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Summary

The traditional description of the sound field in an enclosure begins with the assumption

that the walls are locally reactive. This assumption allows a formalism which is intended to

adequately predict the acoustical response of an enclosure. The work described in this thesis

is concerned with a reconsideration of the classical description of the interaction betrveen

the sound field and its boundaries and with the effect of this interaction on the sound rvave

behavior in an enclosure. An experimental investigation in a standard reverberation room

shorvs that the wal]s of the room are not locally reactive, and that the coupling between the

room mod.es and the wall structural modes affects the reverberation times in the room. These

results reveal a limitation of the locally reactive boundary assumption. They indicate that to

understand the behavior of reverberant spaces, it is necessary to understand the nature of the

modal interaction between the sound field and the wall vibration.

This research is an experimental and theoretical study of the characteristics of a

panel-cavity system. The acoustical properties of the system at lorv frequencies, such as

the resonance frequencies, decay times and mode shapes, are predicted by a modal coupling

analysis. These predictions have been verifred experimentally for conditions where.the classical

sound absorption theory does not apply. The effects of the boundary characteristics on the

sound field are discussed in some detail.

The study is extended to higher frequencies in a reverberation room, where the very

large number of cavity modes makes modal coupling analysis too difficult. In this frequency

range, the modal coupling between a sound field and the panels stìll controls the acoustical

behavior of the room. Acoustical decays are described in terms of average modal coupling,

damping and density parameters using a Statistical Energy Analysis format.

Another extension of the research is to study the sound field behavior in an enclosure

with a complicated boundary. A two dimcnsional Finite Elernent Method is used to calculate

the resonancc lì'cqucncies and shapcs of cavity moclcs which have becll altcred by thc plesellce

ol a semicircular diffuscr. Thcse resull;s suggest that large variations in the cavity moclal

<lisl,ribuIir¡n c¿ruscd lly cha,nging thc tliff'rrscl oricnta.tit.¡lr a.rc rcsponsiblc for tltc cle¡tcndertce of'

thc bourrd¿rry sorrn<l absor¡rl;iorr uporL tltc difluscr oricrtation.
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Chapter 1

General introduction

l.L Introduction

The traditional description of the sound field in an enclosure begins with the assumption

that the walls are locally reactive and that they may be characterised by a normal acoustical

impedance (Morse 1939). This assumption allows the introduction of sound absorption co-

efÊ.cients and a formalism which is intended to predict adequately the acoustical response of

an enclosute. The assumption of locally reactive walls and the concepts which follow from it

have been applied to architectural acoustics, apparently without question, for several decades.

The theoretical principles arising from this assumption have been used for room acoustical

design and have provided a conceptual framework for studying the transient and steady-state

belravior of sound waves in an enclosure (Morse and Bolt 1944).

Describing the boundaries of a cavity as locally reactive is a satisfactory approxima-

tion only in some cases, however the interiors of aircraft and motor vehicles are examples

where this description is useless. Even in a standard reverberation room) the locally reactive

assumption for the wall surfaces can be violated (Munro 1982, Pan and Bies 19BB). In the

Iatter case the interaction between the sound lìeld in the room and the wall structure is shorvn

to depencl upon modal coupling. 'llhis modal coupling has been recognizcd and used in the

hcuristic design of theatres (lÌcranek c'ú a/. 1964 and lllivcn 1976), but whcn obscrved in

lilbolatory mcasulernents, tìris modal corrpling has oftcn bcen rcgardcd as an irrita,tion to be

suplrlessed (llhatt 1939, l{unt 19íJOb ¿urd I(nudsctt et al. 1967).

1



Where modal coupling exists, the sound wave behavior cannot be predicted by using

the locally reactive boundary assumption. In this case it is necessary to take account of the

fluid-structural coupling when formulating the boundary conditions of the sound field. Since

the sound wave behavior is directly relaied to the nature of the interaction between the sound

field and its boundaries, it is necessary to explore whether this behavior can be significantly

altered by this coupling, and if so, what useful information can be obtained from a study of it.

In discussion of the mode coupling problem in the following Chapters, the terminology

"fluid-structural coupling" is used to describe the modal interaction betrveen a sound field and

its boundary structures. The sound field and the structural ( i.e. test panel ) vibration resulting

from this coupling are described by acoustical modes. An acoustical mode is a mode of the

entire panel-cavity system. An acoustical mode can be interpreted as the result of combining

the uncoupled cavity modes ( called "cavity modes" ) and the uncoupled panel modes ( cailed

"panel modes" ),

If we measure the relative amounts of energy contained in the two parts of the acousti-

cal mode ( i.e. in the cavity sound field and in the panel vibration ), we can identify trvo types

of acoustical modes as either "cavity controlled" or "panel controlled". A cavity ccntrolled

mode has most of its energy stored in the cavity sound fleld, while a panel controlled mode

has most of its energy stored as panel vibrational energy.

In following Chapters, the decay behavior of the sound field and structural vibration is

the major item of interest. The decay behavior can be expressed in a number of diferent rvays.

The expression to be chosen in any particular case is determined almost entirely by conceptual

convenience. However, all of these expressions are directly interrelated. The most often used

quantity is decay time, which is defined as the time required for the sound pressure or panel

acceleration to decay by 60 dB after an excitation is removed. For a single mode, such as a

cavity, panel or acoustical mode, the decay time is called moclal tlecay time (T^øo), or 60 dB

modal decay time. When the excitation is over a band of frequencies, the Ierm reuerberution

limc (T6s) is used.

Qrrality factol Q, damping factor Ç. and darnping constant li.r, providc alternative

dcscri¡>tions of the decay bclra.vior of a ringlc mode. 'I'hey alc relatccl to thc mo¿al dccay tirne

2



by,

(1 .3)

where /" is the resonance frecluency and Co is the speed of sound in air

Similarly, loss factor 4 can be used to describe the average damping of the sound fleld

or the panel vibration (over a frequency band) ;

e^
6.91

I'oI m6O

, 6.91
tuTÍt-m)

lm6O

13.8
,t - ûrl 6O

(1,1)

(r.2)

(1.4)

The contribution of modal coupling to sound field absorption in an enclosure is

strongly dependent upon the couplìng parameters ( e.g. coupling coefficients, panel modal den-

sity, panel internal damping and radiation loss ). As will'be shown, the classical room ac<¡ustics

problem is closely related to previous research in the field of fluid-structural coupling. The

results from this latter research provide a sound starting point for the work presented here. In

return, the results presented here from this investigation into room acoustics can also improve

the understanding of the coupling mechanism.

The modal coupling between a sound field and its boundaries will also affect the

room acoustical behavior at middle and high frequencies. However participation of large

numbers of coupled modes in these frequency ranges suggests that a statistical description of

the coupling should be used, and the effect of coupling on the average sound wave behavior

must be considered. Using Statistical Energy Analysis (StrA), a simple average description

can be obtained for a sound fleld with an extensively reactive boundary. The sound lield decay

and the dccay of structural vibration can be derived from a fcw SDA parameters. This analysis

clarilìcs the physical meaning of l,he r¡reasured sountl absorption cocfficicnt of an extensively

rc¿<rtive ¡ra,nr:1.

Wltcn a semi-circula,r dillïscr is prcscnI irr a rectangular cavity, the cornplicatctl

boulrdarics of tlrc sr¡trltl ficld distorl, thc mo<lc nh:l¡rca antl thc rcßonance fleclucncies fronr

I



those predicted and measured in tlie cavity rvithout the diffuser. The modal properties of

the sound field in the cavity are calculated as a function of diffuser orientation. As rvill be

shown, large variations in the cavity modal distribution caused by changing the diffuser orien-

tation are responsible for the dependence of the boundary sound. absorpiion upon the diffuser

orientation.

1.2 Objectives

The objectives of this thesis are as follows:

1. Investigate the adequacy of the locally reactive assumption and the alternative modal

coupling assumption. Show that the modal coupling model properly describes the inter-

action between a sound field in a revetberation room and the walls, and that the locall;'

reactive description is inadecluate.

2. Describe the sound wave behavior in a simple and representative model of the panel-

cavity system. Show that the acoustical properties of the individual modes can be

predicted from the fundamental parameters of the panel and the cavity.

3. Consider the effect offluid-structural coupling on the acoustical decays in a reverberation

room in the high frequency range where the mode by mode method, which is suitable for

the low frequency analysis, is inadequate. Verify both theo¡étically and experimentally

a description for the average behavior of the coupled system.

4. Estimate the effect of a semi-circular diffuser on the sound waves in a room. Ðvaluate

the influence of irregularity in the cavity shape on the sound field behavior. Show a

possible numerical interpretation for the dependence of the sound absorption of panels

upon orientation of a diffuser.

1.3 Layout of the thesis

Ch:rptcr 2 bcgils with sorne qua,nl,it:rl,ivuexpcrimcuta.l cvidence which suggests th¿rt the ¡ncch-

:utism o1'tlLc irLter¿ctiolr lrctwecn thc sorrud liclcl and it,s boundalics should bc rc-cxarnincd.

rl



This evidence suggests the criteria which should be satisfied by a solution for the sound freld

and boundary response rvhen the interaction betrveen them is not locally reactive.

In Chapter 3, a coupled panel cavity system is chosen as an analytical model for the

interaction between a sound fle1d and its boundaries. A theoretical investigation into the effect

of this interaction upon the characteristics of the sound waves in an enclosure is presented.

This analysis is presented as a fluid-structural coupling problem. When this approach is taken,

the long established knowledge of coupling suddenly becomes useful in the prediction of the

acoustical decay in an enclosure. In return, some of the results clarify the nature of the

coupling mechanism.

Chapter 4 provides a description of experimental arrangements. In this chapter, the

acoustical properties of individual normal modes in a rectangular panel-cavity system are

investigated experimentally. These experiments verify the earlier predictions of Chapter 3.

The effect of the fluid-structural coupling on acoustical decays is reviewed in Chapter

5 for the high frequency range. Quasi-transient Statistical Energy Analysis (SEA) solutions

are used for the calculation of the reverberation time in a reverberation room containing test

panels.

Chapter 6 deals with the influence of a semi-circular diffuser on the sound field in a

rectangular room. Response for an essentially two dimensional room is calculated by a trvo

dimensional Finite Element Method. Experimental verification is provided for the calculation

in a three dimensional cavity in which the influence of the third dimension is suppressed by

design.

Where appropriate, each Chapter contaìns its own literature review and conclusions

The scope for future work is also discussed independently in each Chapter.
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Chapter 2

The interaction between a sound

field and its boundarles

2.L Introduction

The nature of the interaction between a sound fleld in a reverberation room and its boundaries

is fundamental in the study of room acoustics. Both the steady state distribution and the

transient behavior of the sound field in an enclosure depend upon the sound reflection and

absorption at the boundaries, but the sound reflection and absorption are actually controlled

by this interaction and cannot be separately defined except as a crude approximation.

In geometrical acoustics based on the diffuse sound field assumption, this interaction

is described by the concept of the sound absorption coefficient. This coefficient a is defined as

the average ratio of absorbed sound erìergy to incident sound energy at the boundary surfaces.

Physically, it represents part of the mechanism of sound energy exchange over the boundaries.

Sabine (1922) first employed this concept in his empirical development of reverberation

thcory. l'he wcll-kltown Sabine formula

,reo = i1!+ (2.r)
(l s^¡Ð

provi<les a rclatiortsltip betwecn thc S¿rl¡inc allsortll;ion coefficienL a".,, ol the l¡ound¿ries and

tlrc rcvcrberation tirnc 7l¡6 of a roont, wherc V at<LI ¿r,r'c the total volume and surläce arca

<if Lltc tooln. 'llllc t'cvcrbcr:ltiort titnc is l,lrc tirnc i¡rtclv¿rl takeu f<-¡r thc soultl pl,cssure level to

a
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decrease 60 dB from a steady state level. Sabine absorption coefÊcient is laboratory measured.

The differences between a and a"o, have long been the topic of discussion (Embleton 1971)

and they are equal when the incident sound field is diffuse. Although many modifrcations of

the Sabine formula have been made (Byring 1930 and Millington 1932), the basic relationship

has always been used as a guide in architectural acoustic design.

As the laboratory equipment used in acoustical measurements has been gradually

improved, it has become apparent that in many enclosures, large discrepancies exist between

the predictions of the Sabine formula and the experimental measurements and efforts were

made to explain them (Morris et al. 1938, Norris 1932 and Hunt 1939b). The main results of

the efforts were to show that the Sabine formula and the related concept of sound absorption

coefficient are only meaningful rvhen the sound field is diffuse. They also showed that a detailed

physical picture can only be obtained by taking the wave nature of sound into account.

The concept of speciflc acoustic impedance Z¡ is ftaditionaJly introduced to assist

understanding of sound wave behavior in a room. The boundaries are described in terms of

this normal speciflc acoustic impedance which is defined as the complex ratio of the sound

pressrrre to the normal particle velocity at the surface of the boundary. This normal velocity

may be due to induced motion of the boundary or to motion of air into pores in the boundary

(Morse and Bolt 1944).

Morse and Ingard (1968) considered the possible response of a boundary surface to

sound pressure excitation, and classified surfaces according to their response either as locally

reactive surfaces or as surfaces of extended reaction. The locally reactive surface is defined

as one for which, on each portion of the surface, the response is only dependent on the local

sound pressure and is independent of the response at any other part of the boundary, When

the parts of the surface are coupled together, ( i.e. when the surface behavior at one point not

only depends upon the local sound pressure, but also upon the motion of the coupled parts ),

this surface is deflned as a surface of extended reaction.

A surface of extended reactiou may be changed to have the approximate behavior of a

loc:rlly rc:rclivc surfa,ce il sorne physical ch¿ractcristic of the boundary is suitably altered. Rrr.

cxâlnplc, ¿r thirr ¡la,rtcl is gcncr:rlly bcst <lcscribcd as il su¡l¿cc of extcndetl reaction. Ilowever,

the spatia"l corrcl¿tiotr betwcen diflcrcnt pirrts of a pancl decreascs as l,hc damping of thc pancl

irr<:r'e¡r,scs (Vy:rlyslrcv aL al. ß77):l¡lcl l,hc pa.rrcl rcs¡rollse tl¡cn tcuds to tli:rt of a. loc¿lly rcactivc
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Ĵ

2

1

Ê0

o

()
o

'o

(t)

1 1 000
Frequency (Hz)

10 00

tr'igure 2.1: Standard deviation of panel acceleration level

surface.

In ¿nother example, the response of a panel tends to uniformity as the driving sound

f.eld tends to be more and more diffuse. Experimental investigation of a panel-cavity system

shows that the average variation of the panel vibration decreases as the sound field frequency

incteases, and the acoustic field tends to complete diffusivity. In consequence, the panel vibra-

tion is proportional to sound pressure at high frequencies and the panel may be approximated

as locally reactive. To ìllustrate this point, the standard deviation of the measured acceler-

ation level at a panel surface (of a panel-cavity system) is shown in Figure 2.1, against the

driving frequency of the sound freld in the cavity. The panel-cavity system will be described

in Chapter 4.

As a further example, if a layer of sound absorptive material is placed upon the surface

of a rigid wall, the material's acoustic impedance may be dependent upon the angle of the

incidence of the sound wave. Usually this sort of surface can be describcd by two sound

vclocities, one being for sound traveling tangential to the surface through the material, whilc

l;hc ol,her is fbr sourtd tra,vclirtg nonrral l,o l,hc sul'f'acc (Morsc 1939). Whcn tìrc larrgcntial

vclor:ity is tnuch snta,llcr l;h¿rn tltc spccd of sounrl in air, thc borrntl¡u'y ci.ur bc describecl by a

trortn:rl s¡lucific a,<:ousl.it: irrt¡rrrd:rncc, irrrlc¡rcnrlcrrt of t;hc a,ngle of l;hc ilrcitlcul, w¿r,vc$,

'J

Cavity Size:
(0.868, 1.150, 1.000) m

Panel Size:
(0.868, 1.150, 0.003) m



In the development of the wave theory of room acoustics, many workers have been

involved in pioneering research since 1930's. The paper by Morse and Bolt (1944) provides an

excellent review of the history of room acoustics. In this introduction, only the immediately

relevant works will be mentioned.

To investigate the wave behavior of sound in an enclosure, Morse obtained a solution

for a sound field in a rectangular room by solving the sound wave equation (Morse 193g, Nforse

and BoIt 1944). For his solution, each wall was assumed to be uniformly covered with sound

absorptiúe material and the normal specific acoustic impedance of the material was assumed

independent of the incidence angle of the sound waves. Morse introduced the locally reactive

assumption and used it to deline his boundary conditions.

There are probably two justifications for Morse's assumptions. Firstly, at the time

of his investigation most available sound absorptive materials were well described as locally

reactive, although not many materials had been tested.. In many practical cases, the walls

of enclosures were covered by such materials. In add-ition there was a reliable experimental

method by which to measure the normal speciflc acoustic impedance of materials. Secondly,

when the boundaries are not rigid, the solution of the eigenvalue problem of a sound field

in a reverberant enclosure, is very difrcult. Even for the uniform locally reactive surface,

which may be the simplest case besides that of the rigid boundary condition, the analysis is

so complicated that the general physical picture is often lost among the obtruding details.

From the assumption of locally reactive boundaries, a quantitative relationship has

been established between the normal acoustic impedance of the boundaries and the modal

decay rates of the sound field in a rectangular roorn. One of the interesting results from

Morse's solution is that the acoustic modes in a rectangular room can be classifled into seven

groups. Three groups are axial modes, th.ree are tangential modes and one group is oblique

modes. If the impedance of the boundaries varies little over the frequency ranße of interest,

then every modc in a given group should decay at the same r¿te.

Since Morse's solution, it has bccomc clear that the acoustical absorption coefficicnt

has rro rnca,rring il the sound ficld is not djffuse. Alterrratively wlren the soun¿ fielrt is ¿ifl'use,

titc acoustical a,llsorpl,iorr cocffìcicttl, r:a,n bc writtcrr ¿rs a fuuctiorr of loc¿l acoustical impe¿ance

and lt:rs rttc:trtiug ( Morsc 1948a ). l-Lc vital diff'crcrce ir¡ tfic ¿iffusivity of the sou'¿ liel¿.

Mol'r¡c's solrrl;ion w¿s verifierl lly llhatt's cxprlrimtrnt¿rl invcstigatir:n into t¡c ¿cc:ry
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properties of acoustic modes in a room (1939). The normal acoustic impedance of absorbing

materials on a wall was calculated by measuring the resonant response and the modal decay

rates of the room, and using Morse's theoretical solution. These results were compared rvith

the measurements by the standing wave tube method. Since then lVlorse's solution has been

used to predict the decay rates in rooms where the Sabine formula is not valid, and where the

sound absorption coefrcient loses its neaning. It is also regularly taken as a starting point for

further investigation ( Bodlund 1980 arid Jacobsen 1982 ). For example, it has been used as the

explanation of the discrepancies betrveen the Sabine formula prediction and the experimental

measurements and so on, rvithout question. However, Morse's solution can only be used rvhen

the boundaries of the room are locally reactive. Therefore, before tliis solution can be used,

this boundary condition should be verifred.

Munro (1982) examined two theoretical models for predicting the decay rate of indi-

vidual modes. The first was Morse's solution for a very lightly damped room. The second rvas

based on a combination of the modal approach and the ray tracing approach as applied to a

rectangular room. Both models relied upon the assumptions that the walls can be accurately

modelled as locally reactive and that the rvall impedance can be modelled as constant over the

wall surfaces arid slowly varying throughout the frequency range investigated. The resonance

frecluencies and modal decay rates of the sound field in a reverberation room were measured

for comparison with each model. It was shown that neither model accurately predicts the

relative rates of decay of the measured modes. For example, where the measured modal decay

times were expected to be constant within each group, in fact they varied substantially. Large

differences in the measured decay times were observed in every group. The calculated values

of the decay time from Munro's second model varied by as much as a factor of eight from the

measured values. The most probable reason for the failure of the models to predict the modal

decay rate is that the locally reactive assumption is not satisfied in the reverberation roorn

used in Munro's experiments although the latter room was constructed according to accepted

standards.

The remainder of this CJhapter reviews experimeutal evidence which shows that the

walls of the reverberation room used by Munro are not locally reactive. In this room, typical

ol' suc.ll reverber¿tiotì l'oonrs, motl¿rl coupling detcrnrines thc inl;elaction bctwecn t[c sorrn<ì

field irl l;hc loom and vibratiort ol thc w¿lls. 'lhe couplirLg be[wccu thc rot¡rn modes and the

w¡lll s1;ru<:tttla,[ urotlcs affccts tltc reverbelation tirne in the room at low freclueur:ies.

t0



2.2 The reverberation roorn

The test facility, used by Munro and in most of the experiments to be discussed, was a

rectangular paralielopiped room with inside dimer-rsions of 6.84 m length, 5.57 m width and

4.72 m height as illustrated in Figure 2.2.

The acoustic modes in tl-Le room a e described by mode (l ,m,n), where l, m a:nd n

are integers indicating the number of nodes in the pressure f,eld in X, )' and Z directions

respectively. The room is supported on soft springs and is otherlvise structurally isolated from

the surrounding building. The steel reinforced concrete walls (including the floor and ceiling)

are 0.280 m thick.

A rotating diffuser is mounted in the ceiling of the reverberation l'oou1 on a vertical

shaft. It consists of a counter balanced aluminum semi-circular cylinder of 3.5 m diameter and

2.4n height. The delinition of the orientation of the diffuser can be found in Figure 2.3.
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Figure 2.3: A plan vierv of the diffuser in the reverberation room.

2.3 Measurement of standing wave patterns in the floor

The frequency responses of the floor to the excitation of an electrical shaker rvere obtained by,-

measuring the vibration spectrum from the output of an accelerometer at various points on

the floor. Although the spectra, as shown in Figure 2.4, depend on the positions of the shaker

and the accelerometer, as well as the damping of the floor, the modal response of the floor is

easily recognized by the peaks in the spectra.

Standing wave patterns in the floor corresponding to peak frecluencies in a spectrum

were readily identified by measuring the phase difference between selected points and changes

in amplitude of response, since on either side of a nodal line of a standing wave the phase ol the

vibration atnpliIudc will diffcr by 180 dcgrccs a,nd tlrc arnpìitude will decrease to zr nrinimurrr

a,t thc nodc.

'l'Ir<¡ li t'sl, fcw rcsott¿urt tttorlcs ol'1,1¡c flool welc idcrrl,ilir:rl a,s s]r<.'rvrr in lll:rlilc 2.1. 'llrc

rnocla,l slra¡rcs ¿u'c sirlil¿l,r l;o l,lrosc oI a sirnply suppoll,c<l rccl,ir.lgular. parrcl,

l'2
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Table 2.1: First few modes in the floor of a reverberation room

rrode(u,, a) 1 1 2 t 1 1.12 1 1

[,,,, ('llz) 30 52 71 91.
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IJsing the same method, the standing \¡/ave patterns of the back wa1l were also identi-

fied. The floor modes are described by mode(z, o), where ø and u are integers indicating the

number of displacement antinodes in X and Y directions. In the case of the back wall. the

modes can be represented as mode(o, tl) where u and ?t,r are integers indicating the number of

the antinodes in Y and Z directions.

The identification of the modal characteristics of the wall structure of the room shorvs

that the walls of the reverberation room are not locally reactive boundaries, though the steel

reinforced concrete walls are very massive. Similar to any other structures, the response of the

walls is not only determined by the forces acting on the wall surfaces but also by their own

resonances and mode shapes. Those modal properties of the walls can be determined by a

wave equation, which describes the relationship between the motion of one part of the wall and

the motion of any other part of the wall, and the edge boundary conditions. Consequently,

those parameters which describe the global character of the walls, such as the dimensions,

mechanical damping and the sound veiocity in the walls, become more important than the

local details of the boundary materials.

2.4 The coupling between roorn and structural modes

Since the walls of the reverberation room are extensively reactive, their modal behavior should

be displayed when they are exposed to a sound field. The next experiments demonstrate this.

The steady-state response of the sound freld in a reverberation room to a sound source

can be considered as a collection of acoustical modes vibrating at the frequency of the source.

At low frequencies, the resonance frequencies of the modes are often well separated. If the

frequency of a well placed source in the room matches the resonance frequency of an acoustic

mode, the sound field will be dominated by this mode. Therefore, this acoustic mode may be

studied in some <letail, although the near sound field eflect of the sound source, the damp-

ing and nearby acoustic modcs rnay distolt the mode slightly from the eigenmode which is

theoletically predicted liy neglccting such perturbations.

