N
]

A
Q;,s'/m gg_)

Finite-Difference Methods

for the Diffusion Equation

Kenneth John Hayman B.Sc.(Maths.Sc.) (Hons.)

Thesis submitted for the degree of
Doctor ‘of Philosophy

Department of Applied Mathematics
University of Adelaide

March 1988

Contents

Summary

Statement of Originality

Acknowledgements

1 Introduction

2 The
2.1
2.2
2.3

2.4
2.5
2.6
2.7
2.8
2.9

3 The
3.1
3.2
3.3
3.4

1-D Diffusion Equation with Dirichlet Boundafy Conditions

Introduction . ;i & & s & o 5 7@ @ @ & % § @08 w0 @ ¥ e w6 w0 B R 5 G
The Modified Equivalent Equation Approach
Finding Methods of Improved Accuracy
2.3.1 Using Higher Order Derivative Approximations
2.3.2 Eliminating the Leading Error Terms
Numerical Stability o o s s g5 e5 msa £ 5@ s 8% 6 @ x5 %o s
(1,33)Methods svwso srmammarmmmns namns naos
The Optimal (1,5) Method iz w s ma eius vamas eemes &u s
The (1,5,1) Method wue v mmowim o v ormis oo wooismim %50 o0 oo
Implicit Methods, cc v se vow s e iswambaeioninia

SUMMATY & 55 sor@em 6% 0 @ a0 % % & 6 & 9 ©0 66 @ % ow § 5 8 8o 8w

1-D Diffusion Equation with a Neumann Boundary Condition
Introduction @ 5}% §c5ei GABDE S S0 @8 B E DT
Using External Grid Points & ¢ vu v v w vo v o wwn vmw s s s oo
Using Interior Grid Points Onlyo

SUMIMATY o 4 o0 6 % & & % @ 50 8% 6% e @ %0 6 % 0§ %0 &l 08 @16 % & 0 o

10

16
16
19
29
29
32
33
35
45
51
59
65

CONTENTS 2

4 The 2-D Diffusion Equation 87
41 Introduction..s; ss @ i@ sid §6E i i@ i SR I@EE 63/ a®k 87
4.2 Two Level Explicit Mei‘:hods 90

4.2.1 (1,5) Forward-Time Centred-Space Method 90
4.2.2 (1,9) Weighted Explicit Method 93
4.2.3 (1,13) Weighted Explicit Method 99
4.2.4 (1,21) Weighted Explicit Method 107
4.2.5 (1,25) Weighted Explicit Method 112
4.2.6 SUMINATY . .« v v« v v e vt e e e ot et e e e e e e e 116
4.3 Three-Level Explicit Methods 117
4.3.1 (1,5,5) Weighted Explicit Method, 117
4.3.2 (1,9,9) Weighted Explicit Method, 119
4.3.3 Other Three-Level Equations 125
434 Summary pamSmurs mimEiing uE 127
4.4 Two-Level Implicit Methods 127
dvd.]l (5,9) Implicit Method " . o . & u o x an 5 2 o 5 e 5 00 v o i 2 mn 3 2 08 128
4.4.2 (9,9) Implicit Method . . . i s ie s s sassaman o 130
4.5 Locally One-Dimensional Methods 135
4.6 Alternating Direction Implicit Methods 143
4.7 SUIMMATY 4 e ¢ 5 i e @0 5% &% & % 5 &% &% @ & % 6 8 % & e & 4 8 8 & W W s 153

5 Irregular Boundaries 155
51 Introduction o i e e e e e e e e e e 155
5.2 Variable Grid Equations i ¢s scmsa avme s as e as & a e s 156
5.3 SUMIATY « . - < % « « o uen e i o 1w 0w 5 isc @ & i % Y ¥ 2 AW K W £ DS ¥ am X Do X 169

6 Conclusions 171

A User Guide for the FDE Development Programs 177
Al Introduction. v o v i i i i e e e e e e e e e e e 177
A.2 Differencing a Partial Differential Equation 185
A.3 Finding the Modified Equivalent Equation 190

A.4 Evaluating the Optimal Equation 198

CONTENTS

A.5 Numerical Stability and Solvability
A.5.1 Listing of Module COEFF.FOR

B Key Files for Program DISC

B.1 Introduction.

...........................

B.2 Keys for 1-Dimensional Program

B.3 Keys for 2-Dimensional Program

C Listing of Program SUPER

C.1 Introduction.

C.2 The Program SUPER

Bibliography

...........................

...........................

203
207
210
210

211
216

222
222
223

264

Summary

The development of accurate finite-difference methods for solving the linear diffusion
equation with constant coefficients, in either one or two spatial dimensions, is useful in
the study of several physical phenomena, such as underground water flow and diffusion
of heat through a solid body. As well as accuracy, however, the amount of computer
time taken to generate a solution must be taken into account, since this may be an

important practical constraint.

The approach taken has been to thoroughly examine the one-dimensional case and
then, having found some good methods to solve this problem, use the knowledge
gained to develop methods for solving the more complicated two-dimensional problem.
This work can then be extended to solve the variable coefficient diffusion equation, or
even the non-linear equation, by considering that over the size of the computational
stencil used, the linearised constant coeflicient equation is a good approximation to

the equation being solved.

In order to determine the accuracy of a given finite-difference equation, the modi-
fied equivalent equation, developed by Warming and Hyett (1974) for their heuristic
stability analysis, has been adapted and used. This approach allows the simple de-
termination of the theoretical order of accuracy of any finite-difference equation, thus
allowing methods to be compared with one another. Also, from the truncation error of
the modified equivalent equation, it is possible to eliminate the dominant error terms
associated with finite-difference equations that contain free parameters (weights), thus

leading to more accurate methods.

Several different finite-difference methods for the one-dimensional diffusion equation

SUMMARY 5

are developed, and their theoretical and actual truncation errors, as well as the CPU
time required for solution, are compared to determine the most practical methods. To
determine the actual order of accuracy of the method, graphs of log{(Gridspacing)}
against log{|(Error)|} are plotted for decreasing values of the grid spacing and the
results are examined. These graphs should be straight lines, and the slopes of the lines
give the actual order of accuracy of the method. In most cases, this order matches
the theoretical prediction, and in those cases where this is not so, the reasons for the

difference are investigated.

Where the normal derivative at one boundary (or even both boundaries) is specified
rather than the boundary value, the approximations at grid points on the boundary
must be calculated. It is shown that it is still possible to produce relatively accurate so-
lutions although the results are not as accurate as when the boundary value is known.
Also in this case the techniques for handling the problems that arise near the bound-
ary from some of the finite-difference equations having spatially wide computational

stencils must be revised.

The same techniques as were used for the one-dimensional case are then applied to
developing accurate finite-difference equations for the two-dimensional diffusion equa-
tion. In this case the computational stencils contain more grid points, and therefore
allow more weights to be included. However, the larger number of low-order error
terms in the modified equivalent equation, arising from the added cross-derivative er-
ror terms, means that some of the extra weights must be used to maintain the same
accuracy as was achieved for the one-dimensional problem. Again, many different sten-
cils and their corresponding finite-difference equations are examined, in order to find
the best methods which can be practically applied. The method for determining the
actual order of accuracy of the method is the same as that used for the one-dimensional

case.

The so-called “locally one-dimensional” methods are examined, where the very accu-
rate methods developed for the one-dimensional case can be applied directly to the
two-dimensional problem. The best of the one-dimensional methods used in this man-

ner are then compared with the best of the fully two-dimensional methods, to deter-

SUMMARY 6

mine the preferred solution method. Note that to implement these methods correctly
it is necessary to split the two-dimensional diffusion equation into two one-dimensional
equations, each of which is solved alternately. Doing this requires special considera-
tion of values on the boundary in the cases where only diffusion in one direction has
been modelled. If this is not done then the results are downgraded to second-order

accurate, regardless of the order of the finite-difference equation used.

The other class of techniques in common use for solving the two-dimensional diffusion
equation is the alternating direction implicit methods, which combine the advantages
of implicit methods, particularly large stability ranges, with fast execution speed on
a computer, which is the major problem with fully implicit equations for the two-
dimensional problem. Two different kinds of equations are considered, those based on
the “classical” ADI methods, and those based on a “marching” equation, which must
be applied “left-to-right” and then “right-to-left” in each spatial direction, as well
as alternating the spatial direction. The potential for generating accurate solutions
is examined for each type of equation, since these methods prove to be the only
way of obtained generally fourth-order accurate results without using spatially wide

computational stencils.

Another important practical problem that arises when solving the two-dimensional
problem is an irregular boundary, which results in the specified boundary values not
coinciding with the grid points of a uniform-grid. This problem can be overcome by
developing special finite-difference equations which allow for a non-uniform grid spac-
ing at such a boundary. The effect of using these equations, which have a theoretical

accuracy one order lower than their uniform grid analogues, is examined.

In order to make this work feasible, computer programs were developed to perform
the time consuming and mechanical tasks involved with developing the finite-difference
equations by hand. Using these programs it is possible to start with a desired method
of differencing the diffusion equation, and have the computer determine the finite-
difference equation corresponding to that differencing, as well as its modified equivalent
equation. Weights specified in the original differencing can then be used to eliminate

the dominant error terms, which then leads to the optimal form of the finite-difference

SUMMARY 7

equation. This optimal equation can then be checked for such things as time-stepping
(von Neumann) stability, solvability and/or marching stability, as appropriate. In
some cases it is possible to use some of the weights to enhance the stability region of

the equation rather than to increase the accuracy.

Statement of Originality

I certify that this thesis contains no material which has been accepted for the award
of any other degree or diploma in any University and, to the best of my knowledge
and belief, contains no material that has been previously published or written by any

other person, except where due reference has been made in the text.

If this thesis is accepted, I give consent for it to be made available for photocopying

and loan as applicable.

Kenneth John HAYMAN

Acknowledgements

I wish to express my sincere gratitude to my supervisor, Dr. B.J. Noye for his guidance,
encouragement and support during the period this work was carried out. Thanks also
go to David Beard for his invaluable assistance with computing problems as they arose,
as well as to other members of the University of Adelaide Mathematics Departments

for their help and advice.

The financial support of a Commonwealth Postgraduate Research Award during the

period this work was done is gratefully acknowledged.

The use of the symbolic manipulation package Macsyma, by Symbolics Inc., and the

numerical IMSL subroutine libraries is also acknowledged.

Chapter 1

Introduction

This work is aimed at producing highly accurate finite-difference methods for solving
the one and two-dimensional linear diffusion equations with constant coefficients. The
two-dimensional equation can be written in the form

i

ot . Odzr—agz- - O:y’a? = 0, (1.1.1)

where «, and «, are the constant coeflicients of diffusion in the x and y directions
respectively. The one-dimensional equation is the special case of this where o, = 0.
Since the aim of this work is to produce methods which can be applied to practical
problems, it is necessary to produce methods which not only have high theoretical ac-
curacy, but are also practical to implement on a computer without requiring excessive

amounts of CPU time.

The ultimate goal is to produce good methods for the two-dimensional case, since
this equation has practical uses in such areas as modelling the flow of underground
water, the flow of oil in underground reservoirs (Bear, 1972), and the diffusion of
heat through solid bodies. To approach this goal, a thorough understanding of the
one-dimensional problem is required. Once this simpler problem has been examined
in detail and highly accurate and practical solution techniques have been found, the
experience gained can be applied to the much more complicated but more practically

useful two-dimensional problem.

10

CHAPTER 1. INTRODUCTION 11

Extensions of this work into the cases with variable coefficients are also possible. In

this case, the fully general form of the diffusion equation, namely
or 0 or 0 ot
— — Nl ag(z,y, t,)=— | — — ,,5,7)=— | =0 1.1.2
- 2 (ateintiN5) - 5 (@t D) (112)

in two-dimensions, must be considered. This equation is used in much the same areas
as the constant-coefficient equation, but is more applicable in cases where there is a
steep “front” involved in the diffusion (Richtmyer and Morton, 1967). To adequately
handle problems such as this one, a good understanding of the constant coefficient
case, as presented here, is a necessary prerequisite. Constraints on available time,

however, prevented this extension from being included in this work.

As already mentioned, the approach taken towards the goal of accurate methods for
the two-dimensional problem is to start with the one-dimensional case and find the
best methods for dealing with that case, with the various techniques being judged on
both the accuracy of the solution generated and the amount of CPU time required
to find the solution. From this work, insight is gained into the most advantageous
methods for developing solution techniques in the one-dimensional case, so that when
attempts are made to solve the more difficult two-dimensional problem, our efforts

can be directed in ways most likely to give profitable results.

In all cases, the chosen solution method is via finite-difference techniques, since they
offer enough flexibility to generate accurate solutions, and furthermore the numerical
errors can be predicted theoretically. Such predictions can then be checked against
results generated by test runs of problems with known solutions. In all cases where
computer time usage is referred to in this work, the amount of CPU time is meant
rather than the elapsed real time, since this latter may vary enormously depending on

the system load.

The one-dimensional problem is first approached using ezplicit finite-difference meth-
ods, since these are both straight-forward to implement and very fast to run on a
computer. Unfortunately, most methods of this type suffer from numerical instabili-
ties, which in some cases place such severe restrictions on the methods that they are

of no practical use. This is caused by the stability condition dictating that, for a

CHAPTER 1. INTRODUCTION 12

given spatial resolution of the the solution domain, the time step must be extremely
small, which means that many more time steps are required to find the solution, which
in turn increases the CPU time usage. Such problems frequently arise for methods
which are extremely accurate, which means that a balance must be struck betv;leen
high accuracy and keeping the computer time required to generate a solution within
reasonable bounds. Balanced with this, however, is the fact that such highly accurate
methods can produce very good results using a relatively coarse grid, and this can be

used to constrain the CPU time requirements of the solution.

Implicit methods, which in many cases have no limits on their stability, are then
investigated. These methods, however, require the solution of a set of linear algebraic
equations for each time step, which adds significantly to the amount of computer time
used to generate a solution. Also, the solution of this set of algebraic equations may
impose limitations on the use of the method, since the coefficient matrix for the set
of equations is required to be diagonally dominant to ensure that the solution process
is stable. Added to this, it is found that even in cases where neither the stability of
the equation itself nor the solution of the equations imposes restrictions on the size of
the allowable time step, the error involved in the finite-difference equation increases
enormously with an increase in the time step used. This makes it impractical to use

large time steps to take advantage of the stability of these equations.

All the above work is done on the assumption that the boundary conditions are spec-
ified values on each boundary, which is usually referred to as a Dirichlet boundary
condition (Duff and Naylor, 1966). In the case where the normal derivative is known
instead, which is referred to as a Neuwmann boundary condition, the same solution
methods can be employed, but there is the additional problem arising from the re-
quirement to find the actual value at the boundary at each time level. A Neumann
boundary condition most frequently arises in practice where one boundary of the solu-
tion domain represents an impermeable layer or barrier, which is represented mathe-
matically by saying that the flow velocity across the boundary is zero (Leonard, 1983).
Other cases, where there is a known, but non-zero, flow across the boundary also arise

in some practical situations.

CHAPTER 1. INTRODUCTION 13

An added complication in using methods which work well for the Dirichlet case to
solve the problem with a Neumann boundary condition is that the boundary value is
required by some of the methods used to solve the Dirichlet case, such as happens for
implicit equations, so these methods must be re-evaluated to determine whether they
are still practical. It is shown that most of the best methods for solving the Dirichlet
case still produce accurate results in this case, although the absolute size of the errors
has increased by several orders of magnitude, due to the added complication of the

problem and the extra approximations required.

From this base, we attempt to find accurate solution techniques for the two-dimensional
case. Applying the same methods successfully used in the one-dimensional case, we
form generalised equations involving several free weights (parameters), which can be
chosen as desired to increase accuracy, numerical stability or both. Several classes of
methods are examined, again broadly classed as explicit or implicit. The solution of
the set of equations for the implicit methods however has increased in complexity quite
dramatically, since the coefficient matrix has now lost its tri-diagonal banded struc-
ture which allowed for relatively quick and efficient solution in the one-dimensional
problem. This being the case, most of the work on the two-dimensional problem is

concentrated on explicit equations.

Another approach to the two-dimensional problem which works quite successfully is
to use what are referred to as “locally one-dimensional methods”. This involves con-
sidering the total two-dimensional problem as a series of one-dimensional problems,
firstly by considering a series of constant y values for half a time step, then a series
of constant z values for the remaining half time step. In this way, the methods de-
veloped for the one-dimensional problem can be directly applied to give a solution to
the two-dimensional problem. Note that there is a problem in the implementation of
such schemes, since the boundary conditions specified involve diffusion in both spatial
directions, but the approximations after the first half time step include diffusion in
only one direction. If the boundary conditions are used as given, the order of the
solution becomes second-order, regardless of the order of the difference equation be-

ing used. This problem can be overcome by noting that some boundary values at

CHAPTER 1. INTRODUCTION 14

the intermediate time level are not required for a rectangular solution domain, since
they are not used in the computations for the next half time step, and the remaining
values can be calculated from the previous boundary values using the finite-difference
scheme itself, so that the diffusion is the same at th.e boundaries as in the interior of

the region. The case of non-rectangular solution domains is also considered.

One other way of overcoming the problems of fully-implicit equations for the two-
dimensional problem is to use an “alternating direction implicit” (ADI) method. These
equations are structured so that the set of equations that has to be solved at each
time level involves only one spatial dimension. This means that the bandwidth of the
coefficient matrix is fixed at three, rather than increasing with the number of grid
points used. In this way it is possible to develop more accurate and stable methods
than is possible using explicit equations, without the enormous CPU time overhead

of the fully implicit equations.

A major part of the work of developing the finite-difference equations was the devel-
opment of a set of computer programs to speed up the process of finding the finite-
difference equation corresponding to a given differencing of either the full advection-
diffusion equation (sometimes called the transport equation), namely

o7 or or 8%t 07

P — PR

_67+u8w + By Un3 ayéa;:() (1.1.3)

or one of its special cases, such as the diffusion equation.

Once a particular differencing of the original equation to be solved has been deter-
mined, these programs are used to generate the corresponding finite-difference equa-
tion, its modified equivalent equation, and hence its truncation error, in a very short
period of time. This is a vast improvement over the several days of work often required

to determine this information by hand.

Due to the importance of these programs, the documentation describing their use
on the VAX is given in Appendix A, as well as a listing of the major program in
Appendix C. These programs can also be readily modified to cope with equations
other than the advection-diffusion equation, such as the first and second-order wave

equations (Noye and Rankovic, 1986).

CHAPTER 1. INTRODUCTION 15

Once the modified equivalent equation has been determined, a set of equations, usually
non-linear and sometimes extremely complicated, can be derived which must then be
solved, either by hand or by using a symbolic algebraic manipulation package such
as MACSYMA, to determine the values for the free weights that will give the most
accurate method possible from the initial differencing. Given these values for the
weights, another of the programs substitutes these values into the finite-difference
equation to give the optimal form of the equation. The von Neumann stability, and if
applicable the solvability of the equation can then be determined, and the equation can
then be tried in practice over its usable range, if this range is sufficient to be of practical
interest. If the usable range (ie. the range over which the finite-difference equation
is consistent, von Neumann stable and solvable) is too severely limited, then this is
usually apparent within about half an hour of starting with the initial differencing,
which is again much better than _the day or two required before these programs were

implemented.

Overall, this work provides several practically useful results. Some highly accurate
and practically usable finite-difference methods for both the one and two-dimensional
diffusion equations with constant coefficients have been derived and analysed, both for
the case of known boundary values and also the case where only the derivative is known
on one or more of the boundaries. The computer programs developed for this work
are also useful for very quickly determining the optimal finite-difference equation for a
given differencing, or else for analeing an existing equdtion to determine its theoretical

accuracy.

Chapter 2

The 1-D Diffusion Equation with

Dirichlet Boundary Conditions

2.1 Introduction

The one-dimensional linear diffusion equation with constant coeflicients can be written

as
ot 0%t
— —a—=0 2.1.1
ot %0s? ’ ()
where o is the constant diffusion coefficient and ¥ = 7(z,t). This equation is of

interest since it has practical a,pplicatiéns in such processes as underground fluid flow,
which can be regarded as having no advection component, and in areas such as heat
conduction along a thin insulated rod, where the diffusion may be regarded as being
one-dimensional. Most practical applications, however, can only be accurately dealt
with using the two-dimensional diffusion equation, which is considered later in this

work (Chapter 4).

Equation (2.1.1) can be solved numerically by finite-difference techniques. Without
loss of generality, we may assume that equation (2.1.1) has been non-dimensionalised,
such that the spatial domain is [0,1], and « is a non-dimensional diffusion coefficient.

The space domain is then divided into J equal grid spacings of length Az. The

16

CHAPTER 2. 1-D DIFFUSION - DIRICHLET CONDITION 17

equation can then be solved on this grid by starting from some known initial state (ie.
time ¢t = 0) and set of boundary conditions, using these to compute an approximation
to the state at a small time ¢+ = At later, and repeating this process until the desired
time ¢t = T is reached. It should be noted however that some solution techniqués,
which are described later, use information from more than one time level to obtain
values at the new time level. In such cases some special starting procedure must be
used until solutions at enough time levels are available for the desired equation to be

employed.

In order to carry out this time stepping process, it is necessary to have both a specified

initial condition of the form
#(2,0) = f(z), for 0<z <1, (2.1.2)

and a pair of boundary conditions at £ = 0 and z = 1. In the first instance, it will
be assumed that there is a Dirichlet boundary condition (ie. the boundary values are

specified), in the form

70,8) = ai(d),
#(1,1) = g2(2), (2.1.3)

for all t > 0. Later, the case of a Neumann boundary condition (ie where the normal

derivative is specified) at one boundary, in the form

a7 _
dzlog) al) i>0 S

will also be considered.

As well as the initial and boundary conditions, we need a finite-difference equation
that relates the values at both the current and next time levels. Such an equation
is derived by approximating all the derivative terms in (2.1.1), applied at the point
(jAz,nAt), by combinations of approximate values of 7 at the grid points surrounding
it. For convenience, the grid point jAz at time nAt will be referred to as the (j,n)
grid point, the exact value of 7 at this point will be denoted by 7" and the approximate

value by 77*. The substitution
alAt

" (8ey

3

(2.1.5)

CHAPTER 2. 1-D DIFFUSION - DIRICHLET CONDITION 18

is used when writing finite-difference equations. This dimensionless quantity always
occurs in finite-difference approximations to equation (2.1.1), due to the form of this

equation and the derivatives involved in it.

As an example of a differencing, consider the simplest possible approximations to the

derivative terms in equation (2.1.1), namely

o " FpHt — 7r

orlt o =i ¢ il
5. oA, (2.1.6)
o7 | Tl =277 + 7l 2
— e O{(A 5 2.1.7
502l (Do) + O0{(Az)"} (2.1.7)

When these approximations are substituted into equation (2.1.1), and the terms of
0{(Az)?, At} are dropped to give an equation which is useful in practice, the finite-

difference approximation to (2.1.1) is

g T, =272 4 T
el | = g (L J “‘) = 0. 2.1.8
(At) ((Az) (2.18)

This can be rearranged to give the finite-difference equation

TP = et 4 (1 — 28)r + sy, (2.1.9)

which is called the FTCS equation, since it is derived from the forward-time (F'T) and
centred-space (CS) approximations to the derivative terms in equation (2.1.1). This

finite-difference equation uses the computational stencil shown in Figure 2.1.

Figure 2.1: The (1,9) computational stencil of the FTCS method

Equation (2.1.9) is termed ezplicit, since it can be used directly to compute the value
at a grid point at the new time level from values at several grid points at the current

and previous time levels. Other equations, which will be examined in detail later, are

CHAPTER 2. 1-D DIFFUSION - DIRICHLET CONDITION 19

termed implicit, since they relate the values at several grid points at the new time
level to values at the current and previous time levels. This leads to a set of linear

algebraic equations that must be solved at each time level.

To simplify the classification of finite-difference equations, methods will be referred to
as “a (p, ¢,r) method” when the computational stencil of the equation involves p grid
points at time level (n+ 1), ¢ points at time level n and r points at time level (n —1).
If the method does not involve any points from time level (n — 1) then it is simply
referred to as an (p,¢) method. Thus in this notation, the FTCS equation (2.1.9) is
a (1,3) method, since it uses only one grid point at time level (n + 1), three points at
time level n, and none at all at time level (n — 1). The extension of this notation to
equations which use more than three time levels is trivial, but such equations are not

considered in this work.

2.2 The Modified Equivalent Equation Approabh

In order to compare the accuracy of various methods, some measure of the error
involved in using a method must be found. The way that has been chosen to do this is
a modified equivalent equation approach similar to that used by Warming and Hyett
(1974). This approach is chosen because it provides much valuable information about
the finite-difference equation, such as the form of the truncation error, how much the
solution is shifted spatially by the numerical solution and how much extra diffusion
is present, as well as providing for the easy comparison of the errors associated with

different finite-difference equations.

Finding the modified equivalent equation is a two-step process. The first step is to
expand each term of the finite-difference equation as a Taylor series about the (4,m)
grid point. This leads to an infinite order partial differential equation (PDE), which is
the actual PDE which is being solved by the finite-difference equation. This equation
will be termed the Equivalent Partial Differential Equation (EPDE). If this procedure

CHAPTER 2. 1-D DIFFUSION - DIRICHLET CONDITION 20

is applied to the FTCS equation (2.1.9) above, the EPDE can be shown to be

or At@Pr O (AYPEr (A9 a(Aa) O
ot 2 Ot? aaxz 6 Ot 24 Gt 12 9z
(A& (At)° 8°%r 3 a(Az)t 88T o

90 965 T 720 ot 360 aes =Y (2.2.1)

where all the derivatives are evaluated at the (j,n) grid point.

The second step is to remove all the time derivative terms from (2.2.1) with the
exception of 0r/8t. This is achieved by repeatedly differentiating the latest form
of equation (2.2.1) itself, and adding an appropriate multiple of this back into itself
(as it was before it was differentiated) to remove the desired terms. Thus to remove
the 827 /0t? term, equation (2.2.1) is differentiated once with respect to ¢, multiplied
by —At/2 then added back into the original equation. Note that the terms must
be eliminated in order of increasing total derivatives, and within an order of total
derivatives in order of increasing space derivatives, or else the process will re-introduce
previously eliminated terms back into the equation. Thus the first term removed
is 021 /0t2, followed by 8°r/0t0z and so on. The resulting equation is termed the
Modified Equivalent Partial Differential Equation (MEPDE), and should contain the
original partial differential equation as well as some error terms, if the finite-difference
equation is consistent with the diffusion equation (2.1.1). If the original PDE is not
recovered in the MEPDE as the grid spacing Az, At — 0, then the finite-difference

equation is'not consistent with the PDE, and so the method is of no practical use.

The MEPDE for the FTCS equation (2.1.9) is thus

or o*r

E——aé—;-i—E(saA:c ’7')—0 (222)
where
17
E(s,a,Az,T7) = Q(AT) (6s — 1)
A o
+ “(363) (—120s2 +303—1) T 10{(A0)). (223)

From equations (2.2.2) and (2.2.3) it is seen that the FTCS equation (2.1.9) is con-

sistent with equation (2.1.1) and that the errors involved in using the FTCS equation

CHAPTER 2. 1-D DIFFUSION - DIRICHLET CONDITION 21

are of O{(Am)z}. This method is therefore called “second-order accurate”, or, in less
formal terms, it is simply referred to as a “second-order method”. This is all in accor-
dance with the known behaviour of this equafcion, as is the fact that the leading error
term vanishes for the value s = 1/6, making the method fourth-order accurate for
this particular case (Richtmyer and Morton, 1967). Note that in this work, the term
“high-order” will be used to mean a method of high-order accuracy, unless otherwise

specified.

In general, the modified equivalent equation for a finite-difference equation that is

consistent with the one-dimensional diffusion equation (2.1.1) can be written in the

form
or 0%t oPr
T Z Fri)
where the condition
AmhAntl_’OC =0, p=>0 (2.2.5)

must hold for consistency. In addition, however, the condition
C,=0 forp<2 (2.2.6)

is desirable so that the leading error term is at least first order and hence of smaller
magnitude than the solution being sought. It is found that the coefficients C, can be
written in the form _

Coy— M T,(s), p>2. (2.2.7)
As mentioned by Warming and Hyett (1974), the original PDE must not be used in
place of the current EPDE to remove the time derivative terms during the “modifica-

tion” process, since the EPDE represents the finite-difference equation, and in general

a solution to the original PDE will not satisfy the finite-difference equation.

The modified equivalent equation for the FTCS equation can be written in the general

form (2.2.7), with
(Am)

Cs = (65 — 1) (2.2.8)

which means that in this case

I'4(s) =63 —1. (2.2.9)

CHAPTER 2. 1-D DIFFUSION - DIRICHLET CONDITION 22

It should be noted that is the leading error term in the MEPDE is C,4, then the
method is order ¢ accurate, due to the form of the coefficient given by (2.2.7).

It has also been found (Noye, 1984) that the error terms in the MEPDE can be clas-
sified into two sets. Those error terms that are associated with odd order derivatives,
such as Cs, Cs, etc., represent errors in the wave speed of the solution. Since the
diffusion equation does not translate the solution, these errors are better interpreted
as a spatial shift of the quantity 7 under consideration. It is also worth noting that
in the case where the spatial differencing is kept centred about the j* grid point, all
of these error terms are automatically zero, since the terms from the Taylor series
that produce these error terms cancel out when they are added together. Such cen-
tred equations thus involve no artificial translation of the quantity 7. This explains
the absence of such error terms in the modified equivalent equation (2.2.3) for the
FTCS method above, since the space derivative was approximated by a centred-space

difference approximation.

The error terms associated with even order derivatives, like Cy, Cy, etc., represent
errors in the amplitude of the numerical solution, which means that the numerical so-
lution incorporates either more or less diffusion than is actually present in the original
PDE. There is no method of differencing that will force all of these to be zero for the
diffusion equation (2.1.1), due to the nature of the equation itself and the relationships

between the terms of the Taylor Series of the finite-difference equation.

The computation of the modified equivalent equation corresponding to a given finite-
difference equation is in fact a mechanical operation that lends itself to being pro-
grammed on a computer. Such a program, written in Pascal under the VAX/VMS
operating system, has been developed to produce both the EPDE and MEPDE for a
given finite-difference equation. This program uses 32-bit integer arithmetic, and so
is limited to a maximum of twelfth-order derivatives, although in practice an overflow
can occur for tenth or even eighth-order derivatives for high-order accuracy equations.
This program, as well as several others that have been developed into a sophisti-
cated system for generating highly accurate finite-difference equations, is described in

Appendix A. This system of programs allows the fast generation of finite-difference

CHAPTER 2. 1-D DIFFUSION - DIRICHLET CONDITION 23

equations, given only the desired approximations to each derivative in the PDE. Also,
although these programs were developed to run on a VAX computer, they have been
successfully transported to other systems, including various micro-computers such as
the Apple Macintosh and machines running the popular CP /M-80 and MS-DOS op-
erating systems. The limitation on the maximum derivative order can be overcome by
using extended precision integer arithmetic routines, but these must be coded as part
of the program on all the machines where the programs have been implemented, since
the required routines are not implemented by the machines themselves. This slows the
computation down by a factor of approximately one hundred relative to the version
which use integers of the size that the machines usually handle. Since the equations
which require this extended precision are usually complicated high-order equations
whose MEPDEs require significant amounts of CPU time to calculate anyway, this

magnitude of speed reduction is impractical in most situations.

Returning to the modified equivalent equation, it can be seen that this is an extremely
useful theoretical tool for determining the accuracy of a given finite-difference equation.
It is also desirable, however, to be able to check that these theoretical predictions
actually work in practice. In order to do this, it should be noted that the the total
error involved in using a finite-difference scheme is dominated by the leading error
term of the modified equivalent equation, as succeeding terms contain progressively
higher powers of Az, and thus get smaller. From equations (2.2.4) and (2.2.7), the
leading error term at the (j,n) grid point for an order g accurate method can be

written in the form

2a(Ax)? ot2r|n
(q + 2)| FQ+2(S)axq+2 j-

(2.2.10)

Thus for an order ¢ accurate method with a sufficiently small Az and assuming that
the derivative factor is approximately constant, the discretisation error is dominated

by the leading error term (2.2.10), so
le] o< (Az)? (2.2.11)

for a constant s, where ¢ is the discretisation error (7 — 7) for the method. This leads

CHAPTER 2. 1-D DIFFUSION - DIRICHLET CONDITION 24

to

le] =~ K(Az) (2.2.12)
= log{le]} =~ qlog{Az}+ K’ (2.2.13)

where K is the constant of proportionality in (2.2.11) and K’ = log{K}. From (2.2.13),
it can be seen that a graph of log{|e|} plotted against log{Az} for constant s should
produce a straight line of slope ¢ for an order ¢ method (see Noye, 1984). In this work,
we plot —log{le|} against —log{Az} in order to keep most of the numbers positive,
as shown in Figure 2.2. In some cases, the points corresponding to small values of J,
say 20 or 30, are somewhat off the straight line generated by the remaining points.
This is caused by the value of Az being large enough that higher order error terms
make a significant contribution to the discretisation error, which invalidates the above
theory. In such cases, these erroneous points are not included in the graphs. Likewise,
in the case of sixth or eighth-order methods, the errors generated for large values of J
are often smaller than the 14 digits of precision available on the VAX where the fests
were done. Again, this leads to erroneous results, due to “subtractive cancellation”
between the exact and approximate solutions, and so these points are also excluded

in the graphs, to avoid giving a misleading impression.

As another comparison, we can consider the amount of CPU time used. Let C(Az)
be the amount of CPU time used in going from one time level to the next, using a
space step of Az and a time step of At. The total amount of CPU time required to
reach the desired time level, Cp, is given by

Cp(Az,At) = N x C(Ax), (2.2.14)

where N is the number of time steps required. If we wish to change the space step to
rAz, then in order to keep s constant, we also need to change the time step to r?At.
Since the number of operations per time level depends linearly on the number of grid

points (at least for the solution methods considered in this work), it can be scen that

C(Ax)
ro

C(rAz) = (2.2.15)

since there are now 1/r times as many grid points to find values for at the next time

level. Thus if r > 1 we now have fewer grid points at which to compute values, and

CHAPTER 2. 1-D DIFFUSION - DIRICHLET CONDITION 25

less CPU time will be used. Also, since the time step has been changed, a different

number of time steps, N’, will now be required to reach the desired time level, where

N'=N/r%. _ (2.2.16)
Overall it can be deduced that
Cp(rAz,r*At) = OM%@—). (2.2.17)
From this relation it follows that
Cp « 1/(Az)’
= log{Cp} = -3log{Az}+log{K}
Now —log{Az} = —(1/q)log{le|]} + K; from above

= —log{lel} = (¢/3)log{Cp}+ K’
where the K terms represent constants. Thus a graph with —log{|e|} plotted against
log{Cp}, which will be denoted as a —log{le|} vs log{Cp} graph, should also give a
straight line, although in this case the slope of the line is one third of the order of
the method. It should be noted however that of the two graphs, the error vs grid
spacing one is likely to be more accurate, since CPU time on a time-sharing system,
such as the VAX 11-785 used for this work, can be affected by system overheads, like

the amount of paging done in response to system load.

One other comparison that can be used is to compare the amount of CPU time that is
required to generate solutions of a given accuracy, which corresponds to an intuitive
notion of the “efficiency” of the solution. This is only of use for methods of similar
orders of accuracy, since all the numerical results are for values in the range 10 < J <
100, so a low-order method will never be tested on a fine enough grid to give the same
accuracy in the answers as a high-order method produces for even a very coarse grid.

Despite this limitation, however, this type of comparison can be very useful.

The finite-difference equations are tested using initial and boundary conditions that
provide a known analytic solution to the diffusion equation, which allows the numerical
errors from the method to be found from comparison with the exact solution. The

exact solution to (2.1.1) used for the numerical tests is the Gauss peak defined by

oo L (z —a)°
T(CL‘,t) = \/4t—+16)(1) {—m} N (2218)

CHAPTER 2. 1-D DIFFUSION - DIRICHLET CONDITION 26

where the constant a = 0.5 so the peak is centred in the spatial domain of [0,1].
Equation (2.2.18) is used to define the initial and boundary conditions, as well as the
exact solution to the problem, by substituting the appropriate values for and ¢. The
values for the graphs in this work are taken at the point z = 0.2, so as to avoid the
regions of relatively small slope at both ends and near z = 0.5. In such regions the
numerical solution seems to be more accurate than over the remainder of the spatial
domain, so these regions are avoided to give a better reflection of the true accuracy
of the method. The methods are allowed to run to T' = 8, so that any instabilities
or inaccuracies in the equation should be apparent in the results. These values at the
point (0.2,8) can then be used to generate the graphs described above, and allow easy
comparison of the difference equations. The exact solution to the test problem at this

point and time, using the value o = 0.01 is 7 = 0.13....

If these graphs are drawn for the FTCS equation (2.1.9), it is found that they are
indeed straight lines, with slopes as predicted. Examples of these graphs are shown in
Figures 2.2 and 2.3. These graphs show the line of best fit through the points for each
s, and the slope of this line is the value of M listed in the legends of these graphs.

It is notable from the CPU graph, Figure 2.3, the the amount of CPU time required
to generate a solution to a specified accuracy is minimised amongst the second-order
cases by the values s = 0.1 and s = 1/3, which are not the largest values shown in
the graph. This is an indication that the dominant error term is much smaller for
these values of s than for larger values such as s = 1/2. This type of efficiency (e.
the amount of CPU time required to generate a solution to a given accuracy) is a
good method of comparing solution techniques, unless there are constraints on either
the minimum grid spacing required in the solution or the total amount of CPU time

allowed. In such cases, this measure is of less use.

Also of note from the figures is the very much more accurate and efficient solution
obtained for the special case s = 1/6, where the difference equation is fourth-order
accurate. Such results as this indicate enormous gains in accuracy and CPU time usage
that may be obtained from the development and use of methods of higher orders of

accuracy.

CHAPTER 2. 1-D DIFFUSION - DIRICHLET CONDITION

—— s= 01000 M= 2.00
—_— s= 0.1667 M= 4.04
— s= 03333 M= 201
—8— s= 05000 M= 1.99

NUMBER OF GRIDSPACINGS
10 40 100
11 1 1 1 Lo 10—11
10 L 10~10
9 L 1079
5
-8
8- - 10 <
w
g E
8* 7- - 10~ E
= m
&
6 T
i [a]
Y
-5
) /ﬁ]' 10
4 L 1074
3 . ; ; 1073
1.0 1.5 2.0
-LOG (A%
10

Figure 2.2: Error vs grid spacing graph for the (1,3) FTCS method (2.1.9)

CHAPTER 2. 1-D DIFFUSION - DIRICHLET CONDITION

—— s= 01000 M= 071
—— s= 0.1667 M= 1.44
—— s= 03333 M= 072
—8— s= 0.5000 M= 0.72

CPU TIME (SECS)
0.01 0.04 0.1 0.4 1 4 10 40 100

11 [RNl Ll g isrn L1t L1y 10-—11

10 L 4o-10

9+ B 10—9
S

-8
84 - 10 E
w
> z
3 , &
O - 1070 o
S 3
n 0
[and
6 L 108 9
o

e L 105

4+ " 10—4

3 . T ; T 1073

LOG (Cp}
10

Figure 2.3: Error vs CPU time graph for the (1,8) FTCS method (2.1.9)

CHAPTER 2. 1-D DIFFUSION - DIRICHLET CONDITION 29

2.3 Finding Methods of Improved Accuracy

Having found a practical way to compare the errors of different finite-difference equa-
tions, we can now look at ways in which more accurate equations can be generated.
Higher order equations are desired both because in any practical situation they pro-
duce more accurate answers for a given grid spacing, and also because a reduction in
the grid spacing produces a much greater increase in accuracy than the same reduction

using lower order methods.

Having theoretically developed such higher order methods, it is necessary to run them
in practice in order to check that a solution can be generated that is more accurate than
the solutions obtained from lower order methods, such as the (1,3) FTCS equation, and
also to compare the methods of the same order with one another. Such a comparison
is in fact two-fold; one in terms of the absolute error obtained for a given grid spacing,
and the other in terms of the amount of CPU time required to find a solution to a

given accuracy.

In order to achieve these comparisons, the graphs of —log{le|} vs —log{Az} and
—log{le|} vs log{Cp}, which were discussed in Section 2.2, are generated. As shown
there, these graphs should be straight lines with slopes depending on the order of the
method.

2.3.1 Using Higher Order Derivative Approximations

The simplest way to try to produce higher order solution finite-difference methods is
to employ higher order approximations to the derivative terms in the original PDE
(2.1.1). If only two time levels are to be involved in the finite-difference equation,
then it is not possible to increase the accuracy of the time derivative approximation.
This leaves only the space derivative to be improved, and this can be approximated
to fourth-order, rather than the second-order approximation (2.1.7), if five grid points

are used instead of three. This produces an equation that uses the (1,5) computational

CHAPTER 2. 1-D DIFFUSION - DIRICHLET CONDITION 30

stencil shown in Figure 2.4. The five-point spatial derivative approximation is

i —#h, + 1677, — 3077 + 1677,
dx2l; 12(Az)?

— T L of(a)Y, (2.3.1)

which can be used in place of (2.1.7) in (2.1.8) to produce the new finite-difference
equation. This equation, developed by Noye (1984), can be written as

127 = —s(r}, + Tiha) + 168(7';-1_1 + 77) + (12 = 30s)7;. (2.3.2)

Figure 2.4: The (1,5) computational stencil

This equation, having been derived from a fourth-order approximation to the space
derivative, may be expected to be more accurate than the three-point FTCS equation
(2.1.9). However, when the modified equivalent equation corresponding to (2.3.2) is

calculated, the leading error terms are found to involve the factors

Ty(s) = —6s,
Te(s) = 4(30s —1). (2.3.3)

Since (2.3.1) is a centred approximation for the space derivative term, there are no

odd-order error terms in the modified equivalent equation.

Despite having used a fourth-order approximation to the space derivative, the resulting
finite-difference equation is still only second-order accurate. Also, since I'4(s) cannot
be forced to be zero for any value of s > 0, there is no optimal value of s for which

the method becomes fourth-order.

The lack of accuracy of the equation (2.3.2) is due to the use of the first-order approx-

imation to the time derivative. The truncation error of O{At} associated with this

CHAPTER 2. 1-D DIFFUSION - DIRICHLET CONDITION 31

approximation is of 0{(Az)?} for constant s, which accounts for the second-order na-
ture of this equation. This problem may be overcome, as shown below in Section 2.3.2,

by a more careful introduction of the higher order derivative approximation (2.3.1).

In practice, these theoretical predictions are confirmed, with the five-point method
producing numerical results of better accuracy for s <1 /12 and worse for s > 1/12
when compared to the three-point FTCS equation (2.1.9). This is to be expected,
since the magnitude of the leading error terms from the respective MEPDEs follows

the same trend, as shown in Figure 2.5.

ITa(s)]
4
9/4 |
(1,5) equation
3/2 }
(1,3) equation
3/4
. ; : i s
0 1/8 1/4 3/8 1/2

Figure 2.5: Leading error terms for the (1,8) FTCS method and the standard (1,5)

equation.

From the above, it is apparent that merely using higher order approximations to some
of the derivative terms in the original PDE does not necessarily lead to higher order
finite-difference equations. A more sophisticated approach is clearly needed to produce

finite-difference schemes with a high order of accuracy.

CHAPTER 2. 1-D DIFFUSION - DIRICHLET CONDITION 32

2.3.2 Eliminating the Leading Error Terms

Another approach to generating higher order methods is to generate equations which
have some free parameters or weights involved in them; and then eliminate as many of
the leading error terms as possible from the modified equivalent equation by choosing

suitable values for these weights.

For example, neither the three-point approximation (2.1.7) nor the five-point version
(2.3.1) produce a fourth-order method, so we now try a weighted combination of the

two, namely
A*r | , ,
07|~ (1 —¢) x [CS3 at (§,n)] + ¢ x [CS5 at (j,n)] (2.3.4)
i
where CS3 is the three-point centred-space approximation (2.1.7) and CS5 is the five-
point approximation (2.3.1). If this combination is used to approximate the space

derivative in (2.1.1), the resulting finite-difference equation is
127}““ = —sp(T],+ Tiva)
+ {4+ g +70y) H{6(2 =5+ (2 —p)s)}r]. (2.3.5)

This equation uses the same computational stencil as that used by the (1,5) method

developed in the previous section (see Figure 2.4).

