

Abstract vii

Statement of Originality ix

Acknowledgements x

List of Author's Related Publications xi

1 Concepts of the Solid Modelling Acce|erator................o..............

L.L Solid Modelling.............

1,.1,.L Introduction

t.1,.2 The Primary Solid Representation Schemes

1.1,.3 Charucteization of a B-Rep Solid Modelling System

1,.2 Solid Modelling Accelerator Using Unified Technology...........

1..2.L Unifled CMOS/BiCMOS/GaAs Technology

L.2.2 The Architecture of the Solid Modelling 4ccelerator.....................

1.2.3 Partitioning

I.3 The Scope of this thesis

2 GaAs Technology and Lngic Circuit Design.........................o.....

2.I Gallium Arsenide Technology...........

I
2

2

3

5

8

8

9

ll

1L

t4

15

15

15

15

T7

2.1..2 Advantages of GaAs.

2.I.3 Comparison between GaAs and Silicon

2.2 GaAs Logic Families

2.2J, Introduction

2.2.2 Direct-Coupled FET Logic (DCFL)....

2.2.3 Source-follower DCFL (SDCFL)..

2.2.4 Super Buffer FET Logic (SBFL).............

2.2.5 Two-Phase Dynamic FET Logic (TDFL)

2.3 Design Considerations For Logic Families

2.3.1 Definition of Design Parameters ...

Noise Margin 28

t7

20

22

24

25

28

28

3.2.4 Carry Select Adder 67

3.2.5 Cany- Skip Adder .68

3.2.6 Performance Comparison of Different Adders for GaAs VLSI....70

3.3 An 8-bit Serial Dynamic/Static Divider72

3.3.2 The Adder/Subtracter 72

3.3.3 TDFL Based Registers 74

3.2 Analysis of Adder Designs for GaAs VLSI 60

3.2.t

3.2.2

3.2.3

Ripple-carry Adder....60

Carry Look-ahead Adder....61

Brent & Kung Algorithm (Binary Carry Look-ahead Adder).......64

3.3.4

3.3.5

3.3.6

Why Use TDFL Registers? 74

TDFL Shift Register A77

TDFL Shift Register P 78

TDFL Shift Registet B 79

The Control Circuit and The Clock Generator.80

The Control Signals 80

The Two Nonoverlapping Clock Generator/Driver 82

Simulated Results for the 8-bit Divider..............83

Process Spread......85

L))

4.2.3

4.2.4

3.4 Summary 88

4 A32-bit IEEE Floating Point Multiplier.............89

4.1 The IEEE Floating Point Standard 90

4.1.2 IEEE Floating Point Format90

4.I.3 IEEE Rounding Modes......92

4.L.4 Floating Point Multiplication92

4.2 Integer Multiplication Algorithms..............93

4.2.I Simple array multiplier........... 94

The carry save multiplier............95

Radix-4 Booth's algorithm96

The Wallace tree multipliers105

lll

Appendix A Procedure to Implement the Face Equation in GW8...189

Appendix B Design Tools Used in This Thesis.................................191

Appendix C HSPICE Simulation Files for Crosstalk........L92

Appendix D Testing Equipment...195

.200

Abstract

The fleld of solid modelling has been of great interest for many years. The ability

to design, analyse and represent graphically three dimensional objects is highly desira-

ble for all CAD/CAM systems. Several sophisticated solid modelling systems now

exist, but none is able to process objects of useful complexity in real time [8][9]. A

large class of problems share a common three-dimensional numerical structure and

require numerous calculations on 3D vectors. The aim of this Ph.D thesis is to design

and implement the hardware mapping of critical paths of a GaAs Core Processor for a

Solid Modelling Accelerator. This solid modelling accelerator is to be designed using

GaAs/CMOS/BiCMOS unified technology. High speed GaAs technology is used in the

core processor to deal with floating point intensive calculations, while CMOS technol-

ogy is used where high speed outputs are not required such as for frequent accesses to

heavily interlinked high density data structures.

In this project, a solid modelling program called GWB was studied first to iden-

tify those operations in solid modelling systems which are most amenable to hardware

acceleration. This study showed a requirement for a core processor with high speed

arithmetic process elements, namely, floating point adder/subtracter, multiplier, divider

and square root function. The design of a GaAs Core Processor commenced with char-

acterization of suitable logic families and development of a design approach to produce

high speed, high density and low power dissipation GaAs VLSI IC's. These have been

achieved by:

. Evaluating and comparing logic families such as Direct Coupled Iogic

(DCFL), Source Follower DCFL (SDCFL), Super Buffer (SBFL) and Two-phase

Dynamic Logic (TDFL).

. Using a novel mixed dynamic/static approach to implement an 8-bit serial

divider as a test bench to optimize the speed, power and area.

'Investigating various fixed and floating point multiplier algorithms in terms of

delay, power and area to select a suitable architecture for the GaAs Core Processor

implementation. Developing T1P (Trailing-L's Predictor) rounding technique to speed

up floating point multiplication.

vll

CHAPTER

1

Concepts of the Solid Modelling Accelerator

Solid modelling is playing an increasingly important role in CAD/CAM systems.

There are currently several commercial solid modelling systems available, but they are

not able to process objects of useful complexity in real time [3][a]. A large class of

problems share a common three-dimensional numerical structure and require numerous

calculations on 3D vectors. This thesis concerns the development of key sections of a

Solid Modelling Accelerator using GaAs/CMOS/BiCMOS unified technology. High

speed GaAs technology is used in the core processor to deal with floating point inten-

sive calculations, while CMOS technology is used where very high speed processing is

not required such as for frequent accosses to heavily interlinked high density data struc-

tures.

In this chapter, the basic concepts of solid modelling and the solid modelling

accelerator are introduced. The partitioning of the solid modelling accelerator and the

scope of the thesis are described.

1Chapter 1

m
Figure 1.2 Boundary representation of a simple object.

Boundary Representation systems represent an object as group of topologically

connected surfaces or faces, associated with which are edges, vertices and loops (a

closed sequence of edges around or within a face). Figure 1-.2 shows the L-bracket of

Figure l.L represented as a B-Rep. A popular method of representing object topology

uses the Winged Edge data structure which for each edge contains pointers to the two

vertices of the edge, the four adjacent edges and the two adjacent faces as illustrated in

Figure 1.3 [15].The amount of adjacency information stored in representation of the

features of an object is a matter of compromise between convenience of access and

storage space requirements. Variations to the winged edge have been proposed on these

grounds [16]. Compared to CSG representation, the Boundary Representation of an

object is cumbersome but the ability of B-Rep to describe a wider class of objects and

to provide direct access to descriptions of the boundaries of objects usually outweighs

the disadvantage.

next ccw on f1 next cw on f2

faceL faceZ

on next ccw onfL

Chapter I

next

Figure 1.3 The winged-edge data structure

f2

4

ric procedures. The following layer is formed by high level operations such as splitting

and Boolean set operations.

The half-edge data structure contains a subset of the information contained in the

winged-edge structure, including a point to a structure containing a single vertex,

pointers to adjacent half-edge and pointers (via a parent loop structure) to the adjacent

face structure. GWB's data structures are very pointer rich
-

an object with lî faces

occupies approximately 200F bytes [20]. Some of the pointers are rarely used and con-

tribute little to the effrciency of the system. Some optimization of GWB's data struc-

tures is possible but has not been pursued.

A

Figure1.4A-B

In order to identify those sections which are most computationally intensive and

suitable for hardware implementation, the GPROF tracing program of Graham et al.

[16] was used to profile the execution of GWB as it subtracts two blocks as illustrated

inFigure 1.4.TheresultisshowninFigure L.5whichrevealsthatalmosthalf of execu-

tion time was spent on arithmetic calculations, such as comparing two numbers, evalu-

ation of a face equation from the coordinates of its vertices, testing if a vertex is on an

edge, etc.1 The face equation procedure is dominated by vector cross products and nor-

malization and is therefore floating point intensive. Clearly any effective hardware

acceleration of floating point operations in general and of vector operations (dot, cross

1. The other half execution time such as "mcount" was spent on accessing to the data structure and hence on

memory subsystem. The acceleration of this part is not the subject of this thesis. It is discussed in our
paper[16].

B

6Chapter I

1.2 Solid Modelling Accelerator Using Unified Technology

1.2.1 Unified CMOS/BiCMOS/GaAs Technology

The necessity of performing extensive geometric algebra in most operations on

solid objects means that solid modelling systems are computationally intensive. Fur-

thermore, the implementation of the winged edge boundary representation of objects as

linked lists means that these systems are also memory reference intensive. A hardware

accelerator for a boundary representation system must not only provide acceleration for

floating point vector calculations but also include a memory architecture which mini-

mizes the time required for data structure accesses.

Over the past several years, CMOS technology has become the dominant fabrica-

tion process for relatively high performance and cost effective VLSI circuits and sys-

tems. For example, today's micro-processors are able to handle of order of 105

operations a second, but the circuitry that manages communications with the memory

and with other processors is too slow to keep up with this data rate. The speed/power

limitations have brought the need for development of other technologies such as BiC-

MOS and Gallium Arsenide.

BiCMOS opens up new possibilities for VLSI performance implementation.

Bipolar and CMOS devices can be fabricated on the same substrate to form a technol-

ogy that offers the advantages of both type of devices. BiCMOS employs low power

and high density CMOS devices to implement memory and logic functions, register,

multiplexer, etc. and fast bipolar transistors to driver large capacitive loads and imple-

ment sense amplifiers.

Gallium Arsenide is attractive because of its high electron mobility and low para-

sitic interconnection capacitance, both of which improve the speed performance. The

unif,ed CMOSÆiCMOS/GaAs technology is based in the proposition that GaAs tech-

nology may be utilized for core processor sections of high speed stream processors for

digital data. This fast data stream can be subdivided into lower rate parallel streams

suitable for processing in silicon CMOS/BiCMOS subsystems at lower rates. The Solid

Modelling Accelerator encompasses a broad range of operations which would map into

the hierarchical speed regime of unified technology.

8Chapter 1

transferred is taken as an address which is then prefetched into the cache by a read

buffer which operates in parallel with the rest of the cache. If prefetching is completed

before the data is needed then a miss can be avoided entirely. If not, then at least one,

most likely more, clock cycles will be shaved off the miss penalty. Note that the align-

ment of data structure elements to cache line boundaries assures that a greater ptopor-

tion of each cache line will contain useful information. Consistency between the vector

and half-edge caches is not an issue as they never access the same data.

I.2.3 Paúitioning

Because of the superior performance of digital GaAs circuits in terms of speed

and power dissipation, GaAs technology is used in the core sections (VPU and Vector

Cache) of the solid modelling accelerator to implement the arithmetic elements, while

CMOS technology may be used where high speed outputs are not required such as for

frequent accesses to heavily interlinked high density data structures. BiCMOS will be

used as buffer to drive large loads in CMOS circuits. The approach necessitates the

solution of some interface problems between GaAs and Silicon. However, this thesis

will concentrate on the GaAs VPU only.

1.3 The Scope of this thesis

At the current state of the art all the arithmetic elements can not be implemented

into one single GaAs chip, a modular architecture has to be used. Ideally, modules

should be designed such that all of the high-speed components needing to communi-

cate with each other are in the same module. The implementation goal will be to get all

parts of a module on a single chip. Modules can be packaged as a hybrid semiconductor

to communicate with each other. This has led to characterization of suitable logic fami-

lies and development of a design approach to produce high speed, high density and low

pov/er dissipation GaAs VLSI ICs.

The complete design of such GaAs Core Arithmetic Processor constitutes a task

well beyond the scope of this thesis. Instead this thesis is to identify the critical design

issues, ranging from the optimization of logic families to the impact of the algorithms

and overall layout architecture on the performance of GaAs VLSI circuits. These have

been done by investigating four GaAs logic families and using them to implement two

arithmetic elements: an 8-bit serial divider and a 32-bit IEEE float point multiplier.

Chapter I 1l

age variations, and changes in the effective acceptor concentration within a substrate

and over all substrates used for circuit fabrication. These variations produce a distribu-

tion of If across the process (global spread) and across a die (local spread). An

increase in threshold voltage due to process spread results in a slow MESFET, while a

decrease in threshold voltage gives a /ast MESFET. Although in theory the depletion

mode and enhancement mode process spreads can have opposite polarities, this possi-

bility has been substantially eliminated by the use of the additive implant manufactur-

ing technique. Consequently slow-slow (ss) and/øst-fast ffi are the only two deviations

that need be considercd, slow-fast and fast-slow situations being rare 1271.

The magnitude of the process spread is characteized by a number, indicating

how many standard deviations from the mean the threshold voltages lie. For H-GaAs II

process, LSI circuits (greater than 1000 devices) typically require insensitivity to +2o

in VTvanations between adjacent devices and across a die (where o is one standard

derivation)[22].Thercfore, the circuits are designed using The "typical" set of models,

simulated to demonstrate functionality, then resimulated using "2o fast" (ffi) and "2o

slow" (ss2) models to ensure design robustness over process variation.

23.2 DCßL Optimization

The design goal of optimization is a trade-off between speed, noise margin,

powor dissipation and load driving ability. The design priority in this research empha-

sizes the speed with acceptable noise margin. Since the only parameters which are not

fixed by the foundry are the sizes of transistors, therefore the optimization is done by

changing the pull-up/pull-down ratio. From Curtice Model [35]

Y' ,rr,-v,)' ' (1+),''vd,) 'tanh (a'v¿,) (Eq2.8)

where

Ftransconductance parameter of the device

I6-{he drain-to-source current of the device

rW-the width of the device

L-the length of the device

Vgi--€ate-to-source voltage

I¿, = þ'

Chapter 2 3l

Table 2.3 Performance of an optimal DCFL inverter

fan-out t, (ps) r¡ {nÐ to @s) NM, (mY) NMH N) P, (u,w)

lnv 1 70 45 57.5 160 100 235

150 70 110 '1.78 50 260

nor2 I 80 40 60 160 90 239

3 t70 72 t2L 173 48 265

no13 1 90 35 62.5 160 80 240

J 190 75 132.5 \70 45 270

23.3 SDCFL Optimization

The optimization of SDCFL is first started by keeping the DCFL stage

unchanged while changing the sizes of source follower stage. It was found that the

noise margin is improved but the delay and the driving ability is not good unless larger

transistors are used in the source follower stage. By changing the sizes of the DCFL

stage too, a SDCFL inverter is found which is shown in Figure 2.15. The dc character-

istics and the transient of a SDCFL inverter are shown in Figure 2.L6.T}l,e performance

of the optimal SDCFL inverter is summarizedinTable 2.4.

voo

L.2¡rm

wm

l.2pm

4.opm

GND

Figure 2.15 Optimized SDCFL inverter

Table 2.4 Performance of a optimal SDCFL inverter

8.4

L6p"m

2.Op.m

1.2¡tm

7.0pm

fan-out tr (ps) r¡ {nÐ to (ns) NM,. (mY) NM, (mY) Po (uW)

lnv L 78 50 64 230 110 7r0

J 89 67 78 245 70 741

nor2 1 110 61 8s.5 160 200 7t2

r22 78 100 180 170 735

no13 I 133 61 97 130 2û 71.4

J t44 83 113.5 r20 240 72t

Chapter 2 34

LV = IR = pL*. (Eq2.n)

8q.2.27 can be used to estimate the voltage drop on a conductor when the power

line is from point to point. However, usually a power bus line distributes current to a

number of gates rather than only one gate. If the current is uniformly distributed along

the length of the line (I), the cunent at position x can be calculated as:

/x\
I (x) = /r\ 1-'i). (8q2.?ß)

The voltage drop at the far end of the line will be:

PIrJt x\ PIrl
LV = TJot,l-tl a = ù, (Eq2.2e)

where 17is the total current, and A = Wt.It can be seen that the voltage drop is half of

that if all the load were concentrated at the far end of the line.

