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Sumrnary

ÙIany diatomic molecular systems have overlapping potential curves and it is rvell

known that if the electronic states are of the same symmetry then the curves under.go

an avoided crossing. Photo-transitions to these states have interesting spectroscopic

properties including the Fano profile shapes and very narrow lines above the dissocia-

tion limit. This study investigates the non-adiabatic behaviour of such excited states.

especially the predissociation of Na.I by the ionic-covalent crossing.

A tunable narrolry bandwidth (1 GHz) dye laser system pumped by a CuBr laser

has been constructed. The frequenc;r doubling of this dye laser radiation to UV n'as

then used to obtain experimental data to investigate the nabure of the ionic-covalent

crossing of NaI. The high resolution absorption measurements show that the spectrìrm

consists of many more band fragments than bhat observed with the excitation mea-

surements. Lines in the absorption spectrum of NaI have been assigneci and analvzecl

for the first time. Togethel rvith absorption strength determination, this clata has þeen

used to demonstrate an inconsistency in the presently accepted molecular potentials.

Suggestions for resolving this conflict are presented.

Theoretical investigation was carried out on resonance structure in spectra,

including resonance positions, widths and intensities, corresponding to different pa-

¡ameters of the potential surfaces and the coupling strength. Numericai solution of the

Schrödinger equations and the complex scaling method were usecl to investigate the

non-adiabatic behaviour of the excited states of diatomic molecules ancl the model ivas

compared with the results of a semiclassical calculation. i,sing the assumption that

the change of resonance structure from the diabatic to adiabatic limit as the coupling

strength increases is smoothl¡r continuous ancl that the contribution to the resonant

s[ate can be consiclered as part diabatic and part adiabatic. a maximum internal am-

plitude method is proposed lbr the locatìon of resonance position ancl rviclth ibr a

li'"o channeì cur'¡e crossing s)'stem. This techniclue rvas useci sucr;es.siuilv to r1ernon-



IX

strate how resonance structure changes froni diabatic to adiabatic limit as the coupling

strength changes for a set of model potential curves. The method gives an improved

un,lerstanding of the origin of the resonance changes in a curve crossing svstem'
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Chapter 1

Introduction

1.1 Introduction

Vluch of our knowledge about the structure of atoms and molecules is based on spec-

troscopic investigations. Information on moleculal structure may be derived in various

ways from the absorption or emission spectra generated rvhen electromagnetic radiation

interacts with the molecules'

In molecular physics, the enormous mass difference betlveen nuclei and the

electron implies a much faster motion of electrons than that of the nuclei' This al-

lows the assumption to be *u¿" that the electronic motion is separable from that of

the nuclei. Thus the elect¡onic motion can be described by the electronic l{amilto-

nian and electronic wavefunctions for fixed nuclear positions. This is the so-called

Born-oppenheimer approximation (Born and oppenheimer. 1927)' In the Born-

Oppenheimer approximation, the nuclei move along the adiabatic electronic potential

curves representing the variation of the effective potential energy of the nuclei in dif-

ferent electronic states such that each electronic state is characterizecl by a r]efinite

potential curve. Detaileci analysis of the spectroscopic structure ailorvs a lletter under-

standing of these potential curves ancl rheretbre of the molecular str'.tctrtre. If adiabatic

I
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potential curves with the same symmetry approach with changing internuclear sepa-

ration, they will exhibit an avoided crossing according to ihe non-crossing ruie (von

Neumann and lVigner 1929, Landau and Lifschitz 1958). However, it has been l'ound

ihat the avoided crossing phenomena can cause a break down of the Born-Oppenheimer

approximation showing that non-adiabatic behaviour can become significant. Transi-

tions occur between the two adiabatic states which are described by the Landau-Zener

non-adiabatic transition probability fu7. (Landau 1932(a), (b) and Zener 1932).

If one of the non-crossing pair of potential curves supports a bound state lbr

nuclear motion and the other a near energy continuous state, the molecules initially

prepared in the bound state rvill decay into the continuous sbate due to non-adiabatic

[ransitions bebween the brvo adiabatic states. This is called predissociation. It has been

shown that in such cases the molecular svstem is better described l;v electronicall,u-

coupled states in the diabatic representation (O'ùIalley. 1971). The diabatic potential

curves cross at the location of the avoided clossing in the adiabatic representation. I'ig.

1.1(i) gives a typical cxamplc. taken fiom potential curves of NaI. rlLere the clotted

lines represent the non-crossing adiabatic states. For the same total energy, if the

electronic coupling between the two crossing diabatic states is strong, then the Born-

Oppenheimer approximation is valid and the upper adiabatic state is a bouncl state. If

the electronic coupling is very weak, the Born-Oppenheimer approximation completel¡'

breaks down, the molecular system behaves diabatically and the upper state leacis to

a continuous spectrum.

Interesting cases arise for intermediate coupling between the two eÌectronic

states when there are quasi-bond states which predissociate. These states are neither

acliabatic nor diabatic. The resonance structnres of bhese states mav varv fi.om ver¡,-

shalp lines to ver¡, broad lines. The complexity of the spectrum ancl rhe cliscontinuous

lotational line progression betrveen bands makes it .,,.erv rliÍficult [o rjeterurine the spec-

l,roscopic constants from the experimental clat¿r,. In the case of -\-aI. this complexirl,, is
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further compounded by the high temperature of the vapolu usecl in the expeliment

I.2 Spectroscopic Investigation on Ir[aI

Diatomic alkali haiide molecules have been the subject of numerous experimental ancl

theoretical investigations. Their ground states are 1I+ ionic states consisting of an

alkali metal positive ion and a halide negative ion while each low ercited state is a

covalent state consisting of alkali and halide atoms. The lowest opticall;r accessible

excited states are Q : 0+ and I states. Vluch of the interest in these systems derives

from the fact that the 0+ state and the 1X+ state have the same character and the trvo

adiabatic potential curves display an avoided crossing rvith an interchange of ionic and

covalent character.

NaI is the most interesting of the alkali haiide molecules because its low excitecl

states display a bound character and give rise to a very dense line stlucture in the

absorption spectrum from ultraviolet to visible (Berr¡r 1979). None of rhe other alkali

halide molecules show this absorption line structure.

Using a ciassical picture, Berry (195i) described the behaviour of aikaii halide

molecule as follows: The absorption of light carries the molecular s¡rstem verticall¡'

f¡om the ground state to an excìted state and produces a change in the electronic rvai.,e

function corresponding to the transfer of an electronic charge aiong the internucieal

axis from the halide to the metal. The nuclei then move apart across the relativelv

flat region of potential energy toward bhe crossing point. As the crossing region is

reached, there are two possibilities for the behaviour of the molecule. as seen in Fig.

lfii). The molecule mav retain its electronic characrer as it rnores firrther.apalt anci

dissociate into free alkali and halide atoms l'ith ¿he Landau-Zener probabilit.v P¡7. or

it c¿r,n remain in ihe same adiabatic state ancl r-:þ¿¡ge character .¡,i¡h the probabiiit-r.

',f il - Pr,z)- In tire seconcl case iire eÌe.ctronic 11.¡-,.s1l1nç¡i,rn ie-.,rtljusts it-.elf. an,l.
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effectively, an electron jumps back from the metal to the halogen' When this occurs

electrostatic t'orces are rapidly set up which pull the nuclei back toward each other' As

the nuclei pass the crossing point again, there will be another (l - Pt'z) possibility that

the electron returns to the metal, and the two particles, now neutral, come together

once more. The molecule in the excited state will oscillate in this way until it dissociates

or fluoresces as discussed later.

Time-resolved spectroscopy on a femtosecond time scale allows direct observa-

tion of such nuclear motion on a potential energy surface' Recently Rose et al (1988,

lgSg) have applied this technique to stucly the predissociation dynamics of molecular

systems, especially NaI. Fig. 1(iii) gives a typical picture of the time evolution in such

an experiment. A pump laseÌ pulse piaces the NaI molecules in the excited state' The

molecular system will then oscillate in the way described above' A second probe laser

pulse, after an adjustable clelay. monitors the formation of Na product' lvhen the

probe pulse is tuned on resonance with the Na D-line it probes the population of free

Na atoms from dissociation. when tuned to off lesonance, the probe pulse cletects ihe

population of the perturbed Na atoms still trappecl in the "transition state" ([Na..'I]

) where the internuclear distance is large. The oscillation of NaI molecules trapped in

the adiabatic state was then monitored until they eventually dissociate into free Na

and I atoms. The experimental observations a e shown in Fig. 1'1(iii) where the time

series has a damped oscillatory structure, whose damping frequency reflects the motion

of the wave packet in the excited state and ihe damping reflects predissociation rate.

This femtosecond "transition state" spectra (FTS) is a new tool for the spectroscopic

study of bransition processes and allows direct measurement of the wave packet evo-

lution, poteniial width, the Landar-Zener parameter and thus the electronic coupling

strength.

Although NaI has received extensive experimental ancl theoretical study, there

is still very limited information about the excited states. Several authors have at-
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tempted to obtain information about the potential curves for the excitecl state. Hory-

ever the currently published potential curves cannot explain all the experimental data

and do not agree with each other within the experimental errors. Analysis of the

absorption spectrum was plagued by its high density of lines and the discontinuous

band fragments. On the other hand, the broad band nature of the fèmtosecond pulses

limits the energy resoiution of the FTS technique to perform accurate analysis of the

potential curves.

Extensive study of the absorption spectrum over a broad wavelength region was

reported by Davidovits and Brodhead in 1967 on NaI and they plesented a potential

curve which covers the transitions to the 0 : 1 state as rvell as 0* state.

Vãn Veenet al (1981) distinguished between absorption into the 0+ ancl I state

using the photo-fragmentation spectloscopy method t'or rvavelengths beti,veen 300-3:l+

nm and derived the potential curves for lhese two states.

In a UV laser spectroscopy invcstigation, Schaefer et al (19.32, 1984) measurecl

the fluorescent excitation spectrum of NaI which is sìmpler than the absorption spec-

trum, and 28 rotational band fragments were ana,Iyzed and assigned using the early

version of Child's semiclassical theory (Child, 1976, 1991(a)). The observed energy

levels were then fitted to the Dunham series for the upper adiabatic bound state ancl

the XlX+ diabatic bound state. The result of the best fit with a minimum stanclard

deviation was used to assign the vibrational quantum numbers ancl the corresponding

Dunham parameters were used to calculate the vibrational energy levels and their rota-

tional constants outside the observed energy region. Potential culves were constructecl

l¡ased on these calculated values with the RKR methocl (Schaefer et al. lg84). Horv-

ever, the location of the upper srate potential curve relvs on the accur.ac-v of the lorr.er

r-ibrational states that were not measured but proposecl flom theoletical extrapola-

iion of the Dunham parameters f'ound from a limiteci region of the sÞeÇtr.um at mur_-lr

lti¿her ener4v. The.:rirapoiation tvorrld be exl..ecteci l.o ltro,:ir-rct._ l¡u.qe error.s at rir,:
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lowerenelgyregionofthepotentialcurve.Thismaybetheleasonthattheiruppel

state potential curve locates at a smaller internuclear distance than that of van veen

et al (1981) with a discrepancy cannot be explained with experimental errors'

Telle and Tambini (19s9) noted a controversy in the relative position of the

0+ state ancl 1 state. They found that the 0+ potential curve given by Schaefer et al

(1934) actually lies below that of the 1 state derived from the experimental data of

Davidovits and Brodhead (1967) which contradicts the measurement of van veen et al

(1gg1) and ihe theoretical studies of zeirí and Balint-Kurti (1933) that the 0+ state

lies above the 1 state for aikati halide molecules. Their investigation, however, was

unable to clarify the controversy'

Wang er al (1gg0) questioned the potential curves of Schaefer et al (198a) ancl

suggested that they indicate an electronic coupling strength between the trvo diabatic

states about .[ times bigger ihan that of their own estimation in deriving rhe potential

curves. They then presented analytical expressions for the 1xt+ and A0+ diabatic

states of NaI to frt the term energies given by schaefer et al with a numerical optimiza-

tion procedure. The resulting 0+ potential curve is in good agreement with that given

by van veen et al although the B values for both potential curves are slightly smaller

bhan that of the potential curve given by schaefer et al.

Vlost of the work of this thesis is aimed at investigating the conttoversy dis-

cussed. above and. to derive a more accurate potential curve which is consistent with

the known facts

1.3 This StudY

A generai description of the quantum mechanical ancl semiclassical theory for analyz-

ing predìssocìation caused by the crossing of trvo diabatic electronic potential curves

liaving the same symûletr\.¡ is presented in Chapter 2. Parlicular a[tention rr,'ill be ci"'en
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to the breakdown of the Born-Oppenheimer approximation, the adiabatic and diabatic

description of molecular systems, the solution of the coupled equations, Child's semi-

classical theory for predissociation and the complex scaling method to locate resonance

positions and widths.

A high resolution tunable UV laser was designed and set up to carry out a

spectroscopic absorption investigation of NaI. Details of the principle and performance

of the laser system are given in Chapter 3. This UV laser facility uses a CuBr laser

to pump a foided cavity dye jet laser system containing a grazing incidence grating

dye oscillator and an external amplifier employing a dye jet. The band width of the

dye laser is about I GHz. A BBO crystal is used to frequency double the visible laser

radiation to the ultra-violet for the experiment.

Chapter 4 gives a general description of the spectroscopic characters of NaI. A

modification of the numerical optimization program of Wang et al (1990) was employed

to fit analytical potential curves to the spectroscopic data given by Schaefer et al

(1984) and to optimize the Dunham parameters so that the position of sharp lines of

the observed rotational band fragments occur in better coincidence of the hypothetic

diabatic and adiabatic levels. Chapter 5 reports measurements of the high resolution

absorption spectrum with the tunable UV laser described in Chapter 3. The spectrum is

then anal¡'zed with Child's semiclassical theory and the Dunham parameters presented

by Schaefer et al (1984). The analysis extracts new information about the position of

the excited state potential curve and found that a departure from the excited state

potential curve given by Schaefer et al (1984) is necessary to account for the absorption

spectrum. A new potential curve is then derived which is consistent with the observed

results.

In the last Chapter, a theoretical investigation on resonance structures, includ-

ing resonance positions, widths and intensities, corresponding to clifferent parameters

of the potential surfaces and the coupling strength is presented. Semiclassical scatter-
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ing theory,, numerical solution of the coupled schröd'inger equations and the complex

scaling method were used. to investigate the non-adiabatic behavior of a crossing sys-

tem. This study has successfuliy demonstrated how resonance structure changes from

d.iabatic to adiabatic iimit as the coupling strength changes for a model potential curves

of MgH and is an aid to understanding the origin of the resonance behaviour in a curve

crossing system'



Chapter 2

Predissociation of Diatomic

Molecule by Curve Crossing

2.L Introduction

Predissociation induced by the crossing of two diabatic potential curves is of very

frequent occurrence in diatomic molecules. The coupling of the vibrational levels of an

excited electronic state to a vibrational continuum rvill cause broadening and shift of the

energy levels. The level shifts are of about the same order as the broadening and may be

difficult to observe. The widths of the resonance sholv very strong variations. They may

vanish at some special positions and become very broad at some others (Chi1d, 1991).

When the width is broad, some of the lines may overlap and become unresolvable

so thai in general one may find sharp lines, broad lines and continuous regions in

the absorption spectrum. The complexity of the spectrum and the discontinuous line

progression between band fragments makes it very dificult to analyze the observed

spectrum. Over many years, the nature of this coupling has attracted much interest

with the aim of understanding its quantum mechanical properties.

The basic idea of the quantum mechanical description of a molecular problem

10
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is to take advantage of the enoÏmous mass difference between nuclei and the electrons

which implies a much slower motion for the nuclei with respect to the electronic motion

in low energy molecular physics. From this one can assume that the electronic motion is

separable from the nuclear motion and atoms move along adiabatic electronic potential

energy curves. This is the well known Born-oppenheimer approximation (Born and

oppenheim et 1927) which has been at the foundation of molecular physics for decades'

In the Born-Oppenheimer approximation if two potential curves of the same symmetry

come close together they wilt exhibit an avoided crossing according to the non-crossing

rule (von Neumann and wigner 1929, Landau and Lifschitz 1958). This corresponds

to an intuitive picture of a fast moving electronic cloud acliabatically adjusting to the

slowly moving nuclei. Although this model is generaliy successfïÌ, such an approxi-

mation can fail in some cases when the adiabatic electronic potential curves exhibit

an avoided. crossing, suggesting that nonacliabatic behavior must be considered' It has

been shown that diabatic states have proved to be extremely useful in the interpreta-

tion of the nonadiabatic behavior (O'ÙIalley 1971, Whetten et al 1985' Balint-Kurti

and shapiro 1985, Torop et al 1987, Kirby and Dishoeck 1988, wang 1989)'

2.2 Adiabatic and Diabatic Representation

In quantum mechanics a molecular system is described by the solution of the

Schrödinger equation

(fr-E)ü:o (2.1)

The much slower motion of nuclei with respect to the electronic motion due bo their

enormous mass difference make it possibie to separate the nuclei kinetic energy operator

I, lì'om the rest of the Hamiltonian H" (O'\Ialley, 1971):

H:T'-H, í:.':¡
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For non-rotating diatomic molecule ?, is given by:

r,:-tf, e.r)r - 2p' drz

with p - *"*ul(mo I rn¿) the reduced mass of the nuclei and r the internuclear

distance. -ä" is then the electronic Hamiltonian:

fr.:S (-l-o'-zoe2 zue2 ''-e2\ z^zo"'=Ì[-,*vi-";-;;-Ð-) +=? (2 1)

where the sum is over all N electrons, rn" is the electron mass, Zo and 26 are the

nuclear charges of the nuclei ¿ and ó, and ria, tibt îij are the distances of electron i

from nuclei a, b, and electron j respectively.

For a basis set of the electronic Hamiltonian {ór(r:r)}, where c denotes all

the electronic coordinates, the full wave function for a non-rotating diatomic molecule

can be expanded in the basis set each multiplied by a nuclear motion wave function

x;(r) as

ú(r. r) - | þ;(x : r)¡;(r) (2.5)

Substituting into Eq. (2.1) and multiplying both side on the left bV óî in turn and

integrating over all the electronic coordinates give (O'Nlalle¡r, 1971):

(7, + G;; t V¡(r) - E)xt?) = -Ð(V¡ * F;¡ r G;¡)y¡(r) (2.6)
i+;

which is the formal set of coupled equations for the nuclear wave t'unctions, where

V¡(r) : <ó¡IHJú> (2.7)

F;¡ : -z(ñ2lz¡l < ó;lvló¡ ) .v, (2.8)

Çu: (h'lzp)<ó¡lv,l,l,¡>. (2.9)

The diagonal matrix elements of the electronic Hamiltonian l/" are the electronic po-

tential curves. The electronic coupling terms V¡ (i * 7) are the electronic couplings

of the electronic states and .f;¡ and G;¡ represent the kinematic coupling of nuclear

and electronic motions. There are two possible choices of the basìs set to represent

the adiabatic or diabatic behavior of the molecular states which be described in the

tbllowing sections.
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2.2.t Adiabatic rePresentation

In the adiabatic representation, the basis set is chosen to be the electronic eigenfunc-

tions /f of the electronic Hamiltonian -rY" satisfying the eigenvalues equation

H"lói >: ElÓi > (2.10)

In this case v;l :< óilL"lÓî ) are diagonal and the acliabatic electronic potential

curves undergo an avoided crossing if they have the same symmetry in accordance

with ihe non-crossing rule. The basis set {/i} constitutesthe adiabatic representation

of the electronic molecular states. The coupled equations for the nuclear wave function

Eq. (2.6) become

(7, + G¡¿ *v,î(,) - E)xi?): -I(¿ ¡ i G4)ri(r¡' (2'11)

i*i

For low-lying molecular bound states, the motion coupling terms G;¡ and F¡¡

are generally very small and can be neglected so that the nuclei move as if in a static

field of electronic charge. That is, the electrons aÏe considered bo move so rapidly

.o,,'purJ*ith the nuclear motion that their effect on the nuclei is a spabial distribution

offt""tronic cloud which d.epends on the relabive position of the nuclei and the energ;' of

the electronic state, but does not depend. on the details of the electron dynamics' This

results in the Born-oppenheimer approximation and the set of uncoupled schrödinger

equations

(r, + voî?) - E)yiU) : s. (2'12)

The electronic energy eigenvalue V¿iQ) becomes the potential energy for nuclear mo-

tion. Because the adiabatic states tbiyi arc uncoupled, they are stationary states and

give an excellent clescription of lhe grouncl and low-lying electronic states of molecules.

However in some cases: especially when lhe tlvo pot,en[ial curves of the same

symmetry come close iogether and unclergo an avoided crossing, the motion coupling

ler-'rs ma¡, become lalge in rhe avoided crossing region atr,1 induce stlong iiansitions
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between the adiabatic molecular states known as nonadiabatic transitions. In such

a situation the adiabatic description of molecular states as stationary states becomes

invalid in the regions of strong nonadiabatic coupling.

2.2.2 Diabatic representation

Another choice of the basis set is one that makes the motional coupling (G¿¡ and F,¡)

zero and then the off diagonal electronic coupling matrix elements (Vol :< óflí"ló! ,)
are non zero. Thus, the electronic wavefunctions are not eigenvalues of f1,. Such a

basis set forms the diabatic representation of the electronic states and the diabatic

coupled equations, from Eq. (2.6), are

(r, + ui@ - n)x!?) : - t u!¡þ¡xir,¡ (2.13 )
i+i

where the superscript 'd' denotes the diabatic representation. The two diabatic elec-

tronic potential curves cross in the region where the adiabatic potential curves suffer an

avoided crossing. The nonadiabatic transitions between the molecular states are caused.

by the configuration interaction, represented by the off-diagonal matrix elements I{j
as shown in Eq. (2.13).

Although setting the motion coupling terms G;¡ and F¡¡ to zero does not provide

an acceptable general definition of diabatic electronic states (Torop et al, 1987), it can

be taken at least as an adequate approximation for the current stucly. In practice the

diabatic representation has been proved to be extremely useful in the interpretation of

experimental results concerning the non-adiabatic behavior.

2.2.3 Coupled equations for two states problems

Usually, in curve crossing problems, only two interacting states a¡e involved or only

the interaction between two states are considered important because of their energy
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separation from other states. Therefore, the following study will focus on the two state

problem where the diabatic coupled equations become

(-*# + yl(r) - n) xlØ : -vl,(r)vl(r) es,4)

(-*# + v4?) - n) xiØ = -vN'(r)Y!(r)'

Since the diabatic and adiabatic electronic wavefunctions both form a complete

set and ihe quantum mechanics requires that they are orthogonal, it is possible to write

the adiabatic electronic wave functions as a linear combination of the diabatic electronic

wave functions and vice versa. The transformation between the diabatic and adiabatic

electronic wave function has the form of (Torop et at 1987)

: glcosl * ó4sin0

= -þlsinl * ölrcos?

(2.15)

where d is defined as

ói

ói

(2.16)

which changes rapidly in the crossing region With such a transformation the adiabatic

nuclear motion coupling matrix can be calculated and bhe acliabatic coupling Eq' (2'11)

can be written as

h' ( ¿2 Lr/f,(r) + *e), - ø) xi(') : -tW +2#*) xî?)
2r\-æ 1-vll\')-TzF\dr) u)ttr\') 2P\d'r"' drdt'//\'\ / 

(2,17)

t?ft +v;"1,) + te)' - n) xi"lr : *(# +2##) x1?)

The relationships between the diabatic and adiabatic nuclear wave function and po-

tentiai curves are:

Xi = ydrcosl I ylsin|

= -ydrsinî I ylcosî,
(2.18)

and

Vrlt (vl,-u$)z++v|,
(2.1e)

Íi4v22 (!,1 -vN)z++Vl,

Eq. (2.1g) aiso imply that the cliabatic coupling ternr Vldr(r) has a significant

contribution lo the adiababic potentials onlv around the crossing region. The minimum

s:!ton-'(*%iyt¡

Xi

, (rl' + vN2 +

t (rl, + v,4, -



16

separation between the two adiabatic potential curvcs locates the internuclear clistance

where the diabatic potential energy curves cross and is equal to ZV$(r,). Sometimes the

adiabatic potentials are denoted as I and V- for the upper (Vr]) and lower (V&) p"-

tential curves. For convenience the superscript d for the electronic Hamiltonian matrix

elements and the nuclear wavefunctions will be neglected in the following discussion.

Examples for the changes of the diabatic (solid lines) and adiabatic (dotted

lines) potential curves, 0, #, and, ffi as a function of the internuclear distance for NaI

and KI are shown in Fig. 2.1 based on the values given by Rittner (1951) except the

coupling strength used for the adiabatic potential curves are 5 times stronger than the

actual value to emphasis the noncrossing region.

Rotational effeci

There are two additional modes of motion in a diatomic molecule which do not occur

for atoms. One is that the nuclei can vibrate relative io each other through the inter-

nuclear axis which has been described in Chapter 1. The potential curves represent

the potential energy of such vibration. The other is that the molecule can rotate as a

whole about an axis passing through the center of gravity and, in most cases especially

for large J, perpendicular to the internuclear axis. To account for the rotational motion

of the nuclei, an extra energy t"r ff is aclded to the potential energy:

v(r) - vs(r) + 
t(to!r=Y- 

(2.20)
¿11r"

where Ve(r) is the potential energy with no rotation and J is the rotational quantum

number. This extra term is associated with the centrifugal force due to the rotational

angular momentum (Herzberg 1950 p.a26).

Numerical methods for obtaining soiution of bound state or coupled channel

Schrödinger equations have been developed and used over many vears. Among them
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the renormalized Numerov method developed by Johnson (1977,1978) provides one of

the most efficient. It has the advantage of speed of computation, quick convergence,

stable solutions and ease of programming. A description of the renorm alized Numerov

method for solving Lhe Scluödinger equation is presented in Appendix A.

As an example, the coupled equations are solved for a typical crossing system:

V(r) : 18154.95 erp12.2039(r - 2.a8)l - 8000 crn-l
(2.21)

Vr(r) : 15000 II - erp(-1.9685(r - 1.6))]2 cm-l

with [2 : 705 cm-7 and. r in Å. The transition strength factor, similar to the Franck-

Condon factor, given by

I :1 xslxt I x, >' (2.22)

is show in Fig. 2.2 f.or transitions from ground states with potential minimum which

favor the transitions to the repuisive edge of V2 and Vi. It is assumed that the eiectronic

transition dipole moment for the states are equal and constant. The diabatic and

adiabatic potential curves and their wavefunctions corresponding to different energy

positions are shown in Fig. 2.3.

2.2.4 Near diabatic and near adiabatic case

The diabatic and adiabatic representations are theoretically equivalent. But a number

of considerations may weigh in favor of the choice of one or the other for representing

that molecular potential.