The modified equivalent equation corresponding to equation (2.3.5) can be written in
the general form (2.2.4) with leading errors involving the terms

Ty(s) = 6s—1+¢,

Te(s) = —1+5p(1—6s)+ 30s(1 —4s). (2.3.6)

Again, since both of the difference approximations used for the space derivative are
centred about the j** grid point, the odd-order error terms are automatically elimi-
nated from the MEPDE. The weightings that are used in this work are kept centred
for this reason, since using non-centred approximations would mean that more weights

would be needed to eliminate the odd-order errors.

From equations (2.3.6), it can be seen that the choice

@ =1—06s (2.3.7)

CHAPTER 2. 1-D DIFFUSION - DIRICHLET CONDITION 33

for the weight ¢ will force I'y(s) = 0 and thus eliminate the term involving Cy from
the modified equivalent equation. This choice should then produce a method which
is fourth-order accurate. If this substitution is made, the finite-difference equation

becomes

12777 = {s(6s — 1)}y + 7]4a)

+ {8s(2 —3s)}(r]y +7]hy) + {6(2 — 5s + 6s)}r] (2.3.8)

which has a modified equivalent equation in the general form (2.2.4) with the leading

error term involving the factor
Ts(s) = 4 — 30s + 60s%. (2.3.9)

This shows that the equation (2.3.8) is indeed fourth-order accurate. Since (2.3.7) is
the only substitution that makes I'y(s) = 0, equation (2.3.8) is the “optimal” equation
for this computational stencil, in the sense that it has the highest order of accuracy
possible for this stencil. Thus the weighted combination of the two space derivative
approximations has produced a new finite-difference equation that is fourth-order ac-
curate, rather than the second-order accuracy obtained by using either approximation
individually. This (1,5) equation is investigated in more detail, and its numerical

results examined, in Section 2.6 below.

It appears from this that the technique of first finding a weighted equation, then
deriving the corresponding modified equivalent equation and eliminating the leading
error terms by a suitable choice of the values for the weights is an extremely useful

method for producing high order finite-difference equations.

2.4 Numerical Stability

It seems likely from the above that very accurate finite-difference methods can be
developed to solve the diffusion equation, and indeed this can be done in practice.
There is no point, however, in developing highly accurate methods if they cannot be

implemented to produce results of an acceptable accuracy in a reasonable amount

CHAPTER 2. 1-D DIFFUSION - DIRICHLET CONDITION 34

of CPU time. The ability to do this using a finite-difference equation depends on
numerical stability of the difference equation. Thus as well as the accuracy of any
given method, we also need to check its stability range, and in this work this check is

done using the von Neumann method (O’Brien et. al., 1950).

Checking the stability of our finite-difference equations is also important due to Lax’s
Equivalence Theorem (Lax and Richtmyer, 1956), which states that “Given a properly
posed linear initial value problem and a finite-difference approximation to it that
satisfies the consistency condition, stability is the necessary and sufficient condition
for convergence”. Here “convergence” is used to mean that the solution of the finite-
difference equation converges to the solution of the original PDE as the grid spacing
tends to zero. Thus we require convergence if our solution is to be of any use, but
this property is extremely difficult to prove directly. Instead, we use this theorem,
since the diffusion equation with (reasonable) given initial and boundary conditions
qualifies as a “properly posed linear initial value problem”, which allows us to just

prove stability and consistency, which is a much simpler task.

In the case of the FTCS equation (2.1.9) it is well known (Richtmyer and Morton,

1967) that the von Neumann stability restriction is
s<1/2 (2.4.1)

which, while being somewhat restrictive, allows large enough time steps to obtain

results in a reasonable amount of computer time.

For the five-point method (2.3.2) it can be shown (Noye, 1984) that the von Neumann
stability range is

s < 3/8 (2.4.2)

which is more restrictive than the three-point FTCS equation (2.1.9). Thus the five-
point equation (2.3.2) has a smaller stability range than the three-point equation; in
addition it is no more accurate, and also requires special treatment next to the bound-
aries, since the equation then involves points that are outside the solution domain.
Consequently, this method is of little practical use as a solution method and will not

be considered further in this work.

CHAPTER 2. 1-D DIFFUSION - DIRICHLET CONDITION 35
For the fourth-order equation (2.3.8), the von Neumann stability range is
s <2/3 (2.4.3)

(Noye and Hayman, 1986a) which is a larger region than either of the other two
equations. This equation, like the basic five-point equation, requires special treatment
next to the boundaries, since the computational stencil extends beyond the boundaries
when applied to find either 77" or 77%;. The equation (2.3.8), however, has both
greater accuracy and greater numerical stability than either of the other methods

considered so far, and so the extra work to implement it in practice is worthwhile.

Since many finite-difference equations have von Neumann amplification factors which
are extremely difficult to obtain in analytic form, many of the stability regions obtained
in this work have been found numerically. The computer program to do this (Steinle,
1984) takes a range of values of s and a range of values for one weight, splits each range
up into a specified number of subintervals, then for each (s, weight) pair calculates the
von Neumann amplification factor, G, for a range of wave numbers. If any of these G
values has

IG|>1 (2.4.4)

then the equation in unstable for that (s, weight) pair, otherwise it is stable. This
program gives a practical way of finding the von Neumann stability range for even

extremely complicated finite-difference equations.

2.5 (1,3,3) Methods

The fourth-order equation (2.3.8) is more accurate than the second-order methods,
such as the FTCS equation (2.1.9), generally in use at the present time. Before
exploring this method further, other ways of achieving fourth-order accuracy will be
examined. The advantages of the optimal (1,5) method, namely that it is explicit and
has a large stability range, should, if possible, be kept in a new technique. The (1,5)
method does however have problems dealing with grid points next to a boundary (this

is described fully in Section 2.6), and a new technique should be sought to avoid these.

CHAPTER 2. 1-D DIFFUSION - DIRICHLET CONDITION 36

In an attempt to do this, the three-level (1,3,3) stencil shown in Figure 2.6 is used.
This gives an equation which is still explicit, so the advantages of quick computation
are still present; it has one extra grid point, which means that a fourth-order schfeme
should be possible; it is also only three grid-points wide, so it will not require external
grid points when used next to the boundaries. Against this, however, is the fact that
since the stencil uses grid points from three time levels, some other scheme must be
used for the initial time step. This starter method should ideally be of the same order
of accuracy as the three-level method so as not to detract from the final numerical
results. For example, the fourth-order (1,5) equation (2.3.8) could be used to start a

fourth-order three-level method.

Figure 2.6: Computational stencil for the (1,8,3) method

The (1,3,3) stencil, shown in Figure 2.6, allows the introduction of three Weights. This

is done by differencing the derivative terms in (2.1.1) as follows:

T~ ax BT a G- L)+ BT G+ 10
+ Ax[FTat (4,n)]+ (1 —2y =) x [CT at (5,n)], (2.5.1)
%{;: ~ o x[CS at (j,n)] + (1 —) x [CS at (j,n - 1], (2.5.2)

where BT, CT and FT represent the backward, centred and forward-time difference
approximations to 97 /0t respectively, and CS denotes the three-point centred-space

differencing (2.1.7). The finite-difference equation corresponding to this differencing

18

CHAPTER 2. 1-D DIFFUSION - DIRICHLET CONDITION 37

2y —A=1* = 2y~ es)(rf + i) +2{2ps = AT
+ 2{ps —s =7} S + 7
+ {4s(1—p)+2y+ A —1}777N (2.5.3)

Since the distribution of weights was chosen to keep the equation spatially centred, it
is expected that the modified equivalent equation corresponding to (2.5.3) will have
no odd-order error terms, and indeed the modified equivalent equation, written in the

general form (2.2.4) has leading error term involving the factor
Ty(s) = 129(1 — s) + 125 — 1205 + 6)s — 1, (2.5.4)
and all the odd-order coeflicients are zero.

It can be seen by rearranging equation (2.5.4) that the substitution

1, A (1-s)

p=1-0-+

12s 2 B

(2.5.5)

will make I'4(s) = 0 and hence remove the Cj error term from this modified equivalent

equation. This produces an equation which is fourth-order accurate, namely
—6{1+ (A =27} = {1-12s—6s(A —27)}(7}; +7741)]
+ {—2+424s +12(s — 1)(A — 27)}7}
+ {6s(X —27) = 1}(75 + 77
+ {6(1—2s)(A —27y) — 4} (2.5.6)

This accuracy of this equation can be verified by finding its modified equivalent equa-

tion, which has a leading error involving

To(s) = 3/2 — 15s + 60s” + 15s(\ — 27)(6s — 1). (2.5.7)

By rearranging (2.5.7), I's(s) can also be made zero, which would then give a sixth-

order equation. It should be noted, however, that despite having two weights left in

CHAPTER 2. 1-D DIFFUSION - DIRICHLET CONDITION 38

equation (2.5.6), it cannot be made eighth-order, since the two weights always occur

together in the expression A — 27, and to make it sixth order requires setting

1 - 10s + 40s?
10s(1— 6s)

A—2y = (2.5.8)

It follows that making the equation sixth-order removes both remaining weights from

the equation. The sixth-order equation is

6{20s* — 1}/ = 4s{1—30s + 120s*}(1]", + 77}y)
+ 4{-3+428s — 60s® — 240s°}77"

+ 4s{60s® — 1}(r) +)

+

2{3 — 565 + 300s* — 240s°} 77" (2.5.9)

A desirable feature of a finite-difference equation, although clearly of lesser importance
than good accuracy, is a large stability range, which allows the spatial resolution to
be increased without necessarily having to use much smaller time steps. In fact, the

stability region for this equation is
s<1/6 (2.5.10)
which is only one quarter of that for the fourth-order (1,5) method.

This small stability range means that in order to increase the resolution of the solution
(ie. decreasing Az), the time step must be reduced accordingly, which means that the
method may require more CPU time to generate a solution than another method with
a larger stability range. Nevertheless, since the method is sixth-order, even relatively
coarse grids give very accurate results, so refining the grid spacing may not be required,

in which case this equation is very good.

The results obtained by this method, shown in Figures 2.7 and 2.8, are extremely
accurate when compared with those from methods of lower order, except for the case
of s = 1/6. The relatively poor accuracy in this case is explained from the form of the

modified equivalent equation of (2.5.9), which has the leading error coefficient

P a(Az)® {5040034 — 12600s® — 126052 + 330s — 13
8 = —

302400 1—6s } , s#1/6. (2.5.11)

CHAPTER 2. 1-D DIFFUSION - DIRICHLET CONDITION 39

—¥— s= 0.0500 M= 5.81
—_— s= 0.1000 M= 6.04
—h— s= 01667 M= 3.99

NUMBER OF GRIDSPACINGS
10 40 100

14 1 1 1 L1111 10—14

13- L 40—18

12- L 10712

11 L 10~
S

—10
10+ - 10 &
w
s 3
g - 1070 &
T &
[a s}
8 - 1078 3
h [a]

7- L 107

6) - 10-6

5+ - 1070

4 T . ; 10~4

1.0 1.5 2.0
-LOG {a%
10

Figure 2.7: Error vs grid spacing graph for the sizth-order (1,8,8) method (2.5.9)

CHAPTER 2. 1-D DIFFUSION - DIRICHLET CONDITION

—%— §=00500 M= 2.00
—O— §=0.1000 M= 210
—Ar— 3= 01667 M= 137
CPU TIME (SECS)
0.1 0.4 1 4 10 40 100
14 1 L Lt 1 L1 111111 1 Ll Lt
13- -
12 =
114 B
10 k
%
82 o Ll
i |
|
8- i
74 v
6- B
5] i
4 1 1 T
-1.0 0.5 2.0
LoG {Cp)
10

Figure 2.8: Error vs CPU time graph for the sizth-order (1,9,3) method (2.5.9)

10714

10~18

1012

10—11

10—10

1079
1078

1077

1076

10~

DISCRETISATION ERROR

40

CHAPTER 2. 1-D DIFFUSION - DIRICHLET CONDITION 41

The denominator term here, 1—6s, is the result of normalising the modified equivalent
equation. If the modified equivalent equation is considered before this normalisation
process, this term multiplies both 87/0t and 8°7/0xz*. Thus at s = 1/6, the modified
equation does not contain these derivatives, and the finite-difference equation is con-
sistent with some other partial differential equation, not the one-dimensional diffusion
equation. This causes the very bad results obtained from the numerical tests in this
case. To avoid this problem, the value of s is restricted to exclude the value s = 1/6.
Note that, for a given grid spacing and using the maximum allowable value of s in each
case, the amount of CPU time required to obtain a solution with the (1,3,3) method
is about four times that required by the (1,5) equation (see Section 2.6 below).

Against this, however, is the fact that the sixth-order (1,3,3) equation with s = 0.1
gives a more accurate answer in slightly less CPU time than the (1,5) equation with
s = 2/3, which makes the (1,3,3) method more attractive if this advantage can be
utilised. Thus whether or not the (1,3,3) equation is practical to use is dependent
on any CPU and/or accuracy restrictions on the solution, such as a minimum spatial

resolution being required.

To cover cases where the sixth-order (1,3,3) equation is not practical to use, further

investigation of the weighted equation (2.5.3) is warranted. The choice of
v = s(¢—1)
= 2ps (2.5.12)
leads to the well known equation of DuFort and Frankel (1953) , namely
{1+ 28}t = 2s(r], + 71) + {1 —2s}77 7" (2.5.13)

This equation has the advantage that is is von Neumann stable for all s > 0, so there
is no limit on the size of the time step that may be taken for a given grid spacing. In
order to determine the accuracy of this equation, the modified equivalent equation is

derived, and the leading error terms are found to contain the factors

Ti(s) = 12¢* -1

Ta(s) = —(720s" —120s% 4 1) (2.5.14)

CHAPTER 2. 1-D DIFFUSION - DIRICHLET CONDITION 42

Thus the DuFort-Frankel equation is only second-order accurate in general, although
it becomes fourth-order in the special case s =1/ v/12, when the factor ['4(s) vanishes.
~ In the “optimal” case, however, the value of s is fixed, and so no use can be made
of the extra stability range. In the general case, the equation is only second-order
accurate, and as can be seen from T'4(s), the magnitude of the error coefficient rises
quadratically as s is increased. Thus the numerical error associated with this method

inereases enormously if s is increased to take advantage of the extra stability.

Although it has been successfully applied by many workers in the past, including
Fromm and Harlow (1963) and Hung and Macagno (1966), the DuFort-Frankel equa-
tion is of little practical use due to its being only second-order accurate for general

values of s.

A better method than DuFort-Frankel, although not as accurate as the sixth-order
equation investigated earlier, is the fourth-order weighted equation (2.5.6). This equa-

tion can be re-written in terms of a single weight, by substituting

9=X\—27, (2.5.15)
giving the equation

—6{1+ 9}7_;1+1 = {1-12s— 693}(7’;"_1 + 7';1+1)}
+ {—2424s+126(s — 1)}7}
+ {60s —1}(775 + T

+ {66(1 —2s) -4}, 6# L (2.5.16)

This equation is at least fourth-order accurate for all s > 0 (it includes the sixth-order
equation discussed above as a special case) and still contains one free weight, which

can be used to try to increase the stability of the method.

In the case §# = —1, the value ’T}H_l is eliminated from the finite-difference equation.
What remains is in fact a fourth-order implicit equation, written at time levels n
and (n — 1), which was first derived by Crandall (1955). This equation, which is

unconditionally stable (Figure 2.9), is discussed in more detail in Section 2.8 below.

CHAPTER 2. 1-D DIFFUSION - DIRICHLET CONDITION 43

Equation (2.5.16) can now be entered into the numerical von Neumann stability pro-
gram, to try to find a form for 6, which may depend on s, that will maximise the
stability of the resulting method. The resulting plot, shown in Figure 2.9, shows that

the stability range increases as § > 0 increases, although the range never exceeds
s <1/2, (2.5.17)

and only approaches this value slowly as 6 becomes large.

-2.0 -

Figure 2.9: Stability plot in the s-0 plane of the weighted (1,3,3) equation (2.5.16).
The dashed line is the upper bound on the stability region for 6>0 (2.517).

The problem with letting § become large is, as for the DuFort-Frankel method above,
use of the increased stability range will degrade the accuracy of the solution. To see

this, the fourth-order error coeflicient

a(A

4
Ce = 243) (1 — 10s + 405> + 108s(6s — 1)) (2.5.18)

is examined, and it is clear that for s > 1 /6 this coeflicient increases linearly with 6.
Also, as s is increased for a given 6 > 0, the error coefficient increases quadratically.
Thus the gain in stability, which was aimed at reducing the CPU time required, is

offset by a loss of accuracy, which is unacceptable.

CHAPTER 2. 1-D DIFFUSION - DIRICHLET CONDITION 44

These theoretical expectations are clearly demonstrated by a numerical test of this
technique. If the method is run with @ = 100, which gives stability up to s < 0.4+,

the results shown in Figures 2.10 and 2.11 are obtained.

—— s= 01000 M= 472
—— s= 02500 M= 555
—A— s= 03333 M= 591
—8— s= 04000 M= 6.13

NUMBER OF GRIDSPACINGS
10 40 100

a L 1 1 Lgo gy 10—9

X 8
8 10 z
P [ag
\ i

-7
= 74 10 =z
z I o
2 3
8 s 2
< 6 - 107
[+el
[$]
@
[m)

5 L 1075

4 > ’ " 104

1.0 1.5 2.0
-LOG {a%
10

Figure 2.10: Error vs grid spacing graph for the fourth-order (1,3,3) method (2.5.16),
with § = 100

Two points are obvious from these results. Firstly, the graphs, while being close to
straight lines, have slopes somewhat larger than the expected values, which indicates
that for this set of initial and boundary conditions some cancellation of errors is
occurring. Secondly, and more importantly, is the drop in accuracy as s is increased
towards the stability limit, which confirms the predictions that using the extra stability
range would cause a loss of accuracy. This loss is not so great as to render the method
useless, however, since s is constrained by the stability limit, so depending on the

circumstances of the solution its use may be considered.

Overall, both the sixth-order and the weighted fourth-order (1,3,3) equations provide
practical solutions, although the practicality of each is determined by the requirements

at the time of solution. Note that while the stability of the fourth-order (1,3,3) equa-

CHAPTER 2. 1-D DIFFUSION - DIRICHLET CONDITION 45

—R— s= 01000 M= 161
—— s=0.2500 M= 1.90
—i— s= 03333 M= 204
—8— s= 0.4000 M= 211

CPU TIME (SECS)
0.1 0.4 1 4 10 40 100

9 1 [RN 1 L Ly 1 Ll il 10_9

-8
8 - - 10 «
o
[a
&

-7
= 74 ~ 10 p=4
s 5
= =
3 &
3 8 L 1078 I
[a o4
[®]
]
[a}

5 L 1075

4 1 1] 10—4

-1.0 0.5 2.0
LOG (Cp)
10

Figure 2.11: Error vs CPU time graph for the fourth-order (1,;?,3) method (2.5.16),
with 8 = 100

tion is somewhat less than that for the (1,5) equation, the (1,3,3) equation does not -
require special treatment near the boundaries, which may be an advantage in some

situations.

2.6 The Optimal (1,5) Method

As discussed in Section 2.5 above, an alternative explicit method to the fourth-order

(1,3,3) equation is the fourth-order (1,5) equation (2.3.8), namely
127’}‘Jr1 = {s(6s— 1)}, + T}ﬂrz)
+ {8s(2 = 38)}(r[q + /1) + {6(2 — 55 + 6s*)}r) (2.6.1)

However, there are problems with implementing this equation next to the boundaries,

since the equation then involves grid points outside the solution domain.

Nevertheless, it does avoid the stability and error trade-off encountered with the

CHAPTER 2. 1-D DIFFUSION - DIRICHLET CONDITION 46

fourth-order (1,3,3) method. To show this, we find the von Neumann amplification

factor for the (1,5) equation, which is given by

—-1). 45(2 — — :
—§~6—83——)COSZIB—|— i(_3_~°’)cosﬁ+ P = [kl (G55 (2.6.2)

G(s,cos ff) = =
3
where f = mmAz and m is a wave number. For von Neumann stability, we require
|G| <1 forall 8. (2.6.3)

In order to satisfy (2.6.3), given that s > 0 for the equation to be of practical use, we
require

0<s<2/3, (2.6.4)

which is the result stated in Section 2.4 above. The complete derivation of this result
is given by Noye and Hayman (1986a). This is the largest stability range of any of
the methods developed so far, except for the DuFort-Frankel. More importantly, the
aumerical error is independent of the stability limit, so the method should produce

reasonably accurate results even if s = 2/3 is chosen.

Since the equation (2.3.8), when applied at j = 1 or j = J — 1, involves grid points

outside the solution domain, an alternative method must be employed to find the

1 n+1

values at 7" and 7377,

This method must be of the same accuracy as that used for the rest of the solution
domain, and should also be von Neumann stable over at least the range defined in
(2.6.4). One way to create such a method is to approximate the 8%7/9z* term in an
off-centred fashion that contains enough grid points still to be fourth-order. Such a

method, developed by Noye and Hayman (1986a), is

127770 = 25(5 + 65)8 + 3(4 — 55 — 185°) 7] +4s(24s —)7y

1 14s(1 — 68)7y + 65(65 — 1)7f 4 s(1 — 6s) 75 (2.6.5)
at the z = 0 boundary with the mirror-image equation

127™0 = s(1 = 68)r]_y + 63(6s — 1)ri_ + 14s(1 — 6s)75_5

+ 4s(24s — 1)}, +3(4 — 5s — 18s%)r7_, +25(5 + 6s)77 (2.6.6)

CHAPTER 2. 1-D DIFFUSION - DIRICHLET CONDITION 47

being used at the z =1 boundary. To verify the accuracy of these equations, their
modified equivalent equations are examined. The two equations are found to have the

same MEPDE, and the leading error term contains the factor
Te(s) = 2(30s* + 75s — 13), (2.6.7)
which verifies the fourth-order accuracy of the equations.

The von Neumann stability range, however, is not large enough to allow the use of

these equations directly. The range, computed numerically, is
0<s<0.29..., (2.6.8)
which is a significantly smaller range than that given in (2.6.4).

The only way around this problem is to use the formulae (2.6.5) and (2.6.6) with
k smaller time steps at the boundary, which then necessitates calculating values at
the time levels (n + i/k)At for « = 1,2,3,...,k—1, 5 =0,1,2,3,4,5 and also for
j=J-5J—-4J-3,J-2, J —1,J. Alternatively, a single formula can be derived,
which is the equivalent of k steps using, say, (2.6.5). This formula however is extremely
complicated, with coefficients that are polynomials of large degree in s, so a simpler

method was sought.

Crandall (1955) developed an optimal (3,3) implicit method, based on the computa-
tional stencil shown in Figure 2.12. This equation, which is the most accurate possible

with this computational stencil, is
{1- 63}('@”_"’11 + T}fll) +2{5+ GS}T}“H
= {146s}(r}y + 7)) +2{5— 6s}7r, (2.6.9)

which has a modified equivalent equation that can be written in the general form

(2.2.4), with a leading error term which involves the factor
3)
Ts(s) = 5(1 - 20s%), (2.6.10)

which shows that the method is fourth-order accurate. When used on its own to solve

the diffusion equation (2.1.1), this method, being implicit, requires the solution of a set

CHAPTER 2. 1-D DIFFUSION - DIRICHLET CONDITION 43

of linear algebraic equations at each time level. Even though the relatively efficient
Thomas (1949) algorithm can be used, this is a time-consuming process compared
to the use of explicit methods, and is the main disadvantage of implicit methods in

general, particularly for solving multi-dimensional problems.

Figure 2.12: Computational stencil for the boundary scheme based on Crandall’s (%,3)
method

For the purposes of overcoming the boundary problems inherent in the (1,5) explicit
scheme, however, Crandall’s equation can be used in an explicit fashion to find the val-
ues 71 and 7771 . This is possible because the values 707! and 777! at the boundaries
are known from the Dirichlet boundary condition (the case of the Neumann condition
is discussed below in Section 3), the values 2 and 771, are known from the main
formula and all the required values at time level n are also known. This leaves only

one value unknown in Crandall’s formula at either boundary, so the equation can be

re-arranged to give this value explicitly, namely

2{5+ 6s}r* = {6s-— D+

+ {146s}(r]y F 1)+ 2{b—6s}r} (2.6.11)

where j = 1 is used at the z = 0 boundary, and j = J — 1 is used at the x = 1

boundary.

One of the main reasons for trying this method 1s that Crandall’s implicit equation is
both fourth-order accurate for all s > 0 and also unconditionally von Neumann stable,

so it is hoped that this stability will also be apparent in the rearranged form. When

CHAPTER 2. 1-D DIFFUSION - DIRICHLET CONDITION 49

equation (2.6.11) is checked numerically for stability, remembering that two of the
values come straight from the boundary conditions and hence play no part in error
accumulation, and the other known value at time level (n+1) is calculated from values

at time level n via the main formula, the von Neumann stability region is found to be
0<s<0.95. (2.6.12)

This is much larger than the stability region for the interior of the solution domain,
so use of this boundary scheme imposes no extra restrictions on the method. This
being the case, this technique of overcoming the boundary problems associated with
the (1,5) equation is to be preferred over the use of the off-centred approximations

and multiple steps at the boundaries described above.

The actual results, obtained for the Gaussian peak defined by (2.2.18) and shown in
Figures 2.13 and 2.14, are very close to the expected ones; the graphs are straight
lines with slopes very close to the predicted values of 4 and 4 /3 for the error and CPU
graphs respectively. The errors are much smaller than those of any other fourth-order
method that has been considered so far. Even compared to the FTCS equation in the
optimal case when s = 1/6, which gives results of similar accuracy to the (1,5) method,
the (1,5) method is superior in terms of computer time used. This is because the (1,5)
method with s = 1/3 gives the same accuracy as the FTCS method with s = 1/6,
but can use twice the time step for a given spatial grid, due to the larger value of s.
'This means that the same time level can be reached in only half as many time steps,
which significantly reduces the computational time required. It is interesting to note,
however, that of all the values shown, the value s = 0.25 uses the smallest amount
of CPU time to achieve a given accuracy. This coincides with the minimal value of
the error cocficient T'g(s), given in equation (2.3.9), although experience with other
equations of different accuracies shows that in general terms the two values are merely
related and not necessarily equal. Compared with this is the fact that the smallest
amount of CPU time required to generate a solution (independent of the accuracy)
oceurs for s = 2/3, which is the expected result since larger values of s allow larger

time steps and hence use less computer time.

Compared to the fourth-order (1,3,3) equation (2.5.16) the (1,5) equation is superior

CHAPTER 2. 1-D DIFFUSION - DIRICHLET CONDITION 50

—3— 8=01250 M= 4.01
—e— s5=01667 M= 4.02
—A— s=02500 M=2395
—g— s= 03333 M=13.90
—&O— 8= 05000 M= 4.00

NUMBER OF GRIDSPACINGS
10 40 100
11 1 1 1 I S T | 10—11
\N
Y oo
, L —10 &
10+ = 10 E
s W
— =z
5 , o
8* 9 - 10~ E
i t
I
8 - 1078 3
[=)
7 " : : 10~7
1.0 1.5 2.0
-LOG (aX)
10

Figure 2.13: Error vs grid spacing graph for the fourth-order (1,5) method (2.3.8)

—_—— s= 01250 M= 139
—_— g=0.1667 M= 139
B s= 02500 M= 137
—8— s= 0.3333 M= 137
—E&— s= 05000 M= 1.38
CPU TIME (SECS)
0.1 0.4 1 4 10 40 100
1 L b aat [BN RNl L1y 4911
S
-10
104 - 10 oc
< &
= =z
5 . 8
8" 9- - 107 &
(2]
B jm
(o5
8- L 1078 @
(o]
7 r Y : 10~7
-1.0 0.5 2.0
LOG (Cp)
10

Figure 2.14: Error vs CPU time graph for the fourth-order (1,5) method (2.5.8)

CHAPTER 2. 1-D DIFFUSION - DIRICHLET CONDITION 51

in terms of both accuracy and computer time used. The use of Crandall’s formula to
overcome problems next to the boundary means that there is no need to use any grid
points beyond the physical solution domain. Also, the von Neumann stability range
of the (1,5) equation is greater than that for the (1,3,3), which allows larger time steps
to be taken for the same grid spacing, so reducing the amount of CPU time required

in cases where a specified spatial resolution of the solution is required.

In summary, the preferred method of solution of the diffusion equation (2.1.1), amongst
the explicit methods discussed above, is either the sixth-order (1,3,3) equation (2.5.9),
if its stability restriction is not a problem or the fourth-order (1,5) equation (2.3.8),
using the rearranged Crandall formula (2.6.11) at the boundaries. These have been
shown to give the most accurate answers, using only modest amount of CPU time and

are very straight-forward to implement.

2.7 The (1,5,1) Method

Although the optimal (1,5) equation presented above provides high accuracy and a
good usable region, it is possible that even better methods may be possible using a
larger computational stencil. An attempt has been made to produce an even more
accurate method by extending the computational stencil to include the (j,n — 1) grid
point. This leads to a finite-difference equation based on the (1,5,1) stencil shown in

Figure 2.15.

The (1,5,1) stencil allows the use of two weights, one for the spatial derivative in
exactly the same way as was done for the (1,5) equation, and another for the time

derivative. Thus the weighting used is

4

I & 6 x [FTat (j,n)] + (1 — 6) x [CT at (j,n)],

ot
o*r

dz?

J
n

@ x [CS3 at (j,n)] + (1 —) x [CS5 at (j,n))]. (2.7.1)

J

CHAPTER 2. 1-D DIFFUSION - DIRICHLET CONDITION 52

Figure 2.15: The (1,5,1) computational stencil

This weighting produces the finite-difference equation

6{6 + 1}Tf+1 = s{p— 1}(7;—2 N T;+2) + 4s{4 - ‘P}(T;—l + Tf+1)
+ 6{ps+20—5strr+6{1—6}rp", O#-1, (272)

which has a corresponding modified equivalent equation whose leading error terms
contain the factors

Ty(s) = 60s—,
Te(s) = 4— 5p+ 300ps + 60s°(1— 36°). (2.7.3)

From this, it is apparent that the equation(2.7.2) is consistent with the one-dimensional
diffusion equation (2.1.1), and is, in general, second-order accurate. However, the

choice of weights

9 — 2 4+ 305
o 158 °
4 + 60s*
p = -—5— (2.7.4)

forces the terms Iy(s) = Tg(s) = 0, so the equation resulting from the substitution
of these values should be sixth-order accurate. Note also that for all real s, the

substitution (2.7.4) satisfies the restriction 8 # —1 on equation (2.7.2). In fact, the

CHAPTER 2. 1-D DIFFUSION - DIRICHLET CONDITION 53

resulting equation is
—2{30s% + 15s 4- 2} = {1 —60s"}(7] 5 + 7}}s)
— 165°{4 = 158’ }(7]) + 7]11)
— 2{180s* — 3s® + 4}77
+ 2{30s% — 155+ 2}7] ", (2.7.5)

It can be shown that this equation is in fact sixth-order, as expected, and that its

modified equivalent equation contains the factor

8400s* — 700s* + 16
)

in its leading error term. The von Neumann stability range of the equation (2.7.5) is

Ta(s) = (2.7.6)

given by
$s<0.51..., (2.7.7)

which, while it is not as large a range as that for the fourth-order (1,5) equation, is still
large enough to be useful in practice, especially since there should be a significant gain

in accuracy due to the increased order of accuracy of the finite-difference equation.

One complication with practical implementation of this method is the problem of
determining the approximation at the grid point next to a boundary. This was solved
for the (1,5) equation by using Crandall’s fourth-order (3,3) equation, but this may
detract from the sixth-order accuracy of the (1,5,1) equation. Other possible solutions
to the problem, such as sixth-order methods with a more compact or off-centred stencil
or interpolation of the correct accuracy, severely limit the von Neumann stability range
of the whole implementation, which may detract from the effectiveness of the method.
For this reason, Crandall’s equation will be used initially, in the same way as it was

for the (1,5) equation.

Another problem, associated with the fact that this equation uses values from three
time levels, is the need to use another technique to compute the first time step. Since
explicit two-level sixth-order methods tend to be very unstable, their use would un-
necessarily complicate the starting procedure, if there is some other less complicated
starting method, which gives acceptable results. In fact, there are several such start-

ing methods. The best methods are either the FTCS equation with s = 1/6, which is

CHAPTER 2. 1-D DIFFUSION - DIRICHLET CONDITION 54

simple to implement but which would require several time steps to reach the required
time equivalent to one time step of the (1,5,1) equation with a larger value of s, or
the fourth-order (1,5) equation, which requires extra work af the boundaries, but is
stable over the entire stability range of the (1,5,1) equation and so needs to be used
for only one time step to find the required starting values. It is found in practice that
the actual (fourth-order) starting scheme which is used makes little difference to the

final results obtained.

The results from implementing this scheme in practice are shown in Figures 2.16
and 2.17. The most obvious thing about the graphs is that the slopes of the lines
are all as would be expected for a sixth-order method. Thus the use of the Crandall
equation at the boundary and the fourth-order starting scheme have not detracted from
the accuracy of the method in this case. Note however that in a different application
this may not be the case, and then some other technique such as those mentioned
above may be required at the boundary. Whether the increase in CPU time usage
arising from the much smaller stability range is justified by the high accuracy method

would need to be determined for the particular application.

Notice that the minimum CPU time required to generate a solution of a particular
accuracy occurs for s = 0.2, which is very close to a local minimum of the coefficient
I's(s) given in equation (2.7.6). Another feature of Figure 2.17 is that the CPU usage
is not much greater than that for the two fourth-order methods discussed earlier (see
Figure 2.14), so this method appears to be a better overall method than the fourth-

order ones.

If the sixth-order (1,3,3) equation (2.5.9) is used to fill in the value next to the bound-
ary at each time step, then the entire method, after the starting procedure, is sixth-
order. This does introduce, however, a much more restricted von Neumann stability
range, since it was shown in Section 2.5 above that equation (2.5.9) is only stable and

consistent for

s < 1/6. (2.7.8)

The results of doing this, shown in Figures 2.18 and 2.19, are very similar to those from

CHAPTER 2. 1-D DIFFUSION - DIRICHLET CONDITION 55

—— 5= 01000 M=6.35
—6— s=01667 M= 631
—A— 8=02000 M=633
—8— 5= 03333 M= 6.11
—&— s= 05000 M= 6.04

NUMBER OF GRIDSPACINGS
10 40 100

13 L 1 L PR T | 10—13

12 . 10712
5

11
11+ L 10 i
wi
g 3
8’ 104 L 10710
&
o =
] w
S
9- L 1079 B
[a]

8- L 4078

7 , ' . 107

1.0 1.5 2.0
-LOG (8%
10

Figure 2.16: Error vs grid spacing graph for the sizth-order (1,5,1) method (2.7.5),

using Crandall next to the boundaries

CHAPTER 2. 1-D DIFFUSION - DIRICHLET CONDITION 56

—%— 8= 0.1000 M= 215
—O— 8= 0.1667 M= 215
—i— s= 0.2000 M= 2.15
—B— s=0.3333 M= 209
—&— s= 05000 M= 205

CPU TIME (SECS)
0.1 0.4 1 4 10 40 100
13 1 L LbllLt L1 1 111118 L 1 11 1t11 10—13
L 10712
5
-11
L 10 <
L
L= =z
s, o 8
N - 1070 B
3 &
< m
S
L 1079 3
[a]
L 1078
7 . : ; 1077
-1.0 0.5 2.0

LOG (Cp)
10

Figure 2.17: Error vs CPU time graph for the sizth-order (1,5,1) method (2.7.5), using

Crandall next to the boundaries

CHAPTER 2. 1-D DIFFUSION - DIRICHLET CONDITION o7

using Crandall. The difference is that this technique is slightly more accurate, and also
uses somewhat less CPU time to gain a specified accuracy. Thus it is seen here again
that a restrictive stability range does not necessarily increase the CPU requirements

of the method, unless there is some minimum spatial resolution required.

—¥— s= 0.0500 M= 6.05
—o— s= 01000 M= 6.02
—l— s= 0.1429 M= 6.06

NUMBER OF GRIDSPACINGS

10 40 100

14 1 1 1 [| 10—14

13- L 19~18
5

J | ain-12
12 10 2
w
b =z
s 3
o 114 L 10711 =
S 2
1 w
[ang
10 L 10710 §
a

9- L 1079

8 ; . z 1078

1.0 1.5 2.0
—LOG (&Y
10

Figure 2.18: Error vs grid spacing graph for the sizth-order (1,5,1) method (2.7.5),
using sixth-order (1,8,8) next to the boundaries

Attempts at producing even higher-order methods, particularly one based on a (1,5,3)
stencil, produce finite-differences equations which tend to have severely limited von
Neumann stability ranges and also have modified equivalent equations which involved
coefficients which were too large to be dealt with on the VAX system being used in the
time available. Such equations, while they may be of use after further investigation,

are thus not considered here.

Overall, of the explicit methods examined, the preferred method is to use either the

sixth-order (1,3,3) equation or the (1,5,1) equation with the problems near the bound-

CHAPTER 2. 1-D DIFFUSION - DIRICHLET CONDITION 58

—— s= 00500 M= 207
—a— 8= 01000 M= 2,07
—BA— 8= 01429 M= 210

CPU TIME (SECS)
0.1 0.4 1 4 10 40 100 400 1000

14 L1 1 pruien L1y iitin 11ty L1 rrin 10—14

13+ L 10718
o

. -12
12+ 10 E
w
£ =
g o
114 L 10711 E
3 3
= =
| w
e s
10+ - 10710 g
a

9 L 1079

8 ; r ; 1078

-1 1 3
LOG ({Cp}
10

Figure 2.19: Error vs CPU time graph for the sizth-order (1,5,1) method (2.7.5), using
sizth-order (1,3,3) next to the boundaries

CHAPTER 2. 1-D DIFFUSION - DIRICHLET CONDITION 59

aries overcome using either the sixth-order (1,3,3) equation or Crandall’s equation.
The fourth-order (1,5) and (1,3,3) equations, however, also produce very accurate

results for the test problem, and may be useful tools depending on circumstances.

2.8 Implicit Methods

The methods that have been examined so far have all been ezplicit in nature. It
is possible to employ implicit methods, where the finite-difference equation relates

several values at the new time level to values at previous time levels.

Implicit methods have enjoyed considerable popularity, since in general they tend to
have much larger stability ranges than explicit methods. The major drawback with
implicit methods however is that they require the solution of a set of linear algebraic
equations for each time step, which requires both extra storage space and extra com-
putation time on a computer. Furthermore, the solution of this set of equations can
impose extra restrictions on the use of a method, since the algorithms used to solve
such equations are also subject to numerical instabilities. It is also worth noting again
that an equation with a large stability range does not necessarily use less CPU time

to generate a solution to a given accuracy.

Another undesirable feature of implicit methods is that they cannot make full use
of array processors. For an explicit method, any value at the new time level can
be computed directly from values at previous time levels, so the full power of array
processors can be used. This is not the case for implicit methods, where values at
the new time level are expressed in terms of other values at the same time level, and

require the solution of a set of linear equations to find the individual values.

For implicit methods that use only three grid point at time level (n 4 1), the most
efficient way to solve the set of equations is the Thomas algorithm (Thomas, 1949).
This is a specialised case of Gauss elimination with back substitution for the tri-
diagonal systems of equations which such methods generate. A sufficient condition

that this algorithm gives correct results is that the coefficient matrix of the system of

CHAPTER 2. 1-D DIFFUSION - DIRICHLET CONDITION 60

equations be diagonally dominant, which means that for every row of the coefficient
matrix A = [ai;]
J-1
|asi| = 3 laisl, (2.8.1)
i
with strict inequality holding for at least one row. While there does exist a stronger
definition of diagonal dominance, the condition (2.8.1) is adequate here due to the
form of the implicit finite-difference equations. This extra condition will be referred
to as solvability, and when combined with the von Neumann stability condition will

define the total region for which the method is actually usable.

One of the earliest implicit methods, and one which is still widely known and utilised, is
that due to Crank and Nicolson (1947). It is derived by splitting the spatial differencing

evenly between time levels n and (n + 1), which leads to the equation

= {s/2H(H +) + {1+ s}

= {3/2}(737‘_1 + TJT‘_I_I) +{1—- S}T;'. (2.8.2)

This equation has the advantage that it is both von Neumann stable and solvable for

s >0, (2.8.3)

(Noye, 1984) which means that in theory the time steps can be made arbitrarily large.
The modified equation corresponding to equation (2.8.2) has leading errors involving

the terms

F4(S) = -1

Te(s) = —(1+30s%). (2.8.4)

From this, it is seen that the Crank-Nicolson equation is only second-order accurate,
but it does have the advantage that the size of the leading error term is independent of
s. This means that large time steps can be used, although the results are constrained

by the second-order accuracy.

Numerical results for this method, shown in Figures 2.20 and 2.21, verify the theory

above. The error graphs are almost identical, independent of s, except for a slight

CHAPTER 2. 1-D DIFFUSION - DIRICHLET CONDITION 61

deviation for s = 8 with J = 30. This is caused by the magnitude of the coefficient
of the fourth-order error term, I'¢(s), which is given above, becoming large and thus
increasing the fourth-order error to the point where it makes a significant contribution
to the overall error. Once this happens, the errors increase in proportion to s?, and
the accuracy of the method is destroyed. Also, the errors themselves are much worse
than those obtained by the fourth-order explicit methods, and the savings in terms of
CPU time used are small at best. Overall, this method is of little practical use given

the accuracy and efficiency of the explicit methods developed earlier.

—— s= 05000 M= 200
—— s= 1.0000 M= 2.00
—A— s = 20000 M= 2.01
—8— 3= 8.0000 M= 245

NUMBER OF GRIDSPACINGS

10 40 100

1 L 1 [T B | -6
6 10 -
@]
T
&

-5
= 5+ - 10 2z
= S
e =
8 <
12}
7 4 L 107 o
o
Q
122}
=)

3 1 - - 1073

1.0 1.5 2.0
-LOG {ax}
10

Figure 2.20: Error ws grid spacing graph for the (3,8) Crank-Nicolson method (2.8.2)

In order to obtain more accuracy while still using the same computational stencil, the
differencing of the spatial derivative can be split between time levels n and (n + 1)
in a more general fashion than used by Crank and Nicolson. This is done using one

weight, 8, by expressing

gr "% 8 x [CS at (§,n)] + (1~ 8) x [CS at (j,n +1)]. (2.8.5)

2|,
oz |;

The resulting finite-difference equation is

s{0 — 1} (I +) + {1+ 25(1 =)}t

2

= Os(r], + 7j4,) + {1 —20s}r7, (2.8.6)

CHAPTER 2. 1-D DIFFUSION - DIRICHLET CONDITION 62

—— s= 05000 M= 067
—— s= 1.0000 M= 067
—t s= 20000 M= 068
—=— s= 8.0000 M= 0.86

CPU TIME (SECS)

0.01 0.04 0.1 0.4 1 4 10 40 100

6 1 L1 LLinre 1 11 11 inlL 1 L LL1111 1 1 1 1111l 10—6
oy
o]
o
&

-5
= 5 - -~ 10 =z
= *)
® <
8 , o

) =
1 4 5 10 E
Q
4]
a

3 ' 0 " 310

LOG (Cp)
10

Figure 2.21: Error vs CPU time graph for the (3,3) Crank-Nicolson method (2.8.2)

which reduces to the Crank-Nicolson equation (2.8.2) in the particular case of § = 1/2.

The modified equivalent equation corresponding to (2.8.6) has leading errors involving
Ty(s) =1260s — 65 — 1, (2.8.7)

from which it can be seen that the method can be made fourth-order accurate if 6 is

chosen as
o=t —. (2.8.8)
The result of this substitution 1s Crandall’s fourth—oraer equation
{1 —6s}(r +) + 2{5 + 65}
= {14 6s}(ry +7/41) +2{5 — 6s}r7, (2.8.9)

which was used earlier to solve the boundary problems of the fourth-order (1,5) equa-
tion. This method is both von Neumann stable and solvable for all values of s > 0 and
it is fourth-order accurate for all s except for s = 1/4/20, when it is sixth-order. This
optimal value, which can be derived from the modified equivalent equation coefficient
(2.6.10), can be used in practice to give good results, but the small value of s requires
small time steps and so increases the amount of CPU time required. Thus practical

use of this optimal value depends on the acceptability of this restriction.

