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Summary

Computational fluid dynamic (CFD) techniques are applied to study the flow char-

acteristics of steady flow through arteries with stenoses. Effects of stenoses on char-

acteristics such as pressure drops, flow velocities and shearing stresses on the arterial

walls are examined and their significance on the progression of arterial diseases is

discussed.

Three models are constructed, each introducing an improvement upon the previ-

ous. The first model developed is for steady laminar flow through an axisymmetric

vessel with three stenoses in series. Although fairly simple, this model demonstrates

the potential effectiveness and usefulness of such techniques. This model is also an

extension of previously published work.

The second model improves on the first by considering a stenosis which is not

symmetrical about the axis. As stenoses and arteries are, in general, not symmetri-

cal, this model provides a method of studying a more realistic situation. The model

is solved for various degrees of stenosis at Reynolds number ranging from 100 to

1000. Flow characteristics such as pressure drops, velocity profiles and shearing

stresses on the walls are computed and compared with published results.

The third model incorporates curvature into the geometry and is thus an exten-

sion of and improvement over the second model. In this curved artery model, we

investigate the effects ofcurvature on the flow ofblood by considering three separate

cases, namel¡ artery without stenoses, artery with stenosis on inner wall of curvâ-

ture and artery with stenoses on both the inner and outer wall of the curvature. The

model is solved for a number of different degrees of stenoses at Reynolds number

ranging from 100 to 1200. Results of pressure drops and wall shearing stresses are

computed and compared with published results. Secondary flow motion leading to

a significant increase of secondary wall shear stress is also investigated.
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Through the use of computational fluid dynamic techniques, this research has

provided valuable data for the pressure drops and shearing stress distributions for an

artery suffering from stenosis. In particular, the second and third models described

flows through arterial stenoses in three dimensions in a more realistic way thus

providing researchers in this area nev/ insights into blood flow models. In addition,

the long term application of this research is seen as a means of assisting cardiologists

in understanding the progression of arterial diseases.
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CHAPTER 1

INTRODUCTION

1.1 General Introduction

Occlusive arterial disease is one of the chief causes of death in most of the west-

ern world. A narrowing or stenosis in an artery would almost invariably interfere

with the proper flow of blood in the vessel, producing regions of high fluid stress,

elevated wall shear stress and recirculation of flow. These flow conditions may even-

tually cause serious pathological problems such as endothelial damage, haemolysis,

thrombosis and other injury within the artery. Thus, it is not surprising that the

study of blood flow through stenosed arteries has been the subject of numerous

studies in the past few decades.

However, despite the vast amount of studies carried out in this area, the causes of

arterial stenoses remain largely unknown. Many studies employing epidemiological

techniques have been performed to determine the factors associated with arterial dis-

eases. Factors such as age, sex, cigarette smoking, hypertension and high cholesterol

level have been identified as risk factors. However, such studies have only been able

to demonstrate the association between these factors and arterial diseases. They do

not tell us anything about the causes of the diseases.

In recent years, researchers have turned to hemodynamicsl, the study of the fluid

1

ralso spelt "haemodynamics"



2

dynamics of blood flow, in an attempt to understand its significance in the genesis

and proliferation of arterial diseases. Such studies, which may be experimental or

mathematical, usually consist of a model of blood flow through a tube, partially

occluded or otherwise. Measurements of flow characteristics such as pressure, shear

stress and flow velocity are made and analysed in these models.

Many in ui,tro experimental studies have provided much information. Flow visu-

alisation techniques used in some of these experiments may give interesting quali-

tative information such as regions of recirculation and flow separation. However, to

obtain quantitative information, some of these models may involve the use of some

form of probing device (for example, a pressure probe) in the vessel to make various

measurements. These physical measurements are limited in application as it is not

feasible to insert probes in the entire flow domain. Moreover, the introduction of

probes may sometimes alter the natural conditions of the flow considerably, giving

rise to inaccurate results at times. The use of laser Doppler anemometer or ultra

sound techniques to measure the velocity of flow is also limited in that measurements

may only be made at specific points in the flow domain. Furthermore, it is almost

impossible to measure shearing stresses experimentally.

Mathematical modelling provides a more economical and non-invasive method of

studying blood flow through arteries. However, due to the complexity of the highly

non-linear and coupled governing equations of the model, exact analytic solutions

for the flow models have yet to be obtained. Early researchers in this field tend to

simplify the equations in an attempt to find analytical solutions to the problem and

in the process, assumptions and simplifications in the models are usually made.

With the advent of high speed digital computers in recent years, more researchers

have turned to numerical methods of modelling blood flow. More recently, Compu-

tational Fluid Dynamic (CFD) computer codes have also been used successfully to

study such problems.
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In modelling blood flow, whether experimentally or mathematically, the main

objective is to obtain qualitative or quantitative information about certain flow

characteristics of blood through a vessel by means of a realistic simulation. The flow

characteristics of interest are usually pressure drops, velocities of flow and shearing

stresses on the vessel walls.

Pressure drops across the length of the vessel is related to the flow resistance

in the vessel. Hence, information on how pressure drops are affected by certain

physiological conditions simulated in the model will translate into information on

how the flow of blood may be impeded.

The velocity, or average velocity, of the flow is related to the volume flow rate.

This quantity will determine how much blood is supplied to the important organs.

Also, abnormalities in the vessels may lead to abnormalities in the velocity profile

and vice versa. It is thus of considerable interest to examine in a model how flow

velocities may be influenced by different conditions in the model.

Shearing stresses on the arterial walls are difficult to measure in an experimental

set-up. Very often, they are estimated in experiments or determined in a mathemat-

ical or numerical model. The amount of shearing stress experienced by the arterial

walls may have a direct bearing on the formation or rupture of plaques in the walls,

thus leading to various pathological problems.

Modelling studies thus form an integral part of the continuing research in the area

of blood flow. Information on the flow characteristics serves to provide important

insight into how the dynamics of blood flow can be related to arterial diseases.

This will in turn assist cardiologists in their understanding of the pathogenesis and

progression of these diseases.
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L.2 Some Early Studies in Blood Flow Problems

Over the past few decades, numerous experimental studies have been carried out to

model the flow of blood in arteries. These experiments, which may be i,n uiuo or in

ui,tro, wou.Id normally be performed to measure certain important flow characteristics

such as pressure drops and blood flow velocities.

Some of the early experiments carried out to study the nature of blood flow

in arteries were performed by investigators such as Mann et al (L938) and Shipley

and Gregg (1944). These experimental studies had mainly concentrated on the

estimation of the reduction in blood flow due to a reduction in the lumen of a

vessel effected by an external compression. Shipley and Gregg found that blood

flow through a vessel was reduced significantly only when the cross sectional area of

the lumen was reduced by 50 to 70 percent. Although there \Mere some doubts over

the methods of measurement in these early experiments, a foundation for future

experimental investigations was established as a result of these studies.

F\rrther work was subsequently carried out by researchers such as May et al

(1963), Fiddian et al (1964), Rodbard (1966) and Kindt and Youmans (1969) to

study the dynamics of blood flow through stenotic arteries experimentally. By in-

creasing the constriction on the iliac arteries of animals, May et al (L963) found that

a consistent reduction in blood flow was observed only after the degree of stenosis

reached 80 percent. Their experiments also found that a fourfold increase in the

length of the stenotic segment (from 1 to 4 crn) caused an average flow reduction of

24.8 percent.

Fiddian et al (1964) performed experiments on dogs to investigate the effects

of stenosis diameter, stenotic length, viscosity of fluid and peripheral resistance on

the flow of blood. In addition to confirming Shipley and Gregg's findings, their

experiments also revealed that the length of a stenosis has a disproportionately
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small effect on the total flow of blood

Fourteen dogs were used in an experiment carried out by Kindt and Youmans

(1969) to study the effect of stricture length on critical arterial stenosis. Clamps of

the same width but different lengths were constructed and used to partially occlude

the blood flow in a vessel. Their study reported that at 80 percent stenosis, it

required an eightfold increase in the stenotic length to reduce the flow by half.

Most of these early experiments were designed to measure or estimate the pres-

sure drop across a stenosed artery as pressure drops are related to the resistance to

flow. The basic conclusion that can be drawn from these studies is that in general,

it requires a fairly severe reduction (about 70 to 80 percent) in the cross sectional

area of the lumen to cause a significant reduction in the blood flow in the vessel.

Another important flow characteristic is the shearing stresses on the arterial

wall. Unfortunately, measuring the wall shear stress is a very difficult task. Fry

(1968) carried out a notable experiment to study the acute vascular endothelial

changes associated with increase in flow velocity, and developed an indirect method

for estimating shearing stresses. Fry performed in uiuo studies on the thoracic

arteries of anaesthetised mongrel dogs to determine typical limiting wall shear stress

values at which endothelial failure will occur. His study indicated that exposure to

averaged wall shear stress in excess of about 380 dynes f cm2 for periods as short as

one hour could result in a marked deterioration of the endothelial surface.

L.3 Current State of Affairs

Although experimental studies, such as those discussed in the preceding section,

have provided some useful information, they are usually invasive and quite expen-

sive to carry out. Also, it may not be possible to repeat some of the experiments

performed on animals under the same or similar conditions. Furthermore, experi-
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mental measurements are unable to provide a complete picture of the flow patterns

present in the vessels studied (Reul, 1984). Hence, researchers have turned to using

mathematical models to study such blood flow problems since the mathematical

modelling approach is less invasive and relatively more economical.