In the two limiting cases where the electronic coupling or the motion coupling

terms approach zero, the resonance of the molecular states approach the diabatic or

adiabatic bound states respectively. In the near diabatic case, the elect¡onic coupling

strength is so small that the resonance character is close to the cliabatic behaviour and

the resonance positions are close to the eigenvalues of the diabatic bouncl states. As

the electronic coupling strength increases the mixine of the tlvo cliabatic r,vaveänctions
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ìncreases. When the electronic coupling strength is very large, the adiabatic character

becomes dominant and the resonance positions are close to the eigenvalues of the

adiabatic bound state

The non-adiabatic transition probability

The presence of motion coupling between the two adiabatic eiectronic states aliows

the transition nrom one adiabatic state to the other. The transition probability fbr a

single passage through the crossing region known as the Landau-Zener nonadiabatic

transition probability, is given by (Landau 1932, Zener 1932):

pt"= ( znv'r\ 
1z.zs¡"o \ r"LF )

where vtz ís the elect¡onic coupiing strength at the crossing point, while u and aF

are the relative velocity of the two nuclei and, the slope diffelence of the two diabatic

electronic potential curves at the crossing point respectively, given by

u
2(-
l.¿

d

d,

(E - E,))'t'

with E" : Vt(r,) -- V"r(r,)

AF (Vrr(t") - Wr(r,))

The Landau-Zener nonadiabatic transition probability provides an indication,

in a particular situation, of whether the near diabatic or near adiabatic case gives a

better d.escription of the molecular states. If. Pu is small (when V12 ís very large), there

is little transition between the two adiabatic electronic states and the molecular state

will mainly remain in the sa¡ne adiabatic electronic state and the molecular states are

near adiabatic. Ir Pt, approaches to 1 (when vz - 0), a nearl.rr complete transition

from one adiabatic to the other acliabatic electronic siate occurs. Then the molecular

states will mainly sray in the same diabatic electronic states. and this is a near diabatic

case. In the region of intermediate elecironic coupling strength- rvhere P¡" x 0.5. the
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[wo stabes are sbrongly rnixed. A t]reorebical study for the iransition from near diabatic

to near adiabatic case by varying the coupling strength is given in Chapter 6.

Fig. 2.4 shows the changes of Landar-Zener nonadiabatic transition probabil-

ities as the energy changes for different coupling strength for the poteniial curves of

NaI. The actual coupling strength for NaI is taken to be 0.055 ev.

Explanation of the diabatic and adiabatic cases

Berry (1957) provided an intuitive picture to explain the near diabatic and near adi-

abatic cases for diatomic alkali halide molecules. As described in Chapter 1, upon

passing through the crossing region an electron may jump from one nuclei to the other

and the electronic wavefunction re-adjusts itself to the sudden change of character to

form a bound adiabatic state. To indicate whether such a j,t-p is possible, an estimate

can be made of the relative velocit5' between the nuclei and the electron as well as the

distance they travel in such a jump. The mass difference implies that the electronic

velocities are about 40 times faster than that of the nuclei. Therefore in the time that

the nuclei move 0.1 Å, the electron can move about 4 Å. Thus. an electron jump from

one nuclei to the other would be possible if the crossing region is long enough and

hence the molecuiar system will be a near adiabatic case. Otherlvise, ii will be a near

diabatic case.

Although diatomic alkali halide molecule NaI and KI have similar electronic

character and potential curves, that is both have an ionic ground state and a covalent

excited state which undergoes an avoided crossing at a large internuclear distance, their

behaviour is completely different. For exampie, the absorption spectrum for NaI is a

very rich band spectrum in the UV while that for KI is a continuum. The physical

interpretation given by Berry (1957) for such a similar molecule resulting in a very

different behaviour is that the crossing region, where á changes rapidly, for KI lies

at a greater internuclear clistance and is narrorver than that of )ial. This is shorvn in
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Fig. 2.1. Thus an electron jnrnp can occur for NaI but not for KI. In another words, for

KI, the Born-Oppenheimer approximation breaks down completely and the electronic

motion is not separable from that of the nuclei so the electronic wavefunctions do not

change their character and the KI molecule behaves diabatically.

2.2.5 Resonance states

In the study of the discrete energy spectrum of molecules, the excited states are found

to be very long-lived and are described by the uncoupied, bound state Schrödinger

Equation (2.I2). The wavefunctions exist only at energies corresponding to the energy

eigenvalues of the bound state. When a bound state is perturbed, for example by a

vibrationaÌ continuum of the same symmetry as investigated in this study, its lifetime

ìs reduced, and the eigenstate of the bound potential becomes a quasistationary or

metastable state. Such states can be regarded as resonant states of the molecular sys-

tem if their lifetimes are long enough to be well characterized. The wavefunctions exist

at any energy and can be calculated by the coupled equations. A resonance is char-

acterized by the resonance energy and its width or lifetime. The simplest theoretical

description of resonance states is that they resemble bound stabionary states in that

they are "localized" in space (at t:0), and their time evolution is given by:

,þ,(t) : "*, (-rçn, -;f,)tft) ø.{oi : erp(-ihúlrùú,(0), (2.24)

where

En: E, - il 12 (2.25)

is a complex resonance energy. E, and I are real and f > 0. The presence of the

-il 12 term represents a decaying state.

Experimentally resonances are usually associated with a sharp variation of

the cross section as a function of energy. Analysis of resonance spectra is one of

the most interesting and important features of spectroscopy. Resonant phenomena
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have been studied for many d.ecades, but nevertheless some aspects are not yet fully

understood.. Rather than looking for a general explanation of resonances it may well be

more appropriate to distinguish between various kinds of resonance.phenomena (folÅ'er

n''a&l*bt o/'t¿"t

19S4). In this section, we restrict ourselves to the a'rea ofnspeittotcopy and introduce

some definitions for resonance which are related to this study'

shape resonance is a simple example which is closely related to the curve closs-

ing problem. It can be that the lower state V- produced by the avoided crossing of a

bound state with a continuum state creates a potential barrier, such as that is shown

inFig.2.3(b),oristheresultofcentrifugalbarriereffects.

The most straightforward and perhaps the most productive approach for single

channel resonance is through the calculation of phase shifts' It is shown that (child

1974, 1991) the phase of the wavefunction in the asymptotic region will undergo a n

phase shift on resonance which corresponds to the creation or cancellation of a node

in the wavefunction within the barrier region'

In many cases, a resonance may be very broad with the n phase shifT occurring

over a broad energy region and it is necessary to find a suitable definition for bhe

resonance energy in this case. Allison (1969) suggested that an alternative definition

for resonance position is the enelgy where the amplitude of the wavefunction inside the

potential barrier, or the internal wavefunction, normalized by its asymptotic amplitude

reaches a maximum. A similar definition for the curve crossing problem is proposed in

chapter 6 to describe the resonance behaviour in the intermediate coupling region'

For ihe multichannel case, one can use Feshbach projector operators to define

resona'.ce (Feshbach 1958, i962). However, clefinition of the operators is so difficult

tìrr systems with many electrons thai it has no[ ¡ret been demonstrated that such an

approach provides a practical method for calculating resonance parameters to arbitrary

accuracy (BardsleY, 1978).
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The most fruitful definition for resonance is the "outgoing wave only" boundary

condition. According to Siegert "the cross section being the ratio of the intensities of

outgoing and incoming wave becomes singular if there is only the outgoing wave"

(Siegert, 1939). Such a definition has been widely used in semiclassical (Child 1991,

Korsch 1986) as well as quantum mechanical methods (Junker 1982 and Reinhardt

1982) to investigate resonance structure. More discussion about the Siegert state can

be found in $2.4 and Chapter 6.

It has been noted by Child (1991) lhat the 'precise equiualence between the

resoncrnce positions and width associated with the three different prescriptions - inter-

nal amplitude, phase shift jump, and Siegert eigenualue - applies only in the sharp

resonz,nce limit. This is observed in Chapter 6 for broad resonances.

2.3 Semiclassical Theory

Only a few quantum mechanical problems have exact analytical solutions. In prac-

tice one has almost always to resort to an appropriate approximate methods or to

numerically solve the Schrödinger equation. Semiciassical approximations is the short

wavelength link between classical and quantum mechanics. Besides simplifying the cal-

culations and providing reasonably accurate numerical results, semiclassical approxi-

mations offer a conceptual way of understanding quantum processes. This is often

impossible in a pure quantum mechanical treatment. A very useful method is the

JWKB approximation for the wave function (Child 1974) and will be used in the fol-

lowing discussion.

In this section, the results of semiclassical theory on curve crossing developed

by Child (1970, 1974, L976, 1979, 1991) are presented and the characteristics of bhe

resonance position and its width are discussed.
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2.3.L Child's semiclassical theory

Because Child's semiclassical method ìs based on the assumption that the coupling

effect is only significant near the crossing point, the central problem for a curve crossing

system reduces to an investigation of the general solution of coupled equations in the

crossing region. Outside the crossing region the Schröd'inger equation is uncoupled and

its solutions can be approximated by the JWKB wavefunction X1(r) for the potential

cur\res of V¡(r) (Child 1974, 1991). In the semiclassical regions which are far away

from the crossing point and the turning points, x+(r) is given by

x+(r)'fl' tc*'12 (r)lr'*exp(;

rÞr" , -l/2k+'' "(r)lQ'*erP(i

l,', ]**¡1 
ar) + e*"*pe i l,',k¿ 

(r)dr)l

l,'"t *¡¡ar) + Q'+"*pei L',k¡(r)dr)]

(2.26)

(2.2i)

rvhere

k+ (r) : lz¡t(E - V\(r\)I t2 
I tt (2.28)

The basic idea of Child's semiclassical theory is to f'ollow the changes in the

amplitudes of the wavefunction (P and Q) in the nonclassical region. A diagrammatic

approach is developed and the connection matrix (see Appendix B) is used bo follow

changes in the amplitudes and phases of the various JWKB terms in passing from one

semiclassical region to another. Fig. 2.5 gives a typical picture of a curve crossing

system and the corresponding diagram showing the transmission of fluxes through

the crossing region. Elements of the connection matrix including free propagation,

reflection from a classical turning point and passing through a curve crossing region

are given in Appendix B.

2.3.2 Application for curve crossing

Following the flow in Fig. 2.5 and applying the connection lormulas to the wave func-

tions together with the outgoing wave only bounclary conditron fbr resonance. orre finds
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(-Q',). (2.2e)a'+

Q'-

(t - À2)exp(2i0 ¡) | À2 erP(2i02)

À(1 - À')' t' "*p(-iy)(etp(2i0 +) - ery(2i02))

where

d+=

o_p+

0z:
0+:

u:

X:

['" k*çr¡d,
Jo+

tbt

J,,' t""*ç'¡a'

o,-*þ+

o'¡*B+*X

erp(-ru)

- çt I,' _[k- 
(,) - k-¡- (r)]rir)

argl(iu) - ulnu t u * tr f 4'

or(Er) = (r, +

0+(E+) : (r* +

(2.30)

(2.31)

(2.32)

(2.33)

(2.34)

(2.35 )

(2.36 )

In the above equations, ø1 and b..,' are the semiclassical turning points, r",' and r- are

the complex crossing points of the adiabatic uppel I and lower I/- potenbial curves

in the compiex coordinate plane, 02 and, 0¡ arc the diabatic and bhe adiabatic phase

integrals, and X is a phase shift caused by the curve crossing' Ec¡' (2'29) requires that

(I - À2)erp(2i0) | Àzexp(2ieù -- -I' (2'37)

The semiclassical levels of the diabatic and adiabatic bound sta,te are deduced

from the Bohr quantization condition:

I
- )zr
2',
1

- lzr
2',

(2.38)

(2.3e)

Since these level schemes are never observable they were also called hypothetical levels

(Schaefer er al, 1984). Analytical expressions t'or the resonance energy shift A from

bhe bound state level and the preclissociation line width I were given by (Child' 1974):

2h,a2
: 

-It,co.S

h,us,
Az : :usinïacosï¡. fz

if
'o* (1.+0)
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for the diabatic case; and

a+ : h?* 
'-"i'o2coso2' f+

1f

2h,aa
u-r 

"os2 
o, (2.41)

1f

for the adiabatic case. In these equations u: À'2 - L.

A more general formula, for any coupling strength, for the region in the neigh-

borhood of certain arbitrarily sharp lines is given by the equations (Child 1976, 1991):

E = (8, + xE*) lQ' + x) (2.+2)

f : 2ra(r t 1r)(82 - E*)21[høz(1 + r)3] (2.43)

where x : uhuzlña* is the mixing parameter and 7 : h,uzlhu+.

It can be seen f¡om the above equations that the predissociation line position

and width depend on the two nearby diabatic (82) and adiabatic (8..,.) hypothetic

levels, their local level spacings (ñc.,,2 and ãc.r1) and the mixing parameter (z).

2.3.3 The vanishing predissociation line width

The anaiytical expressions for the predissociation line width predict that the sharp

lines (or the vanishing line width) always occurs when the hypothetical diabatic and

adiabatic levels are accidentaily coincident. This is a very important characteristic of

the lines which can be used to identify the hypothetic level positions and may help lead

to final assignment of the spectrum. This technique was first successfully applied to

the assignment of IBr (Child 1976), and was more recently applied for NaI (Schaefer

et al 1984).

As seen in the previous discussion of this section, two sets of energy levels can

be considered. One is the set of eigenvalues of the Schrödinger equation Eq. (2.I2)

for the diabatic (yz) and adiabatic (l/1) bound states. The other is the set of semi-

classical hypothetical levels defined by the Bohr quantization conclitions (Eq. (2.88)

and Eq. (2.39)) in Child's semiclassical theory. It has to be pointed out that there are
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differences between the hypothetical levels from bhe bound state eigenvalues' Apart

from the semiclassical approximation, the adiabatic hypothetic levels differ from the

adiabatic bound state eigenvalue by a modìfied phase ¡ which is caused by the cross-

ing. From Table 8.1 in Appendix B and Eq. (2.39) one finds that for weak coupling

x - T l4which will cause an energy shift equal to one quarter of the vibrational spacing

and this shift will reduce and then approach zero as the electronic coupling strength

I{2 increases. Calculations for NaI in this study showed that this shift is only about 2

cm-r for the adiabatic leveis.

The hypothetical diabatic levels are the eigenvalues of a "modified" diabatic

bound state which is:

V_
V- (" < t")

V+ (t > t')

with a discontinuous step at r" (see Fig.2.5.). Calculation in this study showed that

the eigenvalues of such a "modified," diabatic bound state differ from those of the actual

diabatic bound state (I/2) by about one vibrational level spacing for NaI. In the anal5'sis

of the NaI spectrum reported by schaefer et al (1984), the diabatic and adiabatic

hypothetic levels are regarded as the isolated bouncl state (vi and I/1) eigenvalues' The

resulting potential culves, therefore, will not be in agreement with the later version of

child.'s theory (child 1991(a)) and need to be re-calculated.

Fig. 2.6 shows the strength factors for a spectrai region of NaI and the corre-

sponding hypothetic levels and the bound states eigenvalues. Two kinds of electronic

coupling functions were used. for the calculation lvith one being constant with r while

the other is a Gaussian function about the crossing region. It was found that whiie the

coincidence of the two hypothetic levels provides a good approximation for the posi-

tion of a sharp line, the eigenvalues of the bound states seem to have little relationship

with the occurrence of the sharp lines. Calculations shorv that for a constant coupiing

strength,thecoincidenceofthetwoboundstateeigenvaluesma¡tbenearthebroadest

line. For a Gaussian function corrpling strength. the coincidence maJ- move from the

í

I
(2.44)
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broadest line towards the sharpest line as the widih of the Gaussian function reduces'

There is no clear explanation for such behavior- However, a possible reason may be

that as the width of the Gaussian coupling strength reduces, the electronic coupling

function approximates more closely the semiclassical electronic coupling function which

has a constant coupling strength in the crossing region and has zero coupling outside

the crossing region.

Althoughitisunambiguouslyevid.entthatthevanishinglinewidthocculs

at the energy of the coincidences of the diabatic and adiabatic hypothetic levels, a

physical understanding of the reason for the sharp resonance is not clear' There is no

satisfactory interpretation directly from the coupled equations, diabaiic or adiabatic'

which can be used to explain n""ot*{W of sharp resonances and the suppression

of the outgoing wave through coupling at such a particular condition.

One possible physical explanation, in the semiclassical theory, comes from the

examination of the leakage rate of the culve crossing system. rvhich is directly related

to the line width (Lefebvre 1988, 1990a, and Lefebvre and Child 1989):

t lz : !*lol', (2.45)
¿l,t'

where A is the normalized amplitud.e of the outgoing wave and k is the asymptotic

wave number. From Fig. 2.5, the amplitude of the out going wave is Q',-. It is zero,

from Eq. (2.29) and Eq. (2-37), only on the condition that

erp(2il¡) - exp(2i02) : -1. (2'46)

Therefore

0+ : (r* + Ll2)r (2'+î)

02 : þ;z+Il})¡t (2.18)

or 8.,. - 82. This means zero leakage rate or zero predissociation line wiclth can onl-u*

ùccur rvhen ihe trvo hypothetic energy levels coincitlent'
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2.3.4 The asymptotic analysis of the line width

For a curve crossing system which normalization is performed through the closed chan-

nel with the bound state wavefunction Xu(r),

t:: lxuçr¡l2dr : r. (2.4e)

the asymptotic amplitude of the open channel wavefunction Xc provides a measure of

the dissociation rate of the molecular system (Lefebvre 1988, 1990a, and Lefebvre and

child 198e).

With the semiclassical wavefunctions describing the curve crossing system, as

shown in Fig. 2.5, Child (1976) suggested that the amplitudes on the left turning

points ø- and 04 à,re related to the normalization of the bound states. If a standard

normalized JWKB wave function

Xt(r): (#)'/' ¡;'r'ç,¡,i,(1"' k6(r)d,r +ir14) (2.b0)

is used for bound state wave functions, then the amplitude for the traveling wave will

be half that of the standing wave

lAd: Qthu6f 2rhz¡t/z (2.51)

In the diabatic case, from the connection matrix in Appendix B, lAù = lp_l :
lP" l - IQ'*U I when there is no incoming wave. From Eq. (2.27) and Eq. (2.2g) rhe

square of the normalized amplitude of the outgoing wave is

lAl": k-l(r)lQ'-f

: +k_1(r)À2(t, - Àz)sinr(0, - o*)le'*|,
2p,hut2,= ffitr_'{')(l - À2)sin2(02 - o+)

Substituting this into Eq. (2.45) with ft(r) : É_(") gives

2ha5,l' - --- -lI - À2)sin,(0, - 0+)
it\

(2.52)

(2.53)

(2.54)

(.2.55)
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(2.56)

(2.57)

(2.58)

(2.5e)

( 2. 60)

f À2ucosz 0 ¡
1t

Similarly, in the adiabatic case' lA¡l = lP+l = lÇ,+l/(1 - À2)1/2 and

lAl': tc-tçr11q'-¡2

= +r-'(")À2(r - À2)sin'(0, - g*)lQ'*l'

= 
Zttr¿:+ 

¡_te)À2sinz(0, _ o*)
rh,"

and with 0+ - (r+ | 1'12)r the line width is

2hu,f:- +(1-Àt)r-tcos202
/t

Bq.(2.,16)andEq.(2.60)agreewithEq'(2'40)anclEq'(2'41)exceptforafactorof

À2 and (1 - Àr) respectively which approach unity in the weak and strong coupling

ca,se. A similar result for weak coupling case $¡as obtained by analysis based on the

stabilization method (Lefebvre and Child' 1989)'

2.4 Complex Scaling Method

The operators in quantum mechanics representing physical observables are all self-

adjoint and therefore have real eigenvalues if the corresponding eigenfunctions fulfrll

the stand.ard boundary conditions. Thus one obtains an energy spectrum of real eigen-

values for the Hamiltonian, which are either discrete (corresponding to bound states)

or continuous (corresponding to continuous ol quasibound states)' However' if one

,,properly changes" the boundary conditions, so that the Hamiltonian '11 is no longer

self-ad.joint, then -Fl may have complex eigenvalues E - E, - if /2 corresponding to

resonance states with the ¡esonance energy E. and. a finite lilètime l' The eigenfunc-

tions of such states, which are often called Siegert states or Gamow states' have an

asymptotic characteristic of being an outgoing lvave. Such a "proper change" of the
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conventional boundary conditions is associated with a certain mathematical extensiorr

of the standard quantum mechanical formalism through the introduction of complex

variables. This idea was brought to a firm mathematical basis by Balslev and Combes

(1971), which is known a,s the complex scaìing method (CSM), a,lso ca,lled the complex

coordinate method or the complex dilation theory.

In the complex scaling method resonance is defined by the Siegert outgoing

wave only boundary condition and its corresponding wavefunction has a complex enérgy

E : E, - il'12, where E," is the resonance energy and f is the resonance width. This

also leads to a complex wave vector

I^_ (2.61)

For a Siegert resonance state the asymptotic behavior of the wave function for large

internuclear distance r is an outgoing wave

x(r) x exp(ikr) (2.62)

with

k: ko - ih (fuo, kr > 0) (2.63)

k: I{e-io (/( > o, p > o) (2.64)

where

1 -tE' - Eo

#rt -v(,)l

or

P = ron-'fr or tan (2.65)
r12

It is clear from Eq. (2.62) and Eq. (2.63) that the amplitude of the outgoing

wave will diverge exponentially as r increases. This asymptotic divergence can be

avoided through the use of complex rotation of coordinates (Brandas 1987) by the

transformation

r-reio (2.66)

2

with Eo the dissociation energy of V(r)
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provided that the rotation angle d is greater than the critical angle B deflne in

Eq. (2.65)' Therefore we can write

x(r) o< etp(ikr) = explil{rcos(0 - fllerpl-I{rsin(0 - 0\ Q'6i)

which approaches zero in the asymptotic region. such a complex rotation of coordinates

is oniy a mathematical tool for the calcuiation of the complex energy eigenvaiue and

has no physical meaning. The mebhod, for numerically caiculating the complex enelgy

eigenvarues is essentia[y the same as that for a bound state and is detailed in Appendix

The development of complex scaling method provicles an approach to the direct

study of resonance through the introduction of complex variables' It is an attempt to

treat resonance states as bound states. Its application in a typical curve crossing system

is described in ChaPter 6'

C



Chapter 3

A fünable Ultraviolet Laser

System

3.1 Introduction

Laser, light amplification by simulated emission of radiation, produces intense light

sources with spectral energy densities which may exceed those of incoherent sources by

several orders of magnitude. Furthermore, because of their extremely small bandwidth,

single-mode lasers allow a spectral resolution which far exceeds that of conventional

spectrometers. Many experiments which couid not be done before because of lack

of intensity or insufficient resolution are no\ry readily performed with a laser source.

This brought about a revolution in optical technology and spectroscopv, and had a

far-reaching influence in various fields of science and technology.

This Chapter describes a tunable UV laser designed and set up in this work

for the spectroscopic study of NaI. It consists of a pulsed copper bromicle (CuBr) laser

with a 16 kHz repetition rate which pumps a dye laser with a narrolv bandwidth of

I-2 GHz and a tunable range from 528 nm to near infrared using difierent dyes. The

output of the dye laser is frequency doubled by a beta-ba¡ium borate (BBO) crystal

38
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to provide a tunable uv source from 290 nm to 350 nm' This tunabte uv laser is then

used to obtain a high resolution absorption spectrum of NaI to investigabe the nature

of its non-adiabatic crossing potentials, which wiil be presented in Chapter 5'

3.1.1 TheorY of oPeration

If a molecule with energy levels E1 and E2 absorbs a photon of energy hu : Ez - Et,

it is excited from the lower energy level E1 to the higher energy level E2 as shown in

Fig. 3.1(a). This process is called ind,uced absorption with a total transition rate of

Pn: BztPNt (3'1)

which is proportional to the Einstein coefficient of induced absorption 821, the energy

density of the electromagnetic radiation p and the total population tV1 of level E1'

After the excitation, the molecule in the excited state may spontaneousl¡t make

a transition to the lorver energy level with the emission of a photon as seen in Fig' 3'1(a)

in an arbitrarY direction.

The radiation field can also induce molecules in the excited slal'e Ez to make

a transition to the lower state Er by stimuiated emission of a photon possessing the

same energy, phase and direction of travei as the inducing photon' The total transition

rate of emission is therefore given by

Pz, = (An * BnP)Nz (3'2)

where A21is the Einstein coeffi.cient of spontaneous emission, 812 is the Einstein co-

efficient of stimulated emission and iúz is the population in the higher energy level

Ez

In thermal equilibrium, [he population distribution ^\¿ is given by the BoItz-

mann distribution

.V,=*le.rp(-E;lkT)'rJ
,'l ,)\
\.-)..J jr
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Figure 3.1: The energy levels for absorption and emission of radiation in a two level

system (a), three level system (b) and four level system (c).
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where the statistical weight 9¿ gives the number of clegenerate sublevels of the energy

Ievel E¿ and

Q =D s;exp(-E;lkT)

acts as a normalization factor which ensures D N'? - lV'

In the steady state field, the total absorption rate has to equal the total emission

rate. It can be shown that because the fi.eld obeys the Planck's biack body radiation

law (Planck, 1900), the relationships between the Einstein coefficients are (Binstein'

1e17):

Bt, 9zn
-D21,9t
8rhu3

(3 5)

(3.6)

(3.4)

Azt

Eq. (3.5) states that for levels Er, E, with equal statistical weights 92 = gr the prob-

ability of induced. emission is equal to that of induced absorption' When an external

signal is applied to the molecular system (or ihe active medium)' the net transition

rate induced is then proportional to the population difference in the upper and iower

energy levels. If the lower level is more heavily populated', ihe signal will be attenuated

by induced absorption. on the other hand. if the upper level is more heavily populated'

the signal will be amplified by stimulated emission. Therefore, it is necessary to obtain

a population inversion between the transition levels for a laser, so that stimulated emis-

sion is the net process. This is, howevet, impossible for a two level system in thermal

equilibrium as the Boltzmann distribution Eq.. (3.3) indicates that the population in

the higher energy level is always less than that in the lower level.

Population inversion can be achieved in a three or four level system as shown

in Fig. 3.1(b) and 3.1(c). The ideal system for laser operation is the four level system

where the pumping source pumps the population from the ground state Er to an

excited Ez which rvill then relaxes dorvn rapidly through nonradiative processes to

another excited. state 83. The population in level E3 lvill then make transitions to the

lorvest excitecl state Ea by the emission of ladiation rvhere t,he population "viil 
reiax

B"t
c3
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back to the ground state rapidly to avoid an accumulation of the population. When the

pumping rate is strong, and the nonradiative relaxation rates of the population from

E2 to E3 and from E¿ to El are fast, together with a long lifetime level83, population

inversion can be obtained between energy level E3 and .Ðq and laser action may take

place. Gas electronic discharges and optical pumping are the two most widely used

pumping processes for these systems.

3.L.2 Laser oscillation and laser cavity modes

Once the population inversion is realized, it is possible to obtain stimulated light am-

plification by adding mirrors which form a Fabry-Perot etalon as a resonant cavity to

introduce signal feedback. This is the final step necessar5r to produce cohelent laser

oscillation. In the first stage of the lasing action. spontaneous photons are emitted in

every direction. The resonant cavity, by the reflection of the mirrors, wiil then select

photons which propagate along the cavity axis, and feed them back into the active

medium to be amplified. Spontaneous emission in all other directions rvill quickly pass

out of the active medium.