CHAPTER 2. 1-D DIFFUSION - DIRICHLET CONDITION 63

Indiscriminate use of the extended usable region of equation (2.8.9) is again not pos-
sible, since the fourth-order error coefficient contains a term involving s*>. Thus as
s is increased to use larger time steps, the size of the dominant error term increases
quadratically, which eventually degrades the solution to the point where the r.esults

are useless.

Again, numerical experiments verify the above theory. By comparing Figures 2.22
and 2.23 with Figures 2.20 and 2.21, it is obvious that the answers are much more
accurate than those produced by the Crank-Nicolson method, although for s > 1 they
are not as good as the results for the (1,5) explicit method in its stable range. This
mears that any reduction in CPU time due to using large time steps is obtained at a
direct cost to the accuracy of the final solution. It is apparent that the increased CPU
time involved in solving the set of linear algebraic equations is minimising the saving

due to the larger time steps.

A comparison of efficiency of this method against the fourth-order (1,5) equation is
also useful. To get accuracy of 1078 using the fourth-order (1,5) equation, Figure 2.14
indicates that less than one second of CPU time is required. To get the same accuracy
from Crandall’s equation requires at least three or four seconds of CPU time, from
the results of Figure 2.23. This comparison too indicates that the implicit methods is

not as efficient for practical use as the explicit methods discussed previously.

Higher order implicit methods (sixth and even eighth order accurate) are possible
using such computational stencils as a (3,3,3) or a (5,5). However, methods that
use spatially wide stencils, such as a (5,5) equation, have extra problems near the
boundaries, and as yet no way has been found to deal with these that does not detract
from either the accuracy of the final solution or the stability of the method or both.

As well as this, these methods however tend to have very small usable ranges such as
s<1/6 (2.8.10)

or even less. This means that extremely small time steps must be used, which dramat-
ically increases the amount of computer time needed to find a solution. Such methods,

being implicit in nature, also require, as previously mentioned, the solution of a set

CHAPTER 2. 1-D DIFFUSION - DIRICHLET CONDITION

—¥— s= 0.5000 M= 3.99
—— s= 1.0000 M= 3.99
—h— s= 2.0000 M= 3.96
—8— s= 8.0000 M= 3.87

NUMBER OF GRIDSPACINGS

10 40 100
10 1 1 [N T T O 10—10

1079

T

-LOG {le]}
10
[+:] ~ [+-]
Il 1 1
\\\
° ° >
[} |]
=] ~J -]
DISCRETISATION ERROR

Figure 2.22: Error vs grid spacing graph for Crandall’s (8,3) method (2.6.9)

—X— s= 05000 M= 1.33
—— s= 10000 M= 137
—A— s=2.0000 M= 133
—=— s= 80000 M= 1.37
CPU TIME (SECS)
0.01 0.04 0.1 0.4 1 4 10 40 100

10 1 R L1 1 1 i Lt 3 11 1 11 11t 10-10

L 1079

-LOG [lel}
10

[=2] ~l o]

L 1 1

L T L
> = >
| | !
[o2] ~ ©

DISCRETISATION ERROR

-5

5 T T T 10
-2 0 2

LOG (Cp)
10

Figure 2.23: Error vs CPU time graph for Crandall’s (3,8) method (2.6.9)

CHAPTER 2. 1-D DIFFUSION - DIRICHLET CONDITION 65

of equations for each time step taken, which further adds to the computer time used.
In view of these as yet unresolved problems, such methods are not considered in this

work.

2.9 Summary

From the above, it is apparent that Crandall’s method, while being by far the best
of the practical implicit methods, is not in general an improvement over the explicit
methods developed earlier, in terms of either accuracy or CPU time used. Given this,
the explicit methods are still preferred since they do not require the solution of sets of
equations, and are thus easier to implement. Also, since our ultimate goal is to produce
methods for solving the two-dimensional diffusion equation, the solution of a set of
equations at each time step is undesirable, because the extra CPU time required to do
this increases enormously in two dimensions due to the more complex structure of the
coefficient matrix and the much larger number of equations to be solved. The most
obvious advantage of the implicit meti:ods, that of having unlimited usable ranges,
has been shown to be counteracted by a large increase in the size of the errors if the
value of s is increased. For small values of s, the extra CPU time required to solve the
set of linear algebraic equations at each time step, as well as the slightly larger errors

for the implicit methods, make the explicit methods better to use.

Explicit methods appear to be the best methods to use to solve a practical problem.
Exactly which method is the “best” is dependent on circumstances, there being two
different choices. If a small von Neumann stability range is acceptable, which is the
case where the use of coarse grids is possible and/or accuracy is the prime concern,
then one the sixth-order equations is clearly the best choice. If, however, CPU time
is a prime concern, then the fourth-order (1,5) equation will be the best choice of

solution technique, since it offers the largest von Neumann stability range.

The lack of a single “best” technique is a reflection of the fact that there are many
different factors involved in a solution, some of which will be more important than

others in each specific case. The important thing found here is that restricted stability

CHAPTER 2. 1-D DIFFUSION - DIRICHLET CONDITION 66

ranges do not necessarily count against a high-order method, since such a method can
produce extremely accurate results of a relatively coarse grid. Amongst methods of the
same order of accuracy, however, the one with the largest stability range will generally

use less CPU time to generate solutions.

Chapter 3

The 1-D Diffusion Equation with a

Neumann Boundary Condition

3.1 Introduction

The preceding work is based on the assumption of having Dirichlet boundary condi-

tions, namely conditions of the form

%(Ovt) = gl(t)
#(1,1) = g2(2). : (3.1.1)

The other case that needs to be considered is the Neumann boundary condition, where

at least one of the boundary conditions is given in the form

o
o = (). (3.1.2)

The following work assumes that such a boundary condition is given only at the
z = 0 boundary, although the principles used to solve this case can be applied at
the £ = 1 boundary as well. Such a boundary condition usually arises in practice
where, for example, there is an impermeable barrier or layer, which is represented
mathematically as there being zero velocity across the boundary (Bear, 1972). Other
cases where the (non-zero) velocity across a boundary is known are, however, possible

as well.

67

CHAPTER 3. 1-D DIFFUSION - NEUMANN CONDITION 68

The additional problems with this type of boundary condition arise from the fact that
the value on the boundary at the new time level is unknown. This means that one
of the values 701! and 77! must be found without requiring knowledge of the other
value. This extra value to be calculated near the boundary requires different handling

of the boundary problems to that used for the Dirichlet case.

In order to incorporate a boundary condition of the form (3.1.2) into a finite-difference
scheme, the derivative 97 /9z must be expressed as a combination of known values of
7 at nearby grid points. Care must also be taken that this approximation does not
degrade the accuracy of the solution near the boundary, as such a loss of accuracy will

eventually reduce the accuracy throughout the solution domain.

To determine the necessary accuracy for an approximation, consider that the approx-

imation is accurate to order ¢. This in general involves one of the forms

or|m F(G, LA 1]) 3

5l = e + 0{(Az)%}, (3.1.3)
872 L G(721—117$615721n)-"a%:—1) q

o o + O{(Az)?}, (3.1.4)

where the functions F' and G are linear functions. Note that in (3.1.4) a value 77, at
the exterior grid point (—Agz,nAt) is included, and this value must also be determined

if this form is used.

When (3.1.3) or (3.1.4) is rearranged to give an approximation for 7, y = —1,0,1,...,
the error term in that value becomes O{(Az)**'}. When such an approximation is
substituted into the difference equation, it is clear from the form of equation (2.1.8)
that there is a decrease in accuracy of two orders, corresponding to division by either
(A:c)2 or At, since

At o« (Az)? (3.1.5)

for a fixed value of s.

To verify that this last assertion about the required order of accuracy is correct,

consider substituting the fourth-order approximation for 77*_,, namely

CHAPTER 3. 1-D DIFFUSION - NEUMANN CONDITION 69

into the fourth-order equation (2.3.8). If the above theory is correct, the fourth-
order approximation (3.1.6) should be reduced by the substitution to second-order,
as a result making the finite-difference equation second-order. In fact, the resulting

finite-difference equation is
T =57l (1= 28)7] + 8Ty, (3.1.7)

which is the three-point FTCS equation (2.1.9). This has already been shown to
be, in general, second-order accurate, which is the expected result. If however, the

sixth-order approximation to 7}, is used, the resulting equation is

1277 = 25(6s +5)7]; +3(4—5s — 18s%)r7

+ 4s(24s — 1)1, + 14s(1 — 65)7],

+ 6s(6s — 1)1y 5+ s(1 — 65)7744, (3.1.8)

which is fourth-order accurate for all values of s, since its modified equivalent equation,

written in the form (2.2.4) has a leading error term containing the factor
De(s) = 60s® + 150s — 26. (3.1.9)

Again, this is in accordance with our expectation, and illustrates that to substitute
a value into a finite-difference equation of order p with no loss of accuracy, an order

p -+ 2 approximation to that value is required.

Returning to the derivative boundary condition problem, we have shown that to use
a derivative boundary condition approximation to substitute a value into a finite-
difference equation which is of order p without loss of formal accuracy, the approxima-
tion to the derivative must have a truncation error of (Az)”**. Given this information,
attention can now given to solution techniques incorporating the derivative boundary

condition.

The numerical test used for this problem is almost identical to that used for the
Dirichlet condition, except that the peak described by (2.2.18) has been moved from
a = 0.5 to @ = 0.25. This is done so that the derivative at z = 0 is not close to

zero, since if this derivative is close to zero, artificially good results are obtained.

CHAPTER 3. 1-D DIFFUSION - NEUMANN CONDITION 70

The error measurements are still taken at £ = 0.2 after time T" = 8, as was the
case for the Dirichlet condition. Note however that the exact solution has changed
to # = 0.17.... Since this is the same order of magnitude as that for the Dirichlet
condition, comparing the magnitude of the absolute errors obtained for the Neumann

and Dirichlet conditions is still reasonable.

3.2 Using External Grid Points

One way to approach the problem of not knowing the actual values at the bound-

ary, regardless which fourth-order finite-difference equation used in the interior of the

solution domain, is to add a set of extra grid points outside the solution domain

at £ = —Az. The fictitious value 7", at these grid points can be found from the

fifth-order approximation |
of|»_ 1271 — 6575 + 1207 — 6073 + 2073 — 377
ozlo 60Az

+0{(A2)}, (3.2.1)

by rearranging this and dropping the error terms of 0{(Az)®} to give the explicit

formula

127", = —60Azc} — 657y + 1207 — 6073 + 2073 — 37, (3.2.2)

where ¢ = ¢;(nAt). Given these external values, the (1,3,3) equation (2.5.16) can be

used to calculate the actual values on the boundary at the new time level.

Also, since the values at the boundary at the current time level and all previous time
levels are known, the (1,3,3) equation can be used to find the value ! without any

added complication arising from the derivative boundary condition.

In theory then, this use of the (1,3,3) equation appears to be a simple way to overcome
the problems associated with the derivative boundary condition, while still maintaining
fourth-order accuracy. Unfortunately, the use of the extrapolation formula (3.2.2)
results in a large reduction of the stability range of the method. In fact, the stability

range is now only

$<023..., (3.2.3)

CHAPTER 3. 1-D DIFFUSION - NEUMANN CONDITION 71

for § = 100. This compares badly with the case of the Dirichlet boundary condition,
where the stability range was more than double this value. Also, the most efficient
value, in terms of using the least CPU time to achieve a given absolute error, was seen
.to be at about s = 0.25 for the Dirichlet condition, and that value is now outside the
stability range. Increasing the value of § does not significantly improve the stability
region, and again detracts from the accuracy of the solution, as in the case of a Dirichlet

boundary condition.

~—3— s= 00500 M= 422
—8— s=01000 M= 4.18
—A— 5=02000 M= 394

NUMBER OF GRIDSPACINGS
10 40 100

10

-LOG {lel
DISCRETISATION ERROR

Figure 3.1: Error vs grid spacing graph for the eztrapolated (1,3,8) equation with
6 = 100, stable for s < 0.23%.

The accuracy obtained by this method is also not good, as shown in Figures 3.1
and 3.2, the errors being between one and two orders of magnitude larger than for the
Dirichlet case studied earlier (compare with Figures 2.10 and 2.11). It is also apparent
that the amount of CPU required to achieve a given error is decreasing as s increases
over the values shown, so a technique that increased the stability range could well

improve the efficiency of the method from this point of view as well.

Given that this technique appears to reduce the stability of finite-difference equations,
the sixth-order (1,3,3) equation is not considered since a reduction of like magnitude

to that for the fourth-order equation would render it impractical, even given its high

CHAPTER 3. 1-D DIFFUSION - NEUMANN CONDITION 72

—— s= 00500 M= 147
—— s= 0.1000 M= 145
—A— s= 02000 M= 137

CPU TIME (SECS)

0.1 0.4 1 4 10 40 100 400 1000

7 1 L Liiint 1 1L reanin L [N 1 L et 10_7
o«
o
s
&

— -6
= 61 10 z
e =
8 <<
P
< 54 L 105
o el
[&]
2]
Q

4 . T . 1 1074

LOG {(Cp)
10

Figure 3.2: Error vs CPU time graph for the extrapolated (1,3,8) equation with 6 = 100,
stable for s < 0.23T.

accuracy.

The results for the spatially wide finite-difference equations, such as the fourth-order
(1,5) equation (2.3.8) or the sixth-order (1,5,1) equation (2.7.5), are similar to those
for the (1,3,3) equation. The unknown values 737" and 71 can be found from the
known values 77, j = 0(1)J as follows. Firstly, the value 77, at the exterior grid point
is found from the sixth-order approximation (3.2.2). The (1,5) equation (2.3.8) can
then be used to determine the value r7*1, In order to analyse this method, the two

steps can be combined into a single finite-difference equation, namely

14477 = 60s(6s —1)Azci + 5(678s — 25T)1y — 48(24s* — 10s + 3)77

+ 36s(18s — 7)1y — 64s(6s — 1)73’ + 3s(6s — 1)y (3.2.4)
The value 707! at the boundary can then be determined from a rearrangement of

Crandall’s fourth-order equation (2.6.9) into the form

(1-— GS)T(’;“Jrl = (146s)(ry +) + 2(5 — 6s8)77

— 25+ 68)r 1 — (1 —6s)ry*, s #1/6. (3.2.5)

CHAPTER 3. 1-D DIFFUSION - NEUMANN CONDITION 73

When implementing this scheme in practice, it is found that as higher order approxi-
mations to the derivative at z = 0 are used, there is a reduction in the maximum value
of s for which the resulting finite-difference scheme is von Neumann stable. In par-
ticular, use of the approximation (3.2.1) gives a scheme ‘Which is only von Neumann
stable for s < 0.21... . This limit, while being only an heuristic stability measure
(Trapp and Ramshaw, 1976) has been found to be very close to correct in practice.
Tt is also sufficiently small that, like the fourth-order (1,3,3) equation above, the most

efficient values of s, found for the Dirichlet case, are outside the stability range.

Such a small stability range thus severely limits the usefulness of the scheme. One
way to overcome this problem, mentioned above in Section 2.6, is to use k time steps
each of At/k at the boundary, so the effective value of s is divided by k, and the
stability range is multiplied by k. Putting k = 3 thus provides a stability range of
approximately s < 0.63..., which does not detract significantly from the stability of
either of the equations (2.3.8) or (2.7.5) used at other interior grid points. In order
to implement this scheme, values must be calculated at two intermediate time levels,
these values being used in the formulae (2.3.8) and (3.2.5) to finally obtain the desired

results for 70" and A,

Alternatively, this substitution can be done algebraically to produce formulae that go
directly from time level n to time level (n+41) without the explicit use of intermediate
time levels, which saves storage space and CPU time on a computer. The resulting
formulae are very complicated, involving grid points as far as j = 8 from the boundary
(j = 0), multiplied by polynomial coefficients of order 6 in s. While these could
be implemented in practice, other methods have been sought in order to avoid the
complicated forms of the single equation and the extra storage requirements of using

multiple steps.

Overall, the use of exterior grid points has been found to be unsatisfactory, due to the
severe von Neumann stability restrictions that are placed on the solution process due

to having to extrapolate the values at the exterior grid points.

CHAPTER 3. 1-D DIFFUSION - NEUMANN CONDITION 74

3.3 Using Interior Grid Points Only

Given the unacceptable stability restrictions imposed by the use of exterior grid points,

alternative methods which do not require such points must be examined.

One such alternative method which can be used in conjunction with a fourth-order

(1,3,3) equation is to use the fifth-order approximation to 87/0z, namely

o7 |n —137F1 +3007P — 30077 + 20073 — 757¢ + 127§ 35
—| = A 3.
o re +O{(aa)}, (331)

applied at time level (n + 1) to give an explicit formula for the boundary value 75,

namely

137754 = —60AzEH + 30077+ — 3007+ 420073 — 75T 12774 (3.3.2)

When this method is tested for von Neumann stability, it is found to be stable over
at least the same range as the original fourth-order (1,3,3) method, so in this case,
handling the Neumann boundary condition imposes no extra restrictions over the
Dirichlet case, and the most efficient values can be chosen.

—%— s5=02500 M=425
—O— §= 03333 M= 4186
—A—— 5= 04000 M=4.12

NUMBER OF GRIDSPACINGS
10 40 100
\ 1 [N TS TR TN A -6
6 10 =
S
D i
- 1Y -5
= 5= - 10 6
2 =
8 by
< 44 L 107 I
e
?
(a]
3 T T T 1073
1.0 1.5 2.0
~L0G (a4
10

Figure 3.3: Error vs grid spacing graph for the fourth-order (1,3,8) equation, using

interior points only, with 6 = 100

CHAPTER 3. 1-D DIFFUSION - NEUMANN CONDITION 75

—%— 8=02500 M= 147
—o— $=03333 M= 141
—A— 8= 04000 M= 1.40
CPU TIME (SECS)
0.1 0.4 1 4 10 40 100
1 [R 1 L1 il 1 L L Lt _6
10 =
o
[
&
= | -5
5 57 10 z
=g =
3 P
< 4 L 1074 m
(]
7
o
3 . . ; 1073
~1.0 0.5 2.0

LOG (Cp)
10

Figure 3.4: Error vs CPU time graph for the fourth-order (1,3,3) equation, using
interior points only, with 6 =100

The numerical results shown in Figure 3.3 and 3.4 show that the method is fourth-
order, as expected, but the actual errors are two orders of magnitude worse than for the
Dirichlet boundary condition (see Figure 2.10). This decrease in the accuracy of the
generated solution is largely due to having to approximate the value on the boundary.
For the Dirichlet condition there was an exact value being included at every time step,
which will tend to reduce the build-up of errors. In the case of the Neumann condition,

the boundary value is approximated and this benefit is not gained.

Given that the fourth-order (1,3,3) equation can be successfully implemented with no
more restrictions than for the Dirichlet case, the sixth-order (1,3,3) equation should
also be tried. In order to approximate the boundary condition to the correct order, a

seventh-order approximation to 97/dz must be derived. This leads to the formula

10897741 = —420Azc}t! 4 2040 441077+ 4 490075 H!

— 367577 4 176477 — 490731 + 6077 (3.3.3)

which is the sixth-order analogue of equation (3.3.2) above. If this extrapolation is
used with the sixth-order (1,3,3) equation, there is no reduction in the numerical

stability range, since the range is already very restrictive.

CHAPTER 3. 1-D DIFFUSION - NEUMANN CONDITION 76

The numerical results, shown in Figures 3.5 and 3.6, display a number of interesting
features. Most obvious is the fact that the slopes of the lines are much greater than
expected theoretically, and that the value of s has very little impact on the accuracy
obtained for a given grid spacing. This may be cauéed by a combination of the error
terms of the (1,3,3) equation, the method of handling the boundary and the test
problem itself, but further investigation is required to determine the exact cause with
certainty.
—%— s=00500 M= 843

—— s= 01000 M= 835
—— s= 01429 M=8.29

NUMBER OF GRIDSPACINGS
10 40 100
8 1 1 D W (1 [[| 10—8
S
-7
7+ * e &
i}
= 3
8* 6- L 406 g
=]
o
5+ L 1075 B
o
4 : ; ; 10~4
1.0 1.5 2.0
—LOG A%
10

Figure 3.5: Error vs grid spacing graph for the sizth-order (1,3,3) equation, using

interior points only

Also worth noting is that not only are the results clearly more accurate than those
for the fourth-order (1,3,3) equation, which is to be expected, but the amount of CPU
time required to generate a solution to a given accuracy is also better in the sixth-order
case, indicating that, in this case, the restricted von Neumann stability range should

not detract from the method’s practicality.

If this technique is tested with lower-order boundary approximations being used, it
is found that the results deteriorate to unacceptable levels, even with the use of a

sixth-order approximation rather than the seventh-order one used above.

CHAPTER 3. 1-D DIFFUSION - NEUMANN CONDITION 7

—¥— 8= 0.0500 M= 289
—_—— s= 0.1000 M= 2.87
—A— s=0.1429 M= 283

CPU TIME (SECS)
1 4 10 40 100 400 1000
8 L Lo it 1 L LpLaee 1 11 1111 10—8
5
7
74 - 10 o
wl
o 6 L 1078 &
s @
U i
29}
5- L 105 8
[a]
4 ; T . 1074
0 1.5 3.0
LOG (Cp)
10

Figure 3.6: Error vs CPU time graph for the sizth-order (1,8,5) equation, using interior

points only

The fourth-order (1,5) equation (2.3.8) presents more obvious difficulties than either
form of the (1,3,3) equation discussed above, since it cannot be used next to the
boundary without requiring exterior grid points. However, this problem can be over-
come by using a combination of the Neumann boundary condition and appropriate

rearrangement of Crandall’s fourth-order equation.

In particular, Crandall’s formula (2.6.9) can be rearranged to obtain a formula for the

value 77!, namely

{1—6s}r™ = {146s}(rf +75)+2{6—6s}ry
— 2{5 465} — {1 -6s}3t!, s#£1/6. (3.3.4)

In the case where s = 1/6, Crandall’s equation reduces to the fourth-order special
case of the (1,3) FTCS equation, and this equation can be used to find 1 without
loss of accuracy. The fifth-order approximation to 07/0z (3.3.1) is then applied at
time level (n + 1) to give the explicit formula for the boundary value (3.3.2) for 5.

This boundary approximation has been applied over the entire range of stability of

CHAPTER 3. 1-D DIFFUSION - NEUMANN CONDITION 78

the interior method, namely 0 < s < 2/3, and has shown no signs of instability. In
fact, numerically examining the von Neumann stability of the equation involving the
boundary point that is used to step to the next time level, shows that it is stable up
to at 1east. s = 1, so this boundary technique imposes no extra stability restrictions.
—%— s=01000 M=509
—6— s=02500 M= 467

—f— s = 0.5000 M= 6.09
—B— s= 06667 M= 667

NUMBER OF GRIDSPACINGS
10 40 100

8 L 1 1 PR W T I O | 10-—8
5

-7
74 10 €
w
= =z
z_ « ¢
6 - 10 =
g 5
= [=
1 w
cc
5 L 1075 3
[&]

4 ; , , 10~4

1.0 1.5 2.0
—LOG {ax)
10

Figure 3.7: Error vs grid spacing graph for the (1,5) equation using only interior grid

points

Note that this method, while still based on the idea of using both the derivative bound-
ary condition and a rearrangement of Crandall’s formula, does not use an exterior grid
point, nor is its use dependent on the use of a particular finite-difference equation in
the interior of the region. Any finite-difference equation could be used in the interior
of the region, as long the von Neumann stability of the boundary technique is not

exceeded.

The numerical results for this technique, shown in Figures 3.7 and 3.8, are more
accurate than those results obtained by the fourth-order (1,3,3) equation, but not as
accurate as the sixth-order (1,3,3) equation. Of interest, however, is that the CPU
usage of the (1,5) equation to obtain a solution of a given accuracy is only about half

that for the sixth-order (1,3,3) equation. Thus if the accuracy of the (1,5) equation is

CHAPTER 3. 1-D DIFFUSION - NEUMANN CONDITION 79

—— 8= 0.1000 M= 173
—— s= 02500 M= 158
—h— s= 0.5000 M= 205
—8— s= 06667 M= 227

CPU TIME {SECS)
0.1 0.4 1 4 10 40 100
L4t 111t L L L eantl 10-—8
S
-7
7+ - 10 E
wl
T 64 - 1070 &
8 b
'
i o
5+ " 10—5 (é
[a]
4 T T T 1074
-1.0 0.5 2.0
LOG {Cp)
10

Figure 3.8: Error vs CPU time graph for the (1,5) equation using only interior grid

points

acceptable for the problem being solved, this appears to be a better technique than

the earlier (1,3,3) equations.

The effect of using less accurate approximations to the derivative at the boundary can
be examined here. The fourth-order approximation

OF | 2573 + 487 — 367 +167] — 37
ozlo 12Az

+ 0{(Az)*}, (3.3.5)

can be applied at time level (n + 1) and rearranged to give the explicit form

2577+ = —12Azcpt 4 4877 — 36771 + 1675 — 3y (3.3.6)

7)

which can be used in place of (3.3.2). In this case the results, shown in Figures 3.9
and 3.10, are less accurate than for the fifth-order derivative approximation, although
they are still good, as indicated by the fact that errors plotted against grid spacing
on a logarithmic scale still have slope greater than the predicted value of four. In
this case, however, the CPU efficiency advantage over the sixth-order (1,3,3) method

has been lost, so the drop in accuracy of the boundary approximation has somewhat

CHAPTER 3. 1-D DIFFUSION - NEUMANN CONDITION 80

damaged the practicality of the method. Note that this is in contrast to the sixth-
order (1,3,3) equation, where it was found that a drop of even one order of accuracy
in the boundary approximation degraded the solution unacceptably.

—— s= 01000 M= 463
—— s= 02500 M= 478
—A— s= 05000 M= 491
—8— 3= 0.6667 M= 492

NUMBER OF GRIDSPACINGS
10
1 1
6 [eo
(@]
o«
[any
w
g :
° =
Q %
T 47 m
Q
?
[a]
3 . . . 1073
1.0 1.5 2.0

Figure 3.9: Error vs grid spacing graph for the (1,5) equation using an 0{4} boundary

approzimation
—3— §=01000 M= 157
—o— $=0250 M= 163
—A— §=05000 M= 167
—8— s=06667 M= 167
CPU TIME (SECS)
0.1 0.4 1 4 10 40 100
L Lt tate IRt 1 1.1 -6
6 10 -
o
[a)
~ &
—_ _5
5 5 T3
=, =
8 P
T4 - 10t
0@
3
(]
3 . ; ' 1073
-1.0 0.5 2.0

LOG (Cp}
10

Figure 3.10: Error vs CPU time graph for the (1,5) equation using an 0{4} boundary

approzimation

CHAPTER 3. 1-D DIFFUSION - NEUMANN CONDITION 81

The use of still lower-order approximations, such as the third-order approximation

%;; ’c:: —1178 + 186';23:— 970 + 273 + O{(A:c)a}, (3.37)
leads to results that are even less accurate, and of lower than fourth-order, as shown
by the slopes of the graphs of Figures 3.11 and 3.12, which show the results of using
equation (3.3.7). Such low-order boundary handling is therefore entirely impractical.

—— s= 01000 M= 3.77
—— s= 02500 M= 3.58
—A s= 05000 M= 339
—a— s= 06667 M= 3.57

NUMBER OF GRIDSPACINGS
10 40 100
1 L 1 RN T T M | -6
6 10 «
[e]
[am
&
— -5
z 5 - 10 %
= 2
3 vl
< 4 L 1074 I
cc
o
=)
3 . ' ; 1073
1.0 1.5 2.0
-LOG (Ax}
10

Figure 3.11: Error vs grid spacing graph for the (1,5) equation using an 0{ 3} boundary

approzimation

Thus it appears that boundary approximations that are one order of accuracy less
that that theoretically required can be used in some cases. Some loss of accuracy is
evident if this is done, and the CPU advantage of the (1,5) equation is lost, so this

idea is not considered practical to use.

Civen the above experience, the sixth-order (1,5,1) equation (2.7.5) can be handled in
the same manner as the fourth-order (1,5) equation Although the (1,5,1) equation is
cixth-order accurate, and so the boundary treatment should also be at least as accu-
rate, it was seen for the Dirichlet condition that a fourth-order boundary treatment

sufficed to give sixth-order results.

For the Neumann condition, however, this proves not to be the case. The results for

this equation, shown in Figures 3.13 and 3.14, show a marked difference from the

CHAPTER 3. 1-D DIFFUSION - NEUMANN CONDITION 82

—— g= 01000 M= 1.27
—— s= 0250 M= 122
—B s= 05000 M= 1.15
—a— 8= 0.6667 M= 1.21
CPU TIME (SECS)
0.1 0.4 1 4 10 40 100
Lotaiin L1t (IR -6
10 «
[e]
o0
&
— -5
T 5 r 3
e =
Q %
T 4 L 1074 I
@
[&]
@
a
3 . ; . 1073
-1.0 0.5 2.0

LOG (Cp}
10

Figure 3.12: Error vs CPU time graph for the (1,5) equation using an 0{8} boundary

approzimation

expected straight lines of slope six. In fact, the derivative boundary condition has
reduced this equation to being only fourth-order accurate for all values of s, except
for s = 1/2, and even this 1s not much better than fifth-order. Also worth noting is
the fact that the absolute errors are in fact biggér for this equation that for those for
the (1,5) equation, which were given above in Figures 3.7 and 3.8.

To overcome these problems would require some sort of sixth-order handling of the
boundary, but sixth-order finite-difference equations based on such stencils as (1,3,3)
and (3,3,3) bhave restricted von Neumann stability ranges. Examining the CPU graph
for the (1,5,1) equation (Figure 3.14), it is noted that the most efficient values of s
are the larger values, with efficiency dropping off dramatically towards s = 0.1, as
indicated by the much longer CPU times required to get a particular accuracy. Since
the use of sixth-order finite-difference equations would force us to use such inefficient
values of s to achieve stability, this type of approach was not considered in more detail,
especially since efforts in this direction indicated that there was almost no increase in

accuracy.

An alternative is to develop an off-centred stencil which is sixth-order accurate, but

CHAPTER 3. 1-D DIFFUSION - NEUMANN CONDITION 83

—— s= 0.1000 M= 424
—_—— 8= 02500 M= 4.04
e 8= 03333 M= 437
—8— s= 05000 M= 536

NUMBER OF GRIDSPACINGS
10 40 100
6 1 1 PR SR TR S B B 10—6
5- 1075
o
i -4
4 10 <
w
e =z
2 a £
8' 3- 1070 &
7]
. =
] 1n]
S
2 1072 3
a
1 L 401
0 T T 1 0
1.0 1.5 2.0

-LOG {a%
10

Figure 3.13: Error vs grid spacing graph for the (1,5,1) equation using only interior
grid points

CHAPTER 3. 1-D DIFFUSION - NEUMANN CONDITION 84

—— s= 0.1000 M= 1.48
—_—— s= 02500 M= 1.43
—— s= 03333 M= 151
—a— s= 05000 M= 191
CPU TIME (SECS)
0.1 0.4 1 4 10 40 100
6 L1 opaten L1 i Lot 10—6
L 1075
S
L 1074 &
oo
L
i z
= 3 B
8 -~ 10 g
= =~
1 w
a9
L 1072
[a]
L 107!
0 - T T T Y
1.0 0.5 2.0

LOG {Cp
10

Figure 3.14: Error vs CPU time graph for the (1,5,1) equation using only interior grid

points

CHAPTER 3. 1-D DIFFUSION - NEUMANN CONDITION 85

can be used next to the boundaries. To do this, the approximation

i 1078, — 1577 — 470, + 1477, — 67a + Ti)
Sl) o{(A 3.3.8

may be used. The fnite-difference equation is developed in exactly the same manner
as the centred (1,5,1) equation, using the same weights in the same manner. The
resulting equation can be made sixth-order by suitable choice of the weights. The

sixth-order finite-difference equation that results is

(6052 — 1505 — 26} = s”{120s" — 302} 77,
_ (540" — 729s” + 52} 7] + s*{960s” — 316}7],
s?{14 — 840s*}77\, + $?{360s% — 6775

s2{1 — 60s”}7] 4 + {26 — 150s — 60s°}r ", (3.3.9)
This equation is found to be von Neumann stable only over the approximate range

s<1/3, (3.3.10)

which is somewhat less than the range of the main equation. Numerical results ob-
tained with this equation, in this more restricted stability region, have also proven
to be even less accurate. This is despite using the “correct”, seventh-order, approx-
imation to the derivative condition, in place of the fifth-order one used for the (1,5)
equation. This result may be due to the fact that the equation (3.3.9) is off-centred,
so there are odd-order error terms in the modified equivalent equation which are not
present for the centred equations. This off-centred technique appears to offer no solu-
tion to the problems with the use of the (1,5,1) equation, and is thus not considered

further.

Overall, the (1,5,1) equation has produced results of disappointing accuracy with no
major CPU time advantage, and so must be considered as unsuitable for use with
Neumann boundary conditions until better methods of handling those boundary con-

ditions are found.

CHAPTER 3. 1-D DIFFUSION - NEUMANN CONDITION 86

3.4 Summary

The addition of a derivative boundary condition to the problem has significantly com-
plicated the solution process, as might be expected. Having re-evaluated the ap-
proaches used for the known boundary condition in view of this, it is apparent that
the errors are several orders of magnitude larger with the derivative boundary con-
dition included than for the case without it. Despite this, the errors are still small
in absolute terms, being of O{1077} in numbers of 0{107'}, if a grid spacings of
Az = 1/80 or finer are used.

It is of particular interest that the (1,5,1) equation, which produced very good results
for the case of a known boundary value, gives relatively poor results with a derivative
boundary condition, despite all efforts at handling the boundary to the correct order of
accuracy. Further work is needed before this particular problem can be satisfactorily

be overcome.

Overall, the solution process that gives the most accurate answers is the sixth-order
(1,3,3) equation (2.5.9), using a seventh-order approximation to the derivative bound-
ary condition. Against this, however, is the CPU time efficiency of using the fourth-
order (1,5) equation (2.3.8) in the interior of the solution domain, with the Crandall
variant used both to solve the problems at the known boundary at z = 1 and to
find 77*!. This is followed by an extrapolation based on the derivative approximation
(3.3.1) to find the value 7271 at the z = 0 boundary. Once again, which of these two
methods is preferred is dependent on circumstances, since each has both advantages

and disadvantages compared to the other.

Chapter 4

The 2-D Diffusion Equation

4.1 Introduction

The information gained from the preceding study of the one-dimensional diffusion
equation, and attempts to produce fast and accurate solution schemes for it, can
now be applied to a more general and physically meaningful case, namely the two-

dimensional constant-coefficient diffusion equation. This equation can be written as
ot 0%% o*r
—— a — —
ot “ 0?2 % 8y

where a, and a, are considered to be constants.

=0, (4.1.1)

To compare different methods for solving this equation, the modified equivalent equa-
tion approach used for the one-dimensional case can again be used, but some changes
need to be made. These changes are necessary because of the fact that the general

form of the modified equivalent equation is now

or o*r
5~ % aya - +ZZ p,qmzo. (4.1.2)

p=0q¢=0

From this form, it can be seen that as long as

Am,ﬁlxbr,r/ln—.o Cpy=0, p=20 (4.1.3)

then the finite-difference scheme is consistent with the two-dimensional diffusion equa-

tion (4.1.1). In order for the leading errors to be smaller in magnitude than the solution

87

CHAPTER 4. THE 2-D DIFFUSION EQUATION 88

values, the condition

Cpe=0 forp<2 (4.1.4)

is also desirable. It is also apparent from this general form that instead of there being
only one ntP order error term, as for the one-dimensional case, there may now be
(n + 3) such error terms. This means that to create a method of a given order using
a general weighted scheme and choosing appropriate weights, many more weights are
now required so that all the desired error terms can be removed. These extra weights
can be readily introduced, however, due to the greater number of grid points available

to the difference schemes.

The difference schemes to be investigated here will be again written in terms of
non-dimensional diffusion parameters, which, in a manner analogous to the one-

dimensional case, are defined as

az At a, At (415
= < Sy = . 1.
o) T My)

Se

Given this, the error coefficients Cyp,, in the modified equivalent equation can be written

{‘ho Anc.

in the form

i, }7(7[2

20,(As)P2 .
Coy = ——(PT}—Fp,q(sI, Sy) if g =0 or ¢ = p, (4.1.6)
e 4(Az)P~I(Ay)?)
“Jvz" = (p _)q)lqg(At)) FP;‘I(SJH Sy) lf p '_/é 2q7 (417)
- 4(Az)1(Ay)e P '
’ . = ———=—"=7T el fp=2g, 4.1.
4y (oo U Lo o (@)2(At) pa(8215y) if p=2g (4.1.8)

where s = z if ¢ = 0 and s = y if p = ¢. This particular form has been chosen so that
the functions T'p4(sz,Sy) are as simple as possible. In particular, they tend to avoid

having s, or s, in a denominator.

As was noted in earlier chapters, if centred finite difference forms are used to ap-
proximate 927 /9z? and 9°7/ dy?, then the resulting computational stencil is spatially
symmetric, and there are no “odd-order” derivative terms in the modified equivalent
equation for that method. In the two-dimensional case the derivative term with coef-
ficient C,, may be considered of “odd-order” if either p is odd or else one (or possibly

both) of ¢ and (p — ¢) is odd. Thus if the stencil is centred, there are no error terms

CHAPTER 4. THE 2-D DIFFUSION EQUATION 89

involving 8%7/0z98y®~9, nor will there be terms like &*r/0z0y®. This simplifies the
form of the resulting methods, as well as greatly reducing the number of weights that
must be included in a method to force it to be of high order. Most of the methods

discussed in this chapter will have centred stencils to take advantage of this fact.

Methods for solving the equation (4.1.1) can be divided into two classes. The first of
these are two-dimensional methods, that use a stencil that is itself two-dimensional.
These can be further subdivided into explicit and implicit methods, based on whether
or not they require the solution of a system of equations at each time step, in exactly
the same manner as was done in the one-dimensional case. The other class comprises
the one-dimensional methods, which use one-dimensional stencils (either explicit or

implicit) to solve the problem.

The method used for denoting two-dimensional methods is exactly the same as that
used in one dimension; namely, a method described as being “a (p, ¢,) method” uses
p points the (n + 1)th time level, ¢ points at the nth and r at the (n — 1)th, with the

r term being omitted in the case of the method involving only two time levels.

In order to check the numerical accuracy of two-dimensional methods, a test problem
is required. The particular problem chosen is the two-dimensional analogue of the

Gauss peak (2.2.18) used in the one-dimensional case, namely

) R S (R) S O (b
291 = @y p{ az(4t+1)} p{ ay(4t+1)}’ &.15)

where the constants a and b are both set to 0.5, so that the peak is centred in the
spatial domain. As for the one-dimensional case, the equation (4.1.9) is used to define
both the initial and boundary conditions, as well as to generate the exact solution
to compare the numerical answers against. The errors for the graphs presented in
this chapter are taken at the point (0.2,0.2), for the same reasons as the choice of
the point z = 0.2 in the one-dimensional case, and the diffusion parameters used are
ay = a, = 0.01. In this case, however, the tests are only run to T' = 2, since the
amount of CPU time required to use T'= 8 was found to be excessive, while no extra

information was obtained.

CHAPTER 4. THE 2-D DIFFUSION EQUATION 90

4.2 Two Level Explicit Methods

Since explicit methods do not require the solution of a set of linear equations for each
time level, they have the potential to be very much faster on a computer than implicit
methods. This is more of a consideration in two or more dimensions than it is in one
dimension, owing to the vastly increased number of equations that must be solved for
the implicit methods, as well as the more complex form of the system of equations in

two or more dimensions.

4.2.1 (1,5) Forward-Time Centred-Space Method

The direct analogue in the two-dimensional case to the FTCS method for solving the
one-dimensional problem is to use a forward-time approximation to the time derivative
at the (j, k,n) grid point, and to approximate both the spatial derivatives by their ap-
propriate second-order centred-space approximations. This gives the two-dimensional

finite-difference equation, based on the computational stencil shown in Figure 4.1,

nt+l _ n n n n n
T = 8,7l g A Sy T e (1 — 280 — 28y)75% + 82Tk + Sy (4.2.1)

Figure 4.1: Computational stencil for the (1,5) method

This method, like its one-dimensional counterpart, is easy to implement, requiring no

CHAPTER 4. THE 2-D DIFFUSION EQUATION 91

special treatment near the boundaries if the boundary values are given and the region
is rectangular. Also, being explicit, this method does not require the solution of a
set of equations at each time level. If the boundary values are not specified (ie. we
have a derivative or mixed boundary condition) then extra work is required to find

approximations at grid points on the boundary, but this is true of any method.

A von Neumann stability analysis of equation (4.2.1) leads to the stability criterion
sz + 8y < 1/2, (4.2.2)

which can be seen to be very restrictive (Roache, 1974). In the symmetric case where

sz = 8y = s* this condition becomes
st < 1/4 (4.2.3)

which is twice as restrictive as the one-dimensional case.

The modified equivalent equation for equation (4.2.1) can be written in the general

form (4.1.2) where the leading non-zero error terms contain the factors

1—‘4.0 = 631, -1

F4’2 = S8y

Tys = 6s,—1. (4.2.4)

3

Thus this method is seen to be second-order accurate for general values of s, and s,.
It is also worth noting that although the terms I'yo and I'y4 can be made to vanish
by the choice of values s; = sy = 1 /6, the second-order error term I'y2 is not zero
for these values (or indeed any other values of s, > 0 and s, > 0). Thus there are
no optimal values of s, and s, which make the method fourth-order, which contrasts

with the one-dimensional case where s = 1/6 makes the method fourth-order.

The actual numerical results for this method, shown in Figures 4.2 and 4.3, show
that the method is performing exactly as expected from the theory. The error vs.
grid spacing graphs are all straight lines with slopes close to two, indicating that the
method is second-order accurate. Also, by similar reasoning to the one-dimensional

case, it can be shown that for an order ¢ method,

— log{le|} = (¢/4)1og{Cp} + K', (4.2.5)

CHAPTER 4. THE 2-D DIFFUSION EQUATION

—X— 8*= 0.1000 M= 2.01
—— s*= 0.1667 M= 2.01
—c— 8*= 0.2000 M= 236
—8— 8*= 02500 M= 2.04

NUMBER OF GRIDSPACINGS

10
8 1078
] -7
7 10 .
o
(o4
&
-6
= 6 - 10 4
= ¢}
" L
3 &
= 5 1078
[a ey
(&)
)
(=]
44 104
3 . = . 10~8
1.0 1.5 2.0

Figure 4.2: Error vs grid spacing graph for the (1,5) FTCS method (4.2.1)

—¥— 8‘= 0.1000 M= 0.53
—o— s*= 0.1667 M= 0.54
—L— s*= 0.2000 M= 0.63
—8— §*= 02500 M= 0.55

CPU TIME (SECS)
1 4 10 40 100 400 1000 4000 10000
8 1 1 1 1 pien 1 L1 1 thill 1 BN E RV 1 L L1t 10_8
N B -7
7 10 =
Q
i
&
— 6
go 6 - 10 5
B <
3 %
< 54 1078 I
o
]
2]
a
4- e
-3
3 10
0 ' é L F:
LOG {Cp)
10

Figure 4.3: Error vs CPU time graph for the (1,5) FTCS method (4.2.1)

CHAPTER 4. THE 2-D DIFFUSION EQUATION 93

and once again the graphs agree with this theoretical expectation.

The most important feature of these graphs is the fact that the CPU time taken to
generate a solution is so much larger than for the one-dimensional problem. This
justifies the selection of the preferred methods in one dimension based on CPU usage
as well as error, since a method which uses too much CPU time on the one-dimensional

problem will be totally impractical to use when it is generalised into two dimensions.

Note that, as for in the one-dimensional case, increasing the value of s* and hence the
size of the time step does not necessarily decrease the CPU time required to generate
a solution. As shown in Figure 4.3, the least amount of CPU time required to find a

solution of a given accuracy for the parameters tested occurs for s* = 0.200.

This gives some insight into the problems involved in developing accurate methods for
the two-dimensional case, based on accurate methods for the one-dimensional problem.
The error terms involved with the cross-derivatives in the modified equivalent equation
(such as 'y, above) have no analogue in the one-dimensional case, and often exhibit
quite different behaviour from the pure z or y derivative terms. This must be taken
into account when developing methods, for example, by adding extra weights into the

general form of a method to permit these error terms to be eliminated.