Mathematical modelling of blood flow in arteries is usually based on the Navier-

Stokes equations for fluid flow and the continuity equation. These equations are

statements of the conservation of momentum and the conservation of mass respec-

tively. Together, they form a set of coupled, non-linear partial differential equations.

To date, there is no known analytical or closed-form solutions to the complete equa-

tions.

The introduction of a constriction in the blood vessel further complicates the

mathematical model. However, some investigators have managed to overcome some

of these difficulties, usually by making certain assumptions in the model, thus sim-

plifying the equations. Alternatively, some form of approximation may be used to

obtain a solution. Such assumptions or approximations are usually necessary to

make the mathematical problem more tractable.

Young (1968) was probably one of the earliest researchers to carry out such a

mathematical study of the behaviour of blood flow in a stenosed artery. Using the

Navier-Stokes equations and assuming an axially symmetric flow for a Newtonian

fluid in a rigid tube with mild stenosis and neglecting radial velocity components, he

was able to obtain approximate solutions for the model through an integral method.

Subsequently, Forrester and Young (1970a, 1970b) improved the model by as-

suming that the radial dependence of the axial velocity can be expressed as a

fourth order polynomial with constant coefficients. This procedure is similar to the

Karman-Pohlhausen method (Schlichting 1968) commonly used in the study of lam-

inar boundary layers. Although closed-form solutions were obtained, the method
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r'vas only able to model very mild stenosis for a fairly limited range of Reynolds

numbers.

Based on the Forrester and Young study, Morgan and Young (L974) extended

the model by using both the integral-momentum and integral-energy equations and

obtained an approximate solution which is valid for both mild and severe constric-

tions . They have retained the assumption of a fourth-order polynomial velocity

profile and obtained approximations for shearing stresses on the vessel walls for low

Reynolds numbers. Chakravarty and Chowdhurry (1983) developed an analytical

approach to study the response of blood flow in a stenosed artery by using a power

series approximation.

Numerous other approximate analytical solutions have also been attempted. For

example, Padmanabhan (1930) obtained solutions for a mild stenosis model at very

low Reynolds numbers with negligible viscous terms. His method of solution involved

the use of modified Bessel functions. Chow and Soda (1972) expressed the governing

equations in a stream-function vorticity form and obtained approximate solutions

for flow through a mild stenosis using a perturbation method.

Besides these analytical methods, much work has resulted from the use of numer-

ical schemes to find approximate solutions to the equations. The main advantage of

a numerical method of solution is that some of the assumptions used in analytical

methods need not be made. For instance, in most numerical models, the velocity

profile need only be specified at the boundaries (the inlet and outlet and at the

walls of the tube) and no assumption on the radial components of velocity need to

be made.

Lee and Fung (1970) obtained numerical solutions to the Navier-Stokes equations

for flow through a constricted tube by using a Taylor-series approximation and

ignoring higher order terms. The geometry of the constriction was defined by a
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Gaussian normal distribution curve and solutions were sought for very low Reynolds

numbers (0 to 25). Calculations were not extended to higher Reynolds numbers due

to instabilities in the numerical procedures. Subsequently, Lee (1994) carried out

some numerical studies at moderate Reynolds numbers ranging from 5 to 200.

The finite difference technique has also been successfully employed by investiga-

tors such as Deshpande eú al (1976), Chakravarty and Datta (1989) and Huang eú

o/ (1993) to carry out studies on blood flow through stenosed arteries. Deshpande

et al obtained results for an axisymmetric model which compared well with results

from the experiments carried out by Young and Tsai (1973).

Chakravarty and Datta incorporated non-Newtonian characteristics (in the form

of a Herschel-Bulkley model) into their model of flow through an anisotropic vis-

coelastic cylindrical tube. The resulting governing equations vvere solved using a

finite difference scheme based on the central difference formula and the Thomas

algorithm for solving a tridiagonal system of equations.

Huang eú ø/ solved a two-dimensional, incompressible flow model using the SIM-

PLE algorithm to solve the resulting algebraic equations after casting the problem in

a finite difference formulation. Their scheme allows the model to include Reynolds

numbers of up to 1000.

Besides the finite difference method, the other numerical scheme commonly used

in the study of fluid flow is the finite element method. Rooz et al (1982) studied the

effects of a pulsatile flow in a straight flexible tube with a partial obstruction using

the finite element formulation. However, in their model, the governing equations

used were the continuity equation, a one-dimensional momentum equation and an

equation of state relating the tube cross sectional area to pressure. They had as-

sumed that the relationship between the tube cross sectional area and the pressure

can be expressed as a quadratic equation. Although the model forms an interest-
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ing mathematical study, it is fairly limited in terms of application to a physiologic

situation because of the assumptions made.

Recently, Rathish Kumar and Naidu (1996) proposed an ingenious numerical

method for a mathematical modelling of a non-linear pulsatile flow in a stenosed

artery using the finite element method.

Nakamura and Sawada (1938) also used the finite element method and developed

a model for the flow of an non-Newtonian fluid (biviscosity model) through an

axisymmetric stenosis. Their results show that non-Newtonian effects weaken the

distortion of flow patterns, pressure distribution and shear stress at the arterial

walls.

More recently, Tandon et al (7993) employed the finite element scheme to model

the flow of a Casson fluid through a narro\M artery with axisymmetric identical

double stenoses. Their study concluded that the non-Newtonian nature of blood

helps in reducing the magnitude of the peak wall shear stress at the throat of the

stenosis and the length of the reduced flow region downstream of the stenosis.

The application of the finite element method would usually involve the solution

of a large system of algebraic equations. With the advent of high speed digital

computers, this task has since been made more manageable. Therefore, it is not

surprising that in recent years, the use of this technique in modelling blood flow has

been exploited by many other researchers such as Luo and Kuang (1992), Ma et al

(1992), Tt et al (1992) and Perktold et al (1994).

While studies utilising such numerical schemes have produced much satisfactory

results, most of the models have assumed an axisymmetric stenosis in a straight rigid

tube. The solutions of the governing equations are usually solved in two dimensions

and the shapes of the stenoses are determined by a formula which normally stipulates

a symmetry about the axis of the tube. Although the use of numerical techniques
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has allowed more features (such as non-Newtonian nature of blood, elastic nature

of tube and so on) to be incorporated into the model compared to the analytical

approach, it would be desirable to construct models which are not constrained by

the condition of axisymmetry. Also, there has not been much work done in the three

dimensional modelling of blood flow in vessels with asymmetric stenoses.

In recent years, the use of CFD computer codes has provided researchers with yet

another useful tool to carry out investigations in this area. Johnston and Kilpatrick

(1991a) used the CFD code, FIDAP, to study the effects of paired stenoses on the

pressure drops across the stenoses. Besides obtaining conclusions on the effects

of relative severity of stenoses on pressure drops, their study demonstrated the

usefulness and efficiency of packages such as FIDAP in blood flow modelling. The

flexibility in the use of such CFD codes was also demonstrated in their study on

flow through an irregular stenosis (Johnston and Kilpatrick 1991b). More recently,

Sidik and Mazumdar (1994) employed another code, PHOENICS, to construct and

study a model of turbulent blood flow through an arterial bifurcation.

Dvinsky and Ojha (1994) developed and used a computer code, HEMO, on a

workstation to simulate a three-dimensional flow through an asymmetric stenosis.

However, the main objective of their study was to evaluate the code and as such,

they have not considered certain important aspects, such as shearing stresses on the

vessel walls, in their modelling study.

From the preceding discussion, it is clear that there are basically three approaches

to the theoretical study of blood flow problems : analytic solution approach, numer-

ical schemes and methods involving the use of CFD codes.

Because of the difficulties in solving the governing equations, in the analytic

approach to solving blood flow problems, many assumptions had to be made, thus

rendering the model less realistic. The application of numerical schemes has allowed
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more features to be included and made fewer assumptions. However, problems of

instabilities may arise at high Reynolds number. Also, most numerical schemes

require the vessel boundaries and the stenoses to be specified in the form of an

equation and this usually leads to an axisymmetry constraint.

The use of CFD codes is a promising alternative if the problem can be properly

defined and cast into the program's problem formulation. With such powerful tools,

it would be possible carry out studies of blood flow through asymmetric stenoses in

three dimensions. As we can see from the general survey of the literature presented

in this section, studies of blood flow in three dimensions with an asymmetry in the

constriction have so far been very limited.

Moreover, most mathematical models of blood flow through stenosis have as-

sumed flow in a straight tube. Blood vessels are seldom straight conduits and

stenoses on bends or curves are not uncommon. Thus, it would be highly desirable

to construct models of curved arteries with stenoses. To date, there has been very

little work done in such modelling studies.

The present study is motivated by the need for geometrically realistic models in

three dimensions as information from a three dimensional simulation may be helpful

in enhancing our understanding of the arterial disease patterns. In this thesis, the

application of CFD techniques in the construction of three dimensional models to

elucidate the complex flow patterns associated with flow through stenosed arteries

will be examined. The primary aim of the present study is to obtain quantitative

solutions from these models as the solutions may provide some insight into how the

dynamics of blood flow can be related to some of the pathological problems found

in human arteries.
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L.4 Outline of Approach in the Present Study

To achieve the aim stated above, the present study has been organised in the manner

described below :

In Chapter 2, a brief description of the human circulatory system is first pre-

sented to provide the background required for the discussion in this thesis. The

morphological structure of blood vessels, in particular, arterial vessels, and their

associated pathological problems are discussed briefly. The risk factors for the arte-

rial disease, atherosclerosis, are discussed and a widely accepted hypothesis for the

genesis of atherosclerosis is described.

