarization of the floorplan:

1. Identification of connections that may be temporarily disregarded in order that

a face be found that may be used to generate placements for a particular mod-

ule.

2. Sea¡ch of the RG in order to identify possible paths that may be used to route in

connections that have been previously discarded in order to maintain planarity.

These facilities are all provided by straightforward graph search techniques

õr
Ð
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6.5.10 Interface Definition

At this point a useful summary of the operation of the spatial reasoning subsystem

may be provided by listing the functions that are provided by the interface of the sub-

system with the design manager. Details on the method of communication betrveen

the subsystems is discussed in the Section 6.11.

I. Initialization. Called only once to initialize the subsystem for a new design

2. Declare Connectior¿. Declare a connection between two modules in the design.

Implicitly declares the modules as well.

3. Declare Alternate Connection Decla¡e an alternate connection between two

modules. This is used when a module may requires a connection to any one of

a number of other modules.

4. Start Generution Generates the first batch of placements

5. Accept Placement Merge a particular module placement into the current de-

sign. Also update the set of active placements.

6. Orientate Module. Add size and shape information into a module in the design

This can then be used for size calculations by the subsystem.

7. Get Placernent Size. Find out how much space is available for the placement

of a particular module into the design.

8. Find Route Paths. Supply the shortest paths between two modules that must

be connected.

6.6 The Classes Subsystem

In the previous chapter one of the major areas of floorplanning domain knowledge

that was identified was that concerned with the implementation of modules. Although

some of the modules in a floorplan may have specific constraints on them, top-down

design will in general mean that the modules have no specific structure at the time

the floorplan is created. Thus the designer draws on experience to postulate various

implementations of the module, and takes the constraints implied into account in
designing the floorplan.
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In this section a representation for this form of knowledge is introduced. Require-

ments on such a representation include:

1. It must be capable of representing uncertain or ad,aisory knowledge. Designer

knowledge of implementations is by definition somewhat vague as the modules

have yet to be constructed.

2. It must be extensióle. As the floorplanner is run on more designs, it should be

possible to add the resulting experience into the system in a simple v/ay. In

particular it should be possible to build on top of the existing knowiedge base.

3. It must be iliscrete. Rules often interact in a complex fashion and thus any

changes must be made only with a knowledge of the wider context of the rule.

Ideally the representation should be comprised of independent pieces of knowl-

edge.

4. It should be intuitiae. The complex rule bases of systems such as R1 [McDer-

mott, 1930] make it difficult for users to add in new information required to

cope with previously unforeseen situations. A simple form of representation

encourages users to expand the knowledge base.

In order to fulfill these requirements, the classes knowledge representation has been

developed. Similar to a frame (Section 6.3.1.2) in structure, a class represents the ab-

stract physical properties of a particular type of module. Typical classes are generic,
linear-array, register, and serial-adder.

A class is comprised of one or more irnplementations, each representing alternate

physical implementations of a moduie of that class. For example the register class

may have vertical-clock and horizontal-clock implementations.

An implementation is primarily comprised of a set of slots In each slot is a pair of

the form (property value). A property is the name of a physical property of

the module implementation that might affect the floorplan being developed. The

associated value is a measure associated with the property. Properties only refer

to those physical aspects of the module that are apparent in its interface to other

modules in the floorplan: its width, height and port positions. In some cases it
is desirable to be able to express the property with respect to a specifi.c direction

relative to the normal orientation of the module. In such a case the slot becomes a
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triple: (property direction value) where the direction may be either horizontal
of vertical.

Examples of properties include:

1. height The height of the module in relative units.

2. width The width of the moduie in relative units.

3. io-port-opposition The desirability of having input and output ports oppo-

site one-another.

4. io-port-adjacency The desirability of having input and output ports on ad-

jacent sides.

5. wireability The ease with which additional connections may be routed

through the module.

In addition to the slots, there are several other components of an implementation.

These a¡e: its name; the name of the class the implementation belongs to; and a

iist of ancestor implementations. The ancestors are implementations from ri'hich

properties are inherited. Thus a netvl/ implementation may be constructed by first

inheriting properties of existing ones and adding or altering some properties in order

to create the new implementation. Ancestor implementations are referred to in the

form class-nane: inplementation-name as the names of implementations need only

be unique within a class. Many classes have for instance implementations named

simple or basic.

There are two types of values associated with properties. Dimensional properties

have values that are simple integers representing approximate lengths. The symbol

N may be appended if the dimension is dependent on'some multiple of a basic unit.

The width of an adder with each bitslice being 10 units wide would be specified as

10N.

The second type of value is the configuration factor (CF). Like Mycin's certainty

factors (Section 6.3.2.6), CF's provide a means of representing uncertain domain

knowledge. For each physical property (other than width and height) a value is

selected by designer acting as a knowledge source that reflects the desirability or

otherwise of the configuration suggested by that property. Each CF must lie betrveen

-1 (very undesirable) to {1 (very desirable). The use of CF's in the evaluation of

placements will be described In Section 6.10.7.
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(def ine-implenentation sinple register
(Iinear-array : s irnple)
(io-port-opposition vertical 0.6)
(io-port-opposition horizontal -0.4)
(io-port-adj acency -0.4)
(treight 10)
(¡ridth 20N)
(wireability horizontal 0.6)
(wireability vertical 0.4))

Figure 6.31: An example of an implementation of the register class

An example of the definition of an implementation is illustrated in Figure 6.6. The

example shows the sirnple implementation of the class register. The definition

inherits the slots of the more basic simple implementation of the register class.

The classes subsystem is basically a knowledge base of implementations that may be

easily extended to cover new classes as required. The knowledge contained in the

subsystem is utilized by the design manager in evaluating competing placements.

6.7 The Paths Subsystem

Whilst being a useful intermediate design representation, the completed rectangular

graph is not a floorplan. It does however provide a network of constraints that may

be combined with other data and then optimized to produce a complete rectangular

floorplan solution.

The paths subsystem is invoked by the design manager to construct a set of linear

inequalities that when solved will give the sizes and positions of all the modules in

the floorplan.

There are four sources that are referred to in constructing the inequalities. The

variables in the inequalities are chosen to be the position of the sides of each of the

rectangles that represent the module boundaries. For instance the north side of a

module named A has a y coordinate denoted by the variable name Ano,ttt.. Only one

coordinate is required as the x position of the side wili be described by the variables

A.o"¡ ã,îd A-""t. The boundary of the floorplan is treated as being made up of four
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modules: *?z*, *e*, *s* and *ur* as illustrated in Figure 6.23.

The first set of inequalities is made up from the minimum size requirements of the

individual modules. For each module A these take the form:

Aminttiitth 3 A"o"t - A*."t

and

Aminheàsht 1 Anorth - A"outt

The second set of inequalities is made up from the coincidence of various sides that

occur where ever there is a link between modules. For instance two modules ,4. and

B that are joined along a vertical edge (A to the righi of B) will result in an equation

of the form:

0=A-""¿-B"o"t

The third set of inequalities arise from the fact that the individual widths and heights

of the modules must sum to the width and height of the overall floorplan. The

modules and links may be traversed to find all of the possible paths from one side of

the fl.oorplan to the other. Two new variables are introduced. They are defined by:

TotalWidth : *e *r¡es¿ - *tr*"o"7

and

TotaIH eight : *n *souttl - ,F s*nor¿¡

Figure 6.32: Example of traversing an RG in order to produce a set of linear inequal-

ities.

Figure 6.32 illustrates an interconnection pattern that would give rise to the follorving

sets of equations for the horizontal direction:

TotalWidth : (A.o"t- A-""t) l(B"o"r- 8.""t)*(D"o"r- D-."t)
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TotalWidth : (A.o"t- A-."t) *(C"o"r- C.."t)*(D.o"r- D-."t)

and for the vertical direction:

TotaIH eight :
TotalUeight:
TotaIH eight :

(Ano*n - A"outh)

(Bnortn - B 
"o*h) * (Cnortn - C 

"outh)
(Dnorrn - D"oæh)

The fourth set of inequalities is derived from from the minimum size of the connections

required between modules. Sufrcient overlap must occur between modules to allow

for the wires connecting them. For example the connections from A to B and C in

Figure 6.32 give rise to the following equations:

ABrnin-idth S Anorth - Bsouth

ACrn¿nwi¿tl, <

ABminuídth + AC¡ninutidth 1 Anorth - A"orth

ABrninuid¡h S Bnorth - Bsouth

ACminraidth <

Inequalities from the above sources are separately derived for the x arid y direction

and formated in preparation for solution by lhe simpleø subsystem.

6.8 The Simplex Subsystem

Tlne path subsystem generates two sets of linea¡ inequalities: one for the horizontal

direction and one for the vertical direction. When solved, the values allocated to the

variables in these inequalities may be used to construct a rectangular floorplan as

they provide iocations for all of the sides of the various modules.

Ideally the total area of the floorplan should be used as the evaluation function

to be minimized in the solution of the inequalities. This would however require

the solution of a set of quadratic inequalities produced by the combination of both

horizontal and vertical constraints. The solution of such a system is more difrcult

that the solution of a linear system of inequalities. However, in the general case

the size constraints in a floorplan are approximate, and the floorplans are primarily

intended as a tool for examining structural topologies. Thus it is reasonable to
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approximate the minimization of the quadratic system by keeping the vertical and

horizontal inequalities separate, and minimizing the total height and width of the

floorplan.

Given that the task is to solve a set of linear equations such that a linear evaluation

function is minimized, the Simplex [Dantzig, 1963] algorithm has been adopted as it
is widely accepted as an efñcient solution technique for this class of problem.

The simpleø subsystem is an implementation of the Simplex algorithm. It accepts

a system of linear inequalities, and a single objective function for minimization. In

solving inequalities for a floorplan, the algorithm is run twice: once on the vertical

inequalities with an objective function that is simply total - height and once with

horizontal inequalities with an objective function that is simply total - width.

In the first phase of the process, symbolic manipulation of the inequalities is carried

out to reduce the number of variables and equations. This is done by noting equations

of the form:

0 : uariablel - u ariable2

that imply that the two are equal. All instances in the system of. uariable2 ate

replaced by uaríablel and the substitution is recorded for later expansion on solution

of the system.

In the second phase, "slack" variables are created and included with appropriate co-

eff.cients into the system as required by the algorithm. Next a "tableau" is assembled

from the system of equations and the evaluation function. The steps of the algorithm

are then applied to the tableau in order to arrive at a solution. Finally the tableau

is examined and all variables are allocated their solution values.

The result of a vertical and horizontal run of the algorithm is a set of variables that

define the positions of all of the sides in the floorplan. The result may either be

written to a fi,le or graphically displayed to the user as described in the next section.

6.9 The Sketcher Subsystem

As much of the information dealt with in the floorplanner is geometrical, it is useful

to have a flexible means of displaying different types of geometric data. There is a

Iayered facility provided by the sketcher subsystem for this purpose.
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The lowest layer of the graphics system is provided by a wind"ow facility. Based on

the Lisp Machine flMeinreb & Moon, 1981a] \Mindows Package, it provides an object

based implementation of a window system. \Mindows may be moved, overlapped and

revealed, allowing the user to focus attention on particular aspects of the floorplan

design in progress. An application may create a window and then send it messages

in order to create graphics.

The upper layer of the sketcher subsystem consists of appiications built on the window

system for drawing graphs and floorplans from data supplied by the design manager.