4.2.2 (1,9) Weighted Explicit Method

The (1,5) method above lacks sufficient grid points to allow the use of weights to try
to produce more accurate methods. In order to introduce some weights, more grid
points need to be introduced into the computational stencil, so as to allow weighted
differencing of the spatial derivative terms in (4.1.1). The (1,9) stencil shown in
Figure 4.4 allows for the introduction of two weights, while still retaining a compact
stencil. Centred difference approximations with symmetric weighting are used for the
spatial derivative terms in order to keep the resulting equation spatially centred. The
space derivative in the x direction can be approximated by a weighted combination of
centred-space approximations at k — 1, k and k 4 1. A similar weighting scheme can

be used for the space derivative in the y direction.

CHAPTER 4. THE 2-D DIFFUSION EQUATION 94

The weighted scheme that is thus arrived at is

2 n
%.1:_72- ~ Sox{[CSat(j,k—l,n)]-*-[Csa't (J’k+1’n)]}
jfk_ .
+ (1—2p) x [CS at (j, k,n)],
2 n
g_y% ~ yx{[CSat (j —Lkn)]+[CSat (j +1,kn)]}
ik

4+ (1—2y) x[CS at (7, k,n)], (4.2.6)

where CS is used to denote a three-point centred space difference approximation about

the specified grid point. This differencing leads to the (1,9) weighted explicit equation

n+l __ n n n n
= {ese F s (Tl F T ke T T e T T k)

+ {sy— 2(¢psz + 'Ysy)}(T},Lk—l + T}?k+1)
+ {82 —2(pss + '73y)}(7'}l—1,k S T;L-l-l,k)
+ {1 —2(s; + sy) +4(pss + 'ysy)}v'}"k, (4.2.7)

which uses the computational stencil shown in Figure 4.4.

t,n
vk
- %]

Figure 4.4: Computational stencil for the (1,9) method

From this equation, the leading error terms can be examined in order to determine
the theoretical order of accuracy of this method, and what values of the weights, if
any, will improve this. The modified equivalent equation can be written in the general

form (4.1.2), with the leading error terms being

CHAPTER 4. THE 2-D DIFFUSION EQUATION 95

F4,0 = 631; —1
Diz2 = 88y —psz — 7Sy
I'ys = 6s,— 1L (4.2.8)

From this form of the modified equivalent equation, it can be seen that the weights
are not involved in the second-order error terms I’y and I'y 4, so this method cannot
be made fourth-order accurate by any choice of weights. What can be done, however,
is to remove the cross-derivative term I'y 2, which will reduce the second-order error.

To do this we set 'y, = 0, which gives

=S8) (4.2.9)

Sy
as the condition on the weights. Since equation (4.1.1) is symmetrical with respect to
z and y, it is desirable that a finite-difference equation to solve this equation should
possess similar symmetry. In this case, no particular effort is required to achieve this,

since the weights ¢ and « in equation (4.2.7) only occur in the expression

(psz +vsy) (4.2.10)

which reduces to s,s, on substitution of the expression (4.2.9). Thus removing the

error term Iy, gives the explicit (1,9) finite-difference equation

n+1l __ n n n n
i = SeSy(Tpmn T Tmr e F Tha ket + Tiepg)

+ sy{l - 23w}(7';fk—1 + "'JT?k+1)
+ Sw{l - 25y}('rjn—1,k + T;L+1,k)
+ {(1—2s,)(1 — 25y)}7'}"k. (4.2.11)

Despite this method being only second-order accurate, it can be shown to be von

Neumann stable in the region
38, <1/2 and s,<1/2 (4.2.12)

which is a marked improvement over the (1,5) FTCS equation (4.2.1), for which the

stability limit was s, + 3, < 1/2, or in the symmetric case s, = s, = s* < 1/4. For

CHAPTER 4. THE 2-D DIFFUSION EQUATION 96

equation (4.2.11) the stability criterion for the symmetric case, s; = sy = s* <1 /2,
means that for a given grid spacing and diffusion coefficients, time steps can be twice as
large as those used for the (1,5) equation without introducing numerical instabilities,
and so a given time can be reached in half as many time steps. Offset against this
expectation is the fact that the leading error terms are linear in s; and sy, so the error

may be expected to increase as s* is increased, possibly to an unacceptable level.

The fact that no gain of accuracy has been achieved can be verified by looking at the
modified equivalent equation corresponding to equation (4.2.11) which can be written

in the general form (4.1.2) with leading error terms containing the factors

F40 = 651;—1
F42 =0

F44 = 68y—1 ’ (4213)

as expected from the derivation of equation (4.2.11). Note that the choice s, = sy =

1/6 will make this scheme fourth-order.

The numerical results for the method, shown in Figures 4.5 and 4.6, largely reflect
the theoretical findings, including the special case of s* = 1/6 where the method is
fourth-order, as opposed to the second-order which is apparent for the other values
shown. In the general case, however, the results are somewhat less accurate than those
from the (1,5) equation (4.2.1), shown in Figures 4.2-and 4.3. Also, the rﬁost efficient
value of s* (excluding s* = 1/6), in terms of minimising the amount of CPU time
required to generate answers of a given accuracy, appears to be s* = 0.25. In general,
therefore, the (1,9) method requires much more CPU-time to generate a solution of a

given accuracy than the (1,5) equation, so the (1,9) equation is of little practical use.

CHAPTER 4. THE 2-D DIFFUSION EQUATION

—— s'= 0.1000 M= 2.01
—— 8'= 0.1667 M= 4.01
—A— 8*= 0.2500 M= 2.01
—8— 8*= 03333 M= 2.01
—E— s*= 05000 M= 2,02

NUMBER OF GRIDSPACINGS
10 40 100
9 1 | 1 L3 gy 10—9
8- - 1078
o
. | =7
7 10 E
i}
= z
= % B
8 6' ™ 10 Lo
2]
n m
¢ o
5- 1075 @
o
)
4 L 1074
a y . " 10-8
1.0 1.8 2.0
~LOG (A%
10

Figure 4.5: Error vs grid spacing graph for the (1,9) method (4.2.11)

CHAPTER 4. THE 2-D DIFFUSION EQUATION

10

-LOG {lel

—%— s'=0.1000 M= 052
—O— §'=0.1667 M= 1.05
—A— 5*=02500 M= 052
—H— 5°=0.3333 M= 053
—8— 8'= 05000 M= 054

CPU TIME (SECS)

0.1 0.4 1 4 10 40 100 400 1000 4000 10000

9 1 L et 1 1 L1111 1 L0 1 ipnil 1 L1 L i 1 L Liint 10—9
8- L 0~8
7 L 407
6 | ,o~6
5+ - 1075
4 e
3 1073
-1.0 4.0

LOG {Cp}
10

Figure 4.6: Error vs CPU time graph for the (1,9) method (4.2.11)

DISCRETISATION ERROR

98

CHAPTER 4. THE 2-D DIFFUSION EQUATION 99

4.2.3 (1,13) Weighted Explicit Method

As happened for the one-dimensional case, the previous two sections have shown that,
using two—lével explicit stencils which are only three spatial grid points wide to ap-
proximate the spatial derivatives, finite-difference equations cannot be derived to give
more than second-order accuracy for general s, and s,. Although there are specific
values of s, and s, which will make some of these methods fourth-order, for a method
to be of practical use it should allow for variations of these values without degrading
the accuracy of the solution. Also, these specific values restrict the size of the time

step allowed to values which are much smaller than is desirable in practice.

Again, five-point approximations to the spatial derivatives can be used to overcome
these limitations. This again leads to problems with finding values at grid points next
to a boundary, and these problems must be addressed in order for any method to
be useful in practice. In order to keep these problems to a minimum, the first case
considered will use only two five-point approximations; one for 8?7/0z? and the other
for 8%7/8y?, both about the (j, k,n) grid point. This leads to a (1,13) stencil, shown
in Figure 4.7, which is the minimum possible explicit extension of the (1,9) case, given
that the equation must be kept spatially centred so as to force as many of the error

terms as possible to be zero.

The weighted differencing used in this case is

g_; Jk ~ o x {[OSB3 at (j,k —1,n)] + [CS3 at (j, k +1,n)]}
+ 7 x[CS5at (5, k,n)]
+ (1—2p—7) %[CS3at (j, k,n),
%:k 6 x {{ CS3at (j —1,k,n)]+[CS3 at (j +1,k,n)]}
+ ex [CS5at (j,k,n)
+ (1-20—¢)x [CS3 at (j,k,m)), (42.14)

where CS3 and CS5 are used to represent three and five-point centred-space approxi-

mations respectively to the spatial derivative.

Using these weighted approximations gives the weighted (1,13) explicit finite-difference

CHAPTER 4. THE 2-D DIFFUSION EQUATION 100

©)
@ ®
t,n
¥,k
X,
Figure 4.7: Computational stencil for the (1,18) method
equation
~1277 = vso(Ton + Tiae) + €8y(T7ko2 + T ks2)

— 12{ps: + gsy}(Tf-l,k-l + T]n—l,k+1 + T_?+1,k—1 + 7'jn+1,k+1)

+ 4{6(psz +0sy) — (B8 +7)sa }(Tiy p + Ti41 k)

+ 4{6(pss +bsy) — (34 €)sy Y771 + Tiker)

+ 6{(4 =8¢ +7)sz+ (4—80 +¢€)sy — 2}77. (4.2.15)

The modified equivalent equation corresponding to (4.2.15) can be written in the

general form (4.1.2) with leading error terms containing the factors

P40 = 7+6s:—-1
Tyo = 8z8y — s, — 0Osy
I‘414 = €+ 65y -1 (4216)

so in general the method can be seen to be second-order accurate. It can be seen from

(4.2.16) however, that if the weights are chosen to have values which satisfy

CHAPTER 4. THE 2-D DIFFUSION EQUATION

v = 1—-06s;
. 3y(8z — 0)
o =
e = 1—6s, (4.2.17)

then all of the second-order error terms will be zero, and so the resulting method must

be at least fourth-order accurate, as I's ; = 0 for all q.
On substituting the expressions (4.2.17) into equation (4.2.15), the resulting equation
1s
=127 = so{1 =68 H(riap + k) + 8y {1 = 65y }(Tikoz + ks
— 12858y (T g ke + Tk + ko T 4)
83:{38s + 35y — 2}(7‘}‘_1,,: + 'r;’_H’k)
85y {30 + sy — 2H(7]k_1 + Tik41)

o+ o+

6{s5(5 — 655 — 43y) + sy(5 — 65y — 4s;) — 2}774. (4.2.18)

The thing to be noted about this equation is the fact that the fourth weight 6, has
also been eliminated from this equation. As in the case of the (1,9) method, this is

due to the fact that it was only present in (4.2.15) as part of the sub-expression

(¢ose + 6sy) : _ (4.2.19)

and this expression simplifies to sz, on substitution of (4.2.17).

The modified equivalent equation corresponding to equation (4.2.18) can be written

in the general form (4.1.2) with leading error terms

Teo = 2(2— 155, + 30s;%)

Fes = 8;8,(6s, —1)

Tea = 8z8,(6s, —1)

Fesg = 2(2—15s, + 30s,%), (4.2.20)
which verifies that the method is fourth-order accurate for all values of s, and s,.

A numerical von Neumann stability analysis of the method reveals that the equation

CHAPTER 4. THE 2-D DIFFUSION EQUATION 102

(4.2.18) is stable for
sz + 8y < 2/3, (4.2.21)

which is a larger region of the (s, s,) plane than that for the (1,5) equation (4.2.1) but
not as large as that for the (1,9) equation (4.2.11). This slight disadvantage relative to
the latter case is more than offset by the fact that this method is fourth-order accurate,
whereas both of the previous methods were only second-order. It should also be noted
that although the choice of s, = s, = 1/6 will force the cross-derivative error terms
I's2 and T'g4 to be zero, the other fourth-order error terms cannot be eliminated, so

there are no special values of s, and s, which make this method sixth-order.

Having shown that this method is more accurate than the others considered so far,
the problems near the boundary, due to the large spatial spread of grid points, must
now be overcome, or else the method is of no practical use. The difficulty, as in the
one-dimensional case, is that when the equation (4.2.18) is used to compute the values
at the grid point next to'a boundary, a reference is made to a grid point outside the

boundary, and the value of 7 at this point is not known.

This problem can be overcome in several ways in the case where the boundary values
are known. The first method involves extrapolating values of 7 at external grid points

(at the ntB time level) to sixth-order, using the formula
T:Ll,k ~ 67’(')";]9 - 157-1":]9 + 207—;;]6 - 15T£k 'Jf" 67-1;}: - T;k’ (4.2.22)

which produces the same accuracy as the finite-difference method applied at the in-
terior grid points. This value can then be used directly in equation (4.2.18) to find
the value next to the boundary at the new time level. This has the advantage that it
is easy to implement and does not use large amounts of CPU time. It may, however,
significantly detract from the theoretical stability region of the method, particularly

as the order of accuracy of the extrapolation increases.

Looking at actual numerical results, shown in Figures 4.8 and 4.9, the fourth-order
accuracy of equation (4.2.18) is apparent. It is also apparent that the results from
this method are much more accurate, in absolute terms, than those produced by the

second-order methods discussed above. It should be noted that there is no sign of

CHAPTER 4. THE 2-D DIFFUSION EQUATION

—— s*= 0.1000 M= 4.04
—o— s*= 0.1667 M= 4.01
e s*= 02500 M= 4.14
—8— s*= 03333 M= 412

NUMBER OF GRIDSPACINGS

10 40 100
9 \ 1 1 PR T S I 10—9
)
8- d (o8
T
82 74 L 107
-
|
6- L 1076
5 y : . 1075
1.0 1.5 2.0
-LOG (ax
10

DISCRETISATION ERROR

103

Figure 4.8: Error vs grid spacing graph for the (1,18) method (4.2.18), using exirapo-

lation at the boundaries

—%— §°=01000 M= 104
—0— s'= 01667 M= 1.03
—A— 5'=02500 M= 1.06
—B— 8°=03333 M= 1.06
CPU TIME (SECS)
1 4 10 40 100 400 1000 4000 10000
9 1 L1 L pnsnn 1 14 11t 1 Ll LirtLl 1§ | NN 10_9
8- L 408
T
82 - L 10~7
-
]
6 PP
53 T T r 1075
r:
LOG (Cp}
10

DISCRETISATION ERROR

Figure 4.9: Error vs CPU time graph for the (1,18) method (4.2.18), using extrapola-

tion ot the boundaries

CHAPTER 4. THE 2-D DIFFUSION EQUATION 104

any numerical instability in these results, such as may have been introduced by the
extrapolation to the exterior grid points. Any instability introduced by the extrap-
olation appears to have been damped out by the main finite-difference equation, so
this boundary technique is practical to use. Note that this may not be so for other

finite-difference equations which may be used in the interior of the region.

Another way to overcome the boundary problem is to use a compact three-level
method, such as a (1,9,9) method, to find the value next to the boundary. The method
chosen must be of the same order of accuracy as the method used for the rest of the
region, namely fourth-order, and should also be stable over at least the same region
as the main method. Some three-level methods that may be used for this purpose are
described later in Section 4.3. It is shown there that such three-level methods, as in
the one-dimensional case, tend to have more restricted stability ranges than two-level
methods. In particular, the fourth-order (1,9,9) equation has a stability range that is
much smaller than that for the (1,13) equation itself. Since there are other practical,
fourth-order schemes for handling the boundaries, the use of three-level methods has

not been investigated further.

Another different approach is to calculate all the values at the next time level except
those next to the boundaries, then use interpolation with sixth-order accuracy at the
new time level to fill in these values. This technique has the advantage of being easy
to implement and quick to run on a computer, so the computing time advantage of
using an explicit method is preserved. Again the effect on numerical stability of using
this scheme must be examined to ensure that the method is still of practical use. In
this case, an adverse affect on the stability of the whole scheme is evident, and this

technique also has thus been pursuéd no further.

The last method to be considered here involves the use of an implicit (9,9) centred
stencil to find a set of equations relating the values next to the boundary. One ad-
vantage of this is that it is possible to produce a method based on this stencil that
is unconditionally stable, so the overall method remains stable for the same region
as the interior method. The (9,9) stencil is used by first calculating all the values

at the new time level except those next to the boundary (which are the values to be

CHAPTER 4. THE 2-D DIFFUSION EQUATION 105

found). Starting from any corner position, number the unknown grid points from 1 to
(2J +2K —8), where there are J grid points in the z direction and KX in the y direction
(the direction of numbering is unimportant). An example of such a numbering scheme
is shown in Figure 4.10. Then the use of a (9,9) centred stencil (ie. a 3 X 3 square of
grid points at each time level) in the corner of the region with grid point 1 gives an
equation for points labelled (2J + 2K —8), 1 and 2. Shifting the stencil one grid point
along, in the same direction as the points were numbered, gives an equation involving
the same three points with point 3 added. Another shift produces an equation involv-
ing points 2, 3 and 4 only. As the stencil is shifted around the boundary of the region,
a set of (2J 4+ 2K — 8) linear equations is built up.

® o] o [0} o] o] []
1 2 3 4 5

L] o] o] ®
16 (=2J+2K-8) 6

L] o - o] L]
15 (f

L] 8] (0] L]
14 8

[] o] o] o] o] O @
13 12 11 10 9

Figure 4.10: One possible numbering scheme of grid points for the boundary solution

scheme based on a (9,9) stencil, with J =K =6

The structure of these equations is almost tri-diagonal, but there are ten non-zero
values which are not part of a normal tri-diagonal system. Two of these (corresponding
to the presence of point (2J 4 2J{ — 8) in the first equation and point 1 in the last one)

can be left in the system if a special cyclic solver is employed (Evans and Hatzopoulos,

CHAPTER 4. THE 2-D DIFFUSION EQUATION 106

1976), and the other eight values can be easily removed by elimination with other

equations.

—_—— s* = 0.1000 M= 400
—— s' = 0.1667 M= 4,02
—h— s'= 03333 M= 4.07

NUMBER OF GRIDSPACINGS
10 40 100
9 1 L PR S T T | 10—9
b
[any
2 -8 2
8 10 4
w
= e
3 o
® 7 L 1077 &
3 &
T o
o
6- L 107 3
a
5 . ; ; 1073
1.0 1.5 2.0
-10G (8%
10

Figure 4.11: Error vs grid spacing graph for the (1,18) method (4.2.18), using o (9,9)

equation at the boundaries

Since the (9,9) method used to generate these equations 1s fourth-order the accuracy
of the values found next to the boundary will match that of the values in the rest of
the region. The numerical results for this boundary scheme, shown in Figures 4.11
and 4.12, are very similar to the results obtained for previous boundary techniques,
both in terms of the accuracy of the solutions and the amount of CPU time required
to generate the solution. This is somewhat surprising, since the extra requirement to
set up and solve a set of linear equations at each time step could be expected to add
significantly to the CPU time required. This result, with only a marginal increase in
the CPU usage, shows that the vast majority of the CPU time required to generate the
solution is used in the interior of the region, so the extra time used at the boundary

is not a significant factor.

Note that the value s* = 0.25 is omitted from the numerical trials of the (9,9) boundary
technique, because in this case the 0{4} (9,9) equation used has several zero coeffi-

cients, which changes the structure of the system of equations that needs to be solved.

CHAPTER 4. THE 2-D DIFFUSION EQUATION 107

—— s*= 0.1000 M= 1.09
—— s"= 0.1667 M= 1.09
B s'= 03333 M= 111

CPU TIME (SECS)
1 4 10 40 100 400 1000 4000 10000

9 L L1 1 il 1 L piiaut 1 IR A L1t 10-9
5

-8
8- L 10 <
Lt
. z
s o
74 L 107 &
3 %
3 ta
ang
6+ L 106§
[a]

i) 2 :) 107

LOG {Cp)
10

Figure 4.12: Error vs CPU time graph for the (1,13) method ({.2.18), using ¢ (9,9)

equation at the boundaries

This leads to an attempt to divide by zero in the solution process, and while a special
case could be made for this, doing this would make meaningful comparisons of CPU
time impossible. Also note that the (9,9) method of handling the boundary problems
is useful since it may be applied without changes to both the logical extensions of the
(1,13) stencil, namely the (1,21) and (1,25) stencils, which are discussed later. This
contrasts with techniques such as extrapolation, where several extra external values

must be computed for each of these extensions.

4.2.4 (1,21) Weighted Explicit Method

Having found one reasonably stable, fourth-order accurate method for solving equation
(4.1.1), consideration is now given to finding methods which are either more accurate
then this (ie. sixth-order), or which possess a larger stability range, or both. Methods
should not disproportionately increase the CPU time used; ideally the same amount
of CPU time should give solutions of comparable accuracy. This objective requires

more points to be introduced into the computational stencil, but once again care must

CHAPTER 4. THE 2-D DIFFUSION EQUATION 108

be taken to ensure that all spatial differencing is kept centred. This is achieved by
including five-point approximations to the spatial derivatives, one grid spacing either
side of the (4, k,n) grid point. By doing this, it is now possible to incorporate extra
weights into the scheme, which can be used to either increase the order of accuracy, if

possible, or to try to increase the stability range of the method.

In fact, it is possible to include eight weights into the computational stencil, by weight-

ing the spatial derivative terms as follows:

-g%;: ~ o x {[CS3 at (j,k —2,n)] + [CS3 at (j, k +2,n)]}
b X x[CS3ak (k)] + (1= g+ +7) — x) x [OS5 at (j, b,

+ oy x{[CS3at (j,k—1,n)] +] CS3 at (j,k +1,n)]}

+ wx {[CS5at (j,k—1,n)]+[CS5 at (j,k+ 1,n)]}

%’;1 8 x {[CS3 at (j — 2,k,n)] +[CS3 at (j + 2, k,n)]}

+

nx[CS3at(j,k,n)]+(1—2(0+e+X)—n)x[CS5at (j,k,n)]
ex {[CS3at (j —1,k,n)]+[CS3at (j +1,k,n)]}

+ o+

Ax{[CS5 at (j — 1,k,n)] +[CS5 at (j + 1, k,n)]}. (4.2.23)

This appears to give much more flexibility than even the (1,13) scheme above, due to
the extra number of weights which can be used to eliminate error terms or increase

stability.
The finite-difference equation that results from this differencing is

n+1
—12ij 2

{7rs$ - 129331}(7'?—2,1:4 it "'}L—z,k+1 + T3n+2,k—1 + Tﬂ}-2,k+1)
{1 —2¢ — 2y — 27 — X)Sz + 24933,}('rf_2’k + "'JF+2,k)
{(1 — 20 —2e—2X —n)s, + 245031.}(@%_2 + 7 kra)

+ o+ o+

{Asy — 1208 }(T] g+ T kee + Tt hpa T Trrnkt2)

— 4{(4m +37)8z + (4N +3€)8y }(7] g ko1 F Timt kot F Tiva e T+ Ti1 k1)
{4(x + 8¢ + 8y + 8w — 4)s; + 6(de + 5A)sy (77 4 + 741)

6{(5 — x — 10¢ — 10y — 107)s, + (5 — n — 106 — 10e — 10))s, — 2} 77,
{4(n + 80 4+ 8e + 8\ — 4)s, + 6(dy + 57)s: (7 + Tiar) (4.2.24)

CHAPTER 4. THE 2-D DIFFUSION EQUATION 109

which is fully centred about the (j, k) grid position, as was intended by the differencing
chosen. The computational stencil used by this equation is shown in Figure 4.13. The
modified equivalent equation corresponding to this finite-difference equation can be

written in the general form (4.1.2), with leading error terms which contain the factors

Tso = 6sc—Xx—27—2¢

Tiz = o8y — (v +7+4p)s: —(e+ A+ 46)s,
Tys = 6sy—1n—2¢—26. (4.2.25)

@)

t,n

vak

Figure 4.13: Computational stencil for the (1,21) method

All these terms involve some of the weights from the method, so it may be possible
to use these weights to remove the error terms (4.2.25) and produce a method of at
least fourth, if not sixth, order accuracy. Solution of the equations to make (4.2.24)

fourth-order leads to the values
x = 68;—2p—2v
= s; — (7 + 7+ 4p)(s:/8y) — (€ +40)
n = 68, — 20— 2¢ (4.2.26)

being required for three of the weights. Note however that this choice of weights will

remove the symmetry with respect to z and y from the equation. To overcome this

CHAPTER 4. THE 2-D DIFFUSION EQUATION 110

lack of symmetry, the expression for A is replaced by the pair of more specialised

conditions

™

Sy[2 — 7y — 4.
A o= s./2—e— 40 (4.2.27)

This substitution leaves four weights free in the equation, and since there are four
fourth-order error terms in the modified equivalent equation (since it is centred), de-
riving a sixth-order method may still be possible. However, examination of the mod-
ified equivalent equation corresponding to the new equation with the values (4.2.26)
and (4.2.27) substituted shows that the new leading error terms, written in the general

form (4.1.2), contain the factors

I‘eo = 603;,;2 & 303;,; -+ 4

Te2 = 85(6s58y —4p —7 —s,/2) —120s,
Tes = 5y(6558y —40 —e—5,/2) —120ps,

bl

Tes = 60s,> —30s, + 4, (4.2.28)

from which it can be seen that the terms I'e o and g ¢ have no weights in them, and

so cannot be removed by any choice of values for the weights.

Thus the (1,21) method is no more accurate than the (1,13) method, and needs more
effort near the boundaries to cope with the additional points that would ordinarily fall
outside the boundary of the region when the stencil is used at grid points next to the
boundaries. Given this, there is very little use looking at this scheme further, unless
it can be shown to be much more stable than the (1,13) scheme for some choice(s) of

the remaining weights.

The resulting (1,21) equation has too many weights involved to effectively investigate
its numerical stability, so the error terms I'g ; and I's 4 will be eliminated first. In order

to do this, the values

v = (6sy —1/2—120/3,)s, — 4o

e = (6s,—1/2—12¢/s,)s, — 46 (4.2.29)

CHAPTER 4. THE 2-D DIFFUSION EQUATION 111

are substituted into equation (4.2.24) with the other weights given above. This re-
moves the fourth-order cross derivative terms involving I'g » and I's 4 from the modified
equation, as well as simplifying the finite-difference equation by removing two more

weights.

The finite-difference that results from all the above substitutions is given by

—127'}::1 8p8y{1 — 633}(7'_1?1—2,76—1 + T}L—z,k+1 + T;L+2,k—1 i T}l+2,k+1)

so{(1 = 655)(1 — 28 Mgk + Tii2)

sy{(1 = 285)(1 — 65y) (k-2 + Tine2)

sp8y{1 — 6311}(7-;—1,]:—2 + T_?—l,k+2 + 7';h+1,k—2 + T;l+1,k+2)
43151/{6*% + 6sy — 5}(Tjn—l,k——1 iy 7'}1—1,k+1 + T;I+1,k—1 + T;l+1,k+1)
25,{12; + 195, — 24555, — 18s,> — 87/ 1 + 71 k)

25,{19s, + 125, — 24s,s, — 18s,> — 8}(7]4_; + Tﬂﬂ)

+ + 4+ + + + o+

6{—2 + 5(sc + 8y) — 12858, — 6(ss> + 5,) + 12558, (50 + 84) 77
(4.2.30)

Note that here, as in previous cases, the substitution of specified values for most of the
weights has eliminated all the weights. The von Neumann stability of this equation

can be determined numerically and is found to be convex region bounded by
0< s, £2/3
Sz + sy <1

0< s, <2/3, (4.2.31)

shown in Figure 4.14. This is a slightly larger stability region than the (1,13) equation,
so a numerical test of the method is required to determine which is the preferred
method of solution. The best method of handling the boundary problems in this case
is to use the (9,9) implicit scheme, since it used no more CPU for the (1,13) case
than the other boundary techniques examined, it can be used here in exactly the same

form, and imposes no extra stability restrictions on the method.

The results from a numerical experiment, shown in Figures 4.15 and 4.16, show that

the results are very similar to those for the (1,13) equation. The accuracy obtained

CHAPTER 4. THE 2-D DIFFUSION EQUATION 112

Figure 4.14: Von Neumann stability region for the optimal (1,21) equation. Note that

the line s, + sy = 1 18 excluded from the region

is practically identical, as is the CPU time required for each run. Overall, there is
little to distinguish this method from the (1,13) method described above. The (1,13)
equation may be preferred because it involves fewer grid points and is thus somewhat

simpler to implement, but even this is only a marginal difference.

4.2.5 (1,25) Weighted Explicit Method

A final attempt to produce an explicit sixth-order method is now made by using the
full 5 x 5 grid of points at the nth time level to produce a weighted (1,25) method.
This can be done by using the same basic weighting as for the (1,21) method described
above, with the addition of the five-point approximations at the edge of the stencil.
This adds an extra weight in each spatial direction, which will be denoted by w in the

x-direction and ¢ in the y-direction.

Such a method still has the same problems as the (1,13) and (1,21) equations near

CHAPTER 4. THE 2-D DIFFUSION EQUATION 113

—— ‘= 0.1000 M= 4.00
—— s*= 0.1667 M= 4.02
—A— s*= 03333 M= 4.06

NUMBER OF GRIDSPACINGS
10 40 100
9 1 \ I W T S T | 10—9
5
K . 8
8+ E 10 €
ul
5 5
8’ 7- - 1077 E
N ti
o
6 - 1076 @
[a]
5 . = . 1075
1.0 1.5 2.0
—LOG (a4
10

Figure 4.15: Error vs grid spacing graph for the (1,21) method (4.2.30), using a (9,9)

equation at the boundaries

—%— §*=01000 M= 1.06
—6— 8'= 0.1667 M= 106
—A— §*- 03333 M= 1.08
CPU TIME (SECS)
1 4 10 40 100 400 1000 4000 10000
9 1 11 0 p1aat 1 L1 prrat 1 11 11111t 1 Lt 11141 10_9
5
-8
8-} - 10 s
w
@ =z
z , B
8— 7 = 10~ 'E
2]
7 @
0
6 SETRE
[a]
5 "] . ; 1072
LOG (Cp)
10

Figure 4.16: Error vs CPU time graph for the (1,21) method (4.2.80), using a (9,9)

equation at the boundaries

CHAPTER 4. THE 2-D DIFFUSION EQUATION 114

the boundaries of the solution region, with the added complication that when used in
a corner of the region there is one point of the stencil that is outside the region in
both spatial directions, rather than just one as has been the case with the methods
discussed so far. This adds to the difficulties of implementing these methods, as well
as introducing an additional source of errors, unless the (9,9) implicit method is used,

in which case these extra problems never arise.
The finite difference equation that corresponds to this differencing is

12T;:'k

Il

{wse + 08, (T g pog + Tigkts + Thok-2 t T2 e2)

{mss —4(30 + 40)sy Y(T] g p1 + Tio k41 + T2 -1 T T2 kt1)
{Asy — 4(3p + 4w)so H(T/y kg + Ta ke + Think—2 T Ti1k42)
{(1 = 2¢ — 2w — 2y — 2 —)5z + 6(46 + 50)sy (/g4 + 742)
{6(4¢ + 5w)s; + (1 — 260 — 20 — 2 — 2A — 1)y H(Tj kg T "'},lk+2)

+ o+ o+ o+

1

4{(3’)’ + 47r)~'3x + (36 + 4)\)31/}(7-1'”—1,k—l i T;’I—l,k+1 + Tjﬂ+1,k—1 + T;l+1,k+1)
{4(x + 8¢ + 8w + 8y + 81 — 4)s, + 6(4e + 5X)sy (/1 + T4 k)

+ +

{6(4y + 57)s, + 4(n + 80 + 80 + 8e + 8 —4)s, {771 + Tikt1)
— 6{(x + 10p + 10w + 10 + 107 — 5)s,
+(n + 106 + 100 4 10 + 10X — 5)sy + 2} 77 (4.2.32)

The modified equivalent equation corresponding to equation (4.2.32) can be written
in the general form (4.1.2) with leading error terms

Ty = 685 —x —27—2p
Ty = 8z8y — (4wt 4o +m+7)s, — (4o +40+ A+ €)sy
['ya = 6sy—n—2e—20. (4.2.33)

These error coeflicients can be made zero by the choice of

X = 6s;—27—2¢
T o= 8, —(dwtdep+y)—(do+40 + X+ €)(sy/52)

Il

n = 6s,— 2 — 20 (4.2.34)

CHAPTER 4. THE 2-D DIFFUSION EQUATION 115

®

/.
t,n
v,k

X,]

Figure 4.17: Computational stencil for the (1,25) method

which leads to a fourth-order finite difference equation. As was done for the (1,21)
method however, the equation for 7 is split into two equations, in order to keep the

symmetry of the difference equation. This is achieved by

A = 8;/2—40 — 46 —,

T o= 8/2—4w—4p—1. (4.2.35)

If the modified equivalent equation corresponding to this fourth-order equation is

examined however, it is found that
Teo = 4 — 30s; + 60s,” (4.2.36)

which contains no weights, and so the method cannot be made sixth-order by any
choice of weights. It can be seen that this will happen no matter what weights we

choose to make (4.2.32) fourth-order, as for this equation
Too=4—5(x + 27+ 2¢) + 30(x + 27 + 2¢)s, — 120s,%, (4.2.37)

and to eliminate the term I'y o we must set

X + 27 + 2¢p = Gs;. (4.2.38)

CHAPTER 4. THE 2-D DIFFUSION EQUATION 116

Substituting this into equation (4.2.37) gives equation (4.2.36) unconditionally, so that
any choice of weights that makes equation (4.2.32) fourth-order makes eliminating

further weights to give a sixth-order method impossible.

Thus this equation cannot be made any more accurate than the (1,13) and (1,21)
equations discussed earlier and is significantly more complicated, due to the additional
weights. These extra weights also mean that the von Neumann stability of the equation
cannot be usefully examined numerically with the current programs. Since, based
on previous experience, the method is unlikely to be significantly more stable than
previous methods (the best likely result being s, <2/3, s, < 2/3), the possible small

saving in CPU time is not worth the added complication of this equation.

4.2.6 Summary

Of all the two-level explicit methods, the best fourth-order equations found were the
(1,13) and (1,21) equations. The (1,21) equation has the advantage of a somewhat
bigger von Neumann stability range than the (1,13) equation, but uses more grid
points and so is generally more complicated to implement next to a boundary. Note
that this disadvantage may be overcome by using the (9,9) implicit equation to find
the values at grid points next to the boundary, with very little if any CPU time
penalty compared to other methods, so this is the preferred technique of handling the

boundary problems.

It is not practical to extend the computational stencil any further spatially, due to the
increasing problems of points outside the region when the stencil is used near a bound-
ary. Given this, attention is now shifted towards three-level explicit methods, where
more grid points, and hence more weights, can be introduced into the computational

stencil without extending it spatially.

CHAPTER 4. THE 2-D DIFFUSION EQUATION 117

4.3 Three-Level Explicit Methods

Three level methods are worth considering for a number of reasons. The main one is
that more grid points can be included in the computational stencil while still keeping
the stencil compact spatially, thus avoiding (or at least minimising) the problems

discussed above that occur near the boundaries of the solution domain.

This also leads to an increase in the number of weights that can be used, both because
there are now two time levels on which to difference the spatial derivatives, and also
because backward-time differencing can be used to weight the time derivative as well,
which was not possible for the two-level methods. It should be kept in mind, however,
that three-level methods were, in general, less stable than two-level methods for the
one-dimensional problem, and this may also be the case here. If this does carry over
into the two-dimensional problem, then a three-level equation would need to be at

least sixth-order accurate to make up for a reduced stability range.

4.3.1 (1,5,5) Weighted Explicit Method

The simplest possible three-level method is based on the (1,5) two-level method de-
scribed in Section 4.2.1 above, with an extra 5 grid points included at the (n — 1)th

~ time level, as shown in Figure 4.18.

This stencil allows for the inclusion of five weights in centred fashion, although, judging
by past experience, the number of points in the stencil is likely to be insufficient to

obtain a very accurate method. The differencing used to include these weights is

%:k ~ yx{[BTat(j~1,kn)]+[BTat (j+1,kn)]}
+ Ax{[BT at (j,k—1,n)}+[BT at (j,k + 1,n)]}
+ wx[CT at (3,k,n))
+ (1-2y—2)—w)x[FT at (j,k,n)),
%n ~ @ x[CS3at (j,k,n)] +(1—-¢)x[CS3at (j,k,n—1),

CHAPTER 4. THE 2-D DIFFUSION EQUATION 118

@

t,n €)
v,k

X,J

Figure 4.18: Computational stencil for the (1,5,5) method

orr|"

o0 ~ Ox[CS3at(j,kn)+(1—-0)x[CS3at(j,k,n—1)]. (4.3.1)
y J,k

It can be seen that this differencing is not centred in time. It is however still centred in
space, which is in fact sufficient for the resulting finite-difference equation to possess
the desirable features of centred equations, namely that the odd-order error terms are

all zero. The finite-difference equation that results from the differencing (4;3.1) is

{w+4y+4A - 1}7'}?:1 = 2{y- S"Sr}(T;—Lk + T}l+1,k)

2{A = 0sy Hrih1 + Tikga)

2{27 42X + w + 28, + 205, — 1}77,
2{(¢ — 1)ss — v}k + 770N)

2{(6 — 1)sx — A}y +)

{4(1 — ¢)se +4(1 = 0)s, — 1} (4.3.2)

+ + o+ o+ o+

This equation gives rise to a modified equivalent equation which has leading error

CHAPTER 4. THE 2-D DIFFUSION EQUATION 119
terms containing the factors

Tyo = 129 —1+6(3—2p —4y—4) —w)s;

1

Tug = Ase+78y +(3—0—4y —4X—w—p)sssy

)

Tyq = 1220 —146(3—20— 4y — 4\ —w)s,. (4.3.3)

)

There are no values of the weights that eliminate all three of these errors simultane-
ously for general values of s, and s,. This can be verified by eliminating the terms
T[40 and I'y4, which is done by setting
127 — 1+ 5,(18 — 6w — 24\ — 24~)

125,

120 — 1 + 5,(18 — 6w — 24X — 247)
12s, '

¢ =

g =

(4.3.4)

If this substitution is made and the modified equivalent equation of the resulting

equation is examined, it is found to contain factors in the leading error terms of

I‘4,0 == U
. Szt 8y
F‘f” T 12
Ty = 0. (4.3.5)

The absence of any of the remaining weights in these expressions means that I'y 2 can-
not be eliminated, for general s, and s,, so the method is only second-order accurate.
Thus this method is, as expected, significantly less accurate than the fourth-order

methods presented in previous sections.

4.3.2 (1,9,9) Weighted Explicit Method

If the (1,5,5) computational stencil used above is extended to a (1,9,9) stencil, eight
more grid points are involved in the stencil, which should allow a more accurate method
to be developed. This is done by adding extra weights into the differencings for both
the space and time derivatives, which should allow at least all the second-order error

terms to be eliminated, to produce a fourth-order equation.

CHAPTER 4. THE 2-D DIFFUSION EQUATION 120

©

L2

Figure 4.19: Computational stencil for the (1,9,9) method

The differencing used is basically the same as that used for the (1,5,5) stencil, with
some extra differencings introduced to incorporate the extra points added to the com-
putatioﬁal stencil. To keep the stencil spatially centred, the same weight must be used
for all four of the additional backward time derivatives introduced, but two additional
weights can be added in the differencing for each of the space derivative terms, giving
a total of ten weights for the method. The weighting used is thus

or|"

Q

yx {[BT at (j —1,k,n)] +[BT at (J+1,k,n)]}

ot |,
o AX{[BTat (j,k—1,n)]+ BT at (i,k+1,m)]}
4 oy x{[BTat(j—1,k—1n)]+[BTat(j—1,k+1,n)
H[BTat (G+1,k—1,n)]+[BTat(j+1,k+1,n)}
b wx [FTat (G, kyn)] + (1 — 20y + A+ 2x) —w) x [CT at (j, k,n)],
g_i.;.]k ~ o x {[CS3 ab (j,k —1,n)] + [CS3 at (7, k +1,n)]}
+ o x [CS3 at (j, k)]
b omx {[CS3ab (j,k—1,n—1)] +[CS3 at (j, k+1,n — 1)]}
+ (1— 20— 2m —) x [CS3 at (j, k,n — 1)),

CHAPTER 4.

or "

Oy? ik

Q

+
+
|

THE 2-D DIFFUSION EQUATION 121

v x {[CS3 at (j —1,k,n)] + [CS3 at (j +1,k,n)]}

6 x [CS3 at (j,k,n)]
Bx{CS3at(j—1,kn—-1)]4+[CS3at(j+1,kn—1)]}
(1—2v— 28— 6) x [CS3 at (j, k,n — 1)]. (4.3.6)

This differencing leads to the finite-difference equation

{w+ 4y 4 4+ 8x — 2}

+ o+ +

2{x —0sz — vy}
(TFaper F T T Tkt + T k)
2{y — sz +2vs, }(T7y ko + Ti41k)
2{\ + 205, — Osy }(TTh 1 + Tkp1)
2{w + 27 + 2\ + 4x + 2¢s, + 205, — 1}7'}},c
2{x + 75z + Bsy}
(77 + Tk Tieo1 T Tk
2{(20 +27f+90 — V)sg + 2Bsy — Y} + Tii1k)
2{27s, + (2v + 28+ 6 — 1)s, — A}l + TJT‘L];_l)
{4(1 — ¢ — 20 — 27)s,

+4(1 -0 —2v — 2f)s, —w}tii (4.3.7)

which can be shown to have a modified equivalent equation that is in the general form

(4.1.2) with leading error terms involving the factors

Ly

Laz

L4

{

—1+24x + 12y — 6(40 + 2p + 8x + 4y + 4X +w — 3)s;
x+A—0—m)ss +2x+y—v—B)sy
(3—20—p—2v—0—w—4y— 4\ —8X)sz5y

—1+424x + 12X — 6(4v + 20 4+ 8x + 47 +4A +w —3)s,. (4.3.8)

These second-order error terms can be removed by a suitable choice of values for some

of the weights. In order to keep the equation spatially symmetrical, four weights are

CHAPTER 4. THE 2-D DIFFUSION EQUATION 122
used instead of the minimum three, the choice being

T = (83—20—¢p—20—0—w—4y—4X—8x)(8y/2) — 0 + X+ 2x,
= (8—20—¢p—2v—0 —w—4y— 4\ —8x)(s:/2) — v+ v+ 2,
{=1424x 4+ 12y — 6(40 + 8x + 4y + 4A +w — 3)s-) /(125,),

e € ™

{—1+ 24y + 12X — 6(4v +8x + 4y + &)X + w — 3)s,} /(12s,), (4.3.9)

where the values given for ¢ and 6 must also be substituted in the expressions for
7 and B. This substitution leads to a fourth-order finite-difference equation in which
several of the weights appear only in common sub-expressions. To simplify the form of
the equation, we can, without loss of generality, replace each of these sub-expressions
with a new “weight”, which can then be treated exactly like any other weight. The

substitution made is

po= wtdy+A+2x)

€ = X — 0S8y — VUSy, (4.3.10)

which yields the spatially centred fourth-order finite-difference equation

6{u — 2}7; M= 125(Cik-1 T Tierker T TiGem1 T 1 k1)

{1 —18s, —24e + 6pus Mgk + 74 k)

{1 —18s, — 24e+ 6/LSI}(T]T'Lk_1 + T??k_l_l)

{36(se +sy) — 16 + 12u(1 — 55 — 8y) + 48e} 77

+ o+ o+

|

{8z + sy + 126}(Tjn:11,k—1 +7; 1 k1T T +1 k-1 T T. +1 k+1)

+ {85y 425, — 1 — Bpus, + 24} (r] 54 +)
+ {28, +8sy — 1 —6usy + 24e} (775 LT k+1
+ {4 —16(s; + sy) — 6pu(1 — 25, — 25,) — 48}, (4.3.11)

with the proviso that u # 2 being required so as to retain the explicit nature of the

finite-difference equation.

The fourth-order error terms corresponding to this finite-difference equation then con-

tain the factors

CHAPTER 4. THE 2-D DIFFUSION EQUATION 123

Teo = (2/3){1 — 20s; + 100s,% 4 10ps,(1 — 63;)}
Leo = (1/12){ss(65; — 1 — 144e) + 6sy(p — 1) + 365,5,(5 — 3p)}
Pea = (1/12){sy(6sy —1 — 144e) + 6s,(pr — 1) + 36555,(5 — 3p)}

’

Tee = (2/3){1—20s, +100s,” 4+ 10ps,(1 — 6s,)}. (4.3.12)

It can be seen from coefficients (4.3.12) that the (1,9,9) equation cannot be made

sixth-order for general s, and s,, since to force I's g = I's 2 = 0, we require

205;(1 — 5s;) — 1
10s,(1 — 6s;)
655 — 1+ 65y (1 — 1) + 365,5,(5 — 3u)
144 ’

7

(4.3.13)

and this substitution removes all the weights from the expressions for I's 4 and T'sg,
without, in general, making these zero. Note, however, that in the special case s, =
sy = s*, the substitution (4.3.13) does also make I's4 = I'ss = 0, so a sixth-order

equation in possible in this case.