Chapter 3 examines how the basic physics and laws of fluid dynamics may be

applied to flow through blood vessels. The application of CFD techniques in the

solution of such problems is discussed. The use of commercial CFD codes will be

justified and a brief description of the packages, FIDAP and PHOENICS, is given.

In the next three chapters, three models are constructed, each introducing sub-

sequent improvement over the previous. In Chapter 4, an axisymmetric model is

constructed to demonstrate the usefulness of CFD codes in blood flow modelling

studies. Although the model is not in three dimensions and is fairly simple, it serves

to demonstrate the potential effectiveness of using CFD codes in simulating blood

flow. This first model uses the FIDAP code.

Chapter 5 describes the formulation of a three dimensional model using another

commercial CFD code, PHOENICS. A geometrical description of the model and the

formulation of the problem in PHOENICS are presented. The intrinsic difficulties in

the description of results in three dimensional modelling are made apparent in this

chapter. We also look at an important flow characteristic, namely, the wall shear

stress, and how it can be estimated in our models.
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In Chapter 6, we extend the study in Chapter 5 to a curved artery model in three

dimensions. The formulatiorr of the model is discussed in detail. Secondary flow

phenomena are particularly important in this model and these are also examined in

some detail. Arteries are generally not straight tubes, and the curved artery model

described in this chapter hence represents a generalisation of models that can be

constructed using CFD codes.

The concluding chapter, Chapter 7, summarises the work done and discusses the

clinical significance of the present study. Suggestions for future work in this area

are also presented.



CHAPTER 2

THE HUMAN CIRCUTATORY SYSTEM

2.L fntroduction

As we have seen in the discussion in Chapter 1, numerous studies have been carried

out in the past few decades in the area of modelling of blood flow in arteries. Infor-

mation from these studies may provide some insight into vascular disorders and the

disease process. Before considering these modelling studies, it would be expedient

to first describe the human circulatory system to provide the background required

for the discussion to follow.

In this chapter, a brief description of the human circulatory system is first pre-

sented. Arterial vessels are then described in some detail since our main interest is

on arteries. This is followed by a discussion on arterial disorders and the risk fac-

tors that have been identified to be associated with the disease. A widely accepted

hypothesis for the genesis of arterial disease will be discussed. Many researchers

believe that this hypothesis may be supported by certain theories in hemodynamics.

Some of these proposed theories will be discussed at the end of this chapter.

t4
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2.2 Brief Description of the l{uman Circulatory System

The circulation of blood in the human body is divided into two major systems

known as the pulmonary circulation and the systemic circulation, arranged in series

as shown in Figure 2.1. The two systems of circulation are very similar. Each

consists of a pump, a network of distributing vessels and arteries, a diffusing system

and a collection system.

The pulmonary circulation begins at the right ventricle of the heart and trans-

ports blood only to the lungs, where gas exchange can occur. As the lungs are in

close proximity to the heart, the pulmonary circulation functions as a low-pressure

system. The systemic circulation initiates at the left ventricle and is responsible

for supplying blood to all the other organs and tissues of the body. The systemic

circulation functions as a high-pressure system as it needs to transport blood to

distant parts of the body.

The pumping action of the heart is a two-phase process. During its relaxation

phase (diastole) the heart is filled with blood. It then expels some of the blood

during the contraction phase (systole) and delivers blood to both the pulmonary

and systemic circulation. Blood is returned to the right heart from the systemic

circulation as deoxygenated blood, which is then pumped into the lungs where gas

exchange takes place. It is then returned to the left heart from the lungs as oxy-

genated blood, which is subsequently pumped into the systemic circulation.

Blood pumped from the heart is carried by the arteries under pressure to the

tissues and various organs of the body via smaller vessels called arterioles and cap-

illaries. Arterioles have a narrower lumen (the space enclosed by the arterial wall)

and are a major site of resistance to blood flow. The capillaries form a network with

a very large total cross-sectional area through which blood flows slowly, providing

ideal conditions for exchange between blood and interstitial fluid.
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i"*rr*","d Blood il*ro**Blood

Figure 2.1: Schematic representation of the human circulatory system, showing the
pulmonary circulation and the systemic circulation

È

s
$\
\)
a
sq¡

vt>.v)'

s
s
()
L
U
()

sq)
U2à.4'

Pulmonary
Circulation

Left
Heart

Lungs

Head
and Arms

Right
Heart

Liver

Brain

Kidneys

Spleen

and Gut

Trunk
and Legs



77

Blood is returned to the heart through a collection system made up of a primary

set of collecting tubules, the venules and veins. Systemic veins have a relatively

large capacity and in the resting supine position, veins hold four times as much

blood as do the arteries. However, the mean velocities of flow in the arteries are

generally higher than that in the veins. The relationships between percentage of

blood volume, cross-sectional area and mean velocity of blood flow in the vessels of

the systemic circuit are summarised in Figure 2.2.

In the present study, the focus is on flow in the arteries of the systemic circulation

and in particular, the coronary circulation. In the next section, we shall describe in

some detail the general structure of arterial vessels.



<
s

ãõ oQ
.

M
ea

n 
ve

lo
ci

ty
 1

cm
 s

-l¡
C

ro
ss

-s
ec

tio
na

l a
re

a 
(c

m
2)

l..
) o o

S
<

* 
(D

 ,
;i

^ 
X

-O
Q

öã
 -

ã,
ij 

ô
{9

I. 
s'

'iJ
N

) e+ -HP
N (D

¡D €3 3õ
'

(D
5

Ilu
)

P
-

H
.

., 
td

ôa
)

!d !J
(D

lr 
el

äd =
'E

$>
q

ô- v)
 !

,']
çõ rc

o
Ë

'Þ
-

o< H
IJ od cD

 
;r

É
'. 

ã
o" Þ

c)
. 

t_
,

ãq E
E

6t
 f

t

F
F

Ë
o ãe

e F
t

E
Ë

S
E Ê

e 
Ê

D

-iL Lr .o
P

+
P

5 o
N

U
)

Ø (ì o t ô

lJ oo

V
en

a 
C

av
ae

V
en

ul
es

V
ei

ns

A
or

ta

A
rt

er
ie

s

A
rt

er
io

le
s

C
ap

ill
ar

ie
s

N
) (, o\ è o À



19

2.3 Arterial Vessels

The basic morphologic structure of the wall of an artery is shown in cross section

in Figure 2.3. The wall of an artery consists of three main layers, tunica inti,ma,

tunica medi,a and tunica aduenti,tia, interspersed with elastic fibres and connective

tissues. The innermost part of the arterial wall is lined with a layer of endothelial

cells forming the endotheli,urn. Between the main layers are elastic membranes whose

thickness varies from artery to artery.

endothelium

adventitial
VESSEIS

tunica intima

elastica interna

tunica med¡a

elastica externa

tunica adventitia

adipose cells

Figure 2.3: Cross-section of a typical artery to illustrate the several layers of tissue
in the walls of an artery. Adapted from Jensen (1980).

Depending on the composition of the constituents, the relative diameter and

distance from the heart, arteries may be classified as elastic arteries, muscular arter-

ies or arterioles. Different classes of arteries bear different physical properties and

generally have varying effects on the blood flow.
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The largest arteries are predominantly elastic, even though their walls also con-

tain smooth muscle. Elastic arteries are large and have thick walls with prominent

series of elastic membranes within their walls. However, relative to the internal

diameter, the walls of large arteries are thin as they have a much larger lumen.

Elastic arteries are highly distensible and this particular characteristic, to a certain

extent, helps in dampening the pulsations as blood is being pumped from the heart

at high pressures. However, through disease or ageing, the arteries may become less

elastic, making them distend less easily and recoil less forcibly. Thus as one ages, it

is expected that one's arteries lose both their compliance and their elastance.

The most numerous arterial structure in the human body is the muscular arteries

and these form the major distributing system of the systemic circuit. The walls

of muscular arteries contain a thick layer of smooth muscle fibres, together with

collagenous tissues. These arterial components are continuous with surrounding

loose connective tissues, and thus their movements permit the vessels to change

their diameter readily. Longitudinally, these arteries are under a state of tension

and this property is evident from the fact that the vessels retract when severed

(Funs 1981).

Arterioles are the smallest arteries with diameter ranging from about 20 p,m

to 200 p,m. They are the components of the vascular system where the greatest

resistance is sited. Of all vessels, the arterioles have the thickest walls relative to

the size of their lumen. Internal elastic membranes are absent in arterioles but loose

connective tissues are found in their walls. The smooth muscles in arterioles are

arranged in a tight spiral such that its contraction decreases diameter and raises the

resistance to blood flow. Because of the high resistance in arterioles, there is a steep

fall in pressure as blood flows through them from arteries into capillaries. The more

they constrict, the steeper the pressure drop. The characteristics of various types

of blood vessels are shown in Table 2.1.
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Table 2.1: Characteristics of various types of blood vessels in humans

Lumen Diameter
(r')

Wall Thickness
(")

Mean pressure

(mm Hg)
Aorta 25 2 100

Artery 4 1 75-95
Arteriole 0.03 0.02 35-70

Capillary 0.00s 0.001 15-35

Venule 0.02 0.002 10-15

Vein 5 0.5 10 or
lessVena Cava 30 1.5

An important component of the arterial wall is the endothelium, the innermost

layer of cells that comes into contact with the flowing blood. It has two major tasks.

