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Summary

Many diatomic molecular systems have overlapping potential curves and it is well
known that if the electronic states are of the same symmetry then the curves undergo
an avoided crossing. Photo-transitions to these states have interesting spectroscopic
properties including the Fano profile shapes and very narrow lines above the dissocia-
tion limit. This study investigates the non-adiabatic behaviour of such excited states,

especially the predissociation of Nal by the ionic-covalent crossing.

A tunable narrow bandwidth (1 GHz) dye laser system pumped by a CuBr laser
has been constructed. The frequency doubling of this dye laser radiation to UV was
then used to obtain experimental data to investigate the nature of the ionic-covalent
crossing of Nal. The high resolution absorption measurements show that the spectrum
consists of many more band fragments than that observed with the excitation mea-
surements. Lines in the absorption spectrum of Nal have been assigned and analvzed
for the first time. Together with absorption strength determination, this data has been
used to demonstrate an inconsistency in the presently accepted molecular potentials.

Suggestions for resolving this conflict are presented.

Theoretical investigation was carried out on resonance structure in spectra,
including resonance positions, widths and intensities, corresponding to different pa-
rameters of the potential surfaces and the coupling strength. Numerical solution of the
Schrodinger equations and the complex scaling method were used to investigate the
non-adiabatic behaviour of the excited states of diatomic molecules and the model was
compared with the results of a semiclassical calculation. Using the assumption that
the change of resonance structure from the diabatic to adiabatic limit as the coupling
strength increases is smoothly continuous and that the contribution to the resonant
state can be considered as part diabatic and part adiabatic. a maximum internal am-
plitude method is proposed for the location of resonance position and width for a

w0 channel curve crossing system. This technique was used successiuily to demon-
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strate how resonance structure changes from diabatic to adiabatic limit as the coupling
strength changes for a set of model potential curves. The method gives an improved

understanding of the origin of the resonance changes in a curve crossing system.



Statement of Originality

This Work contains no material which has been accepted for the award of any other
degree or diploma in any university or other tertiary institute and, to the best of my
knowledge and belief, contains no material previously published or written by another

person, except where due reference has been made in the text.

I give consent to this copy of my thesis, when deposited in the University

Library, being available for loan and photocopying.

Signed:essiasmsmumna Wenhua Qin (M.Sc.)

Date:...... 6/?6 June, 1996



xi

Acknowledgments

It is with sincere appreciation that I thank my supervisor, Dr. Donald McCoy, for
his expert guidance, invaluable ideas, continual encouragement and deep interest in all

aspects of this research.

Discussions with Dr. Lee Torop and Dr. Alastair Blake were of much value

and were greatly appreciated.

I would also like to thank Mr. Peter Davis, Managing Director of Norseld Pty.
Ltd., for his continuing support for providing the CuBr laser tubes and other laser

facilities as well as financially supporting the last year of this study.

[ am indebted to Dr. J. Wang for providing her original program of optimization
and for solving the coupling equation; to Dr. G. Liu for his recommendation of the

graph program which was used to produce the diagram in this thesis.

I would also like to thank Mr. R. Nation for his friendly and effective technical
assistance and advice; Mr. E. Hirsch for translating German literatures; Mr. R. Leeve
(Norseld Pty. Ltd.) for making the Nal cell; Mr. M. Shorthose and Mr. J. Smith
(Electronics Services), Mr. J. Schache and Mr. G. Eames (Student Workshop), Mr.

M. Ferraretto (Computer Officer) for their technical assistance and advice.

[ would also like to thank Mr. P. Foster for proof reading part of the thesis

and useful discussion.
Finally I would like to thank my parents for their encouragement.

Financial support during this research was provided by a University of Adelaide

Postgraduate Research Scholarship.



xii

List of Symbols

(o]

H ™

a;" ot = m Q ®

R T -

o~

M
M

Einstein coefficient

electronic coupling strength

rotational constant
Einstein coeflicient
Boltzmann factor

speed of light

energy

energy level

electronic charge

motion coupling strength
Franck-Condon factor
motion coupling strength
statistical weight
Hamiltonian

Planck’s constant

=h/27

electronic coupling strength

intensity

total angular momentum (rotational quantum number)

Boltzmann’s constant
wave vector
cavity length

litre

length of the illumination part of the grating

Molar

mass of nucleus



z =z 3

>

=~ B & B v B I

-~

s o<

<

X1l

mass of electron

population

quantum number function
transition rate

possibility

power

amplitude of semiclassical wavefunction
partition function

branch parameter

radius of mirror

internuclear separation
equilibrium position of potential curve
crossing point

Honl-London factor

absolute temperature

time

time

potential energy

electronic coupling strength
vibrational quantum number
watt

beam radius

width

mixing parameter

collective electronic coordinates
Dunham parameters

phase

phase



xiv

IF line width

A wavelength of radiation

7 reduced mass

v frequency of radiation

9) total electronic angular momentum
p energy density of photon

o absorption cross section

by electronic state with A =0

¢ = (r—re)/re)

o(z|r) wavefunction for electronic motion
xi(r) wavefunction for nuclear motion

v molecular wavefunction

Super- and sub-script

i,j,k.n,m iteration index
1,2,4,— identifies components of a paired quantity

! first derivative

& second derivative

a adiabatic representation
d diabatic representation
b bound state

c continuum state

e electron

o= adiabatic upper state

- adiabatic lower state
npper state in a transition

lower state in a transition



Chapter 1

Introduction

1.1 Introduction

Much of our knowledge about the structure of atoms and molecules is based on spec-
troscopic investigations. Information on molecular structure may be derived in various

ways from the absorption or emission spectra generated when electromagnetic radiation

interacts with the molecules.

In molecular physics, the enormous mass difference between nuclei and the
electron implies a much faster motion of electrons than that of the nuclei. This al-
lows the assumption to be ;nade that the electronic motion is separable from that of
the nuclei. Thus the electronic motion can be described by the electronic Hamilto-
nian and electronic wavefunctions for fixed nuclear positions. This is the so-called
Born-Oppenheimer approximation (Born and Oppenheimer, 1927). In the Born-
Oppenheimer approximation, the nuclei move along the adiabatic electronic potential
curves representing the variation of the effective potential energy of the nuclei in dif-
ferent electronic states such that each electronic state is characterized by a definite
potential curve. Detailed analysis of the spectroscopic structure allows a better under-

standing of these potential curves and therefore of the molecular structure. If adiabatic

L

=
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potential curves with the same symmetry approach with changing internuclear sepa-
ration, they will exhibit an avoided crossing according to the non-crossing rule (von
Neumann and Wigner 1929, Landau and Lifschitz 1958). However, it has been found
that the avoided crossing phenomena can cause a break down of the Born-Oppenheimer
approximation showing that non-adiabatic behaviour can become significant. Transi-
tions occur between the two adiabatic states which are described by the Landau-Zener

non-adiabatic transition probability Prz. (Landau 1932(a), (b) and Zener 1932).

If one of the non-crossing pair of potential curves supports a bound state for
nuclear motion and the other a near energy continuous state, the molecules initially
prepared in the bound state will decay into the continuous state due to non-adiabatic
transitions between the two adiabatic states. This is called predissociation. It has been
shown that in such cases the molecular system is better described by electronically
coupled states in the diabatic representation (O’Malley, 1971). The diabatic potential
curves cross at the location of the avoided crossing in the adiabatic representation. Fig.
1.1(i) gives a typical cxample. taken from potential curves of Nal, where the dotted
lines represent the non-crossing adiabatic states. For the same total energy, if the
electronic coupling between the two crossing diabatic states is strong, then the Born-
Oppenheimer approximation is valid and the upper adiabatic state is a bound state. If
the electronic coupling is very weak, the Born-Oppenheimer approximation completely
breaks down, the molecular system behaves diabatically and the upper state leads to

a continuous spectrum.

Interesting cases arise for intermediate coupling between the two electronic
states when there are quasi-bond states which predissociate. These states are neither
adiabatic nor diabatic. The resonance structures of these states may vary from very
sharp lines to very broad lines. The complexity of the spectrum and the discontinuous
rotational line progression between bands makes it very difficult to determine the spec-

troscopic constants from the experimental data. In the case of Nal. this complexity is
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Figure 1.1: (i) Some potential curves of Nal with an avoided crossing; (ii) the clas-
sical description of the dynamics in the avoided crossing region; and (iii) the FTS

experimental results on the Nal transition states (a) and free Na atoms (b).



further compounded by the high temperature of the vapour used in the experiment.

1.2 Spectroscopic Investigation on Nal

Diatomic alkali halide molecules have been the subject of numerous experimental and
theoretical investigations. Their ground states are 'S+ ionic states consisting of an
alkali metal positive ion and a halide negative ion while each low excited state is a
covalent state consisting of alkali and halide atoms. The lowest optically accessible
excited states are 2 = 07 and 1 states. Much of the interest in these systems derives
from the fact that the 0% state and the 'S+ state have the same character and the two
adiabatic potential curves display an avoided crossing with an interchange of ionic and

covalent character.

Nal is the most interesting of the alkali halide molecules because its low excited
states display a bound character and give rise to a very dense line structure in the
absorption spectrum from ultraviolet to visible (Berry 1979). None of the other alkali

halide molecules show this absorption line structure.

Using a classical picture, Berry (1957) described the behaviour of alkali halide
molecule as follows: The absorption of light carries the molecular system vertically
from the ground state to an excited state and produces a change in the electronic wave
function corresponding to the transfer of an electronic charge along the internuclear
axis from the halide to the metal. The nuclei then move apart across the relatively
flat region of potential energy toward the crossing point. As the crossing region is
reached, there are two possibilities for the behaviour of the molecule, as seen in Fig.
1(ii). The molecule may retain its electronic character as it moves further apart and
dissociate into free alkali and halide atoms with the Landau-Zener probability P;». or
it can remain in the same adiabatic state and change character with the probability

of 11 — Prz). In the second case the electronic wavelunction ve-adjusts itself. and.



effectively, an electron jumps back from the metal to the halogen. When this occurs
clectrostatic forces are rapidly set up which pull the nuclei back toward each other. As
the nuclei pass the crossing point again, there will be another (1 — Prz) possibility that
the electron returns to the metal, and the two particles, now neutral, come together
once more. The molecule in the excited state will oscillate in this way until it dissociates

or fluoresces as discussed later.

Time-resolved spectroscopy on a femtosecond time scale allows direct observa-
tion of such nuclear motion on a potential energy surface. Recently Rose et al (1988,
1989) have applied this technique to study the predissociation dynamics of molecular
systems, especially Nal. Fig. 1(iii) gives a typical picture of the time evolution in such
an experiment. A pump laser pulse places the Nal molecules in the excited state. The
molecular system will then oscillate in the way described above. A second probe laser
pulse, after an adjustable delay, monitors the formation of Na product. When the
probe pulse is tuned on resonance with the Na D-line it probes the population of free
Na atoms from dissociation. When tuned to off resonance, the probe pulse detects the
population of the perturbed Na atoms still trapped in the “transition state” ([Na...I]
) where the internuclear distance is large. The oscillation of Nal molecules trapped in
the adiabatic state was then monitored until they eventually dissociate into free Na
and I atoms. The experimental observations are shown in Fig. 1.1(iii) where the time
series has a damped oscillatory structure, whose damping frequency reflects the motion
of the wave packet in the excited state and the damping reflects predissociation rate.
This femtosecond “transition state” spectra (FTS) is a new tool for the spectroscopic
study of transition processes and allows direct measurement of the wave packet evo-
lution, potential width, the Landau-Zener parameter and thus the electronic coupling

strength.

Although Nal has received extensive experimental and theoretical study, there

is still very limited information about the excited states. Several authors have at-



tempted to obtain information about the potential curves for the excited state. How-
ever the currently published potential curves cannot explain all the experimental data
and do not agree with each other within the experimental errors. Analysis of the
absorption spectrum was plagued by its high density of lines and the discontinuous
band fragments. On the other hand, the broad band nature of the femtosecond pulses
limits the energy resolution of the FTS technique to perform accurate analysis of the

potential curves.

Extensive study of the absorption spectrum over a broad wavelength region was
reported by Davidovits and Brodhead in 1967 on Nal and they presented a potential

curve which covers the transitions to the 2 = 1 state as well as 01 state.

Van Veen et al (1981) distinguished between absorption into the 0% and 1 state
using the photo-fragmentation spectroscopy method for wavelengths between 300-334

nm and derived the potential curves for these two states.

In a UV laser spectroscopy investigation, Schaefer et al (1982, 1984) measured
the fluorescent excitation spectrum of Nal which is simpler than the absorption spec-
trum, and 28 rotational band fragments were analyzed and assigned using the early
version of Child’s semiclassical theory (Child, 1976, 1991(a)). The ohserved energy
levels were then fitted to the Dunham series for the upper adiabatic bound state and
the X'X* diabatic bound state. The result of the best fit with a minimum standard
deviation was used to assign the vibrational quantum numbers and the corresponding
Dunham parameters were used to calculate the vibrational energy levels and their rota-
tional constants outside the observed energy region. Potential curves were constructed
based on these calculated values with the RKR method (Schaefer et al, 1984). How-
ever, the location of the upper state potential curve relys on the accuracy of the lower
vibrational states that were not measured but proposed from thecretical extrapola-
vion of the Dunham parameters found from a limited region ot the spectrum at much

aizgher energy. The extrapolation would be expected to produce laree errors at the
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lower energy region of the potential curve. This may be the reason that their upper
state potential curve locates at a smaller internuclear distance than that of van Veen

et al (1981) with a discrepancy cannot be explained with experimental errors.

Telle and Tambini (1989) noted a controversy in the relative position of the
0+ state and 1 state. They found that the 0% potential curve given by Schaefer et al
(1984) actually lies below that of the 1 state derived from the experimental data of
Davidovits and Brodhead (1967) which contradicts the measurement of van Veen et al
(1981) and the theoretical studies of Zeiri and Balint-Kurti (1983) that the 0% state
lies above the 1 state for alkali halide molecules. Their investigation, however, was

unable to clarify the controversy.

Wang et al (1990) questioned the potential curves of Schaefer et al (1984) and
suggested that they indicate an electronic coupling strength between the two diabatic
states about 4 times bigger than that of their own estimation in deriving the potential
curves. They then presented analytical expressions for the 1XT+ and A0T diabatic
states of Nal to fit the term energies given by Schaefer et al with a numerical optimiza-
tion procedure. The resulting 0+ potential curve is in good agreement with that given
by van Veen et al although the B values for both potential curves are slightly smaller

than that of the potential curve given by Schaefer et al.

Most of the work of this thesis is aimed at investigating the controversy dis-
cussed above and to derive a more accurate potential curve which is consistent with

the known facts.

1.3 This Study

A general description of the quantum mechanical and semiclassical theory for analyz-
ing predissociation caused by the crossing of two diabatic electronic potential curves

having the same symmetry is presented in Chapter 2. Particular attention will be given



to the breakdown of the Born-Oppenheimer approximation, the adiabatic and diabatic
description of molecular systems, the solution of the coupled equations, Child’s semi-

classical theory for predissociation and the complex scaling method to locate resonance

positions and widths.

A high resolution tunable UV laser was designed and set up to carry out a
spectroscopic absorption investigation of Nal. Details of the principle and performance
of the laser system are given in Chapter 3. This UV laser facility uses a CuBr laser
to pump a folded cavity dye jet laser system containing a grazing incidence grating
dye oscillator and an external amplifier employing a dye jet. The band width of the
dye laser is about 1 GHz. A BBO crystal is used to frequency double the visible laser

radiation to the ultra-violet for the experiment.

Chapter 4 gives a general description of the spectroscopic characters of Nal. A
modification of the numerical optimization program of Wang et al (1990) was employed
to fit analytical potential curves to the spectroscopic data given by Schaefer et al
(1984) and to optimize the Dunham parameters so that the position of sharp lines of
the observed rotational band fragments occur in better coincidence of the hypothetic
diabatic and adiabatic levels. Chapter 5 reports measurements of the high resolution
absorption spectrum with the tunable UV laser described in Chapter 3. The spectrum is
then analyzed with Child’s semiclassical theory and the Dunham parameters presented
by Schaefer et al (1984). The analysis extracts new information about the position of
the excited state potential curve and found that a departure from the excited state
potential curve given by Schaefer et al (1984) is necessary to account for the absorption
spectrum. A new potential curve is then derived which is consistent with the observed

results.

In the last Chapter, a theoretical investigation on resonance structures, includ-
ing resonance positions, widths and intensities, corresponding to different parameters

of the potential surfaces and the coupling strength is presented. Semiclassical scatter-



ing theory, numerical solution of the coupled Schrodinger equations and the complex
scaling method were used to investigate the non-adiabatic behavior of a crossing sys-
tem. This study has successfully demonstrated how resonance structure changes from
diabatic to adiabatic limit as the coupling strength changes for a model potential curves
of MgH and is an aid to understanding the origin of the resonance behaviour in a curve

crossing system.



Chapter 2

Predissociation of Diatomic

Molecule by Curve Crossing

2.1 Introduction

Predissociation induced by the crossing of two diabatic potential curves is of very
frequent occurrence in diatomic molecules. The coupling of the vibrational levels of an
excited electronic state to a vibrational continuum will cause broadening and shift of the
energy levels. The level shifts are of about the same order as the broadening and may be
difficult to observe. The widths of the resonance show very strong variations. They may
vanish at some special positions and become very broad at some others (Child, 1991).
When the width is broad, some of the lines may overlap and become unresolvable
so that in general one may find sharp lines, broad lines and continuous regions in
the absorption spectrum. The complexity of the spectrum and the discontinuous line
progression between band fragments makes it very difficult to analyze the observed
spectrum. Over many years, the nature of this coupling has attracted much interest

with the aim of understanding its quantum mechanical properties.

The basic idea of the quantum mechanical description of a molecular problem

10
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is to take advantage of the enormous mass difference between nuclei and the electrons
which implies a much slower motion for the nuclei with respect to the electronic motion
in low energy molecular physics. From this one can assume that the electronic motion is
separable from the nuclear motion and atoms move along adiabatic electronic potential
energy curves. This is the well known Born-Oppenheimer approximation (Born and
Oppenheimer 1927) which has been at the foundation of molecular physics for decades.
In the Born-Oppenheimer approximation if two potential curves of the same symmetry
come close together they will exhibit an avoided crossing according to the non-crossing
rule (von Neumann and Wigner 1929, Landau and Lifschitz 1958). This corresponds
to an intuitive picture of a fast moving electronic cloud adiabatically adjusting to the
slowly moving nuclei. Although this model is generally successful, such an approxi-
mation can fail in some cases when the adiabatic electronic potential curves exhibit
an avoided crossing, suggesting that nonadiabatic behavior must be considered. It has
been shown that diabatic states have proved to be extremely useful in the interpreta-
tion of the nonadiabatic behavior (O’Malley 1971, Whetten et al 1985, Balint-Kurti

and Shapiro 1985, Torop et al 1987, Kirby and Dishoeck 1988, Wang 1989).

2.2  Adiabatic and Diabatic Representation

In quantum mechanics a molecular system is described by the solution of the

Schrodinger equation

(H— E)¥ =0. (2.1)

The much slower motion of nuclei with respect to the electronic motion due to their
enormous mass difference make it possible to separate the nuclei kinetic energy operator

T. from the rest of the Hamiltonian H, (O'Malley, 1971):

H=T. +H..

—
()
[B)

—
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For non-rotating diatomic molecule 1; is given by:

R &2
To=_ % 2.3
2u dr? (2:3)
with 4 = mgmy/(mg, + my) the reduced mass of the nuclei and r the internuclear

distance. H,. is then the electronic Hamiltonian:

N 2 2 2 2 7, 2
H=Y (—.ﬁ—v? N, e—) g, e (2.4)

Zme Tiq Tip j#i Ty i

where the sum is over all IV electrons, m. is the electron mass, Z, and Z; are the
nuclear charges of the nuclei a and b, and z;,, zi, xi; are the distances of electron 2

from nuclei a, b, and electron ) respectively.

For a basis set of the electronic Hamiltonian {¢;(z : )}, where « denotes all
the electronic coordinates, the full wave function for a non-rotating diatomic molecule
can be expanded in the basis set each multiplied by a nuclear motion wave function
xi(r) as

U(z,r) = Z oi(z 2 r)xi(r) (2.5)
Substituting into Eq. (2.1) and multiplying both side on the left by ¢7 in turn and

integrating over all the electronic coordinates give (O’Malley, 1971):
(T + Gii + Via(r) — E)xi(r) = = >_(Vij + Fi; + Gij)x;(r) (2.6)
J#

which is the formal set of coupled equations for the nuclear wave functions, where

Vi(r) = < ¢;|H.|¢: > (2.7)
Fj = =2(K*/2u) < §i[V:|d; > -V, (2.8)
Gy = (h*/2p) < $ilV.lg; > . (2.9)

The diagonal matrix elements of the electronic Hamiltonian H, are the electronic po-
tential curves. The electronic coupling terms V;; (i # j) are the electronic couplings
of the electronic states and Fj; and G;; represent the kinematic coupling of nuclear
and electronic motions. There are two possible choices of the basis set to represent
the adiabatic or diabatic behavior of the molecular states which be described in the

following sections.
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9.2.1 Adiabatic representation

In the adiabatic representation, the basis set is chosen to be the electronic eigenfunc-

tions ¢¢ of the electronic Hamiltonian H, satisfying the eigenvalues equation
H.|¢? >= E|¢} > (2.10)

In this case V2 =< ¢}|H.|¢} > are diagonal and the adiabatic electronic potential
curves undergo an avoided crossing if they have the same symmetry in accordance
with the non-crossing rule. The basis set {¢?} constitutesthe adiabatic representation
of the electronic molecular states. The coupled equations for the nuclear wave function
Eq. (2.6) become
(T, + G + VE(r) = B)xi(r) = = 2(Fij + Gij)xj (7). (2.11)
JF
For low-lying molecular bound states, the motion coupling terms Gy; and Fj;
are generally very small and can be neglected so that the nuclel move as if in a static
field of electronic charge. That is, the electrons are considered to move so rapidly
compara{with the nuclear motion that their effect on the nuclei is a spatial distribution
o?j\gl—ectronic cloud which depends on the relative position of the nuclei and the energy of
the electronic state, but does not depend on the details of the electron dynamics. This
results in the Born-Oppenheimer approximation and the set of uncoupled Schrodinger
equations

(T + Vi (r) = E)xi(r) = 0. (2.12)

The electronic energy eigenvalue Vi(r) becomes the potential energy for nuclear mo-

o

2x? are uncoupled, they are stationary states and

tion. Because the adiabatic states @

give an excellent description of the ground and low-lying electronic states of molecules.

However in some cases, especially when the two potential curves of the same
symmetry come close together and undergo an avoided crossing, the motion coupling

terms may become large in the avoided crossing region and induce strong transitions
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between the adiabatic molecular states known as nonadiabatic transitions. In such
a situation the adiabatic description of molecular states as stationary states becomes

invalid in the regions of strong nonadiabatic coupling.

2.2.2 Diabatic representation

Another choice of the basis set is one that makes the motional coupling (G;; and F;;)
zero and then the off diagonal electronic coupling matrix elements (V;{ =< ¢¢|H.|¢% >)
are non zero. Thus, the electronic wavefunctions are not eigenvalues of H,. Such a
basis set forms the diabatic representation of the electronic states and the diabatic
coupled equations, from Eq. (2.6), are

(Tr + Vig(r) = E)xi(r) = = 3 Vid(r)x§(r) (2.13)

J#

where the superscript ‘d” denotes the diabatic representation. The two diabatic elec-
tronic potential curves cross in the region where the adiabatic potential curves suffer an
avoided crossing. The nonadiabatic transitions between the molecular states are caused
by the configuration interaction, represented by the off-diagonal matrix elements sz

as shown in Eq. (2.13).

Although setting the motion coupling terms G;; and F}; to zero does not provide
an acceptable general definition of diabatic electronic states (Torop et al, 1987), it can
be taken at least as an adequate approximation for the current study. In practice the
diabatic representation has been proved to be extremely useful in the interpretation of

experimental results concerning the non-adiabatic behavior.

2.2.3 Coupled equations for two states problems

Usually, in curve crossing problems, only two interacting states are involved or only

the interaction between two states are considered important because of their energy
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separation from other states. Therefore, the following study will focus on the two state

problem where the diabatic coupled equations become

(-24& + VA - B)xdr) = —Virx()
(~2& + VAR - E)xdr) = ~VAXi).

(2.14)

Since the diabatic and adiabatic electronic wavefunctions both form a complete
set and the quantum mechanics requires that they are orthogonal, it is possible to write
the adiabatic electronic wave functions as a linear combination of the diabatic electronic
wave functions and vice versa. The transformation between the diabatic and adiabatic

electronic wave function has the form of (Torop et al 1987)

¢2 = ¢tcosh + $3sind :
! ' : (2.15)
$2 = —¢isind + ¢lcosh
where 6 is defined as
1 (Vi) = V()
= = 2
7 2t(m ( VI (2.16)

which changes rapidly in the crossing region. With such a transformation the adiabatic
nuclear motion coupling matrix can be calculated and the adiabatic coupling Eq. (2.11)

can be written as

ﬁ2 2 d B _ 2 2 ; 5

2 (& V) + BE@ - B i) = —E (2@ a0,
2 2 ’
gu ( ar? =+ V’Z( ) Zu(%)2 - E) Xg('f') = hz (j:-g + “ii :7') Xl( )

The relationships between the diabatic and adiabatic nuclear wave function and po-

tential curves are:

x? = x%cosh + x3sind
(2.18)
Xs = —~x%sind + x5cosd,
and
o= (v va R -V )
(2.19)

s = 3 (va+va- -V e ).

Eq. (2.19) also imply that the diabatic coupling term Vd(r) has a significant

contribution to the adiabatic potentials only around the crossing region. The minimum



16

separation between the two adiabatic potential curves locates the internuclear distance
where the diabatic potential energy curves cross and is equal to 2V,%(r,). Sometimes the
adiabatic potentials are denoted as V. and V_ for the upper (V;2) and lower (V3) po-
tential curves. For convenience the superscript d for the electronic Hamiltonian matrix

elements and the nuclear wavefunctions will be neglected in the following discussion.

Examples for the changes of the diabatic (solid lines) and adiabatic (dotted
lines) potential curves, 4, %, and ji—f as a function of the internuclear distance for Nal
and KI are shown in Fig. 2.1 based on the values given by Rittner (1951) except the

coupling strength used for the adiabatic potential curves are 5 times stronger than the

actual value to emphasis the noncrossing region.