2. Electromigration: current density limitations

The maximum current flowing in one direction through metal wires on the die is

limited due to a phenomenon called electromigration.When current densities are high,

metal atoms will migrate in the presence of electron flow because of the force on metal

ions due to the electric field and the exchange of momentum caused by the motion of

electrons (electron "wind"). This phenomenon is called electromigration. The rate of

diffusion is increased in thin-film structures by grain boundaries. When the current

density is high, the grain boundaries will form larger vacancies in the metal crystal

structure which tend to merge to form larger voids. The cunent density is further

increased in the region of the voids, causing an increasing rate of migration. Eventu-

ally, cracks are formed which cause open-circuit of the interconnect line. Therefore,

electromigration presents a reliability problem.

The maximum current limits for VITESSE HGaAsII metal lines (1¿per micron)

are given in Thble 2.61271. These are the absolute maximum currents allowed as deter-

mined by worst case simulation.

The maximum current in a metal line is calculated as:

I *o* = I
"t(w

- LW) (Eq2.3o)

where lV'is the drawn line width and A17 is the process control factor.

Chapter 2 45

to¿ = l/vr, (8q2.32)

where I is the signal path length, u, is the speed of light in material, and v, - cle, c is

the velocity of light in free space. e, is the relative dielectric constant. For the Vitesse

process, e, is approximately 4.5.

Since usually the signal rise time is around 100ps, for path length < 5 mm,

8q.2.32 gives tpa < 75 ps. Therefore, propagation delays are indeed dominated by RC

effects and not by speed of light effects for normal signal lengths. RC propagation

delays can be obtained by HSPICE simulations.

2.4.4 Crosstalk

rWhen two unshielded signal lines are placed very close, the electric and magnetic

fields of the lines overlap suffrciently so that a wave propagating in one line will induce

a wave in the adjacent line. This coupling is called crosstalk.

Whenever signal lines carrying gigahertz frequencies must be routed in parallel

for even a few centimetres, crosstalk must be considered. This effect is proportional to

the length of interconnection lines and to signal speeds as well as other parameters.

Crosstalk is inversely proportional to the distance between two traces.

Crosstalk can be simulated by HSPICE using transmission models. Figwe 2.25

and 2.26 show the HSPICE simulated crosstalk between two signal lines with length

of 5 mm and 1 cm respectively. The model used in the crosstalk simulation is illustrated

in Figure 2.24.T\e detailed HSPICE files are listed in Appendix C.

I
out111

ln

out1,l2

refl

refl

refl

refl

out1131

outll32

minimum
spacing

Chapter 2

Figure 2.24The model used in the crusstalk simulation.

47

It can be seen that for short interconnections (Figure 2.25), the coupled voltage

on the quiet line, induced by adjacent active line, is below 60 mV In this case, crosstalk

is generally not a problem. However, for long interconnections (Figure 2.26) the cou-

pled voltage is about II5 mV. This will cause problem for static GaAs logic families

mentioned previousl¡ since their high voltages are about 700 mV Therefore, long par-

allel bus structures on chips can present crosstalk problems and should be carefully

modelled.

2.5 Summary

In this chapter general information about GaAs was introduced, and then four

GaAs MESFET logic families were discussed. In conclusion, TDFL (trvo-phase

Dynamic FET logic) can be used in the mixed dynamic/static approach; DCFL (direct

Coupled FET Logic) can be used as the most appropriate one for static logic implemen-

tation; SDCFL (Source Follower DCFL) can be used as a buffer to driver high fan-out

loads; SBFL (Super Buffer FET Logic) can be used to drive very high fan-out loads

such as clock signals. Interconnection issues and crosstalk were also discussed in this

chapter which will be the theoretical foundation of the new layout style described in

Chapter 5.

Chapter 2 48

HSPICE FILE CREATED FOR CIRCUIT COUPLEl2 L - 5 I'4M

o
L
T

L
I
N

o
L
T

L
I
N

E7

0_

0_

0_

0_

o,

o_

0,

_5

5_

-5

o_

_5

5,

-5

3Nl

OM

0tY

OM

OM

OM

OM

OM

OM

OM

OM

OM

OM

OM

OM

o

COUPLEl2-TRO
UL I NE 1

OUTl1L

COUPLEl2,TRO
ULINE2

OU
EÌ-

T112

OP 50N
T I ME e - oN

HSPICE FILtr CREATED FOR CIRCUIT COUPLEl2 L . 5 MM

5 0 0 _ oP
T I ME 2

500 1 _ 0N
CLIN)

Figure 2.25 The simulated crosstalk between two 5 zun signal lines.

700

600

500

+oo

300

200

100

OM

OM

OM

OM

OM

OM

OM

OM

OM

OM

l

COUPLE2 -TRO
V C OUT 1 11

V (UL I NE 1

o
L
T

L
I
N

110

100

90

ao

70

60

50

COUPLE2 -TRO
v t ouT 1 12

V T UL I NE2
o
L
T

L
I
N

OM

OM

OM

OM

1 0N
TLIN]

1 5 0N
ON

Chapler 2

Figure 2.26The simulated crosstalk between two 1 cnt signal lines.

49

CHAPTER

3

An B-bit Serial Dynamic/Static Divider

High-speed and low power digital GaAs chips are required for the GaAs Core

Processor and many digital signal processing and image processing applications. How-

ever, the relatively high static power dissipation and relatively low layout density as

compared to CMOS tend to limit the utilization of GaAs VLSI circuits.

From Chapter 2, it was seen that TDFL family has the characteristics of very low-

power and high-density. Since TDFL is compatible with other static logic families

described in Chapter 2, a GaAs dynamic/static mixed approach is used to reduce the

power and the area of chips while maintaining high speed.

In this chapter, an 8-bit serial divider is described, which serves as a test bench

for this mixed approach.

Chapter 3 50

3.L The Algorithm of The Serial Divider

The implementations of division in the Floating Point Unit's (FPU's) of current

microprocessors are based on one of two categories of algorithms [36]. Subtractive

methods such as the conventional approach using subtraction and shifting, and the

many variations of radix-2 SRT (higher-radix subtractive division), generally use dedi-

cated, parallel hardware. Multiplicative techniques, examplifled by the Newton-Raph-

son iteration and series expansion algorithm, share functionality with the floating point

multiplier and use multiplication and addition to develop increasingly accurate approx-

imations to the desired quotient. These different approaches give rise to the distinct

area and performance characteristics which are explored in this section in order to

choose the better method for implementation using GaAs logic.

3.1.1 Subtractive Division

The subtractive division uses subtraction and shifting in a manner similar to the

paper-and-pencil approach that people use. This class of division includes restoring

and nonrestoring algorithms [43].

1. Restoring Division

The simplest divider operates on two unsigned binary numbers, one bit at a time,

as illustrated in Figure 3.L. The divident and divisor zra an-1an-2"'agandbn-1bn-2"'bg

respectively and they are placed in register A and B, respectively. Register P is initially

zero. Then the division proceeds as follows:

shift
<-

Irl-- n ---l

P A

0 B

Chapter 3

Figure 3.1 Block diagram of simple divider for n-bit unsigned integers.

51

ever, these restoration cycles can be easily eliminated by a more powerful subtraction

division algorithm: nonrestoring division.

2. Nonrestoring Division

The nonrestoring algorithm is:

1. Shift the register pair (P, A) one bit left.

2. Subtract the contents of register B (bn-þn-2"'bù from register P.

If P is negative,

3.1,a. Set the low-order bit of A to 0.

3.2a. Shift the register pair (P, A) one bit left.

3.3a. Add the contents of register B to P.

Else,

3.1b. Set the low-order bit of A to L.

3.2b. Shift the register pair (P, A) one bit left.

3.3b. Subtract the contents of register B from P

After repeating this n times, the quotient is in A. If P is nonnegative, it is the remainder.

Otherwise, it needs be restored (i.e., add b), and then it will be the remainder. Note that

the sign of P must be tested before shifting, since the sign bit can be lost when shifting.

Register P must be extendedto n + 1 bits in order to detect the sign of P. Therefore, the

implementation of nonrestoring division uses the same hardware as restoring division

(the control is slightly different) but without extra additions.

Take the same example for restoring:

P

00000

00001

+11010

A

ffiT
tlt

Divide L5 = LLL1 by 6 = 0110, B always contains 00110

step (1): shift

step (2): subtract b (add2's complement)

step (3.La): result is negative, set quotient bit to 0

Chapter 3

11011 1110

53

PA
10111 110

+00110

step (3.2a): shift

step (3.3a): add b

step (3.1a) result is negative, set quotient bit to 0

step (3.2a): shift

step (3.3a): add b

step (3.1b): result is nonnegative, set quotient bit to L

step (3.2b): shift

step (3.3b): subtract b (add2's complement)

step (3.1a): result is negative, set quotient bit to 0

remainder is negative, so do final restore step

The quotient is 0010 and remainder is 00011.

11101

11011

+00110

1100

100

00001 1001

00011 001

+1L010

11101 0010

+001L0

00011 0010

3. Higher-Radix Subtractive Division

Even with nonrestoring division, the speed of quotient formation is seriously lim-

ited by the requirement of an inspection and conditional operation in order to form each

new bit of the quotient. An n-bit quotient requires n-serial addition/subtraction opera-

tions-signifi cantly slower than multiplication.

A good deal of the early literature on division concerned methods of improving

division speed by developing two or more quotient bits per serial addition/subtraction

time. These algorithms use multiple simultaneous subtractions or comparisons to situ-

ate the new quotient bits. The radix-2 member of this class is also called radix-2 SRT

division named by Freiman [44] because it was discovered independently at about the

same time by D. Sweeney of IBM, J. E. Robertson of the University of Illinois [45],

and T. D. Tocher, then of Imperial College, London [46]. Then J. E. Robertson

extended the technique to higher-radix subtractive division [47].

The basis for these algorithms is that multiple trial divisors can be simultaneously

compared with the present partial remainder to determine both the new quotient bits as

will as the next trial divisor action. In order to form z bits of quotient in an iteration

2" - 1. equally spaced divisor partitions must be derived. These partitions together with

the two ext¡eme trial divisors, 0 and D, define 2u possible outcomes. Thus, 2n - I com-

parisons are simultaneously made with the present partial remainder. The smallest par-

tition that has a positive comparison determines the next n quotient bit configuration.

The radix-2 SRT algorithm may be expressed by following equations:

Chapter 3 54

X'i = Xr-qrD

v - .Y'.
^.

.
-

L.
,

where D is the divisor expressed in unsigned binary (D = d0d4...)

Q¡'2-t

X¿ is the partial remainder after i iterations (X = Xl(rxé_r...)

X¿ is the dividend expressed in 2's complement

q¿ is the i'th digit of the quotient (qoqflz...e^)

X i is the unshifted version of X ¡4 (X' ¡ - X
z'

X
L'

X
o'

X _r' .. .)

For radix-2 SRI the resultant quotient is in a redundant signed digit form in

which each digit is selected to be one of +L, -1 or 0. The arithmetic value of the quo-

tient can be evaluated using

(Eq3.33)

(E$3a)

(Eq3.3s)o ;
=0j

Given a divisor and dividend within the range ll,2), it is possible to select a quo-

tient digit such that the new partial remainder always falls within the bounds

W,*, <2D (Eq3.36)

3.1.2 Multiplicative Division

Algorithms of this class first produce a reciprocal of the divisor llb, and then the

result is multiplied by the dividend a. Thus, the main difficulty is the evaluation of a

reciprocal. There are two popular techniques of iteration to find the reciprocal [41].

One is the series expansion, and the other is the Newton-Raphson iteration. For the

clarity, these two algorithms are discussed here.

1. Division by Series Expansion

The series expansion is based on the Maclaurin series (a special case of the famil-

iar Taylor series). I-et b, the divisor, be equal to 1 + x and between [0.5, 1.0]:

Chapter 3 55

11,-234- =
-

= l-I+x -x +x -...b l+x

I = (1 -x) (r *.')(r *"0) (r *"') (r *''u) ..

(Eq3.37)

Since x = b- 7,and0.5 <b < 7.0, 8q.3.37 can be factored:

(Eq3.38)

Since:

,-(t**n) = L-*n,

the two's complement of 1 - { is 1 + {.

This algorithm was implemented in the IBM 360/911491, where division to 32-

bit precision was evaluated as follows:

L (1 - x)(1 + ?¡çl + *a¡ isfound from a ROM look-up table

2. t - f = [(i - x)(1 + i¡1t + xa)(t + x)].

3.1 + lir ttr" two's complementof I - f .

4.1 - 16 is computed by multiplication (1 - f)(1 + f).

5. 1 + 16 i"the two's complement of 1 - i6.

6. 1 - f2 is the product of (1 - l\(t * lr.

7. 1 + f2 is the two's complement of I - f2

In the ROM look-up table the first i bits of b arc used as an address of the approx-

imate quotient. Since ó is bit-normalised (0.5 = b < l),then lxl < 0.5 and l*"1=Z-" ;

i.e.,32-bit precision can be obtained in Step 7.

2. Newton-Raphson Iteration

Newton-Raphson iteration is based on the following procedure to solve the equa-

tionflx) = 0, shown in Figure 3.2þ2]:

Chapter 3

'drawagraphy=flx)

56

. estimate the root, x¿, where{x) crosses the x axis

' the next estimate, x¡*1,is the place where the tangent tofl-r) at point @| fu¡))
crosses the x axis

From Figure 3.2 the equation of this tangent line is:

y-f(x¡) = f'(x,)(x-x¿) (Eq3.3e)

This equation has azeto at

l@¡)x=xi+r=xi_M

r(*)

(E$.a0)

X

x¡ xi+1

Figure 3.2 Newton-Raphson iteration for zero finding.

The above recursive iteration can be used to solve many equations. For division,

computing the reciprocal is of interest. Thus, the equation f (x) = -þ = 0 canbe

solved using the above recursion (where b is the reciprocal) as follows:

b

Then

!
x

f(x) =:

/Q) = -(:)'

Chapter 3

At x = x¡, 8q.3.40 becomes:

57

(E$.a2)

Then the following method could be used to compute 1/b:

L. Scale á to lie in the range 0 <b < I and get an approximate value of.llb x0= l.

2. lterute xi+L = xt(2-xtb) until reaching an xrthat is accurate enough.