Dxpcrirncntally, an roorn tnodc w¡rs genelatcd by a loudspcakcr. placc{ at a corncr of

the room and drivert at tltc lno<lal leffonirrìcc frc<1ucncy. lllhe eound held distribution ucar t¡c
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surface of the boundaries was determined by using a sound level meter to measure the sound

pressure level at the surface. The same method, as used in the investigation of section 2.3 rvas

used to measure the responses of the floor and rvalls.

Three kinds of coupling mechanisms of sound field and floor have been identified. The

first coupling mechanism (Figure 2.5) is the result of interaction of one room mode and one

floor mode.

The second coupling mechanism (Figure 2,6) is due to interaction between one room

mode and a vibration pattern of the floor which is the combination of trvo fundamental floor

modes.

The third coupling mechanism (Figure 2.7) is the result of one room mode rvhich

excites a distorted vibration pattern in the floor, which cannot be regarded as the combination

of a few fundamental modes of the floor. Since the floor is not really a simply supported panel,

it is actually supported by springs, the floor may vibrate like a piston so that the vibration of

the edges is non-zero. Moreover, the coupling between the f,oor and the side walls sometimes

cannot be neglected. These observations may provide explanations for the third case.

The distribution of the sound field on the surface of the floor and the floor acceleration

response were also measured quantitatively. The sound pressure level and the phase difference

between the measuring microphone signal and the output of a reference microphone rvere

measured at the points formed by a uniform 11 x 11 rectangular grid covering the whole floor.

This procedure was repeated but with the microphone being replaced by an accelerometer

which was f.xed to the floor at tlie grid points. The distributions of the sound pressure level

and the relative phase ( which are plotted in Figure 2.8) are close to those of the (2,1,1) mode.

In this measurement, the loudspeaker and reference microphone were located at (X,Y,Z) =
(6.84, 5.57, 0.00) m and the room was driven at the frecluency of 69.01 \iz. The diffuser was

at 180'. The distributions of the acceleration level and relativc phase in the floor ( as shown

in lrigure 2.9 ) are close to thosc of the (1,2) mode.

The identif.ication of thc coupling urodcls shows that the interaction between the

dìstribul;r:rl sottttd fielcl and thc cxl,cnsivcly rcar:tive walls is by rnodal couplirrg. 'lhe complexity

of this irttct'¿rc[iotr sltows tha,t it is uot suit¿rble to dcterminc the vibratiou of the walls by a

unilbrrnly distrillule<I locr.lly re¿rctivc spccific acoustic irnpctlance.

I l-i
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Figure 2.5: A room mode coupling with a floor mode. (a.1) room mode (2,1,1);
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Figure 2.6: A room mode coupling with trvo floor modes. (a.1) room mode
(0,1,1), ("fo,r,r = 47.33 Hz, 0 : 0o) (a.2) floor response ((2,1) mode and (1,2)
mode combination).
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2.5 Extensively reactive acoustic impedance

The normal impedance at a point on a surface of extended reaction can not be unicluely defined,

because the induced velocity response will not only depend upon the local sound pressure. but

also upon the total distribution of the sound pressure forcing field over the entire surface. As

an example, an electro-magnetic driver was used to drive a simply suppolted aluminum paneì.

(0.8 m in length, 0.5 m in rvidth and 0.001 m in thickness) and the frecluency respoil.se at

the driving point was measured rvhile the voltage across the magnet rvas kept constant. Fol

comparison another magnet was placed at a second position. A large variation in the measured

lespor'ì.se was observed at the first position when the second. force rvas applied to the panel.

A panel vibration damper, as illustrated in Figure 2.10 rvas constructed using a set of

lubber capped screws mounted on a steel frame. By increasing tl-Le tension between the scrervs

and the surface of the panel, Iarge darnping can be achieved near the attachment points, so

that the vibration of the panel may be reduced.

1

Figure 2.10: Panel vibration damper. The panel dimensions are L": 0.8 m and
Ly : 0.5 m. 1. simply supported panel; 2. rubber capped scr.ew; 3. steel frame.

It is forrnd tha,t when tlre ¡lancl is <lrivcn only by a point forcc, thc averagc villr:rtion

¿r1; ccrtaiu li'cc¡uencics c¿rrt bc grca,tly rctlrLccrl by thc villra.l;ion clarnper (I¡igurc 2.1I).llowcvcr.,

il'thc rlriving lbrr:c is distribrrtc<l, as providcd by a sorrnd fìcld wlrerr tlLe panel is tcstcd in a

rcvcrbcr¿rtion t'oollì, l;ltrt itvcra,gc vil.rr'¿rl,ic¡n lcvcl ovcr l,lrc ¡t:r.ncl will sh<lw less cha,ngc no rnattel.

wlr:rl; t;llc dtrrnping iur<l whr:tlLcr'1,hc <l¿m¡rcr is prcscnt or nol; (Figurc 2.Il).
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The following interpretation of the experiment is offered. For a point force, there is

always some critical position of the damper rvhich will make the driving point impedance very

large so that little energy can be transmitted into the panel. However, if the panel is submerged

in a sound field there is no position for the damper which ensures that the impedance at every

point of the surface is very large. The distributed force of the sound field can always frnd

places to inject energy at the panel surface where the acoustic impedance is not large and thus

the panel vibration level is less affected by the presence of the damper.

The complexity of the extensively reactive surface shows that it is not possible to

find a simple quantity such as the normal specific acoustic impedance for a locally reactive

surface to describe an extensively reactive boundary. To find the acoustic impedance of a

surface of extended reaction, the sound pressure distribution on the surface and the vibration

distribution of the boundary must be determined before hand by considering their modal

coupling. Holever, the purpose of employing the acoustic impedance is to enable estimation

of the sound field distribution and the response of the boundaries. It is not necessary to

calculate the acoustic impedance if information about the sound fleld and the boundaries is

known. Therefore it is felt that a suitable description of the interaction between a sound field

and its boundaries must be in terms of modal coupling when the boundaries are extensively

reactive.

2.6 Effect of the modal coupling on decay rate of acoustic

modes

During the decay of a sound field, sound energy is mainly dissipated over the boundaries of a

room if the frequency is not too higli. Part of it is transmitted through the walls to the outside,

and part of it is dissipated in the walls as heat. The sound energy loss at the boundaries is

related to the nature of the interaction between the sound field and its boundaries. In the

reverberation room, for instance, the energy loss over the walls is related to tlie coupling

between room modes and wall structural modes.

'I'he rotating diffuscl in the rcvcrberation roorn is normally used to incre¿rse the dif-

1ìrscncss of th<r sorurd ficld. Dxpcliurcntal iuvcstigation at low freclucncics showed that the

s¡tati:rl tlistlibutions, tlte rcson:ì.ncc h'eclucncies and thc dccay tirncs of the acoustic rno<ìes

vali,¿rl witli diflercut orientations of tìrc difhlscr (Murrro 1gB2).
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The response of the rvalls was measured while the orientation of the diffuser rvas

changing periodically and the driving frequency of the sound field was tuned to one of the res-

onance frequencies of the room corresponding to a frxed position of the difuser. The measured

rebponse changed periodically with the periodical motion of the diffuser (Figure 2.I2).

As the diffuser is moved to a new position, the resonance frequency colresponding to

that position may be shifted away from the driving frequency of the sound source? so that the

amplitude of the sound pressure may become smaller, which will result in a smaller respou.se

of the wa1ls. Since the spatial coupling between the sound field and the walls is associated

with the sound field distribution over the wall surfaces, the response of the walls may also be

changed by changing the distribution of the sound fleld, which is related to the orientation

of the diffuser. A close look has been taken at the acoustic mode (2,1,1,) and the response

1

1 2 0

Diffuser Orientation (Deg)

Figure 2:12: Response of the floor at (X : L.9 m, Y : I.7 m) as a
function of diffuser orientation. Driving frecluency of the sound field is

70 Hz.

of the floor vibration under the influence of the diffuser. The sound field distribution on the

surface of thc floor, the response of the floor and the modal decay rates of the modcs u'erc

rncasurcd for 12 positions o1 tìre diffirscr'. Irr l¡igrrrc 2.1i|, tlre rnoda[ dccay tirncs (7,o,6e) rvelc

ll:lnsfbrrnctl ilrto rno<l¿rl r¡rra,lil,y lìi,cl,ors Q, wlrich arc rcl:rtcd Io l;lrc lrrorliLl clccay tirncs 7',,,1;¡

by Q = frTnrutllil.B whcrc /r. is tlrc rc$oníLrìcc lrcqrrcrrcy of tl¡c rrrt.,<lc.
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Figure 2:13:
orientation.

1 0 2 0 J 0

Diffuser Orientation (Deg)

Qualiiy factor of (2,1,1) mode as a function of diffuser

The sound freld distributions for the positions of the diffuser at 60 degrees and 150

degrees are similar, and the resulting response of the floor is similar too ( see Figure 2.14).

This means that the coupling coefficients of the sound field and the floor at these two positions

are similar. Mathematically the coupling coef,Êcient is defined as the integral of the product

of local sound pressure and structural response over the surface of the structure. As is shorvn

in Figure 2.74, the modal distributions at these diffuser orientations are close and reference

to Figure 2.13 shows that the corresponding values of quality factor Q for these positions are

also close. Similar results were also obtained for two other positions of the difuser, at 210 and

270 degrees (Figure 2.15). At the latter two positions the coupling factors and quality factors

are similar although they are diflerent from those of the first two positions.

Similar coupling coeffi.cients give rise to similar quality factors while different coupling

cocllicients give rise to different cluality l'actors. The experìmcntal lesults strongly suggest that

the change of the coupling between the sound licld and thc floor may be the rcason why thc

tlccay ratc of tltc ¿rcoustic tnodc chir.nges with tlic oricrrt¿rtiorr of the tlilluscl.. l¡urthcrnrorc, a

loIa,tirtg tlifluscr cr-¡trl;irruortsly clt:rtrgcs tlrc cou¡rlirrg l¡ctwccll thc sounrl licld alttl l;hc lrourrrlar.ics,

;rlttl so thc cucrgy loss ovcr tlrc br¡urrrl:rlics varics wil.h tlrc rot¿l,ion of'tlrc diff'rrscr.
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(u.1) (u.2)

+

(b.1) (b.2)

Figure 2.14: Modal distributions of the acoustic field near the floor and the floor
responses with the diffuser at 0 = 60o and d = 150".

(".t) Q - 346.0, ("f = 69.10 Hz, 0 :60'); (a.2) corresponding floor response;

(b.1) 8 - 32I.0, ("f : 69.0f Hz,0 = 150'); (b.2) corresponding floor response.

+

(".1) (".2)

+

(b.i) (b.2)

li'igr¡l'c 2.15: Morl:rl distribrrl,ion ol'the acoustic ficld ¡lc¿r l;hc flonr altd 1;h<l floor
rcsf)ons()s I'or l,hc diffuscr a"l, 0 = 2I0o ¿nd 0 = 270o.

(u'.t) Q - 471¡.6, (l : 68.06112,0 = 210"); (a,.2) corrcspondirrg llool respotrsc;
(b.l) Q = 510.7, (/ = (i8.9.5 l|z,0 =2700); (b.2) corrcr¡rouding floor rcs¡ronae.
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During measurement of the frequency respor.ì.se of the walls of the reverberation Ìoonr,

it was found that when the diffuser was at 180 degrees and the driving frecluency rvas at 8.1.6

Hz, the response of the back wall was maximal. This suggested that the coupling between the

sound field and the bacli wall inight be stronger than any other coupling. The back wall mode

and the acoustic mode were investigated. They rvere found to be mode(1,2) and mode(2,2,1)

respectively.

The coupling between trvo sub-systems is dependent on their modal characteristics

such as their resonance frecluencies, modal damping and mode sha,pes. Therefore rvhen these

characteristics are changed, the coupling of these trvo sub-systerns rvill also change. If the

decay of the acoustic mode is really related to the coupling, the decay time rvill change s'hen

the modal characteristics of the back rvall are changed.

To investigate this possibility, some wooden blocks rvere rvedged tightly betrveen the

back wall of the reverberation room at the mode antinodes and the building rvall rvhicir is

about half a meter away (Figure 2.16).

Figrtrc 2.1(i Ilxpcr:irnctLl;¡r.l arr¿rrrf3cuìcnI lbr valyirrg tlrc qrr:rlit;y IìLctor ol'l,he b¿cl<
w:rll <ll'l,lle rtlvr:l'l¡<rr:ltion rootì. l. ba.r:l< w.llI ol'thc rcvclllcra,tiorr rc)()rìt; 2. woorlcn
bl,rr:k; li. r¡ul;sitlc brril<lirrg.
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As the number of the blocks was increased, the modal decay time in the room and

the quality factor of the back wall were measured. The result is shorvn in Figure 2.17. In this

case, the modal decay time decreases as the quality factor of the back wall decreases.

I

5
1 1 0 5 1 0 )

Quality Factor

Figure 2:17: Decay time of (2,2,1) mode as a firnction of the
quality factor of the (1,2) back wall mode.

2.7 Discussion and conclusions

Although the above experiments were undertaken in a reverberation room, their results have

provided a close look at sound fields in enclosures in a very general sense. Most boundaries of

enclosures, such as those of theaters and studios and those of aircraft or motor vehicles, are

acoustically similar to the walls of the reverberation room in that they are extensively reactive

boundaries, though they may be different in shape, dimension and material construction. Bven

with a layer of sound absorptive material on the surface, the extcnsive propeltics may not be

tol;ally neglected in all cases.

llt sotne f:rctories, it h¿ls bcen found that the lne¿rsulctl rcverberation tirnc can bc

<:orrcla,l;crl witlr tÌrc sourd allsorpl,ivc plopcltics of tlLc cciling ¡ra,ncÌs irrrplying ¡¡ror.l¿r.l couplilg

(llodgsorr 108:l) and in thc constluctiolr ol'¿l vcry thurous thcä,tcr, thc influcncc of l,[c modally

t't-'s¡lottsivc floor, sl;:rgc:rnrl w:r,lls oll tlrc inl,r¡l'ior ar:ousl;ir:s ha,s ltr-'clr talten ilrto consi<lcration
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(Bliven 1976). Even in the experiment to verify the reverberation theory based on the locally

reactive assumption, the modal vibration of the boundaries was observed, and sand was used

to damp it (Bhatt 1939). All these examples provide evidence to show that the couplìng

between acoustical and, structural modes plays an important part in practice.

The conclusions of this Chapter are

1. The reverberation theory based on the locally reactive boundary assumption is not cor-

rect when it is applied to enclosures with boundaries which are extensively reactir.e.

2. Modal coupling determines the interaction between a sound field and boundary surfaces

of extended reaction.

3. Instead of normal specific acoustic impedance, modal couplìng provides a ploper descrip-

tion for the interaction.

4. In the case of extensively reactive boundaries the behaviour of the sound field and the

response of the boundaries is certainly related to the coupling.

About fifty years ago, in his remarkable paper (Morse 1939) ^Sorne Aspects of the

Theory of Room Acoustics, and as he was introducing the locally reactive acoustic impedance

concept for his calculation, Morse pointed out that

"Of course further detailed experiments, with other materials, may show that even

the normal impedance varies witli angle of incidence of the wave: in which case

we will have to use another, more deep-seated, physical quality to measure the

material's absorption. Until such time as experiment forces us to complicate the

picture,..."

Now indeed, all of these qualitative results suggest a requirement exists for a solution for

the sound field and boundary response when the interaction betwcen them is deterrnined by

modal coupling, particularly for the solution of the decay behavior of the sound freld. Further

invesl,igatiorts towards this go.rl will bc levicwed i¡r the nexl; two Ch:rpters.
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Chapter 3

Effect of fluid-structural coupling

theory

3 . 1- Int ro duct ion

3.1.1 Statement of the problern

Forty nine years ago, Morse (1939) developed a theory of sound absorption for a rectangular

room in terms of the locally reactive normal acoustic impedance. This theory is not only useful

for predicting sound behavior in enclosures where the geometrical acoustic method does not

apply, but it also suggests an entirely new way of looking at this problem. The significance

of this pioneering work can be judged from the rapid progress which followed it in the field of

room acoustics.

The assumption of locally reactive boundaries decreased the complexity of Morse's

analysis, and enabled the undelstanding of some basic physical properties of the acoustical

modes in the room. Although most of thc sound absorption matelial tested at the time be-

haved in a locally reactive nìanner, Molse hypothesized that future experiments might expose

inadccluacics in thc locally rc¿rctive l-roundary assumption.

lìxpcliurcnts clescribe<l in Cha¡rtcr 2 on tlre iuteraction betwcen a souud field and its

l¡ound¿rics have tlc¡nonstrated th¿r.t thc walls of a rcvcrberation roonr are nrodally reactive,

'¿7



rather than locally reactive. Experimental evidence has also demonstrated that the modal

coupling of the sound field and walls affects the decay times in the room. In this case, the

sound absorption is associated with the more complicated mechanism ( modal coupling ) and

Morse's solution cannot provid,e an explanation for these experimental results, because the

simplified locally reactive boundary assumption is not satisfied.

However the significance of the fluid-structural coupling on sound absorption in a roon

and the relationship between the coupling properties and the sound field decay remain unknown

until the mechanism of sound absorption by modally reactive boundaries is understood. The

original question was associated rvith an arcltitectural acoustics problem, but very soon it rvas

recognized that the research stands on the new ground offluid-structural coupling. Knorvledge

of modal coupling is certainly fundamental for solving the room acoustics problem and such

knowledge may provide its own insights for architectural acoustics purposes.

3.L.2 Literature revieï\¡

A literature survey of the fluid-structural coupl-ing problem shows that a large amount of rvork

has been done in the study of fluid and structural responses due to mutual coupling, but very

little has been published on the effect of this coupling upon the decay behavior of the coupled

system. However, in the case of architectural acoustics the transient response is of fundamental

importance.

Previous investigations into fluid-structural coupling have been motivated by the need

to understand the effects of the vibrating boundaries on the fluid response, and a need to

understand the acoustical loading of boundary structures by a cavity. Examples of the former

are sound transmission into an enclosure from a vibrating boundary structure and sound

radiation from a structure into the surrounding medium. These previous investigations cover

a wide range of research and applications, but the underlying mechanism of the fluid-structural

coupling remains the same. In thc last twenty years, workers in a variety of lields have achievcd

a great deal of understanding of this mcchanism.

1ìhc stutly of thc cff'ect of':rn uudcrlying cavity on a ¡tlatc origirrated fi'om au itttet'cst

in pa.nel st.rbility and panel excitatiorr lly aerodyrramic noise. 'l'he modal lr:sponsc of a cavity

bar:lçet-l ¡rl:r,te was lirst irvestigated by l)owcìl and Vosg (1963). Furl;her invesl;ig:rtiotrs by Pret-
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love (1965a) (1965b) (1969) and Guy(1979b) have progressively improved theoretical methods

and physicat insight. At about the same time as Dowell, Lyon (1963) published his research on

sound transmission into a rectangular enclosure through a panel. Since then, there has been

a continuous effort ( by Pretlove (1966), I(hilman (1967), Bhattacharya et al. (1969) (1970),

Dowell et at. (1977), Guy et aL. (1973) (1979a), Naryannan and Shanbhag (1981a) (1981b))

directed at improving the understanding of sound transmission through panels.

In addition to investigations of the simple rectangular panel-cavity system in Cartesian

coordinates, the fluid-st¡uctural coupling problem has been studied in complex shaped cavities

and structures, ( particularly cylindrical shapes ) which are closely related to the noise control

problem in aircraft, piping systems and water borne structures. For example, the recent rvork

by Fuller et al. (1982),(1986) and Pope et al. (1982),(1983) indicates the trends of aircraft

noise control, and the work by Junger and Feit (1986) presents a general treatment of the

couplìng problem ( for cylindrical structures ) in underwater acoustics.

Recently developed numerical techniques have made possible detailed investigation

into the coupling in irregularly shaped cavities. After the energy formulation of the fluid-

structural coupled system was developed by Gladwell and Zimmermann (1966), Craggs eú al.

(I97L,7972) used a finite element method to calculate the acoustica.l modes and resonance

frequencies of a system. Since then tl-ris approach and other similar numerical methods ( e.g.

integral equation (Sestieri et a,l. 1984) ) have been used for control of noise inside a moving

vehicle ( Sung et aI. 1984) and sound transmission calculations. The paper by Nefske er a,l.

(1982) briefly reviewed the relevant research.

One particular aspect which is very often put aside is the effect of the fluid-structural

coupling on the decay behavior of the coupled system. In the analysis of tlie coupling prob-

lem, the modal damping in the uncoupled sub-systems is difÊcult to determine theoretically

and is generaìly considered as an experimental parameter. Therefore, like other conventional

approaches, the damping eflect was normally neglected at first and if necessary, the undamped

system was modified later.

fn the lìeld of roorn acoustics, thc dccay llehavior of an cttclosure has llcen taken as

an irn¡rorIant lneasurc of its acortstical clualìty, but tltc tlcpcndencc of thc dccay on Ihe fluid-

structurc corrpling is still unl<nown. Under this circurnstancc, it is clcar that an investigatiort

into souurl dccay duc to the coupling cflcct is rrcccssa,ry. 'l.lrc only pallcr to bc founcl wÌrich
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attempted such analysis was published by Rogers in 1939. This is a study of the effect of

the coupling between the sound field and moving pistons. In his paper, Rogers studied the

absorption of sound due to the coupling between a one dimensional sound field and piston-like

panels backed by a cavity. By comparing his result with the Sabine formula, he linked the

sound absorption coeficient of the piston to the mechanical properties of the pistons and the

cavity. He then discussed the extension of his results to the three dimensional diffuse sound

field. However, the response of boundary structures to a sound field is more complicated than

that of a piston as the three dimensional modal dist¡ibution of the sound field and the modal

response of the boundary structure must also be taken into account.

Today, by using previous studies of the fluid-structural coupling problem as a basis,

rr/e are able to use "the modal coupling method" to analyse the sound absorption of modally

reactive boundaries.

This Chapter contains a theoretical investigation into the free vibration behavior of a

panel-cavity system. The behavior of the system is described in terms of acoustical modes. A

solution for the decay time and resonance frequency of each acoustical mode is obtained by a

modal coupling analysis. In this analysis, the characteristics of each mode can be determined

in terms of the modal parameters of the uncoupled panel and cavity. By varying the properties

of the test pane1, the resonance frequency and the decay time of each acoustical mode can be

changed. Relative ma^:cimum panel absorptions of the cavity controlled modes are identified

when the participating panel and cavity modes are well coupled. The effect of the panel

damping and radiation loss to the outside space upon the decay time of the cavity controlled

modes is also discussed.

3.2 Theoretical model

3.2.I Description of the rnodel

A panel-cavity coupled system is chosen as the theoretical model. This system consists of a

recl;angular box witlr sliglrtly a,bsor'¡rtive w¿llls an<-l a simply supportecl ¡r:urel on thc top. 'fhc

coordina,tcs ol'the systcrn a,re shown in fiigurc 3.1.
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Figure 3.1: Coordinate system of the panel-cavity model.

3.2.2 General mathernatical description

The properties of the coupled system can be obtained from the its free vibration solution,

because the solution will give rise to modal properties, which are fundamental to the system.

Once these modal properties are obtained, any response of the system to external excitation

can be described in terms of the modal properties and the nature of the excitation.

In general, the the free vibration problern of the system is described either in differ'-

ential form with explicit specification of the interaction over the contacting boundaries of the

fluid and the structure, or in integral form which automaticall.y includes the boundary condi-

tions. The energy description (I{amiltonian) of the system will result in an integral cc¡ration

and othcr integral folms can bc derived dircctly fi'om the diffcrential form by the Grr:en's

furLction rnetlLod. 'Ihe ¡llrysic:rl rnea.ning ol'thc differerttial ccltrations is stlaightfolwzrrd, rvltile

tlrc intcglal ccluzrtions plovitlc a, convcnicnt fbrrn fol v:rrious numcrir:al approximations.
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3.2.3 Differential expressions

The free vibration of the panel-cavity system of Figure 3.1, can be classifred in three parts as

follows:

1. The sound field in the cavity is governed by a wave equation and its boundary conditions,

In terms of an acoustic velocity potential i[, the wave equation for the free vibration

problem is

v2{,- !,ff=0, (3.1)
v; uL-

where Co is the speed of sound in the air. The air particle velocity 7 ao¿ sound pressure

P are related to the velocity potential by 7= VÜ and , = -0"# respectively.