It has to prevent the adhesion of various species to the vessel wall, and at the same

time selectively allow substances such as water, electrolytes and sugars to pass from

the blood to the tissues. The endothelium is a single layer of cells, aligned in the

direction of the flowing blood. There is also evidence to suggest that the endothelial

cells will respond to changes in the flow pattern (Fry 1968). It is thus not surprising

that the endothelium has received much attention in this area of research.

As can be seen from the above discussion, arterial vessels are by no means inert

tubes. The presence of muscle tissues and elastic fibres in the walls of arteries

and the nature of the living endothelium suggest that besides serving their main

function as conduits in the circulatory system, arteries are capable of responding to

the influences and dynamics of blood flow.

2.4 Arterial Diseases

Cardiovascular diseases (i.e. diseases of the heart and blood vessels) are responsible

for more morbidity and mortality than any other human disease, particularly in

Western societies. In Australia, for instance, cardiovascular disease claims a life
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every ten minutes. Although the death rate 1 from cardiovascular diseases continues

to fall in recent years, it remains the number one killer in Australia. Table 2.2 shows

the total Australian deaths and their causes in 1993.

Table 2.2: foi'al Australian Deaths, 1993 : All Ages

Cause of Death Males

No. o/o

Females

No. o/o

Total
No. %

Cardiovascular Disease :

Coronary Heart Disease

Stroke
Other Cardiovascular Disease

16,335

4,818

5,216

25.L

7.4
8.0

t3,424
7,3t9
6,124

23.8

13.0

10.8

29,759
L2,t37
11,340

24.5

10.0

9.3

All Cardiovascular Disease 26,369 40.5 26,867 47.5 53,236 43.8

Cancer 78,479 28.4 14,212 25.1 32,69L 26.9

Traffic Accidents 1,384 2.t 572 1.0 1,956 1.6

AIDS 689 1.1 29 0.1 7L8 0.6
All Other 18,164 27.9 14,829 26.2 32,993 27.L

All Causes 65,085 56,509 t21,594

Source : The Annual Report, National Heart Foundation of Australia, 1994.

It is evident that cardiovascular diseases are the main cause of death and of these,

coronary heart disease (i.e. disease of the coronary arteries) alone is responsible

for about a quarter of all deaths. Coronary arteries are arteries arising from the

proximal ascending aorta immediately above the attached margins of the aortic

valve and they supply blood to the heart muscles. Figure 2.4 shows the coronary

arteries surrounding the heart. It is important to note that in general, the coronary

arteries curve and bend around the heart and some of the branches can be extremely

tortuous.

l "Death Rate" is defined as the number of deaths among a fixed number of the population
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Right Coronory Artery
Left Moin Coronory Artery

Circumflex Artery

Left Anterior
Ascending Artery

Posterior Descending Artery

Figure 2.4: Schematic diagram of the heart in antero-posterior projection, showing
the major coronary arteries. The proximal portion of the left coronary artery is
shaded, as are the posterior portions of the right coronary and circumflex arteries.
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2.4.t Arteriosclerosis

Arterial disorders occur chiefly in three forms : (1) narrowing of vessels (2) damaging

of endothelial lining, thus promoting intravascular thrombosis and (3) weakening of

vessel walls leading to possible rupture of the walls. The generic term for vascular

diseases associated with thickening and inelasticity of arteries is o,rteriosclerosis.

There are three patterns of arteriosclerosis, namely, atherosclerosi,s, Mönclteberg's

m edi, al cal ci,fi, c s clero sis and art eri, o I o s clero si,s.

The first of these patterns, atherosclerosis, is the dominant form of arteriosclero-

sis. Characterised by the formation of intimal fibrofatty plaques, atherosclerosis is a

disease of large- and medium-size arteries. The presence of these plaques or lesions

inside the vessel causes a reduction in the lumen and supply of blood to the organs

served by these arteries is subsequently reduced.

Although atherosclerosis can theoretically occur in any artery, the major targets

are the aorta and the coronary and cerebral arteries. Stenosis of the coronary

arteries, or coronary atherosclerosis, can result in a severe reduction ofblood supply

to the heart, inducing ischemia of the heart. Ischemia is a condition suffered by

an organ or part of the body when its blood supply becomes deficient. When the

arterial lesions are complicated by thrombosis (i.e. clotting inside a living blood

vessel), myocardial infarction, more commonly known as "heart attack", ilây occur.

Severe cases of myocardial infarction can be fatal.

Tleatment for coronary stenosis is usually either balloon angioplasty or a surgical

bypass. In balloon angioplasty, a catheter with a balloon at the tip is introduced

into the diseased vessel and inflated at the location where the vessel is stenosed, thus

pushing the blockage back into the wall. However, it is possible for patients who have

undergone balloon angioplasty to experience regrowth of the stenosis, either at the

original location of at a different site. More severe cases of coronary atherosclerosis
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may require a bypass operation, in which part of a blood vessel taken from another

part of the body is grafted to the diseased artery.

2.4.2 Risk Factors

The concept of risk factors for atherosclerosis has emerged from studies of ischemic

heart disease in human populations. One notable study was conducted in Fram-

ingham, Massachusetts, where 5,127 individuals have been followed biennially for

the development of initial attacks of coronary heart disease since 1949 (Kannel eú

al796I). The Flamingham study reveals a number of factors which are no\ry recog-

nised as risk factors. Any factor associated with doubling in the incidence of ischemia

heart disease has been defined as a "risk factor". This section reports some of the

findings from the Framingham study on risk factors of atherosclerosis.

Age and Sex

It has long been recognised that the severity ofcoronary atherosclerosis increases

with age (Strong and McGill 1962). Although early lesions of atherosclerosis appear

in childhood, the Framingham study found that clinically significant attack of the

disease rarely occur before age 40.

Other factors being equal, males are much more prone to atherosclerosis than

females. Between ages 35 and 55 years, white \Momen have one fifth the mortality

from ischemic heart disease of white males. However, the immunity of women to

coronary heart diseases is only relative to men, since even in women, it is still a

common disease and a leading cause of death.

Blood Cholesterol Level

It has been found that levels of serum cholesterol are directly correlated with

the incidence of ischemic heart disease. A variety of lipids and their lipoproteins

have been implicated in the initiation of atherosclerosis (Kannel et aI lg64). How-
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ever, there is still uncertainty over which lipid or lipoprotein is most basic to the

atherosclerotic process. Nonetheless, the Framingham study found that each of the

major lipids and lipoproteins encountered in blood is related to the incidence of

ischemic heart disease.

Hypertension

An increase in blood pressure is consistently associated with a risk of myocar-

dial infarction. All grades and types of high blood pressure, or hypertension, are

contributors to coronary heart disease at all ages in both sexes. In the Framingham

study, men aged 45 to 62 whose blood pressure exceeded 160/95 mm Hg had a more

than fivefold greater risk of ischemic heart disease than those with blood pressures

of 140190 mm Hg or lower (Kannel et al 1967a). Control of hypertension has re-

sulted in a significant decrease in the incidence of myocardial infarction and stroke.

However, it is still unclear how elevated blood pressure accelerates the process of

atherosclerosis.

Cigarette Smoking

Atherosclerosis of the coronary arteries and the aorta is more severe and common

among cigarette smokers than among non-smokers. The risk is related to daily

consumption, and the effect appears to be transient and reversible. It appears that

giving up the smoking habit lowers the risk dramatically (Kannel et al1963).

Diabetes

The incidence of myocardial infarction is twice as high in diabetics as in non-

diabetics. Diabetics have a higher risk of occlusive vascular disease in many other

organs as well, including the brain and lower extremities.

There exist other factors whose impact on the initiation of atherosclerosis is less

clearly defined. For instance, the Framingham study found that being more than
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30% overweight increases the mortality rate from ischemic heart disease (Kannel

et al 1967b). Also, it appears that physical activity reduces the risk of sudden

death from ischemic heart disease. However, the mechanism by which these factors

accelerate the disease process is unclear.

Although the above factors have been identified and accepted to a certain extent

as major risk factors, atherosclerosis may still develop in the absence of any of these

factors. Those who live the "prudent life" and have no genetic predisposition are

not immune to the disease. While knowledge of such risk factors may be useful in

Iowering the risk of the disease, it does not explain the cause of atherosclerosis.

2.4.3 Pathogenesis of Atherosclerosis

Because of the importance of atherosclerosis, much research has been carried out to

discover its cause and explain the genesis or initiation of the disease. Vast amount

of information has accumulated, but unfortunately, the cause of atherosclerosis is

still not established.

Many theories on the pathogenesis of atherosclerosis have been proposed but

favoured today and receiving the greatest attention is the "response-to-injury" hy-

pothesis. This hypothesis best accommodates the various risk factors discussed

earlier.