Graphs are in general quite difficult to draw in a manner that is informative to the

user. The method developed for the display of planar rectangular graphs has proven

to be quite effective. Firstly the outer four nodes of the graph (the north, east,

south and west) are placed equidistantly round a circle that fits within the windorv

in use (this placement is notional, the graph is not actually drawn till the process is

complete). The other nodes are then placed in the centre of the circie. An iterative

process is then used to place the nodes in appropriate positions. For each node, the

links to other nodes are treated as "springs", applying a ttforce" in the direction of

ihe link proportional to the cartesian length of the link. These forces are vector

summed for each node, and then the at each iteration the node is permitted to move

in the direction of the "force" along a distance proportional to the magnitude of the

force. The iterations are continued till there is no more movement (the system of

"springs" is in equilibrium) or until a certain number of iterations has passed (in case

the system is cycling due to too large iterations). The resulting nodes and links are

drawn on the window in the resulting positions. An example of a graph drawn in this

way is illustrated in Figure 6.33. As may be seen, the equilibrium state corresponds

to a state in which the graph is comprehendable. fn some cases however nodes will

tend to overlap. To overcome this an addition to the algorithm adds in a "resisting"

spring that forces nodes apart when they move too close.

The second sketching application involves drawing floorpians. This is a simple ap-

plication that takes the floorplan side position variables such as A-west and their

corresponding solution values. It parses the variable names and then uses the value

of each to draw the complete floorplan, complete with module names and positions

on a graphics window. This is illustrated in Figure 6.34.

The window based graph and floorplan sketching facilities provided by the subsystem

are valuable for debugging, knowledge acquisition/tuning and designer interaction.
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Figure 6.33: Display of a planar graph of a Booth multiplier design.

Figure 6.34: Display of a completed floorplan for a Booth multiplier design

6.1-0 The Design Manager

The rectanguiar graph and classes representations are ilomaín dependenf - they are

useful for representing narrow aspects of fl,oor planning design knowledge. In addition

to these, another more general representation is required to cover the remaining major

knowledge representation requirements. These include the two meta-level functions
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of. planning and control, and the additional function of pattern recognition.

A, production system (Section 6.3.1.1) has been chosen as the most appropriate struc-

ture for these purposes. It has the advantage of being quite general and incrementally

expandable. Additionally the overall operation of recognizing a pattern in the work-

ing memory and carrying out an operation on it is closely analogous to the design

problem. The presence of specific patterns in the structural and physical design

trigger further design operations.

6.10.1 Control Strategies

Control is primarily the selection what activities should be taking place at a particular

time. ln Floyd rules a¡e grouped into ú¿sks that perform specifrc functions. Tasks

may be activate or deactivated. In their activated state the rules that comprise the

task have there antecedents checked to see if they match any elements of the working

memory. In the deactivated state the rules within the task are never matched. This

strategy has a several aims:

1. The rules are partitioned by tasks, thus making comprehension of the system

operation simpler.

2. Only the antecedents of rules in active tasks need be matched against working

memory elements, increasing efficiency.

3. Meta-rules may be used to activate and deactivate tasks. These meta-rules can

thus direct design by activating tasks when appropriate data is available, and

deactivating them when there is a invalid data present.

The tasks in Floyd, are initialized once at the start of the design, and persist through-

out the design process, being activated and deactivated by meta-rules. The tasks

may be regarded as prioritized: they are given the opportunity to run by a set of

scheduling rules in a strict order. The higher priority tasks are those concerned

with maintaining the consistency of the design state: initialization, design fault han-

dling and constraint propagation. The next priority tasks are those concerned with

planning: if any situation has arisen that allows the formation of a plan it must be

treated before further design takes place. The lower priority tasks are those actually

concerned with moving the design forward by the placement of modules into the

floorplan. The main tasks and their priorities a¡e listed in Tablereftable:tasks.
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Priority Task Description

1 Initialization Initialize manager and subsystems

2 \Mait for Placements Wait for RG placements
o.) Planarization Fault Handle planarization faults

4 Placement Filtering Remove contradictory placements

b Constraint Propagation Propagate effects of constraints

6 Run Deferred Tasks Run constrained deferred tasks
,
I Planning Create plans

8 Module Selection Select an unplaced module

I Placement Selection Evaluate alternative placements

i0 Placement Acceptance Accept a module into the design

11 Route Completion Search out paths for the route insertion

12 Solve Construct and solve the floorplan inequalities

Table 6.3: Tasks and their priorities.

Related to Floyil tasks are subtasks. Like a task, a subtask is a control structure
comprising a set of rules. Unlike a task however, a subtask may only exist for a short
period of design before it ceases to exist. Subtasks are initiated by task or other

subtasks to perform some smali operation and then delete all traces of themselves.

Subtasks may be thought of as analogous to subroutines in a more conventional con-

trol structure as they allow they may be activated in a particular sequence, allos'ing

sequential operations to be implemented. Subtasks are also implemented with a

mechanism for receiving "parameters" from their creator.

One of the primary aims of the control strategy is to eliminate the need for back-

tracking within the design. As pointed out previously (Section 6.3.2.4) there are a

number of disadvantages to backtracking based on effi.ciency. There is also the issue

of implementation diffi.culty: previous state must be preserved in case backtracking

requires a return to that point. Although an earlier version of the program made use

of a limited backtracking facility [Dickinson, 1986b], it had a number of difficuities.

The primary problem rv\¡as one of ambiguity in deciding when backtracking should be

initiated and when it should be stopped. Backtracking may be initiated when:
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1. There are no placements available for a module because of a planarity fault.

It is possible that by iniiiating backtracking and redesigning, a planar solution

rnay be found. On the other hand, the new solution may cause problems in
placing other modules.

2. The size, shape and implementation constraints lead to a situation in which all

placements for a module are highly undesirable. In this situation backtracking

may lead to a better result, however a v¡orse result for this or other modules is

also possible.

These same problems lead to a difficulty in deciding how far to backtrack as the point

at which an incorrect decision was made is difrcult to determine. Overall, the disad-

vantages of backtracking were found to be considerable. Rather than focus effort on

improving design by backtracking, it was decided to take an approach similar to that

of the Design Automation Assistant (DAA) [Kowalski, 1986] and R1 [McDermott,
1980] expert systems and eliminate backtracking altogether. Newell has suggested

that this heuristic strategy of. match is sufficient for solving ill-structured programs

provided there is suffi.cient domain knowledge available. To this end further effort

was put into the planning and least commitmenú aspects of the control strategy.

The control strategy is distributed between the various tasks of the production sys-

tem, each performing functions as they are activated according to their respective

priority.

In the remainder of this section each of the major tasks is described in more detail.

The order in which they are described has been chosen for the sake of clariiy of

description.

6.LO.2 Initialization

The structural description of the module to be floorplanned is expressed in Lisp code

as described in Section 6.11. This code is interpreted and results in a set of elements

appearing in the working memory that represent the input specification. Typically
these elements are constraizÍs (Section 6.3.2.3). Examples of such constraints include:

1. Port .A on Module X nust connect to Port B on module Y

2. Port A on Modu1e X must 1ie on the east side
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3. Module A must have a height of at least 200 units

Most constraints are a product of the structural input description. Some modules,

such as PLA's are higtrly constrained and this may be expressed in terms of con-

straints on port positions and sizes. In addition the user may simply add further

constraints to the input in order to influence the resulting design in a particular way.

Given a structu¡al description in working memory, the initialization process proceeds

to perform a number of operations:

1. Check the consistency of the initial constraints: only proceed if there is sufrcient

data and no obvious contradictions.

2. Make up the constants in the working memory. These are used for reasoning at

a later stage. For instance the fact that north and south sides are opposite.

3. Propagate initial constraints. For instance if two ports axe connected, and one

of the ports must lie on a particular side, then a constraint on the other port

may be created.

4.. Gather numerical measures that will be used later in design. For instance,

count and record the number of connections to each module.

5. Extract relevant data from the classes data base. Each module is assumed to

have an associated class, otherwise it is assumed to lie in the generic class.

An set of implementations is made up for each module. Each implementation

is a permutation of the name of the module, one of the possible implementa-

tion types of the module, and one of the possible orientations of the module.

For example a module Xreg with possible implementation types basic and

stretched would result in the following implementations:

(a) Xreg basic horizontal

(b) Xreg basic vertical

(c) Xreg stretched horizontal

(d) Xreg stretched vertical

In the current version of. Floyd only the orientations horizontal and vertical
are supported. The system could be further extended to cover more complex

reflections and rotations.
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6. Initialize the various subsystems. In particular pass all of the relevant connec-

tion data to the spatial reasoning subsystem.

7. Request that the spatial reasoning subsystem generate the first set of placement

alternatives and place them into the working memory.

6.10.3 Planning

In order to perform a design task a plan that describes how the task is to be achieved

must first be constructed. A strategy of. constraint based, planni,ng lstefik, 1980]

has been adopted in which plans are made by building constraints that apply to

objects and activities within the system. For instance if a linear array is recognised,

an ordering constraint is generated that specifies the next,module to be placed.

Array elements are usually placed in sequence before other less regular elements

are inserted into the design. Similarly it is possible to recognise other commonly

occurring structures (data paths, arrays) and formulate plans that place them in an

appropriate manner.

The purpose of the planning task is to reduce the amount of searching that must be

performed by the system to design a floor plan. The pianning task rules recognize

particular structures. Special purpose plans are then used guide the realization of

these structures in the floorplan. This results in higher quality designs and a reduced

amount of search through aiternate designs. Note that unlike IF [Nixon, 1984] the

prograrn does not necessarily require prior knowledge of how to floorplan a particular
structure: such a plan does however have the effect of improving the efficiency of the

design process and result.

6.10.4 'Wait for Placements

A simple task that simply waits until the spatial reasoning subsystem has completed

the generation of a new set of placements following the incorporation of another

module into the design.
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6.10.5 Placement Filtering

\Mhenever a new module is accepted into the design, a number of new placements

are generated, and a number of existing placements are invalidated. This initial
operation performed by this task is to remove the invalidated placements. It then

proceeds to use a number of other criteria to invalidate further placements. This

form of "pruningt' reduces at an early stage the number of placements that need to

be considered in the design process. The criteria used to perform this pruning are:

1. If a placement requires that a port lie on a particular side, and the other end of

the connection to that port is to a port on an incompatible side owing to other

constraints then invalidate the placement.

2. If. a placement requires that a connection be made to a side that is being used

to build an a,rray (Figure 6.35(a)), then invalidate the placement.

3. If a placement requires that port that connects outside an array, md a port

that connects inside and array, both lie on the same side of a module (Fig-

ure 6.35(b)), then invalidate the placement.

Side is reserved for
further array elements

Adding a non-array
element would destroy
array symetery

(a) (b)

Figure 6.35: Pruning of placements based on (a) previous constraints (b) array under

constructions and (c) array already constructed.
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6.10.6 Module Selection

In an earlier version of the program [Dickinson, 1986a] all of the vaiid placements for

each of the unplaced modules were evaluated. The best placement was then accepted

into the design. This process v/as found to be inefficient as there are of course

many placements to be evaluated. Also, further discussions with designers suggested

that it was possible to select a particular module for placement consideration rather

than consider all the modules all of the time. The following criteria for deciding

which module should be considered for placement were developed. Note that they

do require that all of the placements for all of the modules be known, however the

spatial reasoning subsystem provides this efficiently. Each of the criteria is applied in

turn. If at any stage a single module meets the criteria presented so far, it is selected

as the next module. If after any stage there are no candidate modules remaining then

an arbitrary choice is made from those remaining after the previous stage. Similarly

an arbitrary choice is made if more than one candidate remains after application of

all the criteria.