3. Compute xnand reverse the scaling done in step L.

An example:

Find llb where b=0.85 (e = enor).

xi*r = xi- = xi!*r-*r'b = xi(2-*¡b)

eo = 0'0t7647

1
E. = --X.tbt

1 I-be,
't= b-Ei= b '

L -2bx,+ (bx,)
1.

b -ni+l -

@q3.a1)

(E$.aa\

@q3.as)

(E$.a6)

xr=!(2-0.85x1) = L.l-5 et = 0.02647

xz = 1.t5 (2-0.85 x 1.15) = L.L75 Ez = 0.00L47

xt = I.t75 (2 - 0.85 x L.I75) -- t.I76 e¡ = 0.00047

The quadratic convergence (i.e. €i * t < e,2) ofthis method can be proved as follow:

xi+t = x,(2-bx¡\, @q3.a3)

xo= r

of

and

ti*1 =
1

b

Chapter 3

substituting for Eq.3.45,

- lx,(2-bx,)) =
b

2

58

2
r -2b + (1-åe,)

2Eirr =
b

=be i' (E$.a7)

recall thatb < 1,

therefore

2€i*1<ti' (Eq3.a8)

The division execution time of the Newton-Raphson approximation can be

reduced by using a ROM look-up table. For example, computing the reciprocal of a32-

bit number can start by using I024x8 ROM to provide the 8 most significant bits, the

next iteration will provide L6 bits, and the third iteration produces a 32-bit quotient.

The advantage of iteration is that it doesn't require special divide hardware, but

can instead use the multiplier (which, however, requires extra control). There are two

disadvantages with inverting by iteration: The first is that the IEEE standard requires

division to be correctly rounded, but iteration only delivers a result that is close to the

correctly rounded answer. In the case of Newton-Raphson iteration, which computes 1/

b instead of alb directly, there is an additional problem. Even if llb were correctly

rounded, there is no guarantee that albwillbe. Take 517 as an example: To two digits of

accuracy 117 is 0.14, and 5x0.14 is 0.70,but 517 is 0.71. The second disadvantage is

that iteration does not give a remainder. This is especially troublesome if the floating-

point divide hardware is being used to perform integer division, since a remainder

operation is present in almost every high-level language.

Normally a divider is not used as frequently as a multiplier. Furthermore, the

divider is used not only for division function, but also as a vehicle for the mixed

dynamic/static approach. Thus, a nonrestoring algorithm is chosen for these purposes.

The main elements of the nonrestoring division are shift registers and a adder/subtract.

Since TDFL is a very low-power, high-density logic family and is compatible with

other static logic families described in Chapter 2, it can be conveniently used for the

shift registers. In the following sections a DCFL based adder/subtracter, TDFL regis-

ters and an 8-bit divider will be discussed as a test bench for the mixed dynamic/static

approach.

Chapter 3 59

3.2 Analysis of Adder Designs for GaAs VLSI

Conventional fixed time adders are ripple-caffy adder, carry look-ahead adder,

carry select adder, carry skip adder and binary carry look-ahead adder. Because the

fastest Silicon adder is based on high fan-in and fan-out capability, and GaAs technol-

ogy is restrained to low fan-in and fan-out as described in Chapter 2.Ttte fastest adder

in Silicon is not necessarily the fastest in GaAs technology. Therefore, in the following

sections various adders are evaluated for GaAs VLSI implementation. The circuits are

based on DCFL gates and are fully optimized in terms of speed, area and power dissi-

pation.

3.2.1 Ripple-carry Adder

The main problem in building an adder for n-bit numbers is propagating the car-

ries. The most obvious way to solve this is using a ripple-carry adder, which is formed

by cascading n full adders as shown in Figure 3.3. The c;*1 output of the ith adder is

fed into the c¡*l input of i+lth adder. The lowest order carry in c¿ is set to 0. Since c¿ is

zero, the lowest order adder could be a half adder. However, cg can be set to 1- to per-

form subtraction later.

an-I an-2 b a1 b A6

cn Cn-I C2 C1 C6

Sn-I S1 S¿

Figure 3.3 Block diagram of a ripple-carry adden

The full adder is deflned by the following logic equations:

si = aibicr+ arb,cr+ arbrcr+ a,brc, = ai@ br@ c, (Efi.a9)

ci+! = arbr+ brcr+ cra, (Eq3.5o)

To implement the full adder in GaAs DCFL, these equations must be represented

by nor and invert functions.

Sn-2

full
adder

full
adder

full
adder

full
adder

Chapter 3 60

si= a,+ b,+ c, a,+ b,+ c, + (a¡+b,+c,), (Eq3.51)+

ci*t = Gt+T) + (b¡+c,) + (cr+a¡). (8q3.52)

From F;q.3.52, there are two logic gates involved in computing c¡*1 from c¡.

Thus, if the least significant bit generates a carry, and that carry gets propagated all the

way to the last adder, the c6 signal will pass through 2nlogic gates before the final gate

can determine whether there is a carry out of the most significant place. Therefore, the

ripple-carry adder is a slow but cheap adder. It can be built with only n simple cells,

connected in a simple, regular way.

3.2.2 Carry L,ook-ahead Adder

The ripple-carry adder requires 2n logic gate delays because the carry bit has to

ripple through all n full adders. A Carry look-ahead adder (CLA) avoids the 2n logic

gate delays by accelerating the computation of carries using a treelike circuit.

The key observation is that in ripple-carry addition, for i > L , the fuIl adder FA¡

has two of its inputs, namely a¡ and b¡, read! long before the carry-in c¡ is ready. The

idea behind the carry look-ahead adder is to exploit this partial information. The goal is

to representc¡in terms of a¡andb¡To accomplish this, take a4-bit slice as an example

to derive its equations.

The general carry equation Eq.3.50 can be rewritten as [43]:

ci+r = arbr+ c,(ar+ br) . (Eq3.53)

This general equation for the carry can be verbalized further as follows: there is a

carry into the i+1th stage if a cany is generated locally at the lth stage or if a carry is

propagated through the ith stage from the i-1th stage. Carry is generated locally if both

a¡aîd b¡are ones, and it is expressed by the generate equation:

8¡ = a,b'. (E$-sa)

A carry is propagated only if either a¡ ot b¡ is one, and the equation for the propagate

term is:

(Eq3.ss)

ai+ bi+ ci +

Chapter 3

P¡ = a¡tb'

6l

Substitute the generate and propagate equations in Eq.3.53, the carry equations

are functions only of the previous generate and propagate terms:

c1. = 80t PyCO'

cz = SriP(t.

Substitute c7 into the c2 equation (in general substitute c¿ in the c¿*7 equation):

c2 = 8t+ Pßo+ PlPscs,

ca = {zt Pzcz = 8z+ PzSt + PzPßo+ P2p1Pscs,

c4 = 83+ PtSz+ P*zBt+ PsPzPßo+ p3piprpycy;

therefore, the general equation of carry look-ahead addition is:

ci+L = 8¡+ P¡8¡_t+ P¡P¡_t8¡_z+ ... + PiP¡_r..Poco (Eq3.s6)

Above equations implies that a carry look-ahead adder requires one logic gate

level to formp and g, two levels to form the carries, and two for the sum, for a total of

five logic gate levels, if it were not limited by fan-in and modularity. This is a vast

improvement over the 2n levels required for the ripple-cany adder. Unfortunately, the

fan-in is a serious limitation since for n-bit look-ahead the required fan-in is n, and

modularity requires a somewhat regular implementation structure so that similar parts

can be used to build adders of differing operand sizes. The latter modularity require-

msnt, in fact, is what distinguishs the CLA algorithm from the Brent & Kung algorithm

to be discussed in the next section.

The solution of the fan-in and modularity problems is to have several levels of

carry look-ahead. This concept is illustrated by rewriting the c4 equation (assuming

fan-in of 4, or 5 if a cg term is required):

c4 = Eo'+po'cg,

Chapter 3

where 80' = 8++Pzçz+P{zrt+P{zPßs,ând Po' = hpippoco.

62

3.2.3 Brent & Kung Algorithm (Binary Carry L,ook-ahead Adder)

As mentioned in the previous section, the Brent & Kung Algorithm can be used

to meet the modularity requirement for a CLA. The Brent & Kung adder, also called

the Binøry Carry Look-aheadAdder,like the CLA is based on parallel computation of

the carries. It uses an associative operatot "o" to compute the cany signals in a binary

tree structure. The function o|"o" is defined as follows [59]:

G,ùo(8',p') = k+ (P'8'),P'P')

where B, p, I' and p' are boolean variables.

The carry signals are defined as:

ci=G¡ fo, i=I,2,...,n,

where

(Eq3.s7)

(Eq3.s8)

(Eq3.se)
(sy p) if i

Gi' P ¡\ o (G ¡-p P ¡-1) if 2<i<n,

I
(Gi,Pi) =

and

(Gi,P) = (gi,p¡)o(g¡-pPi-)o.-.o(gpp). (Eq3.60)

Using Eq.3.58 to Eq.3.60, c¡cznbe evaluated in any order from the given g¿'s and

p¿'s. In other words, identical circuit elements can be arranged in a binary tree structure

to implement the carry bits.

This can be illustrated in the following for an 8-bit binary carry look-ahead

adder:

cr = 81,

c2 = g2+ PZ'8t

ca = 83rPt'cz

c4 = 84+P+ 8Z+PaPtc'

Chapter 3

c5 = 85tPS'c+

64

c6 = 86+ p6' 8S+ P&Sc+

c7 = 87+Pl'CS

c8 = 98 + Pe' 87 + ptp.'c|

c9 = SgtPg'cl

asbc esbe azbz aabø asbs a¿b¿ asbs azbz atbt

block

gp

carry

block

I

I

Cg Cz C6, c5, C4, C3, C¡ Ct C6

59 56 57 56 55 54 53 52 57

sum

block

a¡b¡

P8¡

p¡= a¡@ b¡

8¡= a¡'b¡

P'^8'n

P3o

Po= Pin'P'in

8o= Pin' 8'¡n*8¡n

P¡,8¡n

8o
PoSo

Po= Pin 8o=8'o

8o= Pin' 8'¡n*8¡n

P¡,8 tn

PoSo

Po= Pin
O =OÒo Òo

P¡n
c.¡-t

sum

ci-I = 8o

Si=Pin@
"¡-l

pg cell black cell grey cell white cell sum cell

Chapter 3

Figure 3.6 The block diagram of a 9-bit binary carry look-ahead adder,

65

The complete structure of a 9-bit binary caffy look-ahead adder is illustrated in

Figure 3.6. The similarity in the equations above results in a simple regular carry gen-

erator block consisting of only three cells, namely, black cell, grey cell and white cell.

The black and grey cells perform the "o" operation and the white cells just transmit the

data. The functions performed by each cells are also illustrated in Figure 3.6. The vari-

ables g¡' and pi are the g¿'s and p¡'s from the previous stage. Tt e pg blocks, like the

CLA, generate the g¿'s andp¡'s to the caÍy generator block and the sum blocks perform

the xor function on the carries c¡and the propagate signalsp¿ from the pg blocks to gen-

erate the sum.

Figure 3.7 shows the logic diagrams of the cells in Figure 3.6. All the circuits are

implemented by DCFL nor gates and inverters. SDCFL logic gates are used for driving

large fan-out.

bi

o,
öT

pg cell

8o 8o

P¡
a¡

8¡n
8¡n

P¡n

8¡n

P¡n

p

8¡n

ln
Po

black cell grey cell

c¡-t

sum cell

P¡n

so

Chapter 3

Figure 3.7 Logic diagrams of the cells of binary carry look-ahead adder.

66

3.2.4 Carry Select Adder

The principle of a carry select adder (CSA) [56] can be described as follows:

Two additions are performed in parallel, one assuming the carry in is zero and the other

assuming the carry in is one. When the carry in is finally known, the correct sum

(which has been precomputed) is simply selected. An 8-bit carry select adder is illus-

trated in Figure 3.8. The 8-bit adder is divided into two half blocks, and the carry out

from the lower half is used to select the upper half. If each block is computing its sum

using a ripple cary adder as shown in Figure 3.8, then the design is about twice as fast

at 50Vo more cost in area. Each block can also use CLA or any type of adder to further

speed up the addition, but at more cost. The logic diagram of the multiplexer used in

the CSA is illustrated in Figure 3.9. In Figure 3.9, c is the select signal, when c = 0,

output signal m = m7,otherwise, m = ntt.

azbz aøba asbs a¿b¿ asbs azbz atbt aþo

cín

53 52 57 S¿

s7 s6

C4

s5 s4

Figure 3.8 A simple carry select adder.

c

fll6

l7l1

m

4-bit ripple carry adder4-bit ripple carry adder

4-bit r pple ci rly uo{"

I I I
muxes

Chapter 3

Figure 3.9 The logic circuit of a mux used in CSA.

67

total time of computation is bounded by the time of propagation of a carry in the largest

block.

Figure 3.10 is called frrst level skip. By combing first level skips a second level

skip can be made, and a third level skip can be obtained over second level skips and so

on [66]. Figure 3.lL illustrates a three level carry-skip adder. The multi-level carry-skip

adder has a better speed performance at a little more cost in terms of area and compli-

cation.

cin

first level skip

second level skip

third level skip

Figure 3.114 three level carry-skip adder.

atsbls anbn anbn asba azbz a¿b¿ a3bs 02b2 aþ1aþs

ci2 c6 cin

Figure 3.12 A carry-skip adder using or gates.

Figure 3.L2 shows another version of carry-skip adder using or gates instead of

muxes as shown in Figure 3.8 [41]. Because of the AOI structure discussed in 2.2.3, an

or function is easy to build between DCFL logic gates, and it is fast and more compact,

while it is difflcult to build a mux in GaAs, compared to CMOS. Thus, Figure 3.L2 is a

better solution than Figure 3.10. Note that the inputs of the and gates come from or

gates (a¡ + á¡) instead of from xor gates (o¡@ ó¡). The and gates are implemented by

DCFL nor gates and inverters.

c4

EA FA FA FA FA FA

FA FA FA FA FA FA FAFA FAFA FA FAFA FAFA FA

Chapter 3 69

Assuming one gate delay is d, then it takes 2d fot a signal to pass through a full

adder. Thus, it will take 2kd for a carry to ripple across a block of size k, and 2d for a

carry to skip a block. The longest signal path in the carry-skip adder starts with a caffy

being generated at the Oth position. Then it takes 2kd to ripple through the first block,

takes !rkd-2 to skip blocks (on average), and another 2kd to ripple through the last

block. Take a 24-bit adder for example: If it is broken into groups of 4-bit, it will take

24d gate delay to preform an add. If it is grouped into 4-5-6-5-4, then the time of the

adder drops to 22d.In general, for a carry-skip adder, making the interior blocks larger

will speed up the adder. In fact, the same idea of varying the block sizes can sometimes

speed up other adders as well.

3.2.6 Performance Comparison of Different Adders for GaAs VLSI

The adders described in the previous sections were implemented using Vitesse H-

GaAs-II 0.8¡r,m TÞchnology. GaAs DCFL nor gates and inverters were used to perform

logic functions, SDCFL gates are used to drive large fan-outs. MAGIC, a full custom

layout tool, was used to draw the layouts. A full HSPICE simulation was carried out to

obtain the characteristics of speed and power consumption. The performance in terms

of speed, area and power consumption is the basis for selecting a particular adder type

for GaAs VLSL

Figure 3.L3 to Figure 3.15 show the adders' delay, area and power consumption

against the number of bits where the CLA uses the structure shown in Figure 3.7.For a

small number of bits, the binary carry look-ahead adder has the best performance. For

adders exceeding 8 bits in width, the carry select adder is the fastest adder with moder-

ate area. This is because SDCFL is used as driver which can drive a large number of

multiplexes. However, SDCFL also brings the highest power consumption. For a large

number of bits, if the speed is the main concern, the Cany Select Adder is the right

choice; if power dissipation is the main concern, the carry-skip adder can be used.