Rotational effect

There are two additional modes of motion in a diatomic molecule which do not occur
for atoms. One is that the nuclei can vibrate relative to each other through the inter-
nuclear axis which has been described in Chapter 1. The potential curves represent
the potential energy of such vibration. The other is that the molecule can rotate as a
whole about an axis passing through the center of gravity and, in most cases especially
for large J, perpendicular to the internuclear axis. To account for the rotational motion

of the nuclei, an extra energy term —J—(%ﬁ is added to the potential energy:

J(J + 1)A*

Vir) = i) + =5

(2.20)

where Vo(r) is the potential energy with no rotation and J is the rotational quantum
number. This extra term is associated with the centrifugal force due to the rotational

angular momentum (Herzberg 1950 p.426).

Numerical methods for obtaining solution of bound state or coupled channel

Schrédinger equations have been developed and used over many years. Among them
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Figure 2.1: Examples for the changes of the diabatic (solid lines) and adiabatic (dotted
lines) potential curves, g, %, and fﬁ—g as a function of the internuclear distance based on

the values given by Rittner (1951). The coupling strength for the adiabatic potential

curves are 5 times greater than the given values to emphasis the non-crossing region.
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the renormalized Numerov method developed by Johnson (1977, 1978) provides one of
the most efficient. It has the advantage of speed of computation, quick convergence,
stable solutions and ease of programming. A description of the renormalized Numerov

method for solving the Schrédinger equation is presented in Appendix A.
As an example, the coupled equations are solved for a typical crossing system:

Vi(r) = 18154.95 exp[2.2039(r — 2.48)] — 8000 cm~! (2.21)

Va(r) = 15000 [1 — ezp(—1.9685(r — 1.6))]2 cm™!

with Viz = 705 cm~! and r in A. The transition strength factor, similar to the Franck-

Condon factor, given by

X1+ x2 >* (2.22)

I =<x,

is show in Fig. 2.2 for transitions from ground states with potential minimum which
favor the transitions to the repulsive edge of V; and V;. It is assumed that the electronic
transition dipole moment for the states are equal and constant. The diabatic and
adiabatic potential curves and their wavefunctions corresponding to different energy

positions are shown in Fig. 2.3.

2.2.4 Near diabatic and near adiabatic case

The diabatic and adiabatic representations are theoretically equivalent. But a number
of considerations may weigh in favor of the choice of one or the other for representing

that molecular potential.

In the two limiting cases where the electronic coupling or the motion coupling
terms approach zero, the resonance of the molecular states approach the diabatic or
adiabatic bound states respectively. In the near diabatic case, the electronic coupling
strength is so small that the resonance character is close to the diabatic behaviour and
the resonance positions are close to the eigenvalues of the diabatic bound states. As

the electronic coupling strength increases the mixing of the two diabatic wavefunctions
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Figure 2.2: Examples of the transition strength factors I as a function of energy for
a typical crossing system, Eq. (2.21), with transitions to the repulsive edges of V2 (a)

and Vi (b). The A and © are the positions of the diabatic levels calculated from the

14000
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Schrédinger equation and the Child’s semiclassical theory (Child 1991) respectively,

likewise t and } are calculated for adiabatic levels with ny = 21 and n, = 0 from the

left. The wavefunctions for different energy positions representing sharp resonance,

broad resonance and off resonance are shown in Fig. 2.3.
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Figure 2.3: Examples of diabatic (a) and adiabatic (b) wavefunctions for on resonance
and off resonance corresponding to different positions in Fig. 2.2. ny denote the nearest
eigenvalues of the diabatic bound state V3. The diabatic (a) and adiabatic (b) potential

curves are also marked.
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increases. When the electronic coupling strength is very large, the adiabatic character
becomes dominant and the resonance positions are close to the eigenvalues of the

adiabatic bound state.

The non-adiabatic transition probability

The presence of motion coupling between the two adiabatic electronic states allows
the transition from one adiabatic state to the other. The transition probability for a
single passage through the crossing region known as the Landau-Zener nonadiabatic
transition probability, is given by (Landau 1932, Zener 1932):

V2
P[z = EexTPp (— hUL;;‘?) (223)

where Vi is the electronic coupling strength at the crossing point, while v and AF
are the relative velocity of the two nuclei and the slope difference of the two diabatic

electronic potential curves at the crossing point respectively, given by

= Gz - £
v = U T
AF = E(Via(rs) - Valrs)

with Ez = ‘/11(7’;5) = ‘/22(7';5).

The Landau-Zener nonadiabatic transition probability provides an indication,
in a particular situation, of whether the near diabatic or near adiabatic case gives a
better description of the molecular states. If P is small (when Vi, is very large), there
is little transition between the two adiabatic electronic states and the molecular state
will mainly remain in the same adiabatic electronic state and the molecular states are
near adiabatic. If P, approaches to 1 (when Via — 0), a nearly complete transition
from one adiabatic to the other adiabatic electronic state occurs. Then the molecular
states will mainly stay in the same diabatic electronic states. and this is a near diabatic

case. In the region of intermediate electronic coupling strength. where P, = 0.5, the
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two states are strongly mixed. A theoretical study for the transition from near diabatic

to near adiabatic case by varying the coupling strength is given in Chapter 6.

Fig. 2.4 shows the changes of Landau-Zener nonadiabatic transition probabil-
ities as the energy changes for different coupling strength for the potential curves of

Nal. The actual coupling strength for Nal is taken to be 0.055 ev.

Explanation of the diabatic and adiabatic cases

Berry (1957) provided an intuitive picture to explain the near diabatic and near adi-
abatic cases for diatomic alkali halide molecules. As described in Chapter 1, upon
passing through the crossing region an electron may jump from one nuclei to the other
and the electronic wavefunction re-adjusts itself to the sudden change of character to
form a bound adiabatic state. To indicate whether such a jump is possible, an estimate
can be made of the relative velocity between the nuclei and the electron as well as the
distance they travel in such a jump. The mass difference implies that the electronic
velocities are about 40 times faster than that of the nuclei. Therefore in the time that
the nuclei move 0.1 A, the electron can move about 4 A. Thus, an electron jump from
one nuclei to the other would be possible if the crossing region is long enough and
hence the molecular system will be a near adiabatic case. Otherwise, it will be a near

diabatic case.

Although diatomic alkali halide molecule Nal and KI have similar electronic
character and potential curves, that is both have an ionic ground state and a covalent
excited state which undergoes an avoided crossing at a large internuclear distance, their
behaviour is completely different. For example, the absorption spectrum for Nal is a
very rich band spectrum in the UV while that for KI is a continuum. The physical
interpretation given by Berry (1957) for such a similar molecule resulting in a very
different behaviour is that the crossing region, where 8 changes rapidly, for KI lies

at a greater internuclear distance and is narrower than that of Nal. This is shown in
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Figure 2.4: The changes of Landau-Zener nonadiabatic transition probabilities plotted
against the energy measured from the potential minimium of the ground state for
different coupling strength for Nal. The bold line represents the actual situation of Nal

with a coupling strength taken to be 0.055 ev.
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Fig. 2.1. Thus an electron jump can occur for Nal but not for KI. In another words, for
KI, the Born-Oppenheimer approximation breaks down completely and the electronic
motion is not separable from that of the nuclei so the electronic wavefunctions do not

change their character and the KI molecule behaves diabatically.

2.2.5 Resonance states

In the study of the discrete energy spectrum of molecules, the excited states are found
to be very long-lived and are described by the uncoupled, bound state Schrodinger
Equation (2.12). The wavefunctions exist only at energies corresponding to the energy
eigenvalues of the bound state. When a bound state is perturbed, for example by a
vibrational continuum of the same symmetry as investigated in this study, its lifetime
1s reduced, and the eigenstate of the bound potential becomes a quasistationary or
metastable state. Such states can be regarded as resonant states of the molecular sys-
tem if their lifetimes are long enough to be well characterized. The wavefunctions exist
at any energy and can be calculated by the coupled equations. A resonance is char-
acterized by the resonance energy and its width or lifetime. The simplest theoretical
description of resonance states is that they resemble bound stationary states in that

they are “localized” in space (at t=0), and their time evolution is given by:
. I , A
Ye(t) = exp (——z(ET - zg)t/ﬁ> ¥-(0) = exp(—1Egt/h)¥,(0), (2.24)

where

Ep = E, —iT/2 (2.25)

is a complex resonance energy. E, and I’ are real and ' > 0. The presence of the

—I'/2 term represents a decaying state.

Experimentally resonances are usually associated with a sharp variation of
the cross section as a function of energy. Analysis of resonance spectra is one of

the most interesting and important features of spectroscopy. Resonant phenomena
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have been studied for many decades, but nevertheless some aspects are not yet fully

understood. Rather than looking for a general explanation of resonances it may well be

more appropriate to distinguish between various kinds of resonance phenomena (Volker
motealar a/b'tf:w/i

1984). In this section, we restrict ourselves to the area of Aspectroscopy and introduce

some definitions for resonance which are related to this study.

Shape resonance is a simple example which is closely related to the curve cross-
ing problem. It can be that the lower state V_ produced by the avoided crossing of a
bound state with a continuum state creates a potential barrier, such as that is shown

in Fig. 2.3(b), or is the result of centrifugal barrier effects.

The most straightforward and perhaps the most productive approach for single
channel resonance is through the calculation of phase shifts. It is shown that (Child
1974, 1991) the phase of the wavefunction in the asymptotic region will undergo a 7
phase shift on resonance which corresponds to the creation or cancellation of a node

in the wavefunction within the barrier region.

In many cases, a resonance may be very broad with the = phase shift occurring
over a broad energy region and it is necessary to find a suitable definition for the
resonance energy in this case. Allison (1969) suggested that an alternative definition
for resonance position is the energy where the amplitude of the wavefunction inside the
potential barrier, or the internal wavefunction, normalized by its asymptotic amplitude
reaches a maximum. A similar definition for the curve crossing problem is proposed in

Chapter 6 to describe the resonance behaviour in the intermediate coupling region.

For the multichannel case, one can use Feshbach projector operators to define
resonance (Feshbach 1958, 1962). However, definition of the operators is so difficult
for systems with many electrons that it has not yet been demonstrated that such an
approach provides a practical method for calculating resonance parameters to arbitrary

accuracy (Bardsley, 1978).
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The most fruitful definition for resonance is the “outgoing wave only” boundary
condition. According to Siegert “the cross section being the ratio of the intensities of
outgoing and incoming wave becomes singular if there is only the outgoing wave”
(Siegert, 1939). Such a definition has been widely used in semiclassical (Child 1991,
Korsch 1986) as well as quantum mechanical methods (Junker 1982 and Reinhardt
1982) to investigate resonance structure. More discussion about the Siegert state can

be found in §2.4 and Chapter 6.

It has been noted by Child (1991) that the precise equivalence between the
resonance positions and width associated with the three different prescriptions - inter-
nal amplitude, phase shift jump, and Siegert eigenvalue — applies only in the sharp

resonance limit. This is observed in Chapter 6 for broad resonances.

2.3 Semiclassical Theory

Only a few quantum mechanical problems have exact analytical solutions. In prac-
tice one has almost always to resort to an appropriate approximate methods or to
numerically solve the Schrédinger equation. Semiclassical approximations is the short
wavelength link between classical and quantum mechanics. Besides simplifying the cal-
culations and providing reasonably accurate numerical results, semiclassical approxi-
mations offer a conceptual way of understanding quantum processes. This is often
impossible in a pure quantum mechanical treatment. A very useful method is the
JWKB approximation for the wave function (Child 1974) and will be used in the fol-

lowing discussion.

In this section, the results of semiclassical theory on curve crossing developed
by Child (1970, 1974, 1976, 1979, 1991) are presented and the characteristics of the

resonance position and its width are discussed.
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2.3.1 Child’s semiclassical theory

Because Child’s semiclassical method is based on the assumption that the coupling
effect is only significant near the crossing point, the central problem for a curve Crossing
system reduces to an investigation of the general solution of coupled equations in the
crossing region. Outside the crossing region the Schrédinger equation is uncoupled and
its solutions can be approximated by the JWKB wavefunction x+(r) for the potential
curves of Vi(r) (Child 1974, 1991). In the semiclassical regions which are far away

from the crossing point and the turning points, x+(r) is given by

xe(r) &7 RLM(r)[Pieen(d /T:ki(?“)dT)-%-Plewp(—i / ki(r)dr)]  (2.26)

ryrs k;l/z(r)[Q;exP(i /T: ky(r)dr) + Qiexp(—i /T: ke(r)dr)] (2.27)

where

k() = [20(E — Va ()" /5, (2.23)

The basic idea of Child’s semiclassical theory is to follow the changes in the
amplitudes of the wavefunction (P and Q) in the nonclassical region. A diagrammatic
approach is developed and the connection matrix (see Appendix B) is used to follow
changes in the amplitudes and phases of the various JWKB terms in passing from one
semiclassical region to another. Fig. 2.5 gives a typical picture of a curve crossing
system and the corresponding diagram showing the transmission of fluxes through
the crossing region. Elements of the connection matrix including free propagation,
reflection from a classical turning point and passing through a curve crossing region

are given in Appendix B.

2.3.2 Application for curve crossing

Following the flow in Fig. 2.5 and applying the connection formulas to the wave func-

tions together with the outgoing wave only boundary condition for resonance, one finds
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b

Figure 2.5: Potential curves and connection diagram for predissociation by curve cross-

ing (after Child 1991).



that (Appendix B)

! 1 — Aexp(2:04) + Aexp(210;

.\ _ (1= eap(t) 20 o e

Q. AL = A 2ezp(—ix)(exp(264) — exp(2i6,))

where
oy = / " ko (r)dr (2.30)
a.bi+

8, = / " ky(r)r (2.31)
02 = a-+ 64. (232)
04 ay + B + X (2.33)
A exp(—mv) (2.34)
v = e[ () — Rulld) (2.35)
X argl(iv) — vinv + v + 7/4. (2.36)

In the above equations, at+ and by are the semiclassical turning points, r4 and r— are

the complex crossing points of the adiabatic upper V4

in the complex coordinate p

and lower V_ potential curves

lane, §, and 8, are the diabatic and the adiabatic phase

integrals, and x is a phase shift caused by the curve crossing. Eq. (2.29) requires that

(1= \)exp(2:04) + Nezp(216,) = —1. (2.37)

The semiclassical levels of the diabatic and adiabatic bound state are deduced

from the Bohr quantization condition:

0(Es) = (v2+%)7r (2.38)
0u(Bs) = (vst 3T (2.39)

Since these level schemes are never observable they were also called hypothetical levels
(Schaefer et al, 1984). Analytical expressions for the resonance energy shift A from

the bound state level and the predissociation line width [ were given by (Child, 1974):

FIWQ Qb
! . pALI%0)
Ay = —usinf, cosf.. T2 =

i

ucos 9, (2.40)

-
n
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for the diabatic case; and

h
i — ﬁu_lsin%cosﬁz, [,= u”lcos?d, (2.41)
v

for the adiabatic case. In these equations u = A=% — 1.

A more general formula, for any coupling strength, for the region in the neigh-

borhood of certain arbitrarily sharp lines is given by the equations (Child 1976, 1991):

E = (Ex+2Ey)/(1+ ) (2.42)

T = 2nz(l+v2)(By — Ey)?/[hoy(1 + z)°] (2.43)
where z = ufiwy /Ry is the mixing parameter and v = Aw, /Ad, .

It can be seen from the above equations that the predissociation line position
and width depend on the two nearby diabatic (E,) and adiabatic (E£,) hypothetic

levels, their local level spacings (fiw, and Awy) and the mixing parameter (z).

2.3.3 The vanishing predissociation line width

The analytical expressions for the predissociation line width predict that the sharp
lines (or the vanishing line width) always occurs when the hypothetical diabatic and
adiabatic levels are accidentally coincident. This is a very important characteristic of
the lines which can be used to identify the hypothetic level positions and may help lead
to final assignment of the spectrum. This technique was first successfully applied to
the assignment of IBr (Child 1976), and was more recently applied for Nal (Schaefer

et al 1984).

As seen in the previous discussion of this section, two sets of energy levels can
be considered. One is the set of eigenvalues of the Schrédinger equation Eq. (2.12)
for the diabatic (V) and adiabatic (V) bound states. The other is the set of semi-
classical hypothetical levels defined by the Bohr quantization conditions (Eq. (2.38)

and Eq. (2.39)) in Child’s semiclassical theory. It has to be pointed out that there are
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differences between the hypothetical levels from the bound state eigenvalues. Apart
from the semiclassical approximation, the adiabatic hypothetic levels differ from the
adiabatic bound state eigenvalue by a modified phase X which is caused by the cross-
ing. From Table B.1 in Appendix B and Eq. (2.39) one finds that for weak coupling
x ~ m/4 which will cause an energy shift equal to one quarter of the vibrational spacing
and this shift will reduce and then approach zero as the electronic coupling strength

Vi increases. Calculations for Nal in this study showed that this shift is only about 2

em~! for the adiabatic levels.

The hypothetical diabatic levels are the eigenvalues of a “modified” diabatic

bound state which is:

yol - e (2.44)

Ve (r>rg)

with a discontinuous step at 7, (see Fig. 2.5.). Calculation in this study showed that
the eigenvalues of such a “modified” diabatic bound state differ from those of the actual
diabatic bound state (V3) by about one vibrational level spacing for Nal. In the analysis
of the Nal spectrum reported by Schaefer et al (1984), the diabatic and adiabatic
hypothetic levels are regarded as the isolated bound state (V3 and V) eigenvalues. The

resulting potential curves, therefore, will not be in agreement with the later version of

Child’s theory (Child 1991(a)) and need to be re-calculated.

Fig. 2.6 shows the strength factors for a spectral region of Nal and the corre-
sponding hypothetic levels and the bound states eigenvalues. Two kinds of electronic
coupling functions were used for the calculation with one being constant with r while
the other is a Gaussian function about the crossing region. It was found that while the
coincidence of the two hypothetic levels provides a good approximation for the posi-
tion of a sharp line, the eigenvalues of the bound states seem to have little relationship
with the occurrence of the sharp lines. Calculations show that for a constant coupling
strength, the coincidence of the two bound state eigenvalues may be near the broadest

line. For a Gaussian function coupling strength. the coincidence may move from the
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Figure 2.6: Fragment of the strength factors defined in Eq. (2.22) for Nal with the
the positions of the hypothetic levels and the bound state eigenvalues for a constant
coupling strength (a) and a Gaussian coupling function (b). In both cases, the sharp
lines occur at the position of the closest coincident of the two hypothetic levels. The

symbols are the same as those in Fig. 2.2.
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broadest line towards the sharpest line as the width of the Gaussian function reduces.
There is no clear explanation for such behavior. However, a possible reason may be
that as the width of the Gaussian coupling strength reduces, the electronic coupling
function approximates more closely the semiclassical electronic coupling function which
has a constant coupling strength in the crossing region and has zero coupling outside

the crossing region.

Although it is unambiguously evident that the vanishing line width occurs

at the energy of the coincidences of the diabatic and adiabatic hypothetic levels, a

physical understanding of the reason for the sharp resonance is not clear. There is no

satisfactory interpretation directly from the coupled equations, diabatic or adiabatic,
occuyyence

which can be used to explain the occuwaee of sharp resonances and the suppression

of the outgoing wave through coupling at such a particular condition.

One possible physical explanation, in the semiclassical theory, comes from the
examination of the leakage rate of the curve crossing system. which is directly related

to the line width (Lefebvre 1988, 1990a, and Lefebvre and Child 1989):

T/2 = h2 kA 2 9,12
/~—§; |AF, (2.45)
where A is the normalized amplitude of the outgoing wave and & is the asymptotic

wave number. From Fig. 2.5, the amplitude of the out going wave is Q.. It is zero,

from Eq. (2.29) and Eq. (2.37), only on the condition that

exp(2i64) = exp(2i0y) = —1. (2.46)
Therefore
b, = (vy+1/2)7 (2.47)

or E, = F,. This means zero leakage rate or zero predissociation line width can only

occur when the two hypothetic energy levels coincident.
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2.3.4 The asymptotic analysis of the line width

For a curve crossing system which normalization is performed through the closed chan-

nel with the bound state wavefunction x;(r):
4+
/ Ixs(r)|2dr = 1. (2.49)

the asymptotic amplitude of the open channel wavefunction Y. provides a measure of

the dissociation rate of the molecular system (Lefebvre 1988, 1990a, and Lefebvre and

Child 1989).

With the semiclassical wavefunctions describing the curve crossing system, as
shown in Fig. 2.5, Child (1976) suggested that the amplitudes on the left turning
points a_ and a; are related to the normalization of the bound states. If a standard

normalized JWKB wave function

, 1/2 .
x(r) = <2uhwb> k;1/2(r)sin (/a ky(r)dr + 7r/4) (2.50)

Th?
is used for bound state wave functions, then the amplitude for the traveling wave will

be half that of the standing wave

|Ap| = (phws /2mh2) /2 (2.51)

In the diabatic case, from the connection matrix in Appendix B, [4;| = |P| =
|P"| = |Q|/X when there is no incoming wave. From Eq. (2.27) and Eq. (2.29) the

square of the normalized amplitude of the outgoing wave is

AP = kZM(r)QL) (2.52)
= 4kZN(r)A (1 = M)sin(8; — 6,)|Q | (2.53)

2 hLUQ -1 2 )
= ’;hz k2N (r)(1 = A%)sin?(6, — 6,) (2.54)

Substituting this into Eq. (2.45) with k(r) = k_(r) gives

2h
[= 2221 = A2)sin?(6, — 0,) (2.55)

T
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and with 85 ~ (vy + 1/2)7 the line width is

25&)2

T

= Nucos®t (2.56)

Similarly, in the adiabatic case, |As| = |Py| = 1Q.1/(1 - A2)1/2 and

AP = kZ'(n)IQI (2.57)
= 4k ()R = AD)sin®(8; — 04)|Q% ) (2.58)
- 2’;’;‘;* k=1 () A\ sin? (02 — 0+) (2.59)

and with 0, ~ (vy + 1/2)x the line width is

(1 = A)u"tcos?fs (2.60)

Eq. (2.36) and Eq. (2.60) agree with Eq. (2.40) and Eq. (2.41) except for a factor of
A2 and (1 — A?) respectively which approach unity in the weak and strong coupling
case. A similar result for weak coupling case was obtained by analysis based on the

stabilization method (Lefebvre and Child, 1989).

2.4 Complex Scaling Method

The operators in quantum mechanics representing physical observables are all self-
adjoint and therefore have real eigenvalues if the corresponding eigenfunctions fulfill
the standard boundary conditions. Thus one obtains an energy spectrum of real eigen-
values for the Hamiltonian, which are either discrete (corresponding to bound states)
or continuous (corresponding to continuous ot quasibound states). However, if one
“properly changes” the boundary conditions, so that the Hamiltonian H is no longer
self-adjoint, then H may have complex eigenvalues £ = E, —i['/2 corresponding to
cesonance states with the resonance energy £, and a finite lifetime I'. The eigenfunc-
tions of such states, which are often called Siegert states or Gamow states, have an

asymptotic characteristic of being an outgoing wave. Such a “proper change” of the
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conventional boundary conditions is associated with a certain mathematical extension
of the standard quantum mechanical formalism through the introduction of complex
variables. This idea was brought to a firm mathematical basis by Balslev and Combes
(1971), which is known as the complex scaling method (CSM), also called the complex

coordinate method or the complex dilation theory.

In the complex scaling method resonance is defined by the Siegert outgoing
wave only boundary condition and its corresponding wavefunction has a complex energy

E = E. —1T'/2, where E. is the resonance energy and I is the resonance width. This

also leads to a complex wave vector

_ e v
k=\/Z2[E- V(L (2.61)

For a Siegert resonance state the asymptotic behavior of the wave function for large

internuclear distance r is an outgoing wave

x(r) o exp(ikr) (2.62)
with
k= ko —iky (Ko, k1 > 0) (2.63)
or
k=Ke™ (K>08>0). (2.64)
where
g = tan'lé or %tan'1 ETF72EO (2.65)

with E, the dissociation energy of V(r).

It is clear from Eq. (2.62) and Eq. (2.63) that the amplitude of the outgoing
wave will diverge exponentially as r increases. This asymptotic divergence can be
avoided through the use of complex rotation of coordinates (Brandas 1987) by the

transformation

r—re? (2.66)
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provided that the rotation angle § is greater than the critical angle 3 define in

Eq. (2.65). Therefore we can write
x(r) o« exp(ikr) = expli KT cos(8 — B)] exp[—Krsin(d — Bl (2.67)

which approaches zero in the asymptotic region. Such a complex rotation of coordinates
is only a mathematical tool for the calculation of the complex energy eigenvalue and
has no physical meaning. The method for numerically calculating the complex energy
eigenvalues is essentially the same as that for a bound state and is detailed in Appendix

C.

The development of complex scaling method provides an approach to the direct
study of resonance through the introduction of complex variables. It is an attempt to
treat resonance states as bound states. Its application in a typical curve crossing system

is described in Chapter 6.



Chapter 3

A Tunable Ultraviolet Laser

System

3.1 Introduction

Laser, light amplification by simulated emission of radiation, produces intense light
sources with spectral energy densities which may exceed those of incoherent sources by
several orders of magnitude. Furthermore, because of their extremely small bandwidth,
single-mode lasers allow a spectral resolution which far exceeds that of conventional
spectrometers. Many experiments which could not be done before because of lack
of intensity or insufficient resolution are now readily performed with a laser source.
This brought about a revolution in optical technology and spectroscopy, and had a

far-reaching influence in various fields of science and technology.

This Chapter describes a tunable UV laser designed and set up in this work
for the spectroscopic study of Nal. It consists of a pulsed copper bromide (CuBr) laser
with a 16 kHz repetition rate which pumps a dye laser with a narrow bandwidth of
1-2 GHz and a tunable range from 528 nm to near infrared using different dyes. The

output of the dye laser is frequency doubled by a beta-barium borate (BBO) crystal

38
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to provide a tunable UV source from 290 nm to 350 nm. This tunable UV laser is then
used to obtain a high resolution absorption spectrum of Nal to investigate the nature

of its non-adiabatic crossing potentials, which will be presented in Chapter 3.

3.1.1 Theory of operation

If a molecule with energy levels £y and E absorbs a photon of energy hv = Ez — Ey,
it is excited from the lower energy level E; to the higher energy level E as shown in

Fig. 3.1(a). This process is called induced absorption with a total transition rate of
Pz = Bap (3.1)

which is proportional to the Einstein coefficient of induced absorption Bai, the energy

density of the electromagnetic radiation p and the total population Ny of level Ej.

After the excitation, the molecule in the excited state may spontaneously make
o transition to the lower energy level with the emission of a photon as seen in Fig. 3.1(a)

in an arbitrary direction.

The radiation field can also induce molecules in the excited state E, to make
a transition to the lower state E; by stimulated emission of a photon possessing the
same energy, phase and direction of travel as the inducing photon. The total transition

rate of emission is therefore given by
Py1 = (Ag1 + Brap)Na (3.2)

where A, is the Einstein coefficient of spontaneous emission, By, is the Einstein co-
officient of stimulated emission and N, is the population in the higher energy level

Es.