1. Select any module with the fewest available placements. Such a module is the

currently most constrained, and should be placed as early as possible.

2. Select any module that is connected to the exterior of the floorplan. This

encourages the meeting of external global design constraints.

3. Select any module that is being used in a current plan. This reduces the

difficulty in fulfilling the plan.

4. Select the module with the largest number of connections to other modules.

This module is heavily constrained, and the opportunity presented by any cur-

rent placements should be used .

5. Select the module with the largest area. Early placement of such a module is

less iikely to disrupt area planning.

6.10.7 Placement Selection

Once the module placement task has selected a module as the next to be placed, the

placement selection task is activated.
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Firstly each placement for a module is next paired with an alternative implementation

(Section 6.6) to form a configuration. Each configuration then represents a way in

which the module may be inserted into the existing design.

The purpose of the placement selection task is to select a particular configuration (and

hence placement) to act as a plan for inserting the nominated module into the design.

The chosen configuration will describe the position, orientation and implementation

of the module.

The task of evaluating the various configurations in order to rank them in terms of

desirability is not a simple one. In particular the use of some linear numerical measure

of "goodness" is inappropriate. The configuration factors that are associated rvith

particular properties of implementations (Section 6.6) are inherently uncertain and it
is thus appropriate to treat the evaluation problem as one of processing uncertainties

rather than simple "scores". To this end the confi.guration evaluation task is set up in

a form that allows the application of techniques similar to those developed for Mycin

[Shortcliffe, 1976].

Each configuration is treated as a hypolå,esis that it represents the best plan for the

incorporation of the module into the design. Thus the set of configurations may

be regarded as a set of competing hypotheses. This is analogous to Mycin's model

of competing hypotheses, each representing a diagnosis. The task of selecting the

best configuration may then proceed by noting pieces of evidence that confirm or

disconfirm each associated hypothesis.

In the case of a configuration, such evidence is obtained by noting the presence of

particular floorplan structures and relating these to the properties contained in the

implementation type of the configuration. Each such property has associated with it
a configuration factor that describes its desirability or otherwise for that particular

implementation type. Thus the CF in fact may be regarded as representing an

amount of confirming or disconfirming evidence for the hypothesis represented by

the configuration.

Typically for a particular configuration a number of structures will be recognized and

the associated CF's must be combined into a total CF for the configuration. This is

analogous to the situation in Mycin where the various confidence factors associated

with evidence are combined to form a total confidence factor for the hypothesis.

Once all of the available evidence has been collected, the hypotheses with the highest
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total confidence factor is nominated as that most likely to be the correct diagnosis.

Similarly in Floyd, the configuration (hypothesis) with the highest total configuration

factor is selected as that to be used in the design. The simila¡ nature of the two

situations suggests that it is appropriate to use the same combining functions as

Mycin for the combination of configuration factors (Section 6.3.2.6).

The mechanism for recognizing relevant structures and applying the appropriate con-

figuration factors is well matched to the rule based implementation of the design

marl.ager. \Mhen the placement selection task is initially activated, the proposed

configurations for the module are used to generate a set of proaisional constraints

labeled with the name of the configuration who's acceptance would cause their re-

alization. These constraints a,re propagated throughout the design in order that the

global effects of the conflguration be visible during the evaluation process.

Once all provisional constraints have been propagated, the rules responsible for recog-

nition of the various structures listed in the class subsystem become active. These

examine the design giobally for any effects of the configuration. Not only do they

evaluate the effect of the configuration on the module being placed, they also examine

other modules in the design to evaluate how they will be effected by the adoption

of the configuration. As each of these rules fires a CF is recovered from the class

subsystem and combined with the current total CF for the configuration.

The issue of the suitability of the space available in the placement for the particu-

lar configuration may be presented in such a way as to fit the configuration factor
scheme. The spatial reasoning subsystem is requested to supply an estimation of the

height and width of the space avaiiable for the configuration. If either the height and

width required by the configuration exceed the available amount then it is desirable

to discourage the use of that implementation. This may be done by using the fol-

lowing equations to generate a type of CF that represents the desirability of the fit.
These CF's may be combined in the usual way to contribute to the total CF for a
configuration.

CFhor¿rontol: MIN

CF.",1¿",¡:MINI .o)
\ ')

Note that the functions are asymptotic to -1 (undesirabie) as the fit grorvs lvorse,

but can gro\Ã¡ no greater than 0 if the fit is adequate or even generous. Thus sufficient
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space for a module does not encourage its acceptance. Rather the converse situation,

that there is insuffcient space, is used to discourage the selection of the configuration.

This is because (particularly early in design) often plenty of space, but this is an

artifact of the incompleteness of the design, rather than the quality of the particular

configuration. Lack of space however is not ambiguous.

Once all of the relevant rules in the task have fi.red, the configurations are sorted

by total CF. The configuration with the highest CF is then recommended as the

most suitable. If there is more than one, an arbitrary choice is made unless the

configurations share the same placement but have different orientations. In this

case there is insufficient information available to orient the module in placement,

placement is recomrnended but the selection of an orientation is deferred.

6.10.8 Placernent Acceptance

The placement acceptance task is activated lvhen a configuration for a module has

been recommended. It firstly changes the status of the constraints related to the

configuration from proaisional to accepted,. It then removes all of the remaining pro-

visional constraints as they are nor¡/ associated with invalid configurations. The task

then passes the placement name and the width and height of the configuration to the

spatial reasoning subsystem which incorporates the module into the rectangular graph

and updates the set of available placements to reflect the changed design. If the con-

figuration tvr/as recommended without an orientation, the rectangular graph represen-

tation is led to believe that the module has width: height : M AX(uidth,height).
This means that size calculations in the RG will result in the worst case available

space results.

6.10.9 Constraint Propagation

The constraint propagation task is comprised of a number rules that note the presence

of a particular constraint and proceed to generate new constraints that must come

into effect. For instance (Figure 6.36):

IF there exists a constraint on a port to lie on a particular side
THEN generate a¡other constraint on a connected port to lie on
an opposite side.
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Newly placed module

Port constrained
to east side

Prooaqate-

-r:-+

Existing module

Port constrained
to west side

Figure 6.36: Propagation of a port side assignment constraint from a newly placed

module to an existing module.

6.10.10 Deferred Tasks

This task examines previously deferred tasks to see if ihey have become sufÊciently

constrained to execute. For example of the spatial reasoning subsystem may note

during the sizing of a newly placement that the path limiting the available size of

the floorplan contains an unoriented module. It may then recommend to the design

marlager that the module be oriented such that it minimizes the size in the timiting
direction. This additional degree of constraint removes the ambiguity that led to
the deferring of the orientation, and the task proceeds to accept the designated

orientation and remove any invalidated constraints.

6.10.11 Planarization Fault Handling

If at any time during the design the spatial reasoning subsystem does not generate

any placements for an as yet unplaced module, a planarization fault has occurred.

This is a result of there being no face in the RG in all of the required connections

for a module are available. In this case this task is activated in order to consult with
the spatial reasoning system to decide on which connection to the module should be

temporarily dropped to enable design to continue. The task basically removes the

smallest connections first, continuing till the subsystem reports that it has found a

placement. The insertion of the removed connections is set up as a deferred route

completion to be activated once the all of the modules have been placed in the design.
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6.L0.L2 Route Completion

The connections dropped as a result of the planarization fault handling are required

to be inserted in such a way as the minimize the amount of additional area and

connection iength required. To this end the spatial reasoning subsystem is required

to search out possible shortest paths for the insertion of the route. This information

is returned to the design manager. Here it is combined with classes knowledge of the

diffi.culty of routing through fl.oorplan module implementations in order to suggest a

set of possible final paths.

At present the user is simply presented with a series of alternative possible paths as

part of the final design. The path is not used to actually place the route into the

floorplan for several reasons:

1. There are typically a number of apparently suitable paths for the route. The

routes are of course essential in the final design, but they do not form a major

part of the topology of the floorplan. It is often more appropriate to delay im-
plementing the routes till more is known about the actualrather than predicted

implementations of the modules.

2. Providing the user with suggested paths is sufficient to guide design and perform

floorplan evaluation. If the non-planarity implied by ihe use of route paths is
a problem, this will be made apparent to the user by the recommended route

paths.

3. The method used for completion of such routes depends somewhat on the exact

style of assembly that is to be used in the bottom up composition process. It
may well be more appropriate to complete the routing according to the specified

paths at that time.

As suggested in Section 5.5.6 the insertion of these paths is best deferred till the con-

struction phases, thus maintaining technology independence in the planning phase.

6.1- 0.13 Solve

The solve task simply carries out the following functions in sequence
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1. Interacts with the paths subsystem and the spatial reasoning subsystem to

complete the processing of the RG and build up a set of linear inequalities

describing the floorplan.

2. Invokes the simplex subsystem on the linear inequalities in order to obtain

values for the floorplan variables.

3. Records the details of the floorplan design in an output file.

4. Passes the f.oorplan variables along to the sketching subsystem for display to

the user.

6.11- Implementation

The variety in the knowledge representations and reasoning methods employed in

Floyil imply that the implementation language or languages must meet a number of

requirements:

1. There should be a common and simple means of interfacing the various modules

so that data and control may be efÊciently passed between them.

2. There must be support for a production system. This consists of a rule speci-

fi.cation language, working memory and rule interpreter.

3. There should be support for general symbolic computation. This is based

around the central place of symbols (names) in the language. Dynamic symbolic

manipulation facilities include:

(a) Creation of symbols.

(b) Creation of groupings of symbols that represent "chunks" of information.

(c) Creation of associations between information and symbols that may be

used as labels for referring to that information.

(d) Automatic removal of discarded symbols.

4. The languages and environments should be widely available for ease of devel-

opment and portabiliiy.
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The justifi.cation for these requirements will become apparent in the remainder of

this section. In addition of course it is preferable that the language or languages be

commonly available for reasons of portability.

The intersection of the requirements for symbolic processing, portability and gen-

erality suggest the use of the language Lisp f\Minston, 1984]. Lisp is one of the

earliest and widely implemented symbolic languages. It provides all of the necessary

basic facilities and was available to the author. In addition its "macro" construct

(Section 6.11.2.4) has encouraged the development of higher level, more task specific

facilities that fulfill the other requirements. Use of these packages has the advantage

of ensuring simple interfacing to code written in basic Lisp as the packages run in

the same environment and are themselves written in Lisp. The Franz Lisp [Foder-

aro & Sklower, 1933] implementation was chosen because of its wide availability on

machines running the Unix [Ritchie & Thompson, 1974] operating system.

A number of Lisp based packages have developed that include production system

facilities including KEE [Intellicorp, 1985], LOOPS [Bobrow & Stefik, 1983], Pru-

dence/Describe [Dickinson, 1984a; Joseph et al., 1986] and OPSS [Forgy, 1981]. I(EE

and Prudence/Describe are not easily available. LOOPS and OPSS are quite u'idely

distributed, however LOOPS is a large package of which production system support

is only a portion. OPSS on the other hand provides only the support required for

production systems and has a sophisticated rule compilation and conflict resolution

implementation [Forgy, 1982]. On this basis OPSS was selected as the most appro-

priate language for the construction of the rule based portion of Floyd.