The "response-to-injury" concept is illustrated in Figure 2.5. A lesion is initi-

ated by some form of injury or damage to the endothelial cells, which, under normal

conditions, form a complex barrier and are in dynamic equilibrium with their im-

mediate environment. Once injured, the endothelial cells fail in their function and

increased adhesion and permeability soon follow. Platelet aggregation and seeping

of plasma constituents into the tissues will take place. A tissue response is then

triggered and the formation of atherosclerotic plaque is initiated.
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"reponse to injury"

Figure 2.5: Diagram sho\4/ing the different stages of atherogenesis according to the
response to injury hypothesis
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Platelets adhere to the vessel wall and release a growth factor that stimulates

the smooth muscle cells which then begin to engulf lipids and proliferate. The influx

of low-density lipoproteins, or LDL, enhances this reaction. This could explain why

a high level of cholesterol is related to the incidence of atherosclerosis.

Regeneration of the endothelial layer will then ensue to restore the integrity

of the endothelium. An atherosclerotic plaque is thus formed. Coronary arter-

ies are particularly susceptible to luminal narrowing at a relatively early stage by

atherosclerotic plaques.

2.5 Hemodynamics and Atherogenesis

Central to the "response-to-injury" hypothesis is damage to the endothelial lining.

Although this hypothesis is able to explain the association of the various risk factors,

it fails to explain the cause for the damage of the endothelium. The risk factors may

accelerate the atherosclerotic process, but statistical associations of the disease with

the risk factors cannot be considered causal relation. Thus, it seems fair to say that

the risk factors that have been identified by studies such as the Flamingham Study

can only be regarded as secondary or modifying influences. The primary cause of

the disease would have to be the mechanism which brings about endothelial damage.

Many researchers (for example, Texon 1963; Gessner 1973; Nerem and Cornhill

1980; Glagov et al L988) believe that the fluid dynamics of blood flow, or hemo-

dynamics, could play a key role in causing primary damage to the arterial wall.

The main reason for this is the fact that the growth of atherosclerotic plaques oc-

curs chiefly at some favoured sites in the arterial tree. In particular, the sites for

predilection are characterised by tapering, curvature, bifurcation and branching.

This has led researchers to suggest that mechanical influences such as increased

flow velocity, elevated shearing stresses and recirculation and turbulence in flow are
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responsible for causing endothelial damage.

However, there are still questions on exactly how these mechanical forces could

interact to cause damage to the endothelium (Nerem and Cornhill, 1980). For ex-

ample, Texon (1963) hypothesised that the suction effect of the lateral pressure at

sites of attachment stimulates intimal proliferation (Figure 2.6). However, Gessner

(1973) argued that a suction action on the endothelium will exist only if the local

pressure beneath the endothelium exceeds the intraluminal pressure, which is un-

likely to occur over a significant period of time and hence Texon's suction model is

untenable.

Flom the preceding discussion, it is clear that in order to improve our knowledge

on the role of hemodynamics in the genesis and process of atherosclerosis, more

quantitative work is needed. There is no doubt that with the advent of high speed

digital computers, computational fluid dynamic techniques will play an increasingly

significant part in the development of mathematical modelling studies in blood flow

problems with the hope of gaining better insight in this area. The next chapter

discusses the application of computational fluid dynamic methods to study blood

flow using mathematical models.



31

Figure 2.6: Velocity and pressure (suction) changes associated with atherosclerotic
plaque at zone of attachment. Texon's model (1963) which is refuted by Gessner
(1e73).
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CHAPTER 3

CFD TECHNIQUES AND APPTICATIONS IN
BTOOD FI,OW STUDIES

3.1 Introduction

As we have seen from the description of arterial vessels in Chapter 2, arteries are

elastic tubes, capable of responding to physical and physiological influences. The

blood flowing in these vessels is a complex suspension of red and white corpuscles,

platelets and lipid globules in plasma, a colloidal solution of numerous materials.

Despite the difficulty arising from these complexities, extensive insight into cardio-

vascular flows can still be obtained through mathematical modelling by applying

computational fluid dynamic, or CFD techniques to simpler physical systems.

The literature contains many examples of mathematical models for various fluid

dynamic systems, with analytic or numerical methods of solution. Consequently,

this chapter shall be restricted to a discussion at a relatively qualitative level. The

more important equations and aspects will be presented as they are needed in later

chapters.

In this chapter, the basic fluid laws relating to flow through vessels will first be

described. The general principles of CFD techniques will then be presented. Two

commercial CFD codes, FIDAP and PHOENICS will be introduced and only briefly

described as details ofthe usage ofthe these packages can be found in the respective

32
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manuals.

3.2 Fluid Dynamics of Blood Flow

Mathematical studies of blood flow are based on the application of physical principles

and equations to describe the behaviour of fluids in tubes. A brief description of

some of these principles is presented in this section.

Viscosity of Blood

Viscosity is defined as the property of a fluid that determines its resistance for

its own motion. The origin of this resistance can be attributed to adhesive and

cohesive forces within the fluid. Mathematicall¡ viscosity is defined as the ratio of

shear stress to the velocity gradient (i.e. shear rate) and is usually denoted by p.

A Newtonian fluid is one with a constant viscosity. Blood, being a suspension

of blood cells in plasma, is a non-Newtonian fluid. However, under conditions of

relatively high velocity as in the arteries which develop atherosclerosis, and in vessels

with diameter larger than 0.5 mm, the viscosity of blood does not alter appreciably

(Texon 1963).

Laminar and Turbulent Flow

There are two basic models of viscous fluid motion - Iaminar flow and turbulent

flow (Figure 3.1). For an axisymmetric laminar flow in a pipe, the particles of

the fluid follow straight line paths parallel to the pipe axis. Such layered or laminar

flow has a parabolic velocity profile. In turbulent flow, the particles follow a random

path and only the average motion is along the pipe axis. Laminar flow occurs at

velocities up to a certain critical velocity. Above this critical velocity, the flow

becomes turbulent. The transition of flow from laminar to turbulent can sometimes

be determined by the Reynolds number of the flow.
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\

flow direction

\

Laminar flow

J',

flow direction

Turbulent flow

Figure 3.1: Velocity profiles of laminar and turbulent flows
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The Reynolds numbet, Re, for flow in a pipe is usually defined as

VD
(3.1)Re

v

where V is the velocity at the center, D is the pipe diameter and z is the kinematic

viscosity of the fluid. The kinematic viscosity is defined as

l-rU:-
p

(3.2)

where p is the fluid density.

It has been shown that above a critical Reynolds number, there will be a transi-

tion of fluid motion from laminar to turbulent. It is widely accepted that the critical

Reynolds number for this transition is 2,000 (McDonald 1960; Mazumdar 1992). In

the human circulatory system, the flow of blood is normally laminar. However,

irregularities and stenoses in the blood vessels may produce turbulence.

Poiseuille Flow Formula

For flow in a long narro\¡¡ tube, neglecting end effects, the Poiseuille formula for

the relation between the volume of flow, Q, and pressure difference, AP is given by

e: L!"-!n 
(3.s)

8pL

where L and R are the length and radius of the tube respectively.

It follows that the average velocity (which is the volume flow divided by area of

cross section of tube) is given by

V
 PR2

(3 4)
8tL

The relation between the resistance to volume flow, K, the volume flow and the

pressure difference is given by
AP,.( _ _ (3.5)tL- 
a



Hence, from Equation (3.3), K may be written as
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(3.6)

Thus, it is clear from the equation above that the resistance to volume flow

is related to the geometry of the vessel and the viscosity of the flowing fluid but

independent of the flow velocity.

Shear Stress

It is usual and reasonable to suppose that the blood in immediate contact with

the vessel wall has the same velocity as the vessel wall. This particular type of

boundary condition is known as the "no slip condition" and is commonly used in

blood flow models. It follows that at the arterial walls, the flowing blood in the

vessel will generally have a non-zero velocity gradient, fr, wherc z and g are the

velocity component and space coordinate respectively, as shown in Figure 3.2.

u

vesselwall

Figure 3.2: Diagram showing the velocity component, u, in the direction of the flow
and the space coordinate g/. No slip condition is applied at P.

v



The shear stress, r, at point P is related to the velocity gradient by

JI

(3 7)
du

da,T: l1

where p is the viscosity of blood.

Shearing stresses on the walls are difficult to measure and very often, in blood

flow models, they are derived or estimated from the values of the velocity components

using the relationship above.

The various properties of fluids and fluid flow may be applied to the study of

blood flow together with the equations governing the motion of fluids. In their most

basic form, these governing equations are partial differential equations which, to

date, do not have analytic solutions. Numerical methods are often needed to obtain

approximate solutions to the equations.

3.3 Computational Fluid Dynamics

Computational Fluid Dynamics (CFD) is the study of numerical approaches for the

solution of equations (usually in partial differential form) which govern fluid and

heat transfer processes. The governing equations have been known for about 300

years but direct work on them so far has only yielded closed-form analytic solutions

for simplified forms of the equations describing flow in simplified geometries.

Major applications of CFD first began to appear in the late 1940's through to

the early 1960's. Today, CFD can be viewed as a permanent third alternative in

fluid dynamics investigations, along with pure experimental and pure theoretical

investigations. An historical account of CFD is available in Roache (1972).