If the substitution (4.3.13) is made, the “optimal” (in the sense that as many of the
low order error terms as possible have been eliminated) finite-difference equation for

the (1,9,9) computational stencil is found to be

—36{1 — 205, }7/F" = {255(7 — 3005, + 1260s,”) — 65, (1 — 285, + 100s,%)}

(Ta ke + Tik)

+ {5sz(1 — 128, + 365,2) + 3s,(1 — 285, + 100s,%)}
(T_;il,k—l + ‘Tf—1,k+1 + T]n+1,k—1 + Tf+1,k+1)

+ {10s.(5 — 245, — 365,°) — 65,(7 + 325, — 380s,%)}
(TJT,Lk—l + T]T,Lkﬁ—l)

4+ {45,(143 — 240s, — 1260s,°)
+128, (7 + 325, — 380s,%) — 72},

4+ {=5s,(1 — 365,%) — 35, (1 — 8s, — 20s,%)}

n—1 n—1 -1 n—1
(T8 ket T TP ke T Tieer + T ps1)

CHAPTER 4. THE 2-D DIFFUSION EQUATION 124

+ {—25,(7 — 5405,?) + 65, (1 — 83, — 20s,°)}
(TP + T

+ {—10s,(5 — 36s; + 365,%) + 65,(7 — 68s; + 220s,%)}
(75521 + i

+ {36 — 45,(143 — 7205, + 540s,%)

—125,(7 — 685, + 2208,)} (4.3.14)

1
N —\/?—0'
The condition s, # 1/4/20 corresponds to the condition x # 2 from equation (4.3.11).
Equation (4.3.14) is still symmetric with respect to each spatial dimension individually,
but is not totally symmetric, due to the asymmetric nature of the substitution (4.3.13).
It should be noted that there is no symmetric substitution which removes any of the
error terms (4.3.12), except in the case where s, = s, = s*, due to the form of the
coefficients. This asymmetry does not, however, introduce any extra error terms into
the modified equivalent equation. The factors from the coefficients of the leading error

terms in the modified equation corresponding to (4.3.14) are given by

Feo=T¢2 = 0
84(20s,% — 1)(sz — 8y)
Feqa =
’ 2034(1 — 655)
(1 — 65, — 65y + 20555y) (55 — Sy)
FG 6 — .
’ 105,(1 — 6s,)

(4.3.15)
From this, it is clear that the equation is sixth-order accurate in the case s, = sy,
since both of the remaining fourth-order error terms contain (s; — sy) as a factor.

If the von Neumann stability of equation (4.3.14) is examined, it is found to be stable

for only the small region approzimately defined by

INA

1/6

Sz

s, < 1/3. (4.3.16)

For some values of s, the upper limit for s, is slightly more than 1/3, in some cases
as high as 0.4. In the case 3, = 3, = s*, for which the equation is sixth-order, the

stability limit is s* = 1/6, which is far too restrictive for the method to be of practical

CHAPTER 4. THE 2-D DIFFUSION EQUATION 125

use, especially since it is only fourth-order accurate. Given this stability range, the
(1,13) equation (4.2.18) is a more practical method, since it has the same fourth-order

accuracy and twice the stability range in the z-direction.

Notice that there seems to be some correspondence between this method and the sixth-
order (1,3,3) equation (2.5.9) for the one-dimensional case, in that both are three-level
explicit equations, both use all available points in a spatially three point wide stencil
and both restricted to s* < 1/6 for von Neumann stability. Note, however, that the
one-dimensional (1,3,3) equation was sixth-order accurate, whereas the best that can

be done here is fourth-order accuracy.

What can be done to attempt to overcome the small stability range is to look at the
von Neumann stability of the fourth-order weighted equation (4.3.11), to see if this is
suitably stable for some choice of the weights. To be of practical use, the fourth-order
equation would have to be stable over a range which is comparable to that obtained for
the fourth-order methods discussed earlier. However, a numerical stability analysis of
equation (4.3.11) shows that there are no values for the weights and e that produce
a von Neumann stable scheme for s; = s, = s* = 1/2, or even s* = 1/3. Since any
lesser range would be overly restrictive, given the ranges of earlier methods, we must

conclude that the (1,9,9) stencil cannot produce a practically useful equation.

Experience with unsuccessfully trying to develop several spatially wide three-level
methods for the one-dimensional case, with stencils such as (1,5,5), shows that such
equations generally have very restrictive von Neumann stability ranges, even when
the desired accuracy could be obtained. Given this, and the analogy between the one-
dimensional (1,3,3) equation and the two-dimensional (1,9,9) equation, it is expected
that attempting to find more accurate methods by extending the three-level stencils

spatially will be unsuccessful.

4.3.3 Other Three-Level Equations

Given the success of the (1,5,1) stencil in the one-dimensional case it is worth trying

to develop an analogous equation, which uses fewer points at time level (n — 1) than

CHAPTER 4. THE 2-D DIFFUSION EQUATION 126

at time level n, for the two-dimensional problem.

As a first attempt, a (1,5,1) stencil can be considered. This stencil only allows one
weight, on the time derivative, and the resulting equation cannot be made fourth-order
by any choice of this weight. Thus this equation is only second-order accurate for all

sz and sy, and so is not worth considering,.

An equation based on a (1,9,1) computational stencil can include three weights, one
for each space derivative and one for the time derivative, which may possibly be used
to eliminate all three second-order error terms and make a fourth-order method. If
this is tried, however, it is found that T'yo and T'y 4 depend only on the time weight,
and both are simultaneously zero only in the case s, = s, = s*. Thus this equation

too is only second-order accurate in the general case.

Closer to a direct analogy of the one-dimensional (1,5,1) stencil is a spatially cen-
tred (1,13,5) stencil, which can incorporate nine weights. Despite the large number
of weights, it is found that the resulting equation cannot be made sixth-order accu-
rate, and the fourth-order version of the equation has no advantages over the earlier
explicit methods in terms of accuracy or von Neumann stability, so this equation is

not considered in any more detail.

The last possible approach is to use a spatially centred (1,13,9) stencil, which can
incorporate twelve weights. The resulting finite-difference equation can be made sixth-
order by suitable choices for the values of the weights. The problems arise from the
fact that the sixth-order equation has coefficients containing numbers which are too
large to allow development and analysis of this equation on the VAX computer used
for this work. Further work may produce a good sixth-order equation from this stencil,
but since the analysis cannot be carried out on the computers available this has not

been done here.

CHAPTER 4. THE 2-D DIFFUSION EQUATION 127

4.3.4 Summary

It can be seen from the above that three-level methods, which provided the very accu-
rate and von Neumann stable (1,5,1) equation to solve the one-dimensional problem,
are not as practically useful for the two-dimensional problem. There is a similar ten-
dency to that seen in the one-dimensional case for there to be a severe reduction in
von Neumann stability for spatially wide three-level equations. Also, the only real
analogue of the sixth-order (1,5,1) equation for the one-dimensional case contains co-
efficients which are sufficiently large to prevent analysis on the available computing

facilities.

Thus overall, while three-level methods may appear to offer more accurate solutions
from compact computational stencils, in practice no more accuracy is obtained than

from the two-level methods.

4.4 Two-Level Implicit Methods

Another way of trying to incorporate more grid points into a stencil, and hence to
get more accuracy, is to use implicit methods. By analogy with the one-dimensional
case, it is expected that such methods would be very much more stable than the
explicit methods discussed in Section 4.2 above, ﬁnd, for a given spatial extent of a
computational stencil, more accurate. Balanced against this is the fact that at each
time level, a set of linear algebraic equations must be solved to give the values at the
new time level, and in two dimensions this becomes an extremely large time-consuming

problem, due to the large number of unknown values at the new time level.

It may, however, be expected that implicit methods could be made more accurate than
the explicit ones discussed above, as there is more possibility of introducing weights
into the equations. This is due to the extra points at the new time level, which allow
forward-time differences to be used at several space positions, rather than just the

., k.n) grid point, as was the case for two-level explicit methods.
Jy K, g P P

CHAPTER 4. THE 2-D DIFFUSION EQUATION 128

4.4.1 (5,5) Implicit Method

In order to check whether the general results for one-dimensional finite-difference
methods will carry over into the two-dimensional case, a very simple (5,5) method
is considered. While this is likely to have insufficient grid points in the stencil to be
even fourth-order accurate, it can still serve to investigate such properties as the von

Neumann stability of such methods.

Figure 4.20: Computational stencil for the (5,5) method

Using such a computational stencil, illustrated in Figure 4.20, the only way of weight-

ing the spatial derivative terms is by splitting the differencing between time levels,

namely
or|" ' .
—| &~ Ax[CSat(j,kn+1)]+(1-A) x[CSat(j,kn),
Oz in
9 _|n
g?—; ~ Ox[CSat (J,k,n+1)]+(1—-6)x[CSat(j,k,n)]. (44.1)
ik

The time derivative is also limited in terms of potential ways to introduce weights,
since the stencil is to be kept centred. One way of differencing is
or
ot

n

Q

o x {{FTat (j —1,k,n)]+[FT at (j + 1,k,n)]}

gk
+ yx{[FTat (j,k—1,n)]+[FT at (j,k + 1,n)]}

T (1-2p—27) x {{FT at (j, &, n)]). (4.42)

CHAPTER 4. THE 2-D DIFFUSION EQUATION 129

This differencing leads to the finite-difference equation
{ = Asa} (7 + Tie) + X — 08, 3770 + T
+ {1 —2p —2y+2Xs; + 205, } 77}
. {Asz —p— Sx}("'}l—l,k Sl T}L+1,k) o {Gsy Sy}(k-1 T T ,k+1)

+ {20+ 27+ 25,(1 — X) +2s,(1 — 0)}r}jk (4.4.3)
which can be shown to have a modified equivalent equation that has leading error
terms that contain the factors

Tyo = (1290 +6s,(1 —2X) —1)
Ty2o = (78 + 8:8,(1 =60 —X) + ps,)
Tya = (127 +6s,(1—20) —1). (4.4.4)

As expected, these error terms cannot be removed simultaneously to make the method
fourth-order. If this is tried, then I'yo = I'y 4 = 0 leads to
1+6s,(2A—1)

12
1+ 6s,(20—1)
4.
7 12 (4.4.5)
and substituting these back into I'y 5 gives
Sz 8
Tyo = = 4.
4,2 1 (4.4.6)

There are no Weights left in this expression, and no specific values of s, and s, which
make it zero, except in the case where s; = —s,, which means that s; = s, = 0,
which is of no practical use as it forces the time steps to be of zero size. Thus this
method cannot be made fourth-order, but is instead second-order for all values of s,

and s, > 0.

The equation that results from substituting the values (4.4.5) into equation (4.4.3) is
{1 = 652} (20 +) + {1 = 68, } (72, + 7
+ 4{2+4 35y + 35y}
= {1+63’}(] v F T e) AL+ 65} (s + 7iki)
4+ 4{2 — 38, — 33,)7 (4.4.7)

CHAPTER 4. THE 2-D DIFFUSION EQUATION 130

which has no weights left in it. A theoretical von Neumann stability analysis of this
method shows that it is unconditionally stable, and furthermore it can be shown that
the method is also unconditionally solvable. This is obviously much better than any
of the explicit methods. This is also consistent with the observation from the one-
dimensional case that two-level implicit methods tend to be more stable than explicit
ones. The major problem with such methods is the large system of linear algebraic

equations that must be solved at each time step.

Running a numerical test for this equation produces results as shown in Figures 4.21
and 4.22. These results were generated using the (5,5) equation, with the sets of linear
equations being solved at each time level by a banded equation solver, since this uses
many less operations than a full Gauss elimination process (Reid, 1971). The main
feature of these graphs is the enormous amount of CPU time required to generate the
solutions, even for such small values as J = K ='40. Another run, that included the
value J = K = 50 as well required over two days of CPU time to run. This level
of CPU time usage is unacceptable for a method in most practical situations. Since
the only real difference between this and the explicit methods discussed previously
is the requirement to solve a system of linear equations at each time step, it can
be concluded that implicit methods in general are impractical, since even with more
efficient solution techniques, the size of the sets of equations will consume significant

amounts of CPU time.

Given this problem with the amount of CPU time required to run implicit methods, no
further work will be done on them, except to generate the fourth-order (9,9) equation
which can be used earlier to overcome the boundary problems which arise from such

explicit equations as the (1,13) equation.

4.4.2 (9,9) Implicit Method

To be useful as a boundary technique for explicit equations with spatially wide com-

putational stencils, a (9,9) implicit equation must be at least fourth-order accurate.

CHAPTER 4. THE 2-D DIFFUSION EQUATION

10

LOG {lel}

LOG [lef}

—— s*= 0.1000 M= 2.07
—o— s*= 02500 M= 1.97
—A— s'= 0.5000 M= 164

NUMBER OF GRIDSPACINGS
10 40 100
L Lt i -5
5 1 - 10 -
o
@
&
45 - 107tz
<
)
3 L 1073 G
o
3
[a]
2 I . , 10~2
1.0 1.5 2.0
LOG {

131

Figure 4.21: Error vs grid spacing graph for the (5,5) implicit method (4.4.7)

—%— 5°'=01000 M= 036
—O— 8'=02500 M= 034
—A— s*= 05000 M=0.28

CPU TIME (SECS)

0.1 0.4 1 4 10 40 100 400 1000 4000 10000 40000100000
5 1 It i taity] 21 110l 1 L1 11t i) L r 111l 1 1 1 111t} 1 L1 arit 10_5
4 L, 1074
a- L 10-3
23 v] . + 1072
LOG (Cp)
10

Figure 4.22: Error vs CPU time graph for the (5,5) implicit method (4.4.7)

DISCRETISATION ERROR

CHAPTER 4. THE 2-D DIFFUSION EQUATION 132

t,n
‘ NAS
X,)

Figure 4.23: Computational stencil for the (9,9) method

Although as many as ten weights could be incorporated into a (9,9) computational
stencil, most of these could not be usefully used, since we seek only a fourth-order
equation, which requires only three or four weights to eliminate the second-order error
terms. To ensure that the second-order errors can be eliminated, six weights will be

used, distributed among the spatial derivatives as follows:

%:k ~ nx{[CSat(j,k—1,n+1)]+[CSat (j,k+1,n+1)]}
+ ex[CS at (j,k,n)]
+ Ax{[CSat (j,k—1,n)]+[CS at (j,k+1,n)}}
+ (1—=2n—2X—¢€) x[CSat (j,k,n),
g%;:k ~ xx{[CSat(j—1kn+1)]+[CSat(j+1,kn+1)}
+ 7 x[CS at (j,k,n))
+ 6x{[CSat(j—1,kn)]+[CSat(j+1,kn)}
+ (1=2x—20—7)x[CSat (5,kn). (4.4.8)

Combined with this, the forward-time differencing is used for the temporal derivative

to give the weighted finite-difference equation

CHAPTER 4. THE 2-D DIFFUSION EQUATION 133

{nsz + xsy }(7} lk ki —1 k41 T T, +1k 1+ T, k+1)

{esz — 2x8y }(T 000 + Tk

{msy — 2nsx}(T;‘,;"11 + T",'c"+11 — {1+ 2es, + 27r.sy}7';‘,;"1
= — {Xso+0s, (s jmt T Tt kgr F Tk T k)
{(2n 42X + € — V)so + 205, }(7i7q 4 + T4, k)
{2Xs; + (2x +20 + 7 — 1)Sy}(T;:k_1 + T}fk+1)

{(2 —4n — 4\ — 2€)sp + (2 — 4x — 46 — 27)s, — 1}77). (4.4.9)

+ o+ +

The modified equivalent equation corresponding to this equation can be written in the

general form (4.1.2) with the leading errors terms

I‘4,0 = 6(1 —26 - 47])8,, — 1,

Tz = —(A+m)se —(0+x)sy +(1—2x —2n — 7 — €)szsy

T4sa = 6(1 =27 —4dx)sy, — 1. (4.4.10)
These leading errors can be forced to be zero, while still maintaining the symmetry of

the finite-difference equation, by the choice of weights
(1—7—e—2x—2n)s,;

A 2
\ - (1—m—e—2x—2n)s,
_ 2
1-4x 1
T Ty T 1as,
e =5 24’7—121%. (4.4.11)

Although this scheme cannot be made sixth-order accurate, since there are insufficient
weights, it is useful to look at the coeflicients in the leading error terms, after the above
substitution is made. These terms can be written in the form (4.1.2) with

Teo = 3/2—30s,%,
6(1 — 24n)s,% + 6(1 — 24x)$8,; — 85 — 365,73,

Pep = ,
12
I 6(1 — 24x)s,? + 6(1 — 24n)s,s, — s, — 365,23,
64 = ;
' 12

Ts6 3/2 — 30s,”. (4.4.12)

CHAPTER 4. THE 2-D DIFFUSION EQUATION 134

From this, it can be seen that the value

1—6(s; + 8y) + 166xs, + 3653,
1443,

n=— (4.4.13)

removes the remaining two weights from the finite-difference equation, and also elim-
inates the cross-derivative error terms I's 3 and I's 4. The resulting fourth-order “opti-

mal” finite-difference equation is

{1 = 655 — 65y + 36555, H(r g + Tt + THes T e)
{10 — 605, + 128, — 72558, J(TIH + Thib

{10 + 125, — 608, — 72558, {4 + Tk

{100 4 120(s; + sy) + 144558, } 77 1

= {1 —6s; — 65y — 36Sw3y}(7}n—1,k—1 + 774 k1 T T +1 k-1t T +1 k+1)
{10 — 60, + 125, + 7258, }(77_y & + Tf41,6)
{—10 + 125, — 608y + 72558, H(They + Tirgs)

{=100 + 120(s; + sy) — 144525, } 7%, 44,14
y y J'

which can be used to overcome the boundary problems of the spatially wide (1,13) and
(1,21) explicit equations discussed earlier. Although using this equation to overcome
problems near the boundary involves solving a set of equations at each time step, the
set of equations in this case is basically tri-diagonal in nature, and so can be solved
very efficiently by the Thomas algorithm, exactly as was done for the one-dimensional
implicit methods. This is in contrast to using the implicit method to solve the entire
problem, where the band width of the coefficient matrix increases with the values of

J and K, which then uses extremely large amounts of CPU time.

Attempts to produce a sixth-order (9,9) equation, which may be useful to overcome
boundary problems if a sixth-order explicit equation is developed by using a weighted
differencing for the time derivative as well gives similar results to the above; namely,
making the method fourth-order eliminates all the weights from some of the fourth-
order error terms, thus making it impossible to eliminate all these terms and make

the method sixth-order.

CHAPTER 4. THE 2-D DIFFUSION EQUATION 135

4.5 Locally One-Dimensional Methods

Another solution technique which is worth consideration here is the class of methods
referred to as “locally one-dimensional” (LOD) methods, developed by people such
as D’Yakonov (1963) and Marchuk (1975). In such techniques, rather than using a
two-dimensional finite-difference equation to solve the two-dimensional diffusion equa-
tion, the two-dimensional problem is split into a series of one-dimensional problems.
Because this one-dimensional approach only allows for diffusion in one direction, the di-
rection in which the one-dimensional equation is applied must be constantly swapped,

from the z-direction to the y-direction then back again, between each time step.

The main advantage of this technique is that the accurate techniques that were devel-
oped for the one-dimensional case can be applied directly. From a development point
of view this is desirable since the one-dimensional equations contain fewer weights, and

are thus usually much easier to work with than the full two-dimensional equations.

In order to implement such a scheme in practice, it is necessary to determine when to
swap the direction of the one-dimensional scheme. It is found that it is best to split
each time step in half. For the first half time step, the one-dimensional technique is
used in, say, the y-direction, then for the second half time step it is changed to the z-
direction. Combined with this, however, is the need to correctly model the amount of
diffusion in each direction. In a real situation, there is an amount of diffusion oy in the
y-direction, and this is present over the whole time. In the numerical implementation,
however, the y-direction diffusion is only present in the first half time step, when
the y-direction one-dimensional equation is in use. To overcome this, the amount of
diffusion in the numerical scheme is doubled. In similar fashion, the z-diffusion is
doubled over the second half time step, to account for the fact that there was none
in the first half time step. The net effect of this is to leave the values of s, and s,
unaltered, since although the diffusion has been doubled, the time step is only half as

large, and these two factors cancel each other.

Another factor that must be taken into account is that the boundary values which

apply at the intermediate time level are not those specified for the “complete” (ie.

CHAPTER 4. THE 2-D DIFFUSION EQUATION 136

non-intermediate) time levels. Firstly, it should be noted that the boundary values at
y = 0 and y = 1 at the intermediate time level are not required for the second half-step
to the new time level, and so need not be calculated. If the values on the boundaries
z = 0 and z = 1 are found by application of the specified boundary condition applied
at the intermediate time level, it is found that any finite-difference method degenerates
to second-order accuracy. This is due to the fact that the boundary value incorporates
diffusion in both the z and y-directions, whereas the interior values computed at the
intermediate time level include diffusion only in the y-direction, due to the use of the
one-dimensional equation. This effect is clearly shown by running the (1,3) FTCS
equation with values of s = 1/6 and s = 1/2, the results of which are shown in
Figures 4.24 and 4.25. Note that results are shown only up to J = K = 80, since
computational time rises dramatically for higher values of J and K, and no more
information is obtained.

—_——

—o—

0.1667 M= 1.82
0.5000 M= 2.02

S
s*

NUMBER OF GRIDSPACINGS

10 40 100
7 i 1 PR T T B | 10—7
&
-6
6+ - 10 g
W
= z
= 5 @)
8* 5 - 10~ e
12}
= to
o
44 L 107§
)
3 i r . 1073
1.0 1.5 2.0
-LOG {a%)
10

Figure 4.24: Error vs grid spacing graph for the (1,8) FT'CS LOD method, using the

boundary condition at the intermediate time level.

The alternative to using the boundary condition at = 0 and 2 = 1 at the intermediate

time step is to take the boundary values from the previous time level and apply the

CHAPTER 4. THE 2-D DIFFUSION EQUATION 137

CPU TIME (SECS)

1 4 10 40 100 400 1000
7 1 [1 AT 1 11 it 10_7
S
-6
6 - = 10 E
L
. rd
s, o
o 5 L 1075 &
S P
n o
[ael
4 L 107*
[a]
3 > Y Y 1073
0 1.5 3.0
LOG {Cp)
19

Figure 4.25: Error vs CPU time graph for the (1,8) FTCS LOD method, using the

boundary condition at the intermediate time level.

finite-difference equation being used elsewhere in the interior of the region to give the
values along the boundaries at the intermediate level. Note that the endpoint values
at y = 0 and y = 1 are not required. This technique has the advantage that the
values at the intermediate time level all incorporate consistent amounts of diffusion
in both spatial directions. The numerical results obtained after making this change
to the FTCS LOD method used above are shown in Figures 4.26 and 4.27. Note that
the solution for s* = 0.5 is theoretically only second-order accurate, so this solution
suffered little degradation in accuracy. This explains the evident lack of improvement

in this solution.

The above results clearly show that using the correct treatment of the boundaries
at the intermediate time level is extremely important in the generation of the final
solution. In particular, the given boundary condition should not be applied at the
intermediate time level, which avoids the problems shown above. This is particularly
relevant for implementing equations which use spatially wide computational stencils,

such as the (1,5) and (1,5,1) equations. In these cases, we need to find the values at

CHAPTER 4. THE 2-D DIFFUSION EQUATION 138

—— s*= 0.1667 M= 4.01
—— s*= 0.5000 M= 202

NUMBER OF GRIDSPACINGS
10 40 100

9 1 1 1 PR SR N | 10—9

8- . 108
&

-7
7- - 10 =
iy
] P
s . 8
8“ 6 - 10~ ped
)
T &
&
5-] - 1075 3
[a]

4 L 1074

3 . : ; 10~3

1.0 1.5 2.0
-LOG {a%
10

Figure 4.26: Error vs grid spacing graph for the (1,8) FTCS LOD method, using the

(1,8) equation on the boundary at the intermediate time level.

CHAPTER 4. THE 2-D DIFFUSION EQUATION 139

—— 8‘= 01667 M= 1.07
—— s'= 05000 M= 055

CPU TIME (SECS)
0.1 0.4 1 4 10 40 100 400 1000

9 1 L1 11111l 1 i1 Laaing 1 IR L L il 10—9

8 | o8
5

L 10~7
7 107 T
w
£ g
T 6 L 106 E
8 P
3 i
o
5+ L 105§
a

4 L 1o~4

3+ : ; . + 1073

LOG (Cpl
10

Figure 4.27: Error vs CPU time graph for the (1,8) FTCS LOD method, using the

(1,8) equation on the boundary at the intermediate time level.

CHAPTER 4. THE 2-D DIFFUSION EQUATION 140

the grid points next to the boundary, without requiring the value at the grid point on

the boundary.

This problem can be overcome in exactly the same way as was done for the Neumann
boundary condition case for the one-dimensional problem. The re-arrangement of

Crandall’s fourth-order implicit equation (3.3.4), namely

{1—6s}rt = {1+6s}(r +75)+2{5— 6s}ry
— 2{5+6s}rat — {1 —6s}ritt, s#1/6, (4.5.1)

can be used to find the missing end point. In the case s = 1/6, Crandall’s equation
reduces to the fourth-order special case of the (1,3) FTCS equation, and this equation
can then be applied to find the required value in this case, without any loss of accuracy.
The numerical results from applying this technique to the fourth-order (1,5) equation
are shown in Figures 4.28 and 4.29.

These results show that this technique is producing answers that are as accurate as
the fourth-order two-dimensional equations, such as the (1,13) and (1,21) equations
discussed earlier. Also notice that the CPU times are slightly less than for the (1,13)
scheme, and that to achieve a specific accuracy requires much less CPU time. Overall,
use of the LOD method seems to be better than using the corresponding fully two-

dimensional finite-difference equations.

The effective use of such three-level one-dimensional equations as the sixth-order
(1,5,1) and (1,3,3) equations requires several problems to be overcome. Firstly, a
two-level starter must be employed for the first half time step, and this must produce
diffusion in the correct direction. Ideally, this starting method should be of the same
order of accuracy as the three-level equation to be used, but for sixth-order equations
appropriate two-level starter methods are not usually available. As was the case in
the one-dimensional case, a fourth-order starter, such as the fourth-order (1,5) equa-
tion, should be used. Having completed the first half time step using the starter,
computations over the next half time step can be carried out with either the starter
method or the three-level method to be used for the rest of the time steps, depending

on the method of implementation. In either case, the diffusion must be in the opposite

CHAPTER 4. THE 2-D DIFFUSION EQUATION 141

—X— s'= 01000 M= 4.07
—— 8'= 0.1667 M= 4.01
—B— 8'= 03333 M= 371
—8— §*= 0.5000 M= 3.99
—e— 8*= 0.6667 M= 4.12

NUMBER OF GRIDSPACINGS
10 40 100

9) 1 L L1 1 11 10—9

-8
8- - 10 o«
o
(1
&

-7
= 7- - 10 z
< o)
o =
g &
< 6 L 1076
x
&)
a
[a}

5- L 40~9

4 ; . . 1074

1.0 © 1.5 _ 2.0
—LOG (A%
10

Figure 4.28: Error vs grid spacing graph for the fourth-order (1,5) LOD method, using

Crandall’s equation nezt to the boundary.

CHAPTER 4. THE 2-D DIFFUSION EQUATION 142

—%— §'=0.1000 M= 106
—©— §'=01667 M= 104
—A— s'=083333 M= 097
—H— 5= 05000 M= 106
—O— "= 06667 M= 1.00
CPU TIME (SECS)
0.1 0.4 1 4 10 40 100 400 1000 4000 10000
g 1 L L rrrnst L L Lrannl L L il 1 L i L4t 11111 10—9
i | -8
8 10 x
o]
o
&
-7
= 7 - 10 z
5 e
- g
8 %
N £ - 1078 |
i @
Q
%)
[a)
5 - 1075
4 . ; . 1074
Z1.0 1.5 4.0
LOG (Cp)
10

Figure 4.29: Error vs CPU time graph for the fourth-order (1,5) LOD method, using

Crandall’s equation next to the boundary.

CHAPTER 4. THE 2-D DIFFUSION EQUATION 143

direction to that which was initially used by the starting scheme.

The results obtained using such equations show the error vs. grid spacing graphs
having slopes around two, despite the finite-difference equations being sixth-order.
This is due to the fact that a three-level equation uses values from two previous time
steps. For the one-dimensional diffusion equation, this is no problem, but when applied
to the two-dimensional case, it results in values that include diffusion in only one
spatial direction being combined with values that include diffusion in both directions
to try to produce an approximation that alternates between requiring diffusion in only
one direction and requiring it in both directions. This “mixing” of values results in
inaccurate approximations and degrades the accuracy of the solution to second-order

irrespective of the accuracy of the finite-difference equation employed.

Overall, it can be seen that locally one-dimensional techniques provide an effective way
to solve the two-dimensional problem. In particular, these techniques are much simpler
to develop and implement than fully two-dimensional equations, due to the absence
of the cross-derivative error terms that must be eliminated to produce accurate fully
two-dimensional equations. At the moment, the locally one-dimensional technique
is restricted to two-level finite-difference equations, which in turn limits accuracy to
fourth-order. If the problems associated with “mixing” values from several time levels
can be overcome, however, then the more accurate sixth-order three-level equations

could also be employed.

4.6 Alternating Direction Implicit Methods

The final solution technique to be considered in this work is the alternating direction
implicit (ADI) approach. This class of techniques, originally developed by Peaceman
and Rachford (1955) and Douglas (1955), is based on a desire to obtain the useful
properties of implicit methods, most notably the extended stability range, without
incurring the enormous CPU time overheads of using fully two-dimensional implicit
equations. This is done by using an equation which is implicit in one spatial direction

only, while points from the current and previous time levels can be used as required,

CHAPTER 4. THE 2-D DIFFUSION EQUATION 144

since these do not affect the explicit or implicit nature of the equation. In practice,
this means that for each value of § = 1..J — 1, the ADI equation can be used to
generate a set of K — 1 equations that must be solved to find the values N 1..7‘5}';1_1 .
Thus J — 1 of these sets of equations must be solved to step from time level n to time
level n 4+ 1. This contrasts with the fully implicit equations which require the solution
of a single set of (J — 1)(K — 1) equations. The big advantage of the ADI technique
is that the bandwidth of the sets of equations is a fixed number that depends only on
the spatial extent of the computational stencil, which allows the use of very efficient
solving techniques such as the Thomas algorithm can be used. This compares with
the fully implicit equation where the bandwidth of the set of equations is proportional
to the product of the numbers of grid spacings in either spatial direction, which leads

to enormous amounts of CPU time being required to solve the equations as J and K

are increased.

Also of note is the fact that by alternating the spatial direction in which the equation
is applied, it is possible to get cancellation of errors between the two sweeps. This
means that ADI equations that by themselves are only say second-order accurate may
actually produce results that are fourth-order accurate, if the second-order errors can

be made to cancel each other out on sweeps of alternate direction.

The original ADI equation, which is based on the (3,3) computational stencil shown
in Figure 4.30, is the simplest possible form for an ADI equation, and there is no
possibility of introducing any weights into an equation based on this stencil. Note
that, unlike the LOD methods discussed earlier, an ADI equation is consistent with
the complete two-dimensional diffusion equation, so there are no problems with having
to split the time steps in half, and any boundary conditions specified will be correct
after each step of the ADI process. In some situations, however, it may be desirable
to actually split the time steps in half, particularly in the case where the desired time

level occurs after an odd number of full time steps.

The finite-difference equation based on the stencil shown in Figure 4.30 is

CHAPTER 4. THE 2-D DIFFUSION EQUATION 145

Figure 4.30: Computational stencil for the Classical (8,3) ADI method

Sy("'fl-c‘-—11 + Tfﬁl) —(1+ zsy)"';,lljl
= —so(T g + T k) — (1 —282)T], (4.6.1)
with a very similar equation with the roles of £ and y reversed holding for the alternate

direction sweep. The modified equivalent equation corresponding to this equation has

leading error terms containing the factors

1—‘4,0 = 633—1
Ty = 0

1

P4’4 = —(63y+1), (462)

while the factors for the alternate direction equation are

F4,0 = —'(651- -+ 1)
]._‘4,2 el 0
F4|4 = 68y - 1. (463)

It can be readily seen from this that either equation by itself is second-order accurate,
and no choice for the values of s, > 0 and s, > 0 will make it fourth-order. It is worth

noting that these error terms are not symmetric, which is one of the main reasons for

CHAPTER 4. THE 2-D DIFFUSION EQUATION 146

using the equation with the implicit portion alternating between the spatial directions
with every time step. In this manner, the errors tend to balance each other, and in
the case of some equations they can even be made to cancel each other to produce

more accurate results.

The other reason for using the alternating direction is the von Neumann stability of
the equation. Equation (4.6.1) itself is only conditionally stable (Noye, 1984), but it
can be shown that the use of this equation over two time steps, one in each spatial
direction, is unconditionally stable, which makes this technique more attractive in

some practical situations.

—¥— s*= 01667 M= 1.99

—— s*= 0.2500 M= 197

—l— s'= 05000 M= 1.86

—8— 8*= 1.0000 M= 1.00

NUMBER OF GRIDSPACINGS
10 40 y 100 %
1 \ TR TR S S N -5
5 10 él::
e
= =
s 8
g ¥ 5
(]
pur} [
| w
c
3 : ; ; F 1078 3
1.0 1.5 2.0 a
~LOG {Ax}
10

Figure 4.31: Error vs grid spacing graph for the classical (8,3) ADI method.

The results from this method, shown in Figures 4.31 and 4.32 bear out the theoretical
predictions. The results are very close to being second-order accurate, with the ex-
ception of the unexpectedly accurate result for s = 1 with J = K = 20, which may be
due to some cancellation amongst the leading error terms of the modified equivalent
equation. It should be noted that alternating the direction of use of the stencil has
the effect of adding components of the modified equivalent equation, so for the double

sweep the coeflicients are

CHAPTER 4. THE 2-D DIFFUSION EQUATION 147

—— s*= 0,1667 M= 0.51
—o— s*= 0.2600 M= 0.50
—A— s*= 0.5000 M= 048
—8— s*= 1.0000 M= 0.26

CPU TIME (SECS)
0.1 0.4 1 4 10 40 100 400 1000 4000 10000

0@

5 1 Lt et L 11 1 itnit] 11 L riie 1 L. ta111t > 1 L ii1at 10—5 8

A o

w

3 o 3
P ST
8 3
| =
| w
@

3 ; r - 108 3
-1.0 3.5 4.0 [a

LOG {Cp}
10

Figure 4.32: Error vs CPU time graph for the classical (8,8) ADI method.

F4,0 = -2
Ty = 0
Ty = —2. (4.6.4)

The fact that the leading error terms are independent of s, and s, explains why the

numerical errors are so close together regardless of the value of s; = s, = s* chosen.

Thus ADI methods appear to be viable in practice, but we need to look at ways of
getting better accuracy from such techniques if they are to be a useful alternative to

the methods discussed earlier.

If all the grid points (j 1, k+1,n) are incorporated into a (3,9) computational stencil,
then four weights can be introduced in the finite-difference equation; one on the time
derivative, one on one of the spatial directions and two on the other spatial direction
(which is the direction in which the equation is implicit). If this is done, the leading

error terms are found to have coefficients that contain the factors

F,;'o = 63,; -1
Ty2 = (A—0)ss — sy + (1 —7)sasy

I'ya = 63y —1+4 12X —12ys, (4.6.5)

While this would appear to be of little use, since I'y o contains no weights, the property

CHAPTER 4. THE 2-D DIFFUSION EQUATION 148

of adding the errors over a double sweep can be used to advantage here. In particular,
if we can force I’y = 0 and I'y4 = 1 — 6s,, then when the two errors are added over
a double sweep, all the second-order errors will cancel, and the resulting method will

be fourth-order.

In order to achieve this fourth-order accuracy, the values

A= 1/6

9 = 1/6

v =1

p =0 (4.6.6)

must be chosen, which leads to the “optimal” finite-difference equation

{63y - 1}(7';::—11 + 7';?1:-4,1-1 - 4{1 + 33y}7';,ll-:1 =
_Sx('r;l—Lk—l -+ T;L—l,k-l"l + TjT;<1,k—1 + T]n+1,k+1) - 43-‘3(7-;1—1,k + 7’}11,};)

+4{2s, — 1} + {28z — 1}(7] 1 + Tjeg)- (4.6.7)

The double sweep of this equation can been shown numerically to be unconditionally
von Neumann stable, and its unconditional solvability, even over a single sweep, is
very simply shown analytically from the coefficients at time level n + 1, namely by
showing that _

4|1 4 3s,| > 2|63, — 1| (4.6.8)

for all s, > 0. Thus this method, used in an ADI fashion, is usable for all values of

sz > 0 and s, > 0.

The results of a numerical experiment with this equation are shown in Figures 4.33
and 4.34, from the fourth-order nature of the solutions can be seen. This is worthy
of comment because it is the first time that we have been able to obtain fourth-order
accuracy using only a compact nine-point computational stencil at each time level;
all the other methods considered have used spatially wide stencils. The interest here
lies not so much in this fact for itself, since we have found accurate ways to overcome

the problems of spatially wide stencils, but in the fact that maybe this could lead to

CHAPTER 4. THE 2-D DIFFUSION EQUATION 149

—_ s'= 0.1667 M= 4.01
—— s*= 0.2500 M= 3.99
—fe s'= 0.5000 M= 4.00
—8— s*= 1.0000 M= 3.98

NUMBER OF GRIDSPACINGS

10 40 100

9 1 1 PR R B 1 10—9

8- L 10~8
s 5

-7
74 10 <
w
= z
= i 5
T 6 - 1078 &
8 &
= -
| w
[an
5- L 1075
o

4 - 104

3 g y " 1073

1.0 1.5 2.0
—LOG (A%
10

Figure 4.33: Error vs grid spacing graph for the fourth-order (8,9) ADI method.

sixth-order equations using a manageable sized computational stencil (ie. at most a

5 x 5 square of grid points at any one time level).

Also worth noting is that the size of the error increases with s*, so the most accurate
results are obtained for the smallest values of s*, which contrasts with some of the
earlier methods. This is due to the fourth-order error term of the double sweep, which

contains the factors

Fso = —2(1—30s, + 120s,%)
Fe,z = P6,4 = 0

Tee = —2(1-30s, 4+ 120s,?) (4.6.9)

which vanish (giving a sixth-order method) for s, = s, = s* =~ 0.039... and s* ~
0.210..., and increase in magnitude as s* increases above 0.210.... From the CPU
graph it can also be seen that these small values of s* are the most efficient values,
since they provide a solution to a specified accuracy in the smallest amount of CPU

time. In absolute terms, however, the efficiency of this technique is not as good as

CHAPTER 4. THE 2-D DIFFUSION EQUATION 150

—%— 5*=01667 M= 102
—6— s'=02500 M= 101
—&— $°=05000 M= 1.02
—8— s'= 10000 M= 1.02
CPU TIME (SECS)
0.1 0.4 1 4 10 40 100 400 1000 4000 10000
9 1 L L1l 1 I R 1 L L L il 1 L1 11l i L1 111l 10_9
8- b 1078
5
-7
7+ - 1077 &
w
= 5
. - 107® 2
8 3
S @
o
5+ L 105 3
[a]
4+ - 1074
) ' T . 1073
210 1.5 4.0
LoG (Cp)
10

Figure 4.34: Error vs CPU time graph for the fourth-order (3,9) ADI method.

that of the explicit (1,13) and (1,21) equations; up to 30% more CPU time is required
to generate solutions of a given accuracy, most of which is due to the time required to

solve the sets of equations at each time level.

Further extensions to the computational stencil, such as a (3,13) stencil or even three-
level stencils such as (3,9,5), (3,9,9) or (3,9,13) could be developed in exactly the same
fashion in an attempt to gain such a sixth-order equation. Care should be taken,
however, as to which errors are eliminated, since some errors may be automatically
taken care of by the alternate-direction step, so removing these using the weights is
unnecessary. The development of such equations is not done here, largely because the
emphasis of the work has been towards explicit methods, since these can use the full
potential of array processors whereas implicit methods cannot, but also due to time

limitations.

Another variety of ADI method is that based on the computational stencil shown

in Figure 4.35, which is a loose two-dimensional analogue of the technique used by

CHAPTER 4. THE 2-D DIFFUSION EQUATION 151

Saul’yev (1964) for the one-dimensional problem. Such an equation can still be con-
sidered as ADI because, given the values at the £ = 0 boundary at time level (n + 1)
from the boundary condition, this equation can be used to find the values at z = Az
by application of the ADI proc;ess. These values can then be used to find those at

r = 2Az, and so on across the grid.

Figure 4.35: Computational stencil for the (6,6) ADI method

There is an immediately obvious problem in that there is no set of three points at the
same time level that can be used to approximate the 8%#/9z% term in the diffusion
equation. The easiest way around this problem is to consider using the full (9,9)
stencil, on which the diﬂ'eréncing is straight—fofward, and adding and subtracting an
appropriate multiple of 97 /0z to the diffusion equation. If the weighted scheme used
for 97 /022 at both time levels is say yx CS at k4 1 and (1 — 2y)x CS at k, then
both extra 97 /0x terms must be multiplied by 7; the extra term which is subtracted
is approximated by forward-space differencing at time level (n 4 1) and the one which
is added is approximated by backward-space differencing at time level n. All this has
the effect of removing the unwanted grid points from the resulting finite-difference

equation, leaving an equation which uses only the desired grid points.

As usual, the modified equivalent equation corresponding to this equation must be

examined, and in this case the leading error terms contain the factors

CHAPTER 4. THE 2-D DIFFUSION EQUATION 152

P30 = s

I's; = 0

T3 = 88y

I'ss = 0, (4.6.10)

which appears to make the method only first-order accurate. In fact, however, the C3
and Cj3 terms of which the non-zero factors are part both contain the factor Az as
well as the factor given. This means that if the equation is run both “left-to-right” and
“right-to-left” for each spatial direction, these errors will cancel each other out, since
the second sweep is the equivalent of the first with Az replaced by —Az. Thus the
method can be made second-order, even before any alternating direction techniques

are applied.

This method can be further improved, since there are still weights in the equation.

The second-order error terms contain the factors

F4’0 = —-1-— 12832
Tyz = (7 —@)ss+esy + 8578,

It should be noted that since these are multiplied by (Az)? in the appropriate Cyn,n =
0,2, 4 terms, the double sweep to remove the first-order error terms will only introduce

a factor of two to all of these, and this does not affect the following calculations.

We wish to make 'y = 0 and I'y4 = 1+ 125,? in order to achieve fourth-order with

this ADI scheme. This can be readily done by the choice of weights

v=¢ = (1+6s°)/6

2

€ = —$g (4.6.12)

which leads to an “optimal” finite-difference equation. Unfortunately, this equation is
unstable for even such values as s* = 1/2, and is found numerically to lack a sufficiently

large von Neumann stability range to be of practical use, given that we have already

CHAPTER 4. THE 2-D DIFFUSION EQUATION 153

found a fourth-order ADI method that is unconditionally stable. Other equations
based on this stencil, but which are only second-order accurate can be developed
which are von Neumann stable and thus could be used to solve the two-dimensional

diffusion equation, but the lack of accuracy makes this undesirable in practice.

Despite this, however, it may still be possible to develop stable finite-difference equa-
tions based on the ideas above, that require “marching” across the grid in a certain
direction and obtain accurate solutions to the two-dimensional diffusion equation.

Such an investigation, however, is not carried out in this work.

4.7 Summary

It has been seen that much of the information gained by the study of the one-
dimensional problem has helped in the study of the two-dimensional case. In par-
ticular, the modified equivalent equation approach has allowed the analysis of the
errors associated with various finite-difference equations, which in turn allows the
development of more accurate equations. Also of great use were general techniques
for dealing with spatially wide computational stencils next to the boundaries of the

solution domain.