Lisp has been used in Floyd for the bulk of the procedural code. The only exceptions

are portions of the Simplex and Sketcher subsystems. Most implementations of Lisp

are optimized for numerical computation due to the large amount of run-time check-

ing that must be made on the typically untyped "variables". This became apparent

in an early version of Floyd, and the tableau manipulation code of the simplex subsys-

tem was re-written in the "C" language [Ritchie & Kernighan, 1978]. This resulted

in a factor of ten decrease in the time taken for solution of the floorplan inequalities.

Early research on Floyd was carried out on Lisp Machine workstations. [Weinreb &

Moon, 1981a]. This code relied on the "windows" package written in the "Flavors"
object oriented programming package. Given the graphic nature of the task, it was

desirable to preserve some of the benefits of the versatile Lisp Machine user interface

under the more widely used Franz Lisp environment. To this end the Sketcher sub-
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system incorporates an basic version of the Lisp Machine \Mindows package rvritten
in Flavors running on Franz Lisp. This package is not host dependent and supports

several terminal types.

The remainder of this section describes some of the more interesting aspects of the
implementations of the various sections of the system and illustrates the matching of
the various languages with the application.

6.1,1.1- Design Manager Implementation

The design manager is completely written in the OPSS [Forg¡ 1981] production

system language. The rules are executed by an OPSS interpreter written in Lisp. In
the following subsections the various components of an OPSS production system are

described in terms of their use in the implementation of the design manager.

6.11.1.1 The Working Memory

The working T'nertuory (WlvI) is a data storage area comprised of slots that may each

hold a worlcing memory element (\ /ME). Any rule that fires may create, alter, or
remove these elements in order to change the design state. In this application a

WME may be regarded as having a type and a number of named fields. The type of
a \MME may not be changed, but the contents of each of its fields may be empty or
associated with some symbol.

Each type of WME is used to represent some portion of the design state and may be

classified into one of the following groups:

1. Component Types. These are used represent actual items in the design such as

modules, sides, connections and ports.

2. Concept Types. These are used to represent items in the design that have

no direct physical realization in the floorplan. Examples include placements,

implementations and similar types that represent design concepts rather than
components.

3. Control Tgpes. These are used to exert control over the execution of rules.

There are only two types, tasks and subtasks.
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4. Constraint Types. These may represent relationships between elements of types

listed in any of the above groups. A constraint might fix a port to the side of

a module. Another might constrain two tasks to be activated in a particular
sequence.

6.11.1.2 The Rule Set

An OPS5 rule is comprised of a left hand side (LHS) which is the antecedent, and

a right hand side (RIIS) which is the action. Basically the LHS is a list of patterns

that are matched against the elements in the WM. OPSS provides a sophisticated

pattern matching facility in which variables in the patterns are matched against the

symbols in the flelds of the matched working memory elements.

The RHS is basically a iist of sequential actions. Most actions either add, remove

or alter working memory elements. The working memory elements and the variables

matched in the LHS may be accessed in the RHS Additionally however a RHS may

cali other Lisp procedures to perform external functions and input/output.

Figure 6.17.7.2 illustrates a simple design manager rule. The rule is responsible for

incorporating the quality of the fit of the configuration in the floorplan into the

totai CF for the configuration. The name of the rule is placement-size-f it and

it is contained in the evaluate-configuration subtask (the name of the task is

prepended to the rule name by convention).

The first LHS pattern only matches if there is an active subtask with the name

evaluate-conf iguration. This ensures that the rule will only fire if the subtask is

indeed in existence. If so, variable denoted by (cn) is bound to the value of the argl
field of the subtask. This field is a subtask parameter that in this case is used as the

name of a configuration that the subtask has been set up to evaluate.

The second LHS pattern matches the \MME that records the details of the configu-

ration which has a name (cn). The variables <p1ace1) and (imp> are respectively

bound to the name of the placement and implementation associated with the config-

uration named (cn).

The ihird LHS pattern matches the \MME that records the details of the implemen-

tation names (imp). The variable <impt> is bound to the implementation type of
the implementation. The (w) and <h> variables are bound to the width and height
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(p evaluate-conf iguration : : placenent-size-f it

(subtask ^nane evaluate-configuration ^arg1 (cn))
(conrisuration 

^;ii:;:Tì-,,u " (pracel)
^ irnplement ation-nane <imp>)

(irnplementation -name <imp)
^type-name (impt)
^width (w)
^height <h>
^orientation (or))

(constraint ^type placement-size-constraint
^¡ridth (p-w) ^height <p-h>)

(cal1 CF-calculate-size-fit (cn) (p-w) (w) (p-h> <h>))

Figure 6.37: A simple design manager rule for accounting for placement size

estimated to be required for the implementation of the module

The fourth LHS pattern any constraint produced by the spatial reasoning subsystem

that describes the limits of the available space for the module in the floorplan. The
(p-w) and <p-h> variabies are bound to the width and height estimated to be avail-

able for the implementation of the module. Note that any such constraint named

placement-size-constraint will be matched. This is allowed because there is only

one such constraint ever placed in \MM at a time: that for the current placement

being examined.

If all four patterns are matched, and the rule is selected to fi¡e (Section 6.11.1.3)

then the RHS call action is carried out. This has the effect of calling an external

(not in the design manager) procedure for calculating the new total CF given the fit
parameters as described in Section 6.10.7. The passed parameters are of course the

values bound onto the variables (w), (h), (p-w) and <p-h).
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6.11.1.3 The Rule Interpreter

The interpretation of the OPSS rules is canied out by an inference engine. This is
responsible for matching, selecting and executing the rules: tlne recognize-act cycle.

This is described in detail in [Brownston et al., 1985] and will only be summarised

here.

For each cycle of rule firing, the inference engine collects all of the rules that suc-

cessfully match elements in working memory. Each match is termed an instanciation

as the variables are instanciated with the matched values. If this set is empty, then

the system halts as it can proceed no further. If there is only one match, then that
rule may be executed. If however more than one rule, a conflict resolution strategy

is used to select a single rule for execution from the confl,ict set. Each step of the

strategy is used to reduce the number of instanciations in the conflict set, until one

dominates or the last step is reached. The steps are:

7. Refraction. AII previous instanciations of a rule a¡e deleted from the conflict

set. Thus is a rule has been fired with particular data elements matching the

LHS, it cannot fire again unless they have been altered. Clea¡ly this is useful

in ensuring ihat the system does not cycle on one rule/data match.

2. MEA.If the OPSS MEA (means-ends analysis) strategy is being used, this step

examines t}re first condition of each rule. Only those rules with the most recent

first condition element are retained in the conflict set. If, as in Floyd, the first
condition of most rules is a task or subtask element, then this ensures that only
rules in the most recently created task or subtask are executed. This provides

a useful focus of control in rule firing.

3. Recency. The instanciations are ordered based on the recency of the working

memory elements matched. Only those rules with the most recent elements a¡e

retained in the set. This ensures that the system work on the most ¡ecent data.

4. Specificity. The rules are instanciations are ordered based on the number of

tests in the LHS of the rules. Only those rules with most tests are retained in
the conflict set. Thus only the most specific rules are retained.

5. Arbi.l'rary. If. by this stage no single instanciation has dominated, and arbitrary
decision is made as to which instanciation in the conflict set should be fired.
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In Floyd the properties of the conflict resolution strategy is used to provide task

control in addition to the simple firing of rules. Firstly, the MEA strategy is used to

ensure that all of the rules ready to fire in a task do in fact fire before another task

is undertaken. Secondly, the recency criteria may be used to provide sequencing of

subtasks by creating them in the reverse order to that desired for execution. Thirdly,

rules with a single subtask condition element and no other may be used as "cleanupt'

rules. These will only fire when there are no more rules in the subtask ready to

fire, and may initiate an overall cleanup of the subtask and deletion of the subtask

element iiself.

6.Lt.2 Subsystem Implementations

Other then the design manager, the bulk of the system code is written in Lisp. The

symbolic manipulation facilities of the language are valuable in applications required

for a number of reasons covered in the remainder of this section.

6.11.2.1 Syrnbols

A Lisp symbol may be regarded as a unique "name" (such as mike, 53, apple or

shift-register) with which three things may be concurrently associated. Firstly, a

symbol may have a aalue that is accessed when it is evaluated. This may for instance

be another symboi. A number is a special case of a symbol. Hence a "name" may

be associated with a number and thus symbols may be used in a similar fashion to

a variable in a conventional language: to hold a number value. However, since a

symbol's value may also be another symbol, or even a iist of symbols (described in

the following section) then the structure is more general.

In addition to a aalue, a symbol may have a function associated with it. Thus the

symbol may also be used as a "name" for invoking a procedural entity.

The third entity that is associated with a symbol is it's property list ("plist"). This

is a list that may be used to describe various properties of the symbol. It is arranges

as a series of pairs: the first of each pair is the name of the property, the second

the value associated with that property. For example a symbol george might have a

property age with a value 32.

All three items associated with a symbol are used in Floyd^ Firstly, symbols are often
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used as general variables to hold values during calculations. For instance the code
fragment:

(toop for module in all-modules doing (print ¡nodule) )

has the effect of setting the value of the symbol module in turn to each of the elements

of the list that is the value of the symbol all-¡nodu1es. As each new value is set,

it is printed out. This fragment also illustrates the use of symbols as the names of

functions: Ioop arrd print may be regarded as functions (though in fact they may also

be ttmacrost' as described in the next section). Note that tt for, in and doing are all
simply symbols that serve to make up a syntax-even. if they have values they are

not used here.

Property lists are used extensively in the implementation as they provide a useful

method of associating information with a particular named item. For instance each

time that the spatial reasoning subsystem creates a ner¡¡ placement for a module, it
generates a unique symbol to act as a name for it: p4764 for instance. It then places

all information relevant to that placement on the property list associated with that
symbol:

1. The name of the node that is the target of the placement.

2. The list of all the nodes that node must eventually connect to.

3. The list of nodes and their sides that comprise the face of the the placement

4. The space available in the placement.

5. The set of triangular RG faces that would result from accepting this placement

into the RG.

The name of the placement may be passed to the design manager for processing.

The design manager does not require the property list, but should it request that

the placement be accepted, it simply informs the spatial reasoning subsystem of the

name of the placement. The subsystem may then simply examine the property list
associated with that name in order to access all of the relevant information. This

style of programming ensures that aJI of the data associated with a named item such

as a placement or node is always directly attached to the item and easily accessible.
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6.LL.2.2 Lists

Lisp provides the /isf as the basic data structure for sets of symbols. A list is simply
an ordered sequence of symbols or other lists. Examples include:

(nike greg alex 234 mike)
(trees (btue green) turkeys)

Tree structures may be created by nesting lists as shown in the second example.

Circular lists may be created that have neither beginning or end-the last element

is followed by a link to the first. A number of basic operations are provided in the

ianguage for creating, joining, examining and dismembering lists.

Lists are used in virtually all of the code. Many of the procedures involved with ma-

nipulating the RG involve traversing circular ljsts of nodes that are used to represent

faces. Concurrently the procedures build further lists that represent all of the nodes

in the face with some common feature: sides available for connection for instance.