The flve walls of the cavity are assumed to be locally reactive and the boundary condition

over the walls is described by the relation between the velocity potential and the specific

acoustical impedance Z¡ on the surfaces as follows.

AV po AV

o"- -4 at
(3.2)

In this equation, rz indicates the normal direction on the surface of the boundary (positive

outwards) anð. pois the air density. If the boundaries are rigid, then ffi = O.

The boundary condition over the flexible panel is determined by continuity of the normal

air particle velocity and the normal panel velocity on the surface:

AW
(3.3)

2. Different wave forms may eúst in the panel, but only flexural waves have motions per-

pendicular to the surface which can cause radiation of sound into an adjacent medium.

The behavior of the panel flexural rnotion is determined by the differential equation of

motion, the boundary conditions along the panel edgee and the forces acting on the panel

surfaces. The forces on the panel are due to the interior and the external sound pressure.

For a thin isotropic panel, the ec¡uation for llexural vibration is

A2W Dl¿3 n,rÁ/ _ ^ ,A, Aìf ,ph 
¿¿z 

+ r(L 1r\Y''w = p"eu - u), (3.4)

where prßrþ, lt and ù¿ are tlte dcnsity, Young's modulus, Poisson's ratio, thickness

ol [hc ¡la,ucl :urd l,hc acousl,ic vclocity po[cntial on tlre outsidr: sulfa.cc of' thc pancl

0t
Avt

0"

where I4l is the panel normal dispiacement

:t2



respectively. The positive direction for panel displacement is outward. The panel edges

are simply supported for this analysis. This means that the displacement and the bending

moment are zero along the all edges.

3. The velocity potential on the external surface of the panel is evaluated by the Rayleigh

integral (Rayleigh 1896) for sound waves radiating from a baffied panel,

I r 0W exo(-iÉ.û{tE=-nJn, U-j-4t", (3.5)

where k is the wavenumber of the sound field and r is the distance from the source point

(ro,Ao) on the panel surface to the observation point (r,g). The time dependence term

exp(ic..,l) has been suppressed in all expressions.

Many authors used transformation methods to solve the above equations (Pretlove

1965a, Khilman 1967, Bhattacharya 1970, Guy 1979b). Guy (1979b) flnally presented a gen-

eral analysis for the behavior of a cavity backed panel. The transformation method (Fourier

transformations to remove the spatial parameters and Laplace Transformation to remove the

time dependence) provides an exact solution to the non-dissipative panel-cavity system. The

properties of the system can be determined by searching the singularities (the poles) of the

modal coefÊcients of the panel displacement. The response of the system to the external ex-

citation can be obtained by additional investigation of the poles of the external force in the

frequency domain. However, it is difÊcult to find the solution when damping of the system

is present because the background modal damping is difñcult to introduce in those cavity

modes with non-zero modal index on the Z ax:s (see Figure 3.1). These modes are implicitly

represented in the solution.

3.2.4 Integral expressions

Ecluations (3.1) and (3.4) can be reduced to their corresponding integral ecluations by means

of thc Green's function method( Feshbach 1944). The integral cquations for the acoustical

velocity potential irt an enclosure, and the panel displacernent arc ec¡uivalent to the original

cliflelcnti;il erlu:t,tions and arttomatically include the boundary corrditions. This procedure

t'ccltrircs ¿r Gtcctt's ftrnction wlLich s¿tisfics tlrc inhornogcrteolrs er¡uations (tlLe origilal partial

dillcrcnti¿rl et¡ua,tions with a Dirac dclta, firncl.iou as a ¡roint sourcc). The Grecn's lunction

r:¿ur ¿i,lso lic t:ltoscn to satisfy cotrvenicr¡t lrounrhry colrditions to rcdu<:c tLc dilliculties iu thc
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resulting boundary integral. The constructed Green's function is a transfer function from a

point source to the velocity potential at an observation point in the cavity. By Gauss's theorem,

the vibrating boundaries are mathematically taken as sources and the total contribution of

these sourc"å to th" velocity potential is described by the summation (integration for the

continuous souïce distribution) of the sources through their transfer functions over the rvhole

of the boundaries. A sound field Green's function in the cavity , which satisfies the Neumann

boundary condition, can be obtained by normal mode expansion,

G¡(,-,,ro;u) - Ð#ai:9a:'ro") (8,6)
N ,t1v \w - *ory) 1

¡t* = Iu
Orv(ÐO¡v(Ðdr.' . ( 3.7)

For the rectangular cavity, each normal mode can be written as

o¡¡(Ð = .or(9) ,or(!!)cos(4rt (3'8)
lJt rJ! L, ) 

'

where (t,m,n) are the modal indices of the Nth cavity mode and r.ro7y is the angular frequency

of the Nth cavity mode.

The acoustical velocity potential in the cavity can be predicted by integrating the

distributed velocity contribution on the boundaries (Appendix A):

r - av,\Í = -JoGe^ds"

= - l^,T"tdso* nä 
|^,BÚGnttso ' (3'e)

where P = * 
is the specific acoustic adriittance ratio on the wall surfaces .A¿.

Similarly, the Green's function for a simply supported panel is

G,(i,i";,)=-Ðffi#,, (3 10)

¡tr= [ S¡,t@)Snt@)rls. (3,11)
JAt

For a rectangular panel, each normal mode can be written as

,Ç¡v--sintff¡,i,,(T). (3.12)

urtv¡ is tìrc :r,ngular frc<¡rcncy ol'thc Mtlr panel r.¡rocle and (u,u) are the modal indiccs of

l,hc Mth pa.uel nrode. ¿? and lio art-. thc ollserv¿rtiorr art<l sollrcc ¡loints on tlte panel surface
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respectively. Therefore the displacement of the panel due to the distributed sound pressures

on the panel surfaces can be represented by

I,v : 4ry [ Gr(i,ã,;rXü - úB)d,so. (3,13)
ptt lt¡

3.3 Solution of the integral equations

The general mathematical methods for solving integral equations have been discussed by lvlorse

and Feshbach (1953). To solve Bqs. (3.9) and (3.13) in the following sections, the methods of

ortb.ogonal expansion and of successive substitutions will be used. Dowell et al. (1977) used

tlie orthogonal expansion method to study the sound transmission problem between two rooms

through a panel partition and the response of a panel-cavity system. The agreement of their

measured and predicted panel resonance frecluencies for various cavity depths demonstrates

the success of the method for the coupling problem.

3.3.1 Method of orthogonal expansion

In this method, the acoustical velocity potential in the cavity V(i) is expanded in orthogonal

functions iÞ¡,/ (rigid wall mode expression) and the panel displacement W is expanded in

orthogonal panel mode functions 5¡¿. These orthogonal cavity and panel modes are identical

to those in the Green's functions for the cavity and the panel.

v = ÐCryÕru , (3.14)
N

w :DDuSnr. (3.1b)
ÌvI

Substituting Eqs.(3.14)and (3.15) into Eqs. (3.9) and (3.13) and neglecting the panel radiation

term, a series algebraic equations for each cavity mode N and for each panel mode M are

obtained as follows:

(À2 - Zç"¡¡À + kZN)MirC¡v * ÀC'oD D1,NDr = 0 , (3.16)

(À2 -2e,,u^+kl,M)MK1D¡y¡ - 
^t,ÐR¡,¡4C¡ 

=0, (3.12)

wlrcre Mft =.4.¡¿ an<l luItil = #n, 
koN =ff n tlre wa,vc.*rnber of thc Nth cavity

ntotle , l;rr4 = ff n thc "wavclìurnìrcr" of thc Ntlr pancl mode a,ltd À = -il;. Iu thc pancl
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wavenumber expression, the speed of sound in the denominator of the expression is for air

rather than for the panel.

. The damping of the Nth cavity modes is described by the speciflc acoustic admittance

ratio B in Eq. (3.9). The boundary integral associated with B (i.e. Ä"{,[e, ,6ÕruOrds)becomes

the modifrcation term for the wavenumber of the Nth mode (Morse and Bolt 1944). The

integral can be split into two parts associated with the real and imaginary parts of É. As a

result, the integral with conductance (real part of B) is associated with the damping constant

("N of the Nth cavity mode.

Each damping constant is used to represent the background absorption of each cavity

mode and the Nth modal damping factor ("ry is related to the 60 dB decay time ?'ru of the

Nth cavity mode by (o¡r : 
ffi. 

The integral with susceptance (imaginary part of B) is

related to the resonance frequency correction of the Nth cavity mode'

The mechanical damping of the test panel is usually represented by the complex

Young's modulus and complex Poisson's ratio (Snowdon 1970). This produces complex angula,r

resonance frecluencies for the uncoupled panel.

The damping factor of the Mth panel mode, which is representedby eeu in a manner

similar to the cavity moda,l damping constant, can also be determined from the modal decay

time of the Mth panel mode using (o¡a = J!-l_ .
U6lptM

B¡ø,t¡ is the modal coupling coefrcient between the Mth panel mode and the Nth

cavity mode,

Ar,*= [ Su0_xrls. (3.18)
J¡¡

For the system of Figure 3.1, the coupling coefflcient between the Mth panel mode(2, u) and

the Nth cavity mode(/, m,n) is,

( , .,nAj uul(-r¡t+'- 1][(-1)-+" - 1]

n¡ø,¡,t=l\-L)7Û@ (3.19)

[0 I-u and,ot rn=u

'lhc rnotlal corr¡llirtg cocfficicnt is a, r¡teasurc ol thc spatial rnatch between panel and

ca,vity nrotlcs. As rroted by Prctlovc (19(;,'la) ¿r¡r<l lJh¿r.l,taclr:r,rya. (1970), thc coupling o[ thc

cavity rrroclcs a¡rd l;hc pilncl nro<-les ic vcry sclective. I'al-¡le 3.1 ehowÉi the poneible coupling

rnod:rl ¡rairs. KlLilrnan ( l-0(i7) lrlso csl,i¡n¿rl,t¡<l thc c<lu¡llirrg r:ocfficicnI ol'a p:rncl rno<ìc with all

:l (;



the possible cavity modes, he found that the coupling coefficient is large only for a very ferv

cavity modes.

Table 3.1: Selection rule for panel-cavity modal interaction

(o: odd number, e: even number n: arbitrary cavity modes index in Z direction)

panel

modes

cavity modes

(o,o,n) (e,ern) (o,e,n) (erorn)

(

(

(

(

oro)

e

o

,e)

,e)

)êro

(1/ z B¡a,¡¡ l0)

From Eqs.(3.16) and (3.17), a matrix form can be constructed for the solution of the

eigenvalues À

(À'M+ÀL+S)X=0, (3.20)

where M is the inertia matrix, L is the coupling matrix and S is the stiffness matrix. If only

y'ü1 cavity modes and .ð12 panel modes are used, then

Mi

M= (3.21)

0

0

Mfv,

Mi

:\7

Mlu,



-2Mie"t CoBt,t CoBt,¡,tz
0

0
CoBNt,Nz

L_
-C oBt,t

-CoBt,¡rz -CoBNt,Nz -2Me¡¡2Çewz
(3.22)

MikZr

S_
Mfurkï¡ut

(3.23)
Mlk3,

0

Mkrk\*,

and X is the eigenvector of the system with all the unknown coefûcients (Cr...C¡vtDr..D¡¡z)

as its components.

By using .f[1 cavity modes and -lf2 panel modes, Eq.(3.20) becomes a (/ú1 + N2)

dimensional matrix equation which gives (Iü1 + ¡f 2) eigenvalues (Àr, À2,. . ., À¡¡r+¡¡z). The

imaginary part of the eigenvalue.); is related to the resonance frequency of the ith acoustic

mode (rr:'tP) and the real part is related to the damping constant (or the modal

decay time) of the mode (T;ao = #e,
This solul;ion shows that the sound lield in the cavity and the rcsponse of the panel

may be described in terms of tlie uncoupled cavity modes and panel modes with interactions

bctwccn l;l¡ctn. 'llltc irttcraction accourtts lor l;ìtc stnrctulal vil¡r¿rtion which disturbs tlre intel.ior

¿lcorrstical rcsponsc, and also the ¿coustical ¡rrcssurc loerdings which act on the panel. Thc

couplÌng of'thc Lwo sel;s of uncou¡rlerl nrodcs is rn¿r.thcm¿tica,lly r:c¡rrcsentcd ìry rnatr.ix L.

-2luI"¡¡1("¡¡1

-CoBNt,'t

CoBNt,t

-2Mïeet
0

0

0
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Since this expression only recluires the modal parameters of the cavity and panel.

various numerical techniclue can be employed to find these parameters first when the shapes

of the cavity and the panel are complicated. Then coupling is introduced to obtain a nerv set

of acoustical mod,es, which are represented in terms of the uncoupled modes.

By means of a matrix transformation (Anderson 1973), the non-standard eigenequa-

tion, Bq.(3.20), can be changed into a standard real eigenequation but at the expense of

doubling the dimension of the matrix. By introducing Y = ÀX, Eq. (3.20) becomes

( 3.24)

This standard eigenvalue problem is solved by an IMSL package (IMSL 1985) in the follorving

calculation.

For each eigenvalue, an eigenvector can be obtained. The components ofthis eigenvec-

tor are used to describe the distribution of the corresponding acoustical mode. For example,

eigenvalue À¿ corresponds to the eigenvector (C;1, "'C¿N1,D¿tr"'D;xz). The sound field part

of the ith acoustical mode can be written in as

(3.25)

Wr:DD;¡øSu. (3.26 )
M

3.3.2 Method of successive substitutions

0

-M-1s -*'-," ] tl ] 
=^l; 

]

iÞN,= ! c;rv
N

v

and panel vibration part can be written as

The eigenvalues and eigenfunctions of the cavity controlled modes of the coupled system can

also be evaluated individually. For example, the complex wavenumber (eigenvalue) of the Nth

cavity controlled mode (¡¿ can be estimated using the following relation (see Appendix A),

e,N = t;t¡¡ *,yffi#r. - fftffi*n
-LP.C': 

It, I¡, V nG,'þ N'l"o'lt ,,+-í,nffieí{ 6'2i)

Iiclu:r,lion (3.27) shows tlral; the ei¡4cnvaluc of each cavil;y controlled ¡node is rcpreseuted by

four [crnrs. 'I'hc fìrst tcrm is rel¿rterl to tlre eigcnvaluc ol'thc corresponding cavil,y motlc for thc

:J9



rigid wall condition. The second term is the cont¡ibution of the locally reactive boundaries.

Morse has investigated the effect of this term upon the eigenvalues of a rigid wall cavity. The

third term is the contribution of the interaction of the interior sound field with the panel

vibration and the last term is the contribution due to the panel radiation into the external

space.

The eigenfunction for the sound fie1d part of the Nth cavity controlled mode is

ìúN = or - / 0w 
G'^¿.r^+ iy- [ B{tc'ort"., (3.28)^1v ^1Y Jo, ot"A*"o-"coJA,

where the prime on the cavity Green's function indicates that the term involving iÞ,¡y in the

sum is omitted.

By inciuding the damping of the cavity and panel modes (and neglecting the panel

modal radiation effect i.e. ü¿ = 0), the approximate solution for the Nth eigenvalue (ry

becomes :

¿2ç1V= k?¡,t + 2i e" ¡,t t ¡,t + þOu w,N €k

+ t

+t
N'-TN

UN,,NUN,N,
€f +..', (3.2e)

( 3.32 )

(3.33 )

NN'+ Ìú fr M fr ,lËfu - (k?¡u, * 2i("r,€ry)l

where
¡t2 t:¡2

LrN,N: 
Ðnm 

woDM,N 
, (3.30)

(JN,,N=y@ (3.81)
* -tr*ltk - $3, ¡ 2i(eu€N))'

The third term on the right side of Ec1. (3.29) is the contribution of the coupling of the

examined cavity mode with all the panel modes. The fourth term is the contribution of the

coupling of the examined cavity mode with other cavity modes through their interactions with

panel modes.

The (fr¡ can be solved by successive approximation as follows

(fu1r¡ = kï¡t + 2i'(o¡¡lco¡¡ ,

€kp¡ = kZN + 2iC,N(,N(t)* 
ùu*,*,gfu1'¡ 

,

l;f; n¡ * 2i1,x t N (¿\ + fiu N,N €Ìu a¡

Ux, r'tUN
MXr rrfr,[(kpt - (

¡'2(ru1:¡

40

ù ¡¡, * 2'ie,, N,€,.112¡ )J
N(2) ' (3.34)



When the panel radiation term is taken into account, an extra term Âff should be added to

the right side of Eq (3.29). The first order approximation of this term is obtained by using the

first order approximate panel displacement and neglecting the panel cross modes interaction.

¡ pr iA¡C! , p.A"y': -ffir;r2 B,M lom(M,N) - iop"(M,N)l
(3.35)

Q['ù,le'N - (k2ou -t 2i(o*I*¡12

wlrere oR"(M, N) is the radiation efficiency of the Mth panel mode at the resonance frequency

of the Nth cavity controlled mode:

on"(M,*): # Io,sr,(r')sr(ãr)# d.s1d,s2. (3.36)

The calculation of the modal radiation effi,ciency of a simply supported rectangular panel has

been discussed by Wallace (1972) and Leppington et al. (1982). r is the distance betrveen

point d1 and point i2 orr the panel. ot^(M,y'f) is associated with the contribution of the

"virtual mass" of the Mth panel mode:

o¡^(M, *) = # Io,r*rrrrs-('-r)# d,s1d.s2. (3.32)

Pretlove studied the "virtua,l mass" of a simply supported panel and pointed out that the effect

of the virtual mass attached to the panel is negligibly small in all practical cases (1965b). trVhen

the panel radiation term is considered, a substitution method similar to that of Eqs. (3.31),

(3.32) and (3.33) is used by including Aff.

3.4 Properties of the solutions

3.4.L Convergence

The acoustical velocity potential V (Bq. (3.9)) obtained by the Green's function integral on

the internal boundaries has discontinuous slope at the panel surface, because the selected

Green's function satisfies the second order homogeneous condition on the boundaries on the

panel surface (i.e. U?l :0). This prescribecl bounclary con¿ition for the Green's function0'n'L
has thc rcsult thot 

âV
0, = 0 on tìre ¡raneì surface, but the bor-rndary con<ìition of the velocity

potcnti:rl tF at the ¡rancl surface lt¿rs bcen dcfìned by Dq.(3.3) as nonzero. Although only V

l':rtlrrlr l,lt,r,, 3 is usct-l in tl¡e ana,lysis, whcn l,lre velocity potenti:rl is expandcrì as orthogonal
0n,

functions (which are the 6arne aÊ thosc for the Grecn's lïrrction), this discontinuity may affect

thc s¡rccd of Ihc convclgerìcr-' of thc sol r¡l;ion.
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The acoustical velocity potential in tlie cavity can be represented by any set of or-

thogonal functions which are complete in the region of the cavity. However, when the chosen

functions do not satisfy the boundary conditions (for example that the cosine functions which

we have chosen do not satisfy the inhomogeneous Neumann condition on the panel surface).

the speed of the convergence of the expansion (of the slope of the functions) to the exact

value will depend upon the number of terms in the expansion and the position chosen for the

evaluation. Near the boundary more terms may be needed to achieve the convergence, but

away from the boundary, only a few terms may be needed to give a reasonable value.

Taking the sound freld in a one dimensional tube (with length of L, = 1 m ) as

an example, the first mode for the two rigid ends can be simply represented by one function

.or(p) from the whole set of the cosine functions in the region (0 <, < Lr). If one end of the, L,'
tube is terminated by a resonant piston, the shape of the first mode changes I (see Figure 3.2).

However, the mode shape can still be resolved into a set of cosine functions which are the

normal modes for the rigid wall tube. Figure 3.3 shows the squared error of the approúmated

sound field distribution from the exact distribution in the tube. Increasing the number of

the base functions improves the convergence of the calculation but the convergency rate is

different for different positions in the tube. Convergence is problem dependent, and numerical

tests may be a proper way to evaluate it. Nefske eú al. (1982) estimated the convergence of

the resonance frequencies of the sound modes in a piston terminated tube as a function of the

number of the rigid wail modes. Dowell (1977) pointed out that the sound pressure can still

be determined correctly anywhere including the surface of the panel, even though the normal

derivative of the expression for the normal modes expansion does not converge uniformly at

the panel surface. Feshbach (1944) also mentioned that the difficulty of the convergence will

not exist for simple boundaries. A boundary is called simple if the geometrical dimension of

the boundary which is used to calculate the Green's function is the same as that of the actual

boundary. All of this previous work suggests that modal coupling approach can achieve good

convergerìce.

1lll.lte ex¿rct solution for tlre resoÌìance frcclucncics of the onc dime¡¡sional soulrcl fiekl terminated by a rcsonarrt

¡risl,orr (rt:sorr:rncc fre<¡rrcrr<:y is /r¡) c¿ur bc obt,¿rirctl frorn [l - (+)'] = Wt!P",Jà, wherc k" = T, I/ is the

vtrlttrtre of l,hc tubc iwtLl ttùr,.is thc rrrass of tlrc piston, I¡r thc calcul:ll,iolr of Figures 3.2 alld 33, f" - $ ttz,

llre ra.dir¡g of thc l,ubc is 0.05 fit, t,¿r, - 0.05 kg ;rrrtl L,: lt¡-t.'l'he lìrgt teson¿nce freqrrency of the tube witl¡

l.lrc ¡iisl,ol lx 106.:l Iln.
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Figure 3.2: The sound field distribution of the first mode in a tube
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cos(nrrf Lr), (n:0, 1, 2... ¡/ - 1).

0.2 0-4 0.6 0.8
x (m)

Figure 3.3: Scpra,re of the amplitucle error between thc approxirnzrte
sottncl ficld clisiribrrtion a,nd cxact souncl ficld clistribrrtion of tlrr: first
rrlode.

-1
1

- N=6

N=2

N=18

exact solution

N=2

N=6

N=18

I
I

I
r

,1,t

43



3.4.2 'Weak coupling

Weak coupling has been commonly assumed in the analysis of air-structural interaction prob-

lems (Pope and Wilby 1977). It prescribes the state of the strength of the interaction of the

subsystems in the coupled system. In general if the energy involved in the interaction is much

smaller than the energies in the subsystems, the coupling is described as weak. The motion of

each subsystem in a weakly coupled system will not be essentially different from that of the

uncoupled systems. The coupling only perturbs the state of the motion of the uncoupled sys-

tems. Mathematically, the coupled modes will be sufficiently represented by a limited number

of the uncoupled cavity and panel modes.

When the panel and cavity are coupled, the mode shapes and the resonance frequencies

of the panel and cavity are only slightly disturbed. Because of the lorv density of the air and

the high stiffness of the panel, the radiation loading generally has little effect upon the panel

vibration and the actual motion of the panel normal to its surface is so sma,ll that the mode

shapes of the sound field in the cavity wili not be strongly affected. However, if the cavity

in contact with the panel is very shallow and the panel is very light (Pretlove 1965a), or the

density of the surrounding medium is more dense than air, such as water, ( Fahy et aI. 1970)

the coupling may turn out to be strong and big deformation of the resulting modes from the

uncoupled panel and the cavity modes may be expected. In this situation, mode coupling

analysis may be inadequate.

3.4.3 'Well coupled modes

When two subsystems are weakly coupled, it is usuaily expected that some modes in the

uncoupled systems will play no important role in the coupling mechanism. In this case the

problem will be greatly simplified by neglecting these unimportant modes. In statistical energy

analysis, thc well coupled modcs concept has been used to select the modal pairs which dom-

inate the cou¡rling calculation of the two subsystems (Lyon 1962, Fahy 1969). Thc condition

f'or the wcìl-coupled mode has been olltained (I¡ahy 1g6g) and is as follows:

2lr*N-a,Ml <(Ar"¡¿ ¡L,upu), (3.38)

wlrerc L,¿uN is thc bandwidtlL of thc Nth cr,vil,y modc ¿rrd L,wpu i,s thc llandwidt;h of t[c lvlth

p;rtlcl ntorle. I¡r l,llis a,rt:rlysis, tltc ¡lowcr l,r¿rnsf'cr llctwcclr those ltro<l¿r.l p;rirs wlrich do not satisl"y
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the condition given by Eq. (3.38) will be neglected, whatever their coupling coefÊcient might

be. In the study of individual mode behavior, this criterion will also be useful for estimating

the relative importance of the participating modal pairs. The modal coupling coeffi.cient must

also be taken into consideration, because there will be no energy transfer between two modes

while their coupling factor is zero, even though their resonance frequencies are close. In this

rvork, a transfer factor (Louisell 1960) which has been used in electrical coupling problems

is used to decide the relative importance of different modes. The transfer factor of electrical

coupling theory re-interpreted for the Nth cavity mode and Mth panel mode of the panel-cavity

system may be written as

(3.3e)

where

(3.40)B(M,¡r): I Jt/'B*,* .

lVhen l¡¡¿,rl ry 1 the coupling is very important, but if lFv,¡vl ( 1 the modes will be less

affected by one another. In the analysis of two weakly coupled oscillators, the transfer factor

is used to determine the maximum fraction of the energy transferred between the oscillators.