In thermal equilibrium, the population distribution :V; is given by the Boltz-
mann distribution

; gi - ,
Ny = 5 N exp(—E;/kT) (3.3)

]
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Figure 3.1: The energy levels for absorption and emission of radiation in a two level

system (a), three level system (b) and four level system (c).
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where the statistical weight g; gives the number of degenerate sublevels of the energy
level E; and
Q=Y giexp(—E:i/kT) (3.4)

acts as a normalization factor which ensures SSN; =N.
In the steady state field, the total absorption rate has to equal the total emission

rate. It can be shown that because the field obeys the Planck’s black body radiation

law (Planck, 1900), the relationships between the Einstein coefficients are (Einstein,

1917):
B, = % B, (3.5)
g
8rhi?
Ay = 3 By;. (3.6)

Eq. (3.5) states that for levels E,, E; with equal statistical weights go = g1 the prob-
ability of induced emission is equal to that of induced absorption. When an external
signal is applied to the molecular system (or the active medium), the net transition
rate induced is then proportional to the population difference in the upper and lower
energy levels. If the lower level is more heavily populated, the signal will be attenuated
by induced absorption. On the other hand, if the upper level is more heavily populated,
the signal will be amplified by stimulated emission. Therefore, it is necessary to obtain
a population inversion between the transition levels for a laser, so that stimulated emis-
sion is the net process. This is, however, impossible for a two level system in thermal
equilibrium as the Boltzmann distribution Eq. (3.3) indicates that the population in

the higher energy level is always less than that in the lower level.

Population inversion can be achieved in a three or four level system as shown
in Fig. 3.1(b) and 3.1(c). The ideal system for laser operation is the four level system
where the pumping source pumps the population from the ground state E; to an
excited E, which will then relaxes down rapidly through nonradiative processes to
another excited state Es. The population in level 3 will then make transitions to the

lowest excited state E4 by the emission of radiation where the population will relax
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back to the ground state rapidly to avoid an accumulation of the population. When the
pumping rate is strong, and the nonradiative relaxation rates of the population from
F, to B3 and from E4 to E; are fast, together with a long lifetime level Fj, population
inversion can be obtained between energy level F3 and E4 and laser action may take
place. Gas electronic discharges and optical pumping are the two most widely used

pumping processes for these systems.

3.1.2 Laser oscillation and laser cavity modes

Once the population inversion is realized, it is possible to obtain stimulated light am-
plification by adding mirrors which form a Fabry-Perot etalon as a resonant cavity to
introduce signal feedback. This is the final step necessary to produce coherent laser
oscillation. In the first stage of the lasing action, spontaneous photons are emitted in
every direction. The resonant cavity, by the reflection of the mirrors, will then select
photons which propagate along the cavity axis, and feed them back into the active
medium to be amplified. Spontaneous emission in all other directions will quickly pass

out of the active medium.

The longitudinal resonance for a cavity of optical length L can occur only at

frequencies of

c mec -
X—E (3[)

where A is the optical wavelength in the medium, c is the speed of light and m is an
integer. These frequencies correspond to the possible standing waves of the cavity.
Hence, there are an infinite number of possible oscillatory longitudinal cavity modes
with separation between two adjacent modes of Av = ¢/2L which is the free spectral
range of the cavity. However the actual number of longitudinal modes in oscillation
is restricted by the bandwidth of the optical gain of the active medium and the Q

factor of the resonator. Selection of the longitudinal mode is normally obtained by the

insertion of wavelength selection devices into the resonator.
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In addition to the longitudinal modes of oscillation, transverse modes can be
sustained as well, which refer to the variation of the optical fields in the laser cavity
over the cross-sectional planes perpendicular to the laser axis. The lowest order of
the transverse mode is the TEMgy mode, which has the best beam quality and the
flux density is ideally Gaussian over the beam’s cross section. The lowegl\grder of the
transverse mode, the better beam quality the laser has. Thus, high beam quality is
achieved by increasing the optical loss of high order transverse modes, for example, by

placing a pin hole inside the cavity.

A parrow bandwidth laser must operate at T E My, mode with a single or few
longitudinal modes. As will be seen later, most of the wavelength selection devices are
very sensitive to the incident direction of the light beam. Higher transverse modes will
then have a broader bandwidth because of the divergence. Operation in a low order
transverse mode for a laser pumped dye laser is normally obtained by focusing the
pumping laser beam into a very small region of the active medium which limits the

beam diameter together with a small pin hole to select the T E My, mode.

Some laser systems have such extremely high gain that they can emit very
bright and more or less quasi coherent beams from each end of the laser medium
without the mirrors, simply as a result of very high gain amplification of their own
internal spontaneous emission traveling along the length of the optical gain medium.
This kind of behavior is called ampli-ﬁed spontaneous emission (ASE), superradiance
or superfluorescence. Both the CuBr laser and dye laser used in this study have strong

ASE.

A detailed description of the operation of a laser system, the longitudinal and

transverse modes, one should refer to the work of Siegman (1986).
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3.2 The Dye Laser

The most important characteristic of a dye laser is its tunability. The widest spectral
range is covered by pulsed laser pumped dye lasers which can operate at any wavelength
from near UV at 311 nm to near IR using different types of dye. Since the discovery
of the dye laser by Sorokin in 1966, rapid progress has been achieved in dye laser
technology. Tunable dye lasers have found a wide range of applications in fields such
as spectroscopy, laser chemistry, isotope separation, trace analysis, cancer treatment,
etc. The copper vapour laser (or CuBr laser) pumped dye is often favoured because of
its high repetition rate when compared with other pulsed laser systems (YAG, N, and
excimer lasers) and its high power level giving high conversion efficiency when compared
with continuous wave (cw) lasers. This section summarized the basic technique for

wavelength tuning and spectral narrowing as it relates to this study.

3.2.1 Spectral narrowing and tuning of dye lasers

Organic dyes are characterized by a strong absorption band in the visible region of the
electromagnetic spectrum. The energy levels of a typical dye molecule in solution are
shown in Fig. 3.2. There are a manifold of singlet i electronic states, Sy ... S, and
triplet states T ... T, which are of importance for the operation of the dye laser. Each
electronic state has a number of vibrational levels superimposed on it. In addition, each
vibronic level has closely spaced rotational levels superimposed on it. These rotational
levels are broadened by frequent collisions with solvent molecules and form a near
continuum between each vibrational level. These give rise to the characteristic broad,
structureless absorption and emission bands in the electronic spectra of dye molecules
in solution. In thermal equilibrium most of the molecules are in the lowest vibrational
level of Sp. Thus in the absorption of pump radiation, the molecule may be excited to

the first excited single state Sy, or higher excited singlet states Sa (n > 1) with UV
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Figure 3.2: The energy levels of a typical dye molecule with radiative (solid lines) and

non-radiative (broken lines) transitions.
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pump sources. There are various rapid nonradiative relaxation processes in the excited
states of dye molecules, which accumulate the population in the lowest states of S;.
Stimulated emission then occurs with the transition from the lowest vibronic level of
Si to higher vibronic levels of Sy which are initially un-populated so thal population
inversion is satisfied. Rapid relaxation processes through various nonradiative processes
in the ground states depopulate in the lower state of the transition to the lowest state
of So. There are also intersystem nonradiative relaxation processes which transfer
population from the singlet state Sy to the triplet state Ty. It was found that such
processes are related not only to the dye molecular structure but also the environmental
effects (Schafer 1973, Nair 1982). Since transitions from the triplet states to singlet
states are optically forbidden these processes are undesirable in a dye laser system and

should be minimized by choosing the correct dye compound and solvent.

Spectral narrowing and simultaneous tuning of dye lasers can be obtained by
introducing wavelength selective devices into the resonator. The following methods for

wavelength selection are widely employed :

* Resonators including devices with spatial wavelength separation such as prisms
and gratings;
o Resonators including devices for interferometric wavelength discrimination such

as a Fabry-Perot etalon;

¢ Resonators including devices with rotational dispersion such as birefringent fil-

ters.

With these wavelength selective devices inside the resonator, the optical gain
becomes strongly wavelength dependent and determines the wavelength and the band-

width at which laser action occurs.

The spectral width of the dye laser depends mainly on the single pass band-

width of the resonator and the number of light passes in the resonator. For the most



47

commonly used wavelength selection device such as prisms and gratings, the single
pass bandwidth is determined by the angular dispersion of the wavelength selector and
the divergence of the laser radiation incident on it. Normally, the higher the angular
dispersion, the higher the optical loss the wavelength selection devices introduce in
the resonator. Hence in the cw dye laser, where the optical gain is low, comparatively
narrow bandwidths are obtained by the use of low dispersion tuning elements such as
prisms and birefringent filters. For pulsed dye lasers, due to the high gain and only a
few passes in the resonator, high dispersion elements such as gratings can be used. For
narrower linewidths and single mode operation, interferometric devices such as Fabry

Perot etalon are used in conjunction with the above tuning element both for pulsed

and cw dye lasers.

3.2.2 Practical alignment of a pulsed dye laser

There are a large number of different grating configurations for high peak power pulsed
pumping sources which have high optical gain among which are the often used Hansch
and the grazing-incidence (or Littman) configuration after the designs of Hansch (1972)
and Littman (1978). A short review of the relevant designs is presented in the following
giving their strengths and weaknesses and hence the basis on which the present dye

laser was built.

The Hansch configuration

A typical arrangement for a Hansch type cavity is shown in Fig. 3.3. It consists of a
dye cell, beam expander, a diffraction grating in a Littrow mount and a plane output
coupling mirror at the other end of the optical cavity. Tuning of the wavelength
is obtained by the rotation of the grating. This design was first described by Hansch
(1972) with a IV, laser of 100 Hz repetition rate as the pump source. A reverse telescope

was used as the beam expander. Conversion efficiency of up to 20% was easily obtained
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with this dye laser system for operation near 600 nm using a 5x107° M/liter solution
of Rhodamine 6G in ethanol. With careful adjustment of the collimating telescope, a
bandwidth of 0.03 A (FWHM) can be obtained. Insertion of a Fabry-Perot etalon with

a free spectral range of 0.57 em-! into the collimated beam reduced the bandwidth to

300 MHz or less than 0.004 A.

A pulsed dye laser is often characterized by its spectral width (exclusive of
intracavity etalon) which is determined by diffraction and the beam expander-grating
combination. The single pass bandwidth of a Littrow grating tuned resonator is given

by (Hansch 1972):

’\2
A/\ =

tl,sine

where [, = 2ws/cos¢ is the length of the illuminated part of the grating and ws is
the beam radius after the beam expander. It is noted that the spectral bandwidth of
such a laser depends on the illuminated width of the grating I, (perpendicular to the

grooves) and not on the height, diffraction order, or groove spacing.

Because the beam diameter of the laser is normally very small, it is necessary
to use a beam expander inside the cavity to achieve maximum illumination on the
grating and so obtain narrow bandwidth. In recent years much effort has been devoted
to find technologies for increasing the expansion ratio of the beam expander, to reduce
the optical cavity length and optical loss due to the insertion of optical components in
the cavity as well as to reduce alignment problems and cost. Prism beam expanders
(Hnilo and Manzano 1985, Niefer and Atkinson 1988), as shown later in Fig. 3.8, which
expand the beam in one dimension only are one of the most successful replacements for
the telescope. Moreover sin<l:e only one dimension of the beam is expanded, the large

grating can be replaced with a less expensive thin strip only a few mm high.
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The grazing-incidence grating configuration

An alternative cavity configuration which does not need a device to expand the beam,
yet it still provides a spectrally narrow high power output was developed by Littman

(1978) which is known as the Littman type or grazing-incidence configuration.

A typical dye laser oscillator in the grazing-incidence grating configuration
(Littman, 1978) is shown in Fig. 3.4 where the grating is not mounted at the Littrow
angle and the laser wavelength is tuned by rotation of the tuning mirror. In this
Littman type cavity, the grazing-incidence grating acts as a beam expander when 8 is

close to 90°. Design advantages of this dye laser oscillator include:

o The expensive high quality achromatic telescope or prism expander is eliminated.

o Alignment is simple. Careful adjustment and focusing of the beam expander are

not necessary.

e Elimination of the beam expander reduces the number of surfaces in the optical

cavity resulting in fewer reflection losses.

o The laser can be made extremely compact so that short duration pump light
can be used more effectively. Furthermore, the longitudinal modes have a large
frequency separation due to the compact cavity. This makes it much easier to

obtain single longitudinal mode operation.

The single pass bandwidth of a grazing incidence-grating dye laser is given by

(Littman, 1978)

2)2
B m = S (3.9)
mly(sinby + sing)

which is similar to that of the Hansch type.
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Figure 3.4: Schematic diagram of basic grazing incidence (Littman configuration) dye

laser (After Littman, 1978).
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Multi-pass bandwidth

Multiple passes of laser pulses inside a resonator will further compress the linewidth.
An estimate of the dependence of time averaged linewidth on the resonator length
or pulse width was given by Flamant (1978) for pulsed dye lasers which use Fabry-
Pérot etalons, a grating or prisms for spectral narrowing. For times ¢ > Tgr, where
Trr = 2L/c is the time a laser pulse take a round trip inside the resonator and I is
the optical length of the resonator, the laser linewidth at time ¢ for a grating-tuned

system is:

§v(t) = buo(2Un2)Y}(Try/t)M?, (3.10)

where 61y is the passive linewidth of the resonator. Therefore the time averaged laser

linewidth is

B 9 1/2 T
by = <M>/ (TRT/t)1/2dt (3.11)
T 0
1/2
= 2(2n2)*/? (—TTE) bvg (3.12)
in2\'/*
. 4(%) L2y, (3.13)

where T is the observed pulse duration of the laser.

3.3 Copper Bromide Laser Pumped Pulsed Dye

Lasers

Since the copper bromide (CuBr) laser (or copper vapour laser) pumped dye lasers
fit well into the gap between a low-power cw system and a high power pulsed system
with a low repetition rate, they can successfully be built using the technology which
applies either to cw or pulsed dye lasers. Therefore, there are a number of cavity
configurations which would be able to provide a narrow bandwidth laser operation

with high conversion efficiency.
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In this section, different configurations of the dye laser system related to this
work are reviewed and compared. A novel design of a longitudinally pumped pulsed
dye laser resonator using grazing incidence in a folded astigmatic cavity employing a
free flowing dye jet from a nozzle is described. A CuBr laser pumped dye laser system
with master oscillator-power amplifier (MOPA) configuration was then designed and
constructed. The oscillator used a grazing incidence grating with an open dye stream
jet and a three mirror folded cavity configuration. It produced good beam quality laser
pulses with a bandwidth of about 1-2 GHz. The laser pulses were then amplified by
an amplifier jet to obtain a total average power of about 230 mW. In the following, we
will describe each part of this dye laser system. When necessary, a review of the work

on related subjects by other authors 1s given.

3.3.1 The copper bromide (CuBr) laser

The pulsed CuBr laser used in this study is characterized by a high repetition rate,
high average power, long lifetime and is a promising alternative to the copper vapor

laser (CVL).

It is known that lasing transitions can occur from a resonance to a metastable
level in metal atoms. One of the most important requirement and difficulties for metal
vapor lasers is the need to provide a sufficient concentration of working atoms in the
active volume which is normally achieved by heating the metal. The CuBr laser, how-
ever, introduces the working atoms (copper) into the active volume by the dissociation
of the chemical compound, CuBr, in a pulsed discharge. This is the most important
advantage of the CuBr laser because to vaporize the CuBr into the active region the
temperature only needs to reach 500 o rather than the 1600 °C for a copper vapor
laser. The discharge and therefore the laser operates at a repetition rate of 16 kHz
and is self-heating through the discharge with the CuBr supplied through heated CuBr

reservoir. The CuBr laser as well as the copper vapor laser operates at two atomic
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transitions of copper, 510.6 and 578.2 nm.

The CuBr laser used in this study was manufactured by Norseld Pty. Ltd.
in Adelaide. The laser beam is 25 mm in diameter and is horizontally polarized by
Brewster windows of the laser tube. The power ratio between the green (510.6 nm)

and yellow (578.2 nm) lines is about 2:1 and the pulse width is about 30 ns.

Both a flat-flat mirror cavity and an unstable cavity were used in this study.
While the flat-flat cavity is one of the most efficient ways to extract laser power from
the CuBr laser, the unstable cavity provides a much improved beam quality and hence
higher focusable power. One of the most frequently used unstable cavities for the CuBr
laser (or CVL) is formed by a pair of confocal mirrors as shown in Fig. 3.5(b). The
convex mirror M; and concave mirror M, form a telescope with a cavity magnification
given by the ratio of their focal lengths. Light making a round trip in this cavity
1s expanded by this telescope so that its divergence is correspondingly reduced by a
factor equal to its magnification. For example, with a magnification of 10, the light
making a round trip inside the cavity will reduce its divergence by a factor of 10,
two round trip will improve the beam quality by 100 times and so on until the beam
quality approaches the diffraction limit. However, due to the short gain period of
CuBr laser which is less than 50 ns, there are only a few round trips during each laser
pulse. It is then only during the latter half of the laser pulse that good beam quality is
obtained. Near diffraction limited divergence beam quality can only be obtained with
high magnification (Coutts D.W. et al, 1993). Moreover, because of the high gain of the
active medium, there is a strong presence of amplified spontaneous emission (ASE) in
the cavity during the entire laser pulse. This severely limits the achievable beam quality
because the cavity feedback includes this highly divergent ASE (Chang 1994). The
higher the magnification, the higher optical loss of the cavity, and therefore the lower
of the total power. In spite of the lower output power from the laser tube, the unstable

cavity offers a higher focusable power which is preferable for many applications.
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In this study, an unstable cavity with a magnification of 62.5 was used to
improve the beam quality for focusing most of the laser power into a small region,
about 100 pm in diameter, in the dye jet stream. The total power of the laser tube

was 10 W with this unstable cavity while a total power of 13 W was obtained with the

flat-flat cavity.

3.3.2 The active medium of the dye laser — a free flowing jet

stream

With a high power laser as the pump source, it is very easy to damage the window
of the dye cell cuvette. Furthermore the window also induces aberration losses when
placed at Brewster’s angle and there are problems with the seal with the metal body.
In an attempt to overcome these problem Runge and Rosenberg (1972) proposed a
laser where the dye solution flows in a free jet stream through the resonator of the
laser. A windowless open free jet which is formed through a carefully designed polished
nozzle has been successfully used to produce high output power as well as VEry Narrow
bandwidth dye lasers. It is more commonly used for cw and mode-locked dye lasers

than a dye cell cuvette.

For CuBr lasers (or CVL) both jet stream and the dye cell cuvette can be used,
however in addition to the advantages previous stated, a jet nozzle can also produce
very high velocity dye stream which replaces the dye solution in the active zone for
each successive pump pulse. This removes the heat produced by nonradiative processes
and the dye molecules in the triplet states generated in the active region. Berry et al
(1990) found that this is necessary to achieve high conversion efliciency operation of a

narrow band width dye laser.

Although employing a free flowing jet stream in a CuBr (or CVL) pumped

narrow band width dye laser system appears to have the above advantages, a thorough
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literature search revealed no reports of work on such a system, except for broad band
operation. One reason may be the relatively poor beam quality of the CuBr laser (or
CVL) with the flat-flat cavity which prevents the laser beam being focused onto a very
small spot on the jet stream. This reduces the conversion efficiency because it reduces
the power density of the pump laser in the jet. Furthermore, the large size of the
active zone may enable the oscillation of a second transverse mode, thus, increasing
the beam divergence and the bandwidth. However, this problem can be overcome
by employing an unstable cavity in the CuBr (or CVL) laser. A broad band dye
laser system employing a jet nozzle pumped by a CuBr laser with unstable cavity has

achieved a conversion efficiency up to 63% (Petrov et al, 1992), the highest reported.

Preliminary experiments were performed on a dye cell cuvette and a jet stream
with both systems employing a prism as the tuning element. The experimental arrange-
ments are shown in Fig. 3.6. The output coupler is a flat mirror with 45% transmission
and the end mirror is a high reflectivity concave mirror with a 245 mm radius. The
dye solution was a 3 X 10~2 M/l Rh-6G dissolved in ethylene glycol. The CuBr laser
was a flat-flat cavity configuration. The yellow line was removed by a dielectric mirror
because it is not absorbed by the dye and therefore does not contribute to the pumping.
In addition it can be amplified by the dye jet, reducing the gain for the dye laser. The
dye cell cuvette provided a poor performance in output power, beam quality and ASE
background, while the jet stream system produced a very good result. The flow rate of
the jet was about 1.2//min and the thickness of the jet was 0.35 mm which gives a flow
speed of 6m/sec. The energy conversion efficiency peaked at 36.1% when the pump
power was 3.5 W. The power of the dye laser was up to 2.4 W with a very good beam
quality and low ASE background with the maximum pump power of 7 W . No attempt
was been made to optimize the parameters of the dye laser to increase the conversion

efficiency because this study was not concerned with broad band operation.

Due to the outstanding performance of the jet stream nozzle over dye cell
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cuvette in broad band operation, our dye laser system was constructed with free-flowing
dye jet streams which were formed by flowing dyes in ethylene glycol solutions through
nozzles produced by compressing stainless steel pipes against an internal spacer. With
very careful polishing of the nozzle a good quality jet stream was obtained. An unstable

cavity was then employed in the CuBr laser to improve the beam quality for focusing.

A dye jet stream can easily be placed at the Brewster angle to the axis of the
resonator to produce polarized laser radiation. This also reduces the optical loss by
reflection from the dye stream surfaces of the polarized pump beam which was focused

onto the jet stream at or close to the Brewster angle.

3.3.3 Cavity design

There are a number of cavity configurations for CuBr laser (or CVL) pumped dye
lasers which are able to produce narrow bandwidth laser operation with high conver-
sion efficiency. As the CuBr laser is only commercially available from Norseld and
is currently manufactured for medical applications, most of the following review were

given for CVL since their lasing characters are the same.

For broadband laser operation, Huang and Namba (1981) operated a longi-
tudinally pumped jet stream system and obtained 31% conversion efficiency. In a
transversely pumped configuration, Broyer and Chevaleyre (1984) reached up to 40%
conversion efficiency. Sun et al (1986) obtained 40% conversion efficiency using a lon-
gitudinally pumped jet stream in a three mirror folded cavity. A 63% broadband
conversion efficiency was claimed by Petrov et al (1992) using the same configuration

as Huang and Namba (1981) with a better quality jet stream.

For narrow bandwidth dye laser operation with the Hansch design, Bernhardt
and Rasmussen (1981) employed a four prism beam expander with an etalon to obtain

single longitudinal mode operation with a bandwidth of 60 MHz and a conversion
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Ayvan,
Table 3.1: Measured Performance (at 5800 A) on the Six Cavity Asranges Shown in

Fig. 3.8 and Fig. 3.9 (After Duarte and Piper, 1982)

Dye Laser System

Prism cavities Grazing-incidence cavities
Parameters Al B1 C1 A2 | B2 C2
%) 89.3 | 89.3 84.4 87
$2 84.4
6 89.5 | 89.5 85

A/\(A) 0.016 | 0.016 | 0.017 |/ 0.009 | 0.01 0.01

Po(kW) 15 | 15 7 11.5 | 1.6 5.6

Energy eff (%) | 23 2.2 10 16 | 2.3 8

ASE (%) 0.09 | <0.01|<0.01| 0.1 |0.01 < 0.01

efficiency of 5%. With a Hansch type oscillator combined with an amplifier, Lavi et
al (1985) were able to obtain up to 45% total conversion efficiency with a bandwidth
of 2 GHz. By using a double-prism beam expander and an intracavity etalon Yoichiro
Maruyama et al (1991) obtained frequency stabilized single-mode operation with a

bandwidth of 60 MHz and a frequency drift for long term operation of within 30 MHz.

The grazing-incidence configuration provides a more flexible arrangement for
practical applications. Broyer and Chevaleyre (1984) reported a 20% conversion effi-
ciency with a bandwidth of 3 GHz by a Littman design cavity as shown in Fig. 3.7(a).
Second harmonic generation (SHG) of the dye laser output covered a UV range between

260 nm to 408 nm at a conversion efliciency of < 5%.

Duarte and Piper ( 1982) evaluated a number of prism-expander and grazing
incidence grating cavities pumped by a low repetition rate (1 Hz) CuBr laser. Ex-

perimental results are reproduced in Table 3.1 for different cavities shown in Fig. 3.8



61

To Spectroacter and Te 2 T
Fabry Perat Etaton Oye Lagar
Monstonng |
Output (1] $T8nm  Prefocaluzation
Mirror Cplindrical | Lang
Laas I r
Oye 3 cvL
CtfA — = — = A= = = == ==+
tepper Sona System
Heotor
Ocive Seza
Selitter
0if fraction
Grating
Tunng
Mirror Focalization
/ Lens
Outpyt

(a)

(b)
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and Fig. 3.9 which displays a better overall performance for the Littman designs than
the Hansch designs. Linewidths of ~ 0.01 A at an energy conversion efficiency up
to 10% were obtained for a prism pre-expanded grazing-incidence grating cavity with
good beam quality and low background superluminescence (< 0.01%). Thus, grazing
incidence configuration was employed in this study because of its advantage over the

Hansch configuration in performance, alignment and cost.

It was found that insertion of a lens in the cavity of a grazing-incidence pulsed
dye laser will increase its performance with higher output power and narrower spectral
width (Lisboa et al, 1983 and Yodh et al, 1984). The reason is as follows. In the grazing-
incidence configuration, there is a severe limitation which concerns the overall efficiency
with which the light, at a given wavelength, can be fed back to the amplifying medium.
While the selection of a holographic grating having a high number of lines/mm can
eliminate the additional loss of light into other unwanted diffraction orders, conversion
efficiency is limited by diffraction losses which reduce the overall feedback efficiency. If
the laser beam emerging from the dye cell has a beam waist of wy, which is normally
very small, it will increase in diameter quickly as it travels away from the cell because
of diffraction. The beam diameter will be w(2!) when it returns to the cell after the
reflections from the tuning mirror and the grating, where / measures the mean distance
between the cell and the mirror. Therefore only (wo/w(2{))? of the beam is fed back
to the active medium. This factor is normally about 0.1 or less. The insertion of a
carefully chosen lens in the cavity increases this factor to nearly unity. Furthermore a

more collimated beam incident to the grating also reduces the linewidth.

In a modified version of this design, Lago et al (1989) reported a further de-
velopment of this collimated grazing incidence cavity by introducing a stable folded
cavity. The divergent beam emerging from the dye cell was collimated by the folding
mirror M; as shown in Fig. 3.7(b). The highly reflective mirror M, resulted in lower

optical losses than the insertion of an intracavity lens. The linewidth was found to
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be adjusted by changing the incidence angle in the diffraction grating and could be
reduced down to 610 MHz. Conversion efficiency of about 10% was obtained for a
linewidth of 1 GHz. This configuration has the advantages of increasing the output

power, narrowing the bandwidth and ease of alignment.