The circular lists that are used to represent faces are themselves members of trees

and subtrees also represented as lists.

6.11.2.3 Automatic Memory Managernent

Unlike most languages conventional languages (such as Pascal, Fortran and C), Lisp

provides for the "transparent" allocation and deallocation of memory. \Mhenever

a list is created or added to, the memory required is automatically allocated. In
turn, whenever a list is no longer in a position to be referenced (there are no paths

from any symbols to the list) ihen the memory is automatically reclaimed. This is

particularly useful it Floydas objects such as placements are being constantly created

and abandoned.

6.LL.2.4 Macros

In order to facilitate the construction of application specific languages on top of Lisp,

the language provides a rnz,cro faciiity. This is provides a means of taking a piece of

lisp in one form, and processing it with Lisp code to produce another form for final

evaluation.
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The macro facility is used in Floyd, in order to perform design description input and

to implement the classes subsystem.

The input format to the floorplanner is of the form is comprised of a number of macro
statements such as:

(connection in1 bit4add-1 ioout io1)

which defines a connection between the in1 port on module instance bit4add-1 and
the ioout port on module instance io1. The connection macro simply rewrites this
into the form:

(make connection ^port1 in1 ^modulel bit4add-1
^port2 ioout ^module2 io1)

which is then executed, making a placing an element in the working memory that
represent the connection and may be accessed by the rule base.

The classes' define-implenentation-type statement (Section 6.6) is actually a
complex macro. The macro is invoked with the name, inheritance list and collec-

tion of properties all as parameters. These are then processed into OPSS actions

for inserting three working memory elements into the data base: one for undirected
properties, and one each for horizontai and vertical properties. For instance the
definition:

(def ine-implenentation-type simple Iinear-array
o
(input-output-adj acency vertical -0. S)
(input-output-adjacency horizontal -0.7)

would result in elements:

(implementation-type ^natne simple
^class-membership linear-array
^direction-of-interest niI)

(implementation-type ^nane simple
^class-membership linear-array
^direction-of -interest vertical
^input-output-adj acency -0, S)

(implementation-type ^name simple
^class-membership linear-array
^direction-of -int erest horizontal
^input-output-adj acency -0. 7)
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Once initialization is complete, these working memory elements serve base of imple-

mentation type knowledge that may be accessed by the relevant rules.

6.11.3 Subsystem fnterface Mechanisms

The basic forrn of intermodule communication in the system is between the design

manager and the other subsystems. The design manager passes data and control

to the subsystems by means of simple lisp function calls augmented by the OPSS

parameter passing mechanism [Forgy, 1981]. The subsystems communicate data to

the design ma¡ìager by constructing working memory elements containing the data

and calling utility routines that insert them into the working memory. They may then

at will pass control back to the design manager by simplying allowing the initiating
function call to complete.

Another form of subsystem communication uses the binding of vafues to global sym-

bols. The lists representing the floorplan inequalities are accessed in this manner for
instance.

A third method has been described previously: the attachment of data to the property

list of a symbol being used as the name of an object. The name is passed between

subsystems, and the data accessed by simply consulting the relevant property.

6.L2 Lirnitations

The objective of the prototype floorplanner described in this chapter was to demon-

strate the feasibility of partitioning floorplanning knowledge into a set of suitable

representations, and apply that knowledge successfully. As will be shown in exam-

ples in the next chapter, this purpose 1v\¡as in fact achieved. Due to the great deal

of knowledge involved in the floorplanning task however, practical limitations on the

period of this research has meant that only a portion of the total knowledge required

for expert floorplanning has been put in place. In particular, the classes a,nd planning

aspects of the prototype could be extended considerably. There are no inherent lim-
itations placed on such extension by the structure that has been outlined for Floyd,.

It has been proposed that the prototype be extended into a fully viable design aid in
the commercial environment as described elsewhere [Dickinson et al., 1937].
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One limitation of the OPSS environment is that it does not provide a mechanism for

erplaining the actions of the expert system it implements. The facilities for tracing

lines of reasoning are primitive: simply the listing of the rule firing sequence which is

primarily useful for debugging. Although in other ways OPSS provided an excellent

facility for the expression of the rule base, a language with an explanation capability

such as that of EMYCIN [Buchanan & Shortciiffe, 1984] would be usefui. This would

simplify understanding of the operation of the floorplanner in a particula.r situation,

and hence aid the addition of new knowledge into the system.

The problems that arose in backtracking led to the abandoning of that approach

(Section 6.10.1). There can be no doubt however that designers do in fact backtrack

at times in the development of an optimal design. The simple approach of purely

chronologic¿l backtracking [Winston, 1934] was found to be inappropriate as it may

lead to another problem similar to that being backtracked from. Considerable further
work would be required in order to obtain an understanding of how designers use the

knowledge gained in the forward design path to guide backtracking and thus efficiently

achieve an improved solution. As noted earlier however, intelligent backtracking is a

desirable, but not necessary component of the design strategy.

6.1-3 Surnrnary

Modelling the form of a structural VLSI design requires that the designer be provided

with feedback that describes the realization of the structure in the silicon plane. This

may be performed by an automatic floorplanner.

Existing approaches to automatic fl.oorplanning generally involve the algorithmic enu-

meration of a large number of alternative possible floorplans. The large search space

implied is then pruned by heuristic methods in order that ihe designer be able to

select an optimal design. These methods are inefficient as they delay application

of domain specifi.c knowledge till after the very large number of designs have been

created, rather than using it to intelligently guide the creation of a single good result.

Expert systems approaches to ff.oorplanning have either shared the enumeration prob-

lems of algorithmic floorplanners, or only represented and appiied domain knowledge

in an unstructured manner. There has been little attention paid to the representation

of uncertain design knowledge such as that used in applying bottom-up influence in
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top-down design. The structural evaluation task being examined here requires this

as floorplans must be generated in a top down manner in parallel the development

of the structural description.

The floorplanner that has been described here is based around the partitioning of

designer knowledge into distinct categories, and the use of both special purpose and

general knowledge representations for their explicit representation. The three knowl-

edge representations are:

1. The Rectangular Graph,. A set of data structures and algorithms that as a

whole emulate the designer's ability to reason with interconnected rectangles

in a plane. This category of knowledge may be regarded as an innate, visual

ability of the designer.

2. Classes. A store of inexact knowledge about the alternate implementations of

floorplan modules. Access to this knowledge assists the floorplanner in design-

ing hierarchical floorplans in a top-down style. The use of configuration factors

(CF's) allows alternate design options to be treated as competing hypothe-

ses. The simple hierarchical structure of the classes representation encourages

designers to incrementally add further knowledge to the system.

3. The Production System. The meta-knowledge required to apply domain spe-

cific knowledge is may be expressed as production rules. The "recogtize-acl,"

structure of production rules is well matched to recognition of occurrences in

the design and the resulting execution of an appropriate activity.

Direct comparison with existing floorplanners has been omitted as there are no dis-

tinct parameters with which such a comparison may be made. However, comparison

of the catagories of knowledge and reasoning techniques used suggest that the fl.oor-

planner described in this chapter has the potential to generate floorplans with a

greater range of designer expertise than those described in Section 6.2..3.

The Lisp/OPS5 implementation of a prototype floorplanner has been described. The

evaluation of the success of such a design aid is compiex as it must be viewed in the

context of the entire planning phase of a design. In the following chapter the success

of the floorplanner is evaluated in the context of the design procedure adopted in the

creation of a large VLSI system.
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Chapter 7

A Structural Design Case Study

7.L Introduction

In this chapter the results of the previously described research are demonstrated by

way of a design case study. The nature of the problem, and the lack of comparable

research, requires that the effectiveness of the methods and design tools be illustrated

by such a demonstratioh.

This case study is directed at demonstrating the utility of the following techniques:

1. The specification of structure and function at a high level of of abstraction.

2. The used of software structural design techniques as an aid to partitioning a

VLSI system.

3. The successive refinement of intermodule communication into detailed timing

specifi.cations.

4. The use of functional modelling in the verification of the decomposition.

5. The use of modelling in evaluating alternative designs by:

(a) The profiling of the functional description to aid in the evaluation of the

coupling and cohesion of the partitioning.

(b) The generation of structured floorplans to aid in the evaluation of the

geometric suitability of the partitioning.
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7.2 A Desigrt Example

The basis for the system design chosen for this exercise is a floating point adder

(FPA) chip designed by Zyner lZyner, 1988]. The selection of this project was based

on the following criteria:

1. The design is of a reasonable complexity (= 10,000 devices). Although of not

true VLSI scale, this was regarded as sufficiently complex for the demonstration

purposes.

2. The design ï¡as expected to offer a challenging combination of irregular and

regular structures. Floating point operations tend to be irregular at the higher

levels owing to the asymmetric nature of the algorithms used. They do hox'ever

exhibit regularity in the lower levels as the basic sub-operations include simple

adding and shifiing.

3. The functional architecture incorporates some novel algorithmic techniques,

illustrating the need for structural specification of architectures as opposed to

the fixed architecture paradigms of typical silicon compilers.

4. The system was still in the functional specification phase.

5. The designer was available for consultation and had a requirement for more

advanced specification and modelling aids.

Although the integration of the structural design aids into a system based on auto-

matic assembly [Dickinson et al., 1987] has not yet been completed, it was felt that

the partitioning exercise would still be beneficial as a basis for manual design. The

design procedure for the 32-bit FPA described in this chapter is an extension of an

the original 8-bii specifi.cation created by Zyner lZyner,1988]. The full 32 bit system

was later implemented in symbolic layout using lhe Pink specification and modelling

results as an informal guide.

Rather than attempt to describe the approach in terms of the entire FPA design, a

single branch of the hierarchy was chosen as being representative of the techniques

involved, and will be described in the remainder of this chapter. This description of

the design example concentrates on structural issues in the design of the upper levels

of the hierarchical partitioning, and functional issues farther down the hierarchy.

225



Fr:rther details of the FPA algorithm, specification and layout not directly relevant

to the partitioning may be found elsewhere lZyner,1988].

The next section provides a functional overview of the FPA system.

7.3 Functional Overview

The FPA adds or subtracts two floating point numbers. Each is represented by

an 8 bit exponent, a 23 bit mantissa and a sign bit. The two numbers are added

or subtracted as required, the result being represented in the same format as the

arguments. Overflow and underflov¡ are indicated by way of two additional signal

lines.

An overview of the basic algorithm implemented by the FPA is illustrated by the

flow chart in Figure 7.1. More detailed descriptions of the various steps u'ill be

introduced as they are required. The design presented here is interesting in its use

of parallelism in the implementation of the basic algorithm. In particular, at the

same time that the aligned mantissas are added together, the most significant bit
position is being calculated in order that it be available for mantissa normalization

at the same time as the result of the addition stabilizes. Additional parallelism is

achieved by simultaneously adjusting the result exponent and performing rounding

and complementing of the resultant mantissa.

7.4 An Initial Partitioning

A simplistic view of the process of refining a design description would suggest that

the initial description would be of a single functional module that would be succes-

sively refined into simpler moduies. The composition of these modules would then be

verified as being the same as the initial description. In practice however this is often

not the case. Such a simple top level functional module does not provide a significant

amount of design information, and may well suffer from being overly complex. Typi-

cally in developing the algorithm to be implemented, the designer has already partly

decomposed the design into a set of interconnected modules. Hence it is appropriate

to represent the highest level of the design as a composition of submodules. These

submodules in turn may be implemented as structural or functional modules. Thus
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Cala¡late positive ditference between
the A and B exponents. Find he larger

of the tu/o exponents.