Therefore, larger energy transfer is expected between the Nth cavity mode and the Mth panel

mode when their transfer factor is large.

3.5 Coupling effect on the acoustical rnodes

The solution of Eq(3.2a) or Eq(3.27) depends upon the parameters of the uncoupled test panel

ancl the cavity. The purpose of this section is to discuss how these parameters relate to the

coupling and to the behavior of the coupled system with emphasis on the resulting modal

decay times.

3.5.1 Modal coupling coefficients

A cou¡.rling cocfficicnt bctwccn a c:rvity anrl a pauel rnode is dctermincd by thc integral of their

tttotle slt;r¡rcs ou tltc coutacliug surf¿rcc. 'I'hc lrrodc sha,¡res of thc pancl irr Iurn dellentl upon

its <lirrensions and the boundary condil,ions. Different bounda,ry conditions will give rise to

<.liflì:l',.lnl. rttritlc slt;l¡lcs aud to dif['clclrt coupling f¡rctors. Ilr order t<l oltl,ain a b;rsic physical
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picture, we will confine the analysis to the simply supported edge condition for the panel,

although similar analysis can be applied to more compìicated boundary conditions.

3.6.2 Resonance distribution and panel modal density

It is well known that the energy transfer between two coupled oscillators depends upon the

uncoupled resonance frequencies of each oscillator. The power flow from one oscillator to

another increases as the difference of their resonance frequencies decreases (lvlorse and Ingard

1968b). The panel-cavity system is interpreted as a multi-mode coupled system. The relative

resonance frecluencies of the coupled cavity and panel modes will also affect the energy transfer

between them just in the similar case of the two coupled oscillators. The modal density of the

panel and the cavity at the examined frecluencies will also afect the energy transfer, because

the coupling is not only controlled by the two interacting panel and cavity modes, but is a,lso

affected by other modes of near resonance frecluencies.

The resonance frequencies of the rigid wall cavity (Knudsen 1932) and of the simply

supported panel are given by following equations,

Ír,^,n: ?nLr'+ (i)'+ (L)'t'/', (3.41)

lu,u:o.allc¡hf(*f *(*)'l , (8.42)

where C¿ is the longitudinal speed of sound in the panel.

In the panel-cavity system, the resonance frequencies of the uncoupled modes can

be adjusted by altering the dimensions of the cavity or the panel, or by changing the panel

material ( changing the longitudinal speed of sound in the panel ). For tlie model shown in

Figure 3.1, the cavity dimensions are flxed but the test panel can be changed. In this analysis,

the rcsonance frecluencies of panel modes are altered by changing the panel thickness. The

panel is aluminum.

'I'he thickness l¿ of a panel with fixed surface area A¡ and longitu<ìin¿r.l wave speed C I
is rclated to the modal density of the panel ll

JiA,tr, = ii. (3.43)

P¿rncl rnod¿rl dcnsi[y is used to cltaracl;crize the tcst panel. The modal dcnsity not only gives

tlrrt avtrr'agc trr¡Ittllcr of'¡riurel modr¡s irr ir ¡rarl;icul;u' fi'crlucn<:y band, ltut also, togcther with Ihc
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shape and boundary conditions of the panel, specifies the resonance frequencies. The average

number of the the panel modes in the regiorì of a resonance frequency of a cavity mode

governs the overall nature of the coupling behavior, while the distribution of panel resonance

frequencies determines the details of the coupling effect. The modal densities of the cavity

and of two aluminum panels of different thicknesses are plotted in Figure 3.4. The first ferv

resonance frequencies of the cavity modes are within the frecluency range from 150 Hz to 280

Hz. When the panel modal density is very small, very few or no panel modes will couple rvith

the cavity modes. As panel modal density becomes higher, more panel modes may participate

in the coupling with cavity modes.

1.0

I

0. 01
I 3 0

Frequency (tlz)

Figure 3.4: Modal densities of the cavity and of the panels
(Aluminum panel Ct :5150 m/s).

The properties of first six cavity controlled acoustical modes have been calculated as

functions of panel modal density by the orthogonal expansion method (Bq. 3.24). Forty panel

modes and forty cavity modes have been used. All cavity modes are assumed to have a 15

second decay time, and all pancl modes are assumed to havc a 0.5 second decay time. The

panel radiation is neglectcd. I¡igure 3.5 shows the variation in the decay time of the acoustical

modcs with p:r.nel modal dcnsity. When the panel rnodal density is high, and particularly fol

l,hosrl ¡la.rtcl rr¡o<l¿rl rìurrsil,ics, whelc no ¡rlrttcl nrodcs alc well couplcd with the cavi[y modc, the

ilccur¿rcy <lf'thc resull,s fì'orn l,lris nrctho<l is lirnitcd because of thc limitcd nurnìlcr of modes

uscrl in tlrc ca,lcul;rl,iorr.
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There are two extreme conditions of cavity-panel mode coupling. The first one is

where a panel mode and a cavity mode are well coupled. In this case, the energy transfer

between the sound field and the panel is almost entirely between these two modes. The

behavior of the resultant acoustic mode and the energy flows between different parts of the

mod.es are well approximated by considering the coupling of a few modes even when only

including those two well coupled modes. The second condition is where none of the panel

modes are well coupled with the cavity mode. For this case, the energy transfer from the

cavity mode is distributed over many panel modes, and the cavity controlled acoustical mode

contails components from many panel and cavity modes of similar importance. Therefore,

if only a small number of uncoupled modes is used in the analysis, some important modes

may be excluded and errors may develop in the calculation of modal decay time. For these

situations, the alternative method of successive iteration (Ec1.(3.29)) has been used, because

the number of panel modes is not limited by the computer memory capacity in this method,

For example, in the calculation of Figure 3.5, 100 panel modes were used.

It is shown in Figure 3.5, that as the panel modal density is increased, the decay time

of each mode has a relative minimum. On the average, the decay time is longer in the loiv

panel density region, and it becomes shorter as the panel modal density is increased. Figure 3.6

shows the transfer factor between cavity mode (0,0,1) and the first 14 panel modes (with non

zero coupling coefficients) as a function of panel modal density. In the region of the maximum

values of the transfer factor, there is large energy transfer and maximum sound absorption by

the panel. These peaks correspond to the decay time minima of cavity controlled mode (0,0,1)

in Figure 3.5.

\Mhen the panel modal density is small, only very few panel modes lie in the effective

frequency region of the examined cavity mode and the energy transfer of the cavity mode

into the panel will usually be dominated by a single panel mode. The inlluence of the higher

order panel modes upon thc eneÌgy transfer is small. This is shown in Figure 3.6. Unless one

pa,ncl rnode happens to satisfy the wcll coupled condition with the examincd cavity mode, the

coupling betwcen the cavity mode and the panel is generally very poor. 'Iherefore, in this

legion of pa.nel modal <Iensity, thc modal decay tirne is long cxccpt for a few special regions

whclc tlrc welI couplerÌ conditiort is satisficd. Whcn 1,hc ¡ra.ncl densil,y bcconrcs higlL, Irigure 3.6

shows tlr:rl, rnore p:rncl motlcs ( bol,h low order arrd high order' ) partici¡late in thc coupling

witlr thc r:x¿l.lrtinctl cavity rnorlc. Irr t;liis c:rsc, tlrc cavity rnodc will have more pancl rnodcs tr.r
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couple with. Therefore on average the resulting cavity controlled modes have smaller decal'

times.

-9

-12

0.1 0 2 0

np (Hz-1)

Figure 3.6: The transfer factor Ftur,N between (0,0,1) cavity mode and
panel modes as a function of panel modal density.
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The details of the calculated modal decay curves (Figure 3.5) in the region of minimum

decay tine are of special interest. The minimum modal decay time indicates maximum sound

absorption by the panel. As panel modal density increases within this region, the resonance

frequency of the cavity controlled mode "jumps" to a higher frequency (see Figure 3.7).

In order to explain the physical mechanism of this behaviour, rve must compare the

motion of the panel with the motion of the sound field and the panel energy with the energy

in the sound field. A calculation of the eigenvector of an acoustical mode from Eq. (3.20) can

provide some insight into this relative motion and this relative energy content. The eigenvector

of an acoustical mode determines the distribution of the sound fleld and tlie distribution of

the panel vibration for that mode according to Eqs. (3.25) and (3.26).

The relative motion of the sound field and panel vibration of the Nth acoustical mode

is described by the speciflc acoustical transfer impedance ZopN, which is sound pressure divided

by panel velocity. In terms of the acoustical velocity potential i[¡y and the displacement i,T/;y

of the Nth mode, Zoo¡¡ is written as

Z i[ru
opN = -p.ffi. (3.44)

When i[¡¡ is evaluated at the same point as W¡s , Zor¡¡ is the specific acoustical impedance at

this point.

Similarly, the ratio of sound freld energy to panel vibration energy Eo¡¡ f EeN of the

Nth mode is given by,

EoN _ 1_,. poV ., < i[¡¿VÅ¡ >

ü=1\pna,t.6;' (3'45)

where iúi¡ and Wfr are the complex conjugates of ü7y ar.d W¡¡ respectively.

The energy ratios of two selected acoustical modes are shown in Figure 3.8(a) as a

function of panel mo<lal density. The resonance frequencies and the 60 dB decay times of these

two modes are shown in Figures 3.8(b)and (c). For comparison, the resonance frecluencies of

thc corlesponding cavity rnode and pa.nel node are also shown in Figures 3.8(b).
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The solid curve in Figure 3.8 represents the cavity controlled mode and consists of

two parts labelled C1 and C2. The dashed curve represents the panel controlled mode and

is labelled P1 and P2. These two curves meet at a point where sound absorption of the

cavity controlled mo,ile is maximum. When not in the vicinity of the point of maximum sound

absorption ( which corresponds a peak in Figure 3.6, e.g. (3,1) in this case ), the difference

between a cavity controlled mode and a panel controlled mode can easily be distinguished

from the energy ratio, but near this point, the energy ratios of the two types of modes are

indistinguishable. Near the maximum sound absorption point, each part ( panel and cavit¡, )

of the panel controlled mode has the same amount of energy, and each part of the cavitl'

controlled mode has the same amount of energy.

Therefore, for white noise excitation in the cavity, we expect to find two spectral peaks

in the sound fleld when the modal density of the panel is close to the value for maximum sound

absorption and the amplitudes of these peaks will be approximately equal.

The curves in Figures 3.8 (a), (b) and (c), are obtained by considering forty cavity

modes and forty panel modes. Table 3.2 üsts the coefficient amplitudes of those uncoupled

modes for a panel modal density of. n, = 0.056H2-1. It shows that the cavity part of the

vibrating system is dominated by the (0,0,1) cavity mode, and the panel part is dominated

by the (3,1) panel mode. Therefore it is convenient to call these acoustical modes the "(0,0,1)

cavity controlled mode" and the "(3,1) panel controlled mode".

The curves in Figure 3.8(a) also show that the "P2" part of the panel controlled mode

is a continuation of the "C1" part of the cavity controlled mode. Similarly, the "C2" part of

the cavity controlled mode is a continuation of the "P1" part of the panel controlled mode.

' The minimum decay time of the (0,0,1) cavity controlled mode (see in Figures 3.8 and

3.5)intheregion(0.054H2-r <n" < 0.062 l'l,z-1)isduemainlytothecouplingof the(0,0,1)

cavity mode and the (3,1) panel mode. In this region the transfer factor of these modes has a

maximum (tr'igure 3.6). This coupling of the cavity mode and the panel mode strongly aflects

a pair of acoustical rnodes, one of whiclr is the (0,0,1) cavity controllcd mode and the other is

thc (3,1) ¡r:rncl contlollcd mode.

'.1,'hc rcsott:utcc f'requencics of thc cavity coutrollcd nrodc a,nd thc pancl controllcd mode

in l¡igur:c 3.8(b) sltow somc intcrcsting cltanges in thc urininruln tlccay time rcgiorr. On thc lcft
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of the minimum point, the resonance frecluency of the (0,0,1) cavity controlled mode is lower

than that of (0,0,1) cavity mode, but the resonance frequency of the (3,1) panel controlled

mode is higher than that of the (3,1) panel mode. On the right side of this point, these

inequalities are reversed. The resonance frequencies "jomp" across the minimum decay time

point. This 'Jump" can be partly explained by the phase change of the specific acoustical

transfer impedance.

The coupling of a cavity and a panel mode is analogous to the coupling of two single

degree of freedom oscillators. As is well known (Morse and Ingard 1968c), such coupling

produces two new coupled modes in which the oscillators either move in phase at a resonance

frequency lower, or in opposite phase at a resonance frequency higher than that of either

oscillator taken individually. This indicates that the jump of the resonance frecluency across

the minimum decay time point is associated with a jump in the phase of the specific acoustical

transfer impedance.

Figure 3.9(al) shows the specific acoustical transfer impedance between location

(0, 0, 0) m in the cavity and location (0.434,0.575) m on the panel for the two acoustical modes

as a function of the panel modal density. Figure 3.9(b1) shows the calculated specific acoustical

impedance of the panel surface at (0.434,0.575) m for the same modes.

Figure 3.9(a2) and (b2) shows the phase of the transfer impedance and the impedance

for each acoustical mode. Both the cavity controlled mode and the panel controlled mode have

a impedance phase jump at the point of maximum sound absorption.

This phase jump indicates a change of tlie impedance state. ( An impedance can be

in a stifness, resonance or mass controlled state. ) However, unlike the coupling of two single

degree of freedom oscillators, the transferimpedance is afunction of location and so the phase

of the specific acoustical impedance varies over the panel surface. At one position Zor¡¡ could

be mass controlled, and at another position it could be stiffness controlled. Therefore, whether

thc rcsulting lcsonance frequency of the cavity controlled acoustical mode will be higher or

lower than that of the uncoupled cavity mode depends upon the intcgrated contribution of the

distributed spccilic acoustic inrpedancc from every point on the pancl surfacc.

l-r.r.l



Table 3.2: Amplitudes of the components of (0,0,1) cavity controlled mode and the (3,1) panel controlled
mode (À - 6mm)

cavity controlled mode panel controlled mode
sound field panel vibration sound field panel vibration

l, rrt, n amplitude U,U amplitude Irmrn amplitude uta amplitude

(0,0,0)
(0,1,0)

* (0,0,1)
( 1,0,0)
(0 ,1 ,1)
( 1 ,1,0)
(1,0,1)
(0,2,0)
(1,1,1)
(0,0,2)
(0,2,1)
(1,2,0)
(0,1,2)
(2,0,0)
(1,0,2)
(1,2,1)
(2,1,0)
(1,1,2)
(2,0,1)
(0,3,0)
(0,2,2)
(2,1,1)
(0,3,1)
(1,3,0)
(2,2,0)
(1,2,2)
(0,0,3)
( 1,3,1)
(2,0,2)
(2,2,L)
(0, 1,3)
(2,I,2)
(1,0,3)
(0,3,2)
(1,1,3)
(3,0,0)
(0,2,3)
(0,4,0)
(2,3,0)
( 1,3,2)

0.378
5.75 x 10-14
238.
4.31 x 10-13
3.65 x 10-14
9.95 x 10-16
9.63 x 10-1a
0.437
1,16 x 10-15
0.252
0.586
6.68 x 10-14
7.42 x l}-ra
r.42
2.84 x 10-14
1.04 x 10-13
1.30 x 10-14
4,33 x 10-r6
2.32
4.22 x l0-r5
0.294
2.24 x l}-La
8.35 x 10-15
7.14 x 10-16
0.456
6.19 x 10-14
9.45 x 10-02
8.17 x 10-16
1.48
0.802
3.50 x 10-1ó
1.56 x 10-14
1.31 x 10-14
5.03 x 10-15
3.75 x 10-16
4.23 x 10-15
0.160
6.37 x 10-02
2.76 x l0-t6
9.26 x 10-16

(1,1)
(r,2)
(2,1)
(1,3)
(2,2)
(2,3)

- (3,1)
(1,4)
(3,2)
(2,4)
(3,3)
(1,5)
(4,1)
(3,4)
(2,5)
(4,2)
(4,3)
(1,6)
(3,5)
(2,6)
(4,4)
(5,1)
(5,2)
(1,7)
(3,6)
(5,3)
(4,5)
(2,7)
(5,4)
(4,6)
(6,1)
(3,7)
( 1,8)
(6,2)
(5,5)
(2,8)
(6,3)
(4,7)
(6,4)
(3,8)

2.7I x 10-02
1124 x L0-17
6.33 x 10-17
1.57 x 10-02
1.04 x 10-17
3.18 x 10-15
9.74 x 10-02
2.59 x 10-16
9.14 x 10-16
6.11 x 10-18
2.15 x 10-03
2.96 x 10-03
9.44 x 10-18
1.89 x 10-le
5.16 x 10-18
8.36 x 10-1s
5.79 x 10-1e
1,.08 x 10-18
3.31 x 10-oa
1.56 x 10-17
1.66 x 10-17
8.03 x 10-oa
2.29 x 1.0-17

4.17 x 10-oa
1.64 x 10-17
1.80 x 10-oa
9.24 x 10-18
2.92 x l0-r7
1.88 x 10-17
7.27 x 10-17
3.57 x 10-r7
8.46 x 10-05
7.24 x 10'18
2.62 x 10-17
6.18 x 10-05
6.42 x I0-t7
3.83 x 10-17
5.55 x 10-17
3.63 x 10-18
2.00 x 10-r7

(0,0,0)
(0,1,0)

. (0,0,1)
(1,0,0)
(0,1,1)
(1,1,0)
(1,0,1)
(0,2,0)
(1,1,1)
(0,0,2)
(0,2,1)
(1,2,0)
(0,1,2)
(2,0,0)
(1 ,0,2)
(1,2,1)
(2,1,0)
(1,1 ,2)
(2,0,1)
(0,3,0)
(0,2,2)
(2,1,1)
(0,3,1)
(1,3,0)
(2,2,0)
(I,2,2)
(0,0,3)
(1,3,1)
(2,0,2)
(2,2,1)
(0,1 ,3)
(2,L,2)
(1,0,3)
(0,3,2)
(1,1,3)
(3,0,0)
(0,2,3)
(0,4,0)
(2,3,0)
( 1,3,2)

5.64
6.05 x 10-13
r20.
1.69 x 10-12
6.35 x 10-13
1.05 x l0-1a
1.07 x 10-13
r.92
6.60 x 10-r5
4.28
2.53
8.43 x 10-14
1.14 x 10-13
4,58
3.29 x 10-14
7.27 x 10-13
6.65 x 10-14
6.35 x 10-16
7.41
9.37 x 10-14
7.25
1.13 x 10-13
1.60 x 10-13
2.10 x 10-15
1.83

7.87 x 10-14
I.57
9.68 x 10-16
4.70
3.22
4.68 x 10-14
?.93 x 10-14
1.59 x 10-14
1.10 x 10-13
7.51 x 10-16
2.77 x L0-15
0.674
0.1 17

2.62 x I0-1a
1.18 x 10-t5

1,1

7,2
2,r
1,3

2,2)
2,3)

'(3,1)
(1,4)
(3,2)
(2,4)
(3,3)
1,5)
4,I)
3,4)
2,5)
4,2)
4,3)
1,6)
3,5)
2,6)
4,4)
5,1)
5,2)
1,7)
3,6)
5,3)
4,5)
2,7)
5,4)
4,6)
6,1)
3,7)
1,8)
6,2)
5,5)

(2,9)
(6,3)
(4,7)
(6,4)
(3,8)

3.46 x
2.40 x
1.71 x
7.93 x
5.65 x
3.64 x
0.355
9.64 x
3.10 x
2.95 x
1,19 x
1.83 x
2.87 x
4.68 x
1.06 x
2.38 x
6.57 x
6.69 x
1.58 x
1.24 x
2.84 x
3.37 x
2.23 x
2.45 x
1.54 x
9.77 x
3.32 x
1.10 x
2.56 x
8.00 x
7.32x
3.93 x
3.31 x
I.42 x
3.11 x
6.50 x
2.87 x
1.36 x
6.39 x
3.30 x

10-02
10- 1i

10- 1,i

10-03
10-17
10- 1õ

10- 15

10- 14

10- 17

10- 03

10-03
10- 17

10- 1t

10- 17

10-18
10- 18

10- 18

10-04
10-1i
10- 17

10-0{
10- 17

10- 01

10- 17

10-05
10-r7
10- r7

10- 17

10- 17

10- r7

10-05
10- 17

10- r6

10-05
10- 17

10- 17

10- r6

10- r7

10-r7

* dornitr¡rrr[ ¡nod,:s
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It is clear from Figures 3.8 and 3.9 that the "P2" part of the panel controlled mode

is a continuation of the "C1" part of the cavity controlled mode, and that tr};'e "C2" part of

the cavity controlled mode is a continuation of the "P1" part of the panel controlled mode.

The continuous change from curve ttPl" to curve ttC2tt and from curve ttCltt to cutve ttP2tt

indicates that "P1" a.nd "C2" represent just one acoustical mode and that "C1" and "P2"

represent a second acoustical mode. As the panel modal density increases and passes through

the maximum sound absorption point, the first acoustical mode changes from cavity controlled

to panel controlled. Tb,e second acoustical mode is initially panel controlled, but when it crosses

the maximum sound absorption point it becomes cavity controlled.

If we only measure the sound pressure level in the cavity or if we only measure the

panel acceleration, then we only observe one part of the coupled system. In a measurement

of the cavity sound field it is the cavity controlled modes which are most easily observed.

Naturally, when the panel vibration is measured, the panel controlled modes are easier to

resolve. Experimentally, there is a jump in phase of the transfer impedance and resonance

frequency of the observed mode as the panel modal density is varied across the maximum sound

absorption point. However this jump is due to two simultaneous transitions. One transition

is of a panel controlled mode into a cavity controlled mode, and the other is from a cavity

controlled mode into a panel controlled mode

3.5.3 Panel internal damping

The mechanical damping of the panel is represented in the calculation by the modal decay

times of the uncoupled panel modes. The decay time of a cavity controlled mode can be

directly related to the modal decay time of the uncoupled panel. Figures 3.10 and 3.11 show

respectively the resonance frequencies and modal decay times of the flrst few cavity controlled

modes as a function of the decay time of the panel modes ( Tp¡ø ). In the calculation, the

thickness of the aluminum panel is 6 mm and the decay time of the uncoupled cavity modes

is 15 seconds. The decay time of every uncoupled panel mode is assumed to be equal. As the

parrel dir.mpirrg incrcases ( T',pur decreascs ), the decay timcs of the cavity controlled rnodes

dccrease and approach a minimum. After this minimum, the decay times increase and tend

to those ol tìre rrncorr¡rlcd cavity nroclcs. Thc resonance fì'ct¡rencics of the c:r,vity contloìled

rnodcs v¿l.ry as the p:r.nel tlanrping increascs, but evcntually thcy appro:rch the uncouplcd cavity

rcson i).rì cc l'rccluc ncics.
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Panel damping is a measure of not only the ability of the panel to dissipate energ)'.

but also its tendency to resist acquiring vibrational energy. Until the minimum decay time is

reached, more and more energy is dissipated in the panel as its damping is increased, As the

damping is increased further, it effectively restricts the motion of the panel and eventually the

panel becomes rigid. Therefore no energy will be transferred from the sound field in the cavitv

into the panel and the modal characteristics of the cavity will not be affected.