The longitudinal resonance for a cavity of optical length L can occur only at

frequencies of

c rnc
" - 

^- 
2L

where À is the optical wavelength in the medium, c is the speed of light and rn is an

integer. These frequencies correspond to the possible standing waves of the cavity.

Hence, there are an infinite number of possible oscillatory longitudinal cavity modes

with separation between two adjacent modes of L,u : cl2L which is the free spectral

range of the cavity. However the actual number of longitudinal modes in oscillation

js restricted by the bandwidth of the optical gain of the active medium ancl the Q

factor of the resonator. Selection of the longitudinal mode is normally obtained by the

insertion of wavelength selection devices into the resonator.

(3 i)
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In addition to the longitudinal modes of oscillation, ttansverse modes can be

sustained as well, which refer to the variation of the optical frelds in the laser cavity

over the cross-sectional planes perpendicular to the laser axis' The lowest order of

the transverse mode is the TEiuIoo mode, which has the best beam quality and the

flux d.ensity is ideally Gaussian over the beam's cross section' The to*ff'a"r of the

transverse mod.e, the better beam quality the laser has' Thus' high beam quality is

achieved by increasing the optical loss of high order transverse modes' for example, by

placing a pin hole inside the cavit5r'

A narrow bandwidth laser must operate at T E ùIoo mode with a single or few

longitudinal modes. As will be seen later, most of the wavelength selection devices are

very sensitive to the incident d,irection of the light beam. Higher transverse modes will

then have a broader bandwid.th because of the divergence. operation in a 1ow order

transverse mode for a laser pumped dye laser is normally obtained by focusing the

pumping laser beam into a very small region of the active medium which limits the

beam diameter together with a small pin hole to select the T E ltlo¡ mode'

Some laser systems have such extremely high gain that they can emit very

bright and more or less quasi coherent beams from each end of the laser medium

without the mirrors, sìmply as a result of very high gain amplification of their own

internal spontaneous emission traveling along the length of the optical gain medium'

This kind of behavior is called amptifi,ed spontaneous emission (ASE), superradiance

or superfl,uorescence. Both the CuBr laser and dye laser used in this study have strong

ASB.

A detailed description of the operation of a laser system, the longitudinal and

transverse mod.es, one should refer to the work of Siegman (1986).
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3.2 The Dye Laser

The most important characteristic of a dye laser is its tunability. The widest spectral

range is covered by pulsed lascr pumped dye lasers which can operate at any wavelength

from near UV at 311 nm to near IR using different types of dye. Since the discovery

of the dye laser b¡r Sorokin in 1966, rapid progress has been achievecl in dye laser

technology. Tunable dye lasers have found a wide range of applications in fields such

as spectroscopy, laser chemistry, isotope separation, trace anaiysis, cancer treatment,

etc. The copper vapour laser (or CuBr laser) pumped dye is often favoured because of

its high repetition rate when compared with other pulsed laser systems (YAG, l/z and

excimer lasers) and its high power level giving high conversion efficiency when compared

with continuous wave (cw) lasers. This section summarized the basic technique fbr

wavelength tuning and spectral nairowing as it relates to this stucly.

3.2.L Spectral narrowing and tuning of dye lasers

Organic dyes are characterized by a strong absorption band in the visible region of the

electromagnetic spectrum. The energy levels of a typical dye molecule in solution are

shown in Fig. 3.2. There are a manifold of singlei:; elect¡onic states, ^9e ... .9, and

triplet states Tt,...Tn which are of importancefor the operation of the dyelaser. Each

electronic state has a number of vibrational levels superimposed on it. In addition, each

vibronic level has closely spaced rotational levels superimposed on it. These rotational

levels are broadened by frequent collisions with solvent molecules and form a near

continuum between each vibrational level. These give rise to the characteristic broad,

structureless absorption and emission bands in the electronic spectra of dye molecules

in solution. In thermal equilibrium most of the molecules are in the lowest vibrational

level of ^96. Thus in the absorption of pump radiation, the molecuie may be excited to

the first excited single state,51, or higher excited singlet states S" (n > 1) rvith IJV
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Figure 3.2: The energy levels of a typical dye molecuie with radiative (solid lines) and

non-radiative (broken lines) transitions.
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pump sources. There are various rapid nonradiative relaxation processes in the excited

states of dye molecules, which accumulate the population in the lowest states of ^9r.

Stimulated emission then occurs with the transition from the lowest vibronic level of

,9r to higher vibronic levels of ,96 which are initially un-populated st¡ Liral p<-rpulation

inversion is satisfied. Rapid relaxation processes through various nonradiative processes

in the ground states depopulate in the lower state of the transition to the lowest state

of ,90. There are also intersystem nonradiative relaxation processes which transfer

population from the singlet state,Sl to the triplet state fi. It was found that such

processes are related not only to the dye molecular structure but also the environmental

effects (Schäfer 1973, Nair 19S2). Since transitions from the triplet states to singlet

states are optically forbidden these processes are undesirable in a dye laser system and

should be minimizedby choosing the correct dye compound and solvent.

Spectral narrowing and simultaneous tuning of dye lasers can be obtained by

introducing wavelength selective devices into the resonator. The following methods for

wavelength selection are widely employed :

o Resonators including devices rvith spatial wavelength separation such as prisms

and gratings;

o Resonators including devices for interferomet¡ic wavelength discrimination such

as a Fabry-Perot etalon;

o Resonators including devices with rotational dispersion such as birefringent fil-

With these wavelength selective devices inside the resonator, the optical gain

becomes strongly wavelength dependent and determines the wavelength and the bancl-

width at which laser action occurs.

The spectral width of the dye laser depends mainly on the single pass band-

"vidth of the resonator and the number of light passes in the ¡esonator. For the most

ters
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commonly used v¡avelength selection device such as prisms and gratings, the single

pass band.width is determined. by the angular dispersion of the wavelength selector and

the d,ivergence of the laser radiation incident on it. Normally, the higher the angular

dispersion, the higher the optical loss the wavelength selection devices introduce in

the resonator. Hence in the cw d.ye laser, where the optical gain is low, comparatively

narïo,vv bandwidths are obtained by the use of low dispersion tuning elements such as

prisms and birefringent filters. For pulsed dye lasers, due to the higb gain and onlv a

few passes in the resonator, high dispersion elements such as gratings can be used. For

narro'r'er linewidths and single mode operation, interferometric devices such as Fabry

perot etalon are used in conjunction with the above tuning element both for pulsed

and cw dye iasers.

3.2.2 Practical alignment of a pulsed dye laser

There are a large number of different grating configurations for high peak powel pulsed

pumping sources which have high optical gain among which are the often used Hänsch

ancl the grazing-incidence (or Littman) configuration after the designs of Hänsch (19i2)

and Littman (tsra). A short review of the relevant designs is presented in the following

giving their strengths and weaknesses and hence the basis on which the present dye

laser was buiit

The Hänsch configuration

A typical arrangement for a Hänsch type cavity is shown in Fig. 3.3. It consists of a

dye cell, beam expander, a diffraction grating in a Littrow mount and a plane output

coupiing mirror at the other end of the optical cavity. Tuning of the rvavelength

is obtained by the rotation of the grating. This design was first described by- Hänsch

(1972) with a iþ laser of 100 Hz repetition rate as the pump source. ,\ reverse telescope

.,,r,as used as the beam expancler. Convelsion efrcierrcS. oi up to 20% was easil;' obtained
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figuration (After Hänsch, IgT2).
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with this dye laser system for operation neal 600 nm using a 5x10-3 lVl/liter solution

of Rhodamine 6G in ethanol. with careful adjustment of the coilimating telescope' a

bandwidth of 0.03 Å lfWUiVt) can be obtained. Insertion of a Fabry-Perot etalon with

a free spectral range of 0.57 crn-1 into the collimatecl beam reduced the bandwidth to

300 MHz or less than 0.004 Å'

A pulsed dye laser is often characterized by its spectral width (exclusive of

intracavity etalon) which is determined by d.iffraction and the beam expander-grating

combination. The single pass bandwidth of a Littrow grating tuned resonator is given

by (Hänsch 1972):

(3.8 )

where lg : 2wzlcosó is the length of the illuminated part of the grating and u''z is

the beam radius after the beam expander. It is noted that the spectral bandwidth of

such a laser depends on the illuminated width of the grating /, (perpendicular to the

grooves) and not on the heighi, diffraction order' or Sroove spacing'

Because the beam diameter of the laser is normally very small, it is necessary

to use a beam expander inside the cavity to achieve maximum illumination on the

grating and so obtain na rolv bandwidth. In recent years much effort has been devoted

to find technologies for increasing the expansion ratio of the beam expander, to reduce

the optical cavity length and optical loss due to the insertion of optical components in

the cavity as well as to reduce alignment problems and cost. Prism beam expanders

(Hnilo and Nlanzano 1985, Niefer and Abkinson 1988), as shown later in Fig. 3.8' which

expand b]re beam in one dimension only are one of the most successful replacements tbr

the telescope. Nloreove¡ since onl¡, one climension of the beam is expancled, the large

grating can be repiaced with a less expensive thin strip onll' ¿r ièrv mm high'
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The grazing-incidence grating configuration

An alternative cavity configuration which does not need a device to expancl the beam,

yet it still provides a spectrally narrow high power output was developed by Littman

(1978) which is known as the Littman type or grazing-incidence configuration.

A typical dye laser oscillator in the grazing-incidence grating configuration

(Littman, 1978) is shown in Fig. 3.4 where the grating is not mounted at the Littrow

angle and the laser waveiength is tuned by rotation of the tuning mirror. In this

Littman type cavity, the grazing-incidence grating acts as a beam expander when ás is

close to 900. Design advantages of this dye laser oscillator include:

r The expensive high quality achromatic telescope or prism expander is eliminated

r Alignment is simple. Careful adjustment and focusing of the beam expander are

not necessary.

¡ Elimination of the beam expander reduces the number of surfaces in the optical

cavity resulting in fewer reflection losses.

¡ The laser can be made extremely compact so that short duration pump light

can be used more effectively. Furthermore, the longitudinal modes have a large

frequency separation due to the compact cavity. This makes it much easier to

obtain single longitudinal mode operation.

The single pass bandwidth of a grazing incidence-grating dye laser is given by

(Littman, 1978)

A):ffi (r'e)

which is similar to that of the Hänsch type.
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Multi-pass bandwidth

Multiple passes of laser pulses inside a tesonator will further compress the linewidth.

An estimate of the dependence of time averaged linewidth on the resonator length

or pulse width was given by Flamant (1973) for pulsed dye lasers which use Fabry-

Pérot etalons, a grating or prisms for spectral narrowing. For times t Þ Tp7, where

Tnr : 2L lc is the time a laser pulse take a round trip inside the resonator and tr is

the optical length of the resonator, the laser linewidth at time ú for a grating-tuned

system is:

6u(t) : 6vs(2tn2)r/2(Tpr¡t¡t/2, (3.10)

where 626 is the passive linewidth of the resonator. Therefore the time averaged laser

linewidth is

6v (*#) l"'r'^'rt)'/'dt

2(2tn2)t/2 (T#\''' u,o\ / \T )

^(#)'/'L'/'6,o

(3.11)

(3.12)

(3.13)

where ? is the observed pulse duration of the laser

3.3 Copper Bromide Laser Pumped Pulsed Dy.

Lasers

Since the copper bromide (CuBr) laser (or copper vapour laser) pumped dye lasers

fit well into the gap between a low-power c\ry system and a high power pulsed system

with a low repetition rate, they can successfully be built using the technology which

applies either to cw or puised dye lasers. Therefore, there are a number of cavity

configurations which would be abie to provide a narrow bandwiclth laser operation

with high conversion eficiency.
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In this section, different configurations of the dye laser system related to this

work are reviewed and compared. A novel design of a longitudinaily pumped pulsed

dye laser resonator using grazing inciclence in a folded astigmatic cavity employing a

free flowing dye jet from a nozzleis described" A CuBr laser pumped dye laser system

with master oscillator-po\¡/er amplifrer (lvIOPA) configuration \ras then designed and

constructed. The oscillator used a grazing incidence grating with an open dye stream

jet and. a three mirror folded cavity configuration' It produced good beam quality laser

pulses with a bandwidth of about 1-2 GHz. The laser pulses were then amplified by

an amplifier jet to obtain a total avelage power of about 230 mw' In the following' we

will describe each part of this dye laser system

on related subjects by other authors is given'

When necessaly' a review of the work

3.3.1 The copper bromide (CuBr) laser

The puised CuBr laser used in this stud.y is characterized by a high repetition rate,

high average power, long lifetime and. is a promising alternative to the copper vapol

Iaser (CVL)'

It is known that lasing transitions can occul from a lesonance to a metastable

level in metal atoms. one of the most important tequirement and difficulties for metal

vapor lasers is the need to provide a sufficient concentration of working atoms in the

active volume which is normally achieved by heating the metai' The cuBr laser, how-

ever, introduces the working atoms (copper) into the active volume by the dissociation

of the chemical compound, CuBr. in a pulsed' discharge' This is the most important

advantage of the CuBr laser because to vaporize the CuBr into the active region the

temperature only needs to reach 500 'C rather than the 1600 "C for a copper vapor

laser. The discharge and therefo-r-e the iaser operates at a Ïepetition rate of 1tj kl{z

and is self-heating through the discharge rvith the cuBr suppiied through heabed cuBr

reservoir. The cuBr iaser as well as the coppel vapol laser operates at' t:ro aromic
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transitions of copper, 510.6 and 578.2 nm

The CuBr laser used in this study was manufactured by Norseld Pty. Ltd.

in Adelaide. The laser beam is 25 mm in diameter and is horizontally polari zed by

Brewster windows of the laser tube. The power ratio between the green (510.6 nm)

and yellow (578.2 nm) lines is about 2:1 and the pulse width is about 30 ns.

Both a flat-flat mirror cavity and an unstable cavity were used in this study.

While the flat-flat cavity is one of the most effi.cient ways to extract laser power from

the CuBr laser, the unstable cavity provides a much improved beam quality and hence

higher focusable power. One of the most frequently used unstable cavities for the CuBr

laser (or CVL) is formed by a pair of confocal mirrors as shown in Fig. 3.5(b). The

convex mirror M2 and concave mirror tV[ form a telescope with a cavity magnification

given by the ratio of their focal lengths. Light making a round trip in this cavity

is expanded by this telescope so that its divergence is correspondingiy reduced by a

factor equal to its magnification. Por example, with a magnification of 10, the light

making a round trip inside the cavity will ¡educe its divergence by a factor of 10,

two round trip will improve the beam quality by 100 times and so on until the beam

quality approaches the diffraction limit. However, due to the short gain period of

CuBr laser which is less than 50 ns, there are only a few round trips during each laser

puÌse. It is then only during the latter half of the laser pulse that good beam quality is

obtained. Near diffraction limited divergence beam quality can only be obtained with

high magnification (Coutts D.W. et al, 1993). Moreover, because of the high gain of the

active medium, there is a strong presence of amplified spontaneous emission (ASE) in

the cavity during the entire laser pulse. This severely limits the achievable beam quality

because the cavity feedback includes this highly divergent ASE (Chang 1994). The

higher the magnification, the higher optical loss of the cavity, and therefore the lower

of the total power. In spite of the lower output power from the laser tube, the unstable

cavity offers a higher focusable power which is preferable for many applications.
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In this study, an unstable cavity with a magnification of 62.5 was used to

improve the beam quality for focusing most of the laser power into a small region,

about 700 ¡^tm in diameter, in the dye jet stream. The total power of the laser tube

was 10 W with this unstable cavity while a total power of 13 W was obtained with the

flat-flat cavity.

3.3.2 The active medium of the dye laser - a free flowing jet

stream

With a high power laser as the pump source, it is very easy to damage the window

of the dye cell cuvette. Furthermore the window also induces aberration losses when

placed at Brewster's angle and there are problems with the seal with the metai bocly.

In an attempt to overcome these problem Runge and Rosenberg (1972) proposed a

laser where the dye solution flows in a free jet stream through the resonator of the

laser. A windowless open free jet which is formed through a carefully designed polished

nozzle has been successfully used to produce high output power as well as very narrow

bandwidth dye lasers. It is more commonly used for cw and mode-locked dye lasers

than a dye cell cuvette.

For CuBr lasers (or CVL) both jet stream and the dye cell cuvette can be used,

however in addition to the advantages previous staied, a jet nozzle can also produce

very high velocity dye stream which replaces the dye solution in the active zone for

each successive pump pulse. This removes the heat produced by nonradiative processes

and the dye molecules in the triplet states generated in the active region. Berry et al

(1990) found that this is necessa¡y to achieve high conversion ellìciency operation of a

narrow band width dye laser.

Although employing a free flowing jet stream in a cuBr (or cVL) pumped

narrow band width dye laser system appears to have the above advantages, a thorough
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literature search revealed no reports of work on such a system, except for broad band

operation.onereasonmaybetherelativelypoorbeamqualityoftheCuBrlaser(or

cvl) with the fl.at-flat cavity which prevents the laser beam being focused onto a very

small spot on the jet stream. This reduces the conversion effrciency because it reduces

the power density of the pump laser in the jet. Furthermore, the large size of the

active zone may enable the oscillation of a second transverse mod'e' thus' increasing

the beam divergence and the band.width. However, this problem can be overcome

byemployinganunstablecavityintheCuBr(orCVL)laser.Abroadbanddye

laser system employing a jet tozzlepumped by a cuBr laser with unstable cavity has

achieved a conversion efficiency up to 63% (Petrov et al, 1992), the highest reported'

Preliminary experiments were perfbrmed on a dye cell cuvette and a jet stream

with both systems employing a prism as the buning element' The experimental arrange-

ments are shown in Fig. 3.6. The output coupler is a flat mirror with 45% transmission

and the end mirror is a high refl.ectivity concave mirror with a 245 mm radius' The

dye solution was a 3 x 10-3 À{// Rh-6G dissolved in ethylene glycol' Tb'e cuBr laser

was a flat-flat cavity configuration. The yellow line was removed by a dielectric mirror

because it is not absorbed by the dye and therefore does not contribute to the pumping'

In addition it can be amplified by the dye jet, reducing the gain for the dye laser' The

dye cell cuvette provid.ed a poor performance in output power, beam quality and ASE

background, while the jet stream system produced. a very good result' The flow rate of

the jet was about 1.21/min and the thickness of the jet was 0'35 mm which gives a flow

speed of 6m/sec. The energy conversion efficiency peaked at 36.1% when the pump

po\/er was 3.5 w. The power of the dye laser was up to 2.4 w wiih a vely good beam

qualit¡r and low ASE background with the maximum pump power of 7 w ' No attempt

was been made to optimize the parameters of the dye laser to increase the conversion

efficiency because this study lvas not concerned lvith broad band operation'

Due to the outstanding performance of the jet st,ream nozzle over dve cell
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cuvette in broad. band operation, our dye laser system was constructed with free-flowing

dye jei streams which were formed by fl.owing dyes in ethyiene glycol solutions through

nozzlesproduced by compressing stainless steel pipes against an internal spacer' wibh

very careful polishing of the nozzlea good quality jet stream was obtained' An unstable

cavity was then employed in the cuBr iaser to improve the beam quality for focusing'

AdyejetstreamcaneasilybeplacedattheBrewsterangletotheaxisofthe

resonator to produce polarized laser radiation' This also red'uces the optical loss by

refl.ection from the dye stream surfaces of the polarized pump beam which was focused

onto the jet stream at or close to the Brewster angle'

3.3.3 CavitY design

There are a number of cavity configurations for cuBr laser (or cvl) pumped dye

Iasers which are abie to produce narrow bandwidth laser operation with high conver-

sion efrciency. As the cuBr laser is only commercially available from Norseld and

is currently manufactured for medical applications, most of the following review were

given for CVL since their lasing characters are the same'

For broadband. laser operation, Huang and' Namba (1931) operated a longi-

tud,inaliy pumped jet stream system and obtained 31% conversion effi'ciency' In a

transversely pumped configuration, Broyer and Chevaleyre (1984) reached up to 40%

conversion efrciency. sun et ai (1gg6) obtained 40To conversion efiÊciency using a lon-

gitudinally pumped jet stream in a three mirror folded cavity' A 63% broadband

conversion efficiency was claimed by Petrov et al (1992) using bhe same configuration

as Huang and Namba (1981) with a better qualit--r jet stream.

For narrorv band.width dye laser operation with the Hänsch design, Bernhardt

ancl Rasmussen (1961) employed a four prism beam expander with an etalon to obtain

single longitudinal mode operation rvith a bandrvidth of 60 \II{z and a convelsion
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Table3.1:MeasuredPerformance(at5800Ä')ontheSixCavityW"wnin

Fig, 3.8 and Fig. 3.9 (After Duarte and Piper, 1932)

Parameters

Dye Laser System

Prism cavities Grazing-incidence cavities

A1 B1 C1 A2 B2 C2

öt 89.3 89.3 84.4 87

ó, 84.4

0 89.5 89.5 85

^r(Å)
0.016 0.016 0.017 0.009 0.01 0.01

Po(kw) 15 1.5 t 1i.5 1.6 5.6

Energy etr (To) 23 2.2 10 16 2.3 8

ASE (%) 0.09 < 0.01 < 0.01 0.1 0.01 < 0.01

efficiency of 5%. V/ith a Hänsch type oscillator combined with an amplifier, Lavi et

al (1985) were able to obtain up to 45Yo total conversion efficiency with a bandwidth

of 2 GHz. By using a double-prism beam expander and an intracavity etalon Yoichiro

Maruyama et al (1991) obtained frequency stabilized single-mode operation with a

bandwidth of 60 MHz and a frequency drift for long term operation of within 30 VIHz.

The grazing-incidence configuration provides a more flexible arrangement for

practical applications. Broyer and Chevaleyre (1984) reported a 20To conversion effi-

ciency with a bandwidth of 3 GHz by a Liitman design cavity as shown in Fig. 3.7(a).

Second harmonic generation (SHG) of the dye laser output covered a UV range between

260 nm to 408 nm at a conversion efüciency of I \Yo.

Duarte and Piper ( 1982) evaluated a number of prism-expander and grazing

incidence grating cavities pumped by a low repetition rate (1 Hz) CuBr laser. Ex-

perimental results are reproduced in Table 3.1 for diferent cavities shown in Fig. 3.8
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and Fig. 3.9 which displays a better overall performance for the Littman designs than

the Hänsch designs. Linewidths of - 0.01 Å at an energy conversion efficiency up

to I0% were obtained for a prism pre-expanded grazing-incidence grating cavity with

good beam quality and low background superluminescence (< 0.01%). Thus, grazing

incidence configuration was employed in this study because of its advantage over the

Hänsch configuration in performance, alignment and cost.

It was found that insertion of a lens in the cavity of a grazing-incidence pulsed

dye laser will increase its performance with higher output power and narrower spectral

width (Lisboa et al, 1983 and Yodh et al, 1984). The reason is as follows. In the grazing-

incidence configuration, there is a severe limitation which concerns the overall efficiency

with which the light, at a given wavelength, can be fed back to the amplifying medium.

While the selection of a holographic grating having a high number of lines/mm can

eliminate the additional loss of light into other unwanted diffraction orders, conversion

efficiency is limited by diffraction losses which reduce the overall feedback efficiency. If

the laser beam emerging from the dye cell has a beam waist of rus, which is normally

very small, it will increase in diameter quickiy as it t¡avels a\ryay from the cell because

of diffraction. The beam diameter will be w(21) when it returns to the cell after the

reflections from ihe tuning mirror and the grating, where / measures the mean distance

between the cell and the mirror. Therefore only (wsf w(21))'of the beam is fed back

to the active medium. This factor is normally about 0.1 or less. The insertion of a

carefully chosen lens in the cavity increases this factor to nearly unity. Furthermore a

more collimated beam incident to the grating also reduces the linewidth.

In a modified version of this design, Lago et al (1989) reported a further de-

velopment of this coilimated grazing incidence cavity by introducing a stable folded

cavity. The divergent beam emerging fïom the dye cell was collimated by the folcling

mirror M2 as shown in Fig. 3.i(b). The highly reflective mirror iV12 resulted in lower

optical losses than the insertion of an intracavity lens. The linewidth was found to
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be adjusted by changing the incid'ence angle in the cliffraction grating and could be

reduced d.own to 610 MHz. Conversion efficiency of about 10% was obtained for a

linewidth of 1 GHz. This configuration has the advantages of increasing the output

power, narrowing the bandwidth and ease of alignment'

In view of all the consid,erations discussed above, we adopted the grazing inci-

dence folded cavity configuration used. by Lago et al (1989) but using a dye jet stream

with a thickness of about 0.5 mm rather than a dye cell cuvette'

g.3.4 ExPerimental Performance

The experimental set up for the grazing incidence oscillator and jet amplifier is shorvn

in Fig. 3.10. In bhe oscillator, the divergent beam emerging from the dye jet stream'

longitudinally pumped in a foided cavity, was collimated by the folding mirror (Ù12) and

directed. to the diffraction grating, which increases the feedback effi'ciency and therefore

the conversion efficiency. The holographic diffraction grabing used was a Jobin Yvon'

2400 lines/mm with dimensions of 58x I7 mm2. The tuning mirror (Mt) ftd back the

first difiracted order into the laser. Precise wavelength scanning was obtained with a

DC motor driven rotational stage (Oriel standard rotator with D.C. Encoder ÙIikerM

Drive, model 13118) which was modified with an extended cantilevel arm to reduce

the rotational speed. by 5.3 times for the tuning mirror' The readout resolution of the

Encoder Nlike Drive is 0.1 microns which corresponds to an angular resolution of 31

p,rad, or 0.06 arc sec, or a change of 10-3Å (70MHz) in wavelength (frequency)' A

spherical mirror (ù1r) .lor"d the cavity on the other side of the dye jet' The output

coupling was through the zeroth order of the diffraction grabing. The output from the

,]ye laser oscillator was then focused into another dye jet stream which was used as

an amplifier. It was found necessary to use a pressllre buffer and soft latex tubing to

renl.ove pressure pulses in the dye circulation produced b,v the dy'e gear ptlmP to obtain

a ûarrow bandlvidth lasel svstem'
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ThepumpinglaserwasaCuBrlaser,asdescribed.before,operatingat16kHz

with a pulse width of 30 ns. It was found in this study that wiih a fla't-flat cavity' the

focused spot in the jet stream may move around in a very small region corresponding

to ihe some unstable discharge in ihe cuBr laser tube which affects the intensity

distribution of the laser beam. This affected the stability of the clye laser through

movement of the pump iaser beam on the dye jet preventing narlo'ff band width lasing

operation. It is therefore necessary to employ an unstable cavity in the CuBr laser

to improve the beam quality and stability. with a magnification M:62'5 (concave

mirror R:2540 mm, convex mirror R:-40.64 mm), output po\Mer of the CuBr laser

was about 10 \ /. with a focusing mirror ù10 (R:129.20 mm), the cuBr laser beam

could. be focusecl into a spot which rvas suffi.ciently small to vaporize the dye solution

and it had bo be slightly defocused. A prism was used' to separate the green and yellorv

lines when Rh-6G or DCIVI dye was used. The linewidth lvas measured by a solid etalon

with a free spectral range (FSR) of 10 GHz and a fi.nesse greater than 25 (Nlelles Griot'

product No. 03ET4013)'

Agreatdealofexperimentationonjetdesignandconstructionwascarriedout

including knife edge jets. The qualitir of the jei stream was investigated by observing

the fl,owing pattern using a He-Ne laser and was found to be equal to those reported

in the literature;,

Due to the imperfections in the jet rozzle and the inherent instability of rapidiy

fl.owing fl,uids, the d.ye stream became unstable for high flow rates affecting the fre-

quency stability and the band width. A variable speed micropump \¡¡as then employed

lo enable variation of the flow rate. It was found that, in narrow bandwidth operation'

some instabiiity of the jet stream was still apparent even if the flow rate was kept very

low an¿ the grazing angle had to be increased to reduce the bandwidth and tiequency

jitter an¿ consequenbly limit the po\\,er from ihe osciilalor'. To improve the ciye laser

perfbrmance, a master oscillator-power amplifier configuration 'vvas emplo¡"ed. A beam
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splitter which is a high reflection mirror with a 4 mm hole in the center allows the cen-

ter of the CuBr laser beam to be transmitted (about 113 of. the total power) and pump

the osciÌlator. The rest of the beam is directed to pump the amplifier with a delay of 3

ns after the input from the oscillator. This delay is approximateiy the duration of one

oscillator round trip.