Shift the manlissa of the input with
the vnaller exponent by an amount
equal to the differerrce behteen the

exponents. Complement aligned
manitissas as required.

Add üÞ aligned and comflemenùad
mantissas. significant bit in the mantissa sum.

Calculate the most

Given the MSB position, shift the
mantissa sum in order to normalize

the result.

complementing
and rounding to 24 bits. .

Output the result mantíssa.

Add the posit¡ve difference of the
two input exponenb and the

normalization shift amount to get a
result exponent. Note underflow or

overflow.
Output the result exponent.

Figure 7.1: Flowchart of the basic FPA algorithm.

in general the designer requires considerable freedom in selecting the initial mixture
of structural and functional implementations of modules.

Such a procedure may be easily justified in terms of software design techniques.

Programmers do not write a single block of code at the sta¡t of a design that will
implement the total function, and then refine it by splitting it into smaller sections.

Stepwise software refi¡ement dictates that first the problem is decomposed into a set

of interacting subproblems. Each of these is treated as a procedure call to an as yet

unwritten procedure, and interactions are planned by the specification of parameters

to those procedures. This is simply functional decomposition. Similarly it is unrea-

sonable to expect VLSI designers to specify the algorithm as a monolithic entity in
the initial specification.

227



7.4.L Specification

The initial top level partitioning was based on an informal data flow (Section 2.2.2)

approach with afferent, central transform and efferent elements. This pariitioning

is illustrated by the data fi.ow graph in Figure 7.2. Ttre resultant module hierarchy

is shown in Figure 7.3. Note that one of the top level modules (ManAdder) has

been specified simply as a functional element, whilst the other two (AlignUnit and

Adjuster) have been specifi.ed ar¡ compositions of functional elements at one level

lower.

Sþns
Sign Unit Exponent Adjust

Exponent

Shift Encoder

Adder

Mantissa

Mantissa
Aligner

Mantissa
Adder

Normalizer

Efferent
Elements

Fìounder

Afferent
Elements

Central

AlignUnit ManAdder Ad uster

Normalizer ShiftEncExpAdder SignUnit

Aligner Rounder ExpAdj

Figure 7.3: Module hierarchy (initial partitioning)

The three top level modules and their compositions/functions are described in the

following subsections.

Transform

Figure 7.2: Dala flow graph of the FPA

FPA

I
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7.4.L.1 The Alignment Unit

The afferent (input) module of the system is the Alignment Unit. This in turn is
specified in the initial partitioning as the composition of three submodules:

1. The Exponent Ailder inputs the two exponents and generates the positive differ-

ence between the two. This difference is used as the shift amount for alignment.

The module also uses the result of the addition to select the larger of the t'wo

exponents to be passed through as the unadjusted result exponent. In the

initial specification it is represented by a functional definition.

2. The Sign Unitinptús the add/subtract opcode, the carry output of the exponent

adder, and the signs of the two floating point operands and generates a number

of complementing control signals. In the initial specification it is represented

by a functional definition.

3. Th,e Aligner uses control signals from the exponent adder to select one of the

mantissas for alignment (shifting). The two mantissas a.re then complemented

as directed by the sign unit. In the initial specification it is represented by a
functional definition.

The compleie Alignment Unit has lhe Pinlc description

DEFINITI0N AIignUnit;
STATE

-- Ports:
SignA, SignB, Sign, Eop, Opcode, Cout : PortType;
ExpA, ExpB, Exp : ARRAY [0..7] 0F PortType;
ManA, ManB, ManX, ManY : ARRAY L0..22) OF PortType;

PORTS

DeclarePort(SignA, BIT, INP); -- The sign of A.
DeclarePort(SignB, BIT, INP); -- The sign of B.
DeclarePort(Opcode, BIT, INP); -- The add/subtract opcode.
DeclarePort(Sign, BIT, OUTP); -- Sign control.
DeclarePort(Eop, BIT, 0UTP); -- Sign control.
DeclarePort(Cout, BIT, OUTP); -- Complementor control output.
DeclareBus(ExpA, INP); -- The exponent of A.
DeclareBus(ExpB, INP); -- The exponent of B.
DeclareBus(Exp, OUTP); -- The inter¡nediate result exponent.
DeclareBus(ManA, fNP); -- The mantissa of A.
DeclareBus(ManB, INP); -- The nantissa of B.
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DeclareBus(ManX, OUTP); -- The aligned X nantissa.
DeclareBus(ManY, 0UTP); -- The aligned Y nantissa.

TOPOLOGY

Makelnstance(ExpAdder, ExpAdder) ;
Makelnstance(Signunit, SignUnit) ;
Makelnsta¡ce(Aligner, Aligner) ;

connection to the AlignUnit input ports:
Connect (SignA & SignUnit/SignA) ;
Connect (SignB & SignUnit/SignB) ;
Connect (Opcode & SignUnit/Opcode) ;

Connect(ExpA & ExpAdder/ExpA) ;
Connect(ExpB & ExpAdder/ExpB) ;
Connect (ManA & Aligner/ManA) ;
Connect(ManB & Aligner/ManB) ;

Connection to the AlignUnit output ports:
Connect(Sign & SignUnit/Sign) ;

Connect(Eop & SignUnit/Uop) ;

Connect(ManX & Aligner/ManX) ;

Connect (ManY & Aligner/l'tanV) ;
Connect(Cout & Aligner/Cout) ;

-- Submodule interconnect:
Connect (SignUnit /Cin A ExpAdder,/Cout) ;

Connect (SignUnj.t/X A Afigner/X) ;

Connect (SignUnit/V A lfigner/Y) ;

Connect(ExpAdder/switch & Aligner/Switcir) ;

Connect(ExpAdder/Shift & Aligner/Shift) ;

ENDTOPOLOGY

END A1ignUnit;

7.4.L.2 The Mantissa Adder

The mantissa adder adds the two mantissas. Closely connected to the adder is

the most significant bit position finder (MSBPF). This inputs the two mantissas

to estimate the position of the most significant bit of the sum in parallel to the add

operation. The estimate is refined to an exact position on arrival of the carry out

signal from the adder. In the initial specification this module appears as a single

functional module rather than a composition.

7.4.L.3 The Adjuster

The efferent (output) module is the Adjuster. This is functionally responsible for

adjusting the resulting mantissa and exponent and is specified as a composition of:
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1. The Normalizer uses the position located by the MSBPF to normalize (shift)

the result mantissa. In the initial specifi,cation it is represented by a functional

definition.

2. The Rounder adjusts the result mantissa to allow for overflow conditions. In

the initial specification it is represented by a functional definition.

3. The Shift Encoder translates the shift distance that was required for normaliza-

tion into an integer. In the initial specification it is represented by a functional

definition.

4. The Exponent Ad,juster takes the difference between the shift amount and the

result exponent from the Exponent Adder in order to generate a final result ex-

ponent together with over and underflow indication. In the initial specification

it is represented by a functional definition.

The complete Adjuster has the Pinlc description:

DEFINITI0N Adjuster;
STATE

ManIn : ARRAY l}..22l 0F PortType;
ManR : ARRAY 10..221 0F PortType;
ExpR, Exp : ARRAY [0..7] 0F PortType;
Sign, Cin, Eop, Overflow, Underflow : PortType;

PORTS

DeclareBus(MaaIn, INP); -- Input mantissa.
DeclareBus(ManR, OUTP); -- Result mantissa.
DeclareBus(Exp, INP); -- Input exponent.
DeclareBus(ExpR, OUTP); -- Result exponent.
DeclarePort(Sign, BIT, INP); -- Sign control.
DeclarePort(Eop, BIT, INP); -- Sign control.
DeclarePort(Cin, BfT, INP); -- Carry input.
DeclarePort(OverfIow, BIT, OUTP); -- 0verflow output.
DeclarePort(Underflow, BIT, OUTP) ; -- Underflor¡ output.

TOPOLOGY

Makelnstance(Normalizer, Normalizer) ;

Makelnstance(Rounder, Rounder) ;
Makelnstance (ShiftEnc , ShiftEnc) ;

Makelnstance(ExpAd¡, ExpAdj) ;

-- Input port connections:
Connect(Exp & ExpAdj lExp);
Connect (ManIn & Norrnalizer/Manln) ;

Connect (MSgp & Normalizer/l,tS¡p) ;

237



Connect (C:-n A Normalizer/Cin) ;

-- Output port connections:
Connect(ExpR & ExpAdj/ExpOut) ;

Connect(0verflow & ExpAdj/Overflow) ;

Connect (Underflow & ExpAdj /Underflow) ;

Connect(ManR & Rounder/ManR) ;

-- Submodule interconnecti.ons :

Connect (Normalize/Man0ut & Rounder/Manln) ;

Connect (Strittgnc/EncAmount & ExpÂdj/Sir:.tt) ;

Connect (Nornalize/Stritt¡¡nount & ShiftEnc/ShiftAmount) ;
ENDTOPOLOGY

END Adjuster;

7.4.L.4 The FPA Composition

The Alignment Unit, the Mantissa Adder and the Adjuster are combined to form the

top level Pink specification of the FPA:

DEFÏNITION FPA;
STATE

-- Ports:
SignA, SignB, Opcode, Overflow, Underflow : PortType;
ExpA, ExpB, ExpR : ARRAY [0..7] 0F PortType;
ManA, ManB, Ma¡R : ARRAY 10..221 0F PortType;

PORTS

DeclarePort(SignA, BIT, INP); -- The sign of A.
DeclarePort(SignB, BIT, INP); -- The sign of B.
DeclarePort(Opcode, BIT, INP); -- The add/subtract opcode
DeclarePort(Overflow, BIT, OUTP); -- HI if overflow.
DeclarePort(Underflow, BIT, OUTP); -- HI if underflow.
DeclareBus(ExpA, INP); -- The exponent of A.
DeclareBus(ExpB, INP); -- The exponent of B.
DeclareBus(ExpR, OUTP); -- The result exponent.
DeclareBus(ManA, INP); -- The mantissa of A.
DeclareBus(ManB, INP); -- The mantissa of B.
DeclareBus(ManR, OUTP) t -- The result mantissa.

TOPOLOGY

Makelnstance (AlignUnit, AlignUnit) ;

Makelnstance (ManAdder, ManAdder) ;

Makefnstance(Adjuster, Adjuster) ;

-- Connections to FPA input ports:
Connect (SignA & AlignUnit/SignA) ;

Connect (SignB & AlignUnit/SignB) ;

Connect (Opcode & AlignUnit/Opcode) ;
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Connect(ExpA & AlignUnit/ExpA) ;

Connect(ExpB & AlignUnit/ExpB) ;

Connect(ManA & AlignUnit/ManA) ;

Connect(ManB & AlignUnit/ManB) ;

-- Connections to FPA output ports:
Connect(Overflow & Adjuster/0verfIow) ;

Connect(Underflow & Adjuster/Underflow) ;

Connect (ExpR & Adjuster/ExpR) ;

Connect(ManR & Adjuster/ManR) ;

-- Submodule interconnect :

Connect (RtignUnit/Sign & Adjuster/Sign) ;

Connect (AtignUnit /Eop & ManAdder/Eop) ;

Connect(AlignUnit/Eop & Adjuster/Eop) ;

Connect (AIignUnit/Cout & ManAdder/C:-n) ;

Connect (AlignUnit/ManX & ManAdder/¡,ta¡X) ;

Connect (AlignUnit,/ManY & ManAdder/ManY) ;

Connect (AIignUnit/Exp & Adjuster/Exp) ;
Connect (ManAdder/ManOut & Adjuster/Manln) ;

Connect(ManAdder/us¡p & Adjuster/MSgp) ;

Connect(ManAdder/Cout & Adjuster/Cin) ;

ENDTOPOLOGY

END FPA;

7.4.2 Modelling Function

Functional modelling v¡as assisted by the construction of a testing module that could

be connected to the completed system. This module wrote a combination of genera.i

and specifrcally choset (".g. overflow and underflow generaiing) vectors to the FPA

model. The same module also read the outputs of the FPA model and tested them

against those expected.