The resonance frequencies and decay times of each acoustical mode (Figures 3.10 and

3.11) have different characteristics. For example, some curves in Figure 3.10 are monotonic

and one of them has a maximum. According to Eq.(3.29), the flrst order approximation of

the panel influence on the eigenvalue of the Nth cavity controlled mode is described by [i¡¿,¡

(8c1. (3.30)). The real part of [/¡¡,.¡v modifies the resonance frequency of the mode and the

imaginary part of [fy,¡¡ affects its modal decay time. [/¡¡,¡y contains the contributions of

all the panel modes. Among the nonzero terms in the summation of Eq.(3.30), those panel

modes which have lower resonance frequencies than that of the cavity mode make a positive

contribution (increase) to the resulting resonance frequency of the acousticaJ. mode. On the

other hand, the panel modes with higher resonance frequencies make a negative contribution

(decrease) to the resonance frequency. The shift in resonance frequency is due to the combined

effect of all the panel modes. Figure 3.12 shows the first few nonzero terms in tfy,7y rvhich

were used for the calculation of the eigenvalue of the (0,0,1) cavity controlled mode shorvn in

Figure 3.10. For very small panel damping (Teu æ 10sec), the real part of the modification

term [/.¡y,.¡y for the (1,1) and (3,1) panel modes have comparable amplitudes but opposite

signs. The net effect is to slightly reduce the resonance frequency. As panel damping increases

(Te¡a x 0.1sec) the influence of the (3,1) panel mode disappears, and only the effect of the

(1,1) mode, which increases the resonance frequency, remains. As the panel damping increases

further (T.p¡a x 0.001sec), the panel behaves as a rigid wall. Neither panel mode will affect

the resonance frequency and the (0,0,1) acoustical mode degenerates into the (0,0,1) cavity

rnode. Figurc 3.12 also shows the imaginary palt of the first fcw telms of U¡v,tv for (0,0,1)

cavity controlled mode. Thc largc pcak values fol the (1,1) and (3,1) nrodes arc responsiblc

for the two rnìninra in the resulting rnod¿rl decay tirne crrrve of the (0,0,1) mocle (Irigure 3.11).
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3.5.4 Panel radiation

In previous studies of the structure-cavity coupling problem, external radiation from the panel

was assumed to be negligible (Pretlove 1965a, Guy 1979a). Up to this point, the effect of panel

radiation upon the characteristics of the acoustical modes has been neglected. In this section,

this effect wiII be incorporated into the calculation of the eigenvalues (i.e resonance frequencies

and modal decay times). Comparison with the results which exclude panel radiation effect,

reveals the conditions determining tlie importance of externa,l panel radiation.

The influence of panel radiation can be included into the calculation of the complex

eigenvalues of the cavity controlled modes by adding an extra term APi (given by Eq. (3.35))

to Bc1. (3.29). The virtual mass terms o,^(fu[,N) are neglected from Eq. (3.35) and the

radiation efÊciency o^"(M,If) for Nth cavity controlled mode is estimated at the resonance

frequency of the Nth cavity mode.

The 60 dB decay times of the first three cavity controlled modes are shown in Figure 3.13

as a functions of panel modal density. In part (a), the decay times of the cavity modes and the

panel modes are 15 seconds and 5 seconds respectively. The curves obtained by considering the

panel radiation modification term are shown as solid ünes. Comparison of the dashed curves

(neglect the panel radiation) with the solid curves shows that the panel radiation contribution

to the modal decay times increases as the panel modal density increases ( or as the panel

thickness decreases ).

According to the mass law for sound transmission loss (Vér et a\. Ig71), the sound

transmission loss through a panel decreases as the panel thickness decreases. This means that

more energy is transmitted through the panel to external space. This increased energy loss to

the external space results in increased sound absorption by the panel, and. so decreased modal

decay times.

Tlie effect of the panel radiation upon the modal decay time is different for rlifferent

cavity controlled modes. ìiol example, decay timc of the (0,0,1) cavity controlled mode is ruor.e

sl.rongly alÏ'ectcd by the panel ladiation than otlrer modes shown in Figure 3.13(a). The pancl

vibl'a,l,ion pa,rt ol'(0,0,1) r:avil;y controllcd modc is dorniuatcrl lly volumc displaccrncnt paucl

rrtodcs ("odd-odd" modcs), such ar¡ (1,1) and (3,1). Thcse volurne clisplircernent panel mo{cs

Itavr: hi¡4lLcr ra<[i¿rtion cflicicncics (lìahy lgBS).
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Figure 3.13(b) shows the modal decay times of the same modes as in Figure 3.13(a)

except that the input decay times of the panel modes have been changed to 0.5 seconds. In

this case, the panel damping increases and the contribution of the sound radiation of the panel

is less important.

In the previous calculations, the panel decay times were fixed at 5.0 secolds and 0.5

seconds in (a) and (b) respectively. Figure 3.14 shows the influence of panel radiation on the

decay time of the (0,0,1) cavity controlled mode as a function of reciprocal panel decay time,

Both this result and that given in Figure 3.13 (b) show that the panel radiation only has minor

effect on the decay times when the panel decay time is 0.5 seconds.

1 r5

1
Ø

O

\o

F

IØ

o\o
E-

5

10 1 1 1 741

lÆpr'r (s-1) lÆpM (s-t)

Figure 3.14: The decay time of (0,0,1) cavity controlled mod.e as
a function of reciprocal panel modal decay time; rvith (-) and
without (- - -) radiation effect (?.,v : 1b.0 s).

3.6 Discussion and conclusions

This chapter descrìbes the sound ficld in a cavity in terms of the coupling in a panel-cavity

system' l'he tr¿l,ditional description of a sound fleld in an errclosure isolates the sound lield

from tltc rrtotiort of l,hc cnclosirtg structurc and fi'om thc extcrnal sound field, a1¿ the influe¡cc
o1' l,hc borrnrlaly is nrodcll.,d as a, loca.lly re¿lctive acoustic¿rl impr:¿ancc.

Ll ordel to <:orrecl;ly dcscribc thc sourr¿ field in an cnclosurc with moclaully reactivc

botttLcl:t.rir:s, iI is tlcctlssary Io consirlcr thc iutcrrr¿l s<¡urLd fìe¡I, tlic viltr¿tion of the bourr¿at'ies

I
I
\
\

h=3mm h=6mm
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and the external sound field as a single coupled system. In this system, the sound. freld in

the enclosure cannot be modelled in isolation. The acoustical behavior of the whole system is

described by acoustical modes, each of which has a sound field part and a boundary vibration

part.

A modal coupling analysis has been used to investigate the free vibration of a cou-

pled panel-cavity system. Numerical tests of this method show that the approximate solution

converges rapidly and that th.e coupJing of the panels with the cavity is weak. This approach

allows ca.lculation of the characteristics of the acoustical modes from the properties of the

uncoupled cavity modes and panel modes ( wtrich are themselves based on fundamental pa-

rameters of the cavity and the panel ). The geometry of the cavity and the boundaries used in

this analysis is very sirnple, but the method of modal coupling does not in fact constrain the

analysis to simple geometries. The low frequency modal behavior of a complicated enclosure

can be estimated in a similar way. Numerical methods are available for finding the mode

shapes of such uncoupled enclosures and boundary structures.

Modal decay times characterize the transient behavior of a system. If a sound source

drives a sound fleld at a resonance frequency of an acoustical mode, (provided that the source

is not located at a node of the mode,) the sound field will decay at the decay rate of that

mode. If the sound field is driven at an off-resonance frequency, or by a band of noise, the

decay response will contain contributions from more than one mode. The decay behavior of

an enclosure can be obtained by anaiysis similar to that of Hunt eú aI. (lg3g). Hunt's result

depends only upon the cavity modes, but the results presented here are influenced by both

the cavity modes and the panel vibrations. The participation of the sound field part of panel

controlled modes is not predicted by the classical model, but it can be important. The sound

field component of a cavity controlled mode and a panel controlled mode can combine to form

beating decays and double decay rates.

The modal decay times of the system are related to the coupling coefficients, the

distribution of reson¿nce fi'equencies, the panel modal density, the panel darnping an¿ t¡e
pancl radiation loss to extelnal spacc. In conclusion,

L' 'I'lrc Irra'l,cltitlg or ntislrlal;chirrg ol'l,lre uncorrlrletl modc shapr:s on the i^te'acti'g surf¿ce

oI thc soutld ficld and bounda,ry dctcrrnines thc possible encl.gy tran¡¡fer betwee^ these

l'wo rtrodes' 1l'hc corr¡tling cocffìcicrrl;s llq. (3.r8) ar.e a ûrcasìlrc of this ur:rtc¡i¡g.
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2. If themode shapes of twouncoupled modes arervell matched (B¡ø,t'¡ l0), the difference

between their resonance frecluencies determines the rate of energy transfer. By adjusting

(or tuning) tliis difference, different modal decay times can be obtained. The smaller

this difference is, the smaller is the modal decay time (provided that the decay rates of

the uncoupled cavity modes are smaller than those of the uncoupled panel modes). The

strength of interaction between two modes can be expressed as a transfer factor {y,¡,r.

On average, the modal decays time of low frequency cavity controlled modes decrease as

panel modal density increases.

3. The resonance frequency of a cavity controlled mode, can be diferent from that of its

corresponding cavity mode. A panel mode with a particular resonance frequency will

tend to "push away" (i.e. change the frequency of) the cavity modes with which it

interacts.

4' As the panel modal damping is increased, the decay time of each ôavity controlled acous-

tical mode first decreases to a minimum value, and then increase, eventually reaching

the "rigid wall" value.

5. If the panel is thin and its damping is low, radiation into the external space is an

important cause of sound energy loss in the cavity. Otherwise, the effect of radiation

upon modal decay times is negligible. Radiation by the boundary structure into the

external space can be large if the internal cavity mode is well coupled with a panel

mode.
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Chapter 4

Effect of fluid-structural coupling

experiments

4.L Introduction

The classical model of the sound field in a reverberation ¡oom is based upon modal analysis

and the locally reactive boundary assumption. In Chapter 2, it has been shown that this

model cannot be used to predict the modal decay times when the boundaries of the room are

not locally reactive. The latter work has demonstrated that the concrete walls of a typicaJ

reverberation room are extensively rather than locally reactive, and that the coupling of the

room modes and wall structural modes affects the modal decay times in the room.

Chapter 3 is concerned with the formulation of a theoretical model of the modal

coupling within a panel-cavity system. In parallel with this work, an experimental investigation

is carried out to provide a practical view which can clirect the theoretical work and to verify

the predictions of the mathematical analysis.

A pa,ncl-cavity systern, with five rigid walls antl a flexiìrle top pancl, was used for the

exltcriment. A sirnilar cxperimental arrangement has L¡een used by several workers. Dorvell

¿rrld Voss (1963) cottccntl'ated olt l,lte llìcasurelnont of the influclrr:c of a backi'g c,vity olr t¡e

¡r¿tural lì'ccluencies ol a top lrancl. l¡ahy (1969) exami¡ed t[e sorrn¿ ra¿iatio' resistancc of a

viblating Pa,nel lly rne:tsuring tlte avcrage sound prcs$uÌe lcvcl in the caviLy antl accelcration

liB



level on the panel. The sound transmission loss of a cavity backed panel was evaiuated b1'

Bl.rattacharya ( 1970).

In this Chapter, information about the properties of the uncoupled cavity and the

panels used in the experiments to be described is provided. Then the general behavior of the

panel-cavity system is investigated experimentally and the disturbances of the coupling to the

uncoupled sound freld and panel vibration are demonstrated.

The measured resonance frequencies and decay rates of the cavity controlled modes

in the coupled system are compared with the predictions of the theoretical analysis discussed

in Chapter 3. The comparison shorvs that the theoretical method can be used to predict the

acoustical decay times of those rooms where the classical sound absorption model does not

apply. The dependence of the decay times of the cavity controlled modes upon the character-

istics of the test panel, such as the resonance frequencies, mechanical damping and radiation

effciency of the panel are also reviewed.

4.2 Description of the panel-cavity coupling system

A rectangular concrete box open at the top was formed by bolting five 0.2 m thick concrete slabs

together (see Figure 4.1(a) and (b)). On its top, either a conc¡ete lid of identical thickness as

the other f.ve walls can be put in place for the measurement of background sound absorption

of the cavity, or various test panels may be mounted for experimental investigation. The

coordinates and the internal dimensions of the cavity are the same as described in Chapter 3

(see Figure 3.1). The inside surfaces of the cavity are smooth and have been left unpainted,

All the joins between the slabs are sealed with plasti-bond to prevent air leaks.

The sound field in the cavity can be driven at an inside corner (taken as the origin

of coordin¿l,tes) with an externally placed high power loudspeaker through a high impedance

tubc ( Ilunt 1939b ) made by packing a steel tube ( inside cliameter 24 ntm, antl length

230 mm ) with thin copper wires. Tltis sound gcneration system, as shown in lligurc 4.2,has

tlte propcrty of'low souttd absorPtion arr<l unil'ol'ln out¡rut. Almost in all cases, a microphone

is pla,ccd ¿rt thcoppositccorncr.( X = 0.8(i8rn, y = 1.150m, Z -_0.000 m) tomeasul.ethe

soun<J prcssur.c in thc cavity.
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)(a

(")

(b)
\¡o

-;Þ-'-:

(d)

Figure 4.1: (a) concrete box; (b) concrete lid; (c) panel clamping arrange-
ment; (d) simply supported panel.
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Concrete WaIl

Figure 4.2: The high ilput irnpedance tul¡e sound driving systen.

------ - '
Simply Supported Panel
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The arrangement of the panel frame on the concrete box, as rvell as the magnetic

driving system for the panel vibration measurements are shown in Figure 4.3, Figure 4.1(c)

and (d). The magnet is attached to a steel beam, which is clamped above the concrete box,

and can drive the panel without touching the panel. The position of the magnet over the

surface of the test panel is adjustable so that individual panel modes can be generated b¡'

driving the mode at an antinode.

A test panel is made of a 6 mm aluminum plate. A simply supported boundarv

condition (Figure 4.3) was adopted for this panel, which is made by using a steel skirt pinned

around the edges of the panel ( Snowdon 7974).

4.3 LJncoupled concrete cavity

A cavity mode is described by its resonance frequency, modal decay time and mode shape.

With the concrete lid in place, the resonance frequencies and modal decay times of the cavitl'

can be measured. The power spectral density (PSD) of the cavity sound field response to

white noise generated through the loudspeaker is shown in Figure 4.4. Since every mode in

the rectangular cavity has an antinode at the corner, all the resonance frequencies of the cavit.v.-

modes can readily be identified from the peaks in the PSD.

100 J 0 5

Frcquency (Hz)

Fi¡4urc 4.4: PSD of the sound fickl irr thc urrcouplr:cl concrctr: ca.vit¡,

The decay tirrlc of caclt cavil;y rnodc was nrc¿l,sured by thc tlecay rncthod. Thc ou[¡lut

fl'orn thc loudspe;r.kcr w¿r$ suddcrrly ilrl,clruptctl :urt[ thc dccir.y r¿rtc w:rs dctcr.rrrinetl frorn t|c
rccor'dcd sorrtrd ptcsrirrre lcvcl dcc:r,y <:rrrvc rrsirrg asor¡nrl lcvcl rer:<¡rtler'. For those rnotles, wIiclr

arc strotrgly distrrrbed by thc nculby rnorlr:s, thc rrricrnplrorì.c w¿us pllLccd a[:r positiolr wficrc

Êq

â(t)
Fr -4

7',¿



their amplitudes are large and the nearby modes have minimum pressure amplitudes. This

reduced modal beating in the decay curves.

By comparing the measured resonance frequencies with those calculated (Eq.(3,a1)),

the moda,l indices can be allocated to the measured resonance frequencies. Therefore the modal

shape for each resonance can be determined by Eq.(3.8). The resonance frequencies and the

decay times of the first twenty cavity modes are listed in Table 4.1. In this table the theoretical

values are also included. The modal decay times are related to the sound absorption of the

concrete walls at the resonance frecluencies.

Table 4.1: Resonalce frequencies and modal decay times of the concrete cavity

(T = 18"C)

Mode
(I,rn,n)

rt,*,n (Hz)
Theoretical

fi,^,n (Hz)
Experimental

Modal Decay
Time (Sec)

0, L,0
0,0,1
1,0,0
0,1,1
1,1,0
1,0,1
0,2,0
1,1,1
0,0,2
0,2,7
r,2,0
0,7,2
21 0',0
7,0,2
1,2, I
2,7, 0

1,7,2
2,0,1
0,3,0
0,2,2

149.57
772.00
198.15
227.9
248.3

262.4
299.1

302.0
344.0

345.1
358.8
375.1

396.3
397.0
397.9
423.6

424.2

432.0

448.7

455.9

149.59

777.48
198.16

227.6
248.1

267.9

299.r
301.7
342.5

344.8
358.6
373.8

395.6
396.3

398.1
422.8
424.3

431.8
448.8
454.6

10.5

70.2

9.5

7.0

7.0

Ð. I

8.5
4.8
7.2

ó.7
b.D

6.3
ô.0

b.b

3.23
4.2
2.75

4.0

5.0
b.b

7:l



The 1/3 octave frequency band reverberation times of the concrete cavity were mea-

sured for comparison with those of a particle board box which has the same interior dimension.

The comparison in Figure 4.5 shows that the concrete cavity provides low sound absorption, so

that the influence of panel-cavity modal coupling would become prominent. Increased sound

absorption due to variation in panel-cavity coupling is well witliin the range of the sound level

recorder used in these experiments.

t2

1

1 1 0 10

Frequency (IIz)

Figure 4.5: reverberation times (1/3 octave band measurement) of the
concrete cavity and a wooden box with the identical internal dimensions.

4.4 Test panels

The mechanical damping of a test panel is not only depended upon the internal damping of

the panel but also upon the mounting condition on the cavity. Therefore the panel should

be tested under the same mounting condition as in the measurement of the coupled panel-

cavity system but without the sound reflection from the bottom of the cavity. To satisfy this

requirement, the cavity was filled with sound absorptive material which absorbed the sound

radiated from the vibrating panel.

The PSD of thc panel acceleration duc to the driving of a magnct fed with a white

noiscsignalat(X =0.20m,Y - 0.67m)wasob[ainedfromthe outputof anaccelcrometer

at ( X = 0.46 n,Y - 0.1Ì6 m ). Irigurc 4.6 shows l;lie rltcasrrlctl ¡rowcl spcctral tlcnsity of

a 6 mrn aluutinunr pancl. Thc fLlst 20 rcsorr¿rn<:c lì'ctlucncies of the pancl rnodes are listcd irr

I'¿blc 4,2, with thcoretir:al prccliction (llr1.(:1.35)) for comp:rrison.

Ø
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F
o
(€
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-Õ!()
()
ú

2

0

-o -* --*--x-'<--x-

o

x

x.__-;- lx- -*-x-r--*
>a

Concrete Cavity

Wooden Box
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Êa
't5

o(t)
À
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2 0 J 0 4 s00

Frequency (IIz)

Figure 4.6: PSD of the panel acceleration (uncoupled panel h : 6 mm)

Table 4.2: Resonance frequencÍes and modal decay times of an aluminum panel

( ä : 6 mm, without cavity influence )

Mode
(u,r)

f",u (Hz)
Theoretical

f",o (Hz¡
Experimental

Modal Decay
Time (Sec)

11
72
21
13
22
23
31
74
Ðô¿L

24
otJ r-,

15
47
34
25
42
43
16
35
26

29.977
62.477

87.076
116.756
119.643

773.92r
182.351
192.745
214.978
249.910
269.196
290.445
315.737
345.185
347.610
348,303
402.581
409.857
442.886
467.022

34.00
63.13

89.19

115.91
722.84

173.86

184.50

190.90

216.0
257.3

268.4
285.9

315.6

343.8

347.9

348.3
401.9
408.9
437.9

460.9

9.3
19.8

11.9

5.1
3.5

17.4

4.3
ô.4
4.4
4.7
5.0

1.6

1.6
2.6

1.5

0.42
0.62

0.42

1.3

0.38

t:t



The shapes of the panel modes are represented by the index (u,r). The integers u

and. u indicate the number of antinodes in X and Y directions. The decay times of the panel

modes have also been listed in Table 4.2. The measured panel damping is due to mechanical

damping and to the panel radiation to each side of the panel.

4.5 Experirnental results and interpretation

4.5.1 Measurement of the panel-cavity systern

Replacing the concrete lid by a test panel,'the coupling behavior of the panel-cavity system

can be examined. The power spectral density of the sound field in the cavity was measured

for the 6 mm aluminum panel. A comparison of the PSD of the coupled system(Figure 4.7

(a)) with that of the concrete cavity (Figure 4.4) shows the presence of extra resonant peaks

in the coupled system. The frequencies of the extra peaks can be traced back to the resonance

frequencies of the test panel. lVhen some darnping material or weight, such as a few sand bags,

was placed on the surface of the panel, the extra peaks disappeared or shifted in frequency.

Due to the fluid-structural coupling,'the sound ptessure on the inside surface of the

panel forces the panel to vibrate. On the other hand, the vibrating panel radiates sound back

into the cavity, so that the original sound freld is perturbed. Near the resonance frequencies

of the panel, the panel will have large response and so large sound radiation into the cavity is

the result. All the extra peaks are caused by radiation of vibrating panel modes. They may

be observed in the cases when the panel mode is well coupled with a cavity mode or in the

frecluency ranges where the sound pressure level is very low so that the panel radiation is not

submerged. Once the vibration of the panel is stopped by the sand bags, the radiation ceases

and the extra peaks disappear. The PSD of the panel acceleration was also measured for the

same case ( Figure 4.7 (b) ). It shows a strong response at frequencies corresponding to the

extra peaks in the sound field PSD.

The PSD of the sound ficlcl in the cavity can also be obtained by using a magnet

t<l driv<t thr: test pancl. In this citsc, ahnost evcry cavity coutrollcd modc and cvery pancl

corrtrcrllcd modc can be identifictl in thc PSD, as slL<lwu il Figurc a.7(c).
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When the sound field in the cavity is directly generated by a loudspeaker, the radiated

sound field due to induced panel vibration is weaker than the direct sound field. Therefore

the modal radiation is usually submerged in the direct field. Horvever, the vibration level of

the panel becomes higher when it is directly driven by a magnet. The vibrating panel then

behaves like a loudspeaker with its own resonance characteristics. Therefore both the panel

modal radiation and cavity modal response can be recorded in the cavity.

Different levels of the sound fleld response can be obtained for different locations of the

driving magnet. The panel modal response is dependent upon the position of the driving force

thus the panel controlled mode may be altered by alteration of the panel response. The sound

field of the cavity controlled modes is dependent upon the selection of the modal coupling of

the panel modes and the cavity modes. If the panel mode, which is responsible for the cavity

mode, is not well generated with the selected location of the magnetic driver then the response

of the cavity controlled mode wiII be suppressed.

4.5.2 Comparison of measured and predicted results

The modal coupling analysis from Chapter 3 was used to predict the modal parameters of

the coupled system. In these analyses, the resonance frequencies and modal decay times of

the coupled system are calculated from the fundamental properties of the uncoupled panel

and cavity modes. The first 20 cavity modes and 20 panel modes (listed in Tables 4.1 and

4.2) were used in the calculation. The orthogonal expansion method was used for theoretical

predictions. The resonance frequencies and the modal decay times of the coupled system

were also measured experimentally. The flrst thirteen cavity controlled modes of the panel-

cavity system were calculated and measured for the 6 mm aluminum panel and are all listed

in Table 4.3 for comparison. The agreement between the measurements and the theoretical

predictions indicates that the coupling theory can be used to evaluate the reverberation time

in enclosures where the boundaries arc rnodally reactive.
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Table 4.3: Comparison of the measured and predicted resonance frequencies and modal decay

times of the panel-cavity system (/¿ - 6 mm)

mode(/, rn, n)

Measurement Prediction

fi,^,n

(Hr)

Tm6o

(')
ft,^,n

(Hr)

Tm6o

(')

0,1,0

0,0,1

1,0,0

0,1,1

1,1,0

1,0,1

0,2,0

1,1,1

0,0,2

0,2,I

1,2,0

0,1,2

2,0r0

149.82

r70.23

198.34

227.9

248.9

260.9

297.7

299.3

339.2

342.6

356.6

369.7

393.9

10.1

7.9

o.)