In view of all the considerations discussed above, we adopted the grazing inci-
dence folded cavity configuration used by Lago et al (1989) but using a dye jet stream

with a thickness of about 0.5 mm rather than a dye cell cuvette.

3.3.4 Experimental performance

The experimental set up for the grazing incidence oscillator and jet amplifier is shown
in Fig. 3.10. In the oscillator, the divergent beam emerging from the dye jet stream,
longitudinally pumped in a folded cavity, was collimated by the folding mirror (M) and
directed to the diffraction grating, which increases the feedback efficiency and therefore
the conversion efficiency. The holographic diffraction grating used was a Jobin Yvon,
2400 lines/mm with dimensions of 5817 mm?. The tuning mirror (M3) fed back the
frst diffracted order into the laser. Precise wavelength scanning was obtained with a
DC motor driven rotational stage (Oriel standard rotator with D.C. Encoder Mike™¥
Drive, model 13118) which was modified with an extended cantilever arm to reduce
the rotational speed by 5.3 times for the tuning mirror. The readout resolution of the
Encoder Mike Drive is 0.1 microns which corresponds to an angular resolution of 31
urad or 0.06 arc sec, or a change of 10-3A (7T0MHz) in wavelength (frequency). A
spherical mirror (M;) closed the cavity on the other side of the dye jet. The output
coupling was through the zeroth order of the diffraction grating. The output from the
dye laser oscillator was then focused into another dye jet stream which was used as
an amplifier. It was found necessary to use a pressure buffer and soft latex tubing to
remove pressure pulses in the dye circulation produced by the dye gear pump to obtain

a narrow bandwidth laser system.
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The pumping laser was a CuBr laser, as described before, operating at 16 kHz
with a pulse width of 30 ns. It was found in this study that with a flat-flat cavity, the
focused spot in the jet stream may move around in a very small region corresponding
to the some unstable discharge in the CuBr laser tube which affects the intensity
distribution of the laser beam. This affected the stability of the dye laser through
movement of the pump laser beam on the dye jet preventing narrow band width lasing
operation. It is therefore necessary to employ an unstable cavity in the CuBr laser
to improve the beam quality and stability. With a magnification M=62.5 (concave
mirror R=2540 mm, convex mirror R=—40.64 mm), output power of the CuBr laser
was about 10 W. With a focusing mirror Mo (R=129.20 mm), the CuBr laser beam
could be focused into a spot which was sufficiently small to vaporize the dye solution
and it had to be slightly defocused. A prism was used to separate the green and yellow
lines when Rh-6G or DCM dye was used. The linewidth was measured by a solid etalon
with a free spectral range (FSR) of 10 GHz and a finesse greater than 25 (Melles Griot,

product No. 03ETA013).

A great deal of experimentation on jet design and construction was carried out
including knife edge jets. The quality of the jet stream was investigated by observing
the flowing pattern using a He-Ne laser and was found to be equal to those reported

in the literature;.

Due to the imperfections in the jet nozzle and the inherent instability of rapidly
flowing fluids, the dye stream became unstable for high flow rates affecting the fre-
quency stability and the band width. A variable speed micropump was then employed
to enable variation of the flow rate. It was found that, in narrow bandwidth operation,
some instability of the jet stream was still apparent even if the flow rate was kept very
low and the grazing angle had to be increased to reduce the bandwidth and frequency
jitter and consequently limit the power from the oscillator. To improve the dye laser

performance, a master oscillator-power amplifier configuration was employed. A beam
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splitter which is a high reflection mirror with a 4 mm hole in the center allows the cen-
ter of the CuBr laser beam to be transmitted (about 1/3 of the total power) and pump
the oscillator. The rest of the beam is directed to pump the amplifier with a delay of 3
ns after the input from the oscillator. This delay is approximately the duration of one

oscillator round trip.

A dye laser oscillator cannot be efficient if the requirements for bandwidth and
beam quality are to be met. In our dye laser system, the oscillator was kept just above
the lasing threshold so that it had a good performance in bandwidth and beam quality.
The power amplifier was then used to increase the conversion efficiency of the system.
With a 1.5 x 1072 M/liter Rhodamine 6G solution in ethylene glycol for the oscillator
and amplifier, the output power from the oscillator is about 20 mW with a bandwidth
of 2-3 GHz when the pumped power is 1.2 W. The pulsed width of the dye laser was
found to be about 10 ns. A gain of 11 is obtained in the amplifier with a pumped power
of 3 W, resulting a total output power of 230 mW and a overall conversion efficiency

of more than 5%.

A bandwidth of about 1 GHz was also achieved with 3 x 10™2 M/liter DCM in
2:1 ethylene glycol and propylene carbonate solution. The total power of the dye laser

is about 100 mW. Fig. 3.11 shows a Fabry-Perot scan for such operation.

3.4 Second Harmonic Generation and Wave-

length Calibration

The ultraviolet radiation was produced by frequency doubling the output of the dye
laser using a BBO nonlinear crystal, while the wavelength calibration was made using

the fundamental wavelength with an I, cell.
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3.4.1 Second harmonic generation

With the advent of the intense and coherent light made available by the laser, the
optical properties of a medium, such as its refractive index, become a function of the
light intensity. When two or more intense coherent light waves interfere within the
medium, the principle of linear superposition no longer holds. As a result, nonlinear
optical phenomena can occur. Among them, second harmonic generation or frequency

doubling was the first nonlinear optical phenomena observed (Bloembergen 1965).

The conversion efficiency for frequency doubling is usually quite low, therefore
the intensity of the fundamental wave can be regarded as constant in the nonlinear
medium. Under such an approximation, the intensity of the second harmonic is given

by (Appendix D)

1
I = gEg = 2]&’2L2c,u01123inc2(;)—AkL) (3.14)

4

where [ in W/m? and E in (V/m), sinc(z) = #22and L is the total length of the
nonlinear medium, Ak = k(2w) — k(w) represents the phase matching condition. A
more detailed description of the basic theory and the phase matching technology of

second harmonic generation is given in Appendix D.

The beta barium borate (BBO) crystal is a new nonlinear optical material
discovered recently (Chen et al. 1984, 1985). It is characterized by a wide range of
transparency from the UV to the infrared. Its large birefringence allows phase matching
for second harmonic generation in a large frequency region (189-1750 nm) with a large
nonlinear coefficient (5.8 X dzg(K DP)). These properties indicate that the BBO crystal
is potentially useful for many applications, especially in the UV region. The optical,

mechanical and thermal properties of the BBO crystal are summarized in Appendix

D.

The BBO crystal used in this study is cut for type I phase matched, frequency

doubling for 580-700 nm, protectively coated with a dimension of § x 4 x T mm? from
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CASTECH. The laser beam is weakly focused into the crystal to prevent the divergence
of the UV beam because a suitable quartz lens was not available for collimation after
the crystal and the UV power was not a major requirement in this study. The phase
matching angle was initially adjusted manually to optimise the UV output. During a
scan, the personal computer controlling the scan calculated a correction to the angle
and drove the BBO crystal mounting with a DC motor (Oriel D.C. Encoder MikeTM

Drive) which had an encoder resolution of 0.1 microns.

From Appendix D, the peak conversion efficiency of the BBO crystal 1s

1
Ness = 6.78 L*I%sinc*(5AkL) (3.15)

4]

where L (cm) is the length of the BBO crystal and [y (W/cm?) is the intensity of
the fundamental wavelength. For our system, L=0.7 cm and assuming perfect phase

matching, ie Ak =0, the conversion efficiency 1s

Ness = 3.32 x 107811, (3.16)

For a 200 mW average output from the dye laser pulsed at 16 kHz repetition
rate and 10 ns pulse width, the peak power for each pulse is 12 5 kW. If 1t is focused
into a3 mm diameter spot in the BBO crystal, the intensity is 1.6 MW/ em? which
indicates a 3.75% conversion efficiency and a UV output of 7.5 mW. Unfortunately,
the power meter used was not sensitive enough to measure this UV power, but the UV

could be easily detected by the visible fluorescent spot it produced on a sheet of paper.

3.4.2 Calibration of the wavelength

The application of tunable lasers in optical spectroscopy requires an absolute measure-
ment of the wavelength to an accuracy approaching the linewidth of the laser. Since
in most case the adjustment parameters of the laser do not provide a sufficiently accu-

rate estimation of the wavelength, various techniques have been developed to measure

- =il
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the wavelength, for example, the use of an absorption cell with a known absorption

spectrum or a Fizeau wavemeter (Snyder 1977; Gardner 1985).

It is well known that the iodine absorption spectrum in the visible region pro-
vides a simple means of calibration. Therefore it received an extensive study during
the 1960s to 1970s (Gerstenkorn et al 1977). As a result, a wide range and precise
knowledge of the of the visible iodine molecular spectrum of the whole B°II{, -X'E}
electronic transition was obtained and the atlas of the absorption spectrum was given
by Gerstenkorn and Luc (1978) from 14800 - 20000 ¢m ™! or 5000 — 6757 A. The atlas

contains 46, 700 lines of which 22, 850 were identified.

A 48 cm long I; cell was used in this study for wavelength calibration. Fig. 3.12
shows part of the I; absorption spectrum measured in this study and is compared
with the absorption spectrum in the atlas. This study reproduced the I absorption
spectrum in excellent agreement with the atlas at a slightly lower resolution. Some
of the very close lines were not resolved in some spectral regions due to the lower
resolution of our laser system. However, since the I spectrum is so dense, there are
always sufficient resolved lines within the required wavelength range. In fact, only some
of the resolved lines were used in the interpolation program for wavelength calculation,
the rest were used as a test for the errors. Fig. 3.13(a) shows the relationship between
the motor positions and the calibrated wavenumbers calculated by interpolation. The
corresponding errors are shown in Fig. 3.13(b) which indicates an error of less than
0.05 ¢cm~! in the calibration. Thus the error in the UV radiation will be less than 0.1

cm™L,
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Chapter 4

Photodissociation of Nal

4.1 Introduction

The alkali halide molecules have been the subject of numerous experimental and the-
oretical investigation for nearly 70 years. Much of the interest derives from the fact
that the two lowest adiabatic potential curves display an avoided crossing with an inter-
change of ionic and covalent character. The optical spectra of the alkali halide molecules
have a continuous structure with very few absorption maxima. Nal is unique in that
the vapour is known to have, in addition, a banded absorption spectrum superimposed
on the continuous background. This makes Nal the most interesting of the alkali halide
molecules for studying the process of charge transfer transition from the ionic ground

state to the first electronically excited state which then dissociates into neutral atoms.

Although interest in Nal dates back to 1929 when Sommermeyer observed a
long series of unresolved bands in its absorption spectrum, there is still much to be
learnt about the excited electronic state and the dissociation spectra. The analysis of
the photoabsorption band fragments was prevented by the high density of lines and the
fragmented nature of the bands due to broadening by predissociation. Attempts have

been made in more recent times to obtain the potential curvesfor the excited states.

=1
S]]
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Davidovits and Brodhead (1967), van Veen et al (1981) have constructed the poten-
tial curves for the lowest excited potential curves in the Frank-Condon region, which

corresponds to vertical transitions from the lower vibrational levels, with broadband

spectroscopic data.

A section of the rotational bandfragments were assigned for the first time by
Schaefer et al (1982, 1984) using a high resolution laser spectroscopic study of the
UV excitation spectrum. They examined the energy region above the first potential
crossing of the ionic ground state and the covalent state 2 = 0% (26900 - 33175 cm 1)
and produced an analysis of the fragmentary spectrum of Nal. Potential curves for the
diabatic ground state and the adiabatic excited state were constructed based on the

assignment of the bandfragments.

Higher excited states of Nal were studied by quenching the Na D line fluo-
rescence by different gases (Hanson 1955 and Earl et al 1972), broad-band structured

fluorescence from Nal (Bower et al, 1988) and excitation spectra (Bluhm et al 1990).

Sakai et al (1992) performed a multireference singly and doubly excited con-
figuration interaction study of the ground (*S*) and first excited (0% or 'S+) states
on the Nal molecule. As will be shown later in Fig. 5.13, their excited state potential
curve has a shallow shape above the equilibrium internuclear distance of the ground

state.

This chapter will be confined to the study of the ground state and the lowest
lying excited states of Nal. Some of the basic knowledge about the molecular states
of Nal is introduced. In the last section, an optimization program was employed and
an attempt was made to fit analytical potential curves to the experimental data given
by Schaefer et al (1984). The optimization program was also applied to the Dunham
parameters so that the sharp lines occur more closely to the coincidence of the diabatic
and adiabatic hypothetical bound state levels than the parameters given by Schaefer

et al (1984).
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4.2 The electronic states of Nal

A molecule is formed by the binding of two or more atoms in such a way that the total
energy is lower than the sum of the energies of the isolated constituents. The bonds are
normally of ionic or covalent nature. Particularly weak bonds occur in van der Waals
molecules. The electronic states of a molecule are, under the Born-Oppenheimer ap-
proximation, eigenstates of the electronic Harmitonian. The corresponding eigenvalues

are the electronic potential energy surfaces.

The atomic nuclei in a molecule are bound together by the electrons. Differ-
ent electronic states of a molecule are specified by different kinds of quantum number
according to the coupling of the electronic spins, the electronic orbital angular momen-
tum and the nuclear angular momentum. There are four types of coupling classified

as Hund’s case (a), (b), (c) and (d) (Herzberg 1950, Chapter 3).

It is believed that the ground state of Nal is described by Hund’s case (a) while

the excited states are best described by Hund’s case (c) (Berry 1979).

4.2.1 The ground state

The ground state of Nal is an ionic state. The positive ion Na* and the negative ion

I~ have the closed-shell electron configurations

Nat '2.922p6

I~ : 55%5p°

1 : : -
and have 'S ground states. According to Hund’s case (a) it forms a 'S+ molecular

state which is also denoted as the X 1S+ state for Nal.



78

4.2.2 The lower-lying excited states

The low-lying excited states are covalent states. Hence an optical transition between
the ground state and the excited states can be considered as a charge transfer process

(Zare and Herschbach 1965). The outer shell electron configurations of atomic Na and

I are of the form

Na : 3s!

I : 5s%5p°

which lead to the atomic states of Na (25/;), and I (*Py/2) and (*P3/2). The lowest
covalent state of interest in this study is formed from the atomic ground states of
Na(?Sy1/2)+1(*Ps/2). According to the Hund’s case (c), the possible molecular states

are.
0 = 0% 1,2

The () = 0% state, usually noted as A 0% state, is the most interesting state, because it
has the same symmetry as the ground state X' £+ and the two potential curves undergo
an avoided crossing by the Born-Oppenheimer approximation under the non-crossing

rule and give rise to a bound potential.

4.2.3 Selection rules

Transition probability between two electronic states is determined by the electronic
dipole transition moment:

Ropn =< dnler|dn > . (4.1)

Calculations of the non-zero transition matrix elements R, provide the selection rules
for the transition (Herzberg 1950, Chapter 5). For the present study the general

selection rules are:
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(i) For total angular momentum J

AJ = 0, 1 except J=0 — J=0.

Additional selection rules holding for Hund’s case (c), where only J and { are

well defined quantum numbers, are

(ii) For the total electronic angular momentum Q

AQ = 0, £1.

Furthermore, if ) = 0 for both electronic states, then

(iii) Transitions from 0 to 0~ state are forbidden, so that

0" — 0" 0t 0t 0f 07

(iv) and the following restriction holds:

AJ = 0 is forbidden for Q=0 — Q=0.

Following these selection rules, one finds that the possible electronic transitions

from the ground state of Nal are
(a) to the excited states of @ = 0% and 1; and

(b) AJ = +1 for transitions to the 2 = 0% state, which corresponding to the

P and the R branches

"

P(J) = nw+F({J-1)-F(J) (4.2)

vo+ F'(J+1) = F"(J) (4.3)

=
=
I

while the @ branch

QU) = w+ F(J)=F'(J) (4.4)
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is forbidden by selection rule (iv).

(c) AJ =0 %1 for transitions to the Q = 1 state which consists of all the

three: P, Q and R branches.

4.3 The ground state potential curve

The ground state of Nal is an ionic state and is designated as X!Z*. In this section
the spectroscopic parameters obtained from the microwave spectrum are summarized
in §4.3.1 and the theoretical modeling for analytical expressions for the potential curves

are introduced in §4.3.2.

4.3.1 Rotational microwave spectroscopy

The first complete survey of the alkali halides by microwave absorption spectroscopy
was carried out by Honig et al (1954). High resolution microwave absorption spectra
were measured and analyzed by Rusk and Gordy (1962) which provides the most
accurate spectral parameters for Nal for the ground state. The ground state potential
curve was then obtained by fitting the molecular constants to the Dunham potential

function (Dunham, 1932).

The Dunham potential function is one of the most accurate and often used
procedures for representing potential curves near the equilibrium position r, and is

expressed as a series expansion in { = (r —r,)/r,
V(r)=aol(l+ @l + e’ + )+ BJ(J+1)(1 -2 +36% 465+ ), (4.5)

where B, is the rotational constant at r., J the rotational quantum number and a; are

the potential constants which are related to the molecular constants. The rovibrational
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Table 4.1: Molecular constants for the X 19+ state from microwave spectroscopy (after

Rusk and Gordy 1962)

ao (10% cm™) 1.42 Yo, (MHz) 3531.7232
ay -3.02 Yo, = —D. (kHz) | —2.9183
ag 5.9 Yio = we (cm™") 259.20
as -8 Yy = —a. (MHz) —19.42
re A 2.71143 Y1z = =B (kHz) 0.0014
B, (MHz) | 3531.7187 | Yoo = —wexe (em™) | —0.96
Y = 7. (kHz) 43

energy levels for such a potential curve can be expressed in the Dunham series
1. . .
T,y =Y Yijlv+3) (] + 1), (4.6)
2,J

where v is the vibrational quantum number and Yi; are the Dunham parameters.
Experimental data can be fitted to obtained the Dunham parameters and the molecular

constants can be obtained by using the relationship (Dunham, 1932)

Yor = B. + O(BHu?) | Yoo = ~Duy Yio= e,
Y.ll = —g, }/12 = —)661 Y'QO = —WeXes (47)

Yo = e,

and

h 1/2
re = (471‘3,3;4) : (4.8)

Table 4.1 summarized the derived Dunham parameters from the spectroscopic
data for the ground state of Nal (Rusk and Gordy 1962, Dyke 1979) from microwave

spectroscopy.



82

4.3.2 Theoretical modeling of the potential curve

The most frequently used theoretical model for the potential curve of the ionic ground
state is the Rittner (1951) model. In this model the energy binding the ions together
arises from the Coulomb attraction (1/r term), the London approximation for the van
der Waals attraction (1/r® term), ion-induced dipole interaction (1/r* and 1/r7 term)
and a short distance repulsion (the exponential term), which produced an expression

for the potential curve:

LS| -2 B
e <_+a++a 4 aypo ) (4.9)
4meg

V(r) = Acep(~r/p) ~ % + Eo

T 2rd rT

where oy and a_ are the free ion polarizabilities of Nat and I~ respectively. Disso-

ciation energy Fy together with the equilibrium distance r. are used to determine A

and p.

Brumer and Karplus (1973) performed a quantum mechanical exchange per-
turbation theory to analyze the interactions in alkali halide diatomic molecules. They
found that the 1/r” term in the original Rittner model arises from higher order ex-
change independent terms in the perturbation expansion and should be excluded in
the second order energy model which was employed by Rittner. They introduced the

so called T-Rittner model by dropping the 1/r” term

dweg \ 1 e

V(r) = Aexp(—r/p) — rgs + Eop — a (l + M) . (4.10)

where o are the effective polizabilities which will approach ay at large internuclear

distance.

In an attempt to avoid the undesired behavior that the Rittner potential curves
become negative at small internuclear distance, Faist and Levine (1976) added a re-
pulsive term (B/r)® to the exponential portion

e? <1 ar+a-  20p0-

SE e >.(4.11)

r

V(r) = (A + (g)s) exp(—r/p) - %+E0 " e P
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The same term was added in the T-Ritter model and used in this study as seen in

Eq. (4.23).

There are also some other attempts to model the ground state potential curves

of alkali halide diatomic molecules which were discussed in the review of Jordan (1979).

4.4 Photodissociation of Nal

The lower lying excited states of Nal are designated by the quantum numbers (3 =
0%, 1, 2. They are all covalent in nature. The optical accessible excited states from
the ground state are only {8 = 0+ and 1 states. Since the 0% state has the same
symmetry as the ionic ground state 15+ an avoided crossing exists in the adiabatic

potential curves and coupling is present which leads to photodissociation of Nal.

4.4.1 The excited states — broadband structure

The study of absorption spectrum was first recorded by Sommermeyer (1929) and Levi
(Beutler and Levi 1931, Levi 1934). The later measurements of the total absorption
cross section by Davidovits and Brodhead (1967) meant that their excited state po-
tential curve represents the combine effects of the { = 0t and 1 states rather than the

separate potential curves.

By using the technique of photofragment spectroscopy, which measures the
angular and velocity distributions of photofragments, van Veen et al (1981), Anderson
et al (1977, 1981), Telle and Tambini (1989) were able to distinguish the contributions
from the 0F state and the 1 state. For diatomic molecules, the transition dipole moment
is parallel to the internuclear axis with the AQ = 0 transitions and perpendicular with
the AQ = +1 transitions. Therefore transitions to the 07 state are parallel transitions

and the dissociation fragments from this state recoil at a direction parallel to the
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polarization of the dissociating light while those from the 1 state are perpendicular.
The ratio of parallel to perpendicular transitions can be obtained by measuring the
angular distributions of the Na photofragments resulting from photodissociation of a

molecular beam of Nal.

Van Veen et al (1981) measured this ratio with a broadband laser source with
wavelength tunable through the range 300-337 nm. By assuming that the electronic
transition probabilities to the 0% and 1 states are equal and that the potential curves

have the form

V(r) = Aexp(=b(r —r.)) (4.12)

in the Franck-Condon region. The parameters were found to have the values of A=3.88
ev, b=8.557 A~1 for the 0% state and A=3.63 ev, b=10.03 A~! for the 1 state. r, = 2.7

A is the equilibrium internuclear distance of the ground state. The resulting potential

curves are shown in Fig. 4.1.

Dissociation energy

The experimental result of van Veen et al also gives a dissociation energy of 3.18 ev

for the covalent states of Nal.

The dissociation limit of the ionic ground state (Na*(*Sq) + I~(1Sy)) differs in

energy from the covalent state (Na(%Sy/3) + I(*Ps/,)) by an amount
Q = I.P.(Na) - E.A.(I) (4.13)

where I.P. is the ionization potential of Na and E.A. is the electron affinity of I which
are 5.139 ev and 3.061 ev respectively (Berry 1979). Therefore, Q=2.078 ev and the
dissociation energy of the ionic ground state is 5.258 ev based on the observation of

van Veen et al.
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The crossing point

The crossing point of the ionic and the covalent states can be obtained from the simple

relationship

which is based on the assumption that the potential curves can be approximated by
the Coulomb curve for the ionic state and a horizontal line for the covalent state if the

crossing point is at a large internuclear distance.

The electronic coupling

Since the 0% covalent state has the same symmetry as the 1+ ionic ground state, there
exists electronic coupling between the two diabatic states and the adiabatic potential
curves exhibit an avoided crossing. The values of electronic coupling matrix element
at the crossing point have been evaluated by Grice and Herschbach (1974) for diatomic
alkali halide molecules and is 0.053 ev for Nal. This is in reasonable agreement with the
experimental result of Na+I collision (0.065 ev) (Delvigne and Los, 1973), and the later
experiments of UV-laser excitation spectroscopic study on Nal (0.054 ev) (Schaefer et
al, 1984) and the femto-second transition-state spectroscopy (0.046 ev) (Rose et al,
1989). This coupling strength represents a strong coupling case in the predissociation

of Nal and produces a strong bound character for the Q = 0% state.

The shape of the coupling function is not known. However, as mentioned in
§2.2, the electronic coupling matrix element only has a significant contribution to the
adiabatic potential curves near the crossing point. Therefore it is usual to assume that
the coupling matrix element is independent of internuclear distance and has a value
equal to the coupling strength at the crossing point. Although this assumption is very
useful in a practical treatment of curve crossing systems, it causes theoretical problem

at large internuclear distance when atoms of the molecular system are moving freely
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in space at constant speed (Torop et al 1987). By considering the fact that as the
two nuclei move apart, the coupling between the two diabatic electronic states should
approach zero, Faist and Levine (1976) assumed that the coupling strength decreases

exponentially as internuclear distance increases:
Via(r) = A ezp(~r/p), (4.15)

while Engel and Metiu (1989 ) assumed a Gaussian shape coupling centered at the

crossing point rz:

Via(r) = Anseap[—B(r — r2)’] (4.16)

with the = coupling strength Ay, at the crossing point.

4.4.2 The discrete band fragment structure

Nal is the only alkali halide which exhibits a dense line structure in the absorption
spectrum. The discrete structure was observed during the early 1930’s (Beutler and
Levi 1931 and Levi 1934) and its origin was not explained until 1957 when Berry
presented a classical picture giving the physics of the bound character of the potential
curves in Nal. Analysis of the spectrum was prevented by the high density of rotational
lines which are present because of the high temperature required to vaporise the Nal
(> 650 °C'). The high temperature causes several vibrational levels and a large number
of rotational levels of the ground electronic state to be populated and so enable Franck-
Condon transitions over a large energy range. High resolution absorption spectrum of
Nal was described as a dense and complex spectrum that contain some very sharp lines,
many overlapping lines and diffuse lines, which are caused by predissociation (Berry

1979).

Berg and Skewes (1969) reported the first rotationally resolved structure of Nal
but were not able to carry out an analysis or line assignment. They claimed, however,

that a spacing of rotational groups of 36 cm™! to be associated with the vibrational
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spacing of the upper state, suggesting that the excited potential curve is broad and
shallow. Furthermore they claimed such spacings appeared throughout the region from
2945 to 5400 A. Since at temperatures of 1000 °C' there are only about five vibrational
levels of the ground state populated, the extent of the spectrum, implies that the upper

state has a potential well much deeper than a van der Waals well (Berry, 1979).

In order to reduce the population in high rotational levels, Ragone et al (1982)
reported a UV laser spectroscopic investigation on the fluorescence excitation and emis-
sion spectra from cold Nal vapor seeded in a supersonic beam with He. With the
assumption that the absorbing beam is rotationally cool and therefore only a few low
J states are populated, Ragone et al assigned several bands of the excitation spec-
trum and made a vibrational analysis in the Franck-Condon region accessible from the
ground and the first excited vibrational levels of the XX+ state. However, because
Nal is a case of intermediate coupling between states associated with adiabatic and
diabatic potentials, some high J rotational lines are much stronger than the others and
live long enough to fluoresce. Therefore these high J rotational lines could also appear

in their observation and some lines were reassigned later (Schaefer et al 1983, Berry

and Levy 1983).