There are several major advantages of CFD compared to experimental fluid dy-

namics investigations (Fletcher 1988). Firstly, lead time in design and development

is significantly reduced. In both ir¿ uiuo and in uitro studies, a considerable amount
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of time normally has to be spent in designing and developing the experiment. Also,

once an experiment is set up, it may be difficult or expensive to alter certain pa-

rameter values to create alternative designs. In a CFD study, generally, parameter

values may usually be changed without affecting the overall model. In this way,

the effects of a particular parameter on the model can be studied and analysed.

However, it is possible that in some cases, changes in certain parameter values may

render the numerical process unstable. Nevertheless, given a well developed CFD

code, models may be designed and suitably redesigned very quickly.

Secondly, CFD provides more detailed and comprehensive flow information. Ex-

periments are very effective for obtaining global information in blood flow models

such as total pressure drop across a stenosis or velocity at a particular point in

the vessel. However, obtaining detailed velocity and pressure distribution is pro-

hibitively expensive, time consuming and sometimes simply infeasible. CFD, on the

other hand, provides this information as part of the solution, permitting a more

precise understanding of the flow processes. Thus, a more complete picture of the

flow field may be obtained.

Thirdly, CFD is increasingly more cost-effective than experimental investiga-

tions. Some in uitro experimental set-ups involving laser Doppler anemometry or

other similar equipment can be very costly. Improvements in computer hardware

performance, on the other hand, are accompanied by lower hardware costs. Thus,

costs of computational simulations have decreased significantly. By contrast, costs

associated with performing experiments continue to rise.

It must be stressed that this thesis does not suggest that experimental investi-

gations be replaced by CFD studies, the main reason being that constitutive con-

tinuum equations used in CFD models are never exact. However, the advantages

stated above have made CFD methods increasingly popular as an economically vi-

able alternative and an excellent complement to some experimental methods.
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3.4 Basic Principles of CFD

The three fundamental principles which govern the physical aspects of any fluid flow

are : (1) conservation of mass (2) conservation of momentum (or Newton's second

law of motion) and (3) conservation of energy. These principles may be expressed in

terms of mathematical equations, which in the most general form, turn out to be a

set of non-linear, coupled partial differential equations. The basic principle behind

CFD is replacing the set of partial differential equations with numbers (usually found

from a set of algebraic equations) and advancing these numbers in space and/or time

to obtain a final numerical description of the complete flow field of interest.

In CFD, when a model is defined, one needs to select the discretisation method

which will lead to a numerically solvable set of algebraic equations. Several ap-

proaches are available, for example, Finite Difference, Finite Element, Finite Vol-

ume, Boundary Element and so on. Whatever the approach, the following general

steps are usually involved :

1. The solution domain is first subdivided into a finite number of subdomains

(known as elements, cells and so on) to form a computational grid. The approx-

imate solution to the problem will be found at the discrete locations (nodes,

grid intersection points or cell centres depending on the chosen method). This

step is usually termed the domain discretisation step.

2. All dependent variables are initialised and boundary conditions applied. The

initial or boundary values are either known or approximated.

3. The partial differential equations are cast into some form of algebraic equations

depending on the finite approximation scheme employed. This is the equations

discretisation step. A result of this step is a set of equations of the form,

A"ó"tDAnoóna:Q" (3.8)
nb
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where the subscripts c and nb refer to the cell centre and the centres of a

certain number of neighbour cells respectively. A's are the coefficients involving

geometrical parameters (volume, area or distance), fluid properties (density,

viscosity, specific heat, etc.) and also variable values due to the non-linearity

of the equations. Q contains all terms which are known or treated as such

within one iteration cycle. / is the dependent variable, which may be velocity

components or pressure, that we wish to calculate at points on the grid.

4. The computational cycle then begins. This involves calculating new values of

the dependent variables based on the initial and boundary conditions while

incrementing the independent variables. Some methods of solution make use

of a direct solver for the algebraic equations but more commonly applied are

iterative methods of solving the algebraic equations.

Although different methods of discretisations of the solution domain and the

governing equations will give rise to different numerical schemes, the general steps

stated above are usually present in all schemes. The literature has a vast collection

of work done in the area of analysis of such numerical schemes of solving partial

differential equations. The present study, however, is not concerned with the relative

merits of the different methods or with improving computational methods; rather,

it is concerned with the application of CFD codes to blood flow problems.

3.5 Commercial CFD Codes

In recent years, many commercial companies have started producing softwares for

industrial applications of CFD. The development in computer hardware, especially

workstations, has contributed to the overall growing popularity of CFD in industry

and research.

While it is beyond doubt that such commercial CFD codes are useful, some cau-
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tion is necessary when choosing the code and designing the study. It is especially

important to avoid using a CFD code as a "black box" software because the re-

sults obtained from these codes are only as valid as the physics incorporated in the

governing equations and boundary conditions, and are therefore subject to error'

Truncation errors associated with the particular algorithm and grid used to obtain

the numerical simulation, as well as round-off errors which accumulate during the

computational process, combine to compromise the accuracy of the CFD results.

Thus, model validation is an essential component when using CFD codes to ensure

that the problem is well represented and that the solutions obtained are feasible and

realistic.

Table 3.1 shows some features of some commercial CFD codes. It is not in-

tended here to go into detailed analysis of the various commercial codes. However,

it is important to note that most of these codes are specialised for some range of

applications, where they would perform better and are easier to set up than others.

Therefore, to a certain extent, the choice of which CFD software to use depends on

the nature of the problem to be solved.



SHIPFLOW

yes

no

no

FD

UDS

k-e

no

no

no

no

PHOENICS

yes

yes

yes

FV
UD5, hybrid
UDS/CDS

mixing length,
k-e, algebraic

yes

yes

yes (E/1, E/E)

yes

STAR CD

yes

yes

yes (adaptive)

FV
UDS, LUDS

self filtered CDS
k-e (stand. low

Re, 2layer)

yes

yes

yes (E/L)

yes

FIDAP

yes

yes

yes

FE

linear and
quadratic elements

k-e with
modifications

no

yes

yes (E/L)

yes

flow3D

yes

no

no

FV
UD5

k-e

no

yes

no

yes

TASCflow

yes

no

yes (embedded)

FV
2nd order

skew upwind
k-e,

two layer k-e

no

yes

yes (E/L)

yes

FLUENT/RAMPANT

yes/yes

no/yes

no/yes

FVlFV
power-law/ 2nd

order polynomials
k-e

no/no

yes/yes

yes/yes (ElL,ElE)

yes/partial

Features

Block-structured grid

Unstructured grid

Local refinement

Discretisation
lnterpolation/
Differencing
Turbulence
Modelling

Moving grid

Transient flows

Two phase flows

User interface

Table 3.1: Some features of various commerc¡al CFD codes

Adapted from Perié (1994) with appropriate updates. (FV : Finite Volume; FE : Finite Element; FD : Finite Difference; UDS = first order upwind

scheme; CDS : second order central differencing/linear interpolation; LUDS : second order linear upwind scheme/linear extrapolation; EIE: Eulerian

calculation for both phases; EIL : Eulerian calculation of carrying phase, Lagragian calculation of dispersed phase). Code names are trademarks of

their respective holders.

È
b.9
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In the present study, two commercial CFD codes have been used to construct

models of blood flow through stenosed arteries. The first is FIDAP 1, which has

been extensively used and tested, and the second is PHOENICS 2.

FIDAP had been used very successfully by researchers such as Johnston and

Kilpatrick (tggta, 1991b) in blood flow studies. A model for an axisymmetric flow

in a rigid tube can be easily set up in FIDAP. The first model in this study is therefore

an axisymmetric model which serves to illustrate the usefulness and effectiveness of

appropriate CFD codes in modelling studies. This model is also an extension of

the paired stenoses work performed by Johnston and Kilpatrick. For these reasons,

FIDAP is a good choice of CFD code for our first model.

The other two models described in this thesis are models in three dimensions. A

CFD code which has a good and efficient user interface in terms of model construc-

tion and grid generation would be an appropriate choice. In PHOENICS, there are

both menu-driven interface and user-defined input files to assist the user in model

construction. Furthermore, the grid generation process is aided by a useful feature

which assigns colours to the grids or cells according to the orthogonality of the cell,

thus providing invaluable information to the user in terms of appropriate grid def-

inition. This is particularly helpful in modelling blood flow in three dimensions as

the grid definition in these models can become fairly complicated.

Details of the usage of both FIDAP and PHOENICS may be found in the re-

spective manuals and user guides. In addition, both FIDAP and PHOENICS are

equipped with fairly comprehensive "on-line help" systems. Hence, only brief de-

scriptions of the general structure and principles of the two codes are given here.

1FIDAP is a trademark of Fluid Dynamics International, Inc.
2PHOENICS is a trademark of CHAM, Ltd.
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3.5.1 FIDAP : A Brief Description

FIDAP 3 is a general purpose CFD code based on the Finite Element method of solv-

ing partial differential equations. It is suitable for simulating viscous incompressible

fluid flows, including the effects of heat transfer. Both steady and transient flows

can be modelled in arbitrary geometries that may be two-dimensional, axisymmetric

or three-dimensional.

The Finite Element Method (FEM) has been successfully applied in the solution

of many structural analysis problems. Only recently has the finite element scheme

been applied to CFD. FIDAP claims to be the first commercially available general

purpose CFD code based on the FEM.