5.5

1.5

3.2

4.9

3.8

7.4

5.0

4.3

4.0

5.0

149.91

172.23

198.66

229.32

249.79

262.8r

299.68

302.45

344.6r

345.72

359.25

375.51

396.53

10.02

7.90

9.2

6.07

1.83

5.43

4.73

4.49

6.84

5.11

4.60

5.92

5.52

4.5.3 Sound wave properties & panel characteristics

The resonance frequencies and decay times of the acoustical modes in a coupled system are

the focus of this investigation. Due to sound field coupling with the test panel, the sound

wave boundary conditions are different from the rigid wall condition. The phase of the panel

velocity with respect to the phase of the incident sound pressure in the cavity will affect the

superposition of the traveljng waves in the cavity. Therefore the resonance, which occurs

when the reflected waves coincide with the incident waves, will be perturbed and so will the

I'esorìalìce frcquency. The encrgy flow bctween the test pancl and sound licld ilr the presence

of' the cou¡rling will directly aflccl, thc decay of thc souu<l field. The magnil,udc of this cnergy

llow is del;crminc<l lly tìre coupling condition between individual panel and cavity modce.
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Theoretical consideration of the panel-cavity coupled system suggests that some in-

teresting phenomena associated with the sound wave behavior may be observed in the cavity

when some characteristic of thë panel (such as modal density of the panel) is varied. For

example, the decay times of the acoustic modes experience relative minima and the resonance

frequency of each mode exhibits an interesting jump on crossing the panel modal density region

of maximum sound absorption.

Experimentally, it was found that each resonance frequency of the test panel incremen-

tal1y shifted in the direction of lower frequencies when sand was incrementally and uniformly

spread on the panel surface. The dependence of the first few normalized resonance frequencies

/",,(t) t...1.^-^ r tr /^\ \w¡rçrç ru,ur.s) and /",r(0) are resonance frecluencies of (u,u) panel mode with and
J u,u\v ¡
without sand influence respectively) of the 6 mm aluminum panel as a function of the amount

of added sand is shown in Figure 4.8.

The effect of sand on the structure has been studied by I(uhl and Kaiser (1952)

and the loss factors of sand frlled structures rvere investigated by Sun eú al. (1986a) using

Statistical Energy Analysis. When a thin layer of sand covers a panel, the effective mass

and the damping of the panel are changed and the speed of the wave propagation is lowered.

Reference to Figure 4.8 shows that increasing the amount of sand causes the panel resonance

frequencies to concentrate towards the low frequency end of the scale. This means that the

panel modal density is increased. In confirmation of this observation, the measured modal

density of the panel is'shown in Figure 4.9 as a function of the amount of added sand. The

measured panel damping due to added sand is plotted in Figure 4.10. After an initial quick

decrease of the decay times, the panel dampings do not change substantially with the further

addition of sand although the panel modal density changes substantially. This result suggests

that the main effect of adding sand ön the sound behavior in the cavity is due to the variation

of the panel modal density.

The modal decay times of the lirst three cavity controlled acoustical modes are plotted

in Ifigurc 4.11 ¿rs a function of panel modal density. Although thc rangc of the p:rnel modal

density vari¿ltion is not vcry large in this experimcnt, the obscrved minimurn modal decay

l,irncs <:olrfil'm tlrc plcdictions oI Cha¡rtcr iì.

rJ0



The measured resonance frequencies of the same modes are plotted in Figure 4.12 as

a function of the panel modal density. As the panel modal density increases the resonance

frequency of each mode has a jump from low frequency to high frequency. On the modal

density scale, the resonance frequency jumps of a mode coincide with its decay time minima.

The results shown as solid Iines in Figures 4.11 and 4.12 were calculated by the

successive iteration method. In this case, the resonance frequency and decay time of each

panel mode was estimated from the experimental results shown in Figures 4.9 and Figure 4,10.

The calculation started with the experimentally obtained values of panel modal density. The

resonance frecluency of each panel mode was calcuiated from these panel modal densities

according to Ec1s. (3.43) and (3.42). The value assigned to the decay time of each panel mode

is obtained by selecting the reverberation time of the 1/3 octave frequency band in rvhich

the panel mode is located. The 1/3 octave reverberation times are read from Figures 4,10

and 4.9. In the other words, those panel modes with resonance frequencies in the same 1/3

octave frequency band are assigned the same decay times. The variation in panel mass due to

the added sand was also taken into account in the calculation.

0.9

mode (1,1)

mode (1,2)

mode (2,1)

mode (1,3)

c

à o.s
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Figure 4.9: Panel modal density as a function of amount of added
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The cavity controlled mode (0,0,1) and the panel controlled mode (3,1) have been

examined closely. The relationship between the sound field part and the panel vibration part

of each mode has been investigated in the region of their resonance frequencies.

Figure 4.13 shows the power spectral densities of the sound field and the panel accel-

eration near the resonance frequencies of (0,0,1) mode and (3,1) mode for a number of closel¡''

spaced panel modal densities. The PSD of the sound field is due to loudspeaker driving of the

cavity, while the PSD of the panel vibration is due to magnetic driving of the panel. In the

latter case, the accelerometer was placed at the center of the panel and at a node of a nearbl,'

panel mode (which does not couple with (0,0,1) cavity mode) to avoid its appearance in the

spectrum. The range of panel modal density shorvn in Figure 4.13 covers the maúmum sound

absorption region of the (0,0,1) cavity controlled mode (see Figure 4.11).

As the panel modal density is increased by incrementally increasing the sand, the

power spectral densities of the sound fleld and the panel vibration show some interesting

changes. Referring to Figure 4.13, at the beginning (n" = 0.0560 Hr-t), one low frequency

peak in the PSD of the cavity sound field is clearly identified, and a high frecluency peak is

also visible but with much lower amplitude. However, for the corresponding panel vibration

spectrum, the high frequency peak has higher amplitude, while the low frequency peak has

lower amp[tude. In this case, the cavity controlled mode (0,0,1) and the panel controlled

mode (3,1) can easily be distinguished by the respective relative amplitudes of response.

As the modal density is increased ( moving up the page ), the higher frequency peak

in the sound field PSD becomes larger while the lower frequency peak moves slightly torvard

lower frequencies and becomes smaller. Eventually only the high frequency peak remains and

the low frequency peak disappears. The PSD of the panel vibration shows almost the opposite

behavior. The lower frequency peak becomes bigger and its bandwidth becomes wider, rvhile

the higher frecluency peak becomes smaller and narrower.

'l'he low li'equency peaks in the cavity sountl field and panel vibration spectra at

eaclt particular pancl modal density arc tesonance peaks for one coupled acoustical mode as

tne¿tsurcd in difl'crent p:r.rts of tltc coupìcd systcrn. Tlre pcak of largcl arnplilude in thc cavity

sourtd ficld spectr:r sltows that this ¡lc:rk of thc acoustic¿rl modc is a cavity controlled mode.

Sinila,rly l;he ¡rcah of largel arnplitudc in thc ¡rancl spr:ctr¿ sh.ows th¿rt it is a panel coutrolled

Itr.orlc. All of'l,lrcse cltartges itt tlie ¡tcll<s ol Figure 4.1íl tlcnonsl;r'atc that the clvity controllctl
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mode and the panel controlled mode interchange their positions in the frequency domain as

the panel modal density is increased in the region of maximum sound absorption.

In this maximum sound absorption region, the specific acoustical transfer impedance

between the microphone location ( 0.868 m,1.150 m,0.000 m ) and the accelerometer location

( 0.434 m,0.575 m ) was measured at the peak frequencies in Figure 4.13. Figure 4.14(a1) and

(a2) shows the amplitude and phase of this impedance for (0,0,1) cavity controlled mode and

(3,1) panel controlled mode as a function of panel modal density. The corresponding resonance

frequencies and decay times of the modes are plotted in Figure 4.14 (b) and (c). The results

shown Figures 4.14(a1), (a2), (b) and (c) may be compared with the theoretical results of

Chapter 3 shown in Figure 3.9(a1), (a2) and Figure 3.8(b) and (c). The general trends in the

experimental results are the same as those produced by the theoretical calculations.

When the panel modal density is far from the maximum sound absorption position,

the cavity controlled mode and panel controlled mode are easily distinguished because they

have very different amplitudes of specific transfer impedance. The impedance amplitudes of

the two modes tends to be equal at the maximum sound absorption point. Although the

phase shifts in the instrumentation are unknown, the jump in the phase of each mode is

still observed when the modal density is crossing the maximum sound absorption point. The

resonance frequencies and the modal decay times plotted in the Figure 4.14 also qualitatively

confirmed the theoretical results shown in Figure 3.8(b) and (c).

Quantitative differences between the experimental results and the theoretical mod-

elling are observed and there are many reasons for these differences. For the theoretical

calculation, panel damping was assumed to be the same for every panel mode, but in the ex-

periment, each panel mode has a different decay time. The modal decay times of the panel also

vary as sand is added to change the panel density. Each panel modal frequency decreases at

a diffelent rate (Figure a.8) as sand is added. In the theoretical prediction, the characteristics

are taken from the normal modes of free vibration, but in the experiment, the characteristics

of these modes can be measurcd only if tlie vibration is forced continuously at the resonance

frec¡uency. 'l'he near field effcct of the driving source in the cavity is not expected to bc entirely

ncgligiblc.
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4.5.4 Influence of panel damping on modal decay tirne

In the low frequency range, the sound energy in the cavity is mainly dissipated at the bound-

aries. The sound energy incident on the test panel is þartly radiated back into the cavity,

partly dissipated by the mechanical damping of the panel and partly radiated into the outside

space. That is, the damping of the panel directly influences the reverberation time in the

cavity.

In order to illustrate this fact, the damping of a 6 mm aluminum panel was changed by

placing a layer of sand (weighting 1.6 kg) on it. The average reverberation times of the panel

(with and without sand) are plotted in Figure 4.15 and th.e corresponding cavity acoustic field

reverberation times are plotted in Figure 4.16. These results show that the damping of a panel

which is coupled to the cavity afects the reverberation time of the cavity. The panel with the

Iarger damping factor (the one with a layer of sand) produces a smaller cavity reverberation

time.

vt
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L
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Figrrre 4.15: Thc reverberation times of the test panels
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Figure 4.16: The reverberation times of the sound field in the cavity.
(-) 6 mm aluminum panel; (- - -) 6 mm aluminum panel covered by
sand (1.6 kg).

4.6.6 Influence of panel radiation

The radiation of a flexible panel is most important in the consideration of sound transmission

through the panel. However, when consideration is turned to the estimation of reverberation

time in the cavity, the radiation loss of the panel will only be one part of the total energy

dissipation in the vibrating panel. The following experiment shows that when the panel is rvell

damped, the contribution of the sound radiation loss of the panel to the total absorption is

smaller than that of the mechanical damping of the panel.

To estimate the contribution of the panel radiation loss to the total sound absorption

of the panel, the energy dissipations of both the mechanical damping and the radiation loss are

measured separately. In steady statc the modal damping constant k- is related to the total

sound energy in the cavity D¡ and the power loss P¡ into the boundaries by the following

ecluation ( Morse 1948b )

, rlr¡
f,,, = ifi. (4.1)

'lllre 60 <llJ rnorl:rl dccay Ltn-ta'1',,,,1;1¡ ¿rnd rnotla,l damping consl;anl, are rclatcd as lollows:

r,, _ ('j.91
I int,,¡ = - tj- . (4 .2)
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The measurement was conducted in a rectangular particle-board box, which was made

of six 20 mm thick flexible particie boards with the same internal dimensions as those of the

concrete box. The internal surfaces of the box were painted in order to eliminate surface

porosity. The first few resonance frecluencies of the acoustic modes are well separated and the

modal shapes can be described approximately by cosine functions. Therefore the sound energy

(E¿) in the box can be determined from the sound pressure in a corner and the modal index.

Tlrere are two terms which contribute to P¡ in Eq.(4.1), the panel mechanical damping term

P¿¡, and radiation loss term P,,¿.. P¿¡ can be estimated from the average panel vibrational

energy Ep ar.d average panel damping constant k, at each resonance frequency from

pdA = 2krEp =ffur. (4.g)

P74 caî be obtained by measuring the average sound intensity I over each external surface of

the box,

PrA =ÐtrS,, (4.4)

where ,9¿ is the area of the ith surface.

The average reverberation time (4) of the box boundaries are measured at each

resona,nce frequency and listed in Table 4,4. A sound intensity meter was used to measure the

average energy flow rate on each side of the box. By means of Eqs.(a.3) and (4.4), contributions

of the mechanical damping and the radiation loss of the particle-board to the total absorbed

power can be evaluated. Substituting both these results (P¿¡ and P,¡) and the measured

sound energy in the cavity (,Ea) separately into Eqs.(a.l) and (4.2), the estimated modal

decay times (7-60) due to the panel damping and the radiation loss are obtained. The results

are shown in Table 4.5, with measured modal decay times for comparison.

These results indicate that the radiation loss makes little contribution to the modal

decay time in the cavity when the boundary structure has large damping. However, the

radiation effect may become important when the mechanical damping is small and the tested

modes are panel controlled. In this case the panel radiation may have cornparable eflect to

th¿rt of the ¡lanel damping on the rnodal dccay in the cavity. Fol example, in Table 4.5,

rnodc(0,0,1;2) is n 1l:rncl contrrrllcd rnodc. In this c:r.sc, thc estima.ted radiation contribution is

olrviously l:r.rge as tlLc cort'cspondirrg valur¡ of estilnated moda,l decay time Ç,66 is small.

9t



Table 4.4: Average reverberation times of the boundaries of a particle board box

(? = 16'C)

mode (0,1,0) (0,0,1;1) (0,0,1;2) ( 1,0,0) (0,1,1) (1,1,0)

f (Hr)

4 (.)
154.9

0.69

171.7

0.69

184.0

0.69

201.8

0.49

230.9

0.22

250.5

0.22

mode(O,0,1;1)- cavity controlled mode

mode(O,0,1 ;2)- panel controlled mode

Table 4.5: A comparison of the panel damping and radiation loss contributions to decay times

of the acoustical modes in a particle board box

acoustical

mode

panel damping panel radiation measured

?-eo (s) ø-ltm6O ('-t ) ?-oo (s)
";!o 

(s 't) 7-eò (s)
"-åo 

(t-t)

(0,1,0)

(0,0,1;1)

(0,0,1;2)

(1,0,0)

(0,1,1)

(1,1,0)

1.85

0.71

0.87

1.0

2.90

2.83

0.54

7.47

1.15

1.0

0.35

0.35

22.4

24.0

2.77

6.61

27.4

24.8

0.045

0.042

0.36

0.15

0.038

0.040

2.5

1.27

0.77

0.86

1.6

2.3

0.40

0.79

1.30

1.16

0.36

0.44
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Another experiment was carried out to measure the average sound intensity radi-

ated from the vibrating panel of the concrete cavity-panel system at the peak frequencies

of Figure 4.13. Each acoustical mode was generated at its resonance frequency by the loud-

speaker and the sound pressure level was monitored at the opporit" corner on the floor by a

microphone. A sound intensity meter was used to measure the sound power radiated from

the panel. The sound intensity was measured at the node points of an 5 x 7 uniform grid

on the panel surface. The total radiation power for each mode and at each measured panel

modal density value was then obtained by summation of the measured intensities over the

grid. Figure 4.17 shows that for the same reference sound pressure level in the cavity, the

total radiation power varies with the panel modal density ( which is varied by adding sand

to the panel surface). The sound radiation becomes large when the acoustical modes reach

the maximum sound absorption region, and becomes even larger rvhen the acoustical modes

become panel controlled (because in these two cases, the panel vibration level is high).
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4.6 Discussion and conclustons

The first part of this experimental work was to determine the properties of the uncoupled cavity

and panels. From knowledge ofthese properties, the theoretical results in Chapter 3 were used

to predict the resonance frequencies and the modal decay times of the coupled system. The

second part of the experimental work was to directly measure the behavior of the coupled

panel-cavity system, and to compare these results with the predictions. The comparison in

table 4.3 and Figures 4.11 and 4.I2 shows that the modal coupling theory, upon which the

predictions are based, can be used to estimate the sound decay rvhen the bounda¡ies of the

enclosure are modally reactive.

The dependence of the resonance frequencies and modal decay times of the sy'stem

upon the modal density of the panel, panel damping and radiation loss were investigated

experimentally. The results confirm the theoretical predictions.

Instead of using many panels of different thicknesses, a layer of sand has been used

to change the modal density of a test panel. This simple method enabled us to observe

the dependance of the moda.l decay times of the acoustical modes on panel modal density.

Particularly, the existence of minimum modal decay time regions and of frequency jumps

of cavity controlled modes has been demonstrated. Measurement of the specific acoustical

transfer impedance revealed a possible reason for these jumps. The large impedance phase

changes of the examined acoustical modes in the minimum modal decay time region indicated

that a change in the state of panel behavior takes place in this region.

Ilowever, sand increases the panel damping of the higher order panel modes. It is

difficult to identify the modal decay times for higher order panel modes. In this case, the 1/3

octave panel dccay times were used as panel modal decay times. This approximation often

underestimates the panel modal damping. This may explain the discrepancies between the

prerlicted and the measurcd results shown in Figures 4.lI an<L4.12.

Ihc cffect of the ¡ranel tlamping on thc dcr:ay of the acoustical modes in the enclosure

is sullstan'l;i¿Ll. If thc pancl is thick ard lreavily darnpcd, the co¡tributio¡ of t¡e panel radiation

to tltc sound :rbsor¡rtiort of thc cavity contlollcrl modes is ncgligi¡lc. Ilowever, t¡e radiation

contributiolt to tllc sound tr¿rttetnissiou iuto thc cxtcrn¿rl space c¿rn bc irnportant for the pancl
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controlled modes

The measurement of the panel modal decay times includes the effect of both mechan-

ical damping and radiation loss. In tiris experiment, these measured decay times have been

used as panel modal decay times for the prediction of acoustical modes. In effect, the radiation

loss has been incorporated into the model as extra mechanical damping. There is no theoreti-

cal proof that this is a valid approximation, but the close agreement between experiment and

the prediction indicates that it does not produce significant error.

Although the experiments have been confined to a simple panel-cavity system, the

general relationships between the sound field and the modal characteristics of its extensively

reactive boundary have been demonstrated. Other boundary conditions of the test panel,

or a more complicated shape of the enclosure might give different quantitative relationships

between the modal decay times and the boundary characteristics, but the basic phenomena,

such as the maximum sound absorption and the sudden change of resonance frequency in the

maximum sound absorption regions should still remain.

Acoustic coupling with more complicated structures (for example, a cylindrical shell)

can be studied in a similar way. In nearly all practical situations, cavities have more than

one fl.exible wall (Dickinson and Warburton 1967), and there is structural coupling betrveen

adjacent walls. In such cases there are more and different parameters which can be chosen to

control the acoustical behavior.

The decay rates of the acoustical modes investigated here were evaluated mode by

mode. However, when a sound field is generated at an off-resonance frequency, several modes

may participate in the decay. In this case the behavior of the decay will be the combined

result of all the participating modes. Interference may occur between the contributing modes,

and the decay curve may not be linear. Beating may be observed and the behavior of the

decay will then depend upon the relative amplitude and phase of each mode at the measuring

point. Early wolk on this aspect of the problem has been done for locally reactive boundary

enclosures (I{unt et al. 1939). Ilowever once the boundary coupling effect is introduced, the

dccay beh¿vi<lr of a rtumbcr of' nrodes c¿rn not be divided into scvcrr ßl.oups of rnodcs, in wIir:¡

ca,clt grortp will lr¿ivc t.ltc s¿rt'ttc decay tilnc. Pancl charactcristics, cs¡recially the participation

of thc structure tlomilrated rnodcs, nrusl, then be consjdcred.
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Chapter 5

Effect of fluid-structural coupling

orr acoustical decays

SEA approach

5.1 fntroduction

The classical sound absorption theory (Morse 1939), which is based on the iocally reactive

boundary assumption, can produce an incorrect prediction for the low frequency modal decay

times in a reverberation room. Experimental evidence (Pan and Bies 1988) showing that

the walls of the room are modally reactive rather than locally reactive, explains this failure.

Results of theoretical and experimental investigations (Chapters 3 and 4) into the effect of

fluid-structural coupling upon the sound absorption in a panel-cavity system show that the

decay times of the low frequency resonant modes can be predicted by modal coupling analysis.

Modal coupling analysis is an effective approach for estimating the decay behavior

of low fre<luency coupled modcs. In the low frequency range, the modal parameters of the

uncouplcd roorn and pattel can easily bc determined, because the resonance frequencies of the

l'orlm modes are well scpa,ratcd florn onc anotlrer, a,nd so are the structural urode frcquer¡cies.

llt¡wcvcl' ill¡tlvc the low fì'er¡uency ra,nge, tlre rcson¡lncc freclucncics of thc rooln are close to-

getltcl lrnd tnany roo¡tr tnodes c¿1.¡r bc gencratetl at thc samc timc. Thc moclal decay tirnes of

tllt-'sl,l'tlctttr;rl rrtotlcs a,lso rl<lcl'c¿rsc so l,lr¿rl, thc reson:urcc ¡rc:rks bro¡rdcn a.nd ovcrlap.
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Consequently the determination of the modal parameters of the room and of the panel becomes

difficult. At these higher frequencies, modal couplìng analysis is impractical but a description

of the average behavior of the coupled system by the Statistica.l Energy Analysis ( SEA ) is

possible and practical.

Traditionally, the reverberation times of high frequency sound fields in a reverberation

room has been related to the sound absorption coefficient of the boundaries. If the boundaries

are locally reactive, their sound absorption coefficient a is related to the normal acoustical

impedance of the boundary material. Wlien the boundaries, such as panel sound absorbers, are

modally reactive, the relationship betrveen the sound absorption coefficient of the boundaries

and the boundary properties becomes more complicated. The sound absorption behavior of

such boundaries is usually determined experimentally using Sabine absorption theory (Sabine

and Ramer 1948, Parkin and Purkis 1951 and Knudsen eú al. 1967). The measured sound

absorption coeff.cient o"o, is called the Sabine absorption coefficient. However the physiial

interpretation of a"oo is unclear, and there has been no way of ca,lculating it from the structural

properties of the boundaries.

In this Chapter, the effect of the coupling of a sound field in a reverberation room with

panel absorbers upon the decay behavior of each is investigated by the SEA method. In this

analysis the sound field in the room and the panel vibration response have been characterized

in terms of the average modal parameters (such as moda,l densities, loss factors and coupling

loss factors). A quasi-transient solution of the average energies in the room and the panels is

used to evaluate the reverberation times of the sound field in the room and also to compute

the decay curves of a test panel and the room. An accompanying experiment has also been

conducted to verify the result of the analysis.

The calculated and experimental results for the sound decay in the room agree in the

high frecluency rangc. This agreement shows that the average decay behavior of the room ancl

panels can lte analysed in terrns of avcrage modal parameters. The amalgamation of average

mod¿rl ¡ra.ra,tnctt:rs ( of the test panels and the rcverbel'ation room ) cal be lclated to aroo of

tìtc pa.ncls. llhis result ¡lrovidcs a possiblc inter¡rrctal;ion for thc ar", of a modally reactive

surftrcc arrd srrggcsl;s a way to r:stirna,l.c tlris rluarrtity by the SììÂ mcthod. ifhe dcpenclcncc

ol tllc S¿rbine allsolptiort cocfficicrtl;s of tlre parrels rrllon thc the ch¿rr¿rctcristics of thc roo¡r in

which tlrcy alc lrtcasurcd is ¿rlso dcnonsl,r'¿rtcd Loth cx¡rcr.irncnt:rlly arrd analyticaìly.
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The purposes of the following sections ate to,

J. formulate a mathematical description for the proposed experiment,

2. measure the values of the parameters required for the prediction of reverberation times

in the room and of decay curves of a test panel,

3. compare the actual reverberation times of the room (with the panels) with the corre-

sponding theoretical predictions,

4. explain the physical meaning of the Sabine absorption coefficient of the panels in terms

of SEA.

5.2 Description of the room and the panels

The reverberation room used for the experiment to be discussed has been described in Chap-

ter 2 (see Figures 2.2 and 2.3). Six identical panels were placed on the floor of the reverberation

room as shown in Figure 5.1 (a) for the experiment. Each test panel of 1.2 m by 1.5 m surface

dimensions is made of 10 mm thick particle board screwed at the edges to timber frames g0

mm high and 20 mm thick. A cavity ( 90 mm in depth) is formed between the panel and the

floor surface on which the panels are mounted.