In a UV laser spectroscopic study of Nal by Schaefer et al (1982, 1984), frag-
mentary rotational fine structure was observed in the excitation spectrum and assigned
for the first time to the electronic transition 0t <! £+ based on Child’s semiclassical
theory (Child 1976). The excitation spectrum was measured by detecting the fluo-
rescence from the excited states with a large slit width in the monochromator while
scanning the excitation wavelength. The dense and complex absorption spectrum was
greatly simplified by the fact that the fluorescent intensity depends on whether the Nal
molecules live long enough in the excited state to fluoresce. If the predissociation rate
is too fast the molecule will dissociate quickly after being excited and no fluorescence

will be detected. Only lines with a line width due to predissociation less than 300 MHz
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were observed. Most of the absorption lines have predissociation widths broader than
300 MHz and escaped their observation. A central sharp line is observed in every frag-
mentary rotational band structure with the neighboring lines symmetrically broadened

and decreasing in intensity.

For all the fragmentary rotational structure observed, only P and R branches

and no Q branches were found, as expected for Hund’s case (c) coupling.

Information on the ground state (X'X*) vibrational levels was obtained at
a much higher energy region than the microwave experiment can reach (Schaefer et
al, 1984). Excitation spectra of the same excited levels from different ground state
vibrational levels yield very precise experimental data for v" = 0 — 4. Fluorescence
progressions extending up to v" = 78 were observed by fixing the excitation wavelength
and scanning the fluorescence spectra with a narrow slit width in the monochromator,

with an accuracy of 4 — 7 em™1.

Since these sharp lines occur in the accidental coincidence of the hypothetic
levels of the adiabatic and the modified diabatic bound states, as detailed in Chapter
2, their positions can be used to identify the corresponding vibrational and rotational
energies (Ez(E,J) and E(E,J)) of the hypothetic levels. Schaefer et al (1984) then
fitted these energy levels to the Dunham series with a non-linear least-squares program
for the diabatic ground state (V;) and the adiabatic excited state V; with the coupling
parameter according to Eq. (2.42). The best fit with a minimum standard deviation
provides the final vibrational assignments, the Dunham parameters and a coupling
strength of 0.054 ev (Schaefer et al 1984). Fig. 4.2 shows the term energies of the
28 band fragments observed and corresponding assignments. The resulting Dunham
parameters, as listed in Table 4.2, were used to predict the remaining (lower) energy
levels and the corresponding potential curves, as shown in Fig. 4.3, were constructed

with the RKR method based on these levels.

Because the spectroscopic parameters of the lower vibrational levels for the
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upper adiabatic state were obtained by the extrapolation of the Dunham parameters
obtained with a few rotational band fragments in a much higher energy region, the

location of the corresponding potential curve would be affected by the accuracy of the

extrapolation.

As described in Chapter 2, the separation between the two adiabatic potential
curves at the internuclear distance where the diabatic potential curves cross is twice
the coupling strength. Therefore, the separation of the adiabatic and diabatic potential
curves given by Schaefer et al (1984) at the crossing point should be the same as the
coupling strength, 0.054 ev. However as noted by Wang et al (1990), the separation of
their potential curve at the crossing point indicates a coupling strength of about 0.2 ev
(1600 cm™!) as seen in Fig. 4.3. This is not consistent with the 0.054 ev coupling
strength from which the Dunham parameters for the potential curves was derived.
Moreover Schaefer et al (1984) did not use the full version of Child’s semiclassical
theory (Child and Lefebvre 1978, Child 1991(a)), and regarded the hypothetic states
as the diabatic and adiabatic bound states. As noted in §2.3, the hypothetic diabatic
levels used in Child’s semiclassical theory correspond to a modified diabatic potential
curve:

_ Ve (r<rs)

Vi (r>r)
where the level positions differ from the eigenvalues of the diabatic (V2) potential curves
by about one vibrational spacing for Nal. Regarding them as the same will introduce

errors in fitting the Dunham parameters to the final vibrational assignments.
4.4.3 Optimization of the potential curves and Dunham pa-
rameters

An optimization procedure can be use to minimize the difference between experimen-

cal data and the calculated quantities using theoretical models. Although there are
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Table 4.2: Dunham parameters for the states of Nal.

X0t Aot
diabatic state adiabatic state
Schaefer et al | This work | Schaefer et al | This work

T, 0.0 0.0 25556.125 25556.125

Yio 259.056819 | 258.458388 27.27876 27.20254

Yoo -0.9127106 -0.907696 0.1468826 0.1484409
Ya0(x1073) 1.39339 1.38383 -0.88577 -0.897378
Yio(x107°) 5.8808 5.8463 1.92053 1.958117
Y50(x1078) -5.4912 -5.45937 -0.157943 -0.162444
Yeo(x10710) 2.1641 2.1490
Y7o(x10713) -4.8365 -4.7960
Yao(x10716) 5.8534 5.8032
Yoo(x10719) -2.9748 -2.95475

Yo 0.1178056 | 0.11738486 | 0.04817098 | 0.04817097
Yi1(x107%) -6.4770 -6.4404 -1.532322 -1.532321
Y21(x1079) 1.430 1.422 0.14739 0.14744
Ya1(x107%) -3.18299 -3.17309
Ya(x10711) 2.15891 2.14567
Ys1(x1071) -7.3021 -7.2499
Ye1(x10717) 7.9978 7.9403
Yoa(x1078) -9.73 -10.587 -9.4062 -9.7204
Yi2(x1071) 5.0 5.0 29.829 31.1374
Y22(x10713) 5.30942 5.70596

) 11.25 0.087 0.015 0.004
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Figure 4.3: The proposed potential curves for Nal from different workers. Note that
the excited state potential curve given by Schaefer et al (1984) is an adiabatic potential

curve, while the others are diabatic.
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possible errors in the potential curves and the corresponding vibrational assignments,
as discussed above, the spectroscopic data presented by Schaefer et al (1984) in the
experimental energy range is still the most accurate one so far and will be used as the
basis for analyzing the absorption spectrum in the next Chapter. Thus there is a need

to extract more information from their spectroscopic analysis.

It was found that the diabatic and adiabatic levels calculated by the Dun-
ham parameters according to the assignments in Fig. 4.2, which are expected to be
coincidence for each of the 28 sharp lines, have discrepancies ranging from 0.5 to 10
ecm™~!. Therefore the position of the sharp lines predicted by the Dunham parameters
are in large error with their experimental observation. This creates difficulties when

attempting to predict the position of other sharp lines not observed in their experiment.

In the following, a description is given of the method used to obtain an analyt-
ical expression for the diabatic potential curves and an improvement to the Dunham
parameters using a numerical optimization program. These calculations allow spec-
troscopic parameters such as Franck-Condon factors and more accurate sharp line

positions to be calculated.

Optimization on the potential curves

The optimization of the potential curves in this study provides analytical expressions
for the diabatic potential curves of the X !X+ and A0* states which fit to the analysis

given by Schaefer et al (1982, 1984).

In an attempt to derive analytical expressions for the diabatic potential curves
for the X '¥+ and A0* states of Nal, Wang et al (1990) employed a numerical opti-
mization procedure based on the flexible simplex search algorithm (Himmeblau 1972)

to determine the parameters for the potential curves:

, " B 12 r4r C
V'cm, r - Acoy , ( cov > - 0 _ cov 11~
( ) { " r+ To } al ( Pcov ) (f‘ + F0)6 e ECOU, (41[)
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8
ion Cion
Won(r) = |:A1'on + (BT ) } exTp <— i ) - -;‘6‘ + Eion

Pion
e2 [ Dion 04+ - 2a+a_)
- 4.18
dmeg ( T * 2rd * r7 ' ( )
Vis(r) = hgezp[—B(r —rz)°]. (4.19)

Both the diabatic potential functions were taken from Faist and Levine (1976)
while the coupling function was assumed to be a Gaussian (Engel and Metiu 1989). Two
parameters, Djon and ro, were introduced by Wang et al (1990) to make the potential
more flexible so that the optimization procedure was more efficient. The potential curve
of the covalent state deduced from scattering experiments (Faist and Levine 1976), in
which all the excited covalent states, the 2, 1, and 0% states, contribute (Anderson
et al 1977 and Kaufmann et al 1974), has its repulsive limb at a considerably larger
internuclear distance than those found from optical absorption data. The parameter ro
was then put into Eq. (4.17) to translate the covalent potential curve to the left. This
modification causes the inner limb of the covalent and ionic potential curves to cross at
a small internuclear distance with a very high energy. In the optimization computation
of Wang et al (1990), all the parameters in the potential functions except Econ Were
assumed to be adjustable and the initial parameters were taken from Faist and Levine

(1976) as well as Engel and Metiu (1989). The criterion function § is defined as
§ =Y (B~ EM)? (4.20)

where v is the vibrational number and E®* is the corresponding term energy for the
potential curves tabulated by Schaefer et al (1984) while £ is the term energy for

the trial diabatic and adiabatic bound states. The rotational constants

h? 1
Bu = 'j; < XU(T')|;‘7

Xo(T) > (4.21)

were used to imposed constraints upon the potentials. The procedure is to ensure that
the calculated B values for each trial potential curve are within a constraint limit. The

resulting parameters of the calculation of Wang et al (1990) for the potentials are listed
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in Table 4.3 and the corresponding A0* potential curve is in good agreement with that
given by van Veen et al (1981) in the experimental energy region as shown in Fig. 4.3.
It was found that the rotational constants of the 0% state show a discrepancy with
those of Schaefer et al, especially in the lower potential energy region. Wang et al
suggested that the implication of this result required a revision for the assignment of

the vibrational or rotational quantum numbers.

It was found in this study that because of the high J number in the experimental
band fragments and because the line position is proportional to the rotational constant
B and not proportional to the rotational quantum number J, it is impossible to alter the
value of B by changing the rotational assignment for J while still fitting the spectrum
for the rotational band fragment. The change of B values and the reassignment of J
can result in an error in the line position much bigger than the experimental error.
For example, the B values for the potential curve of Wang et al (1990) or van Veen
et al (1981) are about 3-107* ¢! smaller than those of Schaefer et al (1984). The
corresponding error in line position is 0.3 cm ™" when J changes from 50 to 60, which is
three times bigger than the experimental error of Schaefer et al, showing that it is not
possible to change B by re-assigning J. Therefore, only the vibrational assignments can
be changed. In the following, a modification of the work of Wang et al was carried out to
obtained analytical expressions for the diabatic potential curves. These modifications

are:

1. The analytical expression for the ionic state was changed to the T-Ritter

model by dropping the 1/r” term in Eq. (4.17) therefore the potential curves are:

Beoy\ 12 r C
‘/cov = Acov ( cou> - - == cov t.
(r) [ * r :l P ( pcou) (T)S e ’ (4 22)
Bion i ion
I/ion(T') = [A-ion + ( ) } eETp (— r ) . 4 3 =+ Ez'on
r Pion r
e? Dion at +a”
e ( r T o ) ’ (4.23)

and there is no translational shift of the covalent potential curve. The coupling strength



Table 4.3: Parameters for the potential curves of Nal.

Parameters | Wang et al (Eq. (4.17-19) | This work (Eq. (4.25-27)
Acon(eV) 3150.0 3100.0
Beow(eV1?A) 2.710 3.33
Coou(eV A) 1000.0 150
peow (A) 0.4277 0.3168
Eou(eV) 3.18 3.18
ro (&) 0.61 0
Aion(eV) 27580.0 1744.7
Bion(eV/2A) 1.742 2.107
Cion(eVA) 12.72 19.54
Dion 1.072 1.0215
pion(A) 0.3603 0.3910
ar(A?) 1.375
a_(A%) 5.446
at + o~ (A% 11.09
Eimm(eV) 5.312 5.258
ho(eV) 0.055 0.053
Bra(A72) 0.6858 0
re (&) 7.293 7.14
5 0.4
bt 0.01
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was taken as a constant over r

Via(r) = hy = 0.055 eV. (4.24)

to simplify the calculation.

2. The basic requirement for the potential curves is that they can reproduce
the 28 band fragments observed in Schaefer’s experiment and the microwave data
for the ground state. The term energies given by Schaefer et al (1984) outside the
experimental region are an extrapolation of the Dunham parameters which may not be
correct because the incorrect shape of the potential curves around the crossing point.
Therefore, instead of fitting all the term energies, the optimization program in this
study only uses the position of the 28 sharp lines in the upper state and the first ten

vibrational levels in the ground state.

3. It was found in this study that the constraints of Wang et al (1990) on the B
values are not tight enough and the accepted B values are in error for the line position
larger than the experimental error of the fluorescence excitation spectrum. However a
tighter constraint resulted in the computation never terminating because the program
kept looking for a trial potential curve subject to the other conditions with the right B
values which are not consistent. To overcome this problem, the B values were included
in the criterion function rather than used as a constraint. Thus, there are two factors

included in the criterion:

51 . Z(Ecal(ncal) - Eexp(ns))za (425)

and &, = Z(Bcal(ncal) — Bezp(n,))?, (4.26)

where Eg5i(neq.) is the eigenvalue of the “modified” diabatic state or the adiabatic
state for the vibrational quantum number n.y with B,y the corresponding rotational
constant. Experimental data for the position of the sharp lines (E.,,) were taken
from Schaefer et al (1984) with their vibrational assignment n,. The first ten ground

state levels were also calculated from Schaefer et al’s Dunham parameters since their
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experiment yielded more information on the higher vibrational levels of the ground

state than the microwave experiments. The computation is then to minimize

o1 (52 <1.5- 10_5)

8¢ (4.27)

i

§, 4 600(8; — 1.5-1075) (&, > 1.5-1075)

where 6, is set in such a way that the B values will have a significant effect on it if
8 is bigger than 1.5 107° so that the program can converge to the optimal potential
quickly. In practice such an arrangement is much more efficient in computer time than

using a tighter constraint and results in a smaller criterion function.

as discussed in §4.4.1
3. Because the dissociation energies of both states were knownK they are not

treated as adjustable.

The rest of the parameters of the potential curves were regarded as adjustable
in this work without taking account of their physical meaning. The initial potential
parameters were obtained by adjusting the potential curve to fit the potential curves
given by Schaefer et al (1984) and then used for the computation. It was found that
if the resulting potential curves were used as the initials for another calculation, it is
still possible to reduced the criterion function. Thus, such process was iterated until
the value of the criterion function converged to the same value. Other computation

details were the same as Wang et al’s (1990).

The resulting potential curves represent the optimized fit of the potential curves
to the experimental data and the analysis given by Schaefer et al (1984). The optimized
parameters are listed in Table 4.3 and the resulting potential curves are plotted in Fig.
4.3. The vibrational assignments for the upper states were changed for each set of
calculations and the best result were found to shift up by 9 (or n%,; —n? = 9) for the
adiabatic state and 3 ( or n%,; — n? = 3) for the diabatic state. Compared with the
potential curves of Wang et al (1990) the criterion function is much smaller in this

study as the § and é; values in Table 4.3 indicate. It should be noted that the criterion

function § defined in Eq. (4.20) does not include the contribution from the B values
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as 6; does. The repulsive limb of the optimized covalent potential curve is in excellent
agreement with the potential curve of Schaefer et al. The '=+ ionic state gives a good
fit for the first few vibrational levels as well as in the high energy region of interest.
The potential well is slightly narrower than that of Schaefer et al. Attempts to include
higher ground state levels, for example v” = 0 — 63, resulted in the crossing point
shifting to a larger internuclear distance. This may indicate the analytical expression

used 1s not accurate enough to account for the ionic behavior over such a large energy

region.

It was found that the error in the optimized potential curves is still too large to
reproduce the position of the sharp lines due to their extreme sensitivity to the position
of the energy levels of the two potential curves. However, they provided the best fit
to the potential curves given by Schaefer et al that were able to be obtained and were
used, as described in the next chapter, for numerical calculations such as finding the

Franck-Condon factors for the potential curve of Schaefer et al.

It must be emphasized that these optimized potential curves are based on the

analysis of Schaefer et al (1982, 1984). They are not the final result of this study.

Optimization on the Dunham parameters

The purpose of this calculation was to obtain a new set of Dunham parameters which
not only reproduce the experimental energy values of Schaefer et al but also have a
better coincidence of the diabatic and adiabatic energy levels at the center lines. Thus,
the new Dunham parameters can be used to obtain a better prediction of other sharp

line positions which were not observed in their experiment.

Of the 28 sharp lines observed by Schaefer et al (1982, 1984), precise positions
were given for only 8 lines. It was found that the position of these eight center lines

given by Schaefer et al in 1982 can be reproduced accurately using Child’s semiclassical



theory, even though the two hypothetical levels calculated by their Dunham paraﬁ‘}e;gxg%
R

(Schaefer et al, 1984) are not in their closest coincidence. It was then assumed that
the position of the center lines that they observed, but only presented graphically (as
shown in Fig 4.2), can be obtained with the same calculation and can be used as the
experimental data. The new Dunham parameters were calculated by the optimization

program with those given by Schaefer et al as the initial values. The criterion function

is defined as:

5= o (B - B9 +10° (B - B’ (4.28)

where E¢ are the position of the center lines, £ are the position of the calculated
diabatic or adiabatic levels, B2* are the B values calculated with the original Dunham
parameters and B2 are the calculated values with the trail parameters. For the same
reason as before, the criterion function and the coefficients are set in a way to enable
the program converge to the optimal parameters quickly with minimum error with the

experimental data.

The resulted Dunham parameters are listed in Table 4.2. The criterion function
6, also given in Table 4.2, 1s greatly reduced when compared with that of Schaefer et
al (1984) especially for the diabatic state. This is because the ground state vibrational
levels were not included in this calculation due to the discontinuity of the modified
potential shape for these levels, as described in §2.3. Thus this set of Dunham param-
eters can only be used to reproduce the excited state levels and not for constructing
the whole diabatic potential curve. The resulting parameters reproduce better coinci-
dence of the diabatic and adiabatic levels for all the sharp line positions. It is therefore
assumed that the resulting parameters will give a better prediction for the position
of other sharp lines and will be used in the next Chapter to model the absorption

spectrum.

o
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Chapter 5

Ultraviolet High Resolution

Absorption Spectrum of Nal

5.1 Introduction

In an attempt to resolve the controversy on the 2 = 0t state of Nal concerning
1ts absolute position as well as its relative position with the 1 state as discussed in
the previous Chapter, a high resolution absorption spectrum measurement on Nal
was carried out. The experimental data was then analyzed and modeled with the
optimized Dunham parameters calculated in the previous Chapter. A new potential
curve is proposed at the end of this Chapter which is consistent with the recorded

observations.

5.2 Experimental Measurements

The experimental setup is shown schematically in Fig.5.1. The narrow bandwidth dye

laser system has been described in Chapter 3. Briefly, a CuBr laser is used to pump
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Figure 5.1: Schematic of experimental arrangement
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a dye laser oscillator and amplifier. The output of the dye laser is then focused into a
BBO crystal for frequency doubling. Prisms were used to separate the dye laser beam
and its second harmonic (UV). The visible laser beam was directed into an I, cell for
wavelength calibration and into an etalon to monitor the bandwidth. The UV beam
was directed through a heated quartz Nal cell to measure the absorption spectrum.
For the UV radiation, the error in the frequency calibration was less than 0.1 em ™1

and the bandwidth was about 2-3 GHz as described in Chapter 3.

The Nal cell was made of silica tube with a vertical finger in the bottom
containing the salt. The cell was prepared by placing the salt in the vertical finger
which was connected via a “T” junction to a vacuum line to outgas the cell at 300 °C
overnight at a pressure lower than 107® torr while the salt was also slightly heated.
After the vacuum line was sealed off, the salt was vaporized into the cell and the cell
sealed off above the “I” junction forming the base of the finger. For recording the
absorption spectrum the cell was placed in a vacuum chamber with quartz windows.
The vapor pressure of the Nal in the cell was controlled by the temperature in the
finger which was heated to 650 °C'. The rest of the cell was heated to 690 °C in the
main arm and 710 °C on the windows to prevent condensation. It was found in this
study that if the windows are colder than the rest of the cell Nal will deposit on the
windows to form a thin white layer which cannot be removed later by heating the

window.

Fig. 5.2 illustrates the method of the data acquisition. The detectors were UV
enhanced photodiodes with a high speed preamplifier and peak detector which held the
peak level of the laser signal. UV transmission filters were used and together with the
peak detectors, essentially eliminated the signal from background radiation produced
by the hot cell. The laser signal which passed through the absorption cell and the
reference signal for determining the UV intensity were both sent to a discriminator to

remove the weak pulses and the very strong pulses which may saturate the amplifiers.
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The peak values were integrated and the ratio between the two channels was determined
and sent to a computer. The electronic circuits for the detecting system are given in
Appendix E. The computer was also used to control the master motor for scanning
the wavelength and also a slave motor to rotate the BBO crystal to the corresponding
phase matching angle for frequency doubling. A PC — LPM — 16 data acquisition
board with 16 input channels from National Instruments Corporation was installed

in the computer for data logging at every wavelength increment.

Different dyes such as Rhodamine 590, Kiton Red 620, Rhodamine 640 and
DCM were used in the experiment, corresponding to the tuning regions of 281 - 289

nm, 293 - 301 nm, 305 - 312 nm and 322 - 334 nm in the UV.

A section of the absorption spectrum recorded in this study as well as the cor-
responding excitation spectrum reported by Schaefer et al (1982) are shown in Fig.
5.3. The absorption spectrum of Nal, which was inverted to compare with the exci-
tation spectrum, shows much more dense line structure than the excitation spectrum.
Such a dense line structure in the absorption spectra was observed throughout the

experimental energy region.

It was also noted that there was a continuous absorption spectrum, with about
the same intensity as the line structure, which is believed to be mainly caused by the
{1 = 1 continuum state. It was also observed that in some regions, the absorption lines
are stronger than those in other regions and there are a few regions which are nearly
fully continuum. Weak intensity fluctuations were also observed superimposed on the

continuous background.

In this thesis, the absorption spectrum measured with DCM dye was analyzed.

The remaining spectra needs further investigation.
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Figure 5.3: (a) Absorption spectrum of Nal (inverted), (b) the computed model with
the bands observed by Schaefer et al (1984) and (c) a typical band fragment of the
excitation spectrum observed by Schaefer et al (1982) in the same energy region. The

modeling of (b) will be discussed later.
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5.3 Analysis of the Absorption Spectrum

Analysis of the absorption spectrum of Nal has been prevented for decades because of
the high density of lines. The fluorescence excitation spectrum reporled by Schaefer et
al (1982, 1984) produced a much less dense spectrum which allowed a break through
in the assignments of the rotational band fragments. In this study use is made of
the spectroscopic data they obtained to analyze the absorption spectrum and make

adjustments to the shape and position of the A0+ potential curve.

5.3.1 Position of lines

Predissociation of a curve crossing system was described by Child’s semiclassical the-
ory in terms of two hypothetical bound state levels: the “modified” diabatic Ey(vq, J)
and the adiabatic E(vy,J) levels, deduced from the Bohr quantization conditions
Eq.(2.38) and Eq.(2.39), as described in §2.3. The position and width of a predissoci-
ating line depends on the two nearby energy levels £, and E, the coupling parameter

u and the ratio of the vibrational level spacings:

E = (By+2E,)/(1+2) (5.1)

' = 27z(1 +yz)(E; — E)?/[has(1 + z)°] (5.2)
where z = uha, /hiy, v = Ay /A, and

27 V34
u =exp(2rv) — 1 = exp (W) -1, (5.3)

with Vi, the coupling strength and is taken to be 0.055 ev for Nal (Grice and Her-

schbach, 1974).

A useful approximate picture arises from equations 5.1 and 5.2. If the energies
of the two hypothetical levels, E; and £, are plotted as a function of J (J41), two series

of approximately linear curves result, with the slopes given by the rotational constants
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B. As predicted by Eq. (5.2), when the curves for the nearby levels E; and Ey are
close, the resonance is sharp; when the curves are further apart, the resonance is broad.
Such a plot for Nal, using the optimized Dunham parameters of Table 4.2, is given in
Fig. 5.4. The central line of a band fragment, the sharpest and the strongest line, 1s
located at the intersection of the two hypothetic levels, i.e. the closest coincidence of
the two rotational levels. On both sides of the central line are neighboring lines with
symmetrically decreasing peak height and increasing line widths as the two levels move
apart. Because of the high temperature and the similar slope for E; and E., there
are a great many of these bands occurring in the absorption spectrum and there are
also many lines in each band. As will be seen in the following, all the possible bands
predicted by Fig. 5.4 for J values up to 100 were observed and more than 50 lines
could be seen in each band for the energy region accessible with DCM dye. All of these
observed bands are labeled in Fig. 5.4 with the J values of the central lines. Those
band fragments observed with the excitation spectrum (Schaefer et al 1982, 1984) are
also marked as “0” at the position of the central lines. It can be seen from Fig. 5.4 that
those central lines locate slightly off the positions correspond to the closest coincidence

(6T ~1t-3)
of the two hypothetic levels, indicating that there is a small error in the Dunham

R

parameters. It also displays the extreme sensitivity of the central line position to the

spectroscopic data of the two potential curves.

5.3.2 Intensity and the Voigt line profiles

The absorption intensity for a vapour in thermal equilibrium condition is given as

(Herzberg, 1950 Chapter 4)

X > (5.4)

I b,(v’ u") e E IoAzN v R%[< X
¢ ’ 3he v I
where A is Planck’s constant, I is intensity of the incident radiation, Az is the length

of the absorption sample, NV » is the population in the ground state level v, v is the

frequency of the radiation, R, is the electronic transition moment and the last term is
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Figure 5.4: The diabatic and adiabatic energy levels relative to v" = 0 against J (J+1)
calculated with the Dunham parameters listed in Table 4.2. The center line rotational
quantum numbers J are marked for each band observed in this study. Those band frag-
ment observed by Schaefer et al (1984) are marked with o. The vibrational assignments

were also taken from Schaefer et al.
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Table 5.1: The Boltzmann Population Distribution for Nal

v" | Ba(%) 650°C | Bz(%) 1000°C || v" | Bz(%) 650°C | Bz(%) 1000°C
0 32.7 24.8 8 1.4 2.6
1 21.9 18.6 9 1.0 1.95
2 14.7 13.9 10 0.7 1.5
3 9.9 10.5 11 0.5 1.1
4 6.7 7.9 12 0.3 0.87
5 4.5 5.9 13 0.2 0.66
6 3.1 4.5 14 0.15 0.5
7 2.1 3.4 15 0.1 0.4

the Franck-Condon factor.