A dye laser oscillator cannot be efficient if the requirements for bandwidth and

beam quality are to be met. In our dye laser system, the osciilator was kept just above

the lasing threshold so that it had a good performance in bandwidth and beam quality.

The power amplifier was then used to increase the conversion efficiency of the system.

With a 1.5 x 10-3 M/liter Rhodamine 6G solution in ethylene glycol for the osciliator

and amplifier, the output power from the osciilator is about 20 mW with a bandwidth

of 2-3 GHz when the pumped power is 1.2 W. The pulsed width of the dye laser was

found to be about 10 ns. A gain of 11 is obtained in the amplifier with a pumped power

of 3 W, resulting a total output power of 230 mlV and a overall conversion efficiency

of more than 5%.

A bandwidth of about 1 GHz was also achieved with 3 x 10-3 Nl/liter DCM in

2:1 ethylene glycol and propylene carbonate solution. The total power of the dye laser

is about 100 mW. Fig. 3.11 shows a Fabry-Perot scan for such operation.

3.4 Second l{armonic Generation and Wave-

length Calibration

The ultraviolet radiation was produced by frequency doubling the output of the dye

laser using a BBO nonlinear crystal, while the wavelength calibration was made using

the fundamental wavelength with an 12 cell.



I
Fabry-Perot etalorì scarì

r00 200 300 400 s00 m0 ?00 800 900 1000
Motor Position Ix0. ] nricLonl

Figure 3.11: A Fabry-Perot etalon scan for the CuBl pumped dye laser with DCM.

The free spectral range of the etalon is 10 GIlz, inclicating a I GHz bandwidtli of the

dye laser.

6

4

2

ô'a
a
h
E
-o
þ

eì
U'
cl
c)
c!

0

O)
(.o



70

3.4.L Second harmonic generation

With the advent of the intense and coherent light made available by the laser, the

optical properties of a medium, such as its refractive index, become a function of the

light intensity. When two or more intense coherent light waves interfere within the

medium, the principle of linear superposition no longer holds. As a result, nonlinear

optical phenomena can occur. Among them, second harmonic generation or frequency

doubling was the first nonlinear optical phenomena observed (Bloembergen 1965).

The conversion efficiency for frequency doubling is usually quite low, therefore

the intensity of the fundamental wave can be regarded as constant in the nonlinear

medium. Under such an approximation, the intensity of the second harmonic is given

by (Appendix D)

6 :9{4 - 2I{2 L2c¡"rollsinc2çL^kL) (3.14)2',

where I in Wf m2 and E in (V/m), sinc(r) : Y,and L is the total length of the

nonlinear medium, A'k : k(2u) - k(r) represents the phase matching condition. A

more detailed description of the basic theory and the phase matching technology of

second harmonic generation is given in Appendix D.

The beta barium borate (BBO) crystal is a new nonlinear optical material

discovered recently (Chen et al. 1984, 1985). It is characterized by a wide range of

transparency from the UV to the infrared. Its large birefringence allows phase matching

for second harmonic generation in a large frequency region (i89-12b0 nm) with a large

nonlinear coefficient (5.8 x ú6(I{ DP)). These properties indicate that the BBO crystal

is potentially useful for many applications, especially in the UV region. The optical,

mechanical and thermal properties of the BBO crystal are summarized in Appendix

D.

The BBO crystal used in this study is cut for type I phase matched, frequency

doubling for 580-700 nm, protectively coated with a dimension of 6 x 4 x T mm.3 ftom
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CASTECH. The laser beam is weakly focused. into the crystal to prevent the divergence

of the uV beam because a suitable quartz lens was not available for collimation after

the crystal and the uV power was not a major requirement in this study' The phase

matching angle was initiaily adjusted manually to optimise the uv output' During a

scan, the personal computer controlling the scan calculated' a correction to the angle

and drove the BBo crystal mounting with a DC motor (oriel D'C' Encoder Mike"M

Drive) which had an encoder resolution of 0'1 microns'

FromAppendixD,thepeakconversionefñciencyofiheBBocrystalis

\.r r : 6.78 Lz I2slr"'çf,urt') (g'ls)

where L (cm) is the length of the BBO crystal and \ (wlcm2) is the intensitv of

the fundamental wavelength. For our system, L:0.7 cm and assuming perfect phase

matching, ie Ak = 0, the conversion efûciency is

rl,fJ:3'32x10-811' (3.16)

For a 200 mW average output from the dye laser pulsed at 16 kHz repetition

rate and. 10 ns pulse width, the peak Power for each pulse is 1p 5 kw' If it is focused

into ao.rmm diameter spot in the BBO crystal, the intensity is 1'6 tYIlVlcm2 which

indicates a 3.75% conversion efrciency and a UV output of ?'5 mW' Unfortunately'

the power meter used was not sensitive enough to measute this uv power' but the uv

could be easily detected. by the visible fluorescent spot it produced on a sheet of paper'

g.4.2 Calibration of the wavelength

The application of tunable lasers in optical spectroscopy requires an absolute measure-

ment of the wavelength to an accuracy approaching the linewidth of the laser' since

in most case the ad.justment parameters of the laser do not provide a sufrciently accu-

rate estimation of the wavelength, various techniques have been developed to measure
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the wavelength, for example, the use of an absorption cell with a known absorption

spectrum or a Fizeau wavemeter (Snyder 1977; Gardner 1985).

It is well known that the iodine absorption spectrum in the visible region pro-

vides a simple means of calibration. Therefore it received an extensive study during

the 1960s to 1970s (Gerstenkorn et al 1977). As a resuit, a wide range and precise

knowledge of the of the visible iodine molecular spectrum of the whole B3II&,-X1DÍ

electronic transition was obtained and the atlas of the absorption spectrum was given

by Gerstenkorn and Luc (1978) from 14800 - 20000 cm-r or 5000 - 6757 Ä,. The atlas

contains 46, 700 lines of which 22,850 were identified.

A 48 cm long 12 cell was used in this study for wavelength calibration. Fig. 3.12

shows part of the 12 absorption spectrum measured in this study and is compared

with the absorption spectrum in the atlas. This study reproduced the Iz absorption

spectrum in excellent agreement with the atlas at a slightly lower resolution. Some

of the very close lines were not resolved in some spectral regions due to the lorver

resolution of our laser system. However, since lhe 12 spectrum is so dense, there are

always suficient resolved lines within the required wavelength range. In fact, only some

of the resolved lines were used in the interpolation program for wavelength calculation,

the rest were used as a test for the errors. Fìg. 3.13(a) shows the relationship between

the motor positions and the calibrated wavenumbers calculated by interpolation. The

corresponding errors are shown in Fig. 3.13(b) which indicates an error of less than

0.05 cm-L in the calibration. Thus the er¡or in the UV radiation will be less than 0.1

-1cn'¿ ' .
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Chapter 4

Photodissociation of NaI

4.L Introduction

The alkali haiide molecules have been the subject of numerous experimental and the-

oretical investigation for nearlS, 70 years. Much of the interest derives from the fact

that the two lowest adiabatic potential culves display an avoided crossing with an inter-

change of ionic and covalent character. The optical spectra of the alkali halide molecules

have a continuous structure with very few absorption maxima' NaI is unique in that

the vapour is known to have, in addition, a banded absorption spectrum superimposed

on the continuous background. This makes NaI the most interesting of the alkali halide

molecules for stud.ying the process of charge transfer transition from the ionic ground

state to the first electronically excited state which then dissociates into neutral atoms'

Although interest in NaI dates back to 1929 when Sommermeyer observed a

long series of unresolved bands in its absorption spectrum, there is still much to be

learnt about the exciied electronic state and the dissociation spectra. The analysis of

the photoabsorption band fragments rvas prevented by the high density of lines and the

fragmented nature of the bands due to broadening by predissociation. Attempts have

been made in more recent times to obtain the potential cur'--e-sibr the excì¿ed states'

tc
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Davidovits and Brodhead (1967), van Veen et al (1981) have constructed the poten-

tial curves for the lowest excited potential curves in the Frank-Condon region, which

corresponds to vertical transitions from the lower vibrational levels, with broadband

spectroscopic data.

A section of the rotational bandfragments were assigned for the first time by

Schaefer et al (1982, 1984) using a high resolution laser spectroscopic study of the

UV excitation spectrum. They examined the energy region above the first potential

crossing of the ionic ground state and ihe covalent state 0 : 0+ (26900 - 33125 ,rn-t)
and produced an analysis of the fragmentary spectrum of NaI. Potential curves f'or the

diabatic ground state and the adiabatic excited state were constructed based on the

assignment of the bandfragments.

Higher excited states of NaI were studied by quenching the Na D line fluo-

rescence by different gases (Hanson 1955 and Earl et aI 1972), broad-band structured

fluorescence from NaI (Bower et al. i988) and excitation spectra (Bluhm et al 1990).

Sakai et al (1992) performed a multireference singly and doubly excited con-

figuration interaction study of the ground (tt*) and first excitecl (0+ or 1X+) states

on the NaI molecule. As will be shown later in Fig. 5.13, their excited state potential

curve has a shallow shape above the equilibrium internuclear distance of the ground

state.

This chapter will be confined to the study of the ground state and the lowest

lying excited states of NaI. Some of the basic knowledge about the molecular states

of NaI is introduced. In the last section, an opbimization program was employed and

an attempt was made to fit analytical potential curves to the experimental data given

by Schaefer et al (1984). The optimization program was also applied to the Dunham

parameters so that the sharp lines occur more closely to the coincidence of the diabatic

and adiabatic hypothetical bound state levels than the parameters given by Schaefer

et al (1984).
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4.2 The electronic states of It{aI

A molecule is formed by the binding of two or more atoms in such a \4/ay that the total

energy is lower than the sum of the energies of the isolated constituents. The bonds are

normally of ionic or covalent nature. Particularly weak bonds occur in van der Waals

molecules. The electronic states of a molecule are, under the Born-Oppenheimer ap-

proximation, eigenstates of the electronic Elarmitonian. The corresponding eigenvalues

are the electronic potential energy surfaces.

The atomic nuclei in a molecule are bound together by the electrons' Differ-

ent electronic states of a molecule are specified by different kinds of quantum number

according to the coupling of the electronic spins, the electronic orbital anguiar momen-

tum and the nuclear angular momentum. There are four types of coupling classified

as Hund's case (a), (b), (.) and (d) (Herzberg 1950, Chapter õ)'

It is believed that the ground state of NaI is described by Hund's case (a) while

the excited states are best described by Hund's case (c) (Berry 1979).

4.2.L The ground state

The ground state of NaI is an ionic state. The positive ion lVø+ and the negative ion

.I- have the closed-shell electron configurations

l{ø+ 2s22p6

5s25p6

and have 15 ground states. According to Hund's case (a) it forms a 1X+ molecular

state which is also denoted as the X lft state for NaI.

r
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4.2.2 The lower-lying excited states

The low-lying excited states are covalent states. Hence an optical transition between

the ground state and the excited states can be considered as a charge transfer process

(Zarc and Herschbach 1965). The outer shell electron configurations of atomic l/ø and

/ are of the form

Na : 3s1

I : 5s25ps

which lead to the atomic states of Na ('St/r), and I ('Prp) and, (2ps¡2). The lowest

covalent state of interest in this study is formed from the atomic ground states of

Na(2,S172)*I('Ptp). According to the Hund's case (c), the possible molecular states

are

1CI 0+ ,

The fì : 0* state, usually noted as A 0+ state, is the most inte¡esting state, because it

has the same symmetry as the ground state XlÐ+ and the two potential curves undergo

an avoided crossing by the Born-Oppenheimer approximation under the non-crossing

rule and give rise to a bound potential.

4.2.3 Selection rules

Transition probability between two electronic states is determined by the elect¡onic

dipole transition moment:

R^n:1 ó^l"rló">. (4.1)

Calculations of the non-zero transition matrix elements .R-,, provide the selection ¡ules

for the transition (Herzberg 1950, Chapter 5). For the present study the general

selection rules are:
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(i) For total angular momentum J

LJ : 0, +1 etcePt J :0 --) J:0

Additional selection rules holding for Hund's case (c), where only J and f) are

well defined quantum numbers, are

(ii) For the total electronic angular momentum f)

ACI : 0' +1.

Furthermore, if 0 : 0 for both elect¡onic states, then

(iii) Transitions from 0+ to 0- state are forbidden, so that

Q- <----+ 0- 0+ i-> 0+ 0+ <-** 0-;

(iv) and the following restriction holds

AJ 0 is forbidden for O :0 -' fl : 0

Following these selection rules, one finds that the possible electronic transitions

from the ground state of NaI are

(a) to the excited states of fl : 0+ and 1; and

(b) A/ : t1 for t¡ansitions to the fl : 0* state, which corresponding to the

P and the R branches

P(J)

R(J)

uo l F'(J - 1) - F" (J)

uotF'(/+1) -F"(J)

(4.2)

(4.3)

while the Q branch

QQ) uo -r F'(J) - F" (,J\ (+.1)
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is forbidden by selection rule (iv)

(c) AJ- 0 tl fortransitions totheO: l statewhichconsists of all the

three: P, Q and R branches.

4.3 The ground state potential curve

The ground state of NaI is an ionic state and is designated as X1X+. In this section

the spectroscopic parameters obtained from the microwave spectrum are summarized

in $4.3.1 and the theoretical modeling for analytical expressions for the potential curves

are introduced in $4.3.2.

4.3.L Rotational microwave spectroscopy

The first complete survey of the alkali halides by microwave absorption spectroscopy

was carried out by Honig et al (1954). High resolution microwave absorption spectra

were measured and analyzed by Rusk and Gordy (1962) which provides the most

accurate spectral parameters for NaI for the ground state. The ground state potential

curve was then obtained by fitting the molecular constants to the Dunham potential

function (Dunham, 1932).

The Dunham potential function is one of the most accurate ancl often used

procedures for representing potential curves near the equilibrium position ru and is

expressed as a series expansion in { : (r - r")f r"

v(r) - as{(1 rør€* az(z*...)+ B"J(J +t)(1 -z€+3€, -+('+ ...), (4.5)

where B' is the rotational constant at r", J the rotational quantum number and d¿ ãî.-

the potential constants which are related to the molecular constants. The rovibrational
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Table 4.1: lVlolecular constants for the XlX+ state from microwave spectroscopy (after

Rusk and GordY 1962)

as (105 cnn-r) r.+2 Ys1 (NIHz) 353r.7232

A1 -3.02 Yoz: -D" (kEz) -2.9183

A2 5.9 Yo = u" (cm-I) 259.20

0,3 -8 Yt = -a" (NIHz) -19.42

r"Å 2.71t+3 Yz = -8" (kEz) 0.0014

B" (NIHz) 3531.7187 Yzo = -Q"X" G*-') -0.96

Yzt = 7" (kHz) 43

energy levels for such a potential curve can be expressed in the Dunham selles

(4.6)

N¡J

where u is the vibrational quantum number and I{,, are the Dunham parameters'

Experimental data can be fitted to obtained the Dunham parameters and the molecular

constants can be obtained by using the relationship (Dunham, 1932)

Yot = B" + O(B! la!) , Yoz - -D",

Ylt: -cr", YfZ = -þ"',

Yzt:'Y",

Yto = u",

Yzo = -ueXe,
(4.7)

and

(4.8)

Table 4.1 summarized the derived Dunham parameters from the spectroscoplc

data for the ground state of NaI (Rusk and Gordy 1962, Dyke 1979) from microwave

spectroscopY.

/ h \1/z.- - I-l'"- \+oB"¡t)
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4.3.2 Theoretical modeling of the potential curve

The most frequently used theoretical model for the potential curve of the ionic ground

state is the Rittner (1951) model. In this model the energy binding the ions together

arises from the Coulomb attraction (1/r term), the London approximation for the van

der Waals attraction (7f 16 term), ion-induced dipoleinteraction (1/ra and 1f rr term)

and a short distance repulsion (the exponential term), which produced an expression

for the potential curve:

v(r) : Aerp(-rt,) - 3 t Eo - *f: + %#- +) (4 e)

where aa and a- are the free ion polarizabilities of Nø+ and .I- respectively. Disso-

ciation energy ,Ðs together with the equìlibrium distance re are used to determine A

and p.

Brumer and Karplus (1973) performed a quantum mechanical exchange per-

turbation theory to analyze the interactions in alkali halide diatomic molecules. They

found that the lfrr terrn in the original Rittner model arises from higher order ex-

change independent terms in the perturbation expansion and should be excluded in

the second order energy model which was employed by Rittner. They introduced the

so called T-Rittner model by dropping the 1.f rr term

v(r) - Aeæp(-rt ò - fr t Eo - *(i * u 
-j,r" ) (4 10)

where o* are the effective polizabiiities which will approach aa at large internuclear

distance.

In an attempt to avoid the undesired behavior that the Rittner potential curves

become negative at small internuclear distance, Faist and Levine (1976) added a re-

pulsive term (Bf r)8 to the exponential portion

v(r):(,*(i)') exp(-rtn-tr*E,-*(i -#-+) (4 11)
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The same term was ad,ded in the T-Ritter model and used in this study as seen rn

Eq. (4.23).

There are also some other attempts to model the ground state potential curves

of alkali halide diatomic molecules which were discussed in the review of Jordan (1979)'

4.4 Photodissociation of NaI

The lower Iying excited states of NaI are designated by the quantum numbers f) :

0t, 1, 2. They are all covalent in nature. The optical accessible excited states from

the ground state are only O : 0* and 1 states. Since the 0+ state has the same

s¡rmmetr,rr as the ionic ground state 1Ð+, an avoided crossing exists in the adiabatic

potential curves and coupiing is present which leads to photodissociation of NaI'

4.4.L The excited states - broadband structure

The study of absorption spectrum rvas first recorded by sommermeyer (1929) ancl Levi

(Beutler and Levi 1931, Levi 1934). The later measurements of the total absorption

cross section by Davidovits and Brodhead (1967) meant that their excited state po-

tential curve represents the combine effects of the 0 : 0+ and 1 states rather than the

separate potential curves.

By using the technique of photofragment spectroscopy' which measures the

anguiar and velocity distributions of photofragments, van Veen et al (1981), Anderson

er al (1gTT, lggl), Telle and Tambini (1939) were able to distinguish the contributions

from the 0+ state and the 1 state. For diatomic molecules. the transition dipole moment

is parallel to the internuclear axis rvith the Å0 - 0 transitions and perpendicuiar with

lhe À0 = i1 t¡ansitions. Therefore transitions to the 0+ state are parailel transitions

ancl the dissociation fraqments lrom this state recoiÌ at a rlirection parallel to the
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polarization of the dissociating light while those from the 1 state are perpendicular.

The ratio of parallel to perpendicular transitions can be obtained by measuring the

angular distributions of the Na photofragments resulting from photodissociation of a

molecular beam of NaI.

Van Veen et al (1981) measured this ratio with a broadband laser source with

waveiength tunable through the range 300-337 nm. By assuming that the electronic

transition probabilities to the 0+ and 1 states are equal and that the potential curves

have the form

V(r): Aexp(-b(r - r")) (4.r2)

in the Franck-Condon region. The parameters were found to have the values of A:3.88

ev, b:8.557 Ä-1 for the 0+ state and A:3.63 ev, b:10.03 Å-1 for the 1 state. re :2.7

.Ä. ir th" equilibrium internuclear distance of the ground state. The resulting potential

curves are shown in Fig. 4.1.

Dissociation energy

The experimental result of van Veen et al also gives a dissociation energy of 3.18 ev

for the covalent states of NaI.

The dissociation limit of the ionic ground state (lVø+(t,go)+ /-(1^go)) differs in

energy from the covalent state (/fa('Srlr) + I(2h/2Ð by an amount

Q=1.P.(Na)-8.A.(I) (4.13)

where /.P. is the ionization potential of IÍ¿ and E.A. is the eiect¡on afinity of .t which

are 5.139 ev and 3.061 ev respectively (Berry lg7g). Therefore, Q:2.07g ev and the

dissociation energy of the ionic ground state is 5.258 ev based on the observation of

van Veen et al.
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Figure 4.1: Potential curves for NaI from van Veen et al (1981)
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The crossing point

The crossing point of the ionic and the covalent states can be obtained from the simple

relationship
,

e

a
(4.14)

which is based on the assumption that the potential curves can be approximated by

the Coulomb curve for the ionic state and a horizontal line for the covalent state if the

crossing point is at a large internuclear distance.

The electronic coupling

Since the 0+ covalent state has the same symmetryas the 1X+ ionic ground state, there

exists electronic coupiing between the two diabatic states ancl the adiabatic potential

curves exhibit an avoided crossing. The values of electronic coupling matrix element

at the crossing point have been evaluated by Grice and Herschbach (1974) for diatomic

alkali halide molecules and is 0.055 ev for NaI. This is in reasonable agreement with the

experimental result of Na*I collision (0.065 ev) (Deivigne and Los, 1g73), and the later

experiments of UV-laser excitation spectroscopic study on NaI (0.054 ev) (Schaefer et

al, 1984) and the femto-second transition-state spectroscopy (0.0a6 ev) (Rose et al,

1989). This coupling strength represents a strong coupling case in the predissociation

of NaI and produces a strong bound character for the f,) :0+ state.

The shape of the coupling function is not known. However, as mentioned in

$2.2, the electronic coupling matrix element only has a significant contribution to the

adiabatic potential curves near the crossing point. Therefore it is usual to assume that

the coupling matrix element is independent of internuclear distance ancl has a value

equal to the coupling strength at the crossing point. Although this assumption is very

useful in a practical treatment of curve crossing systems, it causes theoretical problem

ab large internuclear distance when atoms of the molecular s¡rstem are moving iieel¡,
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in space at constant speed (Torop et al 1987). By considering the fact that as the

two nuclei move apart, the coupling between the two diabatic electronic states should

approach zero, Faist and Levine (1976) assumed that the coupling strength decreases

exponentially as internuclear distance increases:

Vt (r): Aenp(-rlù, (4.15)

whiie Engel and Metiu (1939 ) assumed a Gaussian shape coupling centered at the

crossing point r'

Vr(r) : Anexpl- !J(, - r")'l (4.16)

with the ' coupling strength A12 at the crossing point'

4.4.2 The discrete band fragment structure

NaI is the only alkali halide which exhibits a dense line structure in the absorption

spectrum. The discrete structure was observed during the early 1930's (Beutler and

Levi 1g31 and Levi 1gg4) and. its origin was not explained until 1957 when Berry

presented a classical picture giving the physics of the bound character of the potential

curves in NaI. Analysis of the spectrum was prevented by the high density of rotational

iines which are present because of the high temperature required to vaporise the NaI

(> 650 0C). The high temperature causes several vibrational levels and a large nurnber

of rotational levels of the ground electronic state to be populated and so enable Franck-

Condon transitions over a large energy range. High resolution absorption spectrum of

NaI was described as a d.ense and complex spectrum that contain some very sha'rp lines,

many overlapping lines and diffuse lines, which are caused by predissociation (Berry

1e7e).

Berg ancl Skewes (1969) reported the first rotationally resolved structure of Nai

but were not able to carry out an analysis or line assignment. They claimed, horvever.

that a spacing of rotational groups of 36 crn-l to be associated ',vith the t'ibrational
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spacing of the upper state, suggesting that the excited potential curve is broad and

shallow. Furthermore they claimed such spacings appeared throughout the region from

2945 to 5400 Å. Since at temperatures of 1000'C there are only about five vibrationai

levels of the ground state populated, the extent oi the spectrum, implies that the upper

state has a potential well much deeper than a van der Waals well (Berry,Ig79).

In order to reduce the population in high rotational levels, Ragone et ai (1982)

reported a UV laser spectroscopic investigation on the fluorescence excitation and emis-

sion spectra from cold NaI vapor seeded in a supersonic beam with He. With the

assumption that the absorbing beam is rotationally cool and therefore only a few low

J states are populated, Ragone et al assigned several bands of the excitation spec-

trum and made a vibrational analysis in the Franck-Condon region accessible from the

ground and the first excited vibrational levels of the XlÐ+ state. However, because

NaI is a case of intermediate coupling between states associated with adiabatic and

diabatic potentials, some high J rotaiional lines are much stronger than the others and

live long enough to fluoresce. Therefore these high J rotational lines could aiso appear

in their observation and some lines were reassigned later (Schaefer et al 1983, Berry

and Levy 1983).

In a UV laser spectroscopic study of NaI by Schaefer et al (1982, 1984), frag-

mentary rotational fine structure was observed in the excitation spectrum and assigned

for the first time to the electronic transition 0t <-1 !+ based on Child's semiciassical

theory (Child 1976). The excitation spectrum was measured by detecting the fluo-

rescence from the excited states with a large slit width in the monochromator while

scanning the excitation wavelength. The dense and complex absorption spectrum was

greatly simplified by the fact that ihe fluorescent intensity clepends on whether the NaI

molecules live long enough in the excited state to fluoresce. If the preclissociation rate

is too fast the moÌecuie will dissociate quickly after being excited and no fluorescence

will be detected. Only lines with a line width due to predissociation less than 300 MHz
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were observed. Most of the absorption lines have predissociation widths broader than

300 MHz and escaped their observation. A central sharp line is observed in every frag-

mentary rotational band structure with ihe neighboring lines symmetricaily broadened

and decreasing in intensity.

For ali the fragmentary rotational structure observed, only P and R branches

and no Q branches were found, as expected for Hund's case (c) coupling.

Information on the ground state (X1X+) vibrational levels was obtained at

a much higher energy region than the microwave experiment can reach (Schaefer et

al, 1984). Excitation spectra of the same excited levels from different ground state

vibrational levels yield very precise experimental data for u" : 0 - 4. Fluorescence

progressions extending up to u" : 78 were observed b;r fixing the excitation rvavelength

and scanning the fl.uorescence spectra with a narrow slit width in the monochromator,

with an accuracy of 4 - 7 cm-r.