Unlike the one-dimensional case, it has not been possible with the time and computing
resources available to develop a sixth-order accurate technique for solving the two-
dimensional case. What has been done, however, is to compare the various classes of
solution techniques via finite-differences, namely explicit and implicit two-dimensional
equations, locally one-dimensional (LOD) equations and alternating direction implicit
(ADI) methods. Implicit two-dimensional equations have been found to require enor-
mous amount of CPU time, both relative to the other techniques and also in absolute
terms. Such equations are therefore not considered to be practical solution techniques.
ADI methods have not been considered in much detail here, although further work
should be possible along the lines of the examples given above. The main reasons for
not considering these methods in detail are that this work is directed mainly at ex-

plicit techniques, since implicit techniques tend by their nature to require more CPU

CHAPTER 4. THE 2-D DIFFUSION EQUATION 154

time, and also because explicit techniques can use the full computing potential of array
processors; many values at the new time level can be calculated simultaneously from
the known values at the old time level, whereas for implicit methods which require the
solution of a set of linear equations this is not possible. This will further add to the

CPU time difference between the two types of techniques.

There is little to separate the fourth-order explicit two-dimensional equations from
the fourth-order LOD equations, since they both solve the test problem with the same
degree of accuracy and in similar amounts of CPU time. The LOD methods are
probably slightly better for several reasons, however. Firstly, the small differences
in accuracy and CPU usage between two-dimensional equations and LOD methods
tend to favour the LOD methods. Also, the development and implementation of
one-dimensional equations tends to be simpler, due to the absence of cross-derivative
error terms. Also, if the problems associated with using three-level methods in an
. LOD method are overcome this would provide a simple way to obtain a sixth-order
accurate solution. This is potentially a much more elegant method of obtaining sixth-
order accuracy for the two-dimensional problem than attempting to find a fully two-

dimensional sixth-order equation.

Chapter 5

Irregular Boundaries

5.1 Introduction

The preceding work has all been based on solving the diffusion equation, in either
one or two dimensions, on linear or rectangular spatial regions respectively which are
covered by a rectangular grid of uniform spacing. Such a region is ideal for the appli-
cation of finite-differences, since the rectangular grid completely covers the region, and
it can be arranged so that grid points lie exactly on the boundaries, so the boundary

conditions can be easily incorporated.

In a practical problem, however, it is unlikely that the region over which a solution
is required will be perfectly rectangular. Instead, the boundary can be expected
to be irregular in shape, and so in general the grid points will not lie exactly on
the boundary. This creates more problems, since a technique for incorporating the
boundary conditions into the solution process must be found that does not detract

from the accuracy of the rest of the solution.

One way that can be used to overcome this is to find a transformation of coordinates
that maps the solution domain onto a rectangular region, which also alters the gov-
erning partial differential equation accordingly, after which the problem is solved on

the new, rectangular grid. The transformation usually alters the governing diffusion

155

CHAPTER 5. IRREGULAR BOUNDARIES 156

equation into an advection-diffusion equation, the solution to which is somewhat more
complicated than the diffusion equation being discussed in this work. This solution
must then be transformed back into the original coordinates to get the solution to the

actual problem. This approach is outside the scope of this work.

The other approach to the problem is to develop finite-difference equations which deal
with the case where one grid spacing at the boundary is not the same size as the
other grid spacings used. This creates problems of its own, since the finite-difference

equation that results is no longer centred in space.

5.2 Variable Grid Equations

In order to investigate finite-difference equations to be used in such circumstances, it is
necessary to define the grid to be used, and then develop appropriate approximations
to the space derivative term in the diffusion equation. The grid next to the irregular
boundary is set up as shown in Figure 5.1, assuming that the irregular boundary
is on the right-hand edge of the region. If it is on the left, then a mirror-image of
this figure applies. Note that the boundary is always assumed to lie in the interval
((J —1)Az, JAz)]. In the case where r = 1, the grid becomes the uniform grid we
have been dealing with before. For r > 1, the grid point immediately to the left of
the boundary itself would be (J — 2)Az, with the other points placed accordingly.

(J —2)Az (J-DAz (J—-1+71)Az
|

| | |

| Az | rAzx l

Figure 5.1: Modified grid for an irregular boundary (0 < r <1 here).

CHAPTER 5. IRREGULAR BOUNDARIES 157

The basic three-point approximation to 8*#/8z* now becomes

& 2rify —2(r +)T + 277,
Ox2l; r(r + 1)(Az)?

+0{(r — 1)(Az),r(Az)?}, (5.2.1)

where the (j + r,n) grid point is the boundary point, which has a space position of
(5 +r)Az (cf. Noye, 1984). It is apparent that this is one order of accuracy less than
the corresponding equation for the uniform grid (2.1.7). In the case where r = 1,
this reduces to the uniform grid case, as expected. If equation (5.2.1) is used with
the standard forward-time difference (2.1.6) for the time derivative (since the grid
is still uniform in time), a forward-time variable-space (F'TVS) (1,3) finite-difference

equation, is obtained, namely
r(r + 1) = 2rs7ly + (r 4+ 1)(r — 28)7" 4+ 2877, (5.2.2)

The computer program used to evaluate the modified equivalent equation correspond-
ing to a finite-difference equation has been adapted to cope with the case where the
grid spacing is no longer uniform at one point, by allowing for the change in the Taylor
series calculated. It is found that the modified equivalent equation corresponding to
(5.2.2) has leading error terms which can be written in the general form (2.2.7) with

coefficients

Ta(s,r) = (1-1)
Tu(s,r) = 6s—1+r(1—r). (5.2.3)

Note that these coefficients in general depend on both s and r. It can be seen that in
the uniform grid case, where r = 1, the equations (5.2.3) reduce to the single original
formula (2.2.9), but in the general case, equation (5.2.3) is only first-order accurate,

due to the coefficient I'3(s,r) being non-zero.

Thus the non-uniform grid spacing at the boundary has lowered the accuracy of this
equation by one order. This means that it may be necessary to include more weights in
such stencils just to achieve the same order of accuracy that was done for the uniform

grid.

The non-uniform analogue of the five-point approximation (2.3.1), which again is one

CHAPTER 5. IRREGULAR BOUNDARIES 158

order of accuracy lower than its uniform grid counterpart, is given by

9% |

25
92 |;

{=r(r + 1)(r + 2)71, + 3r(r + 1)(r 4 3)*#1,
— 3r(r+2)(r +3)(2r + 3)?}' +(r+1)(r+2)(r+ 3)'?';‘+1 — 67"'}‘+1+T}
{3r(r +1)(r + 2)(r + 3)(Az)*} + 0{(Az)’}. (5.2.4)

~

In similar fashion to the development of the fourth-order (1,5) equation for the uni-
form grid case, this can be used in weighted fashion with the centred three-point

approximation (for the uniform grid), to give the weighted finite-difference equation

3r(r + 1)(r +2)(r +3)rM = —psr(r +1)(r +2)77,
+ Bsr(r +1)(r +3)(r + 2+ ¢)7i,
+ 3r(r +2)(r +3)((r + 1)(1 — 25) — s)7)"
+ sr(r + 1)(r +2)(r + 3)(p +3)77%
+ 6psTl 14, (5.2.5)

The modified equivalent equation corresponding to this finite-difference equation has

a leading error term involving the coeflicient
Ty(s,r) =@ —1+6s (5.2.6)

which means that the second-order error term can be eliminated by the choice of
weight
¢ =1—6s. (5.2.7)

It is of interest to note that this value is independent of the value of r, and hence that
this is the same weight as that used for the uniform grid case. If this substitution is

made, the finite-difference equation becomes

3r(r +1)(r +2)(r + 3)r™ = sr(r +1)(r +2)(6s - 1)77",

3sr(r + 1)(r + 3)(r — 65+ 3)7",

3r(r +2)(r + 3)((r +1)(1 — 25) — s(1 — 6s))77
s(r +1)(r + 2)(r + 3)(3r — 6s + 1)1,

+ + + +

6s(6s — 1)1 1, (5.2.8)

CHAPTER 5. IRREGULAR BOUNDARIES 159

which is the non-uniform equivalent of the fourth-order (1,5) equation (2.3.8). In this
case, however, examination of the modified equivalent equation shows that the leading

error term contains the factor
Ds(s,r) = (r — 1)(1 — 6s), (5.2.9)

which means that the equation (5.2.8) is only third-order accurate, except in the
special cases where either r = 1 or s = 1/6. In either of these cases, the leading error

term is eliminated and the equation becomes fourth-order.

The von Neumann stability range of this equation is worth considering. Except for
the impractical values r = 0,—1,—2, —3, which remove the grid value from time level
(n + 1) from the difference equation, the stability range for r < 0 is approximately
s < 0.1. As r increases from 0 to 1, this range increases to s < 2/3, which is the
restriction present in the uniform grid case. What is more interesting, however, is
that as r is increased from 1 to 2, the stability range increases even more, until at
r = 2 it is nearly s < 1. This suggests that, if this equation is to be used in practice,
the value of r used should be greater than one. Thus next to the boundary, the last
grid spacing should be larger than the rest of the grid spacings, rather than smaller.

Once again, to implement this scheme in practice requires another method to be used
next to the boundary, due to the spatial extent of the (1,5) stencil. Taking the analogue
from the one-dimensional case, a non-uniform version of Crandall’s (3,3) equation will
be developed. Thus to solve the diffusion equation, the uniform grid (1,5) equation
can be used in the interior of the solution domain, the variable grid (1,5) equation is
used two grid points in from the irregular boundary and the variable grid Crandall

equation is used next to the boundary.

The optimal-order variable grid (3,3) equation can be developed in the same way as in
the uniform grid case. In this case, however, the forward-time approximations to the
time derivatives at (j & 1,n) are included with weights A and 6 respectively, as well
as the spatial weight 8. This increases the number of weights available to eliminate

unwanted error terms from the modified equivalent equation. The weighted equation

CHAPTER 5. IRREGULAR BOUNDARIES 160
that results is

{2r8s — Mr(r + 1)}
+(r + D{r(y = A = 1) — 208}
+{26s —yr(r + D} = {2rs(6 —1) = Ar(r + 1)}77,
(r+ D{r(A +7—1) +2s(1 —)}

+
+ {2s(8 — 1) —yr(r + 1)}77,. (5.2.10)

This weighted equation can be analysed by finding its modified equivalent equation,
which is found to have complicated coefficients C3 and Cj, of the leading error terms.

In order to eliminate these terms, the values

A = {r(120s —6s—r’ +r+1}/{6r(r + 1)}

v = {1205 —6s+r*+r—1}/{6r(r +1)} (5.2.11)

must be chosen. If these values are substituted back into equation (5.2.10), it is found

that the weight 8 is also eliminated from the finite-difference equation, which becomes

{r(6s +r*—r— 1)}7}‘_‘*11
~{(r +1)(6s +r* + 3r + 1)}
+{6s —r? —r +1}77} = {—r(6s - r? 4+ 1)},
+ {(r+1)(6s —r* - 3 — 1)}r7
~ {B6s+r 41— 7k s (5.2.12)

This equation can be analysed using the modified equivalent equation approach, which
shows that the leading error term involves the factor

(r —D(r+2)(2r+1)
3 3

Ds(s,r) = (5.2.13)

which indicates that this equation, like the optimal case of the (1,5) equation on
a variable grid, is only third-order accurate. This consistency of orders allows the
optimal (3,3) equation to be used to overcome the boundary problems associated with

the (1,5) equation.

CHAPTER 5. IRREGULAR BOUNDARIES 161

Despite the fact that these methods are only third-order accurate for general values
of r and s, it is worth running some numerical tests to see what results are actually
obtained by using them. This is because the real problem we wish to solve is the
two-dimensional case, and it was seen in the last chapter that three-level methods for
the one-dimensional problem require more work before they can be used in locally
one-dimensional fashion. Thus the high-order (1,3,3) and (1,5,1) equations developed
earlier are of no interest in the current context, until such problems with LOD methods

are resolved.

To test the variable grid (1,5) and (3,3) equations in practice, we again use the same
problem as for the one-dimensional uniform grid case, except that the left-hand bound-
ary is no longer at z = 0.0, but at some point z = zr, where 0 < z; < Az and
1 < r < 2. The exact value for zz, is determined by the value of r being used, since
the coefficient of the leading error term in the modified equivalent equation is now
T',(r,s) rather than just I'y(s) as has been the case so far. Thus for our error graphs
to remain as straight lines, the values of both s and r must be specified, which means
that the position of the left h-nd boundary must vary as the grid spacing is changed.

The numerical results are still taken from the point z = 0.2 at time T = 8.

The results from such a numerical test are shown in Figures 5.2 to 5.5, which shows
that the method is still close to fourth-order accurate, despite using the third-order
variable grid equations at the boundary. The exceptionally good value for r = 1.25
with J = 70, which is not present for r = 1.75, is an indication that for this set of
values and this problem, there is in some sense an “optimal” case, with some error
terms cancelling each other out to produce a better than expected result. Other than
this, however, the results are showing that the accuracy of the fourth-order (1,5) has

not been diminished by the introduction of the irregular grid spacing at the boundary.

Given this good result in the one-dimensional case, this technique can be readily
extended to solve the two-dimensional problem by means of the LOD technique. This
would then provide an efficient means of solving the two-dimensional problem on an
irrepular region, such as may be found in some physical region being modelled. One

big advantage is that this method requires only two forms of the equations, one for the

CHAPTER 5. IRREGULAR BOUNDARIES

—— s= 0.1250
—— 8= 0.3333
—A— s= 0.6667

NUMBER OF GRIDSPACINGS

M= 3.83
M= 3.55
M= 522

10 40 100
11 1 1 (WS TN TN N T 1 10—11
A S
-10
10+ - 10 E
= Al =
z, , &
o 9 - 107° g
Q 2}
5 [
[od
8- L 1078 8
& [a}
7 . Y 1077
1.0 1.5 2.0
-LOG {84
10

162

Figure 5.2: Error vs grid spacing graph for the one-dimensional problem using the

variable grid (1,5) equation with an irregular left-hand boundary, r = 1.25.

—3%— 5=01250 M= 131
—6— 5=03333 M= 1.22
—A— 5=06667 M= 178
CPU TIME (SECS)
0.1 0.4 1 4 10 40 100
11 1 L1 L1114 1 Lt 1 1111t 10_11
A
10 L. 10~10
— A
T
82 ol | 0-9
-
! A
8- - 1078
A
7 . i , 1077
1.0 0.5 2.0
LOG (Cp}
10

DISCRETISATION ERROR

Figure 5.3: Error vs CPU time graph for the one-dimensional problem using the vari-

able grid (1,5) equation with an irregular left-hand boundary, r = 1.25.

CHAPTER 5. IRREGULAR BOUNDARIES 163

—X— s= 0.1250 M= 4.73
—— s= 03333 M= 479
e 8= 06667 M= 3.86

NUMBER OF GRIDSPACINGS

10
]
10 -
[e]
0@
o
w
> o b
o 3
8 L.d
2]
T i
=)
7 T
1.0

Figure 5.4: Error vs grid spacing graph for the one-dimensional problem using the

variable grid (1,5) equation with an irregular lefi-hand boundary, r = 1.75.

—¥— 8= 0.1250 M= 161
—_— gs= 03333 M= 163
—A s= 0.6667 M= 132
CPU TIME (SECS)
0.1 0.4 1 4 10 40 100
L4ty RN Liit -10
10 1 L i1l L1 11t 10 -
o
e
&
= -9
E 9+ - 10 S
=o =
8 &
. 8 L 108
ol
O
2]
a
7 . ; . 1077
-1.0 0.5 2.0
LOG (Cp}
10

Figure 5.5: Error vs CPU time graph for the one-dimensional problem using the vari-

able grid (1,5) equation with an irregular left-hand boundary, r = 1.75.

CHAPTER 5. IRREGULAR BOUNDARIES 164

left-hand boundary and its mirror image for the right-hand boundary. If a fully two-
dimensional method was to be developed, it would require the development of many
different equations, since the geometry of the boundary relative to the grid being used
leads to many different grid spacings not being the “uniform” size. For example, on a
square region that has different grid spacings at the edges to the “uniform” spacing in
the interior, we require one equation which has a variable grid spacing in one spatial
direction, for general use next to a boundary, three more equations which are rotations
of the first equation, for use next to the other three boundaries, as well as four more
equations which have a variable grid spacing in both spatial directions, for use in the
corners of the region. This is a total of eight equations, and it should be noted that
the square geometry has lead to a much smaller number of equations than would be

needed for a general irregular region.

—%¢— §'=0.1000 M= 405
—©— §'=02000 M= 382
—A— §'= 03333 M= 374
—B— s°= 05000 M= 3.99
—O— 8'= 06667 M= 4.04
NUMBER OF GRIDSPACINGS
10 40 100
‘9 L L 1 IR T T O | 10—9
S
-8
8- - 10 &
w
= =z
= , 9
8“ 7 - 10~ =
)
3 i
o]
6 L 1076 &
o
5 i v . 1075
1.0 1.5 2.0
-LOG [ax
10

Figure 5.6: Error vs grid spacing graph for the two-dimensional problem using the

variable grid (1,5) equation in an LOD fashion, r = 1.25.

The numerical results for the use of the variable grid, third-order (1,5) and (3,3)
equations, shown in Figures 5.6 to 5.9, were generated by using the same test problem

as for the general two-dimensional problem, but with the boundaries at z = z1 and

CHAPTER 5. IRREGULAR BOUNDARIES 165

—%— s*=0.1000 M= 1.03
—6— s*=0.2000 M= 0.98
—A— §'=03333 M= 0.96
—B— 5= 05000 M= 1.02
—&— 8= 06667 M= 1.04

CPU TIME (SECS)
10 40 100 400 1000 4000 10000
g L I L ainte 1 11 Liiaet L SRR 10—9
S
-8
84 - 10 T
w
5 5
g 7 - 1077 &
n o
c
6+ L 1078 §
1l a
5 . . : 1075
1.0 2.5 4.0
LOG (Cp}
10

Figure 5.7: Error vs CPU time graph for the two-dimensional problem using the vari-

able grid (1,5) equation in an LOD fashion, r = 1.25.

—— s*= 0.1000 M= 4.04
—— §*= 0.2000 M= 3.75
—i— s*= 03333 M= 356
—E— s* = 0.5000 M= 3.90
—6— s'= 0.6667 M= 3.99

NUMBER OF GRIDSPACINGS
10 40 100
9 1 L I R T O | 109
&
-8
8- L 10 ::
w
o 5
8' 7 L 1077
2]
n 5
o«
6 - 1076 3
[a]
5 r . : 1075
1.0 1.5 2.0
-LOG (A%
10

Figure 5.8: Error vs grid spacing graph for the two-dimensional problem wusing the

variable grid (1,5) equation in an LOD fashion, r = 1.75.

CHAPTER 5. IRREGULAR BOUNDARIES 166

—%— §°=0.1000 M= 103
—6— §'=02000 M= 09
—A— $'=03333 M= 091
—B— §'=05000 M= 1.0
—O— s'=06667 M= 1.03
CPU TIME (SECS)
10 40 100 400 1000 4000 10000
o] 1 L1 iianl i A4 111111 1 L L3 LLll 10—9
S
-8
84 - 10 &1
w
:, , 8
T 7 - 1077 &
8 %
0 m
e
6 L 106§
a]
5 . ; . 1075
1.0 2.5 4.0
LOG (Cp)
10

Figure 5.9: Error vs CPU time graph for the two-dimensional problem using the vari-

able grid (1,5) equation in an LOD fashion, r = 1.75.

y = yr where 0 < z7, < Az and 0 < yr, < Ay. The other boundaries were unchanged,
and the results are still taken from the point (0.2,0.2) at time T' = 2. As in the case
of the one-dimensional test, this problem was run with two different values of r, to

judge the effects of the value of r on the results.

The results show that the order of accuracy, as judged by the slopes of the lines, has
only been decreased slightly due to the third-order nature of the variable grid equations
used next to the boundary. It is worth noting, however, that the actual accuracy of the
solutions generated is still the same as that for the uniform grid case. The omission of
values for J = K =20 and J = K = 30 on these graphs was necessary to present the
correct overall impression of these results; the actual points that were removed gave
errors that were significantly more accurate than expected. For instance, the error for
J = K =30 and s = 0.2 was approximately 10785, rather than the 107%5 that would
be expected from the rest of the results. The cause of such anomalous results has not

been determined, and requires extra work beyond what is done here.

For a general curved boundary, much the same techniques can be applied, except that

CHAPTER 5. IRREGULAR BOUNDARIES 167

along each one-dimensional space line we must keep track of the value of r required
at each end. The major problem introduced by this extension, however, is that the
boundary can no longer be split into two halves, each aligned in one of the spatial di-
rections. Thus all the boundary values must be found at the intermediate time level,
rather than only some, and these values cannot be found from the finite-difference
equation since the boundary is neither straight, even over the length of the compu-
tational stencil, nor aligned in one of the primary spatial directions. This problem
can be overcome either by careful application of the given boundary condition, or the
use of extrapolation from the interior values. If the boundary condition is separable
into parts involving each of the space variable separately, as is the case with our test
problem since it is just the product of a Gauss peak in each of the z and y directions,
then this form can be used to find the boundary conditions. This is done by substi-
tuting different values of ¢ into each part of the equation, to reflect the fact that at
the intermediate time level the solution has diffused in only one spatial direction. It
should be noted here, however, that an analytic form of the boundary condition is not
usual in practical situations; in most cases the boundary conditions are given as a set
of numerical data, so this method cannot be used. This method is used here, however,

since this allows for a better analysis of the results.

The other alternative for modelling the boundary at the intermediate time level is to
use either some other one-dimensional finite-difference equation or extrapolation to
find the boundary value from the known values in the interior of the region. This
technique is undesirable as it tends to limit the von Neumann stability of the final
scheme, or in the worst cases makes it totally unstable. Nevertheless, the form of
some boundary conditions may dictate that this is the best technique to be used on
a particular problem. Since the boundary condition is specified in a closed analytic
form for our test problem, it will be used to approximate the values on the boundary

at the intermediate time level.

It is also worth noting that in this case, there is no way that the value of r can be
kept constant; indeed the value varies for each one-dimensional time line that the

finite-difference method is applied to, and in the general case, the values of r at the

CHAPTER 5. IRREGULAR BOUNDARIES 168

“left” and “right” boundaries will also differ. This being the case, the graphs of error
vs grid spacing and CPU time can no longer be expected to be straight lines, since the
leading coefficient of the modified equivalent equation depends on s and r. The actual
numerical results from running the (1,5) LOD scheme on a circular region, namely the
circle (z — 1/2)? 4+ (y — 1/2)* = 1/4, using the usual two-dimensional Gauss peak to

provide initial and boundary conditions, are shown in Figures 5.10 and 5.11.

—_— s* = 0.1000

—ft— s8“= 0.3333

—&— s' = 0.6667

NUMBER OF GRIDSPACINGS
10 40 100 %
\ 1 Vo] I U] O -6
6 10 %
® 5 A o | 10® E
8 X &4 3
2 a X 8 =
I * O %
’ 4 T & T T 10_4 g
1.0 1.5 2.0 (=]
-LOG {a%)
10

Figure 5.10: Error vs grid spacing graph for the circular boundary problem using the
variable grid (1,5) equation in an LOD fashion.

The most obvious feature of these graphs is that they are no longer straight lines of
slope four, and indeed that fact that the solutions obtained with J = K = 80 are not
much more accurate than those for J = K = 20 is somewhat disappointing. Also note
that while the absolute accuracy is still quite good, being approximately four decimal
digits, the accuracy of the solution has fallen quite markedly from the case where r
was fixed. These results show that while the (1,5) LOD technique is a good method for
solving two-dimensional problems, further investigation needs to be done in the case
where the boundary of the solution domain is curved or irregular. In particular, most
of the problems evident in the results for the circular region arise from the necessity
to evaluate all the points on the boundary at the intermediate time level. Clearly,
further work is necessary to determine the best way that this can be done, hopefully

without compromising either the accuracy or the stability of the method as a whole.

CHAPTER 5. IRREGULAR BOUNDARIES 169

—_— s'= 0.1000

L s*= 0.3333

—— s* = 0.6667

CPU TIME (SECS)
0.1 0.4 1 4 10 40 100 400 1000 faed
6 1 L1 1 rrner 1 L1 L punnn [L1 raanes 1 a1t 10—6 g
[od
i
= o} =
= ¢ s 2
. E A o - 107 &
= A x O A& Byaxy G
o @ 1 ' 107 %
LOG {Cp}
10

Figure 5.11: Error vs CPU time graph for the circular boundary problem using the
variable grid (1,5) equation in an LOD fashion.

5.3 Summary

It has been seen that the problems arising from the region not being perfectly rectan-
gular, which means that there is not necessarily a grid point exactly on the boundary
with a uniform grid, can be overcome by using variants of our existing finite-difference
equations. These new equations incorporate the fact that the grid is non-uniform next
to the boundary, and are in general one order less accurate than their uniform grid
counterparts. Note that many of the properties of the uniform grid equations are still
true of the variable grid versions, since the latter must reduce to the former in the

special case r = 1.

The numerical results for the two-dimensional problem, which is the case for which
an irregular boundary is most likely to occur in practice, show that the accuracy of
the solution on a square grid, with different grid spacings at the boundaries is close
to that obtained using the LOD scheme on a uniform grid, despite the theoretical
accuracy being one order less, and the actual order being slightly less than four in
general. The results on a circular region indicate that other considerations, which
sometimes tend to be considered as only minor factors in the solution process, such

as the modelling the boundary values at the intermediate time step, can be of great

CHAPTER 5. IRREGULAR BOUNDARIES 170

importance in generating an accurate final solution, and further investigation of such

factors is needed to produce more accurate solutions in this case.

Nevertheless, it is thus seen that the locally one-dimensional solution technique is
useful in practice for solving such problems with irregular boundaries, where a fully
two-dimensional method would be very much more complicated to develop and im-
plement, since it would require many different equations to deal with all the different

combinations of variable grid spacings which are possible.

Chapter 6

Conclusions

It has been shown that the “best” way to solve the diffusion equation by finite-
difference techniques, in either one or two spatial dimensions, is aependent on the
circumstances requiring the solution. In general, the higher the theoretical order of
accuracy of the solution technique the better, but constraints on CPU time available
or the minimum required resolutica may dictate the use of a less accurate method

which has a larger von Neumann stability range.

The basis of analysis of the various finite-difference equations considered here is the
modified equivalent equation approach, developed from the 1974 work of Warming
and Hyett. This allows direct and simple comparison of the errors associated with the
equations as well as providing a means to develop more accurate equations. This is
achieved by incorporating free weights into a generalised equation, then eliminating
the dominant error terms from the modified equivalent equation by suitable choice
of values for these weights, to give more accurate finite-difference equations. Since
the generation of equations and their corresponding modified equivalent equations is a
time consuming, tedious and error-prone task by hand, a suite of computer programs,
written in Pascal, has been developed to carry out the mechanical operations. This

results in large savings in the time required to develop new finite-difference equations.

For the one-dimensional problem, the most accurate method found is the sixth-order

(1,5,1) equation, which is also von Neumann stable over the range s < 0.51..., which

171

CHAPTER 6. CONCLUSIONS 172

is much better than the other sixth-order methods considered. While even higher
order equations can be developed, these are all implicit in nature, which means that
there is the extra overhead of the solution of a set of linear algebraic equations to
be solved at each time level which must be considered. In addition to this, such
equations have very restrictive von Neumann stability ranges, so increasing the value of
s somewhat to offset the CPU time overhead is not possible. Achieving higher accuracy
by increasing the width of the computational stencil is not practical either, since the
problems near the boundaries become correspondingly greater, with more points near
the boundary having to be calculated by some alternative means, preferably without

a loss of accuracy from this process.

The fourth-order (1,5) equation is also very useful for obtaining a solution in cases
where the sixth-order equations are unsuitable. It is simpler to implement than the
(1,5,1) equation, since it uses values from only two time levels and so does not require
a different technique for starting. Also, the boundary problems can be overcome to the
correct order of accuracy by use of Crandall’s equation, without the loss of accuracy
imposed on the (1,5,1) equation by the use of the sixth-order (1,3,3) equation next to
the boundary. '

If a boundary condition is given as a derivative (a Neumann condition) rather than
a known value (the Dirichlet condition), much the same techniques can still be used,
but extra effort is required to accurately determine the values at grid points on the
boundary. This involves extra approximations, and somewhat different techniques
for handling the problems associated with spatially wide computational stencils must
also be used. All this leads to a decrease in accuracy which shows up very clearly
in the numerical results. The worst affected method was the (1,5,1) equation, for
recasons which are not clear, but may be connected with it using both values from
three time levels and a spatially wide stencil. Further investigation of this problem is
required to obtain a better understanding of the problems in this case. The rest of the
“good” method for the Dirichlet case, namely the fourth-order (1,5) and (1,3,3) and
the sixth-order (1,3,3) equations, still produce quite accurate answers for the Neumann

boundary condition. Which of these methods is the “best” is again dependent on the

CHAPTER 6. CONCLUSIONS 173

circumstances of the solution.

For the two-dimensional problem, it has been found much harder to develop high-
order finite-difference equations. This is mainly due to the existence of extra “cross-
derivative” error terms in the modified equivalent equation which must be also be
eliminated in order to generate high-order equations. These extra error terms force
an increase in the number of weights which must be used to eliminate them, which
greatly increases the complexity of the finite-difference equations. This extra complex-
ity prevented the development of a sixth-order equation with the computing resources
available, although with the use of a larger, more powerful computer such an equation

may be developed successfully.

Many of the features discovered in the one-dimensional problem carry over into the
two-dimensional case. In particular, using two-level explicit computational stencils
limited to three grid points in each spatial direction, it is not possible to develop a
finite-difference equation which is more than second-order accurate in general. Like-
wise, for computational stencils which extend over five grid points spatially, the best

possible equation is fourth-order accurate.

Three-level methods were in general disappointing, since all the equations that could
be analysed were no better than fourth-order, rather than sixth-order as was obtained
in the one-dimensional case. This was due, however, to the complex nature of the
weighte-d finite-difference e(iuations, in particular that for the (1,13,9) computational

stencil, which cannot be analysed on the available computing resources.

Implicit methods for the two-dimensional problem, as was expected, require enormous
amounts of CPU time, due to the requirement of solving a set of linear algebraic
equations at each time level. The problem is that the although the coefficient matrix
of the equation set is banded, the bandwidth is directly proportional to the number
of equations, rather than fixed as was the case in one dimension. This massive CPU
time overhead makes implicit equations totally impractical to use, so the only equation
seriously developed was the fourth-order (9,9) equation, which can be used to solve

the boundary problems associated with spatially wide explicit equations like the (1,13)

CHAPTER 6. CONCLUSIONS 174

and (1,21) equations. Used in this fashion, the bandwidth of the set of equations to
be solved is fixed at three, so the CPU time overhead is reduced to quite acceptable

levels.

“Locally one-dimensional” (LOD) techniques, which are based on splitting the two-
dimensional equation into two one-dimensional problems then using the established
one-dimensional solution techniques on each of them, avoid the need for the more
complex fully two-dimensional equations. It has been shown that these techniques
require less CPU time to run than full two-dimensional equations, and the accuracy
of the solutions obtained is similar. The one problem encountered is that finite-
difference equations that use values from three time levels cannot be used, since the
time levels generated here involve diffusion in only one and both spatial directions
alternately. This prevents three-level methods from generating accurate results, and

so the preferred solution technique here is the fourth-order (1,5) equation.

Overall, the LOD techniques are seen to offer somewhat better prospects than the
fully two-dimensional equations for solving the two-dimensional diffusion equation,
since they generate solutions of the same accuracy in less CPU time, and are much
simpler to develop and implement. Extra work needs to be directed at solving the
problems associated with using three-level equations in this fashion, which may be the
best way to obtain a sixth-order solution technique for the two-dimensional problem.
The alternative is to develop the sixth-order (1,13,9) equation to the point where is can
be implemented in practice, since this will undoubtedly give more accurate answers

than the fourth-order techniques presented here.

Alternating direction implicit (ADI) methods provide another good way to obtain
accurate solutions to the two-dimensional diffusion equation in a moderate amount
of CPU time. These equations are typically of a fairly low order of accuracy when
considered in isolation, but if they are considered after two applications, one in each
spatial direction, it is found that some of the lower-order error terms have cancelled
each other out. The development of such equations needs to take this into account,
since it provides a convenient way to generate spatially compact high-order equations.

Such an equation was shown to be the only fourth-order equation that was found that

CHAPTER 6. CONCLUSIONS 175

did not require a spatially wide computational stencil, which immediately removes the
problems near the boundaries. It is found, however, that since the solution process
involves the solution of many sets of linear equations at each time level, the amount
of CPU time required to find a solution is somewhat more than that needed by the
explicit equations. This amount of CPU time is, however, still moderate and only
a fraction of the CPU time required by the fully implicit methods, so stable ADI

techniques should be considered favourably when choosing a solution technique.

Irregular boundaries, such as may be found when modelling physical regions, can be
dealt with either by mapping the irregular region onto a rectangular region, when
the solution techniques already discussed can be applied, or else by developing special
finite-difference equations that take the irregularity into account. The incorporation
of a variable grid spacing is found to reduce the formal order of accuracy of the
finite-difference equations by one, so the optimal (1,5) and (3,3) equations are now
third-order instead of fourth. Numerical tests have shown, however, that this has
only a slight impact on the solutions generated by using these equations next to the
boundaries. Give this, these equations can be applied in a locally one-dimensional
fashion to generate a solution to the two-dimensional diffusion equation on an irregular
region. This is much simpler than developing a fully two-dimensional equation that
must incorporate a different variable grid spacing in each spatial direction, especially
since there are only two (mirror-image) forms of the one-dimensional equations (for -
the left and right-hand boundaries), rather than the many different equations required
of the two-dimensional equation. This is another illustration of the practicality of the

LOD approach to solving the two-dimensional problem.

Overall, the modified equivalent equation approach has proven to be extremely useful
and practical, both to analyse existing finite-difference equations and to develop new
and more accurate ones to solve both the one and two-dimensional linear diffusion
equations with constant coeflicients. Several very accurate equations have been devel-
oped, discussed and compared on the basis of both accuracy of solution and the CPU
time required to generate that solution. There is, however, no clear “best” method

for solving any of the problems discussed here; the method to be preferred must de-

CHAPTER 6. CONCLUSIONS 176

pend on constraints such as the available computing capacity and the required spatial

resolution and accuracy.

Further work remains to be done in several areas, such as more accurate techniques
for the Neumann boundary condition, using three-level equations as LOD equations,
the development of more accurate ADI methods and also the development of sixth-
order fully two-dimensional equations. The extension of this work into the variable
coefficient diffusion equations in both one and two dimensions should also be examined,
since these equations provide a better approximation to many of the physical processes

that we set out to model.

Appendix A

User Guide for the FDE

Development Programs

A.1 Introduction

This appendix describes a system for the development of accurate finite-difference
equations (FDEs) to solve the one or two dimensional linear advection-diffusion equa-

tions with constant coeflicients (sometimes referred to as the transport equations).

The two-dimensional form of this equation is

o ar or 0% 9%

E-l_u@x dy Oxz? _O‘ya_y?:

where u, v, @, and «, are constants. This equation can be used to describe such things

0 (A.1.1)

as the spread of pollutant in a stream or heat transfer in a solid object (in which
case u and v are both zero). Two special cases of this equation occur, firstly when
ay = ay = 0, which leads to the advection equation, and secondly when u = v = 0,

which is the diffusion equation.

The equation (A.1.1) can be solved numerically by finite-difference techniques. With-
out loss of generality we can assume that (A.1.1) is written in a non-dimensional form,
such that the space domain is [0,1] in both the z and y directions, while u, v, a; and

«,, refer to non-dimensional quantities. The space domain is then divided up into a

177

APPENDIX A. FDE DEVELOPMENT PROGRAMS 178

rectangular grid, with J grid spacings each of length Az in the direction, and K
grid spacings of length Ay in the y direction. Alternative grid geometries, such as
triangular and hexagonal are possible, but the programs described in this appendix
deal only with the rectangular case. The equation (A.1.1) can then be solved on this
grid by starting from a known initial state (at time ¢ = 0), then using this information
to approximate the state at time ¢ = At, and so on until the desired time ¢ = T is

reached.

This stepping process is achieved by approximating the derivative terms in (A.1.1)
by combinations of approximate values of # at the grid points defined above. For
convenience, the grid point (jAz, kAy) at time nAt is referred to as the (j, k,n) grid
point, and the approximate value of 7 at this point is 7]*;. When the derivative terms
are approximated and rearranged into useable formulae, several dimensionless ratios

are found to occur. These are denoted by:

uAt vAt ag At o, At (A1.2)
Cz=——— , Cy=—— , $5= i By = 1.
Re @ T Ay ey ' T ey
As an example of this, consider the diffusion equation
| or 9% &%
5{ - Gxﬁ - Cly-a—:l-/-a = 0, (Al?))
and the finite-difference approximations
% At + O{At}, (A.1.4)
827’: 7-;1_1 E 27';1}C + TJ-TL+1 k 2
T = : ’ =4 O{(A 1.
o AT 4 Of(Ae), (A1)
o*F k=1 — 2755 + Tik4r 2
— = = : : O{(Ay)"}. A1.6
o Aty 4 O((A)) (A16)

If these forms are substituted into (A.1.1) and rearranged, the resulting equation is

n+1 __ n n n n n
Tj,k = SmTj_l’k + SyTj,}c—l + (1 — 25:6 _— 23y)Tj,k + S“;T]’—l-l,k —I— SyTj,k-{-l (A1.7)

after the terms of O{At, (A:z:)z, (Ay)?} are dropped. This equation can then be used

to find values of T at one time level from the values at the previous time level.

In order to check that this difference scheme is actually solving the correct partial

differential equation (PDE) (called being consistent), and also to find the formal error

APPENDIX A. FDE DEVELOPMENT PROGRAMS 179

involved in this approximation, we now find the corresponding modified equivalent
partial differential equation (MEPDE). This is done by expanding all the terms in
(A.1.7) as Taylor Series about the (j, k,n) grid point, then differentiating the resulting
equation and adding the result back into the original equation repeatedly to remove

all the derivative terms involving 8/38t, except for the term 0t /0t.

In the case of the example above, the resulting MEPDE is
or o*r 0t

ik ol ay-B—yE + E(7T, 8z, 8y, Az, Ay) =0 (A.1.8)
where
a(Az)’ (Az)*(Ay)’
E(T, Sz, Sy, Al‘, Ay) = —T(l — 631,) b T(sty)

%u —65,) + O{(A2)", (M)} (A.L9)

Thus it can be seen that (A.1.7) is consistent with the two-dimensional diffusion equa-
tion (A.1.3) with an error of O{(Az)?,(Ay)?}, as all the other errors terms in E are
much smaller than the leading error terms given in (A.1.9). A m=thod with errors of

this form is called second-order accurate; in general if the leading error terms involve

(Az)*(Ay) (At)° where a + b+ 2¢ = d then the method is said to be of order d.

As can be readily appreciated from the above example, working out the finite-difference
equation that corresponds to a given set of approximations to the derivative terms in
(A.1.1) and then finding the corresponding MEPDE can be a very long and tedious
process in all but the very simplest of cases. To overcome these problems (and the
associated errors which invariably creep into hand calculations), a set of computer
programs has been developed to perform these mechanical tasks, thus removing most
of the possibility of errors, and saving large amounts of time. The relationship between

the programs themselves and the files they use and produce is shown in Figure A.1.

The current implementation of this set of programs is written in Vax Pascal V3.5
and runs under VAX/VMS. Despite this, the programs are written in almost standard
Pascal. The only VAX extensions used are exponentiation, the use of the “_” character

in identifier names and the use of error trapping and file name defaulting for opening

APPENDIX A. FDE DEVELOPMENT PROGRAMS

.DSK

|

— - - =

DSET

—_— e — —

r

KEYS.DAT —+

- — = = — 1

DISC

JFDE

FND

|

SUPER

—_—d

L — —

- =1

MEQ

.COM

r— —

= =

IMACSYMAI

L e —

WTS

r—_-—

Figure A.1: Relationship between programs and their input and output files.

SUBST

i |

.OFD

JFND

program names are explained in the text.

180

The

APPENDIX A. FDE DEVELOPMENT PROGRAMS 181

files. All these are reasonably common extensions to Pascal, and things like name
defaulting and “_” characters can be removed without changing the program behaviour
significantly. Thus it is a reasonably simple matter to get these programs to run on
other machines and/or operating systems. This has in fact been done in the case
of SUPER, which was converted to run on a micro-computer under CP/M-80, using

Turbo Pascal V2. It has also been successfully ported to the Apple Macintosh.

All input and output files for the set of programs are ordinary text files that may be
changed with a text editor, and all information is passed from one program to the
next by means of these files. Thus each program can be run independently of the
others; there is no need to run any other programs if output from one only is needed,
and input files for that program can be created using a text editor (eg. Ludwig on

University of Adelaide computers).

The programs described here fall into two categories. The first category includes those
designed for the one-dimensional advection-diffusion equation, which have the program
names referred to in this document and are located, along with the required data files,
in the directory D2: [KHAYMAN.PHD .MUDPDE.DVL_SYS] on Vax E. The second category
of programs includes those for use with the two-dimensional advection-diffusion equa-
tion, which are located in the directory D2: [KHAYMAN.PHD.MODPDE.DVL_SYS.TDMOD]

and have the prefix “2D” before the names given in the text.

The development process is started by selecting the desired computational stencil for
the method, then choosing how to difference each derivative in the equation over
that stencil. This may involve several weights, either because it is desired to split a
derivative approximation between two or more different grid points and/or to allow
for optimisation of the resulting method by choosing optimal values for the weights.
These optimal values are usually chosen to remove the leading error terms from the
MEPDE corresponding to the method, although they can also be used to achieve
other desirable features for the method, such as an increase in the numerical stability
region. The program DSET is used to convert the desired differencing and weighting
into an input file suitable for DISC to read. From this input file, the program DISC
is used to find the weighted form of the finite-difference equation (FDE) for the given

APPENDIX A. FDE DEVELOPMENT PROGRAMS 182

differencing.

Having done this, the error involved in using the finite-difference equation must be
determined. This is done by using the program SUPER to find the MEPDE for the
method. The input file for this program is generated by the program DISC. From the
MEPDE, the aim is usually to eliminate as many of the leading error terms as possible
by a suitable choice of the values of the weights, although, as noted above, this may
not always be the case. In some cases, one weight may be required to ensure that
the method involves no artificial diffusion. The optimal weight values may be found
either by hand, which becomes difficult once there are more than one or two weights,

or using a symbolic manipulation package such as MACSYMA.

The values of the weights, as well as the weighted finite-difference equation, are then
used by the program SUBST to find the optimal finite-difference equation (ie. the
one with the highest formal order) corresponding to the original differencing. If it is
necessary to check the MEPDE of the optimal scheme, an input file to SUPER is also
generated by SUBST. This is also useful in cases where two schemes of the same order

of accuracy are to be combined to give a scheme of higher order.

All the programs have a similar input format. Each input file, and output file, 1s
prompted for in turn, and the user can enter the corresponding file name. Values
that are given in square brackets (‘[1’?) at the end of the prompt indicate default
values that are added to.whatever the user specifies to generate the final file name
to be used. Note that these defaults are overridden if the user specifies the field in
question, and that all files are assumed to be in the current default directory unless
otherwise specified by the user. The only exception to this last rule is the KEYS file

for the program DISC, which is assumed to be in the same directory as the program

DISC.

Values in parentheses (““()??) just prior to the default strings are defaults if the
user merely presses “RETURN” in response to the prompt (ie. enters no file name).
This is usually “(keyboard)” for an input file, which indicates that the input from

that file will be prompted for from the user’s terminal, and “(screen)” for an output

APPENDIX A. FDE DEVELOPMENT PROGRAMS 183

file, which means that output to that file will appear on the terminal screen. A value
of “(none)” means that the file will not be generated unless the user gives the file a
name. If there is no default value given, then the file is required by the program, and

thus must exist (once the defaults mentioned above have been added).

If a file cannot be opened or created with the name as specified, then the file is
prompted for again in most cases. In the case of an input file, the user should check
that the file exists and is accessible in the specified directory (or the current one if
none was specified). For an output file, the user should check that the file can be
created in the specified (or current) directory and that there is sufficient available disk

quota available to create the file.

The last section of this appendix describes several programs that, while not being
part of the system for developing accurate finite-difference equations, are essential for
creating practically usable finite-difference methods. They were written in Vax Fortran
by Peter Steinle and are used for checking various stability characteristics of a finite-
difference equation. Details of their use and input file format, which differs from the

rest of the programs described in this document, are given in Section A.5.