In the FEM, the flow domain is divided into a number of simply shaped regions

called finite elements. The elements are identified by the locations of the element

corners in space. These points are called nodes or nodal points. The equations of

fluid mechanics describing the flow in the entire domain are replaced by a set of

algebraic equations having matrix coefficients which are derived by approximating

the equations on each element. The FEM is a well established method and further

details of its application can be found in the literature.

FIDAP consists of three main modules : FIPREP, FIDAP and FIPOST. FIPREP

is a command driver program used to enter all the data required to define the

problem. FIDAP is the numerical simulation module which actually performs the

computational processing. FIPOST is the post-processing module which includes

plotting facilities. The information flow and associated files in a FIDAP run are

described in Appendix A.

sFIDAP is an acronym for Fluld Dynamics Analysis Package
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3.5.2 PHOENICS : A Brief Description

PHOENICS a is another general purpose CFD code which simulates fluid flow, heat

transfer, chemical reaction and related phenomena. Steady and transient flows,

as well as turbulent flows, may be modelled. PHOENICS also comes with a grid

refinement facility.

PHOENICS is based on the Finite Volume Method (FVM) of discretising the

governing equations. In the FVM, the solution domain is divided into cells, which

are topologically Cartesian brick elements. Figure 3.3 shows a typical cell. The

scalars are stored at the centre points of each cell and assumed to prevail over the

entire cell. The vector quantities are stored at the centre points of the six cell faces.

High

North

West

East

South

v
Low

x

Figure 3.3: A typical cell used in PHOENICS. The cell centre is marked P. The
directions W-E, S-N and L-H represent the positive r, y and z directions respectively.

4pHOENICS is an acronym for Parabolic, Hyperbolic Or Elliptic Numerical Integration Code
Series

z

I/--
a

P
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Like FIDAP, PHOENICS is organised as a suite of programs, each with a well de-

fined role. The programs that make up the entire system are SATELLITE, EARTH,

PHOTON, PINTO, AUTOPLOT and GUIDE. A description of the roles of these

progrâms and their relationships can be found in Appendix B.

The discretised equations in PHOENICS are solved iteratively using the SIM-

PLER algorithm developed by Patankar. Details of the scheme can be found in

Patankar (1980) where a comprehensive treatment of the SIMPLER algorithm is

given.

Mathematical modelling of blood flow through stenosed arteries in precise math-

ematical terms remains an insurmountable problem. However, with the proper use of

CFD codes, it is possible to obtain considerable insight into the mechanics of blood

flow in diseased arteries. The next three chapters are reports on three modelling

studies using commercial CFD codes.



CHAPTER 4

MODEL I : AXISYMMETRIC TRIPLE
STENOSES

4.L Introduction

In this chapter, we examine a model of blood flow through an artery with three

stenoses in series. Although the treatment of the problem considered here is fairly

simplistic, it serves to demonstrate the potential effectiveness and usefulness of nu-

merical models in studying blood flow problems. Furthermore, this model is an

extension and generalisation of the work on paired stenoses developed by Johnston

and Kilpatrick (199la).

Multiple stenoses in arteries are a common phenomenon and using this model,

we examine the effects of three stenoses of differing severity on some of the flow

characteristics like pressure drops across the axial distance and streamlines of flow.

A geometrical description of the model is first presented. This is followed by a

discussion on the governing equations and the formulation of the problem in FIDAP.

Results obtained from the FIDAP code will be presented in the form of pressure drop

graphs and streamline plots. A discussion on the clinical significance of the study

will then be presented.

47
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4.2 Geometrical Description of Model

Coronary arteries in the human body will generally bend and curve and are rarely

symmetrical or even regular in cross section, Figure 4.1 shows the longitudinal

section of a typical coronary artery suffering from multiple stenoses. As can be

seen from the figure, the physical geometry of an artery can be quite complex. A

mathematical model of the actual complex geometry of such arteries is difficult to

construct. In order to study the hemodynamics of flow through arteries, one needs

to simplify the geometry while keeping the essential features intact.

Figure 4.1: Composite Photomicrograph of longitudinal sections of the Left Cir-
cumflex Coronary Artery suffering from multiple stenoses. Source : VLodaver et al
(1e76).

Certain assumptions will have to be made in order to simplify the geometry and

construct a model suitable for our purpose. In Chapter 1, we have seen various

models and methods of handling such a problem. In this chapter, we wish to study

the aspect of varying degrees of stenoses in a multiply stenosed artery while keeping

the model relatively simple. This study will not only serve as a starting point for

our discussion but also provide an insight into the flow characteristics of blood in

an artery that has multiple stenoses, a situation that is not uncommon.
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We shall assume the blood vessel to be symmetrical about its axis and having a

circular cross section. A typical human coronary artery has a diameter of around 1

to 2 mm and in our study the diameter of the unobstructed tube will be fixed at

7 mm. Although arteries are seldom perfectly straight, we shall consider a straight

tube model here and leave the discussion of curved arteries to a later chapter. We

shall also assume the tube to be rigid and thin-walled.

Shape of Stenosis

We now need to decide on the shape of the stenoses in our model. A simple

examination of angiograms of stenosed arteries would reveal that stenoses generally

do not follow any particular shape or pattern. In his early theoretical models, Young

(1968) had proposed a "cosine curve" shape for the stenosis. Various other shapes

have since been considered by other investigators such as Mates (1978) and Umezu

et aI (1992). Models of irregular stenoses have also been constructed (Johnston and

Kilpatrick 1991b).

Most mathematical studies performed in this area, however, have used the cosine

function to describe stenoses as it is a fairly good approximation of the shape of

stenoses. Moreover, the cosine function may be handled easily and hence is a simple

and convenient way of representing the shape of stenoses. Throughout this study,

we will use the cosine function to describe the shape of the stenoses notwithstanding

the fact that it is possible to design models with other arbitrary shapes.

Severity of Stenoses

The severity of a stenosis is usually described by the percentage of the cross

sectional area occluded. The cross sectional area considered is taken at the narrowest

portion (or the "throat") of the blockage.

Consider Figure 4.2 which shows a typical model of a tube with a single stenosis.

Suppose ,Re is the radius of the unobstructed tube and d is the height of the stenosis.
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õ

Ro

Centreline

(a) Longitudinal section (b) Cross section at
the throat

Figure 4.2: A single stenosis. (a) Longitudinal section : line AB lies on the narrowest
part of the stenosis and line CD lies on the unobstructed part of the tube. (b) Cross
section at AB.

Without loss of generality, let Rs, the unobstructed radius of the vessel, be of unit

length, i.e. let & : 1. Hence, it follows that 0 < ô < 1. Therefore,

Cross sectional area of lumen across CD : n4: n

Cross sectional area of lumen across AB : r(7 - 6)2

Hence, the percentage of area occluded is given by

(r-r(L-õ)2) xroo
\ 7t )^'""

: 100(1 - (1 - ô)')

A summary of the relationship between ô, the height of the stenosis, and the

percentage of area occluded for an axisymmetric model is given in the Table 4.1.
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Table 4.1: Relationship between 6 and areal occlusion

d Areal Occlusion (%)
0 0

0.1 19

0.2 36

0.3 51

0.4 64

0.5 75

0.6 84

0.7 91

0.8 96

0.9 99

Equations of the Boundary

The model under consideration is shown in Figure 4.3. The figure shows only

one "half" of the tube since the tube is assumed to be symmetrical about its axis or

centreline. The origin of the cylindrical coordinates, r and a, is placed at the entry

point on the centreline of the tube. The three stenoses are placed in series with,S1,

52 and r93 repres€nting the positions along the z-axis of the proximal, central and

distal stenoses respectively.

Z Z Z

õr ô2

1

32<+

ô3
r R

I'
v_

S S S 3 centreline2

Figure 4.3: Geometry of axi-symmetric triple stenoses model

In the figure, .Rs is the radius of the unobstructed tube and the heights of the
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stenoses are denoted by ó1, ô2 and ô3 respectively. Hence, (n0 - ôt), (Ro - ô2) and

(Âo - ô3) are the radii of the tube at the narrowest part of the respective blockages.

ÃIso,2Z1,2Z2 and 223 denole the stenotic lengths of the respective stenoses.

Using the variables described above and a cosine curve shape for the stenoses,

the equations representing the boundary may be written as

R(z):

no - *(r+.o.(4fl)), st- zt< z < $i zt

no- TG+"ot1ff\, sz- zz < z < sz-t zz

no - ?(r +.or(4f )), Ss - zs < z < Ss * ze,

(4.1)

Ro otherwise

These equations may be written in a more compact form

ao - *G+ cos(4f¡;, S¿-Z¿<z<S¿-lZ¿
i:7,2,3R(z): (4.2)

R4 otherwise

We note that Equation (4.2) is a general form for the mathematical description

for the boundary of an axisymmetric model of an artery with three stenoses whose

shapes follow a cosine curve. The equation can be further generalised to represent

any number of stenoses if we let i range from 1 to n, where n is the number of

stenoses in the tube.

By changing the values ofô¿, Irye can vary the severity ofeach ofthe three stenoses.

Also, since the ,9¿'s denote the positions of the stenoses along the z-axis, we can also

vary the inter-stenotic distances (i.e. E;+r - Sr) bV varying the values of ,S¿'s.