The Boltzmann factor

The population N+ in the ground state is determined by the Maxwell-Boltzmann
distribution law. The percentage of the number of molecules in vibrational level v at

temperature T is given by the Boltzmann factor:
Bz(v") = exp(—E(v")/kT)/Qu (5.5)

where k is the Boltzmann constant, E(v") is the term energy for the vibrational levels

and

Qv = exp(—E(v")/kT) | (5.6)

is the vibrational partition function. The Boltzmann factors for Nal at different tem-

peratures are given in Table 3.1.
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Intensity distribution in the rotational structure

Similarly, the percentage population of the number of molecules in rotational level J

at temperature T is:

Py = Qi(zu 1)ezp(~BJ(J + 1)he/kT), (5.7)

where (2J+1) is the degeneracy of the level with an angular momentum J, B is the

rotational constant and
Q- = > _(2J + 1)exp(~BJ(J + 1)he/kT), (5.8)

is the rotational partition function. The thermal distribution P; of the rotational levels
for T = 650°C for Nal in the ground vibrational state is shown in Fig. 5.5 where the
peak population occurs around J = 50 and with more than 1 /4 of this population for

J ~ 100.

The statistical weight of the lower state is g" = (2J +1), therefore the intensity

distribution for rotational structure is given by (Herzberg, 1950 Chapter 3).

Ly, = 205bs‘VSJea:p(—B”J"(J" + 1)he/kT) (5.9)

where Cyp,. is a constant depending on the transition dipole moment, the Franck-
Condon factor and the total number of molecules in the initial vibrational level. Sy is
the Honl-London factor. For the electronic transitions of interest in this study, which
can be classified as the !X — '¥ transition and A = 0, the Honl-London factors are

given by (Herzberg, 1950 Chapter 4):

St = (5.10)

I

ST = J+1, (5.11)

for R and P branches. Transitions for the Q branch is optically forbidden and therefore

cQ
bJ =0
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Figure 5.5: Thermal distribution of the rotational levels for T' = 650°C for Nal on the

ground vibrational level.
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The Franck-Condon factor

The intensity distribution are explained in an easily visualized manner by the Franck-
Condon principle: the change in the electronic state during transitions in a molecule
takes place so rapidly in comparison to the vibrational motion that immediately after-
wards the nuclei still have very nearly the same relative position and velocity as before
the transition. Therefore transitions vertically upward or downward in the potential
energy diagram correspond to the most intense bands. Mathematically, the Franck-

Condon factor can be calculated with the vibrational wavefunctions of the ground (x.)

and the upper (x,) states:

}

FCW'" E) = / X (E")x (E')dr, (5.12)

with the transition energy E; = E' — E".

In this study, the Franck-Condon factor for the excited state was approximated
by calculation with the = 0% diabatic continuum state. Furthermore, the Franck-
Condon factors are regarded as the same for the same transition energy for different J

values since the centrifugal distortion is not significant in this study.

The Voigt profile

The width of an absorption line is broaden mainly due to thermal (Doppler) and
natural (lifetime) broadening. Therefore the absorption line has the shape of a Voigt
profile which is the convolution of the thermal and natural line profile and can be

approximated by the empirical expression (Whiting 1968):

V) = = (1= $eapl-2T12(455)) + (%) iy (5.13)
W\ w, . v-vgy2.25) __ 10 o
FO.016(1 — Z)( ) {ewp[-0.4(4522)2%] - A0},

wy
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The Gaussian and Lorentian profile represent thermal (Doppler) and natural (lifetime)

broadening respectively:

[ = Lgexp <-2.772(” - ”G)2) (5.14)
wa
1

S 5.15
IVGHLL(_,,;W?)2 (5.15)

—~
|

where w; is the natural width, wg the Doppler width, vg the line position, and I, the

line intensity. w, is the width of the Voigt profile and is given by

wy w?
Wy, = —2—+\|/?l+w§. (5.16)

In this study, we assumed that the oscillator strengths are the same for all
bands so that the intensity changes are due to thermal distribution in the ground state
levels, the Honl-London factor for rotational levels and the Franck-Condon factors.

The intensity profile of a line in the experimental data was assumed to be:
I
I, = 2V(v —w), (5.17)
Wy
where V is the Voigt profile given by Eq.(5.13). The intensity Iy is determined by:

Io = AoBz(v")FC(v", E)Sy exp(—BJ(J + 1)he/kT), (5.18)

1

where Ao is a constant chosen to fit the scale of the experimental data. Bz(v') is
the Boltzmann population distribution and F C(v", E;) is the relative strength of the
Franck-Condon factor based on the calculation of Eq. (5.12). S is the Honl-London

factor and the last term accounts for the thermal distribution in rotational levels.

5.3.3 Modeling the absorption spectrum

The above model was first applied with the bands observed in the excitation spectrum,
with transitions originating from the ground vibrational level (v" = 0) and including 31

lines in each band fragment, to fit the absorption spectrum in the same energy region
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as that in Fig. 5.3(c) and shown in Fig. 5.3(b). The corresponding absorption lines
are clearly identified. Compared to the excitation spectrum, the absorption lines have
much less intensity changes within a band fragment. In the excitation spectrum, the
fluorescence intensity is proportional to the natural lifetime of the level and therefore
reduces rapidly on each side of the central line due to predissociation. Actually, Schaefer
et al (1984) could only observe lines with a natural width narrower than 300 MHz,
corresponding to a maximum spacings of about 1 ¢cm™' between the nearby diabatic
and adiabatic levels. For molecular states with a width broader than 300 MHz, the
predissociation rate is too rapid compared with the fluorescence rate, the molecules
don’t have enough time to fluoresce before predissociating, so they are not observed.
In the absorption spectrum, because of the Doppler broadening (~ 1.6 GHz) of all

lines, it is impossible to identify the central lines by the intensity changes.

It can be seen from Fig. 5.3 that while the excitation spectrum observed by
Schaefer et al (1984) contains fewer lines than that of the model spectrum the absorp-
tion spectrum has many more lines than the model. This implies that although the
upper state is predissociated, the resonant structure still exists in regions far removed
from the central sharp lines and can be observed with the absorption spectrum. This
was confirmed by adding more lines and band fragments into the model. Because the
absorption spectrum does not provide a good indication for the position of the central
lines, they have to be obtained from the Dunham parameters. The optimized Dunham
parameters obtained in the previous Chapter were used to calculate the position of the
excited state levels with Child’s semiclassical theory since they are more accurate for
the coincidence of the two levels for the central lines. The locations of the center lines

were shown Fig. 5.4.

With the Dunham parameters given in Table 4.1 to calculate the position of the
ground state levels, the first attempt to model the absorption spectrum using Eq.(5.17)

with the P and R branches was made.
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For the best fit, wg was taken to be 0.12 cm ™! which is about twice the Doppler
width (1.6 GHz or 0.05 em~1). This is in approximate agreement with the convolution
of the Doppler width with the instrument function which has a band width of about

2-3GHz (0.07-0.1 cm™!). The line width of the transition is approximated by:
w=3-1078(AJ (2], + AT +1))* em™ (5.19)

where AJ = J — J. and J. is the J value for the central line. This is modeled according

to Eq. (5.2). The other parameters were obtained from the best fit to the recorded

absorption spectrum.

The model spectrum for transitions originating from v = 0 is given in Figs.
5.6 to 5.8 where a satisfactory fit was obtained for transition energies higher than
30500 cm~!. For lower energies, the corresponding v = 0 transition lines in the
recorded absorption are weaker than the model spectrum and there are other stronger
lines which have not been accounted for as demonstrated in Fig. 5.9(a). This implies
that transitions from other ground state vibrational levels are important and must be
included, in particular the v" =1 level. Fig. 5.9(a-d) illustrate the changes of the
spectrum resulting from changes in the relative strength of the Franck-Condon factors
FC(v", E;) for »" =0 and 1. It is obvious that a large contribution from v" =1 has to
be included in the model spectrum to get a good fit to the observed spectrum as seen
in Fig. 5.9(c) with Rp¢ = 0.7 where Rpc = FC(" =0,E,)/FC(" =1, E;). Together
with the Boltzmann factors of these two ground state vibrational levels, the transition
strengths originating from these two levels are about the same. Fig. 5.10 and Fig. 5.11
show the best fit for some of the lower energy regions with increasing contribution from
»" = 1. In all the calculations, 25 lines on each side of the central line or 31 lines in
each band fragment are used in the calculation. It is found that a 20% change of the
ratio Rpc does not make a significant change for the best fit in the model spectrum.
As the ratio changes it was noted that while some lines appeared to fit better, others

may get worst. This is because the value of the ratio used here is for a continuum and
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Figure 5.6: Model of the absorption spectrum of Nal according to the calculation of Eq. (5.17)
for transitions from v =0 (top) and the measured absorption spectrum of the study (bottom) in
the same energy region as that in Fig. 5.3.
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Figure 5.7: Model of the absorption spectrum of Nal according to the calculation of Eq. (5. 17)
for transitions from v =0 (top) and the measured absorption spectrum of the study (bottom).
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Model of the Absorption Spectrum of Nal from v”’=0-1
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Figure 5.9: Model of the absorption spectrum of Nal according to the calculation of
Eq. (5.17) for transitions from v* = 0 — 1 (a-d) with different contribution from the
v" = 1 vibrational level. The recorded absorption spectrum of this study is shown in
(e). Rp¢ is the ratio of Franck-Condon factors FC(v" = 0)/FC(v" =1). Because the
ratio of Boltzmann factors for these two ground state vibrational levels is about 1.5, the

transition strength originating from these two levels is about the same for Rec = 0.7.
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Figure 5.10: Model of the absorption spectrum of Nal according to the calculation of Eq.
(5.17) for transitions from v"=04(top) and the measured absorption spectrum of the study
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Model of the Absorption Spectrum of Nal from v’’=0-1 (Rgc=0.27)
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is an approximation for the resonant line structure, the model does not include the
changes in the ratio and the predissociation line width due to different the slopes of

the diabatic and adiabatic hypothetical levels as seen in Fig. 5.4 for different rotational

bands.

Throughout all the analyzed energy regions, only P and R branches and no Q
branch lines were observed, which is in agreement with Hund’s case (c) coupling. By
comparing the model spectrum with the experimental data, it was found that not only
all the band fragments observed with the excitation spectrum but also all the other
possible band fragments predicted by the Child’s theory, as shown in Fig. 5.4, could be
observed. The model spectrum accounted for most of the main features. Some weak
band fragments are difficult to identify from the fluctuation background. Some weak
lines which were not accounted for by the model may originate from lines with AJ > 25
in the bandfragments or higher vibrational levels in the ground state. However, their
contribution to the overall spectrum is very small and they were not included in this
study. [t is also noted that there are a few reasonably strong lines not accounted
for which may originate from superimposed weak lines or perhaps traces of an impurity

in the salt.

5.3.4 Transitions from v =0 and 1

The model for the absorption spectrum given above uses the Dunham parameters
derived from a laser induced molecular fluorescence experiment (Schaefer et al 1984)
and their vibrational and rotational assignments (as presented in Fig. 4.2 and Fig. 5.4)
to predict the possible bands. It represents the first attempt to analyze the absorption
spectrum of Nal and reproduce the main features of the observed spectrum in an
energy region from 30000 to 31200 ¢m™'. With this model, all the possible bands
in the experimental region were observed with about 50 lines in each band fragment,

compared to only about 7 lines in the fluorescence experiment The results support
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some of the spectroscopic data of Schaefer et al, for example the rotational constants B
and the rotational assignments J. However, it was found that there is an inconsistency
between the Franck-Condon factors for the potential curve that they proposed for the

excited state and the dominant vibrational transitions from the ground state.

Calculated Franck-Condon factors for transitions originating from v’ =0-3
for the potential curves of van Veen et al (1981) and Schaefer et al (1984) are shown
in Fig. 5.12(a) and (b) where the excited state potential curve of Schaefer et al was
approximated by the analytical expression obtained in the previous Chapter. It can be
seen that the Franck-Condon factor for the potential curve of Schaefer et al increases
as v" increases over the full range of energy of interest, and the Franck-Condon fac-
tor for v = 0 is at least 10 times less than that for v = 1 in the observed energy
region. Furthermore, because of the high temperature, the thermal population (see
Table 5.1) decreases much more slowly than the increase in the Franck-Condon factors
as the ground vibrational level increases for the potential curve of Schaefer et al. Thus
transitions from ground state vibrational levels higher than v" = 0 and 1 should be
dominant. This is not in agreement with the model spectrum where transitions orig-
inate mainly from v" = 0 in the high energy region and v" = 1 in the lower energy
region. In contrast, the potential curve of van Veen et al gives a Franck-Condon factor
a few times stronger for v" = 0 than for v" =1, 2 etc throughout the observed region.
Therefore, transitions originating from v = 0 would be at least 5 times stronger than
those from v” > 1 by taking account the thermal distribution as well. With such a
strong intensity, the transitions from higher vibrational levels (v" > 1) would be diffi-
cult to observe in the fluctuation background as seen in Fig. 5.6 - Fig. 5.8. However it
is clearly apparent that at lower spectral energy the potential curve of van Veen et al
gives incorrect Franck-Condon factors because transitions originating from v" =1 are
seen to dominate. Furthermore, as discussed in the previous chapter, the rotational

constants of their potential curve are too small to explain the experimental data.
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Figure 5.12: Franck-Condon factors for the potential curve of van Veen et al (1981) (a)

and the potential curves of Schaefer et al (1984) (b) for transitions from v" = 0 — 3.
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The disagreement between the published potential curves and the Franck-
Condon factors observed in this study implies that modification in the potential curve
or the rotational and vibrational assignments is necessary to explain the absorption
spectrum and the controversy between the published potential curves. The absorption
spectrum recorded in this study is modeled, as described before, by the Dunham pa-
rameters derived from the experimental data of Schaefer et al with their rotational and
vibrational assignments. The success of this model to fit most of the absorption feature
recorded in this study over a large energy region with all the predicted band fragments
suggest that the assignments are correct. Furthermore, since more rotational lines
were recorded in each band fragment, the experimental values can be used to confirm
the assignments derived from the Dunham parameters, over a larger energy region for
each band fragment than was possible in the fluorescence experiment , to prevent any
accidental agreement of the line position. The assignments of rotational lines and the
ground state vibrational levels from which the transitions originated can be checked

with the combination relation between the P and R branches:
A F"(J)=R(J -1) = P(J +1), (5.20)

which is related only to parameters of the well known ground state levels (Herzberg,
1950 Chapter 4):

1

NaF"(J) = (4B,s —6D)(J + 3) = 8D (T + 3)° (5.21)

where B,» and D« are rotational constants for vibrational level v which can be calcu-

lated from the Dunham parameters given in Table 4.1:

" ]. >
By = Y Yalv +3) (5.22)
" J. > B
Dy = Y Yalv +3) (5.23)

Table 5.2 and Table 5.3 list the calculated results of the A;F" values and the

experimental values A, F"(exp) of this study for part of two rotational bands with
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Table 5.2: The observed rotational lines originating from v” = 0 for a band of n, = 151

and ng = 271 and the A,F" values

J| PU) R(J) | DoF"(exp) | AgFlu_, | AoFu_| | AgF_,
26 | 30672.498 | 30675.472 | 12438 | 12439 | 12.370 | 12.302
27 | 30667.592 | 30670.695 | 12.904 | 12.907 | 12.836 | 12.765
28 | 30662.568 | 30665.792 | 13.235 | 13.375 | 13.301 | 13.228
29 | 30657.46 | 30660.644 | 13.388 | 13.843 | 13.767 | 13.691
30 | 30651.904 | 30655.387 | 14.274 | 14.311 | 14.232 | 14.154
31 | 30646.37 | 30649.917 | 14.843 | 14778 | 14.697 | 14.616
32 | 30640.544 | 30644.237 | 15.301 | 15.246 | 15.162 | 15.079
33 | 30634.616 | 30638.422 | 15.684 | 15.713 | 15.627 | 15.541
34 | 30628.553 | 30632.426 | 16.188 | 16.181 | 16.092 | 16.003
35 | 30622.234 | 30626.215 | 16.708 | 16.648 | 16.556 | 16.465
36 | 30615.718 | 30619.88 | 17.117 | 17.115 | 17.020 | 16.927
37 | 30609.098 | 30613.328 | 17.589 | 17.581 | 17.485 | 17.388
38 | 30602.291 | 30606.579 | 18.039 | 18.048 | 17.949 | 17.850
39 | 30595.289 | 30599.738 | 18.485 | 18.514 | 18.412 | 18.311
40 | 30588.094 | 30592.586 | 19.015 | 18.980 | 18.876 | 18.772
41 | 30580.723 | 30585.379 | 19.368 | 19.446 | 19.339 | 19.233
42 | 30573.218 | 30577.968 | 19.878 | 19.912 | 19.803 | 19.693
43 | 30565.501 | 30570.346 |  20.4 20.378 | 20.266 | 20.154
44 | 30557.568 | 30562.592 | 20.795 | 20.843 | 20.728 | 20.614
45 | 30549.551 | 30554.646 | 21.26 | 21.308 | 21.191 | 21.074
46 | 30541.332 | 30546.498 | 21.817 | 21.773 | 21.653 | 21.534
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Table 5.3: The observed rotational lines originating from v" = 1 for the band of

n, = 145 and ngy = 266 and the Ao F" values

J P(J) R(J) | AgF"(exp) | DoFlu_y | DaFlu_, | D2Fy
18 | 30246.399 | 30248.544 |  8.640 8.689 8.641 8.594
19 | 30243.000 | 30245.263 |  9.161 9.158 9.108 9.057
20 | 30239.383 | 30241.794 |  9.592 9.627 9.574 9.521
21 | 30235.671 | 30238.159 | 10.068 10.096 | 10.040 | 9.985
99 | 30231.726 | 30234.331 | 10.525 10.565 | 10.506 | 10.449
23 | 30227.634 | 30230.361 | 11.000 11.033 | 10.973 | 10.912
24 | 30223.331 | 30226.188 | 11.455 11.502 | 11.439 | 11.376
25 | 30218.906 | 30221.845 | 11.889 11.970 | 11.904 | 11.839
26 | 30214.299 | 30217.372 |  12.399 12.439 | 12.370 | 12.302
27 | 30209.446 | 30212.649 | 12.845 12.907 | 12.836 | 12.765
28 | 30204.527 | 30207.799 | 13.326 13.375 | 13.301 | 13.228
29 | 30199.323 | 30202.803 | 13.784 13.843 | 13.767 | 13.691
30 | 30194.015 | 30197.529 |  14.247 14.311 | 14.232 | 14.154
31 | 30188.556 | 30192.223 |  14.708 14.778 | 14.697 | 14.616
32 | 30182.821 | 30186.564 | 15.207 15.246 | 15.162 | 15.079
33 | 30177.016 | 30180.904 | 15.587 15.713 | 15.627 | 15.541
34 | 30170.977 | 30174.945 |  16.180 16.181 | 16.092 | 16.003
35 | 30164.724 | 30168.845 |  16.572 16.648 | 16.556 | 16.465
36 | 30158.373 | 30162.578 | 17.028 17.115 | 17.020 | 16.927
37 | 30151.817 | 30136.154 | 17.481 17.581 | 17.485 | 17.388
38 | 30145.097 | 30149.518 | 17.973 18.048 | 17.949 | 17.850
39 | 30138.181 | 30142.819 | 18.383 18.314 | 18.412 | 18.311
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transitions originated from v = 0 and v =1 respectively. The observed absorption
lines are located near the calculated value from the Dunham parameters with the
corresponding assignments. With the experimental error of less than 0.1 em =1, both the
rotational assignments and the ground state vibrational assignments of the absorption
lines are confirmed to be correct. The confirmation of the v” = 1 transitions, together
with its relative strength of the Franck-Condon factors, imply that a departure from
the published potential curves is necessary to account for the absorption spectrum. It
should also be pointed out that although the vibrational assignments of Schaefer et al
(1984) were used in this analysis, they may not be correct. It can only be shown that
the position of these vibrational levels in the observed energy region is correct. It is
always possible to modify the potential curve and change the vibrational assignments
but keeping these energy levels at the same position. The validity of the vibrational
assignments of Schaefer et al (1984) are questioned in this study and are likely to be

incorrect in view of the following discussion.

From Fig. 5.6 - Fig. 5.11, it was found that some lines in the model spectrum
are about 0.2 cm ™! from the observed position which exceeds the experimental error and
results in changes to the intensity and width of some overlapping lines. The model needs
to include more accurate information about the position of lines, widths and intensity
distribution for each band fragment to give a better fit. Moreover, the model was
found to fail when applied to the absorption spectra in higher energy regions measured
with other dyes. This implies that there is an error in the vibrational assignments and
the Dunham parameters are accurate only in a small energy region corresponding to
the most detailed section of the fluorescence excitation spectrum. For higher energy,
the model spectrum doesn’t shown any similarity to the experimental data, indicating
that the error in the Dunham parameters is so large that they failed to predicted many
bands. This can be taken as further evidence that the potential curve proposed by

Schaefer et al (1984) is incorrect.
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5.3.5 The proposed potential curve for (2 == 0" state

There exists contradiction between the published potential curves and the experimental
data of this study. The potential curve of Schaefer et al gives the correct energy
levels and rotational constants in the experimental energy region, but the Franck-
Condon factors are greatly different from the experimental values. This implies that
the repulsive limb of the potential curve is not located at the correct position. On
the other hand, the potential curve of van Veen et al gives the correct Franck-Condon
factors only for transition energies higher than 30500 ¢cm ™!, and incorrect rotational
constants when compared with the experimental data. This implies that a modification
of this potential curve in the lower energy region (E; < 30500 cm™') is needed to fit

the experimental data.

Summarizing the above analysis, it is apparent that the Q = 0% potential curve

should account for the following spectroscopic properties in the analyzed energy region.

e The same rotational constants B and vibrational level spacings for the adiabatic
state as those given by Schaefer et al (1984), with an error in line position less

than the experimental error.

e Similar relationship of the Franck-Condon factors for v" =0 and v" =1 to those
given by the potential curve of van Veen et al (1981) for transition energies higher

than 30500 em™;

e Larger Franck-Condon factors for »" = 1 than that from »" = 0 for transition

energies lower than 30500 cm™".

e Transitions originating from »" > 1 not strong enough to make an observable

contribution to the absorption spectrum.

In the following, a potential curve which meets all these spectroscopic properties

is proposed.



In quantum mechanics, the rotational constant B is given by the integral:

B—ﬁ< ()|i| ) > 5.24
=5 erzx(r ()

where r is the internuclear distance and x(r) is the vibrational wavefunction. Its value
is determined by the location and the shape of the potential curve. The location of the
potential curve affects the value of 1/r? while the shape of the potential curve affects
the amplitude of the wavefunction. For the potential curves given by Schaefer et al
(1984), it is noted that in the observed energy region, as shown in Fig. 4.3, the adiabatic
potential curve has a larger B value than the diabatic one although its repulsive limb
is located at a greater internuclear distance as shown in Fig. 5.13. This is because
to the left of the crossing point the diabatic potential has a very deep well and the
wavefunction in this region has a small amplitude. Thus, the integrand of x(r)%x(r)
is small in that region. On the other hand, the excited adiabatic state has a much
shallower well at the same region which leads to a larger amplitude wavefunction and
thus a larger integrand in the same region. Since the wavefunctions for both potentials
are nearly the same to the right of the crossing point, the integrands to the left of the
crossing point will decide which B value is the greater. The excited state potential
curve given by van Veen et al (1981) has a smaller B value than that of Schaefer et
al since its repulsive limb is located at a larger internuclear distance and they both
have about the same depth well. Therefore, the B value of a potential curve can, in
principle, be increased by translationally moving the repulsive limb of the potential
curve to a smaller internuclear distance, or having a shallower potential well in the

repulsive limb region.

It is noted from the previous discussion that the adiabatic potential curve of
Schaefer et al (1984) is derived from an RKR method based on their extrapolation to
determine the lower energy levels using the Dunham parameters which were found in
a much higher energy region. There is no direct experimental evidence for determining

the location of the lower energy levels, so that while the position of the high energy
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levels have been measured by the experiment data, the actual position of the low energy
levels remain unknown. Furthermore, the location of repulsive limb of their potential
curve is not uniquely fixed by their experimental data, but by their assumed position
of the lower energy levels. The change of the unknown lower energy levels will affect
the location and the shape of their “RKR” potential curve. The incorrect Franck-
Condon factors of their potential curve suggest that their assumption about the lower
vibrational levels are not correct. It follows that an alternative set of energy levels in
the lower potential energy region is needed to support a potential curve which fits the

known experimental data better.

The potential curve proposed in this study is a modification of the potential
curve given by van Veen et al (1981), especially in the lower energy region of the
repulsive limb. The location of the repulsive limb of the excited state potential curve,
determined by the Franck-Condon factors, is very close to that of van Veen et al
for energies higher than 30500 em~!. However, the only possibility for this potential
curve to have rotational constants B very close to those given by Schaefer et al in
the experimental energy region. as discussed above, is to have a shallower shape than
that of van Veen et al in the repulsive limb region. This is in accordance with the
requirement that the slope of the potential curve should become smaller than that of
van Veen et al in the lower part of the experimental energy region (E; < 30500 cm™') to
give the correct ratio of the Franck-Condon factor Rrc, as seen in Fig. 5.9 to Fig 5.11.
While the repulsive limb of the potential curve is shallow in the low energy region to
give the correct rotational constant B in the experimental energy region, it should also
smoothly and rapidly approach the dissociation limit as internuclear distance increases

due to the nature of a covalent state. Such a potential curve is proposed to be

i(r) = (};>Bemp <— (0.01 + (L))b) (r—2.7)+ ()—ﬁ)ls) +3.18 (ev) (5.25)

and is shown in Fig. 5.13. It is an empirical modification based on the potential curve

of van Veen et al. The verv sharp slope at small internuclear distance is provided
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by the (12)3 coefficient and the exponential of (222)%. The shallower shape above the
equilibrium position of the ground state and the fast damping of the potential curve
are generated by the exponential of —(0.01 + (r/7.5)%)(r — 2.7). The dissociation limit
is taken to be 3.18 ev, given by van Veen et al. The electronic coupling strength
Vi2 is taken to be 0.055 ev in this study. No attempt was made to obtain a more

accurate coupling strength since small modification to this value produces a negligible

contribution to the spectroscopic parameters concerned in this study.

Although the proposed potential curve appears different from any of the cur-
rently published potential curves in the lower energy region above the equilibrium
position of the ground state, as shown in Fig. 5.13, it is consistent with the currently
available experimental data. The Franck-Condon factors, which fix the location of the
repulsive limb of the potential curve, are in agreement with the broadband absorp-
tion experiment of van Veen et al (1981) and are consistent with the high resolution
absorption spectrum measurements of this study. Its rotational constants and vibra-

tional spacings in the experimental region are in excellent agreement with those given

by Schaefer et al (1984).