Except for the program DISC, which was written by Mark Rankovic, and the Fortran
stability characteristic programs written by Peter Steinle, all the programs described
here were developed and written myself. They represent a large but worthwhile in-
vestment of effort, since there is an enormous sé,ving of time possibie with their use,
especially in the more complicated two-dimensional cases. The most important of
the programs is SUPER, which actually takes a finite-difference equation and deter-
mines its modified equivalent equation; the listing for the one-dimensional form of this

program is given in Appendix C.

APPENDIX A. FDE DEVELOPMENT PROGRAMS 184

Example

To illustrate the use of each program, an optimal (1,5,1) method based on the stencil

shown in Figure A.2 will be developed to solve the one-dimensional diffusion equation

or o%r

E el a% =0. (AllO)

At the end of each section, this stencil will be used to illustrate the use of the pro-
gram discussed in that section. Where appropriate, the output files generated by the

programs are listed as well.

fn

Figure A.2: The (1,5,1) Computational Stencil

The (1,5,1) stencil allows two weights to be used, as follows:

n

% -~ Ox[FTat (5,n)]+(1-6)x[CT at (j,n)], (A.1.11)
% R px[CS3at (n)]+(1-¢)x[CS5at (j,n)] (A.L12)

where CS3 is used to denote a three-point centred space difference approximation
about the specified point, CS5 represents a five-point centred space approximation,
FT represents a forward time approximation and CT represents a three-point centred

time approximation.

APPENDIX A. FDE DEVELOPMENT PROGRAMS 185

A.2 Differencing a Partial Differential Equation

The first step towards finding an accurate solution method for the equation (A.1.1)
is to substitute finite-difference forms for the derivative terms in the equation, then
simplify the result to give the corresponding finite-difference equation. The program
DISC is designed to do this, based on a set of pre-defined differencings of various
derivative terms. The input format for this program however is not particularly easy
to work with, so the program DSET was written to convert an easily created file that

describes the differencings and weightings to be used into a form suitable for input

into DISC.

Generating the input file for DISC

Program Name: DSET
Author: Ken Hayman

Date: November 1986

This program is designed to make it easier to create input files for DISC. DSET
takes an input file which describes the weighting to be used. The format of this file
consists of a one line title to describe the equation to be developed, followed by, for
each differencing to be used, an expression in parentheses, which may extend over
several lines, followed by “* KEY(n)”, where n is the number of the discretisation
key, obtained from the tables given in Appendix B. At the end of the file, there
must be a line that consists of “= 0”7, to emphasise that the equation is written in
LHS= 0 format. Note that the coefficient terms must be enclosed in parentheses,
regardless of how simple they are. Thus “(1) * KEY(13)” must be written instead of
just “KEY(13)”. Also note that no sign is allowed before the opening parenthesis of
the expression, so “(-(<expression>)) * KEY(13)” is the correct form for entering a

negative coefficient.

The output from this program is a file suitable for input into DISC. It should be realised

that this file itself is not the shortest possible representation of the differencing, as

APPENDIX A. FDE DEVELOPMENT PROGRAMS 186

collection and simplification of like terms has not been done. However, this makes no
difference to the operation of DISC, as this simplification is done by DISC itself as it

processes its input file.

Example

The discretisation keys for the example problem can be obtained from a listing like
that given in Appendix B below. This listing contains all the differencings that are
available in the standard key file, and should be updated if any new differencings are
added to this file. This file of standard differencings is called KEYS.DAT, and is kept
in the same directory as the program DISC. If the required differencing for a method is
not listed, then it is necessary to create a customised file of differencings (called a key
file), which contains the desired new differencing, as well as any of the standard ones
that are used by the method. The differencings in the new file are given key numbers
starting from 1 and increasing sequentially. Care should be taken to correctly calculate
the key numbers of the differencings in the new file, as they will be quite different to
those in the standard file.

For the current example, however, the standard key file is sufficient, since the method

uses only the following differencings:

FT : Key3

CT : Key 13

CS3 : Key 41

CS5 : Key 44. (A.2.1)

From these key numbers, and the weightings (A.1.11) and (A.1.12) given above, the
input file for DSET can be formed. The file is

1-D Diffusion: Weighted (1,5,1) Method

(Theta) * Key(3)

APPENDIX A. FDE DEVELOPMENT PROGRAMS 187

(1-Theta) * Key(13)
(-Alpha*Phi) * Key(41)

(-Alpha*(1-Phi)) * Key(44)

(remembering that the equation must be in LHS = 0 form). DSET takes this file and
produces an input file suitable for DISC to read and evaluate the corresponding FDE.

Finding the Finite Difference Equation

Program Name: DISC
Author: Mark Rankovic
Date: September 1985

Modifications since by Ken Hayman

This program takes a differencing on a given computational stencil and produces

the corresponding finite-difference equation, as well as an input file for the program

SUPER.

In order to make the program as flexible as possible, the differencings that it “knows”

about are read in from a file. This file has the following format:

<x-space offset> <y-space offset> <time-offset>

<numerator> <denominator> <delta-x> <delta-y> <delta-t>

where <x-space-offset> is the spatial offset in the x-direction of the grid point from j,
<y-space-offset> is a similarly defined offset in the y-direction and <time-offset>
is the offset of the grid point from time level n. The terms <numerator> and
<denominator> form a multiplying factor, and <delta-x>, <delta-y> and <delta-

t> are the powers of Az, Ay and At respectively. In the the one-dimensional case,

APPENDIX A. FDE DEVELOPMENT PROGRAMS 188

the numbers <y-space-offset> and <delta-y> are absent from the file. Note that the
line structure of the file is important, although individual items on the lines may be

separated by an arbitrary number of spaces.

This information is repeated for each grid point involved in the differencing, and each
differencing is terminated by a line containing a single asterisk (*). This asterisk is
required even after the last differencing in the file. The differencings in the key file
are referred to by number, with the first differencing in the file being number one.
To use this system effectively, a printed copy of the differencings in the file and their
corresponding numbers should be kept, as the numbers are not readily apparent from
the file itself, particularly in the two-dimensional version, where there are currently
more than 450 different keys. Copies of the key files for the one and two-dimensional

cases are given in Appendix B.

The program DISC takes as input both the key file described above and a file that
describes the differencings to be used. The latter file provides information about the
differencings to be applied to the various derivative terms in the partial differential
equation. This file can either be generated by hand, or produced by the program
DSET, which is described above. The first line of this file is the name of the method
(up to 80 characters long), then on successive lines are the number of weights used,
and their names (which are converted internally to upper case). Following this, and
again with one item per line, are the (integer) numerator and denominator (with any
sign included in the numerator rather than the denominator) and the powers of u,
a (for the one-dimensional case) or u, v, a; and a, (for the two-dimensional case)
and the weights (if any) which multiply the term. Following this is the number of the
discretisation to be applied, which is obtained from the key file listing, then a “Y” if
there is another term to be input or a “N” if this was the last one. Extra terms are
entered in exactly the same format, starting with the numerator and ending with the

“Y”/“N” response as appropriate.

The program takes the input data and finds the corresponding finite-difference equa-
tion by combining together and simplifying all the contributions at each grid point

by adding terms with all the same powers together into one term and eliminating any

APPENDIX A. FDE DEVELOPMENT PROGRAMS 189

term whose coefficient becomes zero. Once all the differences from the input file have

been processed, the resulting equation can be written out without any further changes.

The program produces two output files from the simplified data. The first of these is
a file that gives the resulting finite-difference equation in an easily understood form,
which can readily be used to implement the method. This file is also used as input
to the program SUBST, described later, and so should be kept. The second file is an
input file to the program SUPER, used for finding the MEPDE corresponding to the
difference equation. This file is an optional output, and may be suppressed by just
pressing RETURN when prompted for its name. If it is produced, it will prompt for
the order of the highest derivative SUPER should work with. This value should be

chosen with care; restrictions on its value are explained later in Section A.3.

Example

For the example problem given at the end of Section A.1, the finite-difference equation

generated by DISC, using the input file generated by DSET, is as follows:

FDE for : 1-D Diffusion: Weighted (1,5,1) Method

(- 1/2 * THETA
+ 1/2) * TAU(n+1,j)

(1/12 * s
- 1/12 * S * PHI) * TAU(n,j-2)

(1/3 * S * PHI
- 4/3 * S) * TAU(n,j-1)

(- 1 % THETA
- 1/2 % S * PHI
+ 5/2 % S) * TAU(n,j)

APPENDIX A. FDE DEVELOPMENT PROGRAMS 190

(1/3 * S *x PHI
- 4/3 x S) * TAU(n,j+1)

(1/12 * S
- 1/12 * S * PHI) * TAU(n,j+2)

(-1/2
+ 1/2 % THETA) * TAU(n-1,j)

which corresponds to the finite-difference equation

6{6+ 1}/ = s{e— 1}y + i) +4s{d — 0} (riy + 7541)
+ 6{ps+20—5s}r] +6{1 — o}t (A.2.2)

on rearrangement into the more usual form.

A.3 Finding the Modified Equivalent Equation

Program Name: SUPER (or SUPERSLOW)
Author: Ken Hayman
Date: March 1984 (original program FINDMOD)

(see source listing below for update details)

This program will calculate the modified equivalent equation corresponding to a given
finite-difference equation, up to the term containing a derivative of a specified order.
This modified equivalent equation can be used to determine the theoretical accuracy
of the finite-difference equation, as well as to produce optimal versions of weighted
finite-difference equations, by choosing values of the weights that eliminate some of

the leading error terms in the MEPDE.

APPENDIX A. FDE DEVELOPMENT PROGRAMS 191

SUPER takes its input either straight from the keyboard, in which case each piece of
information required is prompted for, or from a file, which has the necessary input set
out with one item to a line. Note that input should not come straight from a batch
job’s main input file, as the accumulated lengths of the prompts may cause a run-time
error in the program. To overcome this problem, either specify that input comes from
SYS$INPUT, which will suppress the prompts but still read the data from the batch
job input file, or else use a separate input file. Input files for SUPER are generated
both by the program DISC, described above, and by SUBST, described in Section A.4.
Although both these automated programs produce files that are somewhat longer
than those that may be produced manually, SUPER will collect like terms together
and simplify them properly, so there is no loss incurred by using these programs to

generate input files.

Although a user should never have to know about the format of the input file for
SUPER (since these files are generated by both DISC and SUBST), a knowledge of
this format may be useful to either make minor modifications directly or to track
down problems. The file starts with a one-line title for the method, which may be
up to 80 characters long, followed by the maximum order of the derivative to be used
in the calculations. This number should be chosen with care, with regard to the
expected order of the method, and the available amount of computer time. As this
number increases, the amount of work SUPER must do also increases greatly, which
is then reflected in the execution time. More importantly, however, the magnitude
of the numbers it must work with increases, which in turn increases the chance of
encountering integers beyond the machine’s range. Note that with 32-bit integers
such as those used on the VAX range of computers, there is an absolute upper limit
of twelve on this number, due to the fact that the program uses the factorial of this

number in the calculations.

If this restricted range of integers is a problem, the program SUPERSLOW can be
used instead of SUPER. SUPERSLOW uses arrays of integers to represent multiple-
precision integers, thus extending the range of numbers available. The major disad-

vantage here is that all arithmetic operations on such integers are simulated as part of

APPENDIX A. FDE DEVELOPMENT PROGRAMS 192

the program, which results in a massive increase in the amount of CPU time needed
to find results. This increase has been found to be around 100 fold in some small test
cases where a direct comparison has been possible. Apart from the size of the numbers
they will handle, SUPER and SUPERSLOW are identical, so no further distinction

between them will be made.

Following the derivative order in the input file (each item must be on a separate line)
is the number of weights used, and their names (which are converted to upper case
internally by the program). Following this is a repeated construct that specifies the
finite-difference equation. It starts off by specifying the numerator, denominator and
powers of Az, At, u and «a (or Az, Ay, At, u, v, o, and a, for the two-dimensional
case) followed by the powers of the weights (if any weights are being used, the powers
must be given in the same order that the weights were specified at the top of the input
file). This information makes up a coefficient, which may (indeed should) multiply
several T values at various grid points. These grid points are now specified, by giving
the = space position, relative to j, the y space position relative to k (for the two-
dimensional case only), followed by the time level, relative to n, and an integer which
multiplies this particular term. Any denominator that multiplies a term must be
taken out as a factor and specified with the rest of the coefficient part above. This is
followed by either a “Y”, to indicate there is another grid point value that multiplies
the current coefficient, or a “N” to indicate that there is not. Once all the grid points
that a giveﬁ coefficient multiplies have been entered, a “Y”/“N” response is required
to indicate whether there is another coefficient to enter. If so, then the whole construct

just described is repeated, until all coeflicients are entered.

The program works by expanding all the terms out as Taylor Series about the (j,n)
grid point (or (j, k,n) grid point, for the two-dimensional case), then collecting up any
like terms to produce a truncated version of the equivalent partial differential equation
(EPDE) corresponding to the finite-difference equation. The EPDE is then normalised
by dividing by the coefficient of 97 /9%, and is then repeatedly differentiated with the
result being added back into the equation so as to remove all the derivatives with a

time dependence in them, with the exception of the dr/9t term. This produces the

APPENDIX A. FDE DEVELOPMENT PROGRAMS 193

MEPDE, which has only spatial derivatives, except for the 07 /0t term. This form can
then be used to verify the consistency of the difference equation, while the additional

terms form the truncation error of the method, denoted by E.

This technique for finding the modified equivalent equation assumes that the order
of differentiation is unimportant when eliminating terms. If this assumption is not
valid (for instance, if the initial condition contains a discontinuity) then any results

obtained using this MEPDE may be invalid.

The modified equivalent equation is stored internally as a set of linked lists, so there is
no specific limit on the number of terms in the coeflicient of any particular derivative.
Also, any components that are no longer required are returned to the available storage
by means of the Pascal Dispose function, so as to keep the overall storage requirements
to a minimum. In the case of a large problem on a machine with a small amount of
memory, the program may terminate with an “out of memory” type error, but on a
machine such as a VAX this is extremely unlikely, although it can happen with early
versions of SUPER that don’t release unneeded storage space with the Pascal Dispose

procedure.

One of the steps in producing the modified equivalent equation is to divide the equiv-
alent equation by the coefficient of 07/0t, as mentioned above. If this coefficient is
an expression involving addition and/or subtraction then the division is beyond the
scope of this program. To overcome this restricfion, the coefficient is given the name
DENOM, and the equation is divided by this. In cases where this happens, the output
will contain the expression that has been replaced at the top of the output, then the
modified equivalent equation will refer to powers of DENOM. So that the program can
achieve the maximum simplification (and not produce results that are highly mislead-
ing to a casual observer), the powers of DENOM in any given coefficient in the modified
equivalent equation are equalised by multiplying appropriate terms by DENOM. This
allows the program’s simplification routines to work on the expression, in particular,
correctly representing some of the leading coeflicients as zero rather than extremely
complicated expressions that simplify to zero after much extra work. This allows easy

verification that these coefficients are zero, for checking optimal difference equations.

APPENDIX A. FDE DEVELOPMENT PROGRAMS 194

The output from this program consists of two files. The first contains the complete
form of the EPDE and the MEPDE, which can be used to analyse the difference
equation. The second is a file that forms the basis for an input to MACSYMA. It
contains equations that are the cancelled forms of each of the error terms from the
MEPDE, with right hand sides that are just “= 0”. Each of the equations is numbered
“Fn”, where n is the order of the derivative that term was multiplying in the MEPDE
(or “Fny”, where y is the order of the y derivative of the term, in the two-dimensional
case). Thus to find optimal values for the weights that make some of the leading error
terms zero, this file could be input to MACSYMA, and the ALGSYS command in

that package used to solve the desired subset of the equations.

Before doing this however, it is necessary to modify the F2 equation if the original
equation involved diffusion, as this term will contain the diffusion term —a 8?7 /0z?.

Thus for the pure diffusion equation, there i1s a line
F2: (- 1) = 0%

which must be deleted. If there is more than one term involved in the modified
equivalent equation coeflicient C2, say a scheme for the transport equation that has
artificial diffusion, then just the one term needs to be deleted, not the whole equation.
If the whole equation is deleted, then the reference to the equation must also be
removed from the list of equations to be solved. In the above case, the line that solves

for the weights 1s
algsys([f2,f4,f6], [THETA,PHI]) ;
which must be changed to
algsys([f4,f6], [THETA,PHI]);

since the F2 equation was deleted entirely.

Note that the output of the MACSYMA file is optional, and can be suppressed by
just pressing RETURN when its name is prompted for. In the case of the full two-

APPENDIX A. FDE DEVELOPMENT PROGRAMS 195

dimensional advection-diffusion equation, however, this MACSYMA file has not yet
been implemented, and alternate means should be used to find optimal values for the
weights. The easiest way to do this is to edit the main output file, removing the
EPDE, and setting up the desired equations to be solved, then using this as input to
MACSYMA. This procedure is usually satisfactory, as the reduction of any answers
from the form involving Az’s etc. to the simpler form involving s,’s and s,’s is usually

very simple, and can be done by the user as the answer 1s read.

It should be noted that the output from MACSYMA is not suitable for input directly
into SUBST as a weight file (ie. .WTS extension). The values of the weights must be
read from the MACSYMA output and re-formatted into the format of a weights file
using a text editor such as Ludwig. The format of this file is described in Section A 4.
Also worth noting is the fact that if the output from MACSYMA is something of the

form

(Cn) 0]

then MACSYMA was unable to find any solutions to the given set of equations for the
weights specified. Note also that the “(Cn)” in output by MACSYMA (like the above)
has no relationship to the coefficients of the modified equivalent equation which have

been denoted by Cn in this work.

Example

For the example problem, given the input file for SUPER generated by DISC, the

main output file is

1-D Diffusion: Weighted (1,5,1) Method

Initial coefficient of DTau/DT is :

(1 * DELTA_T)

APPENDIX A. FDE DEVELOPMENT PROGRAMS 196

Equivalent Partial Differential Equation :

(1) % DTau / DT

(1/2 * THETA * DELTA_T) * D2Tau / DT2

(- 1 % ALPHA) * D2Tau / DX2

(1/6 * DELTA_T#**2) * D3Tau / DT3

(1/24 * THETA * DELTA_T**3) * D4Tau / DT4

(- 1/12 * ALPHA * PHI * DELTA_X**2) * D4Tau / DX4
(1/120 * DELTA_T**4) * D5Tau / DT5

(1/720 * THETA * DELTA_T#x5) * D6Tau / DT6

(1/90 * ALPHA * DELTA_X#**4
- 1/72 # ALPHA * PHI * DELTA_X**4) * D6Tau / DX6

"Modified" Partial Differential Equation :

(1) * DTau / DT
(- 1 % ALPHA) * D2Tau / DX2

(- 1/12 * ALPHA * PHI * DELTA_X#*%*2
+ 1/2 % ALPHA*%2 * THETA * DELTA_T) * D4Tau / DX4

APPENDIX A. FDE DEVELOPMENT PROGRAMS 197

(1/90 * ALPHA * DELTA_Xx**4
- 1/72 * ALPHA * PHI * DELTA X+*4 _
+ 1/12 * ALPHA**2 * THETA * PHI * DELTA_X%*2 * DELTA_T
- 1/2 * ALPHA**3 * THETA**2 * DELTA_T**2
+ 1/6 % ALPHA*%3 * DELTA_T**2) * D6Tau / DX6

It is evident from this that the finite-difference equation is consistent with the one-
dimensional diffusion equation, with a truncation error

a(Az)? &
——15 (¢ —6sb)7

a(?’AGS) (4 — 5p(1 — 6s6) + 60s*(1 — 339)) of s+ O{(Az)A.3.1)

E(r,s,Az)

Thus the weighted (1,5,1) method is in general second-order accurate, although in
Section A.4 below, values will be chosen for the weights that make the method more

accurate.

The MACSYMA file produced for this method 1s

$ set noverify

$ macsyma

F2: (- 1) = 0%

F4: (- 1/12 * PHI
+ 1/2 * 3 % THETA) = 0%

F6: (1/90
- 1/72 * PHI
+ 1/12 * S * THETA * PHI
- 1/2 * S*%2 * THETA**2

+ 1/6 * S*%*2) =

APPENDIX A. FDE DEVELOPMENT PROGRAMS 198

algsys([£2,f4,£6], [THETA,PHI]);

quit O ;

$ if "’’notify’" .eqs. "" then notify = "$sys_ute:nqtify"
$ notify "<MACSYMA finished>"

$ exit

In this case it is clear that the F2 equation must be removed (as explained above)
for the system of equations to be consistent. It should be noted however that if the
method incorporates numerical diffusion, then only one term needs to be removed

from the F2 equation, rather than the whole equation as was the case here.

A.4 Evaluating the Optimal Equation

Program Name: SUBST
Author: Ken Hayman

Date: July 1986

The purpose that program SUBST serves is two-fold. Firstly, it can be used to create
an input file for SUPER from a file which is much easier to enter correctly than the
SUPER input file itself. Secondly, and its main use, however, is to substitute specific
values of weights into a weighted difference equation and simplify the result to produce
the new equation. These values of the weights may be generated from MACSYMA,
as described above, or by some other convenient method, such as another package, or

by hand.

The main input file to SUBST is the file that specifies the finite-difference equation
to be used. This is exactly the output file produced by the program DISC described
in Section A.2 above, so if DISC was used to generate the initial finite-difference
equation, then the output file produced by it can be used directly. Otherwise, the file
must be created using a text editor. This file is very similar to the input file described

above for DSET. Its format consists of a one-line title for the method, followed by

APPENDIX A. FDE DEVELOPMENT PROGRAMS 199

the finite-difference equation itself, which is specified by a coefficient in parentheses
multiplied by the value of 7 at a given grid point, repeated for each grid point that

the equation includes. For example, one term from an equation may look like

(1
-2 * 8) * TAU(N,J)

for the one-dimensional case, or

(1
-2 % Sx

-2 * Sy) * TAU(N,J,K)

for the two-dimensional case, which specifies (1 — 2s)7}* in the first case or (1 — 25, —
2sy)7[, in the second. Note that each grid point in the computational stencil of the
equation must appear exactly once in the input file, and while the coefficient may
extend over multiple lines, it must be enclosed in parentheses, no matter how simple
it is (eg. 7} must be specified as (1) * TAU(N, J)). Each new grid point has an implicit
“1” sign in front of its coeflicient, so the signs of the terms inside the coefficient should
be written accordingly. Also, after the last grid point of the equation, an “= 0" is
required. This requirement is both to accommodate the output from DISC, and also
to serve as a reminder that the equation must be in LHS = 0 form when entered into

this program.

The other input file into this program is a file that specifies the values of weights to be
substituted into the equation. If no weights are to be substituted (ie. this run is only
to generate an input file for SUPER) then RETURN should be pressed when this file
name 1s prompted for. If, however, it is desired to substitute some weight values, this

file is required. The format of the file is
<weight-name> = <expression>

where <weight-name> is one of the weights in the equation, and <expression> is the

expression to be substituted in its place. This expression can extend onto multiple

APPENDIX A. FDE DEVELOPMENT PROGRAMS 200

lines, and need not be in parentheses. Each new weight name should start on a new

line, however.

One restriction on the expressions that may be entered into the program SUBST,
either as a coefficient of the difference equation or the value of a weight, is that any
exponentiation must be to an integer power (ie. no weights or expressions are allowed
as powers). This is due to the internal representation used, and should not be a
problem in any forseeable application of this program to developing finite-difference
equations, and has been mentioned for completeness only. Also, division by expressions
containing addition and/or subtraction is not allowed directly, but can be achieved
by dividing by the pre-defined name DENOM, which can then be defined to be the
expression to be divided by. This is also not a restriction in practice, as the sets
of weights from a weighted scheme have been found to either all share a common
denominator, or can be made so very easily, so one DENOM suffices. In the unlikely
event that this is not the case, several runs of SUBST, using different weight files with
different values of DENOM could be used.

SUBST works by building up a tree form of each weight to be substituted, then building
a tree for each coefficient in turn, substituting the weights into this by referencing the
appropriate weight sub-tree at the correct place in the expression tree, and simplifying

the resulting expression. This new expression is then written to the output file.

The output files from this program are exactly the same as those from DISC, namely
a formatted version of the new finite-difference equation, and an optional input file for
the program SUPER, (which may be suppressed by pressing RETURN when prompted
for its name). Note that the file type for the finite-difference equation file produced
by SUBST is different from that produced by DISC (.OFD rather than .FDE) to
distinguish the two files. This allows the original weighted finite-difference equation
to be used with a different weight file at a later time, if desired. The input file for
SUPER allows the user to run the resulting finite-difference equation back through
SUPER to verify that the given weighting has removed or modified the leading error
terms as expected, and also to look at the simplified form of the modified equivalent

equation for the new method.

APPENDIX A. FDE DEVELOPMENT PROGRAMS 201

Example

From Equation A.3.1 above, either by hand calculation or using a package like MAC-
SYMA,' it can be found that the leading error terms in the modified equivalent equation
for the weighted (1,5,1) method are removed by the choice of weights

24307 446057

0
s ¥ 5

(A.4.1)

To verify that this choice does in fact remove the leading errors, and to find the
corresponding FDE, the following weight file is input to SUBST, along with the FDE
file produced earlier by DISC:

Theta = (2 + 30xs72) / (1b%*s)

Phi = (4+460%s°2) / 5

The optimal FDE, as produced by SUBST is

FDE for : 1-D Diffusion: Weighted (1,5,1) Method - Optimal Version

(4 % S*x-1

e

60 * S

+

30) * TAU(n+1,3)

(1 * S

60 * S**3) * TAU(n,j-2)

(-64 %5
+ 240 * Sx*3) * TAU(n,j-1)

(- 8 % S¥x-1

+ 6 % S

360 * S**3) * TAU(n,j)

APPENDIX A. FDE DEVELOPMENT PROGRAMS 202

(-64 %8
+ 240 * S*x3) * TAU(n,j+1)

(1 x5
- 60 * S*%3) * TAU(m,j+2)

(- 30
+ 4 % Skk-1
+ 60 * S) * TAU(n-1,j)

which corresponds to the FDE

—2{30s% + 15s + 2}r7t = {1 —-60s*}(7]y + T]s)
— 16s%{4 — 155} (7], + 7741)
— 72{180s* — 3s* + 4}77
+ 2{30s* — 15s + 2}777", (A4.2)

Note that (A.4.2) has been multiplied through by s from the output from SUBST, so
as to simplify the form of the resulting FDE.

If this FDE is examined (by using SUPER with the corresponding input file, also
generated by SUBST), it is found that this new equation is still consistent with the
one-dimensional diffusion equation, and the leading error term is of O{(Az)®} for
arbitrary values of s, the error terms shown in Equation A.3.1 having been eliminated
by the choice of weights. This means that this finite-difference equation is sixth-order

accurate.

Since there is only one choice of weights that eliminates both the second and fourth-
order error terms, the above FDE is in fact the highest order method possible for

the (1,5,1) stencil. Other methods, of lower order, can be generated by other choices

APPENDIX A. FDE DEVELOPMENT PROGRAMS 203

of the weights, and still other methods are possible using other differencings of the
derivative terms of the diffusion equation. It should be noted, however, that the use
of off-centred derivatives leads to the inclusion of more low-order error terms, which
must all be removed to generate a high-order method, which in turn requires the use
of more weights. Such problems were not apparent in the example case, as centred

approximations were used for all derivatives.

A.5 Numerical Stability and Solvability

Program Name: VNS, SOLVABLE
Author: Peter Steinle

Date: 1983

Finding a finite-difference equation which is of high-order accuracy in theory does not
mean that the equation will give highly accurate numerical solutions. For the solution
to be accurate, the equation must not allow ﬁhe uncontrolled accumulation of round-off
errors, in which case the method is termed stable. For implicit methods that require
the solution of a set of linear algebraic equations at each time step, the solution of
this set of equations must be stable, in which case the method is solvable. Overall, a
finite-difference method is only of practical use in the smallest region where it 1s von

Neumann stable and solvable, if the latter is applicable to the method.

The von Neumann stability of a method can be determined analytically in some cases,
most notably when the computational stencil is centred about the (j,n) grid point.
This approach, however, is extremely complicated for all but the most basic finite-
difference equations, so a numerical equivalent has been developed. This is based on
the von Neumann stability test, discussed more fully in Noye (1985), which requires
that

|G(s,B)] <1 for all g € [0, 27] (A.5.1)

where (is the amplification factor associated with the method. The program for this

test, which is called VNS, works by evaluating G for many values of 4 in the range

APPENDIX A. FDE DEVELOPMENT PROGRAMS 204

[0,27] for a given value of s, and checking whether |G| < 1 or not. If |G| > 1 for
any value of £, then the method is unstable for that value of s, otherwise it is stable.
The results are output as a graph suitable for printing on a line printer. Note that
while there are versions of this program for both the one and two-dimensional cases,
the other programs described later in this section are at present only available for the

one-dimensional case.

The solvability of a method is determined solely by the coefficients at the (n+1)th time
level. The criterion used is that the coefficient matrix for the system of linear equations
must be diagonally dominant, which means that the magnitude of the coefficient on the
leading diagonal of the matrix must not be exceeded by the sum of the magnitudes of
the other coefficients on that row of the matrix. This may be written mathematically
as i}

laiil = > laijl i =1(1)n, (A.5.2)

7 ,

where the A = [a;;] is the n X n coefficient matrix for the system of equations to
be solved. This condition is checked by the program SOLVABLE. Note that this
definition of diagonal dominance is adequate in this context due to the form of the

implicit finite-difference equations being used.

The input for the programs for the one-dimensional case is in a different format to the
previous programs, and is achieved by editing the Fortran source program COEFF.FOR
and entering data about the method. A listing of this program is given below in
Section A.5.1. The variable Nlevels must be set to indicate the number of time levels
involved in the computational stencil, and should be either two or three in most cases.
A three line title can be entered into the variable Title, and this appears at the
top of the result file. The last data needed are the cocfficients of the finite-difference
equation itself. As for the previous programs, the finite-difference equation must be in
the form of LHS = 0. The variable Coeff(a,b) contains the coefficient of T}fab, while
the variables Stencil(b,1) and Stencil(b,2) hold the number of grid points to the
left and right respectively of the (j,n+b) grid point. This array Stencil is used to

speed up the resulting program by eliminating redundant operations. Note that when

entering values for Coeff, the variable to go along the horizontal axis of the output

APPENDIX A. FDE DEVELOPMENT PROGRAMS 205

must be referred to as C and the one on the vertical axis S, regardless of the label

these axes have in the output.

The input for the two-dimensional von Neumann stability program is very similar to
the above. The title and the variable Nlevels are exactly the same, but now the
stencil is split up into “planes” running in the direction. For each of these “planes”

at each time level, the value Stencil(a,b,1) and Stencil(a,b,2) hold the number

of grid points in the computational stencil to the left and right respectively of ijfﬁa.
The values Coeff(a,b,c) hold the coefficients of 7477, ,,. Although there are four

parameters available, namely Cz = ¢z, Cy = ¢, Sz = s, and Sy = s, Cz = Cy
and Sz = Sy in order that the result can be output in a useful graphical format. As
was the case for the one-dimensional program, the variable Cz = C'y is output on the

horizontal axis, while the variable Sz = Sy is output on the vertical axis.

Having set up the correct coeflicients in the appropriate program, this program must
then be compiled and linked with both the double precision IMSL library (the single
precision IMSL library is used for the two-dimensional program, to reduce the running
time to an acceptable value) and either the program VNS to examine the von Neu-
mann stability of the method, SOLVABLE to examine the solvability of an implicit
method. As an example of how to do this, the command to link a coefficient file called

MY_COEFF for a von Neumann stability plot is
$ LINK MY_COEFF,VNS,SYS_PACK:IMSLIBD/L

after the file VNS has been copied to the current default directory and compiled. The
single precision IMSL library is called IMSLIBS rather than IMSLIBD in the above.
When the program is run, several questions must be answered. The first is the name
for the output file, followed by the labels to put on the horizontal and vertical axes.
Following this is the range of values for each of the variables, followed by the number of
(equally spaced) values for each of these to use. If there is no second variable (eg in the
case of the advection or diffusion equation with no weight involved), then specifying

a value of zero points for the vertical variable will produce the correct output.

APPENDIX A. FDE DEVELOPMENT PROGRAMS 206

Example

To find the region in which the sixth-order finite-difference equation (A.4.2) is von
Neumann stable, the coefficients of this equation should be edited into a coby of
COEFF.FOR, along with the other information required (title, number of levels, etc.).
This is then linked with the VNS program, and the resulting output is as follows, using

an interval of [0,1] with 50 subintervals.

(1,5,1) Explicit Method 0{6}

1-D Diffusion Equation

W
I
I
0.0000 +5SSSSSSSSSSSSSSS8S88S858S8SS . i ittt
—mmmm—m et 4o e dommm +---> 8

0.0000 0.2000 0.4000 0.6000 0.8000 1.0000

This indicates that the method is von Neumann stable in the region

s<1/2, (A.5.3)

In order to get a more accurate stability region, the interval of interest can be narrowed
down to the area around s = 1/2. The output for the interval [0.45,0.55] with 50

subintervals is

APPENDIX A. FDE DEVELOPMENT PROGRAMS 207

(1,5,1) Explicit Method 0{6}

1-D Diffusion Equation

W
|

I
0.0000 +SSSSSSSSSSSSSSSSSSSSS5SS5SSSSS88S58 .0 iin i i

—tmm——————— tommm————— === o —————— o ——— +---> 8

0.4500 0.4700 0.4900 0.5100 0.5300 0.5500

which shows that the actual upper limit for stability is between 0.516 and 0.518.
Further investigation using successively smaller intervals gives a more accurate von

Neumann stability range for the method as
s < 0.51638. (A.5.4)

Since this particular method is explicit, there is no need to check the solvability of the

method. Thus the region defined by (A.5.4) gives the usable region for the method.

A.5.1 Listing of Module COEFF.FOR

This section contains a listing of the code module COEFF.FOR, which is the file
that must be edited to input the finite-difference equation into the stability checking
programs. Note that in VAX Fortran, an exclamation mark (!) means the rest of that

line is a comment.

APPENDIX A. FDE DEVELOPMENT PROGRAMS 208

Subroutine Get_Coeffs (C, s)

sk sk ko ok sk sk sk ok ok ok ok sk sk sk sk sk ok ok ek sk sk 3k sk ke ok ok sk ke ok sk sk sk ok ok sk ok ok ok ok sk ok ok ok ok ok ek ok ok ok ok ok st stk sk ok ok e sk sk sk ok ke k

* This is the only module that needs to be changed by a user. It *
* contains the details of the FDE. Note that the FDE should be *
* entered in LHS = 0 form. *
* *

* The first variable will be the one appearing on the horizontal axis *

* if this is used with stability programs *
* *
* Written by Peter Steinle *
* Modified by Ken Hayman, July 1987 *

* Changed to LHS = 0 format, for compatability with the rest of the *
* FDE development system. Removed useless third dimension from *
* Coeff array. *
sk ke sk ok ok s ok sk ok sk sk sk ok o ok ok sk o ok sk ok sk ok ok sk sk sk sk sk ok ok sk ok ok ok sk ok sk sk ok ok sk sk ok ok ok ok skok sk sk ok sk ok sk ok ok ok ok ko ok

Implicit Nomne

Integer Nlevels, Stencil(-2:1, 2)

Double Precision C, s, Coeff(-3:3, -2:1)

Character*(70) Title(3)

Common /FDE/ Coeff, Stencil, Title, Nlevels

* Set up the number of levels that the method involves here
Nlevels = 3 ! No. of levels involved
* And the three line title to be printed above the stability

* plot is entered here.

Tltle(i) = ’== FEnter name heres==s=====================
Title(2) = ’ Name of eqn °’
Title(3) = ’ and anything else here '’

*

STENCIL(m,1) holds the number of points to the left and

*

STENCIL(m,2) holds the number of points to the right of the

APPENDIX A. FDE DEVELOPMENT PROGRAMS

*

*

*

(j,m)th grid point

Stencil(1,1) = 0

Coeff(-2,1)
Coeff(-1,1)
Coeff(0,1)
Coeff(1,1)
Coeff(2,1)
Stencil(i,2)

Stencil(0,1)
Coeff(-2,0)
Coeff(-1,0)
Coeff(0,0)
Coeff(1,0)
Coeff(2,0)

040
040
1 + 2%s
0d0
040

040
C + 2%s
040
-C + 2%s

040

Stencil(0,2) = 1

Stencil(-1,1) =0

Coeff(-2,-1)
Coeff(-1,-1)
Coeff(0,-1)
Coeff(1,-1)
Coeff(2,-1)

0do
040
1 - 2x%s
040
040

Stencil(-1,2) = 0

Return

End

! Tau(j-2,n
! Tau(j-1,n
! Tau(j ,n
! Tau(j+1,n

! Tau(j+2,n

COEFF (x,y,1) holds the coefficient of Tau(j+x,n+y)

! Tau(j-2,n+1)
I Tau(j-1,n+1)
I Tau(j ,n+1)
! Tau(j+1,n+1)
! Tau(j+2,n+1)

N N N N

! Tau(j-2,n-1)
! Tau(j-1,n-1)
! Tau(j ,n-1)
! Tau(j+1,n-1)
! Tau(j+2,n-1)

209

Appendix B

Key Files for Program DISC

B.1 Introduction

This appendix lists the available differencings and their corresponding key numbers for
use with the program DISC. If differencings are required that are not listed here, then
a new file must be created that contains both the required “standard” differencings,
from those listed here, as well as the extra ones that are required. This new file can
then be used with DISC to difference the partial differential equation in the desired
manner. This process is described in more detail in the section on program DISC

above.

210

APPENDIX B. KEY FILES FOR PROGRAM DISC 211

B.2 Keys for 1-Dimensional Program

Time derivatives:

or)]
6 0 8 0 o Bt J=-2(1)2 KEY =14 +2)
o 0 0 0 O
0o 0 0 0 ©
or . .
0O O @ 0 © E J= _2(1)2 KEY =6+ (.7 + 2)
0O 0 ® 0 O
o 0o @ 0 ©
or .)
0o 0 0 0 © h@—t J=-2(1)2 KEY =11+4(j+2)

APPENDIX B. KEY FILES FOR PROGRAM DISC 212

Space derivatives:

or
5 06 % & . n=—1(1)1 KEY =16+ (n+1)
0 0 0 0 O
o o 0o 0o o
or
c e & o B 3 n=-1(1)1 KEY =194 (n+1)
0 0 0 0 O
0o o 0 0 O
or
e 0 o 0 o 5 n=—-1(1)1 KEY =224 (n+1)
0o 0o 0 0 O
© 0 0 0 O
or
3 & &5 B . n=-1(1)1 KEY =25+ (n+1)

APPENDIX B.

KEY FILES FOR PROGRAM DISC 213

or
0O 0 e e @ 9z n=-1(1)1 KEY =28+ (n+1)
©o 0o 0 0 O
o 0 o 0 o
or
e ¢ ¢ 0 O 9z n=-1(1)1 KEY =314+ (n+1)
©o 0 0 0 O
©o 0 0 0 O
or
e o o 0 O 9z n=-1(1)1 KEY =34+ (n+1)
0o 0 o 0 O
0o 0 0 0 O
or
e e 0 o o 9 n=-1(1)1 KEY =37+ (n+1)

APPENDIX B. KEY FILES FOR PROGRAM DISC 214

o*r
O e e o O @ n = —1(1)1 KEY =40+ (n + 1)
©o 0 0 0 o
0o 0 0o 0 o
8*r
e o o o o 922 n=-1(1)1 KEY =43+ (n+1)
0 0 0 0 O
0 0 0 0 ©
T
¢ e 0 o o F) n=-1(1)1 KEY =46+ (n+1)
0o 0 0 0 ©
o 0 0 0 ©
&r
e o o o O % n = —1(1)1 KEY =49+(n+1)

APPENDIX B. KEY FILES FOR PROGRAM DISC 215

0O 00 O ©

- p=-1(1)1 KEY =52+ (n+1)

APPENDIX B. KEY FILES FOR PROGRAM DISC 216

B.3 Keys for 2-Dimensional Program

Time derivatives:

O 0O e O O

= j =—2(1)2
o o e 0 O Bt KEY =1+5(+2)+(k+2)
k=—-2(1)2
0 0 0 0 ©
0 0o 0 o o)
o j=-2(1)2
5o 6% s e » KEY =26+5(5 +2)+ (k+2)
k= —2(1)2
0 O e 0 O ’
0o 0O e 0 ©)
ar i =-2(1)2
6 06 0 o o s » KEY =51+5(+2)+ (k+2)
k= —2(1)2

APPENDIX B. KEY FILES FOR PROGRAM DISC 217

Space derivatives:

k= —2(1)2
s=zx: » KEY =76+3(k+2)+(n+1)
o 0 0 0 o0 n=—-1(1)1
or
0O 0 e e © Bs
0o 0o 0 0 © j=-2(1)2
s=vy: KEY =9143(j+2)+(n+1)
n=-1(1)1
k=-2(1)2
s=gx: » KEY =106+ 3(k+2)+ (n+1)
0o 0 0 0 O n=—1(1)1
or
O e @ 0 O Os
5
0o 0o 0o 0 0O J=-2(1)2
S=y: KEY =1214+3(j +2)+ (n+1)
n=—1(1)1 |
k=—-2(1)2
s=zx: » KEY =136+3(k+2)+(n+1)
© 0 0 0 O n=-1(1)1
or
e 0 & 0 O Os
0o 0o 0o 0 0O 7 =-2(1)2
s=y: » KEY =1514+3(j+2)+(n+1)
n=—1(1)1

APPENDIX B. KEY FILES FOR PROGRAM DISC 218

k=-2(1)2
s=czx: » KEY =166+3(k+2)+(n+1)
0 0 0 0 © n=-1(1)1
or
O e 0 e O s
0 0o 0 0 O 7 =-2(1)2
s=y: t KEY =181+3(j+2)+(n+1)
n=-1(1)1
k=-2(1)2
EEEE » KEY =196+4+3(k+2)+(n+1)
o 0o 0 0 o0 n=-1(1)1
or
0 0 e e @ Bs
© 0 0o 0 0O J=-2(1)2
s=y: » KEY =21143(7+2)+(n+1)
n=-—1(1)1
k=—2(1)2
s=x » KEY =2264+3(k+2)+(n+1)
o 0o 0o 0o o n=-1(1)1
or
e o & 0 O Os
©o 0 0 0 O j:_2(1)2L
s=y: KEY =241+3(+2)+(n+1)
n=—-1(1)1

APPENDIX B. KEY FILES FOR PROGRAM DISC 219

k=-2(1)2
s=z: ¥ KEY =256+3(k+2)+(n+1)
© 0 0 0 © n=-1(1)1
or
e o o o O Bs
)
o 0 0o 0O J=-2(1)2
s=y: » KEY =2714+3(+2)4+(n+1)
n=-1(1)1
k=-2(1)2
s=a: » KEY =286+3(k+2)+(n+1)
0o 0 o 0 0 n=—-1(1)1
or
e o 0 o o Bs
© 0 0 o o J=-2(1)2
s=y: » KEY =3014+3(j+2)+(n+4+1)
n=—-1(1)1
1
k=—2(1)2
s=ua: » KEY =3164+3(k+2)+(n+1)
0o 0o o o0 o n=-1(1)1
T
O e o e O Bs?
0 0 0 0o o J=-=2(1)2
s=vy: » KEY =331+3(j+2)+(n+1)

n=-1(1)1

APPENDIX B. KEY FILES FOR PROGRAM DISC 220

k=-2(1)2
s=ux: » KEY =346+ 3(k+2)+(n+1)
o o o n=-1(1)1
ot
¢ o o Hs2
N
o 0 o Jj=-2(1)2.
s=y: » KEY =3614+3(j +2)+(n+1)
n=—1(1)1
k= —2(1)2
Ss=zx: ¢ KEY =376+3(k+2)+(n+1)
o o o n=-1(1)1
Pr
o e o Bs3
0o 0 o j=-2(1)2
s=y: KEY =391+4+3(+2)+(n+1)
n=—1(1)1
1
k=—2(1)2
s=z: » KEY =406+3(k+2)+(n+1)
0 o0 o n=—1(1)1
P
e o O Bs3
o 0 o J=-2(1)2
s=y: KEY =42143(j +2)+ (n +1)
n=—1(1)1

APPENDIX B. KEY FILES FOR PROGRAM DISC 221

k= —2(1)2
S=zx: » KEY =436+3(k+2)+(n+1)
0O 0 0 0 O n=—1(1)1
otr
e o o o o @
o 0o 0 0 O 7 =-2(1)2
s=y: » KEY =4514+3(j+2)+(n+1)

n=—1(1)1

Appendix C

Listing of Program SUPER

C.1 Introduction

This Appendix gives the listing of the program SUPER, described in Appendix A
above, for the one-dimensional case. This is the main program of the finite-difference
equation development package; which takes a finite-difference equation and determines
its modified equivalent equation. The program for the two-dimensional case is very
similar to the one given here, but has an extra subscript on some arrays and extra

loops in the main processing routine to handle the extra spatial dimension.