Chapter 3 70

a '-'- Ripple Carry Adder
o

-
Binary Carry I-ook-ahead Adder

o - - Carry Select Adder
¡ -'---- Carry Skip Adder

Carry Look-ahead Adder

ç

40u

350

300

250

s
* 2OOq)
È

\
150

IOO

50

o
o a 16 24 32 40 48 56

Number of Bits

Figure 3.15 Power consumpt¡on aga¡nst number of bits.

3.3 An 8-bit Serial Dynamic/Static Divider

3.3.1 The Structure of the 8-bit Divider

The block diagram of the 8-bit divider is illustrated in Figure 3.L6 where clk is

used to shift data,.R is used to start the division) ctr@ ctr6 and ctrp are control signals

used to load or shift data for register A, B and register P, respectively. xor gates either

pass the value of register B or B to the adder/subtracter.

3.3.2 The Adder/Subtracter

From the discussion in previous sections it can be seen that for the addition of a

number with a small number of bits, the binary carry look ahead adder has the best

performance. An &-bit nonrestoring divider was to be implemented to test the mixed

GaAs dynømiclstatic approach, thus, a 9-bit binary carry look-ahead adder was chosen.

The block and logic diagrams are shown in Figure 3.6 and Figure 3.7, respectively.

Figure 3.17 shows the worst case delay of this 9-bit binary carry look-ahead adder from

Chapter 3 72

HSPICE simulation results. The worst case occurs when all the inputs of a are high, all

the inputs of b are low, and a carry in signal c¿, is from low to high which causes the

carry out signal c9 from low to high. Note that c9- is the complement of the carry out of

the most significant bit ca. The bottom graph shows the power consumption of the

adder is about 25.4mW with 2V power supply.

ao a1 a2 a.j a.4 a a6 a7

ctro

Figure 3.16 The logic architecture of the 8-bit divider.

Chapter 3 73

Obtaining a two's complement number involves complementing each bit and

then adding 1. Thus, to implement a - b using an adder, simply feed a andb (where å is

the number obtained by complementing each bit of b) into the adder, and set the low-

order bit to 1-. This is why a car,y in signal c¿n is needed in the adders discussed.

BLC9B , TR O

AOOM

OM

OM

OM

OM

o
L
T

L
I
N

o
L
T

L
I
N

600

500

400

300

200

1_A+52

1-50

1-0

5 0 0 - 0M

109-606M
- 25 _ 0M

- 25 ,2 0H

-25_40t'4

-25 60t't

BLC9B-TRO
c9 -

BLC9B.lRO
I(VDD]XV(VOD

E
X
P
R

EL
SI
SN
I
o
N

-25 B0¡'t - ,.-t-.,...,
+ _ 0N
T I ¡|tr T L 10 - 0NN

Figure 3.17 The hspice simulation results of the 9-bit binary carry look-ahead adder.

3.3.3 TDFL Based Registers

1. Why Use TDFL Registers?

. Suitable for the mixed dynamic/static approach

Figure 2.20 shows that TDFL logic levels are compatible with DCFL and other static

logic families described in Chapter 2.In fact, the output of a TDFL gate can drive the

input of a DCFL gate through a pass transistor, and the output of a DCFL gate can be

directly connected to the input of a TDFL gate.

. Low power and high density

One can see from 2.2.5 that shift registers can be made easily by cascading TDFL

inverters. TDFL shift registers have the advantages of low power and high density. The

Chapter 3 74

latter can be seen from the layout of these two registers drawn in the same scale as

shown in Figure 3.18; The former can be seen from Table 3.L which displays a compar-

ison between DCFL register and TDFL register. Compared to a DCFL register a TDFL

register can save 827o of the area and use only 6% power dissipation. Figure 3.L9

shows the HSPICE simulation results of a 8-bit TDFL shift register operated at lGhz

clock. It can be seen that after 8 clock cycles, the high input volta5eVnv shifts to the

output of the 8th shift register (Voù.

scale:0.040000 Sue:162x
D

tl

vdd! s
\os

phil

phi2

vdd!
GND!

162 ¡rm

Figure 3.18 The layouts of a DCFL and a TDFL shift register

Thble 3.lComparison of DCFL and DCFL registers.

l-
\o

cô

44.8 ¡rm

transistors area (pm) delay (ns) power dissipation (mW)

DCFL register 27 75t6.8 t.r7 1.8

TDFL register 1.6 t4t5.7 1.0 0.1

Chapter 3 75

0

VL
OI
LN
T

VL
OI
LN
T

VL
OI
LN
T

VL
OI
LN
T

VL
OI
LN
T

VL
OI
LN
ï

OI
LN
T

OI
LN
T

OI
LN
T

1_60

500 OM

250 OM

5 0 0 - 0M

0

500_0M

0

500.0M

0

500.0M

0

500_0M

5 0 0 - 0M

5 0 0 - 0M

1_0

1-0

SHREG.TRO
PH I 1

L-
PHI2

-€1

SHREG.TRO
VINÈ-

: v01
-b-

0

SHREG.TRO
v02

SHREG.TRO
v03

^-
rlrrr

4 .0N
TIME tLIN]

6 - 0N I ON

10 _ 0N

SHREG -TRO
v05È-

SIIREG-TRO
vo4

SHREG.TRO
v06

SHREG.TRO
vo7

SHREG -TRO
v08

OI
LN
T

5 0 0 - 0M

J

+ - 0N 6 _ 0N
TIME ILIN] 10 _ 0N

ON

t_

Chapter 3

Figure 3.19 The HSPICE simulation results of a 8-bit TDFL shift register,

76

2. TDFL Shift RegisterA

Register A in Figure3.L6 requires both serial and parallel inputs and outputs.

These was done for TDFL registers by adding pass transistors at the input. When data

is loaded in Register A, the next clock can't arrive until the 9-bit addition/subtraction is

finished. Since it takes about 2ns to add two 9-bit integers for the binary carry look-

ahead adder as shown in Figure 3.l7,the TDFL registers need to refresh the data or use

low frequency clock. Because clock is used to shift data, the low frequency will affect

the total speed of the divider. Thus, a pass transistor is added between input and output

of the registers to refresh the data until the addition is completed. The schematic dia-

gram of register A is illustrated in Figure 3.20, and the layout is shown in Figure 3.2L

with signals defined as follows:

I4n_s-serial input,

Vìn1t-parallel input,

Vo2-serial output,

Vo_p-parallel output,

phil
Vo2

philh- philh-

philh

Wns vo-p

GND

wn-p

Figure 3.20 Schematic diagram of register A.

(3sax) sLe: 65 x 50 micrÒß

philh-shrft data,

philh-refresh data,

philSø----control signal for parallel input data,

phil I phi2-nonoverlapping clocks.

vdd

actr

Chapter 3

Figure 3.21 The layout of rcgister A.

77

3. TDFL Shift Register P

Register P is very similar to register A except register P needs a clear function to

clear the register before addition. This was done by connecting a pass transistor

between output to ground as shown in Figure 3.22.T\e layout of register P is shown in

Figure 3.23 with the signal definition similar to register A where control signals c/ro

arc philh, philh-, philSp and clr is the clear signal.

vdd

phil
Vo2

philh-

philh

Wns vo-P

phil
GND

Vin_p

Figure 3.22 The schematic diagram of r,egister P.

P_reg.cifscale: O.11OOOO (2794X) Size:68x5Omicrons
CLR

Chapter 3

Figure 3.23 The layout of register P.

78

4. TDFL Shift Register B

Register B doesn't need to be shifted, thus, it has only one input v¡n ,, and philh-

is used to refresh the data (together with shift data signal philh are the control signal

ctrb) as illustrated in Figure 3.26. However, the output of register þ vo_p needs to con-

nect to a xor gate which either passes input value B to the adder/subtracter or acts as an

inverter to deliver B to the adder/subtracter. Exclusive-or (xor) gates can be constructed

using three TDFL nand gates and one DCFL nand gate [68]. This kind of xor gate does

not have too much advantage over DCFL and is less reliable, so a DCFL xor gate is

used. Figure 3.25 shows the layout of register B with a DCFL xor gate.

vdd

phil
Vo2

philh- philh-

philh

Wns vo-p

GND

Figure 3.24The schematic diagram of register B.

Ll]-l
:l

I I .L.H'

-
m

l 5
T- --F

-
-l:;l#

Chapter 3

Figure 3.25 The layout of register B connected to a DCFL xor gate.

79

The control signals are generated by a 6-bit ring counter shown in Figure 3.28.

The structure is simply a TDFL shift register with each serial output connected back to

the next serial input. The first element in the counter is initially set to logic L and the

remaining elements are set to logic 0 as shown in Figure 3.29 (a) and (b). This is then

shifted. Since the voltage level of the clock is from -1.6v to 0v, a negative voltage sup-

ply V", = -2v and voltage level shift diodes are needed as illustrated in Figure 3.30.

phi2
phih-

philSp

TDFL counter

Figure 3.28 Control circuit block diagram.

pre

V v

vo2

vo2

clr

GND GND

(a) (b)

Figure 3.29Tlne schematic diagram of TDFL shift register with (a) clearlanctionþ) presetlanction.

voo

1.21t,
6.0lun

counter

1.2Wn

10.0¡ttn

out

1.2V,n
GND

I/ss = -7.5v

Figure 3.30 The schematic diagram of the special nor gate.

I 0 0

0 0 0

voI

phi2

2.0Wn

2.0Wn
1.2lun
2.0p.m

1.2lun

Chapter 3 8l

2. The Tlvo Nonoverlapping Clock Generator/Driver

Figure 3.3L illustrates the clock schematic diagram for the generation of two non-

overlapping clock signals from a single clock input. The clock generator consists of

three stages. The first stage has the normal DCFL nor gates and inverter. The second

stage has SBFL inverters as the interface between the flrst stage and the driver. The last

stage is the clock driver. Since the capacitive load is around 600 fF (from layout extrac-

tion), the clock driver consists of a large SDCFL inverter and a large modified SBFL

inverter. The detailed size of the driver is shown in Figure 3.32.T}lre HSPICE simulated

results of the control signals and the clock generator are shown in Figure 3.33. These

results are simulated with typical-typical (tt) process parameters at lGhz. The simula-

tion shows that the generated control signals and the nonoverlapping clocks meet the

requirement of the 8-bit divider, as shown in Figure 3.27. However, when circuits

become large, for example, for 64-bit double precision floating point divider, the clock

skew lor TDFL will be a problem. Therefore, it is suggested that the TDFL gate or the

mixed static/dynamic logic should only be used locally.

DCFL gates SBFL ¿nv driver

Figure 3.31 The schematic diagram of the nonoverlapping clocks generator.

GND

2.0tttn
80.O¡un

out

1.2lun
74.8¡un

Vss

SDCFT,_inv SBFL_mod_inv

Figure 3.32 The schematic of the clock driver.

2.0Vtn
80.01un

Chapter 3 82

X HSPICE FILE CREATED FOR CIRCUTT CLK_CTR

49 336f,|

VL
OI
LN
T

1-0

CLK-CTR. TR O

V t PH I1

V t PH I2

CLK_CTR -TRO
VtPHIlSET

VIR

CLK-CTR.TRO
VtPHI lSP

CLK-CTR . TR O

VtPHI2S

CLK_CTR - TR O

V t PH I 1H -È-

-1-6185

VL
OI
LN
T 1.0

5r .77 0¡4 _

1.0

VL
OI
LN
T

VL
OI
LN
T

I-1_6181
- 51 Z 0M

-1_6181
51_990M :

VL
OI
LN
T

1 .0 -'

1_6182

0

I 0 _ 0N 40.0N 5 0 - 0N
50.0N

20-0N 30-0N
TIME TLIN]

Figurr 3.33 The simulated results of the control signals and clock generator,

3.3.5 Simulated Results for the 8-bit Divider

The HSPICE simulated results of the 8-bit divider are shown in Figure 3.34 with

tt process parameters using the same example of L5l6 as used in the beginning of this

Chapter. The graphs in Figure 3.34 from second bottom to top one show the quotient

V(ABJlvo_p)"'Vøe-Uvo¡r), V(ÁA_O/vo¡r) = 000000L0 which is the correct

answer. The last graph is the power consumption which is only 0.35mW on average. It

can be seen that the delay of the 8-bit divider is 49ns with lGHz clock. The floor plan

of the 8-bit divider is illustrated in Figure3.36. Figure3.36 shows the layout of the

divider using GaAs compatible I/O pads [69]. The area of the die is 0.31 mm2.

Chapter 3

X HSPICE FTLE CREATED FOR CIRCUIf DIVS

500_0

e5 0 - 0

0

M

M

DIVS.TR()
VTAB-O/VO_P

DIVE-TRO
V C AB-1/VO-P

DIVS-TRO
VIAB_2/VO_P

DIVS.ÏRO
VIAB-3/VO_P

DIVE.TRO
VTAB_+/VO_P

D I V8 . TR O

V(AB-5/VO-P

DIVS.ÏRO
VTAB_6/VO_P

DIVB.TRO
v(.AB_7/VO_P

VL
OT
LN
T

VL
OI
LN
T

0t
LN
T

OI
LN
T

VL
OI
LN
T

VL
OI
LN
T

a5 0

750

500

25 0

t4

0ll

0 t'1

5 0 0 0M

77N-376

-375

-?75

-376.

500

0.

03M

_ 0M

0-

0

0

5 0 0 _ 0M

25 0 - 0M

0_

rlrrrrlrr
20-0N 30-0N
ÏIME TLIN]

5 0 . 0N
5 0 _ 0N

5 0 0 - 0M l

5 0 0 - 0M :

4aM

49tl

VL
OI
LN
T

5 0 0 _ 0r4 l-
OI
LN
T

- 369 _ 04
:r r r r I r r r r I r r r r I r r r r I r r I r

t4

T 39

ll0L
AT I
TAN
TL

DIVS.TR()
POrlER

ON

TIME (LIN] 5 0 . 0N

Chapter 3

31

Figure 3.34 The HSPICE simulated results of the 8-bit divider.

84

I/O PADS

VO PADS

Figure 3.35 The 8-bit divider floor plan.

Figure 3.36 The 8-bit divider layout.

3.3.6 Process Spread

From Figure 3.34 it can be seen that the divider works as expected at typical

process parameters. However, it is good design practice to ensure that a circuit will

work for process spreads ranging from ss2 to ffi, corresponding to approximately 95Vo

Control/Clock

BCI"Adder

(n
Êf
o

ct)
Ê
Í
o
Þ

Chapter 3 85

of cases on average. That is, if a manufactured circuit is randomly selected from a large

sample, there is 95Vo chance that the circuit will work.

The divider was tested over a range of process spreads: ss2, ss/, fr, ff7, ffi.Itwas
found that both fast modes performed correctly, but both the slow modes failed. When

the slow modes failed, it was the TDFL registers that lost information. The stages

appeared to be impaired when it came to discharging an output to ground.

In order to understand the means by which the divider circuit failed lor slow-slow

process spreads, it is necessary to consider the operation of an isolated TDFL shift reg-

ister stage under these conditions.