This exercise resulted in the location of one data synchronization error which in-

volved arÌ unexpected one-cycle delay of data delivery from the exponent adder. If
undetected this error would have been fatal to the operation of the FPA.

During a \024 cycle validation test, data flow and module activity statistics rvere

collected. The significant links in the design all had a saturation approaching 100%

as they transfer data on virtually every simulation cycle. The module activation

statistics all approached 100% as all modules are activated on each cycle in the

design. Variations in both link saturation and module activity may be expected to

occur in less parallel designs in which some links/modules are active whilst others
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are idly waiting. Thus these figures may be regarded as indicating a high degree of

paralleiism in the FPA design.

The remaining profiling statistic, volume, showed considerable variation across the

design. A summary of relevant statistics are presented as annotations to the data

flow graph shown in Figure 7.4. The following inferences may be drawn from the

data displayed:

1. The Alignment Unit was comprised of only lightly coupled components rvith

the traffic being of relatively low volume. Much of the trafrc simply passes out

of the module rather than circulating inside it. This suggests that as a n'hole

the Alignment Unit has low cohesion.

2. The Mantissa Aligner exhibited strong coupling (high link volume) with the

Mantissa Adder.

3. The Exponent Adder exhibited strong coupling (high link volume) with the

Exponent Adjuster.

4. The Mantissa Adder exhibited strong coupling (high link volume) with the

Normalizer.

Signs
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Figure 7.4: Profiling data derived from the FPA modet (initial partitioning)

7.4.3 Modelling Form

The result of floorplanning the initial partitioning is shown in Figure 7.5. As a de-

scriptive aid the floorplans have been redrawn with the designer estimated minimum
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areas for module implementation superimposed as shaded rectangles. There are a

number of points of note:

l-. Due to the imposition of the Mantissa Adder, a number of Alignment Unit to

Adjuster connections must be routed through the Mantissa Adder or a route

module created.

2. The oversized space allocated to the Mantissa Adder is also caused by its po-

sition in the centre of the design.

3. The height of the Align Unit is imposed by the Sign Unit: the Exponent Adder

and Aligner are not as high. This results in unused space.

4. The imposition of the Shifi Encoder between the north side of the Adjuster

and the Exponent Adjuster prevents the exponent bus being easily connected

to the Exponent Adjuster: completion requires the addition of a route of the

exponent bus through the Shift Encoder or the creation of a route module.

A considerable area of the floorplan (35%) consists of unused space

7.5 Discussion and Modified Partitioning

The results of the modelling of the top level specification lead suggest an alternative

partitioning that may be more appropriate in this case:

1. The strong coupling between the Mantissa Aligner and the Mantissa Adder

suggest that the two should be migrated into the same partition.

2. The strong coupling between the Exponent Adder and the Exponent Adjuster

suggest that the two should be migrated into the same partition.

3. The poor packing and low cohesion of the Alignment Unit may be alleviated

by migrating the Sign Unit out of the Alignment Unit and merging it with the

exponent data bus to form a data path. This also allows the direct completion

of connections to the Sign Unit.

4. The implication of (1) and (2) above is that the top level should be repartitioned

into two modules: one a mantissa data path and the other an exponent data
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ManAdder

FPA

l-l Unusedarea

ffi Required minimum area

Nl Composition module

AlignUnit

Adjuster

Floorplanner Notes:
1. Connections between AlignUnit (south) and Adjuster

(north) must be routed through ManAdder or a route
module added.

2. Connectiors between ExpAdj (north) and Adjuster extemal
ports (north) must be routed through ShiftErrc or a route
module added.

Figure 7.5: A fl.oorplan for the FPA (initial partitioning)

path. Each is likely to have a high cohesion as all the elements will be connected

by a bus. The coupling between the two is likely to be low as the two paths

are largely functionally independent.

5. If the exponent bus were routed thorough the Shift Encoder then it and the

Exponent Adjuster would be able to stack vertically, thus saving area.

The new top level partitioning may be classified as being more along functional lines

that data flow: each module implements a particular function: processing of the

mantissas or processing of the exponents.

This change in partitioning technique emphasises the importance of modelling in

VLSI partitioning. It is not simply suffi.cient to adopt a partitioning strategy based

on the natu¡e of the algorithm.

The new partitioning is imposed by making the following changes

1. Adding the exponent bus as a route through to the Sign Unit and Shift Encoder

Aligner

Normalizer

Rounder
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2. Allocating the Exponent Adder, the Sign Unit, the Shift Encoder and the

Exponent Adjuster to a new module called the Exponent Data Path.

3. Allocating the Aligner, the Mantissa Adder, the Normalizer and the Rounder

to a new module called the Mantissa Data Path.

The new hierarchical partitioning thus created is shown in Figure 7.6.

ManDataPath

ExpAdj ShiftEnc Aligner Rounder

ExpAdder SignUnit ManAdder
Normalizer

Figure 7.6: The design hierarchy for the revised partitioning.

The profiling results illustrated in Figure 7.7 suggest that the revised partitioning is
quite well balanced in terms of coupling and cohesion. The coupling between the trvo

new'modules is only 27648 compared to 74752 and 40960 in the initiai partitioning.

The four most tightly coupled modules, those that process the mantissa, are norv all

contained in one highiy cohesive module.

2048 Signs

r 6384
Exporents Exponent

81 92

FPA

ExpDataPath
A

27648 I

T
ManDataPath

Mantissa

Mantissas
6ss3 6

24576

Figure 7.7: Profiling data derived from the FPA model (revised partitioning)

The revised floorplan for the FPA is show in Figure 7.8. There are no further planarity

faults and all connections are feasible. Only 73% of the area of the revised partitioning
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floorplan is r-rnused space as opposed lo 35To for the initial partitioning. The total

area occupied by the revised FPA floorplan is 72% of that occupied by the initial
floorplan.

FPA ExpDataPath ManDataPath

I Unusedarea

ffil Requked minimum area

Fñ'l Composilion mod.rle

Figure 7.8: A floorplan for the FPA (revised partitioning)

7.6 Refining the Exponent Adder

In both the initial and revised specification, the Exponent Adder is implemented by

the following functional module:

DEFINITI0N ExpAdder;
STATE

-- Ports:
Switch, Cout : PortType;
ExpA, ExpB, Exp : ARRAY t0..71 0F PortType;
Shift : ARRAY [0..5] 0F PortType;
-- Variables:
expav, expbv, exprv, shiftamountv : INTEGER;
coutv : BOOLEAN;

PORTS

DeclareBus(ExpA, INP); -- Exponent of A.
DeclareBus(ExpB, INP); -- Exponent of B.
DeclareBus(Exp, OUTP); -- Exponent positive difference.
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DeclareBus(Stritt, OUTP); -- Encoded shift amount.
DeclarePort(Switch, BIT, 0UTP); -- Mantissa shift selection.
DeclarePort(Cout, BIT,OUTP); -- Carry out.

INIT
-- None.

FUNCTION

expav := READBUS(ExpA) ;

expbv := READBUS(ExpB) ;

IF (expav-expbv) > 0 THEN

coutv := TRUE;

ELSE

coutv := FALSE;
END;

IF coutv THEN

shiftamountv := expav - expbv;
ELSE

shiftamountv := expbv - expav;
END;

IF shiftamountv'> 23 THEN

shiftamountv := 23i
END;

IF coutv THEN

exPrv := exPav;
ELSE

exprv := expbv;
END;

WRITEBUS (Sfritt, shif tarnountv) ;

I,IRITEBUS (Exp, exprv) ;

I'IRITE(Cout, FROMBO0L(coutv) ) ;

!üRITE(Switctr, FR0MB00L(coutv) ) ;

ENDFUNCT]ON.

END ExpAdder;

This specification demonst¡ates the use of the abstract Modula-2 subtraction operator

for the simplified specifi.cation of a function. Decomposition of the Exponent Adder

consists of dividing the function between three submodules:

7. Inuerter inverts the signals on the A and B exponent bus. By tying the inputs

of the foliowing adders high and using the inverted version of one of the two

exponents the adders may be used to perform subtraction.

2. The Ad.derA takes the difference ExpA - ExpB.

3. The AdderB takes the difference ExpB -. ExpA. The carry output of the adder

will be high if ExpA is the larger of the two.
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4. The Multiplexor uses the carry out of AdderB to select the positive difference

and transfer it to Shift. Similarly the larger of the two input exponents is

switched to Exp.

The refined specification of the Exponent Adder now appears as the composition

module:

DEFINITI0N ExpAdder;
STATE

-- Ports:
Switch, Cout : PortTYPe;
ExpA, ExpB, Exp : ARRAY [0..7] 0F PortType;
Shift : ARRAY [0..5] 0F PortTYPe;
-- Variables:
expav, expbv, exprv, shiftarnountv : INTEGER;

coutv : B0OLEAN;

PORTS

DeclareBus(ExpA, INP); -- Exponent of A.
DeclareBus(ExpB, INP); -- Exponent of B.

DeclareBus(Exp, 0UTP); -- Exponent positive difference.
DeclareBus (Stri-tt, OUTP) ; -- Encoded shift amount.
DeclarePort(Switch, BIT, oUTP); -- Mantissa shift select.ion.
DeclarePort(Cout, BIT, OUTP); -- Carry out.

TOPOLOGY

Makelnstance (InvertBus , InvertBus) ;

Makelnsta¡ce (AdderA, AdderA) ;

Makelnstance(AdderB, AdderB) ;

Makelnsta¡rce(l,tu1tiplexor, Multiplexor) ;

-- Input connections:
Connect(ExpA & InvertBus/¡,in) ;

Connect(ExpB & InvertBus/Bin) ;

-- Output connections:
Connect(Exp & Multiplexor/ExPOut) ;

. Connect(Shift & Multiplexor/Shift0ut);
Connect (Switch & AdderB/Cout) ;

Connect(Cout & AdderB/Cout) ;

-- Submodule interconnect :

Connect(InvertBus/Aout & AdderÂ/Ain) ;

Connect(InvertBus/Bout & AdderA/Bin) ;

Connect (InvertBus/InvAout & AdderA/InvAin) ;

Connect (InvertBus/InvBout & AdderÂ/fnvBin) ;

Connect(Ra¿erA/Aout & AddexB/Ain) ;

Connect(¡,a¿erA/Bout & AdderB/Bin) ;

Connect(¡¿derA/InvAout & AdderB/InvAin) ;

Connect (R¿¿erA/InvBout & AdderB/InvBin) ;
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Connect (AdderA/Sum & Multiplexor/Ain) ;

Connect(AdderB/Sum & Multiplexor/Bin) ;

Connect(¡,¿¿erB/Cout & Multiplexor/Select) ;

Connect(fixedHi/Out & AdderA/Cin & AdderB/Cin) ;

ENDTOPOLOGY

END ExpAdder;

Functional modelüng of this specification reveals that the refined module behaves

identically to the earlier more abstract version. Modelling the form of the specifica-

tion produces the simple floorplan shown in Figure 7.9. Neither result suggest that

changes need be made to the partitioning.

