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Summary

The development of accurate finite-difference methods for solving the linear diffusion
equation with constant coefficients, in either one or two spatial dimensions, is useful in
the study of several physical phenomena, such as underground water flow and diffusion
of heat through a solid body. As well as accuracy, however, the amount of computer
time taken to generate a solution must be taken into account, since this may be an

important practical constraint.

The approach taken has been to thoroughly examine the one-dimensional case and
then, having found some good methods to solve this problem, use the knowledge
gained to develop methods for solving the more complicated two-dimensional problem.
This work can then be extended to solve the variable coefficient diffusion equation, or
even the non-linear equation, by considering that over the size of the computational
stencil used, the linearised constant coefficient equation is a good approximation to

the equation being solved.

In order to determine the accuracy of a given finite-difference equation, the mod:-
fied equivalent equation, developed by Warming and Hyett (1974) for their heuristic
stability analysis, has been adapted and used. This approach allows the simple de-
termination of the theoretical order of accuracy of any finite-difference equation, thus
allowing methods to be compared with one another. Also, from the truncation error of
the modified equivalent equation, it is possible to eliminate the dominant error terms
associated with finite-difference equations that contain free parameters (weights), thus

leading to more accurate methods.

Several different finite-difference methods for the one-dimensional diffusion equation
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are developed, and their theoretical and actual truncation errors, as well as the CPU
time required for solution, are compared to determine the most practical methods. To
determine the actual order of accuracy of the method, graphs of log{(Gridspacing)}
against log{|(Error)|} are plotted for decreasing values of the grid spacing and the
results are examined. These graphs should be straight lines, and the slopes of the lines
give the actual order of accuracy of the method. In most cases, this order matches
the theoretical prediction, and in those cases where this is not so, the reasons for the

difference are investigated.

Where the normal derivative at one boundary (or even both boundaries) is specified
rather than the beundary value, the approximations at grid points on the boundary
must be calculated. It is shown that it is still possible to produce relatively accurate so-
lutions although the results are not as accurate as when the boundary value is known.
Also in this case the techniques for handling the problems that arise near the bound-
ary from some of the finite-difference equations having spatially wide computational

stencils must be revised.

The same techniques as were used for the one-dimensional case are then applied to
developing accurate finite-difference equations for the two-dimensional diffusion equa-
tion. In this case the computational stencils contain more grid points, and therefore
allow more weights to be included. However, the larger number of low-order error
terms in the modified equivalent equation, arising from the added cross-derivative er-
ror terms, means that some of the extra weights must be used to maintain the same
accuracy as was achieved for the one—dimenéional problem. Again, many different sten-
cils and their corresponding finite-difference equations are examined, in order to find
the best methods which can be practically applied. The method for determining the
actual order of accuracy of the method is the same as that used for the one-dimensional

case.

The so-called “locally one-dimensional” methods are examined, where the very accu-
rate methods developed for the one-dimensional case can be applied directly to the
two-dimensional problem. The best of the one-dimensional methods used in this man-

ner are then compared with the best of the fully two-dimensional methods, to deter-
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mine the preferred solution method. Note that to implement these methods correctly
it is necessary to split the two-dimensional diffusion equation into two one-dimensional
equations, each of which is solved alternately. Doing this requires special considera-
tion of values on the boundary in the cases where only diffusion in one direction has
been modelled. If this is not done then the results are downgraded to second-order

accurate, regardless of the order of the finite-difference equation used.

The other class of techniques in common use for solving the two-dimensional diffusion
equation is the alternating direction implicit methods, which combine the advantages
of implicit methods, particularly large stability ranges, with fast execution speed on
a computer, which is the major problem with fully implicit equations for the two-
dimensional problem. Two different kinds of equations are considered, those based on
the “classical” ADI methods, and those based on a “marching” equation, which must
be applied “left-to-right” and then “right-to-left” in each spatial direction, as well
as alternating the spatial direction. The potential for generating accurate solutions
is examined for each type of equation, since these methods prove to be the only
way of obtained generally fourth-order accurate results without using spatially wide

computational stencils.

Another important practical problem that arises when solving the two-dimensional
problem is an irregular boundary, which results in the specified boundary values not
coinciding with the grid points of a uniform grid. This problem can be overcome by
developing special finite-difference equations which allow for a non-uniform grid spac-
ing at such a boundary. The effect of using these equations, which have a theoretical

accuracy one order lower than their uniform grid analogues, is examined.

In order to make this work feasible, computer programs were developed to perform
the time consuming and mechanical tasks involved with developing the finite-difference
equations by hand. Using these programs it is possible to start witb a desired method
of differencing the diffusion equation, and have the computer determine the finite-
difference equation corresponding to that differencing, as well as its modified equivalent
equation. Weights specified in the original differencing can then be used to eliminate

the dominant error terms, which then leads to the optimal form of the finite-difference
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the equation rather than to increase the accuracy