Since these sharp lines occur in the accidental coincidence of the hypothetic

levels of the adiabatic and the modified diabatic bound states, as detailed in Chapter

2, their positions can be used to identify the corresponding vibrational and rotational

energies (Er(E,./) and E+(8,/)) of the hypothetic levels. Schaefer et al (1984) then

fitted these energy levels to the Dunham series with a non-linear least-squares program

for the diabatic ground state (I/2) and the adiabatic excited state I with the coupling

parameter according to Eq. (2.42). The best fit with a minimum standard deviation

provides the final vibrational assignments, the Dunham parameters and a coupling

strength of 0.054 ev (Schaefer et al 1984). Fig. 4.2 shows the term energies of the

28 band fragments observed and corresponding assignments. The resulting Dunham

parameters, as listed in Table 4.2, were used to predìct the remaining (lower) energy

levels and the corresponding potential curves, as shown in Fig. 4.3, were constructed

with the RKR method based on these levels.

Because the spectroscopic parameters of the lower vibrational levels for the
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upper adiabatic state were obtained by the extrapolation of the Dunham parameters

obtained with a few rotational band fragments in a much higher energy region' the

location of the corresponding potential curve would be affected by the acculacy of the

extrapolation.

As described, in chap ter 2, the separation between the two adiabaiic potential

curves at the internuclear distance where the diabatic potential curves cross is twice

the coupling strength. Therefore, the separation of the adiabatic and diabatic potential

curves given by schaefer et al (1984) at the crossing point should be the same as the

coupling strength, 0.054 ev. However as noted by wang et al (1990), the separation of

their potential curve at the crossing point in'dicates a coupling strength of about 0'2 ev

(1600 crn-|) as seen in Fig. 4.3. This is not consistent with ihe 0'054 ev coupiing

strength from which the Dunham parameters for the potential curves was derived'

Moreover schaefer et al (lgg4) did. not use rhe fu[ version of child's semiclassicai

theory (child and Lefebvre 1978, child 1991(a)), and regarded the hypothetic states

as the d,iabatic and adiabatic bound states. As noted in $2'3. the hypothetic diabatic

levels used in Child.,s semiclassical theory correspond to a modified diabatic potential

CUIVC:

[ ,- î <,,)Í/ ¿v-

I rr- (, > ,"")

where the levei positions d.iffer from the eigenvalues of the diabatic (%) pote"tial curves

by about one vibrational spacing for NaI. Regarding them as the same will introduce

errors in fitting the Dunham parameters to the finai vibrational assignments'

4.4.3 optimization of the potential curves and Dunham pa-

rameters

An optir'ization procedure can be use to minimize the difference betrveen expe.rimen-

tal rlata anj the calculated quantities using thc'oretical moclels. Althouqh ',here are
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Table 4.2: Dunham parameters for the states of NaI

x0+

diabatic state

A0+

adiabatic state

Schaefer et al This work Schaefer et al This work

T"

Yto

Yzo

Yso(x10-3)

Y¿o(x10-6)

Yro(x10-8)

%o(x 10-ro)

Yto( x 10-13)

Yao( x 10-16)

%o(x 10-re)

Yot

Y¡(x10-4)

Yzr(x10-6)

Yr'(xiO-e)

Ynt(xl0-11)

%r (x 10-14)

%r (x 10-'7)

%z(x 10-8)

Yz(x10-11)

Yzz(x10-13)

6

0.0

259.056819

-0.9127106

1.39339

5.8808

-5.4912

2.1641

-4.8365

5.8534

-2.9748

0.1 178056

-6.4770

1.430

-3.18299

2.15891

-7.3021

7.9978

T1.25

-9.73

5.0

5.30942

0.0

258.458388

-0.907696

1.38383

5.8463

-5.45937

2.1490

-4.7960

5.8032

-2.95475

0.1 1738486

-6.4404

r.422

-3.17309

2.14567

-7.2499

7.9403

-10.587

5.0

5.70596

0.087

25556.r25

27.27876

0.1468826

-0.88577

1.92053

-0.157943

0.04817098

-r.532322

0.14739

0.015

-9.4062

29.829

25556.725

27.20254

0.1484409

-0.897378

1.958117

-0.762444

0.04817097

-1.532321.

0.r4744

-9.7204

31.7374

0.004
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Potential curves of NaI
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possible errors in the potential curves and the corresponding vibrational assignments,

as discussed above, the spectroscopìc data presented by Schaefer et al (1984) in the

experimental energy range is still the most accurate one so far and will be used as the

basis for analyzing the absorption spectrum in the next Chapter. Thus there is a leed

to extract more information from their spectroscopic analysis.

It was found that the diabatic and adiabatic ievels calculated by the Dun-

ham parameters according to the assignments in Fig. 4.2, which are expected to be

coincidence for each of the 28 sharp lines, have discrepancies ranging from 0.5 to 10

cm-r. Therefore the position of the sharp lines predicted by the Dunham parameters

are in large error with their experimental observation. This creates difficuities when

attempting to predict the position of other sharp lines not observed in their experiment.

In the following, a description is given of the method used to obiain an analyt-

ical expression for the diabatic potential curves and an improvement to the Dunham

parameters using a numerical optimization program. These calculations allow spec-

troscopic parameters such as Franck-Condon factors and more accurate sharp line

positions to be calculated.

Optimization on the potential curves

The optimization of the potential curves in this study provides analytical expressions

for the diabatic potential curves of the X 1Ð+ and A0+ states which fit to the analysis

given by Schaefer et al (1982, 1984).

In an attempt to derive analytical expressions for the diabatic potential curves

for the X 1t+ an<l A0+ sta,tes of NaI, Wang et al (1990) employecl a numerical opti-

mization procedure based on the flexible simplex search algorithm (Himmeblau 1gZ2)

to determine the parameters for the potential curves:

v*(r) : lo*"*(*î)"1",r( #)- #ä, t 8".,, (1 1i)



V""(r)

Vrr(r)

foo.,* 
(+)")*,( *) -%åiE;.n

e2 / D¿on d¡ * d- 2a-¡a- \
------:-

4¡-eo \ r '2ra r' /

h,expl- B(, - ,,)'1.
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(4.18)

(4.1e)

Both the diabatic potentiai functions were taken from Faist a,nd Levine (1976)

while the coupling function rvas assumecl to be a Gaussian (Engel and vletiu 1989)' Two

parameter s, Dion and. r¡, were introduced by Wang et al (1990) to make the potential

more flexible so that the optimi zationprocedure lvas more efficient. The potential curve

of the covalent state d.educed from scattering experiments (Faist and Levine 1976), in

which all the excited covalent states, the 2, 1, and 0+ states, contribute (Anderson

et al 19TT an¿ Kaufmann et al 1974), has its repulsive limb at a considerably larger

internuclear distance than those found from optical absorption data. The parameter 16

was then put into Eq. (a.17) to translate the covalent potential curve to the left' This

modifrcation causes the inner limb of the covaient and ionic potential curves to cross at

a small internuclear distance with a very high enelgy. In the optimization computation

of Wang et al (1990), all the parameters in the potential functions except E"ou were

assumed to be adjustable and the initial parameters wele taken from Faist and Levine

(1926) as well as Engel and. Metiu (1939). The criterion function 6 is defrned as

á=t(E;"¿-ET,h)" (+.20)

where u is the vibrationai number and, E""h is the corresponding term energy for the

potential curves tabulated by Schaefer et al (1984) while Ei"t is the term energy for

the trial diabatic and adiabatic bound states. The rotational constants

D -h2 
1ö,: ti < x,(r)l¡lx,{") t (4'21)

zll

were used. to imposed constraints upon the potentials. The procedure is to ensu¡e that

the calculated B values for each trial potential curve are within a constraint limit. The

resulting parameters of the calcuiation of \!ãng et al (1990) lor '"he potentials are listed
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in Table 4.3 and the corresponding A0+ potential curve is in good agreement with that

given by van Veen et al (1981) in the experimental energy region as shown in Fig. 4.3.

It was found that the rotational constants of the 0+ state show a discrepancy with

those of Schaefer et al, especially in the lower potential energy region. Wang et al

suggested that the implication of this result required a revision for the assignment of

the vibrational or rotational quantum numbers.

It was found in this study that because of the high J number in the experimental

band fragments and because the line position is proportional to the rotational constant

B and not proportional to the rotationai quantum number -/, it is impossible to alter the

value of B by changing the rotational assignment for ./ while still fitting the spectrum

for the rotational band fragment. The change of B values and the reassignment of J

can result in an error in the line position much bigger than the experimental error.

For example, the B values for the potential curve of Wang et al (1990) or van Veen

et al (1981) are about 3 ' 10-4 crn-r smaller than those of Schaefer et al (1984). The

corresponding error in line position is 0.3 crn-1 when J changes from 50 to 60, which is

three times bigger than the experimental error of Schaefer et al, showing that it is not

possible to change B by re-assigning J. Therefore, only the vibrational assignments can

be changed. In the following, a modification of the work of lVang et al was carried out to

obtained analytical expressions for the diabatic potential curves. These modifications

are

1. The analytical expression for the ionic state was changed to the T-Ritter

model by dropping the If r7 term in Eq. (4.I7) therefore the potential curves are:

v..(r) : lo*.* (?)"1",0(*) -# * 8..,, (422)

v.^(r) : 
loo.^ 

* (+)^l *, å) - + t E¿.n

e2 /Dn". o++a-\
- 4"r' t; + '2r4 ) ' e'n)

and there is no translational shift of the covalent potential curve. The coupling strength
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Table 4.3: Parameters for the potential curves of NaI'

This work (Eq. @'25'27)Wang et al (Eq. (4.17-19)Parameters

7.r4

0.01

0

0.055

3100.0

3.33

150

0.3168

3.18

0

r744.7

2.t07

19.54

1.0215

0.3910

11.09

5.2585.3r2

0..+

3150.0

2.7r0

1000.0

0.4277

3.18

0.61

27580.0

1.742

r2.72

r.072

0.3603

1.375

5.446

0.055

0.6858

7.293

A"",(eV)

B"o,(eVtlr2 L)

c"""þv L)

p.- (Ä)

E"o,(eV)

"o 
(Å)

A¿"^(eV)

B¡"^(eVI18L)

Cø*@V L)

Dion

Pr,'(Å)

a+(Å3)

"-(Å')
o+ 1a-(,&3)

-E¿,*(eV)

å,,(eV)

þ'r(L-2)

"" (Å)

6

6t
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was taken as a constant over r

Vr(r) - h, :0.055 eV. (4.24)

to simplify the calculation.

2. The basic requirement for the potential curves is that they can reproduce

the 28 band fragments observed in Schaefer's experiment and the microwave data

for the ground state. The term energies given by Schaefer et al (1984) outside the

experimental region are an extrapolation of the Dunham parameters which may not be

correct because the incorrect shape of the potentiai curves around the crossing point.

Therefore, instead of fitting all the term energies, the optimization program in this

study only uses the position of the 28 sharp lines in the upper state and the first ten

vibrational levels in the ground state.

3. It was found in this study that the constraints of lVang et al (1990) on the B

values are not tight enough and the accepted B values are in error for the line position

Iarger than the experimental error of the fluorescence excitation spectrum. Horvever a

tighter constraint resulted in the computation never terminating because the program

kept looking for a trial potential curve subject to the other conditions with the right B

values which are not consistent. To overcome this problem, the B values were included

in the criterion function rather than used as a constraint. Thus, there are two factors

included in the criterion:

61 : Ð(E"",(n"ot) - E",r(r,))r, (4.2s)

and 62 : Ð(B",,(n"ot) - B",r(r")),, (4.26)

where E"ot(n"ot) is the eigenvalue of the "modified" diabatic state or the adiabatic

state for the vibrational quantum numbet frcat with .B"o¡ the corresponcling rotational

constant. Experimental data for the position of the sharp lines (E,o) were taken

from Schaefer et al (198a) with their vibrational assignment n,. The first ten ground

state levels were also calculated from Schaefer et al's Dunham parameters since their



99

experiment yielded more information on the higher vibrational leveis of the ground

state than the microwave experiments. The computation is then io minimize

(

ó,:l ôr (ó2<1'5'10-s)
(4.27)

|. ,' * 600(ó2 - 1.5'10-5) (ó2 > 1.5'10-5)

where ór is set in such a rvay ihat the B values will have a significant efect on it if

ó2 is bigger than 1.5 . 10-5 so that the program can converge to the optimal potential

quickly. In practice such an anangement is much more efÊcient in computer time than

using a tighter constraint and results in a smaller criterion function.

øs &u¿seL i" 54'+'l

3. Because the dissociation energies of both states were knowl theV are not

treated as adjustable.

The rest of the parameters of the potential curves were tegilded as adjustable

in this work without taking account of their physical meaning. The initial potential

parameters were obtained by adjusting the potential curve to fit the potential curves

given by Schaefer et al (1984) and then used for the computation. It was found that

if the resulting potential curves were used as the initials for another calculation, it is

still possible to reduced the criterion function. Thus, such process was iterated until

the value of the criterion function converged to the same value. Other computation

details were the same as Wang et al's (1990).

The resulting potential curves represent the optimized fit of the potential curves

to the experimental data and the analysis given by Schaefer et al (1984). The optimized

parameters are listed in Table 4.3 and the resulting potential curves are plotted in Fig.

4.3. The vibrationai assignments for the upper states were changed for each set of

calculations and the best result were found to shift up by 9 (or ni,¡ - n? :9) for the

adiabaiic state and 3 ( or n".ot - r3 = 3) for the diabatic state. Compared with the

potential curves of lVang et al (1990) the criterion function is much smaller in this

study as the 6 and á¿ values in Table 4.3 indicate. It should be noted that the criterion

iunction á defined in Eq. (4.20) does not include the contrìbu¡ion from the B ','aiues
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as ó¿ does. The repulsive limb of the optimized covalent potential curve is in excellent

agreement with the potential curve of Schaefer et al. The 1X+ ionic state gives a good

fit for the first few vibrational levels as well as in the high energy region of interest.

The potential well is slightlv narrower than that of Schaefer et ai. Attempts to inc|.rrle

higher ground state levels, for example u" : 0 - 63, resulted in the crossing point

shifting to a larger internuclear distance. This may indicate the analytical expression

used is not accurate enough to account for the ionic behavior over such a large energy

re81on.

It was found that the error in the optimized potential curves is still too large to

reproduce the position of the sharp lines due to their extreme sensitivity to the position

of the energy levels of the two potential curves. However, they providecl the best fit

to the potential curves given by Schaefer et al that were able to be obtained and were

used, as described in the next chapter, for numerical calculations such as finding the

Franck-condon läctors for the potential curve of schaefer et al.

It must be emphasized that these optimized potential curves are based on the

analysis of Schaefer et al (1982, 1934). They are not the final result of this study.

Optimization on the Dunham parameters

The purpose of this calculation was to obtain a new set of Dunham parameters which

not only reproduce the experimental energy values of Schaefer et ai but also have a

better coincidence of the diabatic and adiabatic energy levels at the center lines. Thus,

the new Dunham parameters can be used to obtain a better prediction of other sharp

line positions which were not observed i' tÌreir experiment.

Of the 28 sharp lines observed by Schaefer et al (1g82, 1g84), precise positions

were given for only 8 lines. It was found that the position of these eight center lines

given by Schaefer et al in 1982 can be reproduced accurately using Child,s semiclassical



theory, even though the two hypothetical levels calculated by their Dunham par

(Schaefer et al, 1934) are not in their closest coincidence' It was then assumed that

the position of the center lines that they observed, but only presented graphicaily (as

shown in Fig 4.2), canbe obtained with the same calculation and can be used as the

experimental data. The new Dunham parameters were calculated by the optimization

program with those given by schaefer et al as the initial values' The criterion function

is defrned as:

6 = *D@i^ - E:)' + 1010 Ð(a""^ - B",o)' (4'2s)

where Ei arc the position of the center lines, Efo¿are the position of the calculated

diabatic or adiabatic levels, Blh are bhe B values calculated with the original Dunham

parameters and Bf,"t are the calculated' values with the trail parameters' For the same

reason as before, the criterion function and the coefficients are set in a way to enable

the program converge to the optimal parameters quicki;' with minimum error with the

experimental data.

The resulted Dunham parameters are listed in Table 4.2. The criterion function

6, also given in Table 4.2,is greatly reduced when compared with that of schaefer et

al (19Sa) especially for the diabatic state. This is because the ground state vibrational

levels were not included in this calcuiation due to the discontinuity of the modified

potential shape for these levels, as described in $2.3. Thus this set of Dunham param-

eters can only be used to reproduce the excited state levels and not for constructing

the whole diabatic potential curve. The resulting parameters reproduce better coinci-

dence of the diabatic and adiabatic levels for all the sharp line positions. It is therefore

assumed. that the resulting parameters will give a better prediction for the position

of other sharp lines and will be used in the next Chapter to model the absorption

spectrum



Chapter 5

Ultraviolet High Resolution

Absorption Spectrum of NaI

5.1 fntroduction

In an attempt to resolve the controversy on the CI : 0+ state of NaI concerning

its absolute position as well as its relative position with the 1 state as discussed in

the previous Chapter, a high ¡esolution absorption spectrum measurement on NaI

was carried out. The experimental data was then analyzed and modeled with the

optimized Dunham parameters calculated in the previous Chapter. A new potential

curve is proposed at the end of this Chapter which is consistent with the recorded

observations.

5.2 Experimental Measurements

The experimental setup is shown schematically in Fig.5.1. The narrow bandwidth dye

laser system has been described in Chapter 3. Briefly, a CuBr laser is used to pump

r02
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Figure 5.1: Schematic of experimental arrangement
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a dye laser oscillator and amplifier. The output of the dye laser is then focusecl into a

BBO crystal for frequency doubling. Prisms were used to separate the dye laser beam

and its second harmonic (UV). The visible laser beam was directed into an 12 cell for

wavelength calibration and into an etalon to monitor the bandwidth. The UV beam

was directed through a heated quartz NaI cell to measure the absorption spectrum.

For the UV radiation, the error in the frequency calibration was less than 0.I cm-\

and the bandwidth was about 2-3 GHz as described in Chapter 3.

The NaI cell was made of silica tube with a vertical finger in the bottom

containing the salt. The cell was prepared by placing the salt in the vertical finger

which was connected via a uT' junction to a vacuum line to outgas the cell at 300 'C
overnight at a pressure lower than 10-6 torr while the salt was also slightly heated.

After the vacuum line was sealed off, the salt was vaporized into the cell and the cell

sealed off above the "T" junction forming the base of the finger. For recorcling the

absorption spectrum the cell was placed in a vacuum chamber with quartz windows.

The vapor pressure of the NaI in the cell was controiled by the temperature in the

finger which was heated to 650 'C. The rest of the cell was heated to 6g0 ,C in the

main arm and 710 oC on the windows to prevent condensation. It was found in this

study that if the windows are colder than the rest of the cell NaI will cleposit on the

windows to form a thin white layer which cannot be removed later by heating the

window.

Fig' 5.2 illustrates the method of the data acquisition. The detectors were UV

enhanced photodiodes with a high speed preamplifier and peak detector which held the

peak level of the laser signal. UV transmission filters were used and together with the

peak detectors, essentially eliminated the signal from background radiation produced

by the hot ceil. The laser signal which passed through the absorption cell and the

reference signai for determining the UV intensity were both sent to a discriminator to

remove the weak pulses and the ver¡r strong pulses which may saturate the amplifiers.
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The peak values were integrated and the ratio between the two channels was determined

and sent to a computer. The electronic circuits for the detecting system are given in

Appendix E. The computer was also used to control the master motor for scanning

the wavelength and also a slave motor to rotate the BBO crystal to the corresponding

phase matching angle for frequency doubling. A PC - LPM - 16 data acquisition

board with 16 input channels from 1Vølional Instruments Corporation was installed

in the computer for data logging at every wavelength increment.

Different dyes such as Rhodamine 590, Kiton Red 620, Rhodamine 640 and

DCM were used in the experiment, corresponding to the tuning regions of 28i - 289

nm, 293 - 301 nm, 305 - 312 nm and J22 - JJ4 nm in the UV,

A section of the absorption spectrum recorded in this study as well as the cor-

responding excitation spectrum reported by Schaefer et al (1982) are shown in Fig.

5.3. The absorption spectrum of NaI, which was inverted to compare with the exci-

tation spectrum, shows much more dense line structure than the excitation spectrum.

Such a dense line structure in the absorption spectra was observed throughout the

experimental energy region.

It was also noted that there was a continuous absorption spectrum, with about

the same intensity as the line structure, which is believed to be mainly caused by the

0 : 1 continuum state. It was also observed that in some regions, the absorption lines

are stronger than those in other regions and there are a few regions which are nearly

fully continuum. Weak intensity fluctuations were aiso observed superimposed on the

continuous background.

In this thesis, the absorption spectrum measured with DCIU dye was analyzed.

The remaining spectra needs further investigation.



t07

t-t
aú

-ol-{
CÚ

V)

C)

(a)

(b)
Pø ¡l29 Pl59l

Pl2.l

a,æ, "*t ierl
Þf.271 Âü6t

31040 31044 31048 31052 3105ó 31060 310ú1 31068 3t0'12 31076

Pr2!l
Rt:rl

P@t Rnót

PQN

R(æt

R(ãl

Pf26t

PO(l

31040 31044 31048 31052 31056 31060 3loóf 31068 31072 3t''t6

R&,R(JII

ñ2s! R(zI lr

(c)

R(FI
,6t
Pl5¿t

R(Jrl

Transition energy (.*-t)

Figure 5.3: (a) Absorption spectrum of NaI (inverted), (b) the computed model with

the bands observed by Schaefer et al (1984) and (c) a typical band fragment of the

excitation spectrum observed by Schaefer et al (1982) in the same energy region. The

modeling of (b) will be discussed later.

RllTl
Pt26l Rr¡út



108

5.3 Analysis of the Absorption Spectrum

Analysis of the absorption spectrum of NaI has been prevented for decades because of

the high density of lines. The fluoresccncc excitation spectrurn teporLed by Schaefer et

al (1982, 1984) produced a much less dense spectrum which allowed a break through

in the assignments of the rotational band fragments. In this study use is made of

the spectroscopic data they obtained to analyze the absorption spectrum and make

adjustments to the shape and position of the .,4.0+ potential curve.

5.3.1 Position of lines

Predissociation of a curve crossing system was described by Child's semiclassical the-

ory in terms of two hypothetical bound state levels: the "modified" diabatic E2(u2, J)

and the adiabatic E+(r+,.I) levels, deduced lrom the Bohr quantization conditions

Eq.(2.38) and Eq.(2.39), as described in $2.3. The position and width of a predissoci-

ating line depends on the two nearby energy levels E2 and,81, the coupling parameter

z and the ratio of the vibrational levei spacings:

E

f

: (Ez t xE*)lQ + x)

: 2rx(t t 1æ)(82 - Eì2llkuz(l + ø)31

(5.1)

(5.2)

where a : uhuzlhr+, ^l : h,azlha+ and

u:erp(2¡ru)-l ( znv" \- erq 
lr-("-;?iÃF )-r, (5'3)

with Vz the coupling strength and is taken to be 0.055 ev for NaI (Grice and Her-

schbach, 1.974).

A useful approximate picture arises from equations 5.1 and 5.2. If the energies

of the two hypothetical levels, E2 and. E¡, ateplotted as a function of J(J*l), two series

of approximately linear curves result, with the slopes given by the rotational constants
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B. As predicted by Eq. (5.2), when the curves for the nearby levels E2 and E+ arc

close, the resonance is sharp; when the curves are further apart, the resonance is broad'

such a plot for NaI, using the optimized Dunham parameters of Table 4.2, is given in

Fig. 5.4. The central iine of a band fragment, the sharpest and the strongest line, is

located at the intersection of the two hypothetic leveis, i.e. the closest coincidence of

the two rotational levels. On both sides of the central line are neighboring lines with

symmetrically decreasing peak height and increasing line widths as the two levels move

apart. Because of the high temperature and the similar slope for E2 and E-.,', there

are a great many of these bands occurring in the absorption spectrum and there are

also many lines in each band. As will be seen in the following, ali the possible bands

predicted by Fig, 5.4 for J values up to 100 were observed and more than 50 lines

could be seen in each band for the energy region accessible with DCNI dye. All of these

observed bancls are labelþd in Fig. 5.4 with the J values of the central lines' Those

band fragments observed with the excitation spectrum (Schaefer et al 1982, 1984) are

also marked. as "o" at the position of the central lines. It can be seen from Fig' 5.4 that

those central lines locate slightly off the positions correspond to the closest coincidence
(af *t-3)

of the rwo hyporhetic levLlsn indiiating that there is a small error in the Dunham

parameters. It also displays the extreme sensitivity of the centrai line position to the

spectroscopic data of the two potential curves.

5.3.2 Intensity and the Voigt line profiles

The absorption intensity for a vapour in thermal equilibrium condition is given as

(Herzberg, 1950 ChaPter 4)

Iob,(u',r"): (.#) IsaxNu"rRSl<x"lx'>12 (5'4)

where å is Planck's constanb, 16 is intensity of the incicient radiation, Ar is the length

of the absorption sample, :V,,, is the population in the ground state level u", lz is the

frequency of the radiation, -R, is the electronic transition moment and the last terrn is
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Bz(To) 1000'C1) Bz(%) 650"CBz(%) 1000'CBz(To) 650'C

2.68 t.424.832.70

1.95I 1.018.6I 2r.9

1.510 0.7i3.92 t4.7
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Table 5.1: The Boltzmann tion Distribution for NaI

the Franck-Condon factor

The Boltzmann factor

The popuiation {,, in the ground state is determined by the Maxwell-Boltzmann

distribution law. The percentage of the number of molecules in vibrational level u" at

temperature ? is given by the Boltzmann factor:

B z(u" ) = erp(- E(u") I kT) I Q' (0.Ð)

where h is the Boltzmann constant, E(u") is the term energy for the vibrational levels

Q, =Ðery(-E(u")lkT) (5.6)

is the vibrational partition function. The Boltzmann factors i'or NaI at diilerent tem-

pera[ures are given in Table õ.1.

and
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Intensity distribution in the rotational structure

Similarly, the percentage population of the number of molecules in rotational level J

at temperature ? is:

1

P¡= ^(2J+I)exp(-BJ(J+I)hclkT), (b.i)
Q,'

where (2J+1) is the degeneracy of the level with an angular momentum J, B is the

rotational constant and

Q, : Ð(2J + l)exp(-B J(J * r)hcl kT), (5.8)

is the rotational partition function. The thermal distribut ion P¡ of the ¡otational levels

for T :650oC for NaI in the ground vibrational state is shown in Fig. 5.5 where the

peak population occurs around J:50 and with more than lla of this population for

./ - 100.

The statistical weight of the lower state is g" - (2J 11), therefore the intensity

distribution for rotational structure is given by (Herzberg, 1950 Chapter 3).