ExpAdder

I Unusedarea

Fiiffil Reçired minirrum area

ÑS1 Conrposition nrodule

Figure 7.9: Floorplan of the Exponent Adder.

7.7 Refining the Adder

The adder used in the Exponent Adder may be further decomposed to a bitrvise

composition. It is at this level of the hierarchy that regularity in function and com-

munication become apparent. Note that there is a structural difference betrveen

AdderA and AdderB that may be expressed by using two instances of a single defi-

nition macro to create different definitions. The definition macro MakeAdderDef has

three parameters: the name of the definition, and the two signals to be connected to
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the respective adder cell inputs: 1

#def ine Mal<eAdderDef (NAME , ACoN , BCoN)

DEFINITI0N Name;

STATE

Ain, Bin, fnvAin, InvBin, Sum,

Aout, Bout, InvAout, InvBout : ARRAY [0..2] 0F PortType;
Cin, Cout : PortType;

PORTS

DeclareBus(¡,in, INP); -- A input.
DeclareBus(gin, INP); -- B input.
DeclareBus(InvAin, INP); -- Inverted A input.
DeclareBus(fnvBin, INP); -- Inverted B input.
DeclareBus(Aout, OUTP); -- A output.
DeclareBus (Bout, OUTP) ; -- B output.
DeclareBus(InvAout, OUTP); -- Inverted A output.
DeclareBus(fnvBout, OUTP); -- Inverted B output.
DeclareBus(Sum, 0UTP); -- Sum of A and B.
DeclarePort(Cin, fNP); -- Carry in.
DeclarePort(Cout, OUTP); -- Carry out.

TOPOLOGY

-- Make an array of adder cells:
Makelnstance(AdderBit, AdderBit<0. .7>) ;

-- Connect up the through connections:
Connect(lin[<0. .7>] & Adderbit<0. .7>/A.in) ;

connect (Bin[<0. .7>] & Adderbit<o. .7>/Bj.n) t
Connect (fnvAin[<0. .

Connect (InvBin[<0. .

Connect (Aout [<0. . Z>

Connect (Bout [<O . . Z>

& Adderbit<O. .7>/InvAin) ;

& Adderbit<O. .7>/InvBin) ;

Adderbit(O . . 7>/Aout) ;

Adderbit<0 . . 7>/Bout) ;

7>l
7>l
l¿
l¿

Connect(InvAout [<0. .7>] & Adderbit<O. .7>/InvAout) ;

Connect(InvBout [<0. .7>] & Adderbit<O. .7>/InvBout) ;

-- Connect the su¡n:
Connect(Sun[<0. .7>] & Adderbit<O. .7>/Sun) ;

-- Connect the carry's
Connect(AdderBit<I. .7>/Cin & AdderBit<0. .0>/Cout) ;

Connect(AdderBit0/cin & Cin) ;

Connect(AdderBit7 /Cout & Cout) ;

-- Strap the appropriate connections:
Connect (AdderBit <o . .7> / A, & AdderBit/ACoN) ;

Connect(AdderBit<0. .7>/B & AdderBit/BCON) ;

ENDTOPOLOGY

END NAME;

lLine continuation character "\" omitted for clarity
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The definition of adder A and B may now be generated by appropriate calls to the

macro:

MakeAdderDef(AdderA, Ain, InvBin)
MakeAdderDef (AdderB, InvAin, Bin)

The floorplan generated for such a composition is shown in Figure 7.10. The con-

straints one each cell comprise an environment (shown in Figure 7.11) that may be

used to guide a manua,l or automatic lea,f cell design tool.

AdderA

AdderBlt<0..7>

l-] Urused area

ffi Requhed minimumarea

[tI Compæitionno&le

Figure 7.10: Floorplan of AdderA.
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Figure 7.71l. Leaf cell environment specification.

Up to this point none of the description has inciuded timing information. Instead

"instantaneous" transfers have been used as abstraction from physical delays. At this

point however (the leaf module level) it is appropriate to add in delay information

that may be used to verify that system wide signal timings are correct. The follorving

is a functional definition with physical delays for a single bit of the adder given in

the above description.
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DEFINITI0N AdderBit;
-- Adder bit with input and inverted input wire-through.
STATE

Ain, Bin, InvAin, InvBin, Sum,

Aout, Bout, InvAout, InvBout,
A, B, Cin, Cout : PortType;
av, bv, cinv, outv, coutv : BOOLEAN;

PORTS

DeclarePort(Ain, BIT, INP); -- A input for wirethrough.
DeclarePort(Bin, BIT, INP); -- B input for wirethrough.
DeclarePort(InvAin, BIT, fNP); -- Inv A input for wirethrough.
DeclarePort(InvBin, BIT, INP); -- fnv B input for sirethrough.
DeclarePort(Aout, BIT, OUTP); -- A output for wirethrough.
DeclarePort(Bout, BIT, OUTP); -- B output for wirethrough.
DeclarePort(fnvAout, BIT, OUTP); -- Inv A output for wirethrough.
DeclarePort(fnvBout, BIT, OUTP); -- Inv B output for wirethrough.
DeclarePort(4, BIT, INP); -- A input.
DeclarePort(8, BIT, INP); -- B input.
DeclarePort(Sum, BIT, 0UTP); -- Sum of A and B.
DeclarePort(Cin, BIT, INP); -- Carry in.
DeclarePort(Cout, BIT, OUTP); -- Carry out.

INIT
-- None.

FUNCTION

-- ÏJirethroughs with no delay:
WRITE(Àout, READ(Ain)) ;

TTIRITE (Bout , READ (B in) ) ;

Ì'IRITE(InvAout, READ(InvAin) ) ;

I"¡RITE (InvBout , READ (InvBin) ) ;

-- Actual adder:
av := T0B00L(READ(A));
bv := T0B00L(nnm(g));
cinv := T0B00L(nem(cin)) ;

outv
(av AND NOT bv AND NOT cinv) 0R
(NOT av AND NOT bv AND cinv) 0R
(l¡Ot av AND NOT cinv AND bv);

coutv
(av AND cinv) 0R
(uv ¡,tto cinv) ;

DELAYEDI,IRITE(Sum, FR0MB00L(outv), 15) ;
DELAYEDI,¡RITE(Cout, FROMBO0L(coutv) , 15) ;

ENDFUNCTION;

END AdderBit;
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When this cell is placed in a composition such as AdderA, the delays in the carry

chain for instance are propagated such that the AdderA carry delay is the sum of all

the bit cell delays. Modelling the system under these conditions allows the designer to

catch synchronization errors, note critical paths, and to estimate and adjust system

performance.

7.8 Summary

An algorithm that is to be implemented as a VLSI system may be initially parti-

tioned using appropriate techniques from software structural design. This reduces

the complexity of the design problem by dividing it into a number of subproblems

with well defined interactions.

The various physical costs and constraints involved in implementing an algorithm in

VLSI impact the partitioning of the system. In particular the high cost of communi-

cation between modules, and the requirement for planarity in a structured floorplan,

may require that the initial partitioning be modified. This is illustrated in the exam-

ple outlined in this chapter by the need to restructure the partitioning such that it
allows communication based around bus structures. The resulting revised partition-

ing led to reduced area and communication complexity in the final design.

The example has illustrated the utility of supplying the designer with design tools

that aid in the evaluation of the partitioning by modelling the physical function and

geometrical form of the design.
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Chapter 8

Conclusion

The complexity of VLSI systems may be attributed to the large number of interacting

components they contain, the inherently unstructured nature of the medium, and the

costs and constraints of interconnect.

This research has shown that managing the complexity of VLSI systems design may

be aided by the adoption of a design philosophy and associated computer aided

modelling tools that assist in structural d,esign. By identifying the similarities and

differences between the structural design of software and hardware it has been possible

to examine the transfer of software structural design techniques to the VLSI domain.

As a first step towards supporting structural planning, the design process has been

divided into a designer intensive, exploratory planning phase and an automated cor¿-

struction phase. Rather than perform structural planning in a horizontally parti-

tioned set of abstract descriptions, the task is carried out within a single structural

representation of the design hierarchy.

A language has been described that encourages the application of software structural

design techniques to VLSI. In particular the language provides mechanisms for the

abstract representation of intermodule communication and regular structure. It en-

courages the top-down refinement of the design by the recursive decomposition of

functional modules into structural entities, and the refinement of abstract communi-

cation mechanisms to physically delayed signal transfers.

Validation and analysis of the design specif.cation requires that a facility be available

for the modelling of the composite function of the specification. A program has

been described that allows the designer to model the system in a similar way to a
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software designer "debugging" a program. Test vectors are used to drive the model

of a particular system module to validate (with a degree of confidence) the correct

function of the specification.

The quality of the partitioning inherent in the structural specification is evaluated

with the aid of a set of statistics recorded by the program during simulation. These

are mainly concerned with capturing the data-flow properties of the design as comrnu-

nications have a high priority in the VLSI medium. Additional statistics on module

activity aid in the estimation of parallelism. The summary of these statistics and

their presentation to the designer provides a mechanism for the "profiling" of the de-

sign, assisting in the location of trouble spots, and giving an estimate of the coupling

and cohesion of. the va¡ious modules.

A mechanism has been described that allows for the modelling of the function of ihe

specification based on a representation of each module as a process. Communication

between modules is simulated by the passing of messages between processes, and a

scheduling mechanism is provided that ensures that process activations occur in an

appropriate sequence. The overall effect of this approach to simulation is that ferver

module activations are required, increasing the effi.ciency of the modelling process.

The two-dimensional constrained nature of the silicon surface requires that the de-

signer be able to model the physical form of the partitioning in addition to its func-

tion. This may be done through the generation of structured fioorplans for each

composition module as it is specified. Such floorplans may also of course be used to

guide the module assembly process.

The automatic top-do\¡¡n generation of custom floorplans is complicated by a number

of issues: primarily the details of the modules in each design are typically uncer-

tain, as they themselves are yet to be designed. In addition the search space for

any such space-planning problem is very large, resulting in exponentially increasing

computational complexity.

The approach taken to the f.oorplanning problem in this research has relied on the

use "knowledge-based" techniques to deal with these problems. Configuration factors

have been proposed ad a mechanism for representing and reasoning with uncertain

knowledge of module implementations. Domain specific knowledge has been used to

prune the solution space and thus minimize the number of design alternatives that

must be evaluated during a design. Several distinct classes of knowledge required for
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the floorplanning task have been identified, and a knowledge representation designed

or selected for each.

Finally, a case study has been presented that has illustrated the successful application

of the structural methodology to a VLSI system design.

Due to the lack of compa,rable resea¡ch in the area of structural VLSI design, details

of the implementations and their performance have not been emphasised. R¿ther

the intent has been to present a phi,losophy for the structural design of large VLSI

systems, and to indicate how it may be supported.
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