T8

vôz

T7

v.tn
T6

GND

Figure 3.37 Schematic of the TDFL shift rrcgister.

Under slow-slow conditions, threshold voltages for both enhancement and deple-

tion devices are increased. For example, for ss2 at 75"C the eþt threshold voltage has

changed from 0.227Y to O.327V, and the dfet threshold voltage has changed from

-0.798V to -0.6V. Referring to Figure 3.37 on the precharge phase, the node vol will

be precharged to V¿¿, minus the dfet threshold voltage, lvül.If the input to the gate of

transistor T2is a logic high, then the transistor will be turned on. On the evaluate phase,

the depletion device T3 will turn on, but later than normal, due to the higher lVr¿1. Once

it is turned on, then the node is discharged to ground through T2 and T3. However, in

this situation, transistor T2is in saturation (V¿r, Vr, - V), and so 8q.2.1.0 is applicable:

W^ t
Idr" = þ0. T. (V¡n-V,"\' . (LtL"-V) .tanh(u".V).Since V,"hasincreased,

then the .ururuion current through transistor T2 to ground will be less. Nearing the end

v

o1

o2
o

T

Chapter 3 86

of the evaluate phase, the depletion transistor 13 turns off earlier as well. Thus, s/ow

transistors have effected the circuit in two ways:

. Effectively shortened the evaluate phase (effect on dfets),

.Impaired ability to sink current (through the eþt).

The result is that node vol may not able to discharge to the logic low level of the next

stage and the circuit will fail. This problem would become worse for less ideal clock

signals. The greater the rise and fall times of the clocks, the less current is available to

discharge nodevoT.

The effect of process spread can be modelled in HSPICE by the following for-

mula[27]:

Vro = V,o+ (GAMDS xV¿,) + (Kt (Vus)) - QCV x LT) (Eq3.61)

where

Vro = nominal threshold voltage,

GAMDS = multiplication factor to account for bias dependence,

Klvnd = functional relationship for the backgating effect,

TCV = temperature coeffrcient of threshold voltage.

Since TDFL uses a negative voltage to generate negative clocks, therefore the

backgating voltage VnS = 0.6 - Vss = 0.6 - 7.5 = -0.9U This negative backgating volt-

age together with temperature variation will make s/ow transistors even worse.

There are two ways to solve the problem, one is using lower clock frequency,

another is increasing the width of transistors. Clearly, to increase the saturation drain to

source current of the efet during the discharge of node vol,it is necessary to increase

the width of the transistor. It may also be necessary to increase the width of the dfet in

the pull down path, since this increased current also needs to flow through the dfet.

Note that as a penalty for increasing transistor width, the parasitic capacitance of each

transistor is also increased. This extra capacitance tends to slow down the operation of

the circuit, requiring an extra current to be supplied to charge them. The final optimized

transistor size of register A is illustrated in Figure 3.38 which has similar sizing to reg-

Chapter 3 87

ister P and B. Note that the transistors in the second inverter are slightly wider than

those in the first as they must drive the large load of the parallel outputs. The TDFL

registers worked conectly at ss2 with a clock frequency of 750MHz, while they can

work at up to 1.4 GHz for ffi process parameters.

phil 1.2/4.0

Vo2

philh- 1.212.0

philh

Vin s 1.216.0 vo-p
1.2/2.0

phil

vdd

GND

Vin_p

Figure 3.38 The transistor sizes of register A.

3.4 Summary

A variety of dividers and adders were examined, an 8-bit nonrestoring divider

was implemented based on a mixed dynamic/static approach. The design of the divider

had shown that it is possible to accommodate the deficiencies of TDFL, so that the

advantages it provides in terms of area saving and low power consumption can be

exploited. TDFL is well suited to shift register applications. DCFL allows the imple-

mentation of static logic functionality, with the ability to drive moderate loads.

The divider showed to operate at lGHz clock frequency at typical typical

processing parameters. The associated power dissipation from Vpp at this frequency

was 0.35mW on average including the static adder/subtracter part. The work in this

chapter showed this mixed dynamic/static approach was very promising for GaAs

VLSI circuits. Howevel, the sensitivity of TDFL to variations in process spread and

clock skew are of some concern, since they impair the evaluation phase of the circuit.

By operating at a lower clock frequency the problem may be circumvented, but further

investigation of transistor sizing may yield improved robustness. It is recommended

that TDFL only be used localized where process spread and clock skew are under con-

trol.

1.212.0 phi2

1.214.01.212.0

1,2/4.0
1.212.0

Chapter 3 88

CHAPTER

4

A3z-bit IEEE Floating Point Multiplier

High-speed and high-precision computation are desired for the GaAs Core Proc-

essor and many digital signal processing and image processing applications. Floating

point computation is most suitable for these applications because it maintains high pre-

cision operation over a wide dynamic range.

From Chapter 1, it was seen that a floating point multiplier is the most important

element in the GaAs Core Processor. It also requires for single-clock-cycle operation.

Furthermore, if a multiplicative divider is used the multiplier will be shared with the

divider. In this case, a fast floating point multiplier greatly influences the entire opera-

tion of the GaAs Core Processor.

In this chapter, a 32-bit IEEE floating point multiplier is described, which is fast

and suitable for implementation in GaAs technology.

Chapter 4 89

4.1 The IEEE Floating Point Standard

4.1.1 Introduction

There are a number of ways to represent nonintergers. One is to use fixed point

numbers where the number is written as an integer string of digits and the radix point is

a function of the interpretation. Addition of two such numbers can be done with an

integer addition, whereas multiplication requires some extra shifting. The problem with

fixed point arithmetic is the lack of dynamic range. The GaAs Core Processor places

the highest demands on computer arithmetic performance, and especially on the large

dynamic range of numbers used in Solid Modelling Applications. The dynamic range

of a fixed point number system is simply inadequate.

Other representations that have been proposed involve storing the logarithm of a

integers (o, b) to represent the fraction alb [41]. However, there is only one noninteger

representation that has gained widespread use, and that is the floating point representa-

tion. In this system, a number is divided into two parts, an exponent and a significand.

The choice of significand and exponent wordlengths together with sign conversion is

entirely arbitrary. There are several different floating point formats [69][71], among

them, IEEE standard 754 Í721was an attempt to provide a practical floating point

number system that would force floating point calculations performed on different

computers to yield the same result. Because of its rapidly increasing acceptance, in this

Chapter only IEEE floating point format is discussed.

4.1.2 IEE,E Floating Point Format

The IEEE floating point standard specifles the representation of floating point

numbers, rounding and exception handling for each of the floating point operations.

IEEE floating point numbers consist of three parts: a sign bit, an unsigned exponent

with a fixed bias, and a significand which consists of an explicit or implicit leading bit

the left of its implied binary point and a fraction field to the right.

The standard specifies four precisions: single, single extended, double, and dou-

ble extended. T\e properties of these precisions are summarized in Tâble 4.1. The first

row gives the number of bits in the significand. The blank boxes are unspecified param-

eters. The format for 32-bit single precision numbers is illustrated in Figure 4.1. The

value of a normalised number in this format is given by:

Chapter 4 90

n = (-1)" .ze-r27 . G.fl (Eqa.l)

where s, e and f are the L-bit sign, the 8-bit exponent biased by I27, and the 23-bit frac-

tion, respectively. (1.fl is the 24-b1t mantissa consisting of an implied leading "L" and

f. So the range of the mantissa is L < (I.Í) < 2. T\e exponent is a signed number repre-

sented using the bias method (as explained in Chapter 3) with a bias of L27.T\e herm

called exponent field is used to mean the unsigned number contained in bits one

through nine and exponent to mean the power to which two is to be raised. (In the

standard these are called the "biased exponent" and the "unbiased exponent", respec-

tively.) The fraction represents a number less than one, but the significand or mantissa

of the floating point number is one plus the fraction part.

Thble 4.1 Format parameters for the IEEE 754 floating point standard.

Single Single extended Double Double extended

p (bits of precision) 24 >32 53 >64

E^* I27 > ro23 to23 > 16383

Enin -126 = -7022 -7022 = -16382

Exponent bias r27 ro23

s e r

L8 23

Figure 4.1 Format for IEEE single precision floating point number.

In Thble 4.I, the range of exponents for single precision is -L26 to I27; accord-

ingl¡ the exponent fleld ranges from L to 254. The exponent fields of 0 and 255 arc

used to represent special values. When the exponent is 255, a zero fraction represents

infinity, and a nonzero fraction represents a NaN (Not a Number). When the exponent

field and fraction are zero) then the number represented is zero. Because ordinary num-

bers always have a significand greater than or equal to 1-a special conversion such as

this is required to represent zero.In IEEE standard, numbers less than L.0 xz"^t" aÍe

represented by shifting their fraction part to the right (hidden bit = 0). This is called

gradual underflow.Thus, as numbers decrease in magnitude below 2"'"' , they gradu-

Chapter 4 91

ally lose their significance and are only represented by zero when all their significance

has been shifted out.

4.L.3 IEEE Rounding Modes

Another feature of the IEEE standard with implications for hardware is the

rounding rule. IEEE standard 754 stipulates four rounding modes, which are round to

nearest, round toward 0, round toward +æ and round toward -æ. The default is round

to nearest, which rounds to an even number in the case of ties. For example, in a float-

ing point system using base L0 and two significant digits, 4.1 x 0.5 = 2.05. The result

2.05 should round to 2.0, not2.'1,.

4.1.4 Floating Point Multiplication

Floating point multiplication is much like integer multiplication. Because floating

point numbers are stored in sign-magnitude form, the multiplier needs only deal with

unsigned numbers (although later it can be seen that Booth recoding handles signed

two's complement numbers easily).

According to F;q.4.L, the values of a multiplicand X (normalized number) and a

multiplier Y are described as:

st e,-t27 . (L.f*) ,)(= (-1) 2

s e..- 127f = (-L)'.z', -(t.fy)

Then the product P = X' Y becomes

p = (-1)',*'r.z(e"+er-r27+a)-r27 . t(1./r) (1./y)]

where "ø" results from post-normalization:

a = 0 o< (1.å) ' (r.fr) .2,

a = | 2= Q.f,)'(L.fr) .4.

If the fractions are unsigned n-bit numbers, then the production can have as many

as 2nbits and must be rounded to a n-bit number. P's mantissa o12n bits can be divided

-a2

Chapter 4 92

into the most significant n+I bits and the least significant n-lbits. The least significant

n-l bits act as information for rounding and are represented by round bit R and sticþ

bir S. The R becomes the msb of the least significant n-7 bits, and S is the boolean or

value of the least significant n-2bits.

Besides multiplying the fraction parts, the exponent fields must be added, and

bias then subtracted from their sum. However, detecting overflow and underflow is

slightly tricky. Consider the case of single precision. The exponent fields must be

added together with -I27. If the addition is done in a 10-bit adder, -L27 =

11100000012, and overflow occurs when the high-order bits of the sum are 0L or if the

sum is 001L111111. Underflow occurs when the high-order bits are IL or the sum is

0000000000. Alternatively, the addition can be done using only an 8-bit adder. Simply

add both exponents and -127 = 100000012. If the high-order bits of the exponent fields

are different, no over/underflow is possible. If the high-order bits are both L, the result

hasoverflowedif ithas0inthehigh-orderbitorif itis LIllLLLl.If boththeexponents

have high-order bits of zeto, underflow has occurred if the sum has a high-order bit of

1, or if the sum is 00000000.

Since the mantissa typically have much longer wordlengths than the exponents,

the main constraint on the speed of the floating point multiplier will be computation of

the product's mantissa which consists of an integer multiplier array and a final addition

and rounding stage. The following sections will discuss these two important stages in

detail.

4.2 Integer Multiplication Al gorithms

The most basic form of multiplication consists of forming the product of two pos-

itive binary numbers. This may be accomplished through the traditional " grade-

school" multiplication algorithm also called "shift and add" algorithm. Figure 4.2

illustrates the computation of the 2n-bit product P = (pzn-t, pzn-z ..., po) of ¡vo n-bit

numbers X = (xn-1, xn-b ..., xg) andY = (!n-1, !n-z ..., yo).To perform the multiplica-

tion, the bits of { from lolup to ln-1, need to be examined. For each bit y¿ with a value

of 1., X is added into the product, but shifted left by i positions. For each bit y; with a

Chapter 4 93

value of 0,0 is added into the product. Thus, letting pp

be:

-1
p = X.y = 2OO

i=0

where each term ppØ is called apartial product. There are npartial products to sum,

with bits in positions 0 to 2n - 2. The carry-out from the highest bit yields the final bit

in position 2n - 1..

(,)

(r)
= x' I i' 2i ,theproduct will

@qa.2)

I
1

T

L

T

0

X
Y

0

1

pp(o)

pp(r)

pp(z)

pp(3)

0

tL0
00

L

0

'1.

0

0

T

L

L

LL

1,01. 1,0LL0 P

Figure 4.2 The ó6grade-school" multiplication method.

There are a number of techniques that may be used to perform multiplication, e.g.

serial form, serial/parallel form, parallel form or array form. In general, the choice is

based on factors such as speed, throughput, numerical accuracy, and area. A variety of

multiplier architectures are available for GaAs implementation [83]. The speed advan-

tage of GaAs is best exploited by array architectures [56]. In this section the most

widely-used array multiplication techniques will be presented, starting with a simple

linear-time array and then develop the multiplier design to cover the modified Booth's

algorithm, carry save afiay, modified carry save array and Wallace tree methods. The

section will conclude with examination of speed and circuitry needed for IEEE stand-

ard floating point number multiplication.

4.2.1 Simple array multiplier

The simplest VLSI multiplier is the shifrand add form which consists of an array

of cells comprising an and gate and a full adder as illustrated in Figure 4.3. The final

Chapter 4 94

Booth's algorithm may be understood by considering a two's complement

number. A useful formula for the value of a two's complement number Y = (ün-t, !n-z

..., yo) is [41]:

Y = -ln-rz'
| +!r-22n-' * ... +yrzL +yo (Eqa3)

By adding a dummy termy-1(equal to 0), Eq.4.3 can be rewritten as:

y = -!n-tz'
t *(rr-r2n-t -rn-2zn ') - (,

... +(trz2 -yr2') +(to2r -ro2') +y-t2o

2' -'-n
^zn-3\ *J n_r /n-3

f=

RearrangingBq.4.4, the word Y will be:

-z-f n-r)2'-t * (yn-..-yn-r)2"-' +... + Oo-yr) 2t + (y-t-lo)zo

\ cr X2'
L n-t i oo"' ,

i=l

(Eqa.a)

(Eqa.s)

(Eqa.6)

(Yn

n

=1

(f n-,-t-!n-,)2'-' =) o, -,2n-'

n

i=l

where a"n-¡cÃnbe any of the values {-1,0, 1}. Therefore, the product P of X and Y can

be written as:

p=
n

i=L

and the partial products pp

the value of un-¡.

(r) n-t
=cr X2n-r have to be computed in relationship with

This algorithm was modified by Mac Sorley [87] in following way. The number

Y from 8q.4.3 can be rewritten as:

"
= - ! n - rzn

-' r l n - r2n
-' + (l r - 12'

-'
-r n - rr^

- t) + y
n - 02'

- 4
+

(r,
- rr'

- o

-, n - rr"
- t) + ! n - 62

- u * (r, - r2n
- u

-, n - rt'
-') *

... + (t rz2 -r rzt) * y
o2o + y

-t2o

where isy-7 once again azero dummy variable.