The program is written in largely standard Pascal, although the following non-standard
features are used, and may have to be changed to implement the program on another

system:

e Use of the VARYING [n] OF CHAR type for \}arying length strings. The function
LENGTH(str) returns the current length of “str”. Such strings may also be read
in directly from a file of type TEXT in VMS Pascal.

¢ The underscore character (_) is used in identifier names, to enhance readability.

e Use of the OPEN procedure to open a named file. The options in this call allow

such things as providing default values for unspecified portions of the file name,

220

APPENDIX C. LISTING OF PROGRAM SUPER 223

whether the file should already exist or is to be created and what sharing options,

if any, are to be allowed.

e Use of error recovery procedures from I/QO calls, to prevent program termination
if an error arises, such as a named file not existing. The function STATUS(file)

returns a non-zero code if an error in fact occurred during the last I/O operation

on “file”.

e Use of the exponentiation operator “xx”. Note that for systems which do not

support this, “A * *B” can be written as “exp(B * log(A4))”.

Many compilers have some or all of these features allowed, despite their being non-
standard. On systems where one or more of them are missing, they are not hard to
implement, or in some cases, such as the error trapping,they can be omitted altogether,

since they are not essential to the operation of the program.

C.2 The Program SUPER

Program Modified_Equation(input,output,infile,outfile,macfile);

{ Author : K.J. Hayman
Date : 8 March 1984
System : VAX/VMS V3.4

Language : Pascal V2.3 }

{ As of December 1987:
System : VAX/VMS V4.5

Language : Pascal V3.5 }

{ Modified :
23 August 1984 - produce output file suitable for
running through MACSYMA

APPENDIX C. LISTING OF PROGRAM SUPER 224

September 1984 - allow coefficient of DTau/DT to be

17 April 1986

16 August 1986

25 August 1986

November 1986

16

multi-nomial

incorporate simplification of modified
equation where coeff of DTau/DT is multi-nomial.
Also use DISPOSE to control use of VM to

some extent.

incorporate into FDE development system, give

the various files default types

fix bug with non-Var parameter to Write_Entry

in relation to FIX_ORDER call

fix MACSYMA output file, remove denominator

terms from it

April 1987 - Allow simplification of C2 term for multinomial
denominators
27 May 1987 - Make MACSYMA file a valid .COM file }

{This program is designed to find the Modified PDE for a given FDE,

which gives the coefficients C2,C3,C4,... . The program will allow

coefficients up to C12 to be calculated (except that intermediate

results may generate integer overflows if this is attempted).}

Const max_wts = 15; {maximum number of weights allowed}
top_deriv = 12; {maximum order of derivative}
src = 0;
dst = 1;
min_mac_term = 2; { min deriv term to output to MACSYMA file }

Type

wt_type

1

array [1..max_wts] of integer;

nm_type = varying [30] of char;

{ for the names of the weights }

APPENDIX C. LISTING OF PROGRAM SUPER 225
entry_ptr = “entry_type; { the main data type }
entry_type = record
num,den : integer;
{numerator+denominator of coeff}
u,alpha : integer; {power of U and ALPHA}
dx,dt integer; {power of DX and DT}
wt : wt_type; {power of weights}
fden integer;
{power of multi-nomial denominator}
next entry_ptr;{next term}
End;
{ TABLE represents main equation }
Var table : array [0..top_deriv,0..top_deriv,0..1] of entry_ptr;
exists : array [0..top_deriv] of boolean;
existi : boolean; { >= 1 exists flag is true }
den_ptr entry_ptr;
max_deriv integer; {max deriv used in current problem}
cnt,
wts : integer; {number of weights being used}
infile . text; {input file}
outfile : text; {output file}
macfile ¢ text; {MACSYMA file}
iname : varying [80] of char; {VAX/VMS input file name}
oname : varying [80] of char; {VAX/VMS output file name}
mname : vérying [80] of char; {VAX/VMS MACSYMA file name}
title : varying [80] of char; {title for output file}
inter : boolean; {input is direct from terminal}
wt_name array [1..max_wts] of nm_type;{names for the weights}
too_hard : boolean; {something wrong with the data}
simple : boolean; {can do the division}
ch : char;

APPENDIX C. LISTING OF PROGRAM SUPER 226

Procedure Kill_Chain(Var ptr : entry_ptr);

{ Free up the storage used by a linked list which is no

longer required. }
Var ptrl : entry_ptr;

Begin
while (ptr <> nil) do
Begin
ptrl := ptr~.next;
dispose(ptr);
ptr := ptri;
End;
End; { Kill_Chain }

Procedure Initialise(which : integer);
{Clear out the half of TABLE pointed to by WHICH}

Var i,j : integer;

Begin
for i:=0 to max_deriv do
for j:=0 to max_deriv do
kill_chain(table[i,j,which]); { release any used s?ace }

End; {Initialise}

Function Getgcd(nl,n2 : integer) : integer;

{Finds the GCD of N1 and N2. Note that both are assumed to be positive}

Var r : integer;

APPENDIX C. LISTING OF PROGRAM SUPER 227

Begin

while n2<>0 do

Begin
r := nil mod n2;
nl := n2;
n2 := r;
End;
getged := ni;

End; {Getgcd}

Procedure Cancel(Var ni,n2 : integer);

{Cancel the fraction n1/n2 into its lowest terms}
Var gcd : integer;
Begin

ged := getgcd(abs(nl),abs(n2));
if gcd<>0 then

Begin
ni := nl div gcd;
n2 := n2 div gcd;
End;
End;

Procedure Add(numi,num2,deni,den2 : integer;
Var resnum,resden : integer);
{ Procedure to add two fractions (numi/denl and num2/den2) together.

Note DIV is done before * to avoid overflow problems. }

Var gecd,tl1,t12 : integer;

APPENDIX C. LISTING OF PROGRAM SUPER 228

Begin
ged = getgcd(deni,den2);
resden := denl*(den2 div gcd);
t11

numl*(resden div denil);
t12 := num2*(resden div den2);
resnum := t11+t12;

cancel (resnum,resden) ;

End; {Add}

Procedure Enter(tab,x_deriv,t_deriv : integer; ent_ptr : entry_ptr;
wts : integer);
{Place an entry into the main equation table, adding into another

term if possible}

Var ptr,oldptr : entry_ptr;
found : boolean;

i : integer;

Begin
ptr := table[x_deriv,t_deriv,tab]; { start with existing entry }
oldptr := nil;
found := false;
while (ptr<>nil) and (not found) do { look for matching entry }
with ptr~ do
Begin
found := (ent_ptr~.dx=dx) and (ent_ptr~.dt=dt)
and (ent_ptr~.u=u) and (ent_ptr~.alpha=alpha)
and (ent_ptr~.fden=fden);
for i:= 1 to wts do

found := found and (ent_ptr~.wt[i]=wt[i]);

APPENDIX C. LISTING OF PROGRAM SUPER 229

if found then {add this into the existing entry}
Begin
add(ent_ptr‘.num,num,ent_ptr”.den,den{num,den);
if num=0 then {the entries cancelled, so delete them}
Begin
if oldptr=nil then
table[x_deriv,t_deriv,tab] := ptr”.next
else

oldptr”.next := ptr”.next;

dispose(ptr);
End;
End
else
Begin {not found, so get next link in chain, if any}

oldptr := ptr;
ptr := ptr~.next;
End;

End;

if not found then {doesn’t exist, so must add an additional term}
Begin
new(ptr);
with ptr” do
Begin

cancel(ent_ptr~.num,ent_ptr~.den); {put coefficient in lowest

terms}
num := ent_ptr”.num;
den := ent_ptr~.den;
dx := ent_ptr~.dx;
dt := ent_ptr~.dt;
u := ent_ptr~.u;

alpha := ent_ptr~.alpha;

APPENDIX C. LISTING OF PROGRAM SUPER 230

for i := 1 to wts do

wt[i] := ent_ptr~.wtl[i];
fden := ent_ptr~.fden;
next := nil;
End;

if oldptr <> nil then
oldptr”.next := ptr
else {if entry did not already have one term}
table[x_deriv,t_deriv,tabl := ptr;
End;
End; {Enter}

Function Compare(Ptri, Ptr2 : Entry_Ptr;

Extra_U, Extra_A, Extra_D, Mult : Integer) : Boolean;

{ Compare the terms Ptrl and Ptr2 for equality (with Ptr2 multiplied
by Mult, Us*x(Extra_U) and ALPHA**(Extra_A). The two are equal if they
have the same number of components, and each component of one can be
found in the other. Note that this relies on both of them being in

simplified form }
Var SPtr : Entry_Ptr;
Found : Boolean;
I : Integer;
Function Count_Terms(Ptr : Entry_Ptr) : Integer;

{ Count the number of components in the term Ptr }

Var Tally : Integer;

APPENDIX C. LISTING OF PROGRAM SUPER 231

Begin
Tally := 0;
While (Ptr <> Nil) Do { for each term in the entry }
Begin
Tally := Tally + 1;
Ptr := Ptr~.Next;
End;

Count_Terms := Tally;

End; { Count_Terms }

Begin { Compare}
Found := False;
{ compare numbers of terms }
If Count_Terms(Ptrl) = Count_Terms(Ptr2) Then
Begin
Found := True;
While (Ptrl <> Nil) And (Found) Do
Begin
SPtr := Ptr2;
Found := False;
{ look for term in other chain }
While (SPtr <> Nil) And (Not Found) Do

Begin

Found := (Ptrl~.Num = Mult * SPtr".Num)

And (Ptri1~.Den SPtr~ .Den)

And (Ptri1~.Dx = SPtr~.Dx) And (Ptrl1~.Dt = SPtr"~.Dt)
And (Ptri~.U = SPtr~.U + Extra_U)
And (Ptr1~.Alpha = SPtr~.Alpha + Extra_A)
And (Ptr1l~ .FDen = SPtr~.FDen + Extra_D);
For T := 1 To Wts Do

Found := Found And (Ptr1~.Wt[I] = SPtr~.Wt[I]);

APPENDIX C. LISTING OF PROGRAM SUPER 232

SPtr := SPtr~ .Next;
End;

Ptri := Ptrl~ .Next;

End;
End;
Compare := Found; { return the result }
End; { Compare }

Procedure Enter_data;

{ Reads in the FDE from either an input file or the terminal. }

Var i : integer;
time_level,space_posn,minus : integer;
another,lst_trm : boolean;
ans : char;

ptr : entry_ptr;

Function Factorial(n : integer):integer;

{ Returns the factorial of n. Note that values of n > 12 will

cause an overflow error. }

Begin
if n<0 then { Bad input value }

writeln(outfile,’N < 0 - can’’t find N!’)

else if n<=1 then { trivial case }
factorial := 1

else { work it out recursively }
factorial := n*factorial(n-1);

End; {Factoriall}

APPENDIX C. LISTING OF PROGRAM SUPER 233

Function Binomial(n,r : integer):integer;

{ Find the binomial coefficient C(n,r). This way is ok, since this
routine hasn’t ever bombed on an overflow and it’s the clearest
way to do it, but it could be coded differently if necessary to

avoid such errors }

Begin {Binomial}
if n<r then
writeln(outfile,’N < R - can’’t find binomial coefficient?’)
else
binomial := (factorial(n) div factorial(r)) div factorial(n-r);

End; {Binomial}

Procedure Generate(space,time : integer; ptr : entry_ptr;

minus : integer);

{ Derive the Equivalent PDE from the initial data, by expanding things

as Taylor series and collecting up the terms. }

Var total_deriv,t_deriv,k : integer;

ptr2 : entry_ptr;
Procedure Put_In(deriv,t_deriv : integer; ptr,ptr2 : entry_ptr);
{ Add a term into the main equation }

Var x_deriv,i : integer;

APPENDIX C. LISTING OF PROGRAM SUPER

Begin {Put_in}

x_deriv deriv-t_deriv;

with ptr2” do

Begin

num := num*ptr”.num;

den := den*ptr~.den;

cancel (num,den) ;

dx := dx+ptr”.dx;

dt := dt+ptr~.dt;

u := utptr”.u;

alpha := alpha+ptr”.alpha;

for i := 1 to wts do

wt[i] := wt[i]l+ptr~.wtlil;

End;

Enter(src,x_deriv,t_deriv,ptr2,wts);

End; {Put_in}

Begin {Generate}

for total_deriv:=0 to max_deriv do { for each total deriv ...
for t_deriv:=0 to total_deriv do { for each time deriv
Begin
new(ptr2);

with ptr2” do
Begin

{ Here we must be careful to avoid 0**0, since the results are

somewhat nasty in Vax Pascal (or were when this was written!).

num := minus * binomial(total_deriv,t_deriv);
if (space=0) and (t_deriv<>total_deriv) then
num := 0
else if (space<>0) or (t_deriv<>total_deriv) then

num := num * space¥*(total_deriv-t_deriv);

234

APPENDIX C. LISTING OF PROGRAM SUPER

if (time=0) and (t_deriv<>0) then

num := 0

else if (time<>0) or (t_deriv<>0) then

num := num * time*xt_deriv;
den := factorial(total_deriv);
cancel (num,den) ;
dx := total_deriv-t_deriv; { set powers up properly }
dt := t_deriv;
u := 0;
alpha := 0;

for k := 1 to wts do

€
t
™~
I
[
|
(o]

End;

if ptr2”.pum<>0 then

{ have got term, now insert }

put_in(total_deriv,t_deriv,ptr,ptrQ);

dispose(ptr2);
End;
End; {Generate}

Procedure Upcase(Var string

: nm_type);

{ Convert the passed name into upper case characters }

Var i : integer;

Begin {Upcase}
for i := 1 to length(string) do

if stringl(i] in [’a’..’z’] then

string[i] := chr(ord(string[i]) - ord(’a’) + ord(’A’));

End; {Upcase}

235

APPENDIX C. LISTING OF PROGRAM SUPER 236

Begin {Enter_Data}
if inter then
write(’Enter Title for method : ’);
readln(infile,title);
repeat
if inter then
write(’Enter order of highest derivative : ?);
readln(infile,max_deriv);
until (max_deriv>0) and (max_deriv<=top_deriv);
repeat
if inter then
write(’Enter number of weights : ?);
readln(infile,wts);

until (wts>=0) and (wts<=max_wts);

for i := 1 to wts do
Begin
repeat

if inter then
write(’Enter name for weight ’,i:1,’ : ?);
readln(infile,wt_name[i]);
until length(wt_name[i])>0;
upcase(wt_name[i]);
End;
repeat { get each different term }
new(ptr);
with ptr~ do
Begin
if inter then
write(’Enter numerator of coefficient : ?);

readln(infile,num) ;

APPENDIX C. LISTING OF PROGRAM SUPER 237

if inter then
write(’Enter denominator of coefficient : ?);

readln(infile,den);

if den<O then {Make sure sign is in numerator}
Begin
num := -num;
den := -demn;
End;

if inter then

write(’Enter power of DELTA X : ’);
readln(infile,dx);
if inter then

vrite(’Enter power of DELTA T : ’);
readln(infile,dt);
if inter then

write(’Enter power of U : ’);
readln(infile,u);
if inter then

write(’Enter power of ALPHA : ’);
readln(infile,alpha);
for i:=1 to wts do

Begin

if inter then
write(’Enter power of ’,wt_name[i],’ : ?);

readln(infile,wt[i]);

End;
fden := 0;
End;
repeat { get each grid point that this term applies to }

if inter then

write(’Enter space position, relative to j : ’);

APPENDIX C. LISTING OF PROGRAM SUPER 238

readln(infile,space_posn);
if inter then
write(’Enter time level, relative to n : ’);
readln(infile,time_level);
if inter then
write(’Coefficient : ?);
readln(infile,minus) ;
generate(space_posn,time_level,ptr,minus); { add into equation }
if inter then
Begin
writeln;
write(’Another term (Y/N) : ?);
End;
readln(infile,ans);
if not (ams in [’N’,’Y’,’n’,’y’]) then
writeln(’Invalid response "’,ans,’" - assuming NO?);
1st_trm := (ans=’Y’) or (ams=’y’);
until (not lst_trm);
dispose(ptr); { release unneeded storage }
if inter then
Begin
writeln;
write(’Another coefficient (Y/N) : ?);
End;
readln(infile,ans);
if not (ans in [’N’,’Y’,’n’,’y’]) then
writeln(’Invalid response "’,ans,’" - assuming NO’);

another := (ans=’Y’) or (ans=’y’);

until (not another);

End;

{Enter_data}

APPENDIX C. LISTING OF PROGRAM SUPER 239

Procedure Normalise;

{This makes sure that the coefficient of DTau/DT is 1}

Var i,j,dgcd : integer;

ptr : entry_ptr;
Procedure Reduce(ptr : entry_ptr; simple : boolean);

{ Divide the specified term by the coefficient of DTau/Dt, so as to

make this coefficient 1 in the modified equation }
Var k : integer;

Begin {Reduce}
while ptr<>nil do
Begin
if simple then { Simple denom - can do the division direct }
Begin

with ptr™ do

Begin
num := num*table[0,1,src]".den;
den := den*table[0,1,src]”.num;

if den<0 then

Begin
num := -num;
den := -den;
End;

cancel (num,den);
dx := dx-tablel[0,1,src]".dx;

dt := dt-tablel[0,1,src]".dt;

APPENDIX C. LISTING OF PROGRAM SUPER

u := u-table[0,1,src] .u;
alpha := alpha-table[0,1,src]”.alpha;

for k:=1 to wts do

wt[k] := wtlk]-table[0,1,src] " .wt[k];

End;
End
else
with ptr” do { must use the FDEN trick }
Begin
fden := 1;
den := den*dgcd;
cancel(num,den);
End;
ptr := ptr~.next;
End;
End; {Reduce}

Begin {Normalise}
too_hard := false;

simple := true;

if tablel0,0,src]<>nil then { check for valid coefficients }

Begin

writeln(outfile);

240

writeln(outfile, ’**x Coefficient of Tau(n,j) is non-zero. ***?);

writeln(’*** Coefficient of Tau(n,j) is non-zero. ***’);

too_hard := true;
End
else
Begin
ptr := tablel0,1,src];
if ptr=nil then

Begin

APPENDIX C. LISTING OF PROGRAM SUPER 241

writeln(outfile);
writeln(outfile, ’*** Coefficient of DTau/DT is zero. ***’);

writeln(’*** Coefficient of DTau/DT is zero. **¥x’);

too_hard := true;
End
else
Begin
simple := (ptr”.next=nil); { can divide easily or ...}
if not simple then { we must work hard }
Begin

dgcd := abs(ptr”.num);
ptr := ptr~.next;
while ptr<>nil do
Begin
dgcd := getgcd(dged,abs(ptr”.num));
ptr := ptr~.next;
End;
End;
for i:=0 to max_deriv do { simplify each term in turn }
for j:=0 to max_deriv do
if (i<>0) or (j<>1) then
reduce(tableli,j,src],simple);
den_ptr := nil;
if not simple then { a few brute-force simplifications }
Begin |
new(ptr);

with ptr~ do

Begin
num := 1;
den := 1;

APPENDIX C. LISTING OF PROGRAM SUPER

Y
'_l
e}
=
)
|

H
[}
H
[Y
"

1 to wts do

=]
o
¥4
ot
"
=}
P
[

End;
den_ptr := tablel[0,1,src];
table[0,1,src] := ptr;
ptr := den_ptr;
while ptr<>nil do
with ptr~ do
Begin

den := den*dgcd;

cancel (num,den) ;
ptr := next;
End;

{ Coefficient of DTau/Dx is really U, so make it look right }

if compare(table[1,0,src],den_ptr,1,0,1,1) then

Begin
new(ptr) ;

with ptr~ do

Begin
num := 1;
den := 1;
dx := 0;
dt := 0;

242

APPENDIX C. LISTING OF PROGRAM SUPER

alpha := 0;
for i := 1 to wts do
wt[i] := 0;
fden := 0;
next := nil;
End;

table[1,0,sxc] := ptr;
End;
End
else
reduce(table[0,1,src] ,true);
End;
End;

End; {Normalise}

Procedure Multiply(ptr,sptr : entry_ptr; j,k : integer;

isden,fix : boolean);

{ Multiply two terms together }

Var rptr : entry_ptr;

1 : integer;

Begin
while ptr<>nil do
Begin
with ptr™ do
Begin
new(rptr) ;
rptr”.num := -numksptr”.num;

if fix then rptr”.num := -rptr”.num;

243

APPENDIX C. LISTING OF PROGRAM SUPER 244

rptr~.den := den*sptr”.den;
cancel(rptr” .num,rptr~.den);
rptr”.u := u+sptr’.u;

rptr~.alpha := alpha+sptr”.alpha;

rptr”.dx := dx+sptr”.dx;

rptr”.dt dt+sptr”.dt;
for 1:=1 to wts do

rptr”.wt[1] := wt[1]+sptr”.wt[1];
if (isden) then

rptr”.fden := sptr”.fden+l

else

rptr~.fden fdent+sptr”.fden;
End;
enter(dst,j,k,rptr,wts);
dispose(rptr); |
ptr := ptr~.mext;
End;

End; {Multiply}

Procedure Process_data;

{Main driving routine to find the modified equation}

Var i,j,k,cd,x_deriv,t_deriv : integer;

sptr : entry_ptr;

Procedure Add_in(source,dest : integer);

{add in the last line done into the total equation}

Var i,j : integer;

ptr : entry_ptr;

APPENDIX C. LISTING OF PROGRAM SUPER 245

Begin
for i:=0 to max_deriv do
for j:=0 to max_deriv do
Begin
ptr := tableli,j,sourcel; {start of the term to be added in}
while ptr<>nil do
Begin
enter(dest,i,j,ptr,wts);
{enter the term in the master equation}
ptr := ptr”.next; {point to the next term}
End;
End;
End; {Add_in}

Begin
for i:=2 to max_deriv do {total derivative}
for x_deriv:=0 to i-1 do {X derivative}
Begin
t_deriv := i-x_deriv; {T derivative}
sptr := table[x_deriv,t_deriv,src];

{point to term to be removed}
initialise(dst);
while sptr<>nil do
Begin
for cd := 1 to max_deriv do
Begin
for j := 0 to cd do
Begin
k := cd~-j;
if (j>=x_deriv) and (k>=t_deriv~1) then

{we have a new term}

APPENDIX C. LISTING OF PROGRAM SUPER 246

multiply(table[j-x_deriv,k-t_deriv+i,src],
sptr,j,k, false,false);
_ {entry to be multiplied}
End; {for j ...}
End; {for cd ...}

sptr := sptr”.next;

End; {while sptr ...}
add_in(dst,src); {update master equation}
End; {for x_deriv ...}

{ Coefficient of D2Tau/DX2 is really ALPHA, so make it look right }

if (not simple) and compare(table[2,0,src],den_ptr,0,1,1,~1) then
Begin
new(sptr);

with sptr” do

Begin
num := -1;
den := 1;
dx := 0;
dt := 0;
u := 0;
alpha := 1;
for 1 := 1 to wts do

wt[i] := 0;

fden := 0;
next := nil;

End;

table[2,0,src] := sptr;

End;

End; {Process_data}

APPENDIX C. LISTING OF PROGRAM SUPER 247

Procedure Fixup;

{This is called in the case where we have a DENOM term, and it makes
sure that all references to denom in a term have the same power. This

has the effect of getting some simplification done. }

Var ptr,ptri,last,
ptr2,one : entry_ptr;

deriv,x_deriv,

t_deriv,

i,j,

max_denom : integer;
first : boolean;

Begin
initialise(dst);
new(one) ;
with one” do {The value 1, as a record. This is used}
Begin {to multiply terms back into the equation.}
num = 1;
den = 1;
u =0
alpha := 0
dx = 0;
dt =0
for i =1
wt[i] := 0;

fden :

n
o

next

[}
=]
M.
—

End;

APPENDIX C. LISTING OF PROGRAM SUPER 248

for deriv:=1 to max_deriv do

for x_deriv:=0 to deriv do

Begin
t_deriv := deriv-x_deriv;
ptr := table[x_deriv,t_deriv,src];

if (ptr <> nil) then

Begin

{ First work out what the maximum denominator is ... }

max_denom :=

ptrl := ptr;

_2;

while (ptrl <> nil) do

Begin

if (ptri~.fden > max_denom) then

max_denom

:= ptri~.fden;

ptrl := ptril”.next;

End;

{Now we must multiply what we have by the denominator polynomial as

many times as necessary to get this whole term over a common power of

the denominator. Then the various Enter routines will take care of the

desired simplification.}

while (ptr <> nil) do

Begin

if (ptr~.fden = max_denom) then {enter it as it is}

multiply(one,ptr,x_deriv,t_deriv,false,true)

{ We must NOT step through terms of PTR, so it’s specified it second}

else
Begin
ptri

ptr2

table[x_deriv,t_deriv,dst];
{save current values}

ptr; {current term}

APPENDIX C. LISTING OF PROGRAM SUPER 249

first := true; {use only 1 term}
for i := 1 to (max_denom - ptr~.fden) do
Begin
table[x_deriv,t_deriv,dst] := nil;

{initialise}
while (ptr2 <> nil) do
Begin
multiply(den_ptr,ptr2,x_deriv,t_deriv,
true,true);
{multiply term * denominator}

if first then

Begin
first := false; {only use one term}
ptr2 := nil;

End

else

Begin

last := ptr2;
{get next term to multiply}

ptr2 := ptr2~.next;

dispose(last); {clean up the garbage}
End;
End;
ptr2 := table[x_deriv,t_deriv,dst];
{final result}
End;

multiply(ptrl,one,x_deriv,t_deriv,false,true);

{add in what was already there}
End;
ptr := ptr”.next; {and step on to next term}

End;

APPENDIX C. LISTING OF PROGRAM SUPER 250

End;

End;
dispose(one); {clean up now}
initialise(src);
for i := 0 to max_deriv do {copy back to right area}

for j := 0 to max_deriv do
tableli,j,src] := tableli,j,dst];
End; {Fixup}

Procedure Write_Entry(Var ptr : entry_ptr; x_deriv,t_deriv : integer);
{Writes out a single entry in the table. ALL terms are written by one

call}

Var xpwr,tpwr,
acnt,
k : integer;
save_ptr : entry_ptr;
isu,
isalpha,
justchanged,
changed,
domac,

first : boolean;

Procedure Order_Entry(var ptr : entry_ptr);
{ This makes sure that the terms invloving U are all before the terms
without a U, thus making life easier to write MACSYMA files for the

Transport Equn }

Var uptr,aptr,luptr,laptr : entry_ptr;

APPENDIX C. LISTING OF PROGRAM SUPER

Begin
uptr := nil;
aptr := nil;
luptr := nil;
laptr := nil;

wvhile (ptr <> nil) do
Begin
with ptr™ do
if (u <> 0) then
Begin
if (uptr = nil) then
uptr := ptr
else
luptr“;next := ptr;
luptr := ptr;
End
else
Begin
if (aptr = nil) then
aptr := ptr
else
laptr”.next := ptr;
laptr := ptr;
End;

ptr := ptr”.next;

End;
isu := (uptr <> nil); { There is a term involving U }
isalpha := (aptr <> nil); { There is a term not involving U }

if isu then

luptr”.next := aptr;

251

APPENDIX C. LISTING OF PROGRAM SUPER

if isalpha then
laptr”.next := nil;

if isu then

ptr := uptr
else
ptr := aptr;

End; { Order_Entry }

Begin { Write_Entry }
order_entry(ptr) ;
save_ptr := ptr;

first := true;

domac :

if isu then

changed := false
else
changed := true;
while ptr<>nil do { for each term .

with ptr~ do
Begin
if (not first) then
Begin
write(outfile,’ ’);
if domac then
write(macfile,’ ’);
if num>=0 then
Begin
write(outfile,’+ ’);
if domac then
if not justchanged then

write(macfile,’+ ?)

(x_deriv+t_deriv) >= min_mac_term;

- Ui

252

APPENDIX C. LISTING OF PROGRAM SUPER

else
write(macfile,’ ?);
End
else
Begin
write(outfile,’- ?);
if domac then
write(macfile,’- ’);
End;
End
else
Begin
writeln(outfile);
if domac then
Begin
writeln(macfile);
exists[x_deriv+t_deriv] :=
existl := true;
End;
write(outfile,’(?);
if domac then

Begin

write(macfile,’F’,(x_deriv+t_deriv):1,’:

if (isu and isalpha) then
write(macfile,’(’);
End;
if num>=0 then
Begin
wvrite(outfile,’ ?);
if domac then

write(macfile,?’ °);

253

APPENDIX C. LISTING OF PROGRAM SUPER

End
else
Begin
write(outfile,’- ?);
if domac then
write(macfile,’- ’);
End;
first := false;
End;
write(outfile,abs(num):1);
if domac then
write(macfile,abs(num):1);
if (den<>1) then
Begin
write(outfile,’/’,den:1);
if domac then
write(macfile,’/?,den:1);

End;

Xpwr :

n

tpwr := dt;
if u<>0 then
Begin

if changed then

writeln(’Consistency failure in output routine’)

else

Begin

xpwr := xpwr - (x_deriv + t_deriv - 1);

write(outfile,’ * U’);
if u<>1 then

Begin

dx; { Copy of powers of DELTA_X and DELTA_T }

254

APPENDIX C. LISTING OF PROGRAM SUPER 255

write(outfile,’**’ u:1);
if domac then
Begin
write(macfile,’ * C’);
if u<>2 then

write(macfile,?**’, (u-1):1);

Xpwr := Xpwr + u - 1;
tpwr := tpwr - u + 1;
End;
End;

End;
End;

if alpha<>0 then
Begin
if changed then
xpwr := xpwr - (x_deriv + t_deriv - 2);
write(outfile,’ * ALPHA’);
if alpha<>1 then
write(outfile, ’*x’ alpha:1);
if ((alpha>1) or not changed) and domac then
Begin
write(macfile,’ * S?);
if not changed then
acnt := alpha
else
acnt := alpha-1;
if acnt<>1 then

write(macfile,’**’ acnt:1);

Xpwr := xpwr + 2%acnt;

tpwr := tpwr - acnt;

APPENDIX C. LISTING OF PROGRAM SUPER 256

End;
End;

{ Now we check for any stray DELTA_X or DELTA_T terms that weren’t
soaked up by the C and S terms }

if (xpwr <> 0) and domac then
Begin
write(macfile,’ * DELTA_X’);
if xpwr<>1 then
write(macfile, ’**’ xpwr:1);

End;

if (tpwr <> 0) and domac then
Begin
write(macfile,’ * DELTA_T’);
if tpwr<>1 then
write(macfile, ’**’ ,tpwr:1);

End;

for k:=1 to wts do
if wt[k]<>0 then
Begin
write(outfile,’ * ’,wt_name[k]);
if domac then
write(macfile,’ * ’,wt_name[k]);
if wtl[k]<>1 then
Begin
write(outfile, ’**’ ,wt[k]:1);
if domac then

write(macfile, 3k’ ,wt[k]:1);

APPENDIX C. LISTING OF PROGRAM SUPER

End;
End;

if dx<>0 then
Begin
write(outfile,’ * DELTA_X’);
if dx<>1 then
write(outfile,’**’ dx:1);

End;

if dt<>0 then
Begin
write(outfile,’ * DELTA_T’);
if dt<>1 then
write(outfile, ?#*’ ,dt:1);

End;

{ Note that we don’t have to write out "* DENOM**-x" to the MACSYMA

257

file, as all the terms have the same power of DENOM, so we multiply

through and remove it entirely!!! }

if fden<>0 then
Begin
write(outfile,’ * DENOM’);
if fden<>-1 then
write(outfile,’**’,-fden:1);
End;

justchanged := false;

if (next <> nil) and (not changed) and domac then

if next”.u = 0 then

APPENDIX C. LISTING OF PROGRAM SUPER 258

Begin
changed := true;
justchanged := true;
writeln(macfile,’)’);
write(macfile,’ + (8/C)x(’);
End;

if (next=nil) and (x_deriv+t_deriv>0) then
Begin
write(outfile,’) * D?);
if domac then
Begin
if isu and isalpha then
write(macfile,’)) = 0%’)
elée
write(macfile,’) = 0$’);
End;
if (x_deriv+t_deriv)>1 then
write(outfile, (x_deriv+t_deriv):1);
write(outfile,’Tau / ?);
if x_deriv>0 then
Begin
write(outfile,’DX’);
if x_deriv>1 then
write(outfile,x_deriv:1);
write(outfile,’ ’);
End;
if t_deriv>0 +then
Begin
write(outfile,’DT’);

if t_deriv>1 then

APPENDIX C. LISTING OF PROGRAM SUPER 259

write(outfile,t_deriv:1);
End;
End
else if next=nil then
Begin
write(outfile,?’)’);
if domac then
write(macfile,’)’);

End;

writeln(outfile);

if domac and not justchanged then
writeln(macfile);

ptr:=next;

End;

ptr := save_ptr;

End; {write_entry}

Procedure Write_results;

{Displays the table, in "correct" order}
Var deriv,x_deriv,t_deriv : integer;

Begin {Write_results}
if not simple then
Begin
write(outfile,’DENOM = ?);
write_entry(den_ptr,0,0);
End;

APPENDIX C. LISTING OF PROGRAM SUPER 260

for deriv:=1 to max_deriv do
for x_deriv:=0 to deriv do
Begin
t_deriv := deriv-x_deriv; {write out the entry}
write_entry(table[x_deriv,t_deriv,src],x_deriv,t_deriv);
End;

End; {Write_results}

Begin { main program }

inter := false;
repeat
write(’Enter input file (keyboard) [.FND] : ’,error:=continue);

readln(iname);

if (length(iname)=0) then

Begin
iname := ’SYS$INPUT?’;
inter := true;

End;

open(infile,iname,default:=’.FND’ ,history:=readonly,
sharing:=readonly,error:=continue);
until (status(infile)=0);
reset(infile);
repeat
write(’Enter output file (screen) [.MEQ] : ’,error:=continue);
readln(oname) ;
if (length(oname)=0) then
oname := ’SYS$0UTPUT’;
open(outfile,oname,default:=’ .MEQ’ ,history:=new,error:=continue);
until (status(outfile)=0);
rewrite(outfile);

repeat

APPENDIX C. LISTING OF PROGRAM SUPER 261

write(’Enter MACSYMA file (none) [.COM] : ’,error:=continue);
readln(mname) ;
if (length(mname)=0) then

mname := ’NL:’; {Don’t write MACSYMA file}
open(macfile,mname,default:=’.COM’,history:=new,error:=continue);

until (status(macfile)=0);

rewrite(macfile);

max_deriv := top_deriv;

Initialise(src); {initialise both halves of the table}
Initialise(dst);

Enter_data; {read in the data}

writeln(outfile,title); {write title onto output file}
writeln(outfile);
writeln(outfile,’Initial coefficient of DTau/DT is :’);
write_entry(table[0,1,src],0,0);
Normalise; {make sure coeff of DTau/DT is 1}
writeln(outfile);
writeln(outfile,’Equivalent Partial Differential Equation :’);
writeln(outfile, ’====~—=———— e),
Write_Results; {write out the initial equation, for checking}
if not too_hard then
Begin
Process_data; {find the modified PDE}
writeln(outfile);

writeln(outfile,’"Modified" Partial Differential Equation :’);

wagpitte mi{eoustnle , Taad A . S e e o)
existl := false;
for cnt := min_mac_term to top_deriv do
exists[cnt] := false;
rewrite(macfile); {only want final results on MACSYMA file}

writeln(macfile,’$ set noverify’);

APPENDIX C. LISTING OF PROGRAM SUPER 262

writeln(macfile,’$ macsyma’);
if not simple then fixup;
Write_results; {write out the final‘results}
writeln(macfile);
if existl and (wts > 0) then
Begin { there are some weights to remove }
write(macfile,’algsys(’);
ch := °[’;
for cnt := min_mac_term to top_deriv do
if exists[cnt] then
Begin
write(macfile,ch:1,’f’,cnt:0);
ch := ?2,?;
End;
write(macfile,’],’);
ch := {7;
for cnt := 1 to wts do
Begin
write(macfile,ch,wt_name[cnt]);
ch = 7,7
End;
writeln(macfile,’]);’);
End;
writeln(macfile,’quit();’);
writeln(macfile,

’$ if "’??’notify’’" .egs. "" then ’,

‘notify = "$sys_ute:notify"’);
writeln(macfile,’$ notify "<MACSYMA finished>"’);
writeln(macfile,’$ exit’);

End

else if (tablel[0,0,src] <> nil) then

APPENDIX C. LISTING OF PROGRAM SUPER 263

Begin
writeln(outfile);
writeln(outfile,’Coefficient of Tau(n,j) is :’);
write_entry(table[0,0,src],0,0);
End;
End.

Bibliography

Ames, W.F. (1977), “Numerical Methods for Partial Differential Equations”, Second

Edition, Academic Press, Thomas Nelson and Sons.
Bear, J. (1972), “Dynamics of Fluids in Porous Media”, Elsevier Publishers

Caussade, B.H. and Renard, G. (1977), “Contribution to the Numerical Solution of
Nonlinear Parabolic Partial Differential Equations”, Advances in Computer Methods

for Partial Differential Equations II, editor R. Vichnevetsky, IMACS, pp. 62 — 64.

Colgan, L.H. (1981), “Iterative Methods for Solving Large Sparse Linear Systems”,
Numerical Solutions of Partial Differential Equations, editor J. Noye, North-Holland
Publishing, pp. 367 — 396.

Crandall, S.H. (1955), “An Optimum Implicit Recurrence Formula for the Heat Con-
duction Equation”, Quarterly of Applied Mathematics, Vol. 13, No. 3, pp. 318 -
320.

Crank, J. (1975), “The Mathematics of Diffusion”, Second Edition, Oxford University

Press, London.

Crank, J. and Nicolson, P. (1947), “A Practical Method for Numerical Evaluation of
Solutions of Partial Differential Equations of the Heat-Conduction Type”, Proceedings
of the Cambridge Philosophical Society, Vol. 43, No. 50, pp. 50 — 67.

Croft, D.R. and Lilley, D.G. (1977), “Heat Transfer Calculations Using Finite Differ-

ence Equations”, Applied Science Publishers, London.

264

BIBLIOGRAPHY 265

Douglas, J. Jr. (1955), “On the Numerical Integration of 0*u/dz? + 8%u/dy? = Ou /Ot
by Implicit Methods”, Journal Society of Industrial Applied Mathematics, Vol. 3, No.
1, pp. 42-65.

Duff, G.F.D., and Naylor, D. (1966), “Differential Equations of Applied Mathematics”,
John Wiley and Sons.

DuFort, E.C. and Frankel, S.P. (1953), “Stability Conditions in the Numerical Treat-
ment of Parabolic Differential Equations”, Mathematical Tables and Other Aids to
Computation, Vol. 7, pp. 135-152.

D’Yakonov, E.G. (1963), “Difference Schemes with Split Operators for Multi Dimen-
sional Unsteady Problems”, USSR Computational Mathematics, Vol. 4, No. 2, pp.
92-110.

Evans, D.J. and Hatzopoulos, M. (1976), “The Solution of Certain Banded Systems
of Linear Equations using the Folding Algorithm”, The Computer Journal, Vol. 19,
No. 2, pp. 184 - 187.

Evans, D.J. and Abdullah, A.R. (1985), “A new explicit method for the diffusion-
convection equation”, Computers and Mathematics with Applications, Vol. 11, pp.

145 — 154.

Fromm, J.E. and Harlow, F.H. (1963), “Numerical Solution of the Problem of Vortex
Sheet Development”, Physics of Fluids, Vol. 6, No. 7, pp. 975-982.

Graffi, D. (1980), “Nonlinear Partial Differential Equations in Physical Problems”

?)

Pitman Advanced Publishing Program.

Hung, T.K. and Macagno, E.O. (1966), “Laminar Eddies in a Two-Dimensional Con-
duit Expansion”, La Houille Blanche, Vol. 21, No. 4, pp. 391-400.

Lax, P.D. and Richtmyer, R.D. (1956), “Survey of the Stability of Linear Finite Dif-
ference Equations”, Communications on Pure and Applied Mathematics, Vol. 9, pp.

267 — 293.

BIBLIOGRAPHY 266

Leonard, B.P. (1983), “A Convectively Stable, Third-Order Accurate Finite-Difference
Method for Steady Two-Dimensional Flow and Heat Transfer”, Numerical Properties
and Methodologies in Heat Transfer, editor T.M. Shih, Springer-Verlag.

Mann, K.J. (1981), “Inversion of Large Sparse Matrices - Direct Methods”, Numerical
Solutions of Partial Differential Equations, editor J. Noye, North-Holland Publishing,
pp- 311 — 355.

Marchuk, G.I. (1975), “Methods of Numerical Mathematics”, Springer-Verlag, New
York.

Noye, B.J. (1984), “Finite Difference Techniques for Partial Differential Equations”,
Computational Techniques for Differential Equations, editor J. Noye, North-Holland
Mathematics Studies 83, pp. 95 — 354.

Noye, B.J. and Hayman, K.J. (1986a), “An Accurate Five-Point Explicit Finite-
Difference Method for Solving the One-Dimensional Linear Diffusion Equation”, Com-
putational Techniques and Applications: CTAC-85, editors B.J. Noye and R.L. May,
North-Holland Publishing Co., pp. 205 — 216.

Noye, B.J. and Hayman, K.J. (1986b), “Accurate Finite Difference Methods for Solv-
ing the Advection-Diffusion Equation”, Computational Techniques and Applications:
CTAC-85, editors B.J. Noye and R.L. May, North-Holland Publishing Co., pp. 137 -
158. |

Noye, B.J. and Rankovic, M.J. (1986), “An Accurate Explicit Finite-Difference Tech-
nique for solving the One-Dimensional Wave Equation”, Communications in Applied

Numerical Methods, Vol. 2, pp. 557 — 561.

O’Brien, G.G., Hyman, M.A. and Kaplan, S. (1950), “A Study of the Numerical
Solution of Partial Differential Equations”, Journal of Mathematics and Physics, Vol.
29, pp. 223 — 251.

Patankar, S.V. and Baliga, B.R. (1978), “A New Finite-Difference Scheme for Parabolic
Differential Equations”, Numerical Heat Transfer, Vol. 1, pp. 27 — 37.

BIBLIOGRAPHY 267

Peaceman, D.W. and Rachford H.H. Jr. (1955), “The Numerical Solution of Parabolic
and Elliptic Differential Equations”, Journal Society of Industrial Applied Mathemat-
ics, Vol. 1, No. 1, March 1955, pp 28 — 41.

Reid, J.K. (1971), “Large Sparse Sets of Linear Equations”, Academic Press.

Richtmyer, R.D. and Morton, K.W. (1967), “Difference Methods for Initial-Value

Problems”, Second Edition, Interscience Publishers.

Roache, P.J. (1974), “Computational Fluid Dynamics”, Hermosa Publishers, Albu-

querque.

Rosinger, E.E. (1982), “Nonlinear Equivalence, Reduction of PDEs to ODEs and Fast

Convergence Numerical Methods”, Pitman Advanced Publishing Program.

Saul’yev, V.K. (1964), “Integration of Equations of Parabolic Type by the Methods
of Nets”, Translated by G.J. Tee, Pergamon Press.

Steinle, P.J. (1984), Computer Program to find the von Neumann Stability Region for

a Finite-Difference Equation, Personal Communication.

Thomas, L.H. (1949), “Elliptic Problems in Linear Difference Equations over a Net-

work”, Watson Scientific Computing Laboratory, Columbia University, New York.

Trapp, J.A. and Ramshaw, J.D. (1976), “A Simple Heuristic Method for Analyzing
the Effect of Boundary Conditions on Numerical Stability”, Journal of Computational
Physics, Vol. 20, pp. 238 — 242.

Warming, R.F. and Hyett, B.J. (1974), “The Modified Equation Approach to the Sta-
bility and Accuracy Analysis of Finite-Difference Methods”, Journal of Computational
Physics, Vol. 14, pp. 159 — 179.