5.3 Quasi-transient solution of panel-room coupled system

According to the format of SEA,tlie behavior of a panel-room coupled system can be described

in terms of the average energies distributed between the panel and the room, the energies

dissipated within and flowing between each of them and the input powers to the room and the

panels. The steady state distributions and the dynamic flow of the average energies can be

dctcrmined in terms of average modal paramcters of the system. Figurc 5.2 shows the energy

flow relationship of the two subsystems.

r¡n zurd 'q, aÌc thc loss f¿rt:tols of tlrc rc¡our ¿lnd tlrc pancl rcspectively. 'rl.qp is thc

coupling loss firctor froln tlte toorn to thc llarrel whilc r¡r, is thc coupling loss f¿ctor frour thc

p:r"ncl to l,l¡c ror.¡rlr.
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Figure 5.1: (a) inside of the reverberation room and test panels; (b) a test
pa.nel in a¡r a¡rechoic room; (c) two loudspealiers used im the experiment.
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Figure 5.2: Power flows between the room and the panel.

The cavity behind the panel could be taken as yet another subsystem, but in this

analysis, the panel and its backed cavity are considered as a single subsystem. Therefore the

panel internal energy loss includes both the energy loss in the panel and into the back cavity.

Many workers have applied the SEA approach to the fluid-structural coupling problem

and obtained a steady state solution for the acoustical response and radiation properties of

coupled systems (Lyon and Maidanik 1962, Maidanik 1962 and Smith 1962) and for the study

of partition transmission loss between rooms (Lyon 1963 and Crocker eú a1, 1g6g). In order

to determine the SEA parameters for complex structural systems from experiments, Maidanik

(1977) considered both the steady state and the quasi-transient conditions (transient state

for the gtoss parametets, e.g. the average energies). He also argued that the reverberation

time can be interpreted within the format of SEA. Sun eú al. (1986b) have applied a quasi-

transient solution of a coupled system to coupled structures and obtained goocl agreement

with experiment.

Based upon this previous work, the dynamic relationship of the band. energies in the

room En(t) and in the panel Er(t) can be expressed as follows:

Otn * \rn)a

-\t ¡a

-\¿pa

Øu t \nu). ll;:1=[ï;l
(5. 1)

wlrc|c lln :rrr<l lIr, a.rc l,lrrr inprrl, powcr'$ to tlrc ro<-¡rrr a,llrl thc p:r.ncl. ar is tlre cr.rnl;ral arrgula.r

Iì'r:clueucy of tlrc cxalnilred ;rrrgula,r fr.crlucncy ll:rud A¿¿.

tr¿(t) Ep(t)

I00



off, the time dependent energies in the room and in the panel can be obtained by applying the

Laplace transform to Eq. (5.1).

Eoþ)= E,(0)t#exp(s1r) - #exp(s2ú)l , (b.2)

E,(t)= E,(0)tT*exp(s1f) - #exp(s2ú)l , (5.3)

where E"(0) and E"(0) are the initial energies in the room and in the panel respectively and

When the coupled system is in steady state and then the input power is

.sl : -TrKr^lTeI\n,I\r^)-((n^ + T¿.p-\p¡-rt)2 -f rtnrn")î] ,, (5.4)

", 
: -|r¡çTn ! Tp * Tn, + rtpA)* (("1^ * \¡p - Tp¡ - rt)2 * 4nnrrtr)î), (5.5)

Æ"(0)
E"(0)

d,t: u(\r I Trn I \rn ) (5.6 )

(5.7)

5.4 Description of the experiment

5.4.L Determination of the modal densities

The modal density of the reverberation room can be calculated using the following formula

(Morse 1948c):

nu=Yry+!4++4-* 2CT+ 8Co' (5'8)

wlrere V, A and L ate the total volume, surface area and edge length of the reverberation

room and Co is the speed of sound in the air. Experimentally, the modal density can also be

determined by counting the resonance peaks in the room spectral response in the low frequency

region (e.g. below 200 IIz in the reverberation room mentioned above). Figure 5.3 shows the

power spectral density of the room sound fi,cld.

The modal density of a test pancl can be determined either by counting the resonance

¡rcal<s of the panel spectrum or by measuring the longitudinal sound spectl in the panel and

t:a,lcrtl:rtitt¡4 tlte tlotl¿ll dcnsity. lligurr:5.4 shows thc rlrcasrl'cd ¡rowel spectra.l rlerrsity of t[e

Panel accelet¿rtion. Thc averagc rnodal density ol thc pancl tletcrrnined by counting the pcaka

irr lrigrtrc 5.4 is 0.11ì0 llz-1 . Thc ¡lattcl longiIrrdinal souu<l s¡rt:ctl C'¿, is2540 m/scc, w]rich wiLs

dz:u(TniT¡p*\æffi1
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obtained by measure the resonance frequencies of a simply supported rectangular panel. The

modal density of the panel is related to C7, the surface area A, and the panel thickness â by

*,=*. (5.e)

The calculated modal density is 0.124 Hz-L. The power spectral density of the panel includes

any contribution of the backed cavity and the participation of cavity modes is also possible.

This may account for the greater measured modal density by peak counting method.
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Figure 5.3: PSD of the sound field in a reverberation room.
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5.4.2 Deterrnination of the loss factors

The loss factor of a subsystem is defined as follorvs

P
tl- ñ t

Q -fJ
(5.10)

where E is the total energy stored in the subsystem and P is the energy dissipated per radian

cycle in the subsystem. The loss factors of the room (without panels) can be determined b1,

measuring its reverberation times. The relationship between the reverberation time ?66 and

the loss factor of the room is

,^= #. (b.11)
al60

One third octave band reverberation times (Figure 5.5) of the sound field in the reverberation

room in the absence of the test panels were measured by using two different loudspeakers,

Detailed descriptions of these two loudspeakers(Figure 5.1 (c)) can be found in Munro's thesis

(1982). The results of these tests shorv that the loudspeaker box absorbs a significant propor-

tion of the energy in the low frequency range. The measured sound absorption of the room

includes the effect of losses to the loudspeakers.

The total panel loss factor (internal loss and radiation loss) was obtained by measuring

the reverberation time of the panel (Heckl 1962). To avoid the influence of the reverberation

room upon the panel decay, the panel was tested in an anechoic room. Thick panels were put

underneath the test panel so that the same air cavity behind the panel was maintained. Decay

times were recorded after a driving magnet was switched off. Since the decay times above

800 Hz are very short, a recórder was used to record the decay at high speed and play back for

the measurement at low speed. Measured panel reverberation times are shown in Figure 5.6.

The internal loss factor can be obtained by subtracting the coupling loss factor 4",
from the measured total losé factor of the panel (7" I nr). In this experiment the internal

loss factor is determined by the measured ratio of the panel vibration energy to room sound

energy and the modal densities. When the sound field is driven by a louclspeaker, this ratio

is relatecl to the internal loss factol r¡, and, the total loss factor of the pancl (Vér et at. L}TI)

by:
E, 

- 
hp Tp¡

EA urr,+,r,-' (5'r2)

Orrcc thc crtcrßy r:r,tio, l;lte r¡tod¿l dclsi l,ies ¿rnd tlre total loss facl;ors of'thc panr:l r¡,, -l- r¡o^ ara

l<ttown, tIrc r.,r^ cau bc calcul¿rted fì'orn llc1. (5.I2) and thcn the loss factol rTr llot a teat pa.ncl

r:a,lr bc. obl;¿rincd ( Irigur.e 5.7).
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5.4.3 Determination of the coupling loss factors

The coupling Ioss factor from the panel to the room n"n is related to the sound radiation

efficiency o*^oöf the panel (Vér et aI. 1971) by (for one side radiation)

\p' : PoCoon"¿

": -n* . (5.13)

Theoretical expressions for the radiation efficiency of a simply supported panel have been

obtained by Maidanik (1962). Expressions for the radiation efficiency for panels with different

edge conditions, such as clamped edge, are also available (Fahy 1969).

Experimentally the coupling loss factor npA can be determined by the measurement of

the ratio of the panel vibration energy to the sound field energy in the room or by measuring the

radiated sound power from the vibrating panel and the average velocity of the panel. Figure 5.7

(a) shows the q.n of the particle board obtained from the energy ratio measurement.

The coupling loss factor from the room to the panel 4r" ( see Figure 5.7 (c) ) is usually

calculated using the foliowing relation:

Tp¡ 
- 

D^
(5.14)rlep np

The assumption implicit in the use of Eq. (5.14) is that of equal energy distribution among

the modes and the same coupling loss factors between the modes (Lyon 1975).

5.4.4 Average energy measurernents

Bnergies contained in the room and in the panel are related to the time and spatial averaged

squared sound pressure < p2 > and acceleration ( Z2 > respectively by

u^= 
^J-q<P'>' 

(5'15)

E
pArlt

Q2
(5.16)

l'he density of the particle Ìro¿rrd p is 691 kg/-.

'lwosetofl;hcnte¿l,sulcrncntshavcbccnconductcd. Inthefirsttheroomonlyisclriven

l-ry a loudspc¿l,ker attd in []rc scconcl tlrc p:rncl only is flr'ivel þy a r¡agnetic ¿rivcr. In both of

l;llc lnc¡lsulcnìcnts, only one p:r.ncl is plzrccd in the rcvcrl¡eratiorr room.
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The sound pressure in the reverberation room is measured in one third octave bands

using a traversing microphone. A rotating difuser is used to increase the accuracy of the

measurement. The acceleration level of the panel was measured using an acceLerometer placed

sequentially at twelve points chosen at random on the panel for the spatial average. Figure 5.8

(a) shows the panel-room energy ratio as a function of frequency from the results of the flrst

measutement and Figure 5.8 (b) shows the room-panel energy ratio rvhen the panel is driven

by a magnetic driver.

5.5 Results and discussion

The reverberation times of the sound field in the room with six test panels on its fl.oor were

obtained by driving the sound field with one third octave bands of noise through a loudspeaker

and measuring decay rates after the loudspeaker rvas switched off. The reverberation times

can be determined by the decay rates and linear decays were observed in the logarithmic scale

of the recorded sound pressure. Decay curves of one panel in the room were also measured

after the driving magnet was switched off.

Based on the average parameters obtained in the last section, we can calculate the

decay times of the reverberation room and the panel using Ec1s. (5.2) and (S.a). Since the six

panels are identica,l, when the coupling of the six panels with the sound field is considered, the

measured panel energy and the coupling loss factor r¡n, for one panel will be increased by a

factor of six when used in Eq. (5.2).

Figure 5.9 shows the calculated and the measured results using large and small loud-

speakers. These results agree in the 200 IIz and higher frequency bands. The width of the 200

lIz band is 46fIz and there are 5 panel modes and 102 room modes in this frequency band,

thus there are a sufficient number of modes excited in the room and in the panel to enable

satisfaction of the requilernents of SDA (Swift and Bies 1978) to give satisfactory results in

this and highcr fì'cquency bands. In tlLe lower fi'equency r¿ìnge, the maiu lcason for the dis-

crepancics in Figure 5.9 is that the sound licld in the room is not uniform which is refìcctcrì

itl v¿lli¿rtioll in thc lneasulcd rcvclllcr¿rl;ion time and thc avcrage cncrgy in the sorrrld fiekl.
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Figure 5.10 shows the decay curves of a test panel in the reverberation room and the

decay curves for the sound fleld. Double decay rates are observed in the panel decay curyes,

The initial decay is close to that due to the panel loss factor and the second decay is close to

that due to the room loss factor. The sound field shows linear decay behavior. The calculated

panel and room decay curves are also shown in the figure. To interpret the decay behavior of

the room and the panel, the expressions for their decay ( Bqr. (5.2) and (5.3)) are evaluated.

Both Eq. (5.2) and Eq. (5.3) are composed of two exponential terms. The frrst one has the

smaller decay rate which is close to the uncoupled room decay rate and the second one has

the larger decay rate which is close to the uncoupled panel decay rate. Their contributions to

the decay beliavior of the coupled system is dependent upon their relative amplitudes and the

value of the decay constants.

In the case ofthe coupling ofthe reverberation room and test panels, trvo characteris-

tics of the system must be taken into consideration: (1) the loss factor of the room is smaller

than that of the panels; (2) at high frequencies, the rnodal density of the room is much larger

than that of the panel ( for example, at 200 Hz, the modal density ratio of the panel to the

room is about 0.05 and this ratio becomes much smaller at higher frequencies).

5.5.1 The roorn decay

Referring to Eq. (5.2) of the sound energy decay, some estimations of the amplitude ratio and

the exponential ratio of the first to the second term of this equation are mad.e in Appendix

B. The corresponding results calculated from the measured data are shown in Figure 5.11 (a)

and (b). These results demonstrate that the amplitude of the first term is much larger than

that of the second term because of the mentioned two characteristics. As the decav continues

the exponential ratio also increases exponentially.

Because of this property of the Eq. (5.2), we can use the first term to approximate

the decay behavior of the sound field il the room. Therefore the approximated reverberation

time of the room can be written as:

l.ßo =
27.6

ulþt^ *'Qr *'tl^p i'¡t¡,^) - (þt^ * T^, -,tlr¿ - \)2 + 4tt^rnn)il
(5.t7 )

'l'hc rcvellter¿ltion l;imes c¿l,lctrlat<r<1 using thc above formula, are also plottecl in Figure 5.g

'Jìhcy a.re irr;rgrccrnent with the rcsults ca,lcul¡rtcd using lìq. (5.2).
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In a reverberation room measurement, the Sabine absorption coefrcient of the

panels can be estimated from the following relation (AS 1971):

eso¡=5!?Ir1- t). (õ.18)
SC" \T'uo Tuo' '

where do and ?66 are the reverberation times after and before the test panels are put in the

reverberation room; ,5 is the total surface area of the panels. Substituting Eq. (5.17) in Eq.

(5.18), we obtain the following

'.soö = ffi"rl(r, * Tre * rrnr * n"n)

-(rt^ * To, - \p¡ - ,t)' * 4Tnp\rn)il - zn). (5.19)

The modally reactive panels form a boundary of the sound field in the room. In

the high frequency range, the wavelengths in the modally reactive panels grow shorter and

the acoustical modes in the room increase in number without bound. The various standing

waves generated by the acoustical modes interact at the boundary with each other so that

the vibration of the panel surface tends to uniformity. In this frequency range, the interaction

between the sound fleld and the boundaries is described more suitably by the average behavior

of the sound field and the boundaries, rather than by the details of each mode. Therefore rvhen

Sabine's formula is used, the Sabine absorption coefficient of a modally rea,ctive boundary is

only the effective representation of the average fluid-structural coupling effect on the sound

decay of the room.

Equation (5.i9) indicates that the Sabine absorption coeff.cient a"o, of test panels is

dependent upon the room in whicli they are measured. Different reverberation times and sizes

of tlre empty room, used to determine the loss factor r¡o and the coupling factor r/r", will give

rise to different values of Sabine absorption coefficient a"oo for the same panels. For example,

the room loss factors are varied when two rlifferent driving loudspcakers are used(Figure 5.5).

Figure 5.12 (a) shows the experimental resulting Sabine absorption ur". 
ff 

(+- 7|, "t
the pancls in thcsc two diflcrent situations. About thirty pcrccnt difl'ercnce in a few lrerluency

lt¿rtds is oltscrverl. Thc calculal;ccl valucs of Sabinc absolptiou area by the StrA method, also

givcs a, corn¡l:rr:rblc rcsrrl[(Irigurc 11.J2 (ll)).
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Some efforts have been made to estimate the average normal acoustical impedance

of a panel sound absorber (Ford et al. 1969 and Kiesewetter 1986), in order to predict its

sound absorption coefficient. Ilorvever, a simple relationship betrveen acoustical impedance

and sound absorption coefficient only exists if the surface is locally reactive (Morse 1948a).

Sound waves impinging on a panel surface in an enclosure have angles of incidence ranging

from 0 to 90 degrees and the modal excitation of the wall depends on the angle of incidence.

Therefore, any calculation of the normal acoustical impedance which is used to predict the

sound absorption coefficient of the panel, must include consideration of the wave angle of

incidence. Horv the sound absorption coefficient of a modally reactive surface depelds on the

normal acoustical impedance is unknown, and so is still a topic for further research.

Models other than the acoustical impedance model can be used to describe the in-

teraction between a sound fleld and its modally reactive boundaries. This may be justifled

by experimental evidence wliich shows that a modally reactive surface tends torvard locally

reactive behavior as frequency or damping is increased. For example, the mutual canceJ.ling of

superimposed modes tends to produce a f.eld of uniform amplitude vibration at high frequen-

cies. Determining under what circumstances a locally reactive model can be used as a simple

approximation for a modally reactive boundary will be part of a future investigation.

5.5.2 The panel decay

A similar estimation and calculation is also made for the panel decay behavior by analysing

Eq.(5.3) (see Appendix B). The calculated results of the exponential term ratio for the panel

decay situation is the same as that in the case of the sound field decay. They are all shotvn

in Figure 5.11(a), This indicates that the frrst term will dominant as time goes by. ÌIowever

the amplitude ratio of the flrst term to the second term Figure 5.11(c) is much less than 1,

which indicates that the seconrl term will dominate the initial stage of the decay. The observed

double slope in the panel decay curves is thus ex¡rlained.

Il'tlic pancl:r,nd tltc roorrt arc physically scpalatcd, the paucl:ln<ì thc room will

c:lr:lt dcr:ay ¿it thcir <.¡wn riltcs whir:h ¿ìrc cxpresscrl by thcir intlividu¿l loss l¿Lctors. 1'lrc fluid-

sl,rttt:l,ul'a.l corrplirtg is lr:la.l;ivcly w<:alt, l,lra,l, is to say tlrc crrergy tr':r,rrslbrrcd flonr ouc subsystcrn

to thc othcr is etn¿lllcr tlta.n thc tota.l crter'¡gy in tlrc subsyctcrnr. 'llhr¡r'eforc whcn a panel and

¿ì. r'oonr :r,rc cou¡rlctl togcthcr, l,lrcir <lcca.y r¿tr:s will not llc greir.tly clriurgc<1.

I ll-r



If we drive the sound field and measure the sound decay in the room and if the

reverberation time of the uncoupled room is longer than that of the panel, the energy in the

room will always flow into the panel during all of the decay period. Linear decay is expected in

this case and this is what is observed in the measuiement. On the other hand, if the uncoupled

room reverberation time is shorter than that of the panel, then after the energy in the room

becomes smaller than the energy in the panel, th.e energy in the panel rvill flow back into the

room. During this time, the energy in the room decays at the decay rate of the panel, In this

case two slopes in the decay curve are expected. The same phenomenon can be observed when

tl-re panel is driven by a magnet and the panel decay is measured by an accelerometer. In the

experiment, the panel damping is much higher than that of the room damping, which is rvhy

double decay slopes were obtained in the panel decay curves (Figure 5.10).

5.6 Conclusions

The effect of the fluid-structural coupling on the decay behavior of a coupled sound field and

vibrating boundary structures at high frequencies has been investigated by the SEA method. A

quasi-transient solution for the energies in two subsystems has been used to calculate the 60dB

decay times in a reverberation room containing modaliy responsive panels, and to calculate

the decay curves of panel vibration in a room.

The following conclusiôns are obtained from this study,

1. In the middle and high frecluency ranges, modally reactive boundaries (srrch as panel

absorbers and panel diffusers) can be described by average modal parameters (such as

loss and coupling loss factors and modd,l density). The acoustical behavior of the sound

field and the panel can be described in the SDA format.

2. The sound absorption ptoperty of a panel absorber was previously dclìned in terms of

sound absotption coefficients. 'I'hcse sourìd allsorption coefficients could only be obtainect

cmpirically ¿rttd ¿rre consicleretl to be propcrties of thc panel only. llnwever, by cousidcring

l,lLc corr¡llirtpi llcl,wcr:tt tlre two rrrult,i-lnodc systcrns, 1;l¡s <lcc:l1; llelra,vior 9l'thc s<.,urrt[

licld ca.n lrc rlctct'l¡lincd wil,hout ttsirrg tirc sountl aìlsor¡ll,ion cor:lficicrLt. This analysis

:t,lscl ¡lrovi<ltts ¿tl illtc¡'prcl,:r.tiou ol'th¡l sorrnrl lbsor'¡rtiorr cor:ffìcicrrt in tcrurs tlrc rn¿rrl¿Ll

li(i



parameters of the panel and the modal parameters of the toom.

These conclusions suggest that

¡ The modal parameters of the panel and the room should be used to predict the acoustical

behavior.

¡ The Sabine absorption coefficient of a panel absorber is not a property of only the panel

It also depends upon the properties of the room in which the panel is measured.

l17



Chapter 6

The effect of a semi-circular

diffuser on the sound field

6.1 Introduction

Standard measurements in a reverberation room are based upon the assumption that the

diffuse sound f.eld condition is satisfied. However, in some situations, such as for low narrow

range frequency band measurements, this condition is very often not satisfied. In order to

overcome this difficulty, rotating sound diffusers are generally used to increase the diffusion

of the sound field and consequently to increase the accuracy of the meaburements. lVloreover

stationary diffusers are also very often used in theaters for acoustical design purposes (I(nudsen

and Harris 1978) and in reverberation rooms to improve the measurement of sound absorption

coefficìents (Benedetto et a,l. 1981).

Due to these applications of diffusers, the nature of the sound field and the boundaries

in an enclosure under the influence of diffusers has long been a topic of interest in the inves-

tigation of room acoustics. f-'he effect of a rotating diffuser on thc diffusion of the sound field

It¿rs becn rcvicwt¡d by Schultz (1971). l{e sumrnarizcd sorne qualitative criteria frrr adec¡uate

¡lerfolrna.ncc of a rotating diflìrscr. ilìlLc ¡lhcrrornerron of side-band production by a rotating

tliffìlsr.:r irt a ¡rrtrc tonc s<¡urtrl ficlrl irrtroduccd i¡rto a rcvurllrrr¿rtiou l'oorn is reported a¡{ <lis-

ctrssctl lry Lulrrtra.n (197f),'lìi<:hy at tl. (1975), llanscn at a.l. (1980) and Lyarnshev (lg8l).
'lhc v¿rrial,ion of thc r¡l<liatior irrt¡redir.ucc of a villr'¿rting plate c¿lrrgcd by zr.rol,ating ¿illìrscr.has

1t8



been investigated by Bies and Hansen (1979,1980). They found that the radiation impedance

varied dramatically as the diffuser was rotated, but that the average measured value of the

radiation impedance approached the free-fielcl measured value when the diffusel was rotated

faster than 20 rpm.

Thomas Munro studied the influence of a diffuser on acoustical modes at low frequen-

cies in a reverberation room (Munro 1982). IIis experimental results showed that both the

resonance frequencies and the decay times of the investigated modes were altered with the

orientation of the diffuser. Further experimental work (Pan and Bies 1988) showed that the

diffuser changes the modal distribution of the air borne (fluid) sound field over the surface

of the f.oor in a reverberation room. Different orientations of the diffuser result in different

couplings between the room modes and the structural modes of the f.oor, and variable modal

decay times result from the variable modal coupling. In this situation, the coupling betrveen

the air born cavity modes and the boundary (in fact the diffuser is an important part of the

boundary) must be taken into consideration. Especially, whel the boundaries are extensively

reactive, the coupling between each individual cavity mode and the boundary structural modes

will be varied as the orientation of the diffuser is varied. Effectively energy transfer from cav-

ity modes to the boundaries will be altered. The decay behavior of the sound field can be

determined through consideration of such energy transfer. In order to gain a physical insight

and a quantitative relationship, an numerical approach is required to the effect of the diffuser

upon a sound field in an enclosure.

The energy exchange between a sound field and a modally responsive boundary may

be described in terms of the uncoupled cavity modes and the uncoupled structural modes in

the boundary. Thus to study the effect of the diffuser on the sound lìeld decay time as a

function of the dilfuser orientation, or in the case when the rotation of the diffuser is included,

the characteristics of the cavity modes need to be investigated first. Ilere cavity modes are

defined as the air born acoustical modes in the presence of a diffuser but without coupling

betwccn thc ail' born modes and the dilhrscr and boundaries.