, 2Co6".v ^Iob": "fftt"rp(-7" J" (J" + I)hclkT) (5.g)

where Co6". is a constant depending on the transition dipole moment, the F¡anck-

Condon factor and the total number of molecules in ihe initial vibrational Ìevel. 
^g"¡ is

the Hönl-London factor. For the electronic transitions of interest in this study, which

can be classified as the rX - lE transition and A,Q = 0, the lIönl-London factors are

given by (Herzberg, 1950 Chapter 4):

.sf J, (5.10)

(5.11)sl J'+r

for R and P branches. T¡ansitions for the Q branch is optically forbidden and therefore

S9 :0.
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The Flanck-Condon factor

The intensity distribution are explained in an easily visualized manner by the Franck-

Condon principle: the change in the electronic state during transitions in a molecule

takes place so rapidly in comparison to the vibrational motion that immediately after-

wards the nuciei still have very nearly the same relative position and velocity as before

the transition. Therefore transitions vertically upward or downward in the potential

energy diagram correspond to the most intense bands. Mathematically, the Franck-

Condon factor can be calculated with the vibrational wavefunctions of the ground (¡j,, )

and the upper (¡i,,) states:

FC (u", Er) : l r'),(E")y' (E' )ctr, (5.12)

with the transition energy Et = E' - 8" .

In this study, the Franck-Condon factor for the excited state was approximated

by calculation with the ,Q = 0+ diabatic continuum state. Fu¡thermore. the Franck-

Condon factors are regarded as the same for the same transition energy for different J

values since the centrifugal distortion is not significant in this study.

The Voigt profile

The width of an absorption line is broaden mainly due to thermal (Doppler) and

natural (lifetime) broadening. Therefore the absorption line has the shape of a Voigt

profile which is the convolution of the thermal and natural line profile and can be

approximated by the empirical expression (Whiting 1968):

V(u): n^ : (I - *s)exn[-2.izz1zs)'] + (Ðrqfu*F
+0.016(1 - #X#X exp[-0.+çrc)2-2s) -,*#),,, ]

(5.13)



The Gaussian ánd Lorentian profire represent thermar (Dopprer) and natural (lifetime)

broadening resPectivelY :

I - I,oexp(-z"rtz1'#f) (5'14)
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I (5.15)
'o r + 4(T)'

where r.r.r¡ is the natural width, ttc the Doppler width, uç the line position, and I,o the

line intensity. wu is the width of the voigt profile and is given by

1I

'wlw"=T * *,, (5. 16)+

In this study, \4¡e assumed. that the oscillator strengths are the same for all

bands so that the intensity changes are due to thermal distribution in the ground state

levels, the Hönl-London factor for rotational levels and the Franck-Condon factors'

The intensity profile of a line in the experimental data was assumed to be:

y, : !!vçu - uo), (5.1i)
uu

where I/ is the Voigt profi.le given by Bq.(5.13). The intensity 1s is determined by:

Io : AoBz(u")FC(tt" , Er)S, exp(-BJ(J + I)hclkT), (5.18)

where As is a constant chosen to fit the scale of the experimental data. B;(u") is

the Boltzmann population distribution and FC(u",¿r) it the relative strength of the

Franck-Condon factor based on the calculation of Eq. (5.12). S.r is the Hönl-London

factor and the last term accounts for the thermal distribution in rotational levels.

5.3.3 Modeling the absorption spectrum

The above model was first appiied .',vith the bands observed in the excitation specttr.tm.

with transitions originating trom the ground vibrational levei (r" :0) and including;11

lines in each bancl fragment, to fit the absorption spectrum in the same enefg;,' region
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as that in Fig. 5.3(c) and shown in Fig. 5.3(b). The corresponding absorption lines

are clearly identified. Compared to the excitation spectrum, the absorption lines have

much less intensity changes within a band fragment. In the excitation spectrum, the

fluorescence intensity is proportional to the natural lifetime of the level and therefore

reduces rapidly on each side of the central line due to predissociation. Actually, Schaefer

et al (1984) could only observe lines with a natural width narrower than 300 MHz,

corresponding to a maximum spacings of about I cm-r between the nearby diabatic

and adiabatic levels. For molecular states with a width broader than 300 iVIHz, the

predissociation rate is too rapid compared with the fluorescence rate, the molecules

don't have enough time to fluoresce before predissociating, so they are not observed.

In the absorption spectrum, because of the Doppier broadening (- 1.6 GHz) of all

lines, it is impossible to identify the central lines by the intensity changes.

It can be seen from Fig. 5.3 that while the excitation spectrum observeci by

Schaefer et al (1984) contains fewer lines than that of the model spectrum the absorp-

tion spectrum has many more lines than the model. This implies that although the

upper state is predissociated, the resonant structure still exists in regions far removed

from the central sharp lines and can be observed with the absorption spectrum. This

was confi.rmed by adding more lines and band fragments into the model. Because the

absorption spectrum does not provide a good indication ibr the position of the central

lines, they have to be obtained from the Dunham parameters. The optimized Dunham

parameters obtained in the previous Chapter were used to calculate the position of the

excited state levels with Child's semiclassical theory since they are more accurate for

the coincidence of the two levels for the central lines. The locations of the center lines

were shown .Fig. 5.4.

With the Dunham parameters given in Table 4.1 to calculate the position of the

ground state levels, the first attempt to moclel the absorption spectrum using Eq.(b.17)

with the P and R branches was made.
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For the best fi.t, r{rc was taken to be 0.12 cm-r which is about twice the Doppler

width (1.6 GHz or 0.05 cr7.-l).This is in approximate agreement with the convolution

of the Doppler width with the instrument function which has a band width of about

2-3GHz (0.07-0.1 crn-,).The line width of the transition is approximated by:

ut:3. 1o-8(AJ(2J" + A/ + r))2 cm-r (5.1e)

where A,,/ : J - J" an{ -/" is the J value f'or the centrai line. This is modeled according

to Eq. (5.2).The other parameters v¡ere obtained from the best fit to the recorded

absorption spectrum.

The model spectrum for t¡ansitions originating from u" : 0 is given in Figs.

5.6 to ,5"8 where a satisfactory flt was obtained for transition energies higher than

30500 cm-r. For lolver energies. the corresponding u" : 0 transition lines in the

recorded absorption are weaker than the model spectrum and bhere are other stronger

lines which have not been accounted for as demonst¡ated in Fig. 5.9(a)' This implies

that transitions from other grouncl state vibrational levels are important and must be

included, in particular the u" = 1 level. Fig. 5.9(a-d) illustrate the changes of the

spectrum resulting from changes in the relative strength of the Franck-Condon factors

FC(u",8¿) for u" :0 and 1. It is obvious that a large contribution from D" : L has to

be included in the model spectrum to get a good fit to the observed spectrum as seen

in Fig. 5.9(c) with -Brc : 0.7 where Rpc : FC ('u" : 0, Er) I FC (u" : I, Er)' Together

with the Boltzmann factors of these two ground state vibrational levels, the transition

strengths originating from these trvo levels are about the same. Fig.5'10 and Fig. 5'11

show the best fit for some of the lower energy regions with increasing contribution trom

,)" : L In all the calculations. 25 lines on each side of the central line or ó1 lines in

each band fragment are used in the calculation. It is f'ouncl that a 20% change of the

ratio -Rrc does not make a significant change f'or the best fit in the moclel spectrum.

As the ratio changes it was noted that rvhile some lines apoeared to fit better. others

ina¡r get rvorst. This is because tire i'aì.ue of the ra[io usecl irere is for a contin'.Lum and
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is an approximation for the resonant line structure, the model does nob include the

changes in the ratio and the predissociation line width due to different the slopes of

the diabatic and adiabatic hypothetical levels as seen in Fig. 5.4 for diferent rotational

bands.

Throughout all the analyzed energy regions, only P and R branches and no Q

branch lines were observed, which is in agreement with Hund's case (c) coupling. By

comparing the model spectrum with the experimental data, it was found that not only

all the band fragments observed with the excitation spectrum but also all the other

possible band fragments predicted by the Child's theory, as shown in Fig. 5.4, could be

observed. The model spectrum accounted for most of the main features. Some weak

band fragments are difficult to identify from the fluctuation background. Some weak

lines which were not accounted for by the model may originate from iines with LJ > 25

in the bandfragments or higher vibrational levels in the ground state. However, their

contribution to the overall spectrum is very small and they were not included in this

study. It is also noted that there are a few reasonably strong lines not accounted

for which may originate from superimposed weak lines or perhaps t¡aces of an impurity

in the salt.

5.3.4 Transitions from 11" = 0 and 1

The model for the absorption spectrum given above uses the Dunham parameters

derived trom a laser induced molecular fluorescence experiment (Schaefer et al 1984)

and their vibrational and rotational assignments (as presented in Fig. 4.2 and Fig. 5.a)

to predict the possible bands. It represents the first attempt to analyzeLhe absorption

spectrum of NaI and reproduce the main features of the observed spectrum in an

energy region from 30000 to 31200 cn't-r. With this model, all the possible bands

in the experimental region were observed with about 50 lines in each band fragment,

compared to only about 7 lines in the fluorescence experiment The results support
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some of the spectroscopic data of Schaefer et al, for example the rotational constants B

and the rotational assignments J. However, it was found that there is an inconsistency

between the Franck-Condon factors for the potential curve that they proposed for the

excited state and the dominant vibrational transitions from the ground state.

Calculated Franck-Condon factors for transitions originating ftom u" : 0 - 3

for the potential curves of van Veen et al (1981) and Schaefer et al (i984) are shown

in Fig. 5.12(a) and (b) where the excited state potential curve of Schaefer et al was

approximated by the analytical expression obtained in the previous Chapter. It can be

seen that the Franck-Condon factor for the potential curve of Schaefer et al increases

us ," io"reases over the full range of energy of interest. and the Franck-Condon fac-

tor for ,)" = 0 is at least 10 times less than that for 1)" : \ in the observed energy

region. Furthermore, because of the high temperatute, the thermal population (see

Table 5.1) decreases much more slowly than the increase in the Franck-Condon factors

as the ground vibrational level increases for the potential cutve of Schaefer et al. Thus

lransitions from ground state vibrational levels higher than u" : 0 and 1 should be

dominant. This is not in agreement with the model spectrum where transitions orig-

inate mainly from 'ù" : 0 in the high energy region and 'u" : 1 in the lower energy

region. In contrast, the potential curve of van Veen et al gives a Franck-Condon factor

a few times stronger for r)":0 than foÍ u" :I,2 etc throughout the observed region.

Therefore, transitions originating from u" : 0 would be at least 5 times stronger than

those from u" > I by taking account the thermal distribution as well. With such a

strong intensity, the transitions from higher vibrational levels (r" ) 1) would be diffi-

cult to observe in the fluctuation background as seen in Fig. 5.6 - Fig. 5.8. However it

is clearly apparent that at lower spectral energy the potenbial cu.rve of van leen et al

gives incorrect Franck-Condon factors because transitions originating from u" = 1 are

seen to dominabe. Furthermore, as discussed in the previous chapter, the rocational

constants of their potential cur\¡e aLe too small to explain thc' expetimental data.
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The disagreement between the published potential curves and the Franck-

Condon factors observed in this study implies that modification in the potential curve

or the rotational and vibrational assignments is necessary to explain the absorption

spectrum and the controversy between the published potential curves. The absorption

spectrum recorded in this study is modeled, as described before, by the Dunham pa-

rameters derived from the experimental data of Schaefer et al with their rotationai and

vibrational assignments. The success of this model bo fit most of the absorption feature

recorded in this study over a iarge energy region with all the predicted band fragments

suggest that the assignments are correct. Furthermore, since more rotational lines

v/ere recorded. in each band fragment, the experimental values can be used to confirm

the assignments derived from the Dunham parameters, ovet a larger energy region for

each band. fragment than was possible in the fluorescence experiment . to prevent any

accidental agreement of the line position. The assignments of rotational lines and the

ground. state vibrational levels from which the transitions originabed can be checked

with the combination relation betrveen the P and R branches:

L2F" (J) : R(J - 1) - P(J + L), (5.20)

which is related only to parameters of the well known ground state levels (Herzberg,

1950 Chapter 4):

L2F"(J) = (48,,, - 6Du,,x/ + f,) - to,,,Q +f,)". (5.21)

where Bu,t ar'Ld Du,, ¿¡¿ rotational constants for vibrational level u which can be calcu-

lated from the Dunham parameters given in Table 4.1:

B, I x'(r" + (5.22)

lY,(," + (5.23 )

Table ö.2 and Table 5.3 list the calculated results of the \rF" values and the

experimental values Å,2F" (exp) of this stucly for part of [rvo rotational ì:ands lvith

D u,,

1

,
1

)
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Table 5.2: The observed rotational lines originating from u" : 0 for a band of n, - 151

and n¿ :271and the LrF" values

J P(J) R(.i) L,2F" (erp) L,2Fi',, 
=o

L,2Fi',, 
=,

26 30672.498 30675.472 12.438 12.439 12.370 12.302

27 30667.592 30670.695 12.904 t2.907 12.836 72.765

28 30662.568 30665.792 13.235 13.375 13.301 13.228

2q 30657.46 30660.644 13.888 13.843 73.767 13.691

30 30651.904 30655.387 14.274 14.311 14.232 14.154

31 30646.37 30649.917 14.843 r4.778 r4.697 14.616

o.lùa 30640.544 30644.237 15.301 75.246 r5.162 15.079

33 30634.616 30638.422 15.684 15.713 1.5.627 15.541

34 30628.553 30632.426 i6.188 1 6. 1 8 1 16.092 16.003

35 30622.234 30626.215 16.708 16.648 16.556 16.46ö

36 30615.718 30619.88 17.r77 17.1 15 17.020 t6.927

ól 30609.098 30613.328 i7.589 17.581 17.485 17.388

38 30602.291 30606.579 18.039 18.048 1.7.949 17.850

39 30595.289 30599.738 18.485 18.514 18.412 18.311

40 30588.094 30592.586 19.015 18.980 18.876 18.772

4L 30580.723 30585.379 19.368 79.446 19.339 19.233

42 30573.218 30577.968 19.878 ).9.9r2 19.803 19.693

43 30565.501 30570.346 20.4 20.378 20.266 20.154

44 30557.568 30562.592 20.795 20.843 20.728 20.614

45 30549.551 30554.646 21.26 21.308 2I.LqI 27.074

46 30547.332 30546.498 27.8r7 27.773 2r.653 2r.534
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Table 5.3: The observed rotational lines originating froûr u" : 1 for bhe band of

no : I45 and n¿ : 266 and the LrF" values

J P(J) R(J) L,2F" (erp) LzF',',, 
=o

L2F'u',, 
=,

18 30246.399 30248.544 8.640 8.689 8.641 8.594

19 30243.000 30245.263 9.161 9.158 9.108 9.057

20 30239.383 3024r.794 9.592 9.627 9.574 9.527

2T 30235.671 30238.1 59 10.068 10.096 10.040 9.985

22 30231.726 30234.331 10.525 10.565 10.506 r0.449

23 30227.634 30230.361 11.000 11.033 10.973 10.912

24 30223.331 30226.188 11.455 1 1. õ02 11.439 11.376

25 30218.906 30221.845 11.889 11.970 11.904 1i.839

26 30214.299 30217.372 12.399 12.439 12.370 12.302

27 30209.446 30212.649 12.845 12.907 12.836 12.765

28 30204.527 30207.799 13.326 13.375 13.301 13.228

29 30199.323 30202.803 13.784 13.843 13.767 13.691

30 30194.015 30197.529 14.247 14.311 14.232 14.154

31 30188.õö6 30t92.223 14.708 14.778 1.4.697 14.616

oô
t)L 30182.821 30186.564 r5.207 r5.2+6 r5.162 15.079

33 30177.016 30180.904 15.587 15.713 t5.627 15.ö41

34 30170.977 30174.945 16.180 16.181 16.092 16.003

35 30164.724 30168.845 16.572 16.648 16.556 16.465

36 30158.373 30162.578 17.028 17.1 15 17.020 16.927

37 30151.817 30106.154 17.481 17.581 17.485 17,388

38 30145.097 30149.518 ri.973 18.048 r7.949 17.850

39 30138.i81 30142.819 18.383 18.51.1 18.412 18.311
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transitions originated from u" : 0 and 1)" : I respectively. The observed absorption

lines are located near the calculated value from the Dunham parameters with the

corresponding assignments. With the experimental error of less than 0.1 cnL-r , both the

rotational assignments and the ground state vibrational assignments of the absorption

lines are confirmed to be correct. The confirmation of the n" :7, transitions, together

with its relative strength of the Franck-Condon factors, imply that a departure from

the published potential curves is necessary to account for the absorption spectrum. It

should also be pointed out that although the vibrational assignments of Schaefer et al

(1984) were used in this analysis, they may not be correct. It can only be shown that

the position of these vibrational levels in the observed energy region is correct. It is

always possible to modify the potential curve and change the vibrational assignments

but keeping these energy levels at the same position. The validity of the vibrational

assignments of Schaefer et al (19Sa) are questioned in this study and are likely to be

incorrect in view of the following discussion.

From Fig. 5.6 - FiS. 5.11, it was found that some lines in the model spectrum

are about 0.2 cm-| from the observed position which exceed.s the experimental error and

results in changes to the intensity and width of some overlapping lines. The model needs

to include more accu¡ate information about the position of lines, wiclths and intensity

distribution for each band fragment to give a better fit. ùforeover, the model was

found to fail when applied to the absorption spectra in higher energy regions measured

with other dyes. This impiies that there is an error in the vibrational assignments and

the Dunham parameters are accurate only in a small energy region corresponding to

the most detailed section of the fluorescence excitation spectrum. For higher energy,

the model spectrum doesn't shown any similarity to the experimental data, indicating

that the error in the Dunham parameters is so large that they faiìed to predicted many

bands. This can be taken as further evidence that the potential curve proposed by

Schaefer et al (1984) is incorrect.
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5.3.5 The proposed potential curve for CI - 0+ state

There exists contradiction between the published potential curves and the experimental

data of this study. The potential cllrve of schaefer et al gives the correct enelgy

levels and rotational constants in the experimental energy region, but the Franck-

Condon factors are greatly difierent from the experimental values. This implies that

the repulsive limb of the potential curve ìs not iocated at the correct position' On

the other hand, the potential curve of van Veen et al gives the correct Franck-Condon

factors only for transition energies higher than 30500 cn1-t, and incorrect rotational

constants when compared with the experimentai data. This implies that a modification

of this potential curve in the lower energy region (8, < 30500 crn-l) is needed to fit

the experimental data.

Summarizing the above analysis, it is apparent that the fl : 0+ potential curve

should account for the following spectroscopic properties in the analyzed energy region'

o The same rotational constants B and vibrational level spacings for the adiabatic

state as those given by Schaefer et al (1984), with an error in line position less

than the experimental error.

¡ Similar relationship of the Franck-Condon factors for u" :0 and u" : I to those

given by the potential curve of van Veen et al (1981) for transition energies higher

than 30500 cm-r;

r Larger Franck-Condon factors for u" : I than that from ?" - 0 for transition

energies lower than 30500 cm-r '

¡ Transitions originating from u" > I not strong enough to make an observable

contribution to the absorption spectrum.

In the following, a potential culve which meets all these spectroscopìc properties

is proposed.
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In quantum mechanics, the rotationai constant B is given by the integral

(5.24)

where r is the internuclear distance and ¡(r) is the vibrational wavefunction. Its value

is determined by the location and the shape of the potential curve. The location of the

potential curve afects the value of.If r2 while the shape of the potential curve affects

the ampliiude of the wavefunction. For the potential curves given by Schaefer et al

(1984), it is noted that in the observed energy region, as shown in Fig. 4.3, the adiabatic

potential curve has a larger B value than the diabatic one although its repulsive limb

is locaied at a greater internuclear distance as shown in Fig. 5.13. This is because

to the left of the crossing point the diabatic potential has a very deep well and the

wavefunction ìn this region has a small amplitude. Thus, the integrand of X(r)$X(t)

is small in that region. On the other hand, the excited adiabatic state has a much

shallower well at the same region which leads to a larger amplitude wavefunction and

thus a larger integrand in the same region. Since the wavefunctions for both potentials

are nearly the same to the right of the crossing point, the integrands to the left of the

crossing point will decide which B value is the greater. The excited state potential

curve given by van Veen et al (1981) has a smaller B value than that of Schaefer et

al since its repulsive limb is located at a larger internuclear distance and they both

have about the same depth well. Therefore, the B value of a potential curve can, in

principle, be increased by translationally moving the repulsive limb of the potential

curve to a smaller internuclear distance, or having a shallower potential well in the

repuisive limb region.

It is noted from the previous discussion that the adiabatic potential curve of

Schaefer et al (1984) is derived from an RKR method based on their extrapolation to

cletermine the lower energy levels using the Dunham parameters which were found in

a much higher energy region. There is no direct experimental evidence for determining

the location of the lower energv levels, so that while the position of the high energy

B:Y<x?)l4lr(') t
¿l-L
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levels have been measured, by the experiment data, the actual position of the low energy

levels remain unknown. Furthermore, the location of repulsive limb of their potential

curve is not uniquely fixed by their experimental data, but by their assumed position

of the lower energy levels. The change of the unknown lower energy levels wiii affect

the location ancl the shape of their uRKR', potential curve' The incorrect Franck-

condon factors of bheir potential culve suggest that their assumption about the lower

vibrational levels are not correct. It follows that an alternative set of energy levels in

the lower potential energy region is needed to support a potential curve which fits the

known experimental data better'

The potential curve proposed in this study is a modification of the potential

curve given by van veen et al (1981), especially in the lower energy region of the

repulsive limb. The location of the repulsive limb of the excited state potential curve,

determined by the Franck-condon factors, is very close to that of van veen et al

for energies higher than 30500 cm-t, However, the only possibility for this potentiai

curve bo have rotationai constants B very close to those given by Schaefer et al in

the experimental energy region. as discussed above, is to have a shallower shape than

that of van Veen et al in the repulsive limb region. This is in accordance with the

requirement that the slope of the potential curve should become smaller than that of

van Veen et al in the lower part of the experimental energy region (8, < 30500 cm-r) lo

give the correct ratio of the Franck-Condon factor Rpç, as seen in Fig. 5.9 to Fig 5'11'

While the repulsive limb of the potentiai curve is shallow in the low energy region to

give the correct rotational constant B in the experimental energy region, it should also

smoothly and rapidly approach the dissociation limit as internuclear distance increases

due to the nature of a covalent stabe. Such a potential curve is proposed to be

r/,(,) : (ï)'",e(-(oor*(å)') r,"-2T) +(Ð") *318 (eu) (525)

ancl is shown in Fig. 5.13. It is an empirical modificarion based on the potential curve

of van !'een et al. The verv shalp slope at smali internrtc.leal distance is provicled
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I

I

by the (f)3 coefficient and the exponential of (Lilt.The shallower shape above the

equilibrium position of the ground state and the fast damping of the potential curve

are generated by the exponential of -(0.01 + (r lZ.S)6)(r -2.7). The dissociation limit

is taken to be 3.18 ev, given by van Veen et ai. The electronic coupling strength

V12 is taken to be 0.055 ev in this study. No attempt was made to obtain a more

accurate coupling strength since small modification to this value produces a negiigible

contribution to the spectroscopic parameters concerned in this study.

Although the proposed potential curve appears different from any of the cur-

rently published potential curves in the lower energy region above the equilibrium

position of the ground state, as shown in Fig. 5.13, it is consistent with the currently

available experimental data. The Franck-Condon factors, which fix the location of the

repulsive limb of the potential curve, are in agreement with the broadband absorp-

tion experiment of van Veen et al (1981) and are consistent with the high resolution

absorption spectrum measurements of this study. Its rotational constants and vibra-

tional spacings in the experimental region are in excellent agreement with those given

by Schaefer et al (1984).

The smaller slope of the potential curve makes the transitions from right-hand

turning points of the lower state levels stronger than that for van Veen's potential

curve, consequently the Franck-Condon factors for transitions originating from u" : 1

are stronger than those from u" = 0 for energies below 30450 cn1,-1, as illustrated

in Fig. 5.1a(a). The ratio of Franck-condon factors f.oÍ u" : 0 and r, Rpc, for the

proposed potential curve are given in Fig. 5.14(b) which are ìn agreement with the

observation in Fig. 5.9 to Fig. 5.11.

The shallower shape of the proposed potential curve also increases the rota-

tional constants B of the adiabatic state when compared with that of van Vêen et al

providing excellent agreement with the experimental values which are the same as those

given by Schaefer et al (1984) over the observed energy region, as shown in Fig. 5.15(a).
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Franck-Condon factors of NaI FC(v ,E)
l0

30000 30500 31000 3 1500

30000 30500 3 1000 3 1500

Transition energ-y ("--t)

Figure 5.14: Franck-Condon factors of the new potential curve for transitions from

u" =0 - 3 (u) and the ratio of the Franck-Condon factors for u" = 0 and I (b).

I

H

=
L
CÚ

!
L
d

>ìu
(/)
E
o)

295û

l0r

V,,=0
V.,=1
Y,,=2
V=3

(a)

\

/-\/

(b)



r37

0

t

()

Êq
ct)

d
U)

o
U
d
o
Cd

o
ú

1++
{) +o
U)
äoç36
Od
e-,32

V)

Erto
"a 24
-o
>20

0.04

0.03

0.02

5030

025

0.015
28000 30000 32000

Potential Energy (cm
34000

)

28000 30000 32000 34000

Potential Energy (cm )

Figure 5.15: Comparison of the rotational constants B (a) and the vibrational spacings

(b) of the new potential curve with the published ones.

Schaefer et al (1984)
'-'- van Veen et al (1981)

- 
This study

""" Schaefer et al (1984)
'-'- van Veen et aI (1981)

- 
This study



138

The outer iimb of the X0+ diabatic potential curve obtained in the previous chapter

was empirically pushed inward by multiplying a factor

e : 1.0 i}.}rerp (-0.211' -7.5)l}.Ðr) f o, r ) 3.5 (5.26)

to obtain a good fit for the vibrational spacings of the upper adiabatic state which are

shown in Fig, 5.15(b).

The shallower nature of the proposed potential curve is supported by the re-

sult of a multireference singly and doubly excited configuration interaction (MRSDCI)

calculation (Sakai et al, 1992), as shown in Fig. 5.13. Horvever, the potential curve

of MRSDCI calculation is too shallow and its repulsive limb is located at a greater

internuclear distance, giving incorrect Franck-Condon factors when compared with the

experimental data.

A thorough literature search indicates that there has been no high resolution

experimental data published for wavelengths longer than 350 nm. Belg and Skewes

(1969) stated that bandlike groups of lines regularly spaced by about 36 cm-r appear

throughout the region from 2945 to 5400 Ä,. Accordingly it was proposecl that the Llpper

state has a potential well much deeper than a van der Waals well with a vibrational

spacing of about 36 cm-r, although no analysis was provided which supported this

suggestion. Both the potential curve of Schaefer et ai and the newly proposed potential

curve have vibrational spacings of about 36 cm-l over a large lower energy region, as

seen in Fig. 5.15(b). However, careful examination of the spectrum throughout all the

experimental regions does not indicate a regular 36 cm-[ band spectrum grouping.