The smaller slope of the potential curve makes the transitions from right-hand
turning points of the lower state levels stronger than that for van Veen’s potential
curve, consequently the Franck-Condon factors for transitions originating from v” = 1
are stronger than those from v’ = 0 for energies below 30450 cm™!, as illustrated
in Fig. 5.14(a). The ratio of Franck-Condon factors for v = 0 and 1, Rp¢, for the
proposed potential curve are given in Fig. 5.14(b) which are in agreement with the

observation in Fig. 5.9 to Fig. 5.11.

The shallower shape of the proposed potential curve also increases the rota-
tional constants B of the adiabatic state when compared with that of van Veen et al
providing excellent agreement with the experimental values which are the same as those

given by Schaefer et al (1984) over the observed energy region, as shown in Fig. 5.15(a).
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Figure 5.14: Franck-Condon factors of the new potential curve for transitions from
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The outer limb of the X0* diabatic potential curve obtained in the previous chapter

was empirically pushed inward by multiplying a factor
¢ =1.0+0.0leap (~0.7((r — 7.5)/3.5)2) for r>3.5 (5.26)

to obtain a good fit for the vibrational spacings of the upper adiabatic state which are

shown in Fig. 5.15(b).

The shallower nature of the proposed potential curve is supported by the re-
sult of a multireference singly and doubly excited configuration interaction (MRSDCI)
calculation (Sakal et al, 1992), as shown in Fig. 5.13. However, the potential curve
of MRSDCI calculation is too shallow and its repulsive limb is located at a greater
internuclear distance, giving incorrect Franck-Condon factors when compared with the

experimental data.

A thorough literature search indicates that there has been no high resolution
experimental data published for wavelengths longer than 350 nm. Berg and Skewes
(1969) stated that bandlike groups of lines regularly spaced by about 36 cm™=! appear
throughout the region from 2945 to 5400 A. Accordingly it was proposed that the upper
state has a potential well much deeper than a van der Waals well with a vibrational
spacing of about 36 cm™', although no analysis was provided which supported this
suggestion. Both the potential curve of Schaefer et al and the newly proposed potential
curve have vibrational spacings of about 36 cm™! over a large lower energy region, as
seen in Fig. 5.15(b). However, careful examination of the spectrum throughout all the
experimental regions does not indicate a regular 36 ¢cm™! band spectrum grouping.
Furthermore, such 36 cm~! bandhead-like structure can not be explained with the new
potential curve, or with the potential curves of Schaefer et al (1984) or van Veen et al
(1981). Some of the conflicting aspects of these bands observed by Berg and Skewes

(1969) at wavelength longer than 3500 A are:

1. A suggestion by Berry (1979) that these 36 cm™! regularities that are sup-

posed to be associated with the vibrational frequency of the upper state are really
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nothing but quasi-periodic coincidence of complex overlapping bands. None of these
bandhead like groups were observed in the present high resolution absorption spectrum
or reported by any other authors. It is also impossible to reproduce such bandheads
from the P and R branches with the present model as the lines of these branches are
separated over a large energy region due to the large difference between the B values

of the ground state and the upper state.

9. There is no evidence that the = 0T state is responsible for this behavior.
Perhaps it could be caused by the 0 = 1 state if it has a shallow well. If this is true, the
Q branches may be able to reproduce the bandhead like structure with the B values of
the Q = 1 state very close to those of the ground state. However this is unlikely since

! spacing of the “bands”.

a shallow well will not give an extended region of 36 cm~™
In addition, the spacing of 36 cm™! requires a broad well giving a small B value very

different from the ground state.

At present, these “band” like structures occurring at wavelength greater than
400 nm appear to be an unresolved problem concerning the absorption spectrum of

Nal.

Finally, it must be pointed out that the shape of the proposed potential curve
is determined by the experimental data and is not a theoretical extrapolation or as-
sumption. This is due to the fact that the repulsive limb of the potential curve in
the experimental region is fixed by the Franck-Condon factors. The shallow shape in
the lower energy region of the repulsive limb is required to match the rotational con-
stants in the experimental energy region and provide stronger transitions originated
from »” = 1 than that from v" = 0 in the lower part of the experimental energy region.
The covalent nature of the potential curve requires its repulsive limb approach the
dissociation limit rapidly as internuclear distance increase, so that the shallow shape of
the repulsive limb cannot extend to large internuclear distance. Thus the shape of the

proposed potential curve is uniquely determined by the experimental data, although
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the parameters of the potential curve need refining to reproduce the observed band
fragments. This will require accurate location of more bands in a wider energy region

to determine the Dunham parameters.

5.4 Conclusion

The absorption spectrum of Nal in the energy region 30000 - 31200 cm ™! was modeled
for the first time with a set of Dunham parameters derived from a molecular fluores-
cence experiment (Schaefer et al 1984). The model spectrum, with transitions from
v" = 0 and 1, reproduced most of the absorption feature recorded by the high resolution
laser experiment in this energy region, which corresponds to the most detailed part of
the fluorescence experiment. As a result of this analysis, a diabatic potential curve for
the AOT excited state is proposed. Unlike other currently published potential curves for
this state, the potential curve is consistent with the known experimental data, it pro-
vides the correct rotational constants B, vibrational spacings and the Franck-Condon

factors in the observed energy region.

Further high resolution spectroscopic investigations at higher and lower energy
regions is suggested to extend this study. Spectroscopic data in the lower energy region
can verify the shallow well of the newly proposed potential curve and may help to
explain the 36 cm™" bandhead like structure claimed by Berg and Skewes (1969). More
fluorescent band fragments are required to be identified in the higher energy region to
determine improved Dunham parameters to model the absorption measurement in this

region.

It is suggested that the vibrational assignments of Schaefer et al (1984) be
modified to get a better set of Dunham parameters which covers a larger energy re-
gion. The potential curve proposed in this study can be used as a reference to provide

vibrational quantum numbers, rotational constants and the position for the lower en-
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ergy levels. By adjusting these parameters to fit the experimental data, more accurate
Dunham parameters can be obtained and applied to a wider range of energy. Improved

potential curves can then be constructed using the RKR method.



Chapter 6

Intermediate Coupling Strength
Pre-dissociation of Diatomic
Molecules: Transition from

Diabatic to Adiabatic Case

6.1 Introduction

The crossing of an attractive molecular potential curve with a repulsive curve can
produce interesting spectroscopic features if the interacting diabatic states are of the
same symmetry. As described in Chapter 2, analytical expressions for the energy shift
and line width for pre-dissociation were given by Child on the basis of semiclassical
theory but only apply to sharp resonances, or near the diabatic or adiabatic limit.
Mohlenkamp and Korsch (1986) presented a semiclassical calculation based on the
complex energy quantization method to investigate the intermediate coupling region.
Several novel features were discovered but were not fully understood, as reviewed in the

following section. It is the purpose of this study to give a better physical understanding

142
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of the resonance behaviour in this region.

In this study, two methods have been used based on the coupled Schrédinger
equations, to investigate the resonance behaviour in the intermediate coupling region.
The first is similar to that of Méhlenkamp and Korsch (1986) but uses an integral solu-
tion of the coupled Schrodinger equations with the complex scaling method (Lefebvre
1990, Atabek and Lefebvre 1980, 1981, Brandas 1987). The second method is similar
to the internal amplitude approach for shape resonance (Allision 1969, Jackson and

Wyatt 1970) which was adapted to a two channel curve crossing system.

Unlike the absorption spectrum, the resonance spectrum contains only infor-
mation about the excited states and is independent of the position of the ground state
which, through the Franck-Condon factor, significantly changes the absorption spec-

trum.

6.2 The Semiclassical Complex Energy Quantiza-

tion Method

Based on the Child’s semiclassical theory for Feshbach resonance and predissociation,
Korsch (1984, 1986, 1987, Mohlenkamp and Korsch, 1986) presented a semiclassical
complex energy quantization study for a curve crossing system. In particular a model
MgH system was examined and the position of resonances in the predissociating region
were computed for a range of coupling strength. A simple and intuitively appeal-
ing semiclassical description of resonances for coupled-state (Feshbach) resonance was
given. A brief review of Korsch's work is presented in this section and a further inves-

tigation on the MgH model system is made in the following sections.
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6.2.1 Semiclassical quantization of predissociating states

The semiclassical complex energy quantization condition is based on the diagrammatic
technique developed by Child as described in §2.3. Therefore the semiclassical waves
have the same properties in free propagation, reflection from a classical turning point
and connection matrix for the amplitudes on passage through a curve crossing as those
described in Chapter 2. It is noted that the phase change for passage through a curve

crossing took a slightly different form in Korsch’s formula (Mdhlenkamp and Korsch,

1986):
! B—, _ —wv\ (P‘
s i " (6.1)
o B\ E
. - —ﬂ'l/\ / Iid
o N Y (6.2)
P —e™™ B* |\ Q
(6.3)
where
B:t - v T2rv e—(r/?)u:Fi(u—ulnu)
(1 £iv)
2 T4
v = == o) = ke (r)ldr)

ke(r) = [2p(E = Va(r)]"/?/8

and ry and r_ are the complex crossing points of the adiabatic upper V, and lower
V_ potential curves in the complex coordinate plane. The difference in the phase may
originate from the methods of deriving the connection matrix (Korsch 1984). With

this connection matrix, Eq. (2.37) of Chapter 2 becomes :
[(B—)2e2a+ o e-—21ru+2ior_]e2iﬂ+ —— (64)
This equation is the quantization condition which determines the complex resonance

energies. Korsch then introduced the quantum number function

N, (E) = %{m B %ln[uza-)zem+ + g2ty (6.5)
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for curve crossing predissociation system so that Eq.(6.4) can be rewritten as

N (E,) =n+

| =

with integer values of n.

Such expressions are in accordance with the WKB quantization in the two
limiting cases. In the diabatic limit, the coupling strength goes to zero resulting in a

vanishing phase integral v, which imposes B~ — 0 and
1 1 b+ N
Ny = =(a- +By) = 77/,,_ ky(r)dr. (6.7)
In the opposite limit of large coupling strength, we have e — 0, B~ — 1, and

by
Ne o S(an 48 == [ kil (6.3)

T T Jay

Eq.(6.7) and Eq.(6.8), together with Eq. (6.6), are the same WKB quantization con-
dition for bound states in the diabatic potential V; (Eq. 2.38) and the upper adiabatic
potential V. (Eq. 2.39). In Eq. (6.6), the semiclassical resonance states are numbered
by an integer value n. There are two classifications for the numbering scheme. The
adiabatic quantum number n, defined by the numbering in the adiabatic limit when
the coupling strength is very strong; and the diabatic quantum number n, for the dia-
batic limit. Therefore the numbering of the resonance is not unique in the intermediate
coupling region. A resonance state can be numbered by a diabatic quantum number

as well as an adiabatic quantum number.

6.2.2 Application of the semiclassical quantization

Numerical calculations were performed for the above semiclassical complex energy
quantization theory for a model curve crossing system of MgH (Méhlenkamp and Ko-

rsch 1986) with the potential curves

Vi(r) = 95817.22 exp(—0.7872477r) + 5359.824 cm ™! (6.9)
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Figure 6.1: Model potential curves for MgH (solid lines) and the modified dissociative
potential curves a, b and ¢ which are used to investigate the effect of the relative

resonance position of the diabatic and adiabatic components on the overall resonance.



147

Vp(r) = 38339.19(1 — exp(—0.9766027(r — 1.736154)))* — 100.2809 em~{6.10)

Via(r) = Aimgezp(—(r — 2.824)%) (6.11)

which are shown in Fig. 6.1 as the solid lines with the internuclear distance r in A.
The reduced mass was g = 1763.0698 a.u. The realistic value of the coupling strength
for MgH is Ay = 6822.694 em~! or 0.031 a.u. which is almost in the adiabatic limit.
In order to study the influence of the coupling strength on resonance spectrum, A
was varied from values near the diabatic limit to values near the adiabatic limit. The
calculated results of Mdhlenkamp and Korsch (1986) are reproduced in Fig. 6.2 and

Fig. 6.3. These results shown that

1. In the diabatic or adiabatic limits, the system decouples and there are bound

states in the diabatic or adiabatic potentials V5 or V.

9. With increasing coupling strength, all the predissociating semiclassical resonances
approach the bound states of the upper adiabatic potential V. with vanishing

line width.

3. With decreasing coupling strength, most of the semiclassical resonances approach
the bound states of the diabatic potential V; with vanishing line width. How-
ever, there is an unexpected exception for the resonance state of n, = 18. The
resonance positions (or the real part of the resonance eigenvalues) for resonance
states n, = 17 and n, = 18 both approach the same position as the diabatic
resonance ng = 30. The width of the state n, = 18 goes to infinity resulting in
the vanishing of the resonance state while the line width of state n, = 17 goes to

Zero.

4. Some of the resonance states are very insensitive to the variation of the coupling
strength while others are extremely sensitive and show pronounced changes in

resonance positions and widths in the intermediate conpling region.
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Figure 6.2: Variation of semiclassical resonance positions as a function of coupling
strength (solid lines). The thin lines on the left mark the diabatic eigenvalues for 1}
and the dotted lines indicate the adiabatic eigenvalues for V, as a function of coupling
strength. The diabatic quantum numbers are given on the left of the trajectories while

the adiabatic ones are given on the right (After Mohlenkamp and Korsch, 198 é).
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Figure 6.3: Variation of semiclassical resonance energy and width of the semiclassical
resonances shown in Fig. 6.2 with the variation of the coupling strength. The num-
bers denote the adiabatic quantum numbers. The arrows indicate increasing coupling

strength (After Mohlenkamp and Korsch, 1986).
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5. The transition from the diabatic to adiabatic regime occurs in a small well local-

ized coupling region, where all the curves show more or less pronounced changes.

6. The resonance energy vs width trajectories show various types of behavior such

as humps and loops.

Although some of the properties such as (1) and (2) are expected, the reason
for the behaviour of some of the resonant trajectories, for example n, = 17 and 18, is

not evident from their analysis.

6.3 The Complex Scaling Method

Mohlenkomp and Korsch (1986) commented that the appearance or disappearance
of resonant states may be an artifact of the semiclassical solution, so to verify that
the semiclassical behavior can also be observed in the numerical integration of the
coupled Schrédinger equation with the complex scaling methods was carried out and
is presented in this section. The same potential curves Eq. (6.9) - (6.11) adopted by
Mohlenkomp and Korsch (1986) were used and the coupling strength A;,; was also

varied over the intermediate coupling region.

The complex energy eigenvalues of the coupled equations were calculated using
the method as presented in Chapter 2 and Appendix D. Complex rotation of coordi-
nates was applied only where |r| > ro with 7 — ro + (r — ro)ezp(i8), ro = 0.07A and
§ = 0.07 rad. This is the exterior scaling transformation which has better numerical
stability (Brandagila/éS?). Johnson’s renormalized Numerov method (Johnson 1978)
1s used to solve the complex coupled equations. Calculations of the complex energy
eigenvalues were begun at the diabatic or adiabatic limit where the bound state eigen-

value could be used as the starting approximation. Then, as the coupling strength

was changed by successive increment, the previous solution was used as the starting
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approximation. The variation of the energy of each resonance is represented by a con-
tinuous trajectory as a function of coupling strength. In this way, the resonance state
can also be numbered by the quantum numbers nq or n, and a continuous trajectory

linking the diabatic or adiabatic limiting cases can be traced.

Calculated results are shown in Fig. 6.4 and Fig. 6.5 which are in good
agreement with those given by the semiclassical method (Mdhlenkamp and Korsch,
1986) except for resonance states of very large width which probably arise from the
extreme sensitivity of resonant character to the potential curves and therefore the

wavefunctions, as described later.

As expected, the resonances approach the eigenvalues of the diabatic or adi-
abatic bound potential with decreasing or increasing coupling strength respectively,
with the widths reducing to zero. There is interesting behaviour in the intermediate
coupling region where the transition from weak to strong coupling occurs. Some res-
onances show pronounced shifts and there are regions where adjacent resonances can
merge or split as the coupling strength changes. Since the number of resonance states
in the diabatic limit are generally not the same as those in the adiabatic limit in their
respective energy region, it follows that some resonance states have to vanish or ap-
pear in the intermediate coupling region as the coupling strength changes to match
the resonance states in the other limit (Fig. 6.2 and Fig. 6.4). The complex scaling
method, as well as the semiclassical quantization method, only determines resonance
positions and widths and is therefore unable to give a satisfactory description for the
origin of these changes as well as the rapid and pronounced shift in resonance positions
that sometimes occur. It can only be demonstrated that the semiclassical behaviour
described in the previous section also occurs in  the integrated solution. A better
understanding of its origin is presented in the following sections where a novel inter-
pretation is presented for the change in resonance states from diabatic bound states to

adiabatic resonance states as the coupling strength is increased.



152

Energy (10°cm™)

o
n

D I ST T (B

0 5 10 15 20
Coupling strength A, (10”a.u)

Figure 6.4: Resonance trajectories, calculated by the complex scaling method, as a
function of coupling strength for the potential curves of MgH (solid lines). The thick
lines on the left mark the diabatic eigenvalues for V; and the dotted lines indicate the

adiabatic eigenvalues for V, as a function of A;,,. The o indicates the peak positions

of the resonance spectrum in F ig. 6.7.
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6.4 The Maximum “Internal Amplitude” Method

The second method to investigate the resonance behaviour in the intermediate coupling
region is similar to the internal amplitude approach for shape resonances (Allison 1969,
Jackson and Wyatt 1970) in which the resonant position of a quasibound state can be
determined as that energy at which the internal amplitude of the wavefunction, normal-
ized by its asymptotic amplitude, reaches a maximum. This idea was adopted for the
two channel spectrum where the maximum amplitude of the closed channel wavefunc-
tion, normalized by the asymptotic amplitude of the open channel wavefunction, was
used to identify the resonances of a curve crossing system when the coupling strength
is near the diabatic limit (Lefebvre 1990). It is proposed that in the strong coupling
limit a similar procedure can be used to identify the resonance states. In this case the
adiabatic potentials are used with the adiabatic bound state normalized by the open

channel wavefunction.

However, in the intermediate coupling region, the closed channel is not read-
ily identified. Examples of the diabatic and adiabatic bound state (bold lines) and
continuum state (dashed lines) wavefunctions together with the potential curves (dot-
ted lines) for some special cases are shown in Fig. 6.6. The four special cases are:
(1) Ain: = 0.0065 a.u., E=23800.0 cm™!: the bound state is on resonance in the di-
abatic representation and off resonance in the adiabatic representations (as discussed
later). (ii) Ain: = 0.0065 a.u., E=24245.0 cm™!: the bound state is on resonance in
the adiabatic representation and off resonance in the diabatic representations. (iii)
Aint = 0.0065 a.u., E=29829.66 cm™!: the bound state is on resonance in both repre-
sentations. (iv) Ain:=0.0065 a.u:, E=18790.0 cm™': the bound state is off resonance
in both representations. It appears in Fig. 6.6 that the total wavefunction has both
diabatic and adiabatic character. Even in the intermediate coupling region, when the
bound state wave functions reach their maximum values (on resonance), their form is

very close to that of the eigenfunctions of a single channel bound state showing strong
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bound character while the wavefunctions for off resonance states have strong mixed
character. It is therefore useful to investigate this transition using an approach which
separates out the diabatic and adiabatic contributions to the resonance. In this study,
it is assumed that the change from the diabatic to the adiabatic limit as the coupling
strength increases is smoothly continuous and the contribution to the resonant state
can be considered as part diabatic and part adiabatic. An “internal amplitude” which
uses both the diabatic and adiabatic bound states is proposed as a criterion for the

resonance which is given by

P=pP4p° (6.12)

where
Pé = [ Ixé(r)|?dr
o Ixs(r)] (6.13)
P o= [57 IXg(r)|*dr
with xg#(r) and x¢(r) the diabatic and adiabatic bound state wavefunctions normalized

by the asymptotic amplitudes of the continuum states.

This definition provides a useful explanation for resonance behaviour in the
intermediate region although a full theoretical examination of the reason that the
bound state components of the two different basis can be added and show consistent

results needs to be investigated.

The spectrum P(E)/2 defined by Eq. (6.12) is shown in Fig. 6.7 together
with P? and P for a range of coupling strength. The peak positions of the resonance
spectrum were located and marked in Fig. 6.4 and widths at the half maximum were
measured and shown in Fig. 6.5 where they are compared with the results of complex
energy quantization method. Resonance positions given by the maximum value of this
“internal amplitude” and the widths measured at its full width at half maximum are
found to be in good agreement with calculations by the complex scaling method. A
discrepancy occurs for widths approaching infinity, but it is very small when compared
with the width and is within the uncertainty originating from overlapping wings of

neighboring resonances. As Child (1991) has pointed out for the case of shape reso-
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Figure 6.7: Resonance spectrum P/2 (bold lines), P? (dash lines) and P* (dotted
lines) for a range of coupling strengths Aine. The symbols (*), (A) and () indicate
the resonance positions from complex quantization method and the eigenvalues for the
diabatic and adiabatic bound states respectively. The diabatic states (A) range from
ng = 13 at the left to ny = 33 at the right. The energies at which P, = 0.5 are marked

as O, shifting from lower to higher energy as the coupling strength increases.
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nances and tunneling pre-dissociation, the precise equivalence between the resonance
positions and width associated with different resonance definitions such as maximum

internal amplitude, Siegert eigenvalue, and phase shift can be expected only in the

sharp resonance limit.

6.5 Interpretation of the Intermediate Coupling

Region

With the “internal amplitude” defined in the previous section, the origin of the be-
haviour in the intermediate coupling region is readily interpreted. The summation of
diabatic (P%) and adiabatic (P*) resonant spectrum in Fig. 6.7 demonstrates how the
total resonance spectrum (P) changes in the intermediate coupling region from near
diabatic to near adiabatic case as coupling strength increases. When adiabatic and di-
abatic resonant states coincide, the resonance is exceptionally sharp, conversely, when
they are not coincident all the diabatic and adiabatic resonances as well as the total

resonance are broad.

As the coupling strength is increased from the diabatic limit, the spectral
changes in Fig. 6.7 in the region of broad resonances are due to the adiabatic character
of the spectrum becoming more apparent and the resulting resonances having a large
phase shift relative to the diabatic resonances. Thus, the resonance position undergoes
a rapid shift from near diabatic (P?) toward near adiabatic (P*) resonance location.
The splitting of ny = 30 or the vanishing of n, = 18 is also evident. As illustrated in
Fig. 6.7, a weak peak in P* starts to appear as the coupling strength A;,; increases
to 0.0065 a.u. However, since the diabatic resonance still dominates, there is no ad-
ditional resonance in the total spectrum until A;,; = 0.008 a.u. when the adiabatic
resonance starts to become the dominant component. From the adiabatic limit, this

can also be interpreted as the process by which the combined resonances which are
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Table 6.1: Potential Parameters for V
Curves | B (em™) | C (em™) | a |70 (A)

(a) 95817.22 | 5273.829 | 0.78 | 0.04

(b) 95817.22 | 5609.829 | 0.78 | 0.003

(c) 93000.0 6561.0 | 0.80 0

antiphase at the spectral region of 33500 em~! cancel at A, ~ 0.0079 a.u. causing
the width of one of the resonance states to approach infinity and the resonance state
to vanish. It is expected that such a region would be very sensitive to any change
in the shape of the potential curves. In an attempt to investigate the effect of the
relative resonance positions of the two components on the development of resonance

trajectories, the repulsive potential curve
Vi(r) = B exp(—a(r —ro)) + C (6.14)

was changed slightly to give different adiabatic level spacings while at the same time
keeping the adiabatic ground state in the same position as the coupling strength ap-
proaches zero. The parameters for different potential curves are listed in Table 6.1
and the corresponding potential curves are shown in Fig. 6.1 in comparison with the

potential curves of MgH.

The resonance trajectories as a function of coupling strength for different re-
pulsive potential curves (a, b and ¢ in Fig. 6.1) in the lower energy region of Fig.
6.4 are shown in Fig. 6.8 as (a), (b) and (c). It is noticed that for potential curves
with greater adiabatic level spacings than MgH (Fig. 6.3(a)) there is a vanishing of
the adiabatic resonance n, = T (or splitting of the diabatic resonance ny = 21) in the
higher energy region and a vanishing of the diabatic resonance ny = 15 {or splitting
of n, = 2) in the lower energy region. As the adiabatic level spacings decrease, the
vanishing states approach in energy as shown in Fig. 6.3(b). For the potential curves of

MgH where the adiabatic level spacings are further decreased. the vanishing resonant
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Figure 6.9: Variation of Landau-Zener nonadiabatic transition probability for the po-
tential curves of MgH as a function of energy for different coupling strengths. The
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states (n, = 4 and ng = 17) are at the same energy as shown in Fig.6.4. At smaller
adiabatic level spacings than those of MgH, these two splitting merge resulting in a less
pronounced change in the diabatic-adiabatic transition region and a smooth transition
as shown in Fig. 6.8(c). Thus we see that for the four situations considered above, the
number of resonant states in the diabatic limit are the same as those in the adiabatic
limit in the respective energy region. However, a change in the number of resonance
states can still occur because in smaller energy regions the number of resonance states
of the two contributing components may not be the same. As the adiabatic level spac-
ings change such regions also change and can merge and then vanish as shown in Fig.
6.8. These examples illustrate the extreme sensitivity of the shape of the resonance
spectrum to the shape of potential curves in the intermediate coupling region. This
also explains the small discrepancy between the semiclassical and coupled equation
methods in these regions stated earlier. The employment of approximate wavefunc-
tions in the semiclassical calculation can be regarded as equivalent to a small change
in the potential curves in the coupled equations method which significantly affects the

behaviour of broad resonances.

Fig. 6.9 shows the variation of Landau-Zener parameter P, with energy for
different values of the coupling strength. We find that P, = 0.5 for A;,; = 0.00625
a.u. at E=23000 cm~! and for A;y; = 0.008 a.u. at E=33500 cm™! where it can be
seen from Fig. 6.7 that clear transitions occur in the spectrum. Thus the agreement
with the prediction of the Landau-Zener parameter in the calculation of nonadiabatic

transition between the two adiabatic states is clearly evident.

The results of this study also show that outside a narrow intermediate cou-
pling strength region near P, = 0.5 the diabatic (P?) or the adiabatic (P*) resonance
spectrum alone gives a very good approximation for the overall resonance position and
width. Near P, = 0.5 the “bound state” is not obvious and it is necessary to consider

the combined effects of the diabatic and adiabatic bound states to determined the total
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resonance.