'lìhis Ch:rpter rcviews sorne prelirninary theoretical and experimcnt:rl investigatiorrs

itlto a,coustic¿rl urod¿rl bch¿rvior uldcr thc influencc of a scrni-circul¿ll tlillìser in :r, cirvity. As

a, sttu't ol'¿l lìl¡tnel'it:al approach to lind a, tlua,li l,at ivc lclationslrill llr:twccn the char¿rctcristics

ol'a, s<¡rtttrl fieltl :rrr<l tltr: llchavir¡r'ol'¿r clif[ìrsr:r, a filitc cl<lnrcnt ap¡rroach is usctl lo calcul¿rtc

lt{)



the resonance frequencies and the modal distributions of the sound freld. An accompanying

expelimental investigation is also reviewed, which shows good agreement with the numerical

result s.

6.2 Two dimensional sound field

The mathematical model used in the analysis is of a two-dimensional rectangular cavity con-

taining a semi-circular diffuser. The centers of the diffuser and the cavity are the same. The

diffuser is 1 mm thick. Other dimensions of tlie cavity and the diffuser, are shown in Figure 6.1.

A constant sound pressure source of 0.001m radius is located at one corner of the

cavity taken as the origin of the coordinates. All the boundaries of the sound freld (including

the surface of the diffuser) are assumed to be rigid, which provides a Neumann boundary

condition (normal gradient of the sound pressure at the boundaries is zero).

A two dimensiona,l finite element package called "TWODEPEP" (1985) is used for

calculating the resonance frequencies and the modal distributions of the two dimensional sound

fleld. The result ofthese calculations can be extended to'describe the characteristics ofa sound

fleld in a three dimensional cavity. The three dimensional cavity with semi-cylindrical diffuser

is illustrated in Figure 6.2. The height of the diffuser is the same as that of the cavity. The

horizontal section of this system is exactly the same as that of Figure 6.1. In this cavity only

those modes, which have non-zelo wave propagation number in the horizontal (X-Y) plane,

will be affected by the difuser.

The wave equation for the free vibration sound field in the cavity in Figure 6.2 can be

separated into two: a two dimensional wave equation in the horizontal (X -Y) plane and another

one dimensional wave equation in the vertical (Z) direction. Therefore the distribution of the

sound lield and resonance frequencies in the thtee dimensional cavity is a combination of the

rcsults fl'orn the two-dimcnsional calculation and frorn thc solution of the sound waveecluation

in tlre Z dilection (with rigitl boundary conditions at Z = 0 and Z = L.). Thc resonance

Iì'ct¡rrttrtr:i<rs /¡,r,, f't'olt thc two-dirnensional cavity nrodcl and thc reson¡Ìnce frequencies /¡,-,r,

of tLc l,lrlr:c ditrrctrsion¿ll urvity ¡lrc rr:lttcd a.s lbll<lws,

fi,,,r,,, = !f{ 2It,^
C'u
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Cs, n and, L" are the speed of sound in air, the modal index indicating the number of nodes

in Z direction and the height of the cavity. Eq. (6.1) shows that if a mode in the cavity has

a zero wave numbers in the (X-Y) plane, its resonance frequency rvill not be affected b¡r the

diffuser.

Z' = 0.868 m

Figure 6.1: Two dimensional sound field, boundaries and a semicircular diffuser
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6.3 Experirnental arrangement

To verify the numerical result from Eq. (6.1), a semi-cylindrical diffuser made of 1 mm thick

steel plate was placed in a concrete rectangular cavity (which has been described in Chapter 4).

The horizontal cross section of the cavity and the diffuser dimensions are identical to those

of the numerical calculation. The height of the cavity is 1.038 m. A handle was mounted

on the central shaft of the diffuser, so that the diffuser could be turned from outside. The

sound waves propagating in the Z direction were unaltered by this arrangement, so that the

measured resonance frecluencies could be compared with the calculated values (see Figure 6.3).

In the experiment, a white noise signal was introduced into the cavity by a horn

loudspeaker through a high impedance tube ( see Chapter 4). A microphone was placed in

the corner opposite from the origin and on the floor. The acoustical response was obtained by

passing the output of the microphone through a spectrum analyser. The resonance frequencies

of the cavity were then determined by identifying the peaks in the spectrum.

6.4 Numerical calculations

To calculate the resonance frequency and moda.l distribution of each cavity mode for a particu-

lar position of the d-ifuser, a two dimensional homogeneous wave equation is solved numerically.

02P A2P a2

art+ orr+c¡P=o' (6'2)

hr this calculation, the boundary condition on both the surfaces of the cavity and the diffuser

is

-0 (6.3)
AP
A" I

n indicates the normal direction to the boundaries and f represents over all boundaries

'f'WODIìPEP has thc capzr,city to refìne the triangular mesh. Two hundred grid points

wcrc chosen for the calculation. lìigure 6.4 shorvs the input triangular mesh for the finite

clertrent rnc[horÌ (IrllM) calcrrlation wlrcn thc oricntation of the difluser is 0o.
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Figure (. 3: Concrete cavity a¡rd a semi-cylindrical diffuser

--Figure 6.4: Vertices (O) and boundary ($) in the finat triangulation points
for the FEM calculation (d:0,).
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The acoustical response at (L,,Lo) to a unit constant sound pressure source at the ori-

gin is computed byincreasing the driving frequency I U = filAt incrementa"l steps. Trventy

four positions of the diffuser (15o increments) are examined. The resonance frequencies are

then determined by the peaks in response. Because of the symmetrical property of the cavity

alrd the diffuser, the calculation of the resonance frecluencies can be reduced to one quarter

of the total positions. Tlle sound pressure distributions at each resonance frequencies and fo¡

each orientation of the diffuser can also be obtained. When the cavity is driven by a sound

source at tesonance, the distribution of the sound field will be dominated by that resonance

mode, tliough the source may slightly disturb the nearby sound freld.

6.5 Numerical and experimental results

Figures 6.5 (c),(a) and (b) shorv respectively the calculated response of the sound field rrhen

the diffuser is at 0 degree (see Figure 6.1); and the measured power spectral densities of the

sound freld in the cavity with and without the influence of the diffuser. Comparing Pigure 6.5

(c) with Figure 6.5 (b) shows that the latter has more resonance peaks than the former. The

extra peaks are due to the contributions of the modes in the Z direction or the combination

of the plane modes and the vertical modes. For those modes which have zero index in the Z

direction, the shift of the peaks from the PSD in the cavity without a diffuser can be directly

compared with the calculated peaks (Figure 6.b (c)).

The number of the resonance peaks of the sound field for each position of the diffuser

remains the same as that without a diffuser in the cavity. This result indicates that the fixed

diffuser does not increase the mode number of the sound field, it only alters the resonance

distribution and mode shapes. The contribution of the difuser to the diflusion of a sound

field comes from its periodically altering the resonance frequencies and spacial distributions

of the cavity modes. This alteration leads to a rnore uniform sound fiekl cluring steady state

measurement and to more participation of different decays corresponding to each diffuser

position during a decay measur.ement.

As thc diffuscr oricntation is incrcmentaÌly varied, tlre resonance peaks bot¡ in the

calctrl¿rl;c<l souncl ficld resporlsc artd irr thc rneasurcd PSD inr:remcntally clrange. T¡erefore

tlLc t'cscltt¿utct: freclttcncics of e¿rcìt rrlodc c¿rn bc obta,ine<l fo¡.cacll irrcrerncnl;al oriellt¿rtion o1'

thc diffuscr. l'hc ca.Ìctlla,te<l a,¡t<l mcasurcd rclal,ionslri¡ls bctwccn thc rcsorarcc frccluclcics rif

stlv<llal cavil,y trto<lcs all<l lltc rlifluscr oricnta,l.iorrs arc showl.r i¡ ['i¡4rrrç [i.(i.
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As shorvn in Figure 6.6, the resonance frequencies of the (0,0,1) and (0,0,2) modes

are not affected by the diffuser, because (0,0, n ) modes are standing waves reflecting from floor

to ceiling and parallel to the sidewall of the diffuser. However, the resonance frequencies of

all other modes are affected by the diffuser. Therefore these other modes will be masked from

time to time by the frequency-invariant (0,0, z) modes as the diffuser orientation is varied and

this is the reason that some experimental points are missing.

A standing wave, or sound mode, in a rectangular cavity (two dimensional) rvithout

the diffuser can be divided into four traveling waves and can be described respectively by the

wavenumber vectors ¡rl ' Tm- ¡rI ' Tm''
; X(;t, + 

U Ð, and t(-f i + ql), where i and j are unit vectors in

X and Y directions respectively. Once the diffuser is put in the cavity, these traveling rvaves

will be scattered. Morse and Feshbach (1953) calculated the distortion of standing waves in a

rectangular cavity by a strip using a Green's function method. Although tlieir result is only

for a small strip far away from the walls, a physical similarity still exists in the inf,uence of the

strip and the diffuser upon the resonance frequencies. If a strip is parallel to the X-Z surf.ace,

as its width is increased, the resonance frequencies of the Y axis modes will gradually become

lower than the corresponding undisturbed modes.

Similarly in Figure 6.6, the resonance frequencies for the modes (0,1,0), (0,1,1) and

(0,1,2), are affected by the diffuser in the same way. In the (X-Y) plane, each standing wave

can be considered as two waves traveìing along the Y direction. As seen by reference to

Figure 6.1 rvhen the diffuser is at 0o.or at 180o, a maximum section in the passage of the

traveling waves is blocked. In this case the wave fronts take the longest time to reach the

opposite walls, in other words, the passage of the traveling wave becomes the longest among

all diffuser positions. This results in the minimum resonance frequencies. I-Iowever, when the

diffuser is turned to g0o or 270o, a minimum section of the passage is blocked by the diffuser.

The diffuser has the smallest effect on the reflection time of the traveling waves. In the latter

case the corresponding resonance frequencies are closest to the unperturbcd frequencies. The

same expla¡ra,tion can be given for the ollserved effect of the dìlTuscr upon the (1,0,0), (1,0,1)

a,nd (1,0,2) rnodes. Large variation in tlie amplitucle of each reson¿urt mode was observe<ì.

l'ìris suggcsts a,lat'gc cltattge in thc souncl liekì distribution of e¿rch modc fol tliflclent difluser

¡rosil;iorts. Ca,lculatc<l sourtd licitl distrillutions of a l'e w c;rvity modcs are shown in Figure 6.7.
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6.6 Discussion and conclusions

The work presented in this Chapter demonstrates that the presence of a semi-circular diffuser

alters the resonance frequencies and the modal distributions of the sound field in a cavity. The

resonance frequencies of the cavity modes were predicted by FEM as a function of difluser

orientation. An experiment in a three dimensional cavity with a semi-cylindrical diffuser rvas

conducted to verify the numerical results. In practise, although the shapes of reverberation

rooms and diffusers may vary, the basic efect of the diffuser on the sound field remains the

saÌne.

Although the boundaries of the cavity were assumed to be rigid in the calculation.

it is expected that if the boundaries are modally reactive, the coupling between the altered

cavity modes and the boundaries also depends upon the diffuser's properties. From the basic

principles of the modal analysis (discussed in Chapters 3 and 4), the sound absorption of the

boundaries will be determined by the altered resonance frequencies, the mode shapes and the

boundary modal characteristics.

Figure 6.8 shows some nodal decay times as a function of the diffuser orientation in a

reverberation room (the difuser and the reverberation room have been described in Chapter

2). The two curves for each room mode are obtained by placing panels in and withdrarving

panels from the room to determine Tf6s and Tp6s respectively. The panel absorbers have been

described in Chapter 5. The difference of tlie damping factors of eacli room mode, ko1 and

lca2, wi.th and without the panels respectively varies with diffuser positions. This difference is

calculated by

(k,r - koz) = 6.e1(j- - #_¡, (6.4)
r m6O am6o

and is representative of the panel sound absorption property. Therefore this result shows that

the variable diffuser orientation and associated variable coupling between the sound field in the

room and the panels on the floor results in diferent sound absorptions of the panel absorbers,

lf thc diffuscr is rotating, the motion of the dillïser should also bc taken irrto consid-

cration. Atanypa,rticulardiffuserposil;ìon,thereisaunir¡uepattcntof stcadystateacoustical

¡troclcs. In this case thc oliginal modes dccay and ncw rnodcs bccornc esl;¿rblishetl. '-l'lrerefolc,

if nteasulerncn[s arc rrra<lc with tlrc diflÏscl in continuous rnotiou, â rncasuremcnt rnadc at any

ittsl,¿utl; will conl,airt ittf<-rrrna.tiort frour ¿r mixtule ol'dccaying and growing acoustir:al rnodcs.

I29



From the characteristics of each individual cavity mode with a diffuser in a cavitl''.

further numerical investigations into the coupling between the diffuser altered cavity modes

and the boundaries, and the inf.uence of diffuser motion upon the sound wave behavior ma¡'

be carried out. These further investigations may present a quantitative compärison for the

experimental results shown in Figure 6.8.
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Appendix A

Mathematical derivations

4.1 Sound field part

In a room -R, the free vibration of a sound field is described by the following equation in terms

of the acoustical velocity potential ìÍ

v2ìú- ä#--0. (4.1)

The boundary conditions at the roominternal surface Acan be written as follows:

1. on locally reactive surface .4.¡

A{! po 0ú
an 

: -4 at'
ã is positive outwards.

2. on the panel internal surface A¡:

(A.3)

A".2 Green's function of the sound field

ìn a rigid wall room 1?o, whicli has thc same intcrnal dimensions as ,ll, the Nth eigenfunction

.lr¡v lbr tltc sourd lield in ,l?.o satislies following llquation:

Vr,Þ¡¿ + {?:4" 
_)2oN = o.

0v 0w
A"=E'

(A.2)

t32

(A,4)



A point source at r-o ( io is either in the cavity or at the boundaries of Æ, ) rvith

angular frequency c,; generates the field (Green's function) at the observation point r-described

by the following equation:

V2c¡(f,f.i..') I kzc¡(f,íoiu) = á(r-- r-"), (A.b)

Tlre equation can be solved by expressilg G¡ in terms of iÞ7y (N=I,2,....). The Green's

function obtained is as follows:

G,¿.(r',i";u)=D#ryW
N ".rY *oiv) ' (A'6)

Â¡¡ = Irr*rrr¡,t(,=)dr. (Ä.7)

The Green's function G4 satisfies the boundary condition of Ro.

Multiplying both sides of the Ec1.(4.1) by Gt, borh sides of the Eq.(4.5) by ü, and

subtracting the resulting equations, we obtain the follorving equation:

úó(r-- f") = úY2Gt - G|Y2V. (A.8)

Integrating Eq. (4.8) in R, and using Gauss's theorem to change the volume integral into a

surface integral, the acoustical velocity potential i!(i) can be written as:

v(Ð = l^*T - cnff¡a"". (A.e)

Applying the boundary conditions to this equation, we have

- I^,T"tuso * oä 
I^,8úGnd'so,

(A.10)

wlrere P = *

4.3 Eigenvalues and eigenfunctions of the cavity controlled

rnodes

v - [ coP¿""
JA ON

J. Multiplying both sides of rhe Iìq.(,A.4) bV V and of rhe Bq.(A.1) bV Õ

l;llc l'csull,irtg c<lrra,tinrts and irrtcgr:r.l;ing thc li n¿rl erlua,l;ion in 1ù an{ t[cn

lllcorr:ln l.<¡ substitllte tlre botrntl:rry contlitions, wc obl,¿iu:

[¡
[, ú ,Þ ¡¡ d'u

ú¡¡fftl.s"

¡¿, subtracting

using Gaussts

(4.11)(if = (?:)'-
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If It¡ is replaced by the Nth eigenfunction for r? in Ec1.(4.11), the equation gives the Nth

eigenvalue scluared.

2. Eq. (4.10) can be rewritten in another form by separating the Nth cavity mode from

the rest of the modes:

['äl^,0
I avl
lo, 0t

2 ViÞ¡¡ 0,.-lo,TñffiÃa".] o"¡ú Co

dsoþúG"¿,

)

(A.12)

Cr. O,y, (i) O¡¡, (r-,)
Normalizing the coefficient of the O.¡y, the Nth

ÂN, (r' - r'"x,)
eigenvalue equation can be obtained as follows

G,O

where G'A = t
N'+N

L.4 Panel vibration part

QaN

co

Therefore the sound field distribution of the Nth acoustical mode is

(ä)'=( 12 h,øNffa"o , -. u [aþV@¡vd.s.) - IvaNøN,la 
t'c"lvøNaNdr'

üN : a* - |o,ff"'oor" * oi lo,o*r'oor.

(A.13)

(A.14)

The displacement of the flexural waves in the panel is described by

oh#-t#øYaw=0"(+-þ (4.15)

The Mth panel normal mode function S¡.1, which satìsfies the simply supported boundary

condition, is expressed by the following equation:

Eh2
T:---:::-2p(r _ ttr)YnS¡ø 

- uf,¡r¡Su = 0, (t\.16)

where urn4 is the corresponding eigenvalue.

For a point force on the panel surface at u-o, the induced disturbance (Green's function

of the panel) at ã on the panel is described by:

!h' =-voGt, - uzGt, = 6(i - io), (A.17)
I2p(I - ¡t2)'

'lhe solrrtior ol'tlris equ:rtiort l'or tlLc sinrply sup¡rortetl boundary condition of thc panel can

l-re -r'c¡rlcscnted by thc ¡ra.rtel rrtodcs S¡y¡ (M=I,2,....,).

Gp(i,iotu)=-t sM@)'!;Mq"). 
(A.rB)' - î ¡tr(" -'f;u)'
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I^, (A.1e)/\¡rt = S ¡a(i)S ¡a(E)ds.

In a rvay similar to the method used for the sound field calculation, we nultiply the

two sides of Eq.(4.17)bV W and multiply the two sides of the Bq. (4.15) by Gp.The resulting

ecluations are subtracted. Integrating the final equation on the panel surface, we have

vv = l# 
lo,"rrr,r-,;rXv-irø,)dso -#ø lo,{rrrn"p-Gpyaw)rrs", (4.20)

The second term on tlie right side of Ec1.(4.20) vanishes, so

IA=-i Poa
lo, Gp(i,t,;r)(V - V B)rlso. (A.21)

ph

4.5 Eigenvalues and eigenfunctions of panel controlled modes

1. Multiplying both side of Eq. (4.16) isith I,I/ and both side of Ec1. (4.15) with ,grr¡

respectively, subtracting the resulting equations and integrating the final equation over

A¡,lhe following solution is obtained:

+,"*a Po

ph lt, SvWds ^9iv¡(V - ü¿)ds
xu

l^, (L.221

(L.24)

If W is replaced with the panel displacement part of the Mth eigenfunction, the equation

provides the eigenvalue of the Mth acoustical mode.

2. Separating the Mth term in Bq.(4.21) from the rest and choosing a normalized coeffrcient

for Sv, the panel vibration part of the eigenfunction for the Mth panel controlled mode

and the corresponding eigenvalue can be written as

lVm-Sv-i P"a
ph

G'p(i,ø*,;cu)(ü - It B)dso, (A.23)I^

,2 =,3¡ø * ft-* l^,

wherc G,p=- t 
s'M'(E)SM'q')

M,+M A¡y¡'(a2 - ulv,) '

S'v(ú - ú s)(ls,

I il,l-r



From Ec1s. (4.11)and (4.21) the squared eigenvalue for the Nth cavity controlled mode can

be written as:

€k = k?N * il4,py:*!" t* + 
p"?3 [+ [t,l\t ! -vt]Gpøvd'sod's "+ 'fi 8 6 *¿, tN + ph h vt o N,r,, eí'í ('A''25)

4.6 Approximate eigenvalue solutions

4.6.1 Eigenvalues for cavity controlled modes

By introducing the damping of the cavity and panel modes (see Chapter 3), the second

term can be approximated by 2iÇ"t¡€¡,¡, and the effect of the damping on the system can be

taken into account by replacinE k|¡v in the sound field Green's function G ¡by (kZN +2iC"N€N)

arrd k2rm in the panel vibration Green's function Gr by (k\M + ZiÇrv€x).

The third term on the right hand side of the Eq. (4.25) is the contribution of the

panel internal damping and the panel radiation. By using Bq. (3.5) for i[¿ and Bq. (4.1a)

for V, the third term A¡y can be written as

Cr.

Mft MrMl€rN - &?u * 2iÇr, ¿ *¡1

Bx,¡ø It [ü - V¿]S¡ads
(A.26)

where

t
M

Aiv :

ü-i[¿ ÌÞ¡v * i(¡v BúG'odso

-l^,T,%-*
lo,

exp(-f kr)
r (A.2i)

(4.2f))

ld"o,

Mfri :.4.7y and Ml, ='Y3 n*.
Po

To calculate the approximate panel displacement, the panel radiation influence is

neglected. The panel clisplacement due to the sound fleld describecl by (iúry = O¡¿) is

wxi(¡¡c.Ð@ (A.28)
, ¡n$r[t* - (kl* + 2iCpu€N)]'

Substituting this exprcssion into Dqs.(A.27) and (4.26), we obtain

A¡¡ È
ù,t*,rr,,
/'t 4

ii-s- \- \-
^)ttL 

ZJ/JtrrN 
M M,

l)¡¡,¡y7l)¡¡,¡a' In, ln, Su'lG
1 cxp(-'il"r'

1,9 ¡y7 dsd.so

- (l:l,u + 2i(,,ufu)lt(i/ - $,2,¡y1, t 2i(,,u,t,N)l

A_
-t-

MM 14Mt t(

I lÌ(;



Neglecting cross panel mode coupling terms (i.e. those terms wilh M' # M), rve then

have A¡¡ as a combination of a panel internal damping part Af,f and a panel radiation part

Afi'

aiv = ¡ld + aii, (A.Jo)

Ail = ftu*,*(** 
^p*

UN,

Mfr,Miu'l ¿N ' | 2i(o¡¡,(¡¡N_ (
(A.31)

(4.32)

(A.33)

(A.34)

where

Añ'= -t#,ftrÐ B,M

(M'ò"Í
lom(M,N) - iop"(M,N)l

+ zi,er¡w€N))2

and oy*(M,y'f) and oR.(M,y'{) are def.ned in Eqs. (3.36) and (3.37)

lilT



Appendix B

A comparison of two decay terms

To estimate the magnitudes of the two decay terms in Ec1s. (5.2) and (5.3), the follorving

conditions are assumed:

l. noÞ n, ,

2. ,Ì^ 1n'l

The amplitudes of the first and second terms in Eqs. (5.2) and (5.3) are represented by A-r

and A^2 and the exponential terms are represented by B'py aîd Esp2.

8.1- Decay of the sound field

1. The difference of the indices of the two exponential terms in Bq. (5.2) is

(s1 - s2)ú : ul(\n i Tn, - Tp - n"n)' l4rlnrrl"nf'/'t

Due to thc following rclations:

a,nd abov<l assurnptions, wc havc

\^p _ ftp
)

\p¡ nA

rl¡t, 1 rlpt ,

tl¡ 1 11,, .

(8.1)

(ß.2)

(8.3)

¿ll d

l:tJ.t

(rJ.4)



Therefore

(s1-s2)>0,

and the exponential ratio

- expf(sl - s2)t] ,

increases exponentially with time t.

2. The amplitude ratio of the first term to the second term in Eq. (5.2) is

sl*d1
-(s2 + d,I)

nn (\, * \p^ - \¡ - nor)2(,tr I n"o)
nP \2ro(\n *'t^r)
o(l)

E-4
Etpz

(8.5)

(8.6)

(8.7)

(8.8)

A^t
A^z

The expression O(b¡ -"ur,, to the order of f 3l Eqs. (8.6) and (8.7) indicate that for the

sound fi"ta a".'y, lrå orr, term in Bq. (5.2) ì3å,""r*. 
'

8.2 Decay of the panel vibration

1. The ratio of the first to the second exponential terms in Eq. (5.3) is the same as given

by Eq. (8.6).

2. The amplitude ratio of the first term to the second term in Eq. (5.3) is

A^t sl I d2

A*z -(s2 t d,2)

nP T',o(T, *'lrn)
nn (T" I \p.t - T¡ - ,lo)2(nn i ,tnr)

o(a.
nA

Iìqs. (13.6) and (IÌ.8) indica,te that in the beginning the sccond term domina,tes because of the

grcatcr arnplitudc and the exponcntial term contlibuti<¡n is srnall but as tirne increases the

cx¡roncnl;iirl la,tio of thc first tcrm to thc second tt:rm i¡rcrca,ses exponentially and so thc first

l,<rrut ta,l<c's l,llc rlornin¿ll;c loìe irr tltc <lc:ca,y.

:
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