Furthermore, such 36 cm-t bandhead-like structure can not be explained with the new

potential curve, or with the potential curves of Schaefer et al (1984) or van Veen et al

(1981). Some of the conflicting aspects of these bands observed by Bcrg and Skewes

(1969) at wavelength longer than 8500 À ur",

1. A suggestion by Berry (1979) that these 36 cm-r regularities that are sup-

posed to be associated with the vibrational frequency of the upper state are really
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nothing but quasi-periodic coincidence of complex overlapping bands. None of these

bandhead like groups were observed in the present high resolution absorption spectrum

or reported by any other authors. It is also impossibie to reproduce such bandheads

from the P and R branches with the present model as the lines of these branches are

separated over a large energy region due to the large difference between the B values

of the ground state and the upper state.

2. There is no evidence that the 0 = 0* state is responsibie for this behavior.

Perhaps it could be caused by the Q : 1 state if it has a shallow well' If this is true, the

Q branches may be able to reproduce the bandhead like structure with the B values of

the fì : 1 state very close to those of the ground state. However this is unlikely since

a shallow well will not give an extended region of 36 cm-1 spacing of the "bands".

In adclition, the spacing of 36 cm-l requires a broad well giving a small B value very

different from the ground state'

At present, these "band" like structures occurring at waveiength greater than

400 nm appear to be an un¡esolved problem concerning the absorption spectrum of

NaI

Finally, it must be pointed out that the shape of the proposed potential curve

is determined by the experimental data and is not a theoretical extrapolation or as-

sumption. This is due to the fact that the repulsive limb of the potential curve in

the experimental region is fixed by the Franck-Condon factors. The shallow shape in

the lower energy region of the repulsive limb is required to match the rotational con-

stants in the experimental energy region and provide stronger transitions originated

from ,u" : 1 than thab from u" :0 in the lolver part of the experimental energy region.

The covalent nature of the potentiai curve requires its repulsive limb approach the

dissociation limit rapidly as internuclear distance increase. so that the shallow shape of

the repulsive limb cannot extend to lalge internuclea¡ clistance. Thus the shape of the

proposed potential curve is uniquely determined by the experimental data, although
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the parameters of the potential curve need refining to reproduce the observed band

fragments. This will require accurate location of more bands in a wider energy region

to determine the Dunham parameters.

5,4 Conclusion

The absorption spectrum of NaI in the energy region 30000 - 31200 crn-1 was modeled

for the first time with a set of Dunham parameters derived from a molecuiar fluores-

cence experiment (Schaefer et al 1984). The model spectrum, rvith transitions from

u" :0 and 1, reproduced most of ihe absorption feature recorded by the high resolution

laser experiment in this energy region, which corresponds to the most detailed part of

the fluorescence experiment. As a result of this analysis, a diabatic potential curve for

the A0+ excited state is proposed. Uniike other currently published potential curves for

this state, the potential curve is consistent with the known experimental data, ii pro-

vides the correct roiational constants B, vibrational spacings and the Franck-Condon

factors in the observed energy region.

Further high resolution spectroscopic investigabions at higher and lower energy

regions is suggested to extend this study. Spectroscopic data in the lower energy region

can verify the shallow well of the newly proposed potential curve and may help to

explain the 36 crn-1 bandhead like structure claimed by Berg and Skewes (1969). More

fluorescent band fragments are required to be identified in the higher energy region to

determine improved Dunham parameters to modei the absorption measurement in this

regron

It is suggested that the vibrationai assignments of Schaefer et al (lgSa) be

modified to get a better set of Dunham parameters which covers a larger energy re-

gion' The potential curve proposed in this study can be used as a reference to provide

vibrationai quantum numbers, rotational constants and the position for the lower en-
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ergy levels. By adjusting these parameters to fit the experimental data, more accurate

Dunham parameters can be obtained and applied to a wider range of energy. Improved

potential curves can then be constructed using the RKR method.



Chapter 6

Intermediate Coupling Strength

Pre-dissociation of Diatomic

Molecules: Tþansition from

Diabatic to Adiabatic Case

6.1- fntroduction

The crossing of an attractive molecular potential curve with a repulsive curve can

produce interesting spectroscopic features if the interacting diabatic states are of the

same symmetry. As desc¡ibed in Chapter 2, analytical expressions for the energy shift

and line width for pre-dissociation were given by Child on the basis of semiclassical

theory but only upply to sharp resonances, or near the diabatic or adiabatic limit.

Möhlenkamp and Korsch (1986) presented a semiclassical calculation based on the

complex energy quantization method to investigate the intermediate coupling region.

Several novel features were discovered but were not fully understood, as reviewed in the

following section, It is the purpose of this study to give a better ph¡'sical unclerstanding

r12
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of the resonance behaviour in this region.

in ihis study, two methods have been used based on the coupled Schrödinger

equations, to investigate the resonance behaviour in the intermediate coupling region.

The first is similar to that of lVlöhtenkamp and Korsch (1986) but uses an integral solu-

tion of the coupled Schrödinger equations with the complex scaling method (Lefebvre

1990, Atabek and Lefebvre 1980, 1981, Brandas 1987). The second method is similar

to the internal amplitude approach for shape resonance (Allision 1969, Jackson and

Wyatt 1970) which was adapted to a two channel curve crossing system.

Unlike the absorption spectrum, the resonance spectrum contains only inf'or-

mation about the excited states and is independent of the position of the ground state

which, through the Franck-Condon factor, significantly changes the absorption spec-

trum

6.2 The Semiclassical Complex Energy Quantiza'

tion Method

Based on the Child's semiclassical theory for Feshbach resonance and predissociation,

Korsch (1984, 1986, 1987, IVlöhlenkamp and Korsch, 1986) presented a semiclassical

complex energy quantization study for a curve crossing system. In particular a model

VIgH system was examined and the position of resonances in the predissociating region

were computed for a range of coupling strength. A simple and intuitiveiy appeal-

ing semiclassical description of resonances lor coupled-siate (Feshbach) resonance rvas

given. A brief review of Korsch's rvork is presented in this section and a tïrther inves-

tigation on the ùIgH modei s¡,-stem is made iri the foìlowing sectìons.
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6.2.L Semiclassical quantization of predissociating states

The semiclassical complex energy quantization condition is based on the diagrammatic

technique developed by Child as described in $2.3. Therefore the semiclassical waves

have the same properties in free propagation, reflection from a classical turning point

and connection matrix for the amplitudes on passage through a curve crossing as those

described in Chapter 2. It is noted that the phase change for passage through a curve

crossing took a slightly diferent form in Korsch's formula (Möhlenkamp and Korsch,

1e86):

B- ', -e-n'
(6.1)

B+

B-, e-"

(:;

(l
-Íve):(

):( -e-" B+
(6 2)

( 6.3)

where

B+

2r

,-(t /2)u+i(u-ulnv\

U (1,'* lr-(r) - k¡(r)ldr)

k+(r) l2p(E - va(r))lu2ln

and r-.,. and r- are the compiex crossing points of the adiabatic upper 7¡ and lower

7- potential curves in the complex coordinate plane. The diference in the phase may

originate from the methods of deriving the connection matrix (Korsch 1984). With

this connection matrix, Eq. (2.37) of Chapter 2 becomes :

[(B-¡2"r"* | ¿-2rvr2ia-]e2ip+ _ _1. (6.4)

This equation is the quantization condition which determines the complex resonance

energies. Korsch then introduced the quantum number function

11
N,(E) = ;{0* + ¡tntla-¡2"zia+ * ,-znv+2ia-1¡ (6.s1
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for curve crossing predissociation system so that Eq.(6.a) can be rewritten as

1Y,(8") : n * (6.6)

with integer values of n"

Such expressions are in accordance with the WKB quantization in the two

limiting cases. In the diabatic limit, the coupling strength goes to zero resulting in a

vanishing phase integral z, which imposes B- --r 0 and

(6.i)

In the opposite limit of large coupling strength, we have e-2n' --+ 0, B- --+ 1, and

1lrb+
rv" ---+ ;{"* + 0+): ; J,.' k¡(r)clr. (6.8)

Eq.(6.7) and Eq.(6.8), together with Eq. (6.6), are the same IVKB quantization con-

dition for bound states in the diabatic potentiai % (Eq 2.38) and the upper adiabatic

potential l/+ (Eq. 2.39). In Eq. (6.6), the semiclassical resonance states are numbered

by an integer value n. There are two classifications for the numbering scheme. The

adiabatic quantum number no defined by the numbering in the adiabatic limit when

the coupling strength is very strong; and the diabatic quantum number n¿ for the dia-

batic limit. Therefore the numbering of the resonance is not unique in the intermediate

coupling region. A resonance state can be numbered by a diabatic quantum number

as well as an adiabatic quantum number.

6.2.2 Application of the semiclassical quantization

Numerical calculations were performed for the above semiclassical complex energy

quantization theory for a model curve crossing system of IIgH (Ilöhlenkamp ancl lio-

rsch 1986) with the pobential curves

1

,

Vî) 95817 .22 ex p( - 0.7 87 247 7 r ) -r õ.i5 9. 82-l cn¿- 1
(6.e l
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V(r\

Vr(r)

: 38339.19(1 - erp(-0.9766027(r - 1.736154)))' - 100.2809 'rn-(0.t0)

= A¿n¿exp(-(r - 2.82a)'?) (6'11)

which are shown in Fig. 6.1 as the solid lines with the internuclear distance r in Å'

The reduced mass was i.¿ 
: 1763.0698 a.u. The realistic value of the coupling strength

for MgH is A¿nt :6822.694 cm-L or 0.031 a.u. which is almost in the adiabatic limit.

In ord.er to stud.y the influence of the coupling strength on resonance spectrurrr, A¿n1

was varied from values near the diabatic limit to values near the adiabatic limit. The

calculated. results of Vlöhlenkamp and Korsch (1986) are reproduced in Fig. 6.2 and

Fig. 6.3. These results shown that

1. In the diabatic or adiabatic limits, the system decouples and there are bound

states in the diabatic or adiabatic potentials V2 ot V¡'

2. lvith increasing coupling strength. all the predissociating semiclassical resonances

approach the bound states of the upper adiabatic potential 7a with vanishing

line width.

3. With decreasing coupling strength, most of the semiclassical resonances approach

the bound. states of the diabatic potential % with vanishing line width. How-

ever, there is an unexpected exception for the resonance state of n" : 18. The

resonance positions (or the real part of the resonance eigenvalues) for resonance

states flø : 17 and no : 18 both approach the same position as the diabatic

resonance n¿ : 30. The width of the state no : 18 goes io infinity resulting in

the vanishing of the resonance state while the line width of state no :17 goes to

zeTo.

l. Some of the resonance states are very insensitive to the variation of the coupling

strength while others are extremeiy sensitive and show pronounced changes in

resonance positions and rvidths in the intermerliate corrnling region.
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5. The transition from the diabatic to adiabatic regime occurs in a small well local-

ized coupling region, where all the curves show more or less pronounced changes.

6. The resonance energy vs width trajectories show various types of behavior such

as humps and loops.

Although some of the properties such as (1) and (2) are expected, the reason

for the behaviour of some of the resonant trajectories, for example no : 17 and 18, is

not evident from their analysis.

6.3 The Complex Scaling Method

Möhlenkomp and Korsch (1986) commented that the appearance or disappearance

of resonant states may be an artifact of the semiclassical solution, so to verify that

the semiclassical behavior can also be observed in the numerical integration of the

coupled Schrödinger equation with the complex scaling methods was carried out and

is presented in this section. The same potential curves Eq. (6.9) - (6.11) adopted by

Möhlenkomp and Korsch (1986) were used and the coupling strength A¿,,¿ was also

varied over the intermediate coupling region.

The complex energy eigenvaiues of the coupled equations were calculated using

the method as presented in Chapter 2 and Appendix D. Complex rotation of coordi-

nates was applied only where |rl > ro with r + r0 + (r - rs)exp(il), rs: 0.07å and

0 : 0.07 rad. This is the exterior scaling transformation which has better numerical
et *l-

stability (Brandasf987). Johnson's ¡enormalized Numerov method (Johnson 1978)

is used to solve the complex coupled equations. Calculations of the complex energy

eigenvalues were begun at the diabatic or adiabatic limit where the bound state eigen-

value could be used as the starting approximation. Then, as the coupling strength

lvas changed by successive increment, the prer.ious solution was used as the starting
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approximation. The variation of the energy of each resonance is represented by a con-

tinuous trajectory as a function of coupling strength. In this way, the resonance state

can also be numbered by the quantum numbers nd or no and a continuous trajectory

linking the diabatic or adiabatic limiting cases can be traced.

Calculated resuits are shown in Fig. 6.4 and Fig. 6.5 which are in good

agreement with those given by the semiclassical method (Möhlenkamp and Korsch,

1986) except for resonance states of very large rvidth which probably arise from the

extreme sensitiviiy of resonant character to the potentiai curves and therefore the

wavefunctions, as described later.

As expected, the resonances approach the eigenvalues of the diabatic or adi-

abatic bound potential with decreasing or increasing coupling strength respectively,

with the widths reducing to zero. There is interesting behaviour in the intermediate

coupling region where the transition from weak to strong coupling occurs. Some res-

onances show pronounced shifts and there are regions where adjacent resonances can

merge or split as the coupling strength changes. Since the number of resonance states

in the diabatic limit are generally not the same as those in the adiabatic limit in their

respective energy region, it follows that some resonance states have to vanish or ap-

pear in the intermediate coupiing region as the coupling strength changes to match

the resonance states in the other limit (Fig. 6.2 and Fig. 6.a). The complex scaling

method, as weil as the semiclassical quantization method, only determines resonance

positions and widths and is therefbre unable to give a satisfactory description for the

origin of these changes as well as the rapid and pronounced shift in resonance positions

that sometimes occur. It can onl;r be demonstrated that the semiclassical behaviou¡

described in the previous section also occurs in the integrated solution. A better

understanding of its origin is presented in the following sections where a novel inter-

pretation is presented for the change in resonance states from diabatic bound states to

adiabatic resonance states as the coupling strength is incleasecl.
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6.4 The Maximurn 66lnternal Amplitude" Method

The second method to investigate the resonance behaviour in the intermediate coupling

region is similar to the internal amplitude approach for shape resonances (Allison 1969,

Jackson and Wyatt 1970) in which the resonant position of a quasibound state can be

determined as that energy at which the internal amplitude of the wavefunction, normal-

ized by its asymptotic amplitude, reaches a maximum. This idea was adopted for the

two channel spectrum where the maximum amplitude of the closed channel wavefunc-

tion, normalized by the asymptotic amplitude of ihe open channel wavefunction, was

used to identify the resonances of a curve crossing system when the coupling strength

is nea¡ the diabatic limit (Lefebvre 1990). It is proposed that in the strong coupling

limit a similar procedure can be used to identify the resonance states. In this case the

adiabatic potentials are used with the adiabatic bound state normalized by the open

channel wavefunction,

However, in the intermediate coupling region, the closed channel is not read-

ily identified. Examples of the diabatic and adiabatic bound state (bold lines) ancl

continuum state (dashed lines) wavefunctions together with the potentiai curves (dot-

ted lines) for some special cases are shown in Fig. 6.6. The four special cases are:

(i) Ar"r: 0.0065 a.u., E:23800.0 crn-l: the bound state is on resonance in the di-

abatic representation and off resonance in the adiabatic representations (as discussed

later). (ii) A¿* : 0.0065 a.u., B:24245.0 cm-l: the bound state is on resonance in

the adiabatic representation and of resonance in the diabatic representations. (iii)

Aim :0.0065 a.u., E:29829.66 cm-L: the bound state is on resonance in both repre-

sentations. (i") A¿nt:0.0065 a.u,, E:18790.0 cm-r: the bound state is off resonance

in both representations. It appears in Fig. 6.6 that the total wavefunction has both

diabatic and adiabatic character. Even in the intermediate coupling region, when the

bound state wave functions reach their maximum values (on resonance), their form is

very close to that of the eigenfunctions of a single channel bound state showing strong
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Figure 6.6: Examples of the diabatic and adiabatic bound state (bold lines) and con-

tinuum state (dashed lines) wavefunctions together with the potential curves (dotted

lines) for some speciai cases (see text). Note that t,he rvavefunction scale is not lhe

same in (i) to (iv), which is evident from ihe different amplitudes of the open channel

rvavefunction at large internuclear distance.
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bound character while the wavefunctions for off resonance states have strong mixed

character. It is therefore useful to investigate this transition using an approach which

separates out the diabatic and adiabatic contributions to the resonance. In this study,

it is assumed that the change from the dìaba,tic to the adiabatic limit as the coupling

strength increases is smoothly continuous and the contribution to the resonant sta,te

can be considered as part diabatic and part adiabatic. An "internal amplitude" which

uses both the diabatic and adiabatic bound states is proposed as a criterion for the

resonance which is given by

P = Pd + P" (6.12)

where

pa : ff, ly!¡r)lrdr
(6. 13 )P" : [f, lyi(r)l'?dr

with Xf(r) and ¡fr(r) the diabatic and adiabatic bound state wavefunctions normalized

by the asymptotic amplitudes of the continuum states.

This definition provides a useful explanation for resonance behaviour in the

intermediate region although a full theoretical examination of the reason that the

bound state components of the two different basis can be added and show consistent

results needs to be investigated.

The spectrum P(E)/2 defined by Eq. (6.12) is shown in Fig. 6.7 togerher

with Pd and P" for a range of coupling strength. The peak positions of the resonance

spectrum were located and marked in Fig. 6.4 and widths at the half maximum u¡ere

measured and shown in Fig. 6.5 where they are compared with the results of complex

energy quantization method. Resonance positions given by the maximum value of this

"internal amplitude" and the widths measured at its full width at half maximum are

found to be in good agreement with calculations by the complex scaling method. A

discrepancy occurs for widths approaching infinity, but it is very small when comparecl

with the width and is within the uncertainty originating from overlapping wings of

neighboring resonances. As Child t.1991) has pointed out for the case of shape reso-
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nances and tunneling pre-dissociation, the precise equivalence between the resonance

positions and width associated with different resonance definitions such as maximum

internal amplitude, Siegert eigenvalue, and phase shift can be expected only in the

sharp resonancc limit.

6.5 Interpretation of the Intermediate Coupling

Region

With the "internal amplitude" defined in the previous section, the origin of the be-

haviour in the intermediate coupling region is readily interpleted. The summation of

diabatic (Pd) and adiabatic (P') resonant specirum in Fig. 6.7 demonstlates how the

total resonance spectrum (P) changes in the intermediate coupling region from near

diabatic to near adiabatic case as coupling strength increases. lVhen adiabatic and di-

abatic tesonant states coincide, the resonance is exceptionally sharp, conversely, when

they are not coincident all the diabatic and adiabatic resonances as well as the total

resonance are broad.

As the coupling strength is increased from the diabatic limit, the spectral

changes in Fig. 6.7 in the region of broad resonances are due to the adiabatic character

of the spectrum becoming more apparent and the resulting resonances having a large

phase shift relative to the diabatic resonances. Thus, the resonance position undergoes

a rapid shift from nea¡ diabatic (Pd) toward near adiabatic (P") resonance location.

The splitting of na : 30 or the vanishing of no :18 is also evident. As illustrated in

Fig. 6.7, a weak peak in P" starts to appear as the coupling strength A¿,r¿ increases

to 0.0065 a.u. However, since the diabatic resonance still dominates, there is no ad-

ditional resonance in the total spectrum until Aint = 0.008 a.u. when the adiabatic

resonance starts to become the dominant component. From the adiabatic limit, this

can also be interpreted as the process b¡r which the combined resonances which are
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Table 6.1: Potential Parameters for

Curves B (crn-l) C (cm-t) a
"o 

(Å)

(u) 95817.22 5273.829 0.78 0.04

(b) 95877.22 5609.829 0.78 0.003

lc) 93000.0 6561.0 0.80 0

antiphase at the spectral region of 33500 cm-| cancel at A¿n¿ : 0.0079 a.u. causing

the width of one of the resonance states to approach infinity and the resonance state

to vanish. It is expected that such a region would be very sensitive to any change

in the shape of the potential curves. In an attempt to investigate the effect of the

relative resonance positions of the two components on the development of lesonance

trajectories, the repulsive potential curve

fi(r) - B erp(-a(r-rs))*C (6.11)

was changed siightly to give different adiabatic ievel spacings while at the same time

keeping the adiabatic ground state in the same position as the coupling strength ap-

proaches zero. The parameters for diferent potentiai curves are listed in Table 6.1

and the corresponding potential curves are shown in Fig. 6.1 in comparison with the

potential curves of NIgH.

The resonance trajectories as a function of coupling strength for different re-

pulsive potential curves (a, b and c in Fig. 6.1) in the lower energy region of Fig.

6.4 are shown in Fig. 6.8 as (u), (b) and (c). It is noticed that for potential curves

with greater adiabatic level spacings than ùIgH (Fig. 6.8(a)) bhere is a vanishing of

the adiabatic resonance nd: 7 (or splitting of the diabatic resonance n¿--2I) in the

higher energy region and a vanishing of the diabatic resonance n¿ = L5 (or splitting

of no : 2) in the lower energy region. As the adiabaùic level spacings decrease, the

vanishing states approach in energ¡' as shown in Fig. 6.,3(b). For the potential curves of

\,IgIl where the adiabatic level spacings are tïrther ciecreased. the vanisirinq resonant
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states (no :4 and n¿ : 17) are at the same energy as shown in Fig.6.4. At smaller

adiabatic level spacings than those of MgH, these two splitting merge resulting in a less

pronounced change in the diabatic-adiabatic transition region and a smooth transition

as shown in Fig. 6.8(c). Thus we see that for the four situations considered above, the

number of resonant states in the diabatic limit are the same as those in the adiabatic

limit in the respective energy region. However, a change in the number of resonance

states can stiil occur because in smaller energy regions the number of resonance states

of the two contributing components may not be the same. As the adiabatic level spac-

ings change such regions also change and can merge and then vanish as shown in Fig.

6.8. These examples illustrate the extreme sensitivity of the shape of the resonance

spectrum to the shape of potential curves in the intermediate coupling region. This

also explains the smail discrepancy between the semiclassical and coupled equation

methods in these regions stated earlier. The emplo¡rment of approximate wavefunc-

tions in the semiclassical calculation can be regarded as equivalent to a small change

in the potential curves in the coupled equations method which significantly affects the

behaviour of broad resonances.

Fig. 6.9 shows the variation of Landau-Zener parame|er P¡" with energy for

different values of the coupling strength. We find that P¡": 0.5 f.or A¡n¡: 0.00625

a.u. at E:23000 cm-L and for Ain : 0.008 a.u. at E:33500 cm-r where it can be

seen from Fig. 6.7 that clear transitions occur in the spectrum. Thus the agreement

with the prediction of the Landau-Zener pa¡ameter in the calculation of nonadiabatic

transition between the two adiabatic states is clearly evident.

The results of this study also show that outside a narrow intermediate cou-

pling strength region near P¡" = 0.5 the diabatic (Pd) or the adiabatic (P") resonance

spectrum alone gives a very good approximation for the overall resonance position and

width. Near Pl, : 0.5 the "bound state" is not obvious and it is necessary to consider

the combined effects of the diabatic and adiabatic bound states to determined the total
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resonance.

6.6 A Study of a Different curve crossing system

In this section, the proposed "internal amplitude" method is applied to another model

curve crossing system which has been studied by different authors (Child and Lefebvre

1978, Lefebvre 1990). The potential curves are given as:

Vt(r)

v"(r)

(6.15)

(6.16)

= 18154.95 erpl-2.2039(r - 2.48)l - 8000 crn-1

: 15000 lL - exp(-l.9685(r - i.6))lt cm-l

and shown in Fig. 6,10. The coupling strength Vtzis taken to be independent of the

internuclear distance and is also varied over the intermediate coupling strength. The

reduced mass is 8 atomic mass units.

Fig. 6.11 and Fig. 6.12 display the corresponding calculated results for this

curve crossing system. The "internal amplitude" method again shows good agreement

wiih the complex scaling method. The splitting or vanishing of resonance stabes in the

intermediate coupling region are clearly identified and can be explained in the same

r¡¡ay as that described in the previous section.

The Landau-Zener parameters for this predissociative system are shown in Fig.

6.13. Uniike the MgH model, it was found that the transition between the diabatic

and adiabatic case for this curve crossing system, with the complex scaling method

as lvell as the "internal amplitude" method, does not occur near a coupling strength

where the Landau-Zenet parameter Pb = 0.ó! This may be caused by the difference

between the vibrational spacing of the diabatic and adiabatic stabes. As can be seen

in Fig. 6.13 that the adiabatic vibratìonal spacing is about brvice of the ciiabatic one,

rvhereas they were about the same for \fgH. [t is found in this stud-v that the mixing
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parameter of the diabatic and adial¡atic character r given by (Child 1976):

¡ = uha2f h,u¡ ' 10'tz¡

as shown in Fig. 6.14, would be a better measure for the location of transition' ltwz

and ñ,r,.r..'. are the vibrational spacings of the diabatic and adiabatic states and

.r-l-t. (6'i8)- 
Pt'

Referring to Fig. 6.11 and Fig. 6.12, it can be seen that the transition between

the diabatic and adiabatic case occurs at r : 1. This is also true for the NIgH model

since the two ievel spacings are nearly equal at the intermediate coupiing region' so

thatz=1for Pt":0.5'

It is apparent that the transition located a't x = 1 rather than P¿, - 0'5 would

have a strong relationship with the amplitude of the semiclassical wave function at the

left turning points of a curve crossing system (child 1976), ie. when the two amplitucle

are equal:

r I l2n (6.1e)At

A2

(l+r)
1

(l+r)

(E - E)' +l2l+
I l2tr (6.20)

(E - ø¡z +t214

The physics of this relationship is stili not clear and is under investigation.

6.7 Summary

The maximum value of the "internal amplitude" P obtained by summing the contribu-

tions from the diabatic and adiabatic bound stabes is proposed as a criterion for locating

a resonance and the spectrum of P has been used to evaluate resonance widihs. This

method has been used to investigate the transition tïom the near diabatic to the near

adiabatic case where the mixing parameter r : 1. The method gives resonance posi-

tions and widths which are in excellent agreement with those calculatecl by the complex
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energy quantization method. The complex changes in the resonance spectrum, such as

the splitting or vanishing of resonances, is explained by considering the contributions

from the diabatic and adiabatic bound states. In these regions, the broad diabatic Pd

and adiabatic Pd resonance can be out of phase and as their relative amplitudes change

there may be cancellation and/or rapid movement o{ their summed peak. It is also

shown in the resonance spectrum that outside a small region where r - l the diabatic

(Pd) or the adiabatic (P') resonance spectrum provides a very good approximation

for the overall resonance spectrum and thus the resonance positions and widths. The-

oretical justification.for adding the bound components of two different basis, however,

needs further investigation.