(Eqa.7)

Chapter 4

8q.4.7 can be further presented in the following form:

97

v= (

(

- y n-r.zn-
t

+ ! n-22
-' * y n-r2n

-!n-s2n
5 +lr-u2'-u tln-12

*(-rr-r2n-'+ln-q2 4 +f n-rr'-o) *

+ ... + (-rrrt *yo2o *y-r2o)

-r)

-')

Factorising all the powers of 2 yields:

f = (l n-.. + l n-z-2!n-r)2n-' + (y n-s * ! n-+-2y n-z)2n-4 +

(yn-, +!n-ø-2f ,-r)2n-u + ... + (l-r+ls-2yr)20
@qa.8)

Thus, the number Y can be expressed as:

n-'1. n-l
f =) (yn-r-ri!n-¡-t-2yr-r)2n-i-r - 2o,z'-t-', @qa.e)

i=l i=l
odd odd

where cr¿ can be any of the values {-2, -L,0, 1,2} and i is odd. Eq.4.9 is called modi-

fied Booth's algorithm.

A modified Booth's algorithm examines three bits of the multiplier Y = (Jn-t, !n-

z ..., lo) at a time to determine whether to add !, t of 0, 1, -L,2 or -2 ofthat rank of

the multiplicand. Hence, the number of digits in the multiplier word is halved com-

pared with the original Booth recoding Eq.4.5. Consequently, the number of partial

products is reduced by a factor of 2. However the value range of the coefflcients cr¿ has

almost doubled (from 3 to 5) at the cost of increased complexity of encoders and multi-

plexers.

In summary, the steps in the modified Booth's algorithm are as follows [88]:

1. Append a zeÍo y -t to the least significant bit of the multiplier X

2. Examine the three least significant bits of the multiplier Y (called triplets) and

decode the multiplicand X according to Table 4.2.

3. Add or subtract the resulting multiple of the multiplicand from the previous

partial product to form the new partial product.

Chapter 4 98

IL'L + sixth partial product = -0 = 0000 0000 0000 0000

LIL + seventh partial product = -0 = 0000 0000 0000 0000

111 + eightth partial product = -0 = 0000 0000 0000 0000

Shifting the new partial product right two places arithmetically, and adding the

partial products give:

-X
+X

Qe

1.

l+ l+ L

0

0

0

0

I
1.

T

1

1

1.

0

10
00

Qe

1.

0

0

0

1.

0

0

1

0

0

1.

0

0

L010
-2X

le le

00
0

1,

I
1

1.

1.

1.

0

0

0

I
0

101010

Q+

-x1

+2X

Qe

t
1.

0

0

1

1.

0

0

0

0

L

0

L

01101010

PLt11,011101101010

where P = LL1011L 01L0 1010 is equivalent to the decimal number -2198, which is the

correct result of(1a) x (-157).

There are two ways of designing the partial product generation circuits in a mod-

ified Booth's algorithm multiplier [95]. One is to use three-to-one multiplexer to

manipulated (shifted, inverted etc.) the multiplicand directly. Method 1 requires more

logic to produce the partial product bits, but simpler control signals and circuitry. In

fact, the control circuits are related since the "ditect" control circuit may be used to

produce the multiplexer select signals. Figure 4.5 illustrates a typical partial product

generator circuit for the second method and Figure 4.6 illustrates a typical control cir-

cuit that derives shift, invert and zero signals according to Table 4.3.

Chapter 4 100

Y¡*t Yi Y¡-t sl s2 s3
Operatio

n pp

0

0

0

0

1

L

T

T

0

0

L

I
0

0

1

I

0

I
0

1

0

I
0

I

0

0

0

0

I
L

L

L

1

0

0

0

0

0

0

1.

0

1.

I
0

0

L

1

0

+0

+L

+L

+2

_)

-1

-1

-0

0

xi
xi

x¡-t

x¡-t

xi
xi
0

Thble 4.3 Booth's recoding of bit triplets for method l.

s1 q52

X¡-t

PP

xi

Figure 4.5 Partial pnoduct bit generator for method 1.

S1 (inverter)

Y¡*l

Yi 52 (zero)

Y¡-t
53 (shift)

Figure 4.6 "Direct" cont¡ol circuit for a modified Booth's algorithm coder.

Since each shift, invert and zero signals would drive nearly double loads com-

pared to the first method, heavier buffering is needed and the speed would suffer.

Chapter 4 101

The other way to generate the partial products in a modified Booth's algorithm

multiplier is to employ a five-to-one multiplexer for each partial product bit-the flve

data inputs to the multiplexer would be bit i of 0, X and 2X, derived in advance from

the multiplicand word, and the multiplexer's select signals would be derived from the

multiplier bit triplets according to Booth encoders.

The Booth encoders examine the bits in the multiplier and activate the appropri-

ate lines in the complement/select (five-to-one multiplexer) logic circuitry. The latter

subsequently produces the inputs to the full adders so that the proper partial product

terms are evaluated. The function of each encoder is def,ned in Thble 4.4.

Thble 4.4 The functions of the encoders of the five-to-one multiplexer method.

From Table 4.4 the following equations can be obtained:

51 = l¡-ttf¡tl¡*t l¡-trli+l¡*t).(@qa.10)

@qa.11)

(Eqa.12)

(Eqa.13)

(Eqafa)

s !¡-trl¡i!¡*t) . (r-'. r¡ r*r) ,2

'S4 l¡-t+ f ¡t l¡ *

Multiplier bits

Yi*t Yí Y¡-t

Operation Partial product (pp) Selectors

sls2ftsass
t
L

0

0

0

I
0

I

0

I
0

I
0

T

I
0

L

0

I
0

0

1

t
0

_L

_L

+L

+1

0

0

+2

-2

0

0

I
L

T

I
t
1

1

1.

0

0

1

1

L

1

1

1.

1

t
0

0

1

1

L

1

t
T

L

t
0

I

1

1

1

1

1

't

I
0

Chapter 4

'S5

to2

)ci+1

s1

s2
pp

s4

ss

X¡

Figure 4.8 Logic diagram of the five-to-one multiplexer.

Noting that in two's complement representation a "1" must also be added to the

partial product for -l- and at a"t02" or two "1" has to be added lot -2, fo¡ +2 a "0" has

to be appended to the partial product. Thus the least significant bit multiplexer is con-

nected with x, +r = x0, xi = 0 and the output of Sr @Sr is fed to the inputs of the

least significant bit full adder. In this way, when S1 = 0, Ss = L (-1 case), a "1" from the

output of S, @ S, is added to the least significant bit of partial product pps = 7-s;

when 51 = 1, Ss = 0 (-2 case), a "1" from the output of S, @ S, is added to the least

significant bit partial product ppo = 1 . Figure 4.9 illustrates a overall schematic of a q

x 4-bit carry save multiplier with modified Booth's recoding. It can be seen that the 4

partial products are reduced to 2.In this case a ripple carry adder is used as final adder.

To further speed up the multiplier, other accelerated carry propagate adders can be

used.

S3

Chapter 4 t04

mux mux mux muxencoder

encoder mux mux nux nux

HA HA HA HA

HA HAFA EA EA EA

X2 X1 X6

5

It

ls SrSs

P7 P6 Ps p4 P3 Pz P1 Po

Figurrc 4.9 The overall schematic of a 4 x 4-bit modified Booth's multiplier:

4.2.4 The Wallace tree multipliers

Tlte Wallace tree method multipliers use circuits called counters oÍ compressors

to reduce the partial product tree height from n to 2. The final result is then computed

by using a carry-lookahead adder or other fast adders mentioned previously on the two

remaining partial product ro\MS. A (n, m) compressor is a combinational logic circuit

with n inputs and m outputs. The outputs are binary encoding of the sum of the input

bits. Such tree architectures are known as Wallace trees (if (3,2) compressors only are

used) or Dadda trees (if some combination of (3,2), (4,2), (2,2), (5, 3), and (7,3) com-

pressors are used).

(3,2) (3,2)

(3,2) (3,2)

(3,2)

(3,2)

accelerated carry-propagated adder

Chapter 4

Figure 4.10 A Wallace tree for n = 8 partial products.

105

Among these methods, Wallace tree reduction is the fastest [90]. Figure 4.L0

shows a Wallace tree that adds 8 partial product products. It takes 4 (3,2) compressors

(full adder) to reduce 8 partial product products to 2, then an accelerated carry-propa-

gate adder is used to add the remainder 2 partial products. In general, the number of

stages required to reduce n partial products to 2 is:

Z = logr.r(n/z) = 2.46641n(n/2). (Eqa.15)

For 8 partial product products, n = 8, T = 3.4. Therefore, at least 4 stages are

needed as shown in Figure 4.10. For a 25-bit multiplier with modified Booth's recod-

ing, the partial product tree height will be 13. Putting n = 13 to Eq.4.15, T = 4.62 can be

obtained. This means that for IEEE single precision format with modif,ed Booth's

recoding and Wallace tree reduction, only 5 stages i.e. 5 full adders deep are needed,

while using an alray multiplier with modified Booth's encoding, it needs 13 stages.

However, the total delay depends not only on the number of stages 4 but also on the

delay associated with the interconnection wiring capacitance. It can be seen from

Figure 4.L0, a Wallace tree is not as regular as an array multiplier, the delay of the

interconnection is high and it is not suitable for VLSI implementation.

The irregular layout can be improved by using other reduction schemes such as

(4,2) and (7,3) compressors. Figure 4.II illustrates a25x25-bit modified Booth multi-

plier using (4,2) compressors. The (4,2) compressor is formed from two (3,2) i.e. full

adder cells. It can be seen that it needs 3 stages i.e. it is 6 full adders deep. However, the

layout regularity is still compromised, which is a disadvantage in high-speed GaAs

technology. Figure 4.11 illustrates the connections of such (4,2) compressor tree.

(4,2)

(4,2) (4,2) (4,2)

,2) (4,2)

(4,2)

Chapter 4

Figure 4.ll A 25x25-bit multiplier using modifred Booth and (4, 2) compressors

106

Rounding to nearest as defined in IEEE 754 is actually round to nearestfeven.

This means always round to nearest, and in the case of a tie round to even. A conven-

tion rounding system, round to nearestlup, adds Il2 to the least significant bit (/sb) of

the desired result and then truncates by removing the bits to the right of the /sb. Round-

ing to nearest/up produces exactly the same result as round to nearest/even in all cases

except when a tie occurs. If the even result were the smaller value, round to nearest/up

would incorrectly round up. Dealing with the tie case before rounding makes round to

nearest/even more complex and slower than round to nearest/up. Thus, this section will

discuss a general rounding algorithm to produce round to nearest/up result [94], then

using the sticlE bit to get the correct round to nearest/even result.

4.3.1 A simple round to nearest/up algorithm

Supposing A and B are z-bit mantissae of two IEEE single precision numbers.

After using array or tree reduction multipliers, AxB will become the sum of two 2n-bit

partial products in carry save form as shown in Figure 4.L3. These two numbers are

then added in the final addition section to produce a complete 2n-bit product. There are

two possible rounding operations, depending on the most signif,cant bit (msb) of this

product. If the resulting product is in the range 2 < product < 4, which means an over-

flow occurs, the const un¡ 2(n+l) is added to the product and the result is truncated to n-

2 bits to the right of the decimal point. A normalization shift of L to the right is then

necessary to restore the rounded product to the range 1 < rounded product < 2, with an

appropriate adjustment of the exponent.If the originalZn-bitproduct is in the range L <

product < 2, which means an no overflow occurs, the constan¡2l/") is added to the prod-

uct. In most cases this rounded product will be less than 2 and the rounding operation is

finished. However, it is possible that the addition s¡2@) could cause the rounded prod-

uct to be equal to 2 which means overflow, in this case a normalization shift of L bit and

an exponent adjustment is necessary.

It can be observed from Figure 4.13 that this rounding algorithm is simple, but

requires two carry propagate additions in series. In order to signiflcantly increase the

performance, these additions need to be computed in parallel.

Chapter 4 108

2Çn) to the R bit position. This new 2@) i"defined as the overflow roundingbit (Ry).

Thus, the correct rounding can be obtained by simply adding the carry from the lower

order bits (C¡r), the rounding bit (R;r), and the overflow rounding bit (Av), to the A bit

position as illustrated in Figure 4.14.

o Ry

1 R tn

o Cin

Carry o a a a a a o o o o

Sum o o o a a a o o a a

V n-1 bits L R

Figure 4.14 Bits to be added for correct round to nearcst/up.

It can be seen that there are f,ve slots to be added at /sb and R, is not known until

the sum of all of the other bits have been computed. Santoro [94] proposed two algo-

rithms to solve these problems. One is using a row of n+2 bit half adders and an empty

slot in the anayltree multipliers; the other one is using carry select adders at the two

least significant bits instead of using two half adders. The former is useless if no empty

slots are left in anayltree multiplier, the latter is a little bit complicated.

Here a modified version is proposed which uses the same idea as Santoro [9a] but

is much simpler. This algorithm is illustrated in Figure 4.15. One full adder at /så is

used to provide a slot forR¿n. This full adder together with a row of n +1 half adders are

used to partly sum the carry and sum bits. This leaves a hole in the carry propagate

increment adder at the R bit. T\e C¡nfrom the lower order bits can be placed into this

hole. A carry select adder is used, one adding 0 representing Ru = 0, the other one add-

ing L for R, = 1. Once,R¿, and C¡n have been added to the R bit position and the carry

select adder has completed, the correct result can be picked based on the overflow bit

from result of adding 0. In this case, the result must be normalized and the exponent

adjusted.

Chapter 4 110

Table 4.6 Round to nearest/even versus rounding to nearest/up.

where:

E =Bit added for correct round to nearest/even.

U =Bit added for correct round to nearest/up.

Ln =TheI bit after round to nearest/even.

Lu =T\e Lbit aftq round to nearest/up.

D = Don't care. E can not affect L¿.

It can be seen that the only case where the round to nearest/up bit (Ø will pro-

duce a different result from the round to nearest/even bit (E) is in row 3 of Table, where

E =0,andU = L.In this case round to nearest/up changed thel bit from a 0 (I = 0) to

a | @u = 1), while round to nearest/even left the I bit unchanged (Ln = 0). The should

be noticed that when round to nearest/up changed the I bit to a t, the L was not propa-

gated. As such, only the Z bit was effected. This means that the correct round to near-

est/even result can be obtained from the round to nearest/up result by restoring the L bit

toa0.

By assuming that the round bit will be a L (R¡n= 1), the round to nearest/up algo-

rithms have the advantage over the round to nearest/even methods in that the cany

propagate addition can take place before the sticky bit has been computed. This means

that the round to nearest/up result can be obtained using the rounding algorithms

described in previous section. The correct IEEE round to nearest/even result can be

obtained by observing only the L, R and sticlE bits, and forcing the I bit to 0 if

required. Figure 4.16 illustrates such a circuit implemented by DCFL gates. The sticky

bit is the or of all of the bits to the right of the R bit.

Before Rounding

LRS

Adder to R

E U

LAfter Rounding

LE LU

X

X

0

1.

X

0

0

1

1

1

0

L

0

0

1

D

D

0

L

I

1.