6.6 A Study of a Different Curve Crossing System

In this section, the proposed “internal amplitude” method 1s applied to another model

curve crossing system which has been studied by different authors (Child and Lefebvre

1978, Lefebvre 1990). The potential curves are given as:

Vi(r) = 18154.95 exp[—2.2039(r — 2.48)] — 8000 em™! (6.15)

Va(r) = 15000[1 — exp(—1.9685(r — 1.6))]* em™ (6.16)

and shown in Fig. 6.10. The coupling strength Vi3 is taken to be independent of the
internuclear distance and is also varied over the intermediate coupling strength. The

reduced mass is 8 atomic mass units.

Fig. 6.11 and Fig. 6.12 display the corresponding calculated results for this
curve crossing system. The “internal amplitude” method again shows good agreement
with the complex scaling method. The splitting or vanishing of resonance states in the
intermediate coupling region are clearly identified and can be explained in the same

way as that described in the previous section.

The Landau-Zener parameters for this predissociative system are shown in Fig.
6.13. Unlike the MgH model, it was found that the transition between the diabatic
and adiabatic case for this curve crossing system, with the complex scaling method
as well as the “internal amplitude” method, does not occur near a coupling strength
where the Landau-Zener parameter P, = 0.5! This may be caused by the difference
between the vibrational spacing of the diabatic and adiabatic states. As can be seen
in Fig. 6.13 that the adiabatic vibrational spacing is about twice of the diabatic one,

whereas they were about the same for MgH. It is found in this study that the mixing
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Figure 6.10: The predissociative potential curves of Eq. (6.15) and Eq. (6.16).
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Figure 6.11: Resonance trajectories as a function of coupling strength (solid lines) for

the dissociative potential curves shown in Fig.6.10.
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Figure 6.12: Resonance spectrum P/2 (bold lines), P? (dash lines) and P (dotted lines)
for a range of coupling strengths for the predissociative potential curves shown in Fig.
6.10. The symbols (*), (A) and () indicate the resonance positions from complex
quantization method and the eigenvalues for the diabatic and adiabatic bound states
respectively. The diabatic states (A) range from ny = 21 at the left to ny = 31 at the

right.
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Figure 6.13: Variation of Landau-Zener nonadiabatic transition probability for the

potential curves of Fig. 6.10.
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parameter of the diabatic and adiabatic character z given by (Child 1976):
¢ = uhlg/hos J (6.17)

as shown in Fig. 6.14, would be a better measure for the location of transition. hws
and A@, are the vibrational spacings of the diabatic and adiabatic states and

1

= —1. 1
-1 (6.18)

U

Referring to Fig. 6.11 and Fig. 6.12, it can be seen that the transition between
the diabatic and adiabatic case occurs at = 1. This is also true for the MgH model
since the two level spacings are nearly equal at the intermediate coupling region, so

that z = 1 for P, = 0.5.

It is apparent that the transition located at £ = 1 rather than P, = 0.5 would
have a strong relationship with the amplitude of the semiclassical wave function at the

left turning points of a curve crossing system (Child 1976), ie. when the two amplitude

are equal:
B T I/2r
A4 = U+x)LE—EP+PUJ' 5
. 1 I'/2n ,
A & U+$)LE—EV+FUJ' (6-20)

The physics of this relationship is still not clear and is under investigation.

6.7 Summary

The maximum value of the “internal amplitude” P obtained by summing the contribu-
tions from the diabatic and adiabatic bound states is proposed as a criterion for locating
a resonance and the spectrum of P has been used to evaluate resonance widths. This
method has been used to investigate the transition from the near diabatic to the near
adiabatic case where the mixing parameter z = 1. The method gives resonance posi-

tions and widths which are in excellent agreement with those calculated by the complex
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energy quantization method. The complex changes in the resonance spectrum, such as
the splitting or vanishing of resonances, is explained by considering the contributions
from the diabatic and adiabatic bound states. In these regions, the broad diabatic P¢
and adiabatic P resonance can be out of phase and as their relative amplitudes change
there may be cancellation and/or rapid movement of their summed peak. It is also
shown in the resonance spectrum that outside a small region where ¢ ~ 1 the diabatic
(P?) or the adiabatic (P®) resonance spectrum provides a very good approximation
for the overall resonance spectrum and thus the resonance positions and widths. The-
oretical justification for adding the bound components of two different basis, however,

needs further investigation.



Appendix A

Solution of the Schrodinger

Equations

Solution of the Schrodinger equation provides a full description of a quantum mechan-
ical system. However exact analytical solutions can only be obtained for a few simple
systems. Methods for numerical solutions of the equations for central fields exist for
single or multi-channel cases (Cooley 1961; Shapiro 1972; Norcross and Seaton 1973;
Johnson 1977, 1978; Goorvich and Galant 1992). Among them Johnson’s renormalized
Numerov method (1977, 1978) has the advantages of efficient computer time and ease
of programming. The calculation of wavefunctions and eigenvalues for single channel
as well as multi-channel cases can share the same program. It is the best method for
the purpose of this study and a brief review of the method is given in this appendix.

The application of this method for complex scaling method is given in Appendix C.

17
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A.1 Solution of the coupled equations

For a two channel case, the diabatic coupled equations can be written in a compact
matrix notion:

4+ Q)| wlr) =0 (A1)

where

2
Q(r) = —h’j [EI-V(r)], (A2)
V(r) is the electronic Hamiltonian matrix

Vir(r) Vaa(r
V(r) = () Valr) , (A.3)

Var(r) Vaa(r)

I is the unit matrix and

ezl = | (A.4)

X2

The renormalized Numerov method (Johnson 1977, 1978) has proved to be a
very eflicient method for numerical solution of the Schrodinger equation. It makes use

of the three term recurrence relation
[I- Tn+1]‘r9n+1 - [21 T IOTn]‘Pn o [I — Tn-1]pn-1 =0 (A-S)

where ¢, = ¢(r,) and T, = —%Q(rn) with [ the grid spacing. Defining the matrix

F = [I-Th]p, (A.6)
and substitute into Eq.(A.5) gives
Fpo1 — UFo+F,y =0 (A.T)
where
U,=(1-T,) (2L +10T,). (A.8)

Introduce the ratio matrix

R® = F,, F! (A.9)
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as the outward propagation matrix, and
R! =F,F;} (A.10)
as the inward propagation matrix. The wave function can be obtained as
on = [RI = To)] 7 (I = Tno1)n (A.11)
by iterating outward; or
Pn = [Ri(l — To)] (I = Trst)Pnt (A.12)
by iterating inward with the basic recurrence relation of the propagation matrix

RS = (I-T.) “(2I+10T,) - (R3_,)™ (A.13)

Ri = (I-T,) '(20+10T,) — (Roy)™ (A.14)

which can be calculated first using the boundary conditions. The initial condition for
(R3)™! is obtained by considering the fact that the wave functions approach zero at
the inner boundary (the classical forbidden region). Therefore it is reasonable to make

©o = 0 while 1 # 0. It follows from Eq.(A.6) and Eq.(A.9) that (R§)™" = 0.

For an attractive electronic bound state coupled with a continuum state, a non-
zero solution of the Schrodinger equations exist for energies above the dissociation limit.
Therefore the propagation matrix R} can be calculated outward up to a sufficiently
large value of r = r, where the amplitude of the continuum wave function is constant
and the amplitude of the bound states wave function approaches zero. At this point

the appropriate boundary condition for the wave function is

0
Pn = (‘\15]

4]

where a is a non-zero value to be decided by normalization.

Normalization is performed for the continuum wave function

(he)™ [ xauelrixan(rdr = 6N = A (4.16)
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which requires the amplitude of the continuum wave function x; at r, to be normalized
to (8uc?/(E —V,(r,)). Such a normalization will also affect the amplitude of the bound

state wave function.

The adiabatic coupled equation can be solved by the Rung-Kutta method for
second order differential equations. However it has been proved that it is more efficient
to solve the diabatic coupled equations using the above method and obtain the adiabatic

nuclear wave functions by the transformation Eq. (2.18) (Wang, 1989).

A.2 Eigenvalue and Eigenfunction for a Bound

State

The same procedure can also be applied for the bound eigenvalue problem. The follow-
ing discussion will be restricted to the single channel bound state so that the matrices
discussed above become scalars. For a bound potential eigenfunctions exist only at
eigenvalues and the initial condition at the outer boundary is the same as that at the
inner boundary. To find an eigenvalue it is assumed that the eigenvalue is located

between E; and Ey where E;, < Ey. An initial energy of
E =05(EL + Eg) (A.17)

is used to calculate the propagators R° outward and R' inward. They are matched in
the classical allowed region near one of the turning points. If E is the eigenvalue, the
solution calculated inward and outward should be the same at the matching point. It is
an advantage to choose the matching point where the wave function has its maximum
or minimum values and to avoid the node positions. The nodes of the wave function can
be counted by counting the conditions that R, < 0, which implies the wave function
crosses zero inside the classical region. If the nodes Mg are greater than the require

vibrational quantum number v, the energy for the calculation is too high so set Ey = E,
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otherwise set Er, = E. Then the next energy £ = 0.5(Eg + EL) is used for the

calculation. If Mg = v, then D(E) defined as
D(E) = (Biny) ™" = Bos (A.18)

‘s a well behaved function of E that it is zero at the eigenvalue and has a positive slope.
Set Eg = E for D(E) > 0, or Ef, = E for D(E) < 0 to start the next calculation.
This procedure converges linearly and is iterated until Eg — Er is smaller than the

accuracy required.

The matching procedure ensures that the eigenfunction is the same for inte-

gration of the Schrédinger equation inward and outward.

The eigenfunction is obtained by setting wm = 1 so that Eq. A.11 and Eq. A.12
can be used to calculate the wave function. Its absolute value @,(r,) is obtained by

normalization to unity.

o) = o)) [ lo(r)Par (A.19)

Examples of the bound state wavefunctions are shown in Fig.2.5. Also shown
in Fig.2.5 are comparisons of the bound state wave functions with the closed channel

on resonance wave functions.



Appendix B

The Connection Matrix

A very attractive feature in Child’s semiclassical theory for a curve crossing system is
that the theory is readily cast into a diagrammatic form. This serves both to underline
the common physical feature of a diverse range of observed effects, and to facilitate the
mathematical argument, because each linkage in the diagram is reflected by a matriz
product (Child 1974b). The general method relies on the changes in the coefficients (P
and Q as in Eq. (2.26) and Eq. (2.27) in the nonclassical region. The basic elements

of the connection matrix related to this study are given in the following section.

(1) Free propagation of the semiclassical wave from r; to ry leads to a phase

change
QI ez_y, D PJ
= | (B.1)
Q' 0 e™ '
where
v = / " k(r)dr (B.2)

(ii) Reflection from a classical turning point will cause a phase change of T

(iii) Passing through a curve crossing. The coupled equations are solve in the

crossing region (Bandrauk and Child 1970, Child, 1974) to bridge the wave functions
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Table B.1: Numerical values of the phase corrections Xx.
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v X v X v X v X
0.0 | -0.785 | 0.3 | -0.287 | 0.6 | -0.152 | 0.9 | -0.098
011-0512 0.4 |-0.226|0.7|-0.129 | 1.0 | -0.090
0.2-0.376 | 0.5|-0.183 | 0.8 | -0.111
between the crossing region.
j 1 — A2)2eix, -\ \ P,
Q+ — ( ) € + (B3)
Q. ) A (1 = AZ)H/2emix ) P
P, ) (1 = AB)Y2eix, A ( Q:.
o= (B.4)
P. ) —A (1= )2 )\ QL
where
A = ezp(—7v) (B.5)
1, [T+
v o= = ([T (r) = ke(r)ldr) (B.6)
ka(r) = [20(E = Va(r)]'*/R (B.7)
x = argl(iv) —vinv +v+r/4 (B.8)

where ry and r_ are the complex crossing points of the adiabatic upper V4 and lower
V_ potential curves in the complex coordinate plane. y is a phase shift caused by the

curve crossing. Table B.1 list some of its values.

Applying the curve crossing connection formulas to the wave functions following
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the diagram in Fig. 2.5 one finds that

Q' = A2)1/2¢ix -\ exp(2iay — i7/2) 0
QL B A (1 = A2)1/2e=ix 0 exp(2ia_ —in/2)
(1 _ /\2)1/261')( by Q:.
-\ (1- ,\2)1/26—ix Q"
(B.9)

For resonance states the Siegert outgoing wave only boundary condition for

resonance requires Q" = 0, therefore

Q| _ (1 — \exp(2ay + 2y — in/2) + Nezp(2a_ — ir/2) o
QL M1 = M)V 2ezp(—im/2)(exp(2cy + 1X) — exp(2ia_ —ix)
_ (1 — A)exp(2i6,) + A2exp(2i6s) s
M1 = X)¥oeap(—ix)(ecp(2is) — exp(2i) |
(B.10)

with the relationship of Q;_ = Q exp(=2By +ir/2).

The derivation of Child’s semiclassical theory is beyond of the scope of this

study. For more details one can refer to the original work of Child (1970, 1974, 1976,

1991).



Appendix C

Computation of the Complex

Eigenvalues

The complex rotation of coordinates results in boundary conditions for a quasibound
system that are the same as a bound state. Therefore the computation technique
described in Appendix A can also be used to calculate the complex eigenvalues upon

the change r — re??. Consider a two state problem where the coupled equation are:

ﬁ2 d2 27 B T

[-gpﬂ “’(Wl(re%—E)] xir8) = —Va(re')xa(r6)  (C.1)
h2 d2 —2i8 y/d 16 d d iy, d

~gag t e Vale") - B)xi(nd) = —Vialrehalnd) (C.2)

with V4 the closed channel and V; the open channel. The initial condition for inner

boundary is the same as in Appendix A:

0
Yo = (C.3)
0

while the outer boundary condition is similar to that of a bound state for sufficiently

large r, in the asymptotic region

o = : (C.4)
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The propagating and matching procedure for a bound state described in Ap-
pendix A is then used to calculate the complex eigenvalues. In the calculation, an
initial trail resonance energy Ey is chosen and the matrix propagated and matched at

rm Where the determinant
D(E) = R}, = (Rmn41) ™| (C.5)

vanishes at each eigenvalue. Convergence to the eigenvalue is achieved by iterating the

calculation using the Newton-Raphson method which predicts the next trail energy as

D(Ey)

~ [dD(Bo)/dE) (C.6)

E=£E,
The calculated results for the resonance energy and line widths using CSM for
a curve crossing system proved to be in excellent agreement with those using the real

coupled equations, and Child’s semiclassical theory (Lefebvre 1990).

The development of complex scaling method (CSM) provides an approach to
the direct study of resonance through the introduction of complex variables. The

complex coordinate approach treats resonance states as the bound states.



Appendix D

Second Harmonic Generation

With the advent of the intense and coherent light made available by the laser, the
optical properties of the medium such as its refractive index become a function of
the light intensity. When two or more light waves interfere within the medium, the
principle of superposition no longer holds. The polarization of a nonlinear medium by

an electric field E is usually written as

where ¢ is the vacuum permittivity and x is the susceptibilty of the nonlinear medium

given by a power series in the form
X=X1+X2E+X3E2+"' (D.2)
Therefore the polarization takes the form

P = eglxi+x2E+ xsE*+ - )E (D.3)

= e(x1E + x2E* + xsB2 +-9) (D.4)

The first term in the above equation represents the linear optics. Although the coeffi-
cients of the higher-power terms are usually very small, the high coherence of laser light

allows the beam to be focused onto a very small spot size of the order of wavelength,
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producing electric fields of the orders of the fields binding electrons to nuclei in the
optical medium (10'° V/m) which allows the higher-power terms to be appreciable.

These effects are referred to as nonlinear effects because they are nonlinear in E.

D.1 Theoretical Review

The second term in Eq.(D.2) represents the most common nonlinear phenomena of
second harmonic generation (SHG) and frequency mixing. When two light beam £, =

Eoicos(wit) and Ey = Egycos(wst) are incident into a nonlinear medium, the second-

order polarization

P, = exPE? (D.5)
where
E* = (B, + E,)? (D.6)
= E2cos’wit + E2,coswyt + 2Eg; Egycoswnt coswyt (D.7)
1 1 1
= —2*(E31 + E%) + §Eglcos2w1t + §E022cos2w2t + (D.8)
E01E02 [cos(w1 + WQ)t + cos(w1 - WQ)t] (Dg)

contains a dc polarization and ac components at second harmonic frequencies 2w,
2wz, and sum and difference frequencies w; +w;. ¥ is the second order susceptibility
which is a tenser with components X,(f,l depending on the symmetry properties of the

nonlinear crystal.

In general, experiments based on the second order nonlinear susceptibilities are
carried out in crystalline media which do not process inversion symmetry in order to
have a non-zero X,(:,Z Examples of the crystals are KDP, ADP, CDA, LiNbO;, BBO,
LBO etc.
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D.2 The electromagnetic formulation of the non-

linear interaction

The coupled equations describing the nonlinear interaction of second harmonic gener-

ation (SHG) can be derived from the Maxwell equations (Yariv, 1975 and Craxton,

1981) in the form of

dby

ol —iKE; Eqe™0F° (D.10)
aky —i2K Ele? (D.11)
dz

where K = %(nl(w)n2(2w))1/2d—?§i with n the refractive index, w the fundamental fre-
quency and d,;s the effective nonlinear coefficient. Ak = k(2w) — 2k (w) represents the
phase matching condition. It is also assumed that the nonlinear medium is transparent
to the fundamental and second harmonic radiation so that the absorption effect can

be neglected.

The conversion efficiency of frequency doubling is usually quite low, therefore
the intensity of the fundamental wave can be regarded as constant in the nonlinear

medium so that dEy/dz =0, and

Ll ]
= =i —_— - 2
E, 12K E] 7 (D.12)
The intensity is (Craxton 1981)
_fC 2 _gpare 2 . gl
I, = 5 B3 =2K*Locuely sinc (aAkL) (D.13)

where I in W/m? and E in (V/m), sinc(z) = £2£, and L is the total length of the
nonlinear medium. From the above equation, it is prerequisite for efficient second

harmonic generation to have Ak = 0, that is
k(2w) = 2k(w). (D.14)

If Ak # 0, the second harmonic wave generated at different location of the crystal 1s
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not in phase and results in the interference effect described by the factor
1
sinc (;AkL) (D.15)

and characterized by the so called “coherence length”

2

L.

which gives a measure of the maximum crystal length that is useful in producing the
second harmonic power. A longer length than L. can only produce a negative effect for
the total second harmonic power because the second harmonic wave generated after L.

is out of phase with that generated before L. and the interference effect will decrease

the total intensity.

D.3 Phase matching technique

The major difficulty in efficient frequency doubling is the dispersion effect which limits
the coherence length and therefore the second harmonic power. The technique that is
widely used to satisfy the phase matching condition Eq. (D.14) takes the advantage of
the natural birefringence of a anisotropic crystals. In some nonlinear crystals, if the
direction of the laser through the crystal is chosen such that na. for the E-ray equals
ny, for the O-ray, the phase matching condition can be satisfied at this direction for the
chosen wavelength. The situation is shown in F ig. D.1. The phase matching condition

is then limited by the beam divergence and the spectral band width of the laser.

If Ak = 0 is satisfied, the nonlinear coupled equations can be solved analytically

and

Ey(L) = Ey(0)tanh(L/Ispc) (D.17)

where lsyg = (424 E, (0))1.
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Figure D.1: The phase matching angle in the crystal where k indicates the direction

of the laser beam
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D.4 Enhancement of the conversion efficiency

From Eq. (D.13), for efficient frequency doubling one has to increase the intensity of
the laser, reduce the phase mis-matched Ak, incrcase the coherence length and the

crystal length. Different technique have been developed to improve these parameters.

Focusing is the most common way to increase the laser intensity for frequency
doubling and therefore the conversion efficiency. Because the frequency doubler is
sensitive to beam divergence in the # direction and not sensitive in the ¢ direction as
indicated in Fig. D.1, focusing using a cylinder lens which focuses in the ¢ direction

only can achieve a better result.

For cw laser, the output coupling of the laser cavity is normally very low,
about a few percent. Therefore the light intensity inside the cavity is much higher and
it is an advantage if the frequency doubler is placed inside the laser oscillator cavity
which can also be used as an output coupling and the cavity mirrors can be both 100%
reflectivity at the fundamental frequency. Furthermore, with a proper output coupling
arrangement, the 2w wave can pass through the crystal twice before leaving the cavity.

This effectively doubles the crystal length and increases the conversion cficiency.

For high laser intensity, the use of two frequency doublers in different combi-
nation enables one to obtain high conversion efficient in a large dynamic region. (W.

Qin, 1985).

D.5 Characteristics of the BBO crystal

Beta-barium borate (BaB;04) or BBO crystal is a new nonlinear optical material
discovered recently (Chen et al. 1984, 1985). It is an interesting material characterized
by a wide range of transparency in both UV and infrared. Its large birefringence allows

phase matching for second harmonic generation in a large frequency region (189-1750
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Table D.1: NLO properties of Type I BBO crystal for SHG at 640 nm (provided by

CASTECH)
NLO Coefficient (dss(KDP)) d11=>5.8
ds; = 0.05 X dyy
Phase matching angle (degree) 37.4
Acceptance angle (mrad/cm) 0.4
Walk-off angle (degree) 4.2
Damage threshold (at 530 nm) | 1 GW/em? (10 ns); 7 GW/cm? (250 ps)

nm) with a large nonlinear coefficient (5.8 x dss(KDP)). These properties indicate
that the BBO crystal is potentially useful for many applications, especially in the UV
region. The optical, mechanical and thermal properties of the BBO crystal have been
summarized by Eimerl et al (1987). For the purpose of this study, Fig. D.2 shows the
phase-matching angles and the angular sensitivity for SHG. Some nonlinear optical

(NLO) coefficients are listed in Table D.1.

D.6 Conversion efficiency

The BBO crystal used in this study is cut for type I frequency doubling from 580-700
nm, protectively coated with a dimension of 6 x 4 X 7 mm? from CASTECH. The laser
beam is weakly focused into the crystal to prevent the divergence of the UV beam
because a suitable quartz lens was not available for collimation and the UV power
is not a major concern in this study. The tuning angle is controlled by a personal
computer in accordance with the tuning of wavelength and is driven by a DC motor

(Oriel D.C. Encoder Mike? Drive) with a linear readout resolution of 0.1 microns.

The effective NLO coefficients for frequency doubling is a function of the crystal
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Figure D.2: Characteristic of the BBO crystal for second harmonic generation: (a)

angular sensitivity dAk/df, and (b) phase-matching angles. (after Eimerl et al, 1987)
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orientation and therefore depend on the phase matching angle 0:
dess = d31sind + dyicost. (D.18)

At 640 nm des; = 4.78d3s(K DP) and dss(K DP)/eo = 0.78pm [V (Craxton R.S. 1981).

With n, = Ne(f) ~ 1.55 K = 9.46 X 10-® V-1, The peak conversion efficiency of the

BBO crystal is then

mr = 2K L ysinc (S ARD) (D.19)

= 6.78 L2[2sz'nc2(éAkL) (D.20)

where L (cm) is the length of the BBO crystal and I; (W/cm?) is the intensity of
the fundamental wavelength. For our system L=0.7 cm and assumed perfect phase

matched
Nesf = 3.32 X 10711 (D.21)

Because the Gaussian temporal pulse for the second harmonic becomes narrower by
a factor of V2 than the fundamental, the overall energy efficiency for such pulse is
therefore less than the instantaneous efficiency at the peaks of the pulse by the same

factor.



Appendix E

The electronic circuits of the

detecting system

The UV pulses have a large energy variation due to the pumped dye laser and the
non-linear conversion of the BBO crystal. The electronic circuits, as shown in Fig. E.1

and Fig. E.2, performs a number of functions as follows:

e Uses a peak detector to hold the peak height of pulse (100ns) generated by the
pin diodes for the laser radiation. This minimises the contribution of ambient
light and noise to the integrate d signal. The peak detector decays to zero in

approximately 50 microseconds.

e Stores the peak height of the pulses for both reference and detector in sample
and hold circuits “c” and “d” provided the signal is above a minimum threshold
detected by the Schmitt trigger “a” and transferred by the sample pulse from the

monostable “e”.

o Checks the peak height with the threshold Schmitt trigger detector “b” and if
greater than a preset level fires a monostable “f” which prevents the transfer pulse

from the delay monostables “g” and “h” reaching the second set of sample and
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w:n
1

hold circuits 4’ and “k” through the action of the AND gate “i". This prevents

large pulses which are distorted by the limited voltage range of the peak detector

circuits reaching the second set of sample and hold circuits.

o If the intensity of the pulse lies between the required height range, transfers the

content of the first pair of sample and hold circuits “c” and “d” to the second

pair “” and “k”.

o Uses these voltages at A and B, which are equal to the peak heights of the
reference and detector signals and constant between recorded pulses, as input

voltages to a pair of integrators “m” and “n”.

o When the reference integrator “m” integrates down to a preset level, stores the
output of the detector integrator “n” in a sample and hold circuit "r” by the

sample pulse from monostable “q”.

e The reference and detector integrators “m” and “n” are then simultaneously reset
by the MOSFETS “s” and “t” after a short delay through monostables “o” and

“p” to commence another integration cycle.

The output signal from the detector sample and hold “C” is thus the ratio of
detector to reference signal. Each integration represents the same integrated energy
in the reference signal and therefore constant signal to noise ratio. If the intensity
of the input signal (ie the intensity of laser radiation) falls, the integration rate is
reduced and this produces a stepped output as the wavelength is scanned. This stepped
output represents an accurate average ratio of intensities over the wavelength region
of the step. The scan is accepted if the wavelength region of the step is less than
0.1 cm~!. Otherwise, either the intensity of the laser radiation is increased or the rate

of wavelength scanning is reduced and the scan repeated.



192

ANAANA—e
r -
+
ij:
DETECTOR ' |
VMLV =
PEAK DETECTOR -4

Figure E.1: The electronic circuits for the detector. It consists of a UV enhanced
photodiode, a high speed preamplifier and a peak detector which holds the peak level

of the laser signal.
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Corrections:

page 3 line 2 from bottom, FTS should read: “femtosecond transition state spectrum (FTS)”

page 6 line 5 from bottom, after ... the RKR method (Schaefer et al 1984). add: “The RKR
(Rydberg-Klein-Rees) method is a semiclassical method to construct the potential energy

curve from term energies and the rotational constants of vibrational states.”

page 137 Figure 5.15 caption, add: “The experimental data of the rotational constants and
vibrational spacings in this study coincide with those of Schaefer et al (1984) calculated with

their Dunham parameters in the experimental energy region (30000 — 31200 cm™).”

page 153 Figure 6.5 caption, add: “An explanation of the large width occurring near the

energy near 33500 cm™ is given in §6.5.”

page 158 line 5 of §6.5, after ... as coupling strength increases. add: “It also displays the

reason for the occurrence of the large widths shown in Fig. 6.5.”

page 159 line 3, to vanish. should read: “to vanish as shown in Fig. 6.4 and Fig. 6.5.”