Appendix A

Solution of the Schrödinger

Equations

solution of the schrödinger equation provides a full description of a quantum mechan-

ical system. However exact analytical solutions can only be obtained for a few simple

systems. Methods for numerical solutions of the equations for central fields exist for

single or multi-channel cases (cooley 1961; shapiro 1972; Norcross and seaton 1973;

Johnson Ig77,Ig78; Goorvich and Galant 1992). Among them Johnson's renormalized

Numerov method (Ig77,1973) has the advantages of efiftcient computer time and ease

of programming. The calculation of wavefuncbions and eigenvaiues for single channel

as weli as multi-channel cases can share the same proglam. It is the best method for

the purpose of this study and a brief review of the method is given in this appendix'

The application of this method for complex scaling method is given in Appendix c'

r71



4.1- Solution of the coupled equations

For a two channel case, the diabatic coupled equations can be written in a compact

matrix notion:
l-d2 -...l
l,* +a(")l v(r):o (4.1)

where

172

V(r) is the electronic Hamiltonian matrix

(")1,V(')a :þw, (A.2)

(A.3)v(r) : Vrt(r)

Vrr(r)

Vtr(r)

Vrr(r)

I is the unit matrix and

(A.4)

The renormalized Numerov method (Johnson 1977, 1978) has proved to be a

very efficient method for numerical solution of the Schrödinger equation. It makes use

of the three term recurrence relation

[I - T"+r]pn*l - [2r + 10T"]v" + [I - T"-r]pz¿-l : 0 (A.5)

where pn: p(rn) and T,. : -{}Q{"") with i the grid spacing. Defining the matrix

F,,: [f -Tn]g^ (A.6)

and substitute into Eq.(4.5) gives

Fn+r -UrFr,*F,"-r:0 (A.7)

where

u,n : (I - T")-t(2I + 10T,). (A.8)

':(î;)

lntroduce the ratio matrix

Ri = F'+rF,-l (A e)
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as the outward propagation matrix, and

Rl, : F,,-tF" (A'10)

as the inward propagation matrix. The wave function can be obtained as

,p, : [R;(1- T,)l-t(I - T'-r)?,-r (A'11)

by iterating outward; or

p, : [R;(1- T,,)J-t(I - T'+r)?",+r (A'12)

by iterating inward with the basic recurlence relation of the propagation matrix

R; : (r - T,)-'(2r + 10T') - (Ri-')-' (A'13)

R; : (r - T,)-'(2r + 10T,) - (Rl"*r)-' (4.14)

which can be calcuiated frrst using the boundary conclitions. The initial condition for

(RB)-t is obtained by considering the fact that the wave functions approach zero at

the inner boundary (the classicalforbidden region). Therefore it is reasonable to make

po : 0 while w # 0.It follows from Eq.(4.6) and Eq.(4.9) that (Rfi)-l = 0'

For an attractive electronic bound state coupled with a continuum state, a non-

zero solution of the Schrödinger equations exist for energies above the dissociation limit'

Therefore the propagation matrix Rfl can be calculated outward up to a sufficiently

large value of r : r,, where the amplitude of the continuum wave lunction is constant

and the amplitude of the bound states wave function approaches zero. At this point

the appropriate boundary condition for the wave function is

?n:

where a is a non-zero value to be decided b¡r normalization'

Normalization is performed for the continuttm r,vave finction

(h")-' 
lo* *r,^,{r)12,.1(r)r/r : 6(À' - À) (A.16)
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which requires the amplitude of the continuum wave function /2 al rn to be norm alized

to (8p,c2 l(E -V(r")). Such a normalization will also affect the amplitude of the bound

state wave function.

The adiabatic coupled equation can be solved by the Rung-Kutta method for

second order differential equations. However it has been proved that it is more efficient

to solve the diabatic coupled equations using the above method and obtain the adiabatic

nuclear wave functions by the transformation Eq. (2.18) (Wang, 1989).

A.2 Eigenvalue and Eigenfunction for a Bound

State

The same procedure can also be applied for the bound eigenvalue problem. The follow-

ing discussion wiil be restricted to the single channel bound state so that the matrices

discussed above become scalars. For a bound potential eigenfunctions exist only at

eigenvalues and the initial condition at the outer boundary is the same as that at the

inner boundary. To find an eigenvalue it is assumed that the eigenvalue is located

between E¡ and.E¡¡ where Et 1Ea. Ãn initial energy of

E :0.5(Er i E¡¡) (A.17)

is used to calculate the propagators .Ro outward and -R' inward. They are matched in

the classical allowed region near one of the turning points. If E is the eigenvalue, the

solution calculated inward and outward should be the same at the matching point. It is

an advantage to choose the matching point where the wave function has its maximum

or minimum values and to avoid the node positions. The nodes of the wave function can

be counted by counting the conditions that -R,, < 0, which implies the wave function

crosses zero inside the classical region. If the nodes Ms ate greater than the require

vibrational quantum number u, the energy for lhe calculation is too high so set E¡r - fi,



775

otherwise set E¡, - E. Then the next energy E : 0.5(En * E¡') is used for the

calculation. If NIø: u, then D(E) defined as

D(E): (Ãl+r)-t - R"^, (A'18)

is a well behaved. function of E that it is zero at the eigenvalue and has a positive slope'

SetE¡¡_ElorD(E)>0,orEr=EforD(E)(0tostartthenextcalculation.

This procedure converges linearly and is iterated until E¡r - E7 is smaller than the

accuracy required.

The matching procedule ensules that the eigenfunction is the same for inte-

gration of the Schrödinger equation inward and outward'

The eigenfunction is obtained by setting ?^ :1 so that Eq' A'11 and Eq' A'12

can be used to calculate the wave function' Its absolute value 9,(r*) is obtained by

normalization to unitY.

,p,?,): ç(r^)l I lrØf O, (A.le)

Examples of the bound state wavefunctions a¡e shown in Fig'2'5' Also shown

in Fig.2.5 are comparisons of the bound state wave functions with the closed channel

on resonance wave functions'



Appendix B

The Connection Matrix

A very attractive feature in Child's semiclassical theory for a curve crossing system is

that the theory is readily cast into a diagrammatic form. This serues both to underline

the common physical feature of a diuerse rûnge of obserued effects, and to facilitate the

mathematical argument, because each linkage in the diagram is reflected by a rnatrix

product (Child I974b). The general method relies on the changes in the coefficients (P

and Q as in Eq. (2.26) and Eq. (2.27) in the nonciassical region. The basic elements

of the connection matrix related to this study are given in the following section.

(i) Free propagation of the semiclassical wave from 11 to 12 leads to a phase

change

Q, €t1 ,
(B.1)

Q, 0

where

I- 1,"'
k(r)dr (8.2)

(ii) Reflection from a classical turning point will cause a phase change "f -u,

(iii) Passing through a curve crossing. The coupled equations are solve in the

crossing region (Bandrauk and Child 1970, Child, 1974) to bridge the wave functions

i76
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Table 8.1: Numerical values of the phase corrections ¡

u X u X u X V X

0.0 -0.785 0.3 -0.287 0.6 -0.152 0.9 -0.098

0.1 -0.512 0.4 -0.226 0.7 -0.r29 1.0 -0.090

0.2 -0.376 0.5 -0.183 0.8 -0.111

t77

(B 3)

(8.4)

(B.5)

(8.6)

(8.7)

(8.8)

between the crossing region.

where

(1 - Àz¡t/rr'r, -À

À (1- ¡z1t/2"-;x

(! - Àz\tlz";x, À

-À (I - ¡zltlzr-;x

À : eæp(-rv)

L, = -#(1,'- [k-(r) - ka(r)]dr)

k+(')

X : argl(iu) - vlnu * u -l rf4

where r..,u and r- are the compiex crossing points of the adiabatic upper 71. and lower

V- potential curves in the complex coordinate piane. 1 is a phase shift caused by the

curve crossing. Table B.1 list some of its values'

Applying the cu¡ve crossing connection fotmulas to the rvave functions i'oilorving
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the diagram in Fig. 2.5 one finds that
I

I

¡

I

I

ì A'+

Q'- )(À

(r - ¡z¡t/2";x -À

(r - ¡z¡r/2"-;'

(l - ¡z¡tlz"t*

-l

erp(Zia¡ - ir l2)

0

À

0

erp(2ia- - ir l2)

)(;r )(1 - ¡z¡t/2"-';*

(B.e)

For resonance states the Siegert outgoing wave only boundary condition for

resonance requires Q'! :0, therefore

a'+

Q'-

(L - )2)exp(2ia¡ t 2iy - ir 12) * À2eap(2ia- - ir l2)

À(1 - À')'/'"*p(-ir lz)(exp(2ia¡ * iÐ - exp(2ia- - ix)

(L - À2)erp(2i0¡) I À2exp(2i02) l,
I (-Aî).

À(1 - À')'/'"*p(-iv)(exp(2i0+) - exp(2i02) )

Q,;

(8.10)

with the relationship of 8* : q'*exp(-zi/+ + ir l2).

The derivation of Child's semiclassical theory is beyond of the scope of this

study. For more details one can refer to the original work of Child (1970, I974, 1976,

1ee1).



Appendix C

Computation of the ComPlex

Eigenvalues

The complex rotation of coordinates results in boundary condiiions for a quasibound

system that are the same as a bound state. Therefore the computation technique

described in Appendix A can also be used to calculate the complex eigenvalues upon

the change y + reil. Consider a two state problem where the coupled equation are:

h2 d2

- ztt dr'
h2 d2

+ 
"-'nt 

(vfrçreio) - E¡

+ 
"-'io çvrlr(rei\ - n)

x\e,Ð : -v$(reio¡xl?,e) (c.1)

2p, dr2
o) -v!r(reio)x1?,Ð (c.2)

with Vr the closed channel and, Vz the open channel. The initial condition for inner

boundary is the same as in Appendix A:

,1.

Xz (r

while the outer boundary condition is similar to that of a bound state for srrficientlv

large r,, in the asYmPtotic region

.:(:)

,":(:)

(c.3)

r79

(c.4)
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The propagating and matching procedure for a bound state described in Ap-

pendix A is ihen used to calculate the complex eigenvalues. In the calculation, an

initial trail resonance energy Eo is chosen and the matrix propagated and maiched at

r- where the determinant

D(E): lR; - (R-+,)-tl (c.5)

vanishes at each eigenvalue. Convergence to the eigenvalue is achieved by iterating the

calculation using the Newton-Raphson method which predicts the next trail energy as

(c 6)

The calculated results for ihe resonance energy and line widths using CSIVI for

a curve crossing system proved to be in excellent agreement with those using the real

coupled equations, and Child's semiclassical theory (Lefebvre 1990).

The development of complex scaling method (CSIU) provides an approach to

the direct study of resonance through the introduction of complex variables. The

complex coordinate approach treats resonance states as the bound states.



Appendix D

Second E{armonic Generation

With the advent of the intense and coherent light mad.e available by the laser, the

optical properties of the medium such as its refractive index become a function of

the light intensity. when trvo or more light waves interfere within the medium, the

principle of superposition no longer holds. The polarization of a nonlinear medium by

an electric field E is usually written as

P = eoXE (D 1)

where eo is the vacuum permittivity and x is the susceptibiity of the nonlinear medium

given by a power series in the form

X=Xt+x2E+xrE2+"' (D'2)

Therefore the polarization takes the form

P eo(xr* XzE¡xz4z ¡" )E

eo(xÅ*xr9'*x.Et+"')

(D.3)

(D.4)

The first term in the above equation represents the linear optics. Although ihe coeffi-

cients of the higher-power terms are usually very small, the high coherence of laser light

allows the beam to be focused onto a very small spot size of the order of rvavelength,

Ls1
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producing electric fields of the orders of the fields binding electrons to nuclei in the

optical medium (1010 V/m) which allows the higher-power terms to be appreciable.

These effects are referred to as nonlinear effects because they are nonlinear in E.

D.1 Theoretical Review

The second term in Eq.(D.2) represents the most common nonlinear phenomena of

second harmonic generation (SHG) and frequency mixing. When two light beam E1 :
Eücos(u1t) and E2 - Es2cos(u2t) are incident into a nonlinear medium, the second-

order polarization

P2 - ¿Y(2) gz (D.5)

where

gz (Er * Ez)'

Elrcos2uft I Elrcosuzt * Z4ot4o2cosu,lt cosa2t

(D.6)

(D.7)

(D.8)

(D.e)

1

2
(83, + E3) + Elrcos2ufi Elrcos2u2t I1

2

1+;
EúEs2[cos(rt + uz)t + cos(u1 - rr)t]

contains a dc polarization and ac components at second harmonic frequencies 2u1,

2a2, and sum and diference frequencies ø1 * u)2. XQ) is the second order susceptibility

which is a tensor with components ¡jr'l a"p""ding on the symmetry properties of the

nonlinear crystal.

In general, experiments based on the second order nonlinear susceptibilities are

carried out in crystailine media which do not process inversion symmetry in order to

have a non-zero yl'rl. n"" ples of the crystals are KDp, ADp, cDA, Lirybo3,BBo,

LBO etc.
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D.2 The electromagnetic formulation of the non-

linear interaction

The coupled equations describing the nonlinear interaction of second harmonic gener-

ation (SHG) can be derived from the Maxwell equations (Yariv, 1975 and Craxton,

1931) in the form of

dEt
dt

dEz

dt

= -iI{ EiÛre-i^k"

: -izl{ Elei^k"

(D.10)

(D.11)

where I{ : #(nt(u)n2(2u))tt'o# with n the refractive index, ar the fundamental fre-

quency a¡1d, d,"¡ ¡ the effective nonlinear coefficient. Àk : k(2u) -2ky(u) represents the

phase matching condition. It is also assumed that the nonlinear medium is transparent

to the fundamental and second harmonic radiation so that the absorption effect can

be neglected.

The conversion efficienc¡r of frequency doubling is usually quite low, therefore

the intensity of the fundamental wave can be regarded as constant in the nonlinear

medium so that d$ldz: 0, and

L- 
'i^kL 1

n2 - -i2I{Ei+ (D.12)

The intensity is (Craxton 1981)

4: {ø} - 2I{2L2cttsIlsinc2(}ltr'¡ (D.13)
2"

where IinlVfm2 and E in (V/m), sinc(r) = Y, and L is the total length of the

nonlinear medium. From the above equation, it is prerequisite for efrcient second

harmonic generation to have Ak:0, bhat is

,{.(2",') : Zk(u). (D.14)

If 
^k 

I 0, the second ha¡monic wave generaterl at clifferent location of the cr1,'stai is
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not in phase and results in the interference effect described by the factor

1
sinc2( LkL)

2

and characterized by the so called "coherence length"

(D.15)

(D.16)
,2nu"=TE

which gives a measure of the maximum crystal length that is useful in producing the

second harmonic power. A longer length than L" can only produce a negative effect for

the total second ha¡monic power because the second harmonic wave generated after tr"

is out of phase with that generated before L" and the interference effect will decrease

the total intensity.

D.3 Phase matching technique

The major difficulty in efficient frequency doubling is the dispersion effect rvhich limits

the coherence length and therefore the second harmonic power. The technique that is

widely used to satisfy the phase matching condition Bq. (D.la) takes the advantage of

the natural birefringence of a anisotropic crystals. In some nonlinear crystals, if the

direction of the laser through the crystal is chosen such that n2. fot the E-ray equals

n, for the O-ray, the phase matching condition can be satisfied at this direction for the

chosen wavelength. The situation is shown in Fig. D.1. The phase matching condition

is then limited by the beam divergence and the spectral band width of the laser.

If Ak : 0 is satisfied, the nonlinear coupled equations can be solved analytically

and

where I sac : (i-# ør(0))-'

Er(L) : Eú})tan h(L I I s HG) (D.17)
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D.4 Enhancement of the conversion efficiency

From Eq. (D.13), for efficient frequency doubling one has to increase the intensity of

the laser, reduce the phase mis-matchcd Ak, incrcasc thc cohcrence length and the

crystal length. Diferent technique have been developed to improve these parameters.

Focusing is the most common way to increase the laser intensity for frequency

doubling and therefore the conversion efficiency. Because the frequency doubler is

sensitive to beam divergence in the d di¡ection and not sensitive in the p direction as

indicated in Fig. D.1, focusing using a cylinder lens which focuses in the / direction

only can achieve a better result.

For cw laser, the output coupling of the laser cavity is normally very low,

about a few percent. Therefore the light intensity inside the cavity is much higher and

it is an advantage if the frequency doubler is placed inside the laser osciliator cavity

which can aLso be used as an output coupling and the cavity mirrors can be both 100%

reflectivity at the fundamental frequency. Furthermore? with a proper output coupling

arrangement, the 2u wave can pass through the crystal twice before leaving the cavity.

This effectively doubles the crystal length and inc¡eases the conversion cfficicncy.

For high laser intensity, the use of two frequency doublers in different combi-

nation enables one to obtain high conversion efficient in a large dynamic region. (W.

Qin, 1985).

D.5 Characteristics of the BBO crystal

Beta-barium borate (BaB2Oa) or BBO crystal is a new nonlinear optical material

discovered recently (Chen et al. 1984, 1985). It is an interesting material characterized

by a wide range of transparency in both UV ancl infrared. Its large birefringence allows

phase matching for second ha¡monic generation in a large frequency region (1Sg-12õ0
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NLO properties of Type I BBO crystal for sHG at 640 nm (provided byTable D.1:

CASTECH

nm) with a large nonlinear coefficient (5.8 x ù6(I{DP)). These properties indicate

that the BBO crystal is potentially useful for many applications, especially in the UV

region. The optical, mechanical and thermal properties of the BBO crirstal have been

summarized by Eimerl et al (198i). For the purpose of this study, Fig. D.2 shows lhe

phase-matching angles and the angular sensitivity for SHG. Some nonlinear optical

(NLO) coeficients a¡e listed in Table D.i.

D.6 Conversion efficiencY

The BBO crystal used in this study is cut for type I frequency doubling from 580-700

nm, protectively coated with a dimension of 6 x 4 xT mm3 from CASTECH. The laser

beam is weakly focused into the crystal to prevent the divergence of the UV beam

because a suitable quartz lens was not available for collimation and the LrV power

is not a major concern in this study. The iuning angie is controiled by a personal

computer in accordance with the luning of wavelength and is driven by a DC motor

(Oriel D.C. Encoder ìIiker'v/ Driv") with a linear readout resoiution of 0.1 microns.

drr:5'8

d:n:0'05 x d1t

NLO Coefficient (d36(KDP))

,n ,tJ¡.tPhase matching angle (degree)

0.4Acceptance angle (mrad/cm)

+.2Walk-off angle (degree)

I GWf crn2 (10 ns); 7 GWf cm2 (250 ps)Damage threshold (at 530 nm)

The effective )íLO coefficients for frequencv dor-rbling is a iunction ol the cr1'5¡¿l
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orientation and therefore depend on the phase matching angle á:

d"JÍ = d,¡¡sin? * d,tcos?' (D.18)

Ar 640 nmd,"¡¡ :4.78d2ø(I{DP) and d36(1(D P)lro -0.78pm17 (craxton R.S. 1981)'

With no = N"(0):1.55 I{ =9.46 x 10-6 7-1. The peak conversion efficiency of the

BBO crystal is then

\ef Í

where L (cm) is the length of the BBO crystal and 11 (lvlcm2) is the intensity of

the fundamental wavelength. For our s¡rstem L:0'7 cm and assumed perfect phase

matched

rt"ÍJ :3.32 x l0-8.f1. (D'21)

Because the Gaussian temporal pulse for the second harmonic becomes narrower by

a factor of J2 than the fundamental, the overall energy efficiency for such pulse is

therefore less than the instantaneous efficiency at ihe peaks of the pulse by the same

factor.

: 2cuol{2 L2 ltr;rr'çf,,1*t'| (D.1e)

(D.20)



Appendix E

The electronic circuits of the

detectittg system

The UV pulses have a large energy variation due to the pumped dye laser and the

non-linear conversion of the BBO crystal. The electronic circuits, as shown in Fig. E.l

and Fig. E.2, performs a number of functions as follows:

o Uses a peak detector to hold the peak height of pulse (100ns) generated by the

pin diodes for the laser radiation. This minimises the contribution of ambient

light and noise to the integrate d signal. The peak detector decays to zero in

approximately 50 microseconds.

o Stores the peak height of the pulses for both reference and detector in sample

and hold circuits "c" and "d" provided the signal is above a minimum threshold

detected by the Schmitt trigger "a" and transferred by the sample pulse from the

monostable tte".

o Checks the peak height with the threshold Schmitt trigger detector "b" and if

greater than a preset level fires a monostable "f' which prevents the transfer pulse

from the delay monostables "g" and "h" reaching the second set of sample and

190
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hold circuits ,.j'and ,,k" through the action of the AND gate "i". This prevents

large pulses which are distorted by the limited voltage ¡ange of the peak detector

circuits reaching the second set of sample and hold circuits.

o If the intensity of the pulse lies between the required height range, transfers the

content of the first pair of sample and hold circuits "c" and "d" to the second

pair "j" and "kt'.

o Uses these voltages at A and B, which are equal lo the peak heights of the

reference and detector signals and constant between recorded pulses, as input

voltages to a pair of integrators "mtt and "n" '

o When the reference integrator "m" integrates down to a preset level, stores the

output of the detector integrator "n" in a sample and hold circuit "r" by the

sample pulse from monostable "q".

o The reference and detector integrators "m" and "n" are then simultaneously reset

by the MOSFETS "s" and "t" after a short delay through monostables "o" and

"p" to commence another integration cycle.

The output signal from the detector sample and hold "C" is thus the ratio of

detector to reference signai. Each integration represents the same integrated energy

in the reference signal and therefore constant signal to noise ratio. If the intensity

of the input signal (ie the intensity of laser radiation) falls, the integration rate is

reduced an{ this produces a stepped output as the wavelength is scanned. This stepped

output represents an accurate average ratio of intensities over the wavelength region

of the step. The scan is accepted if the waveiength region of the step is less than

0.I cm-|. Otherwise, either the iniensity of the laser radiation is increased or the rate

of wavelength scanning is reduced and the scan repeated.
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DETEqTAR

PEÀK DETECTOR

Figure E.1: The electronic circuits for the detector. It consists of a UV enhanced

photodiode, a high speed preamplifier and a peak detector which holds the peak level

of the laser signal.
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u" :0 - 3 (u) and the ratio of the Franck-Condon factors fot u" : 0

and 1 (b). 136

b.13 Comparison of the proposed potential curve with those of the other

authors. Note that the excited state potential curves of Schaefer et al

(1gS4) and Sakai et al (1992) are adiabatic potential curves while the

others are diabatic ones.

5.15 Comparison of the rotational constants B (u) and the vibrational spac-

ings (b) of the new potential curve with the published ones'

6.1 Vlodel potential curves for ÙIgH (solid lines) and the modified dissocia-

iive pobential curves a, b and c which are used to investigate the effect of

the relative resonance position of the diabatic and adiabatic components

on the overall resonance.

6.3 Variation of semiclassical resonance energy and width of the semiclas-

sical resonances shown in Fig. 6.2 with the variation of the coupling

strength. The numbers denote the adiabatic quantum numbers. The

arrows indicate increasing coupling strength (Atïer Möhlenkamp and

Korsch. 1984).
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137

116

6.2 Variation of semiclassical resonance positions as a function of coupling

strength (solid lines). The thin lines on the left mark the diabatic eigen-

vaiues f.or Vl and the dotted lines indicate the adiabatic eigenvalues for

V¡ as a function of coupling strength. The diabatic quantum numbers

are given on the left of the trajectories while the adiabatic ones are given

on the right (After iVlöhlenkamp and Korsch, 1984). 148

i+9
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6.4 Resonance trajectories, calculated by the complex scaling method, as

a function of coupling strength for the potential curves of MgH (solid

lines). The thick lines on the left mark the diabatic eigenvalues for

V and the dotted lines indicate the adiabatic eigenvalues for I as a

function of A¿n¡. The o indicates the peak positions of the resonance

spectrum in Fig. 6.7. r52

6.5 Comparison of the variation of resonance energy and width as the cou-

pling strength is changed for complex quantization theory (solid lines)

and internal wavefunction method (x ) which are measured from Fig.

6.7. The arrows indicate increasing A¿,,¿. 153

6.6 Examples of the diabatic and adiabatic bound state (bold lines) and

continuum state (dashed lines) wavefunctions together with the poten-

tial curves (dotted lines) for some special cases (see text). Note that

the wavefunction scale is not the same in (i) to (iv), which is evident

from the different amplitudes of the open channel wavefunction at large

internuclear distance. 155

6.7 Resonance spectrum P/2 (bold lines), Pd (dash lines) and P" (dotted

lines) for a range of coupling strengths A¿*. The symbols (*), (A) and

(t) indicate the resonance positions from complex quantization method

and the eigenvalues for the diabatic and adiabatic bound states respec-

tively. The diabatic states (A) range from n¿ : 13 at the left to nd - BJ

at the right. The energies at which Pt, :0.5 are marked m O, shifting

from lower to higher energy as the coupling strength increases. rs7

6.8 Resonance trajectories as a function of coupling strength (solid lines) for

different dissociative potential curves (u), (b) and (c) as shorvn in Fig.6.1.160



6.9 Variation of Landau-Zener nonadiabatic transition probability for the

potential culves of MgH as a function of enelgy for different coupling

strengths. The change in coupling strength is 0.005 a'u' for neighboring
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r64

165

185

curves.

6.12 Resonance spectrum P/2 (bold lines), Pd (dash lines) and P" (dotted

lines) for a range of coupling strengths for the predissociative potential

curves shown in Fig. 6.10. The symbols (*), (A) and (t) indicate the

resonance positions from complex quantization method and the eigen-

values for the diabatic and adiabatic bound states respectively. The

diabaticstates(A)rangetiomn¿:2latthelefIt'on¿:3lattheright'166

6.13 Variation of Landau-Zener nonadiabatic transition probability for the

potential curves of Fig. 6.10. . 167

6.14 Variation of mixing parameters ¿ for the potential curves of Fig. 6'10. ' 168

6.10 The predissociative potential curves of Eq. (6.15) and Eq. (6.16)

6.11 Resonance trajectories as a function of coupling strength (solid lines) for

the dissociative potential curves shown in Fig'6'10

D.l The phase matching angle in the crystal where k indicates the direction

of the laser beam

8.1 The electronic circuits for the detector. It consists of a UV enhanced

photodiode, a high speed preamplifier and a peak detector which hoids

the peak ievel of the laser signal.

D.2 Characteristic of the BBO crystal for second harmonic generation: (a)

angular sensitivity d\kld0, and (b) phase-matching angles. (after

Eimerl et al, 1987) . . 188

192
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8.2 The electronic circuits of the detecting system 193
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Corrections:

page 3 line 2 from bottom, FTS should read: "femtosecond transition state spectrum (FTS),'

page 6 line 5 from bottom, after ... the RKR method (Schaefer et al l9g4). add. ..The RKR
(Rydberg-Klein-Rees) method is a semiclassical method to construct the potential energy
curve from term energies and the rotational constants ofvibrational states."

page 137 Figure 5.15 caption, add: "The experimental data of the rotational constants and

vibrational spacings in this study coincide with those of Schaefer et al (19g4) calculated with
their Dunham parameters in the experimental energy region (30000 - 3rzoo cm-r).,,

page 153 Figure 6.5 caption, add: "An explanation of the large width occurring near the

energy near 33500 cm-t is given in $6.5,,'

page 158 line 5 of $6'5, after.,. as coupling strengthincreases, add: "It also displaysthe
reason for the occurrence of the large widths shown in Fig. 6.5.,,

page l59line 3, to vanish. should read: "to vanish as shown in Fig. 6.4 andFig. 6.5."