1

1

1

I

X

X

0

0

x

X

X

1.

0

x

Chapter 4 172

LE

U

Figure 4.16 The circuit diagram for obtaining round to nearest/even from round to nearest/up.

4.4 A3z-bit IEEE Floating Point Multiplier

The previous sections have described various techniques for floating point multi-

pliers. This section will use the best of these techniques to present a complete 32-bit

IEEE floating point multiplier. A modified carry save anay is used in conjunction with

modified Booth's algorithm to reduce the partial product addition and interconnection.

A optimized final adder consisting of a number of carry select adders and a special

rounding technique called Trailing-L's Predictor are presented to speed up the final

addition and rounding. Finally, the exponent block evaluates the sign and exponent in

IEEE single precision format, and detects overflowlunderflow.The architecture of this

floating point multiplier is illustrated in Figure 4.17.

- bias

s

R

L

EXPONENT

BLOCK

MANTISSA

BLOCK

sign exp adder

detect
ovf/unf

modified carry save

adder aray

carry select adders

rounding

final format adjust

b¡)

Ho()
(.)
k

o
o
É

Chapter 4

Figure 4.17 The architecture of this floating point multiplier,

113

4.4.I A modified carry save array

To summarize integer multiplication algorithms: Multiplication arithmetic is usu-

ally rcalized as additions of partial products. The multiplication time is proportional to

the number of additions, since the generation and propagation delay times for sum and

carry signals dominate the operation time. Therefore, one of the most important design

constraints is to reduce the number of additions to increase the multiplier speed. There

are two ways to meet this requirement. One is to reduce the number of partial products

to be added like modified Booth's algorithm, and the other is to reduce the number of

sum and adding stages like a Wallace tree. A Wallace tree incorporated with modified

Booth's algorithm has been prevailing in high-speed multipliers [90][91]t981. How-

ever, the Wallace tree suffers from poor structure regularity. Regularity is necessary not

only to enhance the design productivity and multiplier bit-width extendability but also

to enhance the performance, by allowing less complicated and shorter interconnection

wiring.

In order to maintain both regularity and high speed, a modified carry save array

[97] is used in conjunction with modified Booth's algorithm for the 32-bit floating

point multiplier. Figure 4.L8 illustrates the structure of this modified carry save array.

The array consists of odd rows (shaded rows) and even rows whers sum and carry sig-

nals generated in an odd row are fed to the next odd row and signals generated in an

even row are concurrently transferred to the next even row. In this way, the array has

two signal streams in a column in parallel. In the last stage, the sum of odd rows and

the sum of even rows are added together. Using this modified array with Booth's algo-

rithm, the maximum number of adder stages is further reduced by half i.e. the maxi-

mum number of adder stages T = n/4 full adders. However, implementing full

adders in the f,rst row of the array is a little difflcult, because three partial products

from three multiplexers has to be connected together. The connection is complicated

and less regular than the rest of the array. Therefore, half adders are used in the first

row instead of full adders to get regular structure at cost of one more half adder delay.

Therefore, the maximum number of adder stages is T = l* i madders.

Chapter 4 114

drorol = ffi d"o,,r. (#- t) . 0^,* @qa.16)

where drorryisthecarryintocarryoutdelayof afulladder, d^*is thedelayof one

block multiplexer. The HSPICE simulated results show that d"orry= 0.25ns and d^*-

O.3ns.For 25x25-bit multiplication, n = 50. m may be found by differentiating Eq.4.18

with respectto m to find the minimum d¡o¡o¡:

hØr",',) = drorry- -; d^r* = o

Hence m= 'd^ut
d.r*r,

n ='7.7

(Eqa.17)

@qa.18)

drorol= d-i, = 3'5ns @qa.1e)

The relationship between d.¡o¡o¡ and m when n = 50 is shown in Figure 4.19 .lt can

be seen that the delay is minimum when rn is around 8 bits. Figure 4.20(b) shows the

final adder structure used in the32-bit floating point multiplier. This structure is chosen

also by considering rounding.

ß
17

16

15

14

13

12

11

Èro
àe

Q8
7

6

5

4

3

,
1

o
o 1 2 3 4 5 6 7 I 9 10 11 12 13 14 15 1ó 17 18 19 20

M (bits)

Figurc 4.19 The total delay vs. m bit.

-

Chapter 4 tt6

00 0 0

11I1

(a)

crn

(b)

Figure 4.20 Tlne structure of the final adder.

4.4.3 Rounding

Two new rounding techniques are developed for the floating point multiplier. One

is using the parallel rounding algorithm described in 4.3.2 combined with the multi-

carry select adder. The other is called Trailing-l's Predictor (TlP). Both methods per-

form addition and IEEE rounding in parallel.

1. The CSA method

To implement the multi-carry select adder into the parallel addition and rounding

algorithm shown in Figure 4.L5, Cin has to be combined into the multi-carry select

adder, otherwise parallel addition can not be fully achieved. This can be done by using

an additional carry select adder, but there are more economical techniques. Consider

using two sets of carry select adders, one for C¡n, oÍte for Ro Figure 4.14 can be alterna-

tively illustrated as in Figure 4.21. "0" and " 1." represent carry select adder, the correct

results are selected by C¡n and R, respectively. To simplify the circuit, "0"s are deleted

because any X + 0 = X. By combining Figure 4.2Iwith Figure 4.15, there are two CSA

mbitm+4 m+3 m+7m+2

m+m+

mux mux mux mux

F...

tr N
x

9 9 8

9 8 0o0o
rl

mux mux mux

Chapter 4 1"17

parallel addition and rounding methods as illustrated in Figure 4.22. Method L

(Figure a.22(a)) uses one CSAdder (two rows of full adders in parallel) plus two rows

of half adders. The critical path is one CSAdder delay plus two half-adder delay.

Method 2 (Figure 4.22(b)) uses one row of full adders plus three rows of half adders.

The critical path is one CSAdder delay plus three half-adder delay. Since one full adder

equals two half adders, method L has one more row of half adders cost but at one half

adder faster speed. Thus, method 1 is preferred.

0
Rv

L

0
C¡n

1

L R¡n

a Rcarry

a Rsum

s2

1 .Rv

1 C¡n

1 R¡,

O Rcarry

o Rsum

57

so ,so

Figure 4.21 Bits to be added atR position for CSA method.

Rin

s2

(a) Method 1

Ri,

so so

s1

(a) Method 2

57
s2

0

1

1

0

r

1

S2

0 0

1

1

1

1

1

2

Chapter 4

Figure 4.22 The two CSA methods.

s2

118

b7 a7 b6a6 b5 a5 b4 a4 b3 a3 b2 a2 bl a1 b0 a0

I

17 16 15

17 16 15

t4 t3 t2 11 r0

14 13 t2 11 r0

Figure 4.24 As¡mple 8-bit ripple through TlP.

b7 a7 b6 a6 b5 a5 b4 a4 b3 a3 b2 a2 bl a1 b0 a0

1 1 1

Figure 4.25 An 8-bit carry select TlP.

In order to discuss the rounding procedure clearly, Figure 4.26 shows the top 26

bits of the product, produced in this multiplier by the three most significant blocks of

the multi-carry-select adder. The square brackets "[]" indicate the bits to be occupied

by the coffectly-rounded result. Table 4.7 and Table 4.8 list the actions necessary for

producing a correctly-rounded product under the rounding-to-nearest (even) option of

the IEEE floating-point standard as a function of: ¿ the overflow bit at the msb end of

P; l, the lsb of. P; r, the round bit; and s, the sticþ bit. (The round and sticky bits are

produced by the three least significant blocks of the final adder and are not included in

Chapter 4 t2t

_,4
2 '- is achieved by activating the TlP if v'{c¡n'r t c¡r'r's + /'r's} and r are both high

(which can be simplified as il v'{c¡n'r's + /'r's} is high), and inverting r irrespective of

its initial value. Finally, the act of rounding up may itself cause an overflow, but this

event would be detected by the most significant flag bit produced by the T1,P going

high, which could then provide a right shift signal in concert with the overflow bit, v.

The structure of a final addition and rounding by the T1P method is illustrated in

Figure 4.2'7, where Control Logic detects v'{c¡r'r's + /'r's}. It has one more row of

mu)ces and a multi-carry-select TLP comparing to CSAmethod. Since the inputs of TLP

can share the xor gate in CSAdder, the TLP is actually just a string oL nand gates in

serial. A nand gate can be made by one inverter connected with a nor gate in DCFL,

and a mux uses fewer gates than a half adder. Thus, the TLP method occupies less hard-

ware than CSA method. Furtherrnore the T1P method implements round to nearest/

even directly, thus no round to nearest/up to round to nearest/even conversion needed

only a Control Logic is needed to perform +2-24 from +2-23. The delay of this scheme

can be estimated as d¡o¡o¡ = dcsa-2n t d^*-n* dcontrob Detailed layout and simulation

will be discussed in the next chapter to see clearly which method is better in terms of

delay, area and power dissipation.

r ¡-t

f msb

v

s¡

cin

Adder
T1-P

AND Control
Logic

XOR

OR

Shift

Chapter 4

Figure 4.27 Tlre structure of TlP rounding technique.

125

It can be seen that if the high-order bits of the exponent flelds are different, no

over/underflow is possible. If the high-order bits are both 1, the result has overflowed if
is has 0 in the high-order bit of the sum or if the sum is lltllLllz.If both the expo-

nents have high-order bits of 0, underflow has occurred if the sum has a high-order bit

of L, or if the sum is 000000002.

Examples:

Overflow case L:

1000000001

= -127

Ex= t92

Ev = 192

Ep= I92 + 192 - 127 =257 255

_ 1an

Ex= I28

Ev= 382

Ep= 128 + 382 - 127 =255

= -127

Ex= 0

Ev= o

Ep= 0+O-127=-I27<O

_ 141

E*= 0

Ev = r27

Ep= 0+127-I27=O

+

0

0

0

0

0

0

0

0

0

0

7

1

1.

I
I

0

0

0

0

0

0

1.

0

0

Overflow case2;

+

t
0

0

0

0

T

0

0

1.

0

0

I

0

0

1.

0

0

1.

0

0

1.

1.

1

I
111r11111

Underflow case L:

+

0

0

0

0

0

0

0

0

0

1,

0

0

0

0

0

0

0

0

1

0

0

0

0

0

10000001

Underflow case2:

+

0

0

I

0

0

1

0

0

1.

0

0

1

1

0

0

0

0

1

1.

0

I

0

0

1

100000000

In summary, for two IEEE single precision floating point numbers

s e -L27 s.. e. -I27)(= (-I)..2. .(L.f.) and f = (-L)''2' ' (1./u), overfloVunder-

flow can be expressed as follow:

Overflow = êy7' êx7' èpl t ept' ep6' ep5' ep4' ep3' ep2' ept' epg, (Eqa.2o)

Underflow = êy7' è*7' epttêpt' ëpo'êps' èp+' èpz' ê12' -er1' êpo. (Eqa.z\

Chapter 4 127

sxsy

JJ

where €* = ê*7€*6êx5€x4€x3€xy€xr€xy, €y = ey7ey6ey5ey4ey3ey2ey1,erg and the sum

of the two exponent field and -L27 is eo = epTep6ep5ep4ep3ep2eprepo.

The value of y from the mantissa block could affect overflow/underflow. To speed

up the floating point multiplier a CSA-like over/underflow detector can be used at the

cost of double the hardware. However, it is observed that the second item of overflow

as expressed inBq.4.20 can be accelerated using the trailing-L's technique (without xor

gates). The second item in underflow can be sped up using inverters instead of xor

gates in the TLP shown in Figure 4.25.T\e inverter plus TLP works like a trailing-O's

predictor. In this way, speed and area constrains can be both satisf,ed. The structure of

the exponent block is illustrated in Figure 4.29. Noting that the "L"s of -I27

(100000012) is combined in the 8-bit CSAdder. This arrangement allows the circuit to

perform one addition instead of two additions which will further speed up the exponent

block.

€x6 êx5 €x4 ex3 êx2 €xl €x0
T

Sign

Underflow

0

L

v

EA HA HA HA HA HA HA HA

EA EA FA EA FA FA FA FA

mux mux mux mux
e

T1P

T1P

Chapter 4

Figure 4.29The structure of the exponent bloclc

t28

4.5 Summary

A IEEE single precision floating point multiplier has been described. The analy-

sis of conventional algorithms has been carried out and some new techniques have

been developed to choose the best one for GaAs technology. This multiplier is based on

a combination of all accelerated parts of a floating point multiplier such as: the modi-

f,ed carry save mantissa array, the multiple carry select final adder and the Trailing-l's

Predictor rounding technique, and the exponent block.

The next chapter will describe the implementation of this multiplier, and the sig-

nificant performance of the circuit can be seen from the layout and the HSPICE simu-

lated results.

Chapter 4 129

5.1 The Original Ring Notation Approach

5.1.1 Motivation

The layout style has a major impact on the performance of very high speed VLSI

ICs. The main issues of concern are:

1) To minimise interconnect lengths to reduce parasitic capacitance so that the

coupling between high speed signals can be minimized.

2) To reduce the inductance and increase the capacitance associated with the

power buses so that voltage and current spikes can be reduced.

3) To achieve a high layout density.

4) Pitchmatching of basic blocks.

V¿¿ V¿¿

GND

GND

(a) (b)

Figure 5.1 (a)The nMOS style and (b) the Ring-Notation style.

5.1.2 Ring Notation (Ring Diagram)

Eshraghian Í241Í551introduced the Ring Notation approach explicitly to try to

meet the above requirements. In the Ring Notation approach, the GND rail is placed

between the logic and the power supply V¿¿ ruiI (Figure 5.1(b)), as compared to the

nMOS style layout (Figure 5.1(a)). This reduces the self-inductance of the buses and

hence increases immunity to noise induced by signal crosstalk and switching spikes.

Ring Notation also provides an intermediate method to describe the layout of a

circuit design. In the Ring Notation as shown in Figure 5.2(b), the 'dashed' line repre-

sents the eþt while the 'solid' line represents the dfet. T\e two MESFETs are joined

together using metal which is implicit in the ring representation for simplicity. How-

ever, it should be noted that the missing geometry will appear when the Ring Notation

LOGIC

LOGIC

Chapter 5 137

is translated into mask layout as shown in Figure 5.2(c). Figure 5.3 illustrates the trans-

lation from a two input DCFL nor gate to a Ring Notation layout.

It can be seen from Figures 5.2 and 5.3 that the translation from a circuit to the

layout is straightforward using the Ring Notation approach. Ring Notation allows sig-

nal paths to be highlighted and the interconnection strategy to be formulated before the

design proceeds to a layout. Complex structures can be readily and systematically

mapped thus providing an easy translation method from symbolic notation to mask lay-

out and hence ensuring the portability of designs.

V¿¿

GND

(a) The circuit of a DCFL inverter

V¿¿

GND

---t--->

(b) Ring-Notation

Metal 1

[loot" *"uLI
Depletion_lmplant

Vialsd

Vialg

(c) Layout

Figure 5.2 Thanslation from a DCFL inverter to ring style layouL

Chapter 5 t32

Figure 5.4 which shows a nMOS style two input nor gate (a) [25] side by side with a

Ring Notation two inplut nor gate (b). In this case, the ring style takes 57o more area

than the nMOS style. This situation will get worse for larger circuits, because when the

circuit is large and complex, the ring style layout has to use several VddlGND bus lines

instead of extended transistors along one V¿¿IGND bus line. The extra V¿¿IGND bus

lines occupy extra area.

vdd!

19.5pm

GND!

27.1pm

(a) nMOS style

vdd!

GND!

L6.0¡rm

a-/

II

ffi
out

35.6¡rm

(b) The Ring Notation

20.0¡rm

vdd!

GND!

21..6pm

(c) The modified Ring Notation

Figure 5.4 Side-by-side comparison of three styles for a two input nor gale.

I

I

Chapter 5 134

In order to maintain the advantage of Ring Notation and at the same time reduce

the layout area, a Modified Ring Notallon (MRN) has been developed and will be

described in the next section.

5.2 The New Modified Ring Notation Approach

5.2.1 The Modified Ring Notation Layout

The MRN uses the same idea as 'ring notation' or 'ring diagram'. But when

translating to the mask layout, the MRN stacks transistors vertically instead of horizon-

tally along the bus lines as shown in Figure 5.a (c). The layout is more compact,

because e-mode transistors can share connected vias and no horizontal spacing required

between e-mo de transistors.

5.2.2 ThLe Improvement in Layout Area

For complex circuits, the advantage of MRN over original Ring Notation in terms

of area is more obvious. Figure 5.5 shows a full adder implemented by the two ring

styles at same scale. Because original ring style lays-out the transistors horizontally

alone the VddlGND bus lines, it has to use three bus lines to make the layout the desired

shape. The extra bus lines and the space between lines occupy a lot of area. In contrast,

the modifled ring style full adder uses only one V¿¿IGND bus line, the transistors are

stacked vertically along the bus line. There is no wasted space in the layout. The MRN

approach reduces the full adder areaby a factor of 3 which is very significant.

5.2.3 The Improvement in Speed

The MRN not only improves the layout area, but also the speed of the circuit.

Table 5.1,shows the simulated performance of some basic logic cells implemented by

these two Ring Notations with fan-out = 1. It can be seen that when the circuit is as

simple as nor gates, the area of MRN is improved, but the delay is increased. This is

because using shared vias reduces the area of the vias, hence the resistance is increased.

Consequently, the current through the transistor is decreased, which slows down the

speed of the circuit. However, when the circuit is more complex, such as a full adder,

the MRN also has a signif,cant improvement in terms of speed. It can be seen that the

MRN approach increases the speed of the full adder by a factor of L.31-L.75. This is

Chapter 5 135

l

because the more compact layout reduces the length of connections and therefore the

capacitive loads.

vdd!
GND!

88.8¡rm

*cin

GND!
vdd!

1.63.6y.m

(a) A full adder using original ring style

118¡rm

GND!
vdd!
GND!

(b) A full adder using modifled ring style.

Figure 5.5 A full adder implemented by (a) original ring style and (b) the modifred ring style.

Table 5.1 Results for a selection of basic logic blocks

\

!

Original Ring Notation Modified Ring Notation

delayþs) area(¡r,m2) power(mW) delay(ps) area(¡r,m2) power(mW)

no12 60.0 569.6 o.250 63.0 432.0 o.250

no13 81.8 801.6 o.278 89.7 541.0 0.278

full
adder

co 282 1.4528 3.467 co

sum

76r 4720 3.467

sum 462 350

S-to-'i, mux 37r 7873.6 3.03 282 6205.7 3.03

Chapter 5 136

5.3 Global Power Supply and Ground Arrangement

5.3.1 Local Power and Ground Arrangement

Tlne V¿¿ and GND bus lines must be placed carefully to reduce their self induct-

ance so that their susceptibility to current transients can be reduced. The impedance of

these bus lines can be approximated using the CPW or CPS models depending on their

separation. Figure 5.6 show the Characteristic impedance of (a) CPW, (b) CPS as a

function of the shape ratio k = alb, using the models described 1n 2.4.1. The plots use

the normalised substrate thickness hlb as a parameter (noting the difference of a and b

between CPW and CPS).

b a b a hlb=0.1

3Ntil

140

120

IM

80

h250
h

0.5

Ê.
'õN

2M

À
\å l5o
N{

]M

5.6 Characteristic impedance of (a) CPW (b) CPS as a function of the shape ratio k = alb,
the normalised substrate thickness hlb as a parameter.

ñ

40

20

Figure
taking

50
0.5

o.I o.2 0.3 0.4 0,5 0 ó 0.7 0 I 0-9 I 0
qlb

(b)
o.t o.2 0.3 0.4 0.5 0 6 0-7 0.8 0-9 I 0

slb

(a)

It can be seen that for both CPW and CPS geometries, either the width of the two

V¿¿lgrowd buses have to be widened or the spacing between the two V¿¿lgrornd buses

have to be reduced in order to get smaller impedance and therefore smaller inductance.

The MRN, like original Ring Notation, forces the V¿¿ and GND bus lines to be

placed as close as possible with a minimum distance determined by the design rules.

On the other hand, in nMOS layout style, the bus lines are placed far apart on either

side of the logic gates.

Chapter 5
"137

connections are much better than grouped multiple connections since the total induct-

ance and resistance are lower.

5.4 Implementing the 32-bit Floating Point Multiplier

After fully considering the algorithm and layout style, the detailed layouts of the

32-bft floating point multiplier can be implemented by following the introduction of the

MRN for basic gates.

5.4.1 Mantissa Multiplier

The mantissa multiplier is a 25x25-bit (including hiding bit) modified carry save

anay. Figure 5.9 illustrates the floor plan of the array which is arranged as a square for

convenient implementation and area efflciency.

$;*i:ii iii:.11: .f.ir.l::: iijr:::l: :l:jr: :::: :.

IIIIII
IIIIII
IIIITI
TIIIII
IIIIII
IIITII

I
î
I
s$ä.¿¿I

I
vxis

I

II

encoder half adder multiplexer
E

full adder

Chapter 5

Figure 5.9 The floor plan of the 26-bit mantissa array.

140

co

s

b

a

(a) logic diagram

a b

GND
V¿¿

GND

s

(b) modified ring notation

(c) layout

Figur,e 5.10 The implementation of the half adder using MRN

1. Half adder

The first two rows of adders are half adders. Figure 5.L0 shows the implementa-

tion of the half adder using MRN. Note that the gates drawn in bold lines are imple-

mented by SDCFL to increase driving ability, because the outputs of the half adder

need to drive three to four gates plus L50pF capacitive load of interconnection wire.

Table 5.2 shows the characteristic of the implemented half adder. The area information

comes from MAGIC layout, the delay and power dissipation are from the worst case

HSPICE simulated results at tt parameters and 75'C temperature with fan-out = 4 and

Ctood = 150ff (ftom layout extraction).

Table 5.2 The characteristics of the implemented half adder.

half adder delay (ps) area (pm2) power dissipation (mW)

co 240 3200 4.5

sum 31.L

Chapter 5 t4l

a

b

a
b
ctn

co

s

(u) (b)

D E S I G N _A . T R O

v t c0

D E S I G N _A . T R O

vts

DESIGN_A-TRO
VCA

v(B

vtc
o----------

co

s

cin

b

a

(")

Figure 5.11Three full adder designs.

o
L
T

L
I
N

600

500

400

300

200

OM

OM

OM

0t1

0¡1

,l ,-.-'.Lt

ì

o
L
1

L
I
N

6 0 0 - 0M

4 0 0 _ 0M

2 0 0 - 0M

35,2414t1

600 _ 0t'1

+ 0 0 - 0M

2 0 0 , 0M

DESIGN_B-TRO
V T CO

D E S I 6 N _C - T R O

v t co

o
L
I

L
I
N

4 _ 0N 5.0N
-.1

6

o-

ON

DESIGN_B-TRO
vts
D E S I G N -C - T R O

vts

44 - 0695M I - 0N 2 _ 0N 3 _ 0N
TIME tLIN] 6.0N

)

f -t -t f

Chapter 5

Figure 5.12 The HSPICE simulated results of the three full adders.

t43

xi+l

1

V¿¿

GND
V¿¿

GND

pp

ss pp
ass

(a) logic diagram (b) modified ring notation

(c) layout

Figure 5.14 The implementation of the nultiplexer using MRN.

4. Booth encoder

The encoders are placed on the left of the multiplexers. Each encoder generates

the five control signals for each multiplexer row. Therefore, five V6¿/GND buses are

used to correspond to the signals. The outputs of the encoder use larger SBFL gates to

drive such heavy loads. The implementation of the multiplexer using MRN is illus-

trated in Figure 5.15. The characteristic performance of the implemented encoder is

shown in Täble 5.5 when driving 26 5-to-t muxes.

--) l

Chapter 5 t45

I I I

-t

!¡-t

yi

f ¡+l

s1

s2

V¿¿

GND

GND
V¿
GND

GND
V¿¿

GND

GND
V¿¿

GND

s2 s3

(a) schematic

s4 ss

l¡-t

Yi

f ¡+t

GND
V¿¿

(b) MRN (c) layout

Figure 5.15 The implementation of the encoder using MRN.

Table 5.5 The characteristics of the implemented encoder.

encoder delay (ps) area (pm2)
po\üer dissipation

(mlV)

385.8 17335.5 t7

5.4.2 Sticky Bit Generator

According to its definition, sticþ bit S is the boolean or value of the least signifi-

canl n-2 bits. In another words, it is the or of all of the bits to the right of the R bit.

There are a total ZZ-bits which must ored together. Since the or gate of an AOI struc-

ture (Figure2.6) has to be inserted between two DCFL gates, and the maximum

á+

Chapter 5 146

number of inputs is restricted to 2, DCFL nor gates followed by inverters are used to

perform the or function. Figure 5.L6 illustrates the logic diagram of the sticky bit gen-

erator using DCFL 3-input nor gates and inverters. It takes 6 gate delays to generate the

sticky bit, which is acceptable, because it is not needed until the final addition is fin-

ished.

s
Figurrc 5.16 The sticþ bit generator circuil

It is not necessary to implement all of the gates of the sticky bit generator in a sin-

gle block. Tlire nor gates and inverters can be placed wherever is convenient in the man-

tissa array, then connected together.

5.4.3 FinalAdder/Rounding

Two rounding algorithms, the CSA method and T1P (Trailing-1's Predictor)

method, were presented in Chapter 4. In this section, first, an 8-bit CSA final adder/

rounder and an 8-bit T1P final adder/rounder are implemented and compared. Then the

flnal 48-bit adder/rounder for the 32-bit floating point multiplier based on the better

method is implemented and simulated.

L. An 8-bit CSA method adder/rounder

Figure 5.1,7 illustrates the structure of an 8-bit CSA method adder/rounder. It

consists of half adders, full adders and two-to-one multiplexers. The half adders and

full adder used can be as same as those in the multiplier array. The implementation and

the characteristics of the multiplexer using MRN are illustrated in Figure 5.15 and

Table 5.6, respectively.

Chapter 5 147

muxmux

-Select TlP r

Control

v

kt r

00

1. 1

cin

y,t

P7 P6 Ps P4 -t P2 PI

Figure 5.20 The structure of TIP rounding technique.

C¡nrV

out

sI

Chapter 5

Figure 5.21The schematic of the control logic.

150

0
L
T

L
I
N

600

500

400

300

0M - a0

=

OM

OM

0t'4 =
200 - 0¡4 =

7+L -?9711 -
0
L
T

L
I
N

600 OM

e00

OM400

OM

-l

M

f4

P7

Power

26 1512M

14 0 _ 0M

vlT
AOL
TTI i30-0
TAN

L
i20

112 _ 1

rrl,rir
3 .0N

l

4 _ 0N

++t'4

0

r , l r r

2.0N
TIME (LÏN]

1 _ 0N

Figurrc 5.23 The HSPICE simulated results for the worst case of the 8-bit TlP adder/rounden

Table 5.7 The comparison of the two implemented rounding methods.

delay
ps

area

mm2

po\iler dissipation
m\ry

CSA)')) 0.376 153.0

T1P r.t2 0.280 t28.5

5.4.4 Exponent Block

The exponent block consists of an 8-bit adder, a sign generator and an overfloø

underflow detector. The sign generator of the IEEE floating point multiplier is simply

an exclusive-or gate. Figure 5.24 illustrates the logic diagram and the implementation

of the exclusive-or gate using MRN. The performance of the xor gate is shown in

Thble 5.8.

Chapter 5 t52

3. Performance comparison

Table 5.9 shows the comparison of the 32-bit floating point multipliers (U of A)

with the AT&T GaAs heterojunction FET 32-bit multiplier [98]. It can be seen that our

chip has less than half delay, uses about 12Vo area and saves half power comparing to

AT&T chip. Since the AI&T chip is the only other 32-bit multiplier reported in this

field, a 16x16-bit fixed point multiplier has also been designed and implemented with

the same techniques used in the floating point multiplier in order to compare with other

GaAs technologies. Table 5.10 shows the comparison of our 16x16-bit multiplier with

other 16x16-bit multipliers. It can be seen that our chip has the best performance in

terms of delay, area and power dissipation.

Table 5.9 The performance of 32-b¡t multipliers

Table 5.10 The Performance of 16x16 Multipliers

5.5 Summary

A novel GaAs VLSI layout approach, called the Modified Ring-Notation

approach, is described. This approach maintains the advantages of the original Ring

Notation while reducing layout area and delay.

The floating point multiplier presented in the previous chapter was implemented

by the new layout approach. The combination of the fast arithmetic architecture and

compact layout style achieves 4ns multiplication time with 3.5W power dissipation at

75"C giving 14 mWlMHz. The area of the chip is 2.43mm by 3.77mm (excluding pads)

Technology Format Method
Delay

,¡s

Area

^^2
Tbansistors

Density

lmm2

Power
w

mW
I|l{Hz

AT&T GaAsHFET

1pm

IEEE32 (4,2) 9.25 8x9.5 49,700 654 7 74.75

U ofA GaAsMESFET
0.8¡rm

IEEE32 m. CS 4 2.43x3.77 28,000 3056 3.5 L4

Authors Ibchnolory Method Delay
ns

Area

^*2

FETb Density

lmm2

Power
w

mW
IÑlT{z

Sekiguchi

Sumitomo(1990)

GaAs

(0.7pm)

m. Booth, WT

multi-chip

7.6

4X3.75 X3.75 4 X 3906 278 4X1.1 33.4

Singh et al

rrr(1990)

GaAs

(0.7pm)

CS 4.75 3.2X2.8 11708 t307 2.61 12.4

Kajii et al

(1e88)

GaAs

HEMT

4.1 6,3 X 4.8 15000 496 6.2 25.4

Cui et al

U of A (1994)

GaAs

(0.8pm)

m. Booth

&m.CS

2.93 1.4x2.5 11562 3300 t.u 4.2

Chapter 5 r58

and uses 28,000 transistors to give a density of 3056 transistorslm^2 for 0.8-¡.r,m GaAs

technology. It has the best performance amongst the current designs, which suggests

that the our floating point architecture and the new layout approach work very well for

the GaAs technology.

From the implementation of the 32-bit single precision multiplier, it can be esti-

mated that it will take 7.6ns to performance 64-bit double precision floating point mul-

tiplication if the same architecture is used.

Chapter 5 159