4.3 Governing Equations

Equations of Motion

In this study, blood has been assumed to be a Newtonian fluid. Although we

know that blood, being a suspension of blood cells in plasma, is non-Newtonian in

nature, our study models blood flow in arteries whose internal diameter is greater

than 500 ¡.lm and in such cases, it is reasonable to assume blood to be Newtonian

(McDonald 1960). We will also assume the flow to be laminar and steady.

The governing equations for the steady flow of a Newtonian fluid are the con-

tinuity equation and the usual Navier-Stokes equations. In cylindrical coordinates,

these may be written as (see Mazumdar, Biofl,uid Mechanics, p.I2) :
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(4.3)

(4.4)

ôu, 'ur ôu"'r J- - 
-n0rrôz

,,* *,"* : -)T .,1# .i* - 4 + #]

0u, 0u, t AP I A2u" L ôu" ô2u"1o'ã¡o"É:- pa"*'lñ*; a, *#) (4'5)

where r and z ate the physical coordinates with the z-a><is located along the cen-

treline of the artery. o" and 'uz aÍe respectively the radial and axial components of

velocity. P is the pressure and p and u are the density and kinematic viscosity of

blood respectively.

Boundary Conditions

The usual no slip condition is applied on the arterial walls. Also, we shall assume

that the blood does not penetrate through the walls as it flows along the artery.
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(4.6)

(4.8)

(4.e)

Along the line of symmetry, the centreline, the radial component of the velocity

and the shear stress vanish since we are assuming an axisymmetric flow. Therefore,

0u"o,:ã:0 at r:0 (4.7)

Ur:'Uz-0 at r:R(z)

u0-
0

Upstream, the flow is assumed to have a parabolic velocity profile corresponding

to a fully developed Poiseuille flow for an incompressible fluid through a circular

tube of uniform cross section, i.e.

az

where U is the characteristic maximum velocity of the parabolic profile. Down-

stream, we apply the conditions of zero normal and tangential stress and leave the

velocity free.

4.4 Formulation of the problem in FIDAP

To study the effects of relative severity of the stenoses in a triplet on blood flow, we

set up models with different combinations of relative severity. Using the usual way

of defining the severity of a stenosis by percentage of areal occlusion, we define a

96Yo areal occlusion to be a seaere case of stenosis and a 84% areal occlusion to be

a mild case. The various combinations set up are shown in Table 4.2

12

4 )

ar
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Table 4.2: Various combinations of relative severity

Stenosis 1 is the proximal narrowing (at 
^S1 

in Figure 4.3)
Stenosis 2 is the central narrowing (at ,52 in Figure 4.3 )
Stenosis 3 is the distal narrowing(at ,53 in Figure 4.3)

The main aim of this model is to study the effects of relative severity of three

stenoses in a series on the characteristics of blood flow. Therefore, since the case

for three mild stenoses (M-M-M) is essentially similar to case 7 (S-S-S), it has not

been included in the present study.

The governing equations (4.3), (a.a) and (4.5) may be solved by using the CFD

code, FIDAP. In order to apply FIDAP to our problem, we first need to discretise

the solution domain. In our model, the solution domain is discretised into 13 quadri-

Iateral regions, labelled a to m, as shown in Figure 4.4. The points, labelled 1 to

28, form the corner-points or "key points" of these quadrilateral regions.

Each of these regions is further discretised into quadrilateral elements. The grids

in the vicinity of the stenoses contain more elements than those further away as the

values of the variables at these points are expected to change more abruptly and

rapidly. In our model, the solution domain of 13 regions has been discretised into a

non-uniform grid containing 3132 quadrilateral elements. Figure 4.5 below shows a

typical distribution of the elements in regions a, b and c.

CASE Stenosis 1

Proximal
Stenosis 2

Central
Stenosis 3

Distal
1 (S-S-M severe severe mild
2 S-M-S severe mild severe

3 s-M-M) severe mild mild

4 M-S-S mild severe severe

5 (M-S-M) mild severe mild

6 M-M-S mild mild severe

7 S-S-S severe severe severe
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Figure 4.4: Solution domain is discretised into 13 non-uniform regions

Figure 4.5: Non-uniform grid cells in regions a, b and c
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m
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Table 4.3 below gives a summary of the number of cells in each of the 13 regions

and the physical and the logical coordinates of the points used in constructing the

model.

Table 4.3: Data used in the Triple Stenoses Model

Region
Number of Cells

e

L2

c

L4

ab
88

d

I
fg
74 16

h

L4

ij
16 16

klm
18 16 t4

Points in the logical (I,J,K) and physical (r,2,9) domains

Point Number
Logical Coordinates Physical Coordinates
IJK t T 0

1

2

3

4

5

6

7

I
9

10

11

L2

13

74

15

16

L7

18

19

20
2t
22

23
24

25

26
27

28

1

3

5

7

I

1

1

1

1

1

1

1

1

1

L

L

1

1

1

3

3

3

3

3

3

3

3

3

3

3

3

3

3

1

1

1

1

1

L

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

11

13

15

L7

19

2L

23

25

27

27
25

23

2L

19

t7
15

13

11

9

7

5

3

1

0.00
1.50
2.25

3.75
4.25
4.75

5.25

6.75
7.25

7.75
8.25

9.75
10.25
20.00
20.00
10.00

9.s0
8.50

8.00
7.00

6.s0
5.50
5.00
4.00

3.50
2.50

2.00
0.00

0.00

0.00

0.00
0.00

0.00
0.00

0.00
0.00
0.00

0.00
0.00
0.00

0.00
0.00
1.00
1.00

0.434
0.434
1.00
1.00

0.434
0.434
1.00

1.00
0.929
0.929
1.00
1.00

0.00

0.00
0.00

0.00

0.00
0.00

0.00

0.00
0.00

0.00
0.00
0.00

0.00
0.00

0.00
0.00
0.00

0.00
0.00

0.00
0.00
0.00

0.00

0.00
0.00

0.00
0.00
0.00
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In the present model, there are three curved portions which simulate the prox-

imal, central and distal stenoses along the artery. Using Equation (4.2), \'ye can

generate the coordinates of the curves and a typical set is shown in Table 4.4.

Table 4.4: A sample of Coordinates for Curves defined in Triple Stenoses Model

Coordinates of curves defined in model for Case 4 (M-S-S)

Curve 1 (Proximal)
Point 27 to Point 24

Curve 2 (Central)
Point 23 to Point 20

Curve 3 (Distal)
Point 19 to Point 16

7 T þ r a T

2.7 0.906

0.815
0.728
0.647
0.576
0.515
0.465

0.429
0.407
0.400
0.407
0.429
0.465

0.515
0.576
0.647
0.728
0.815

0.906

2.2

2.3

2.4
2.5

2.6
2.7

2.8
2.9

3.0

3.1
3.2

3.3
3.4
3.5
3.6

3.7
3.8

3.9

5.1
5.2

5.3

5.4
5.5

5.6
5.7
5.8
5.9
6.0
6.1
6.2

6.3
6.4
6.5
6.6
6.7
6.8
6.9

0.875
0.7s3
0.637

0.s30
0.434

0.353
0.287
0.239
0.210
0.200

0.210

0.239
0.287

0.353
0.434
0.530
0.637
0.753

0.875

8.1
8.2
8.3

8.4
8.5
8.6
8.7

8.8

8.9
9.0

9.1

9.2
9.3

9.4
9.5
9.6

9.7
9.8

9.9

0.875
0.753
0.637
0.s30
0.434
0.353
0.287
0.239
0.210
0.200
0.210
0.239
0.287
0.353
0.434
0.530
0.637
0.753
0.875
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The governing equations were solved numerically using FIDAP (Version 6.01).

We set & - Zt (i.e. location of the beginning of the first stenosis) to be equal to

2-Rs. Also, the downstream boundary conditions were applied at a distance of 10,R0

from the end of the last stenosis to ensure stability in the numerical process.

In order to compare our results with those obtained by Johnston and Kilpatrick in

their paired stenoses model, we have set up our model to be of the same dimension

as their model. For all the combinations shown in Table 4.2, we have set 21 -
22 - Zs :.R¡. Also, the Reynolds numbe, (^": t') 

was fixed at 100, which
\ u)

is reasonable for an artery of diametet, D, of I mm, with blood flowing at an

average velocity, U of 36 cmf s. The kinematic viscosity of blood, z, was fixed at

3.6 x 10-6m2ls.

The model was also solved for various inter-stenotic distances to study the effects

of varying inter-stenotic lengths on the flow characteristics. A sample input file for

the model in FIDAP is given in Appendix C.

4.6 Results and Discussion

In this section, we present and discuss the results of the solution of the model.

Pressure drop profiles and streamline plots for all the seven cases considered will be

discussed and compared with published work.

Pressure Drop

Figures 4.6 through 4.t2 show the pressure profile along the axis of the artery for

cases 1 to 7 respectively. In case 1 (Figure 4.6), the proximal and central stenoses

are more severe than the distal. We observe from the graph that the pressure drops

across the more severe stenoses are larger.

In case 3 (Figure 4.8), a relatively large drop in pressure is observed across the
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more severe proximal stenosis. Similar patterns are observed from the other graphs

shown. These results seem to imply that in a triplet, the effects of the more severe

stenosis are the more dominant ones.

Examining the graph in Figure 4.6 again, we observe that there is a distinct

recovery of pressure across the distal stenosis, which in this case is the milder one.

In Figures 4.7, 4.8 and 4.10, a similar pressure recovery is present when a mild

stenosis follows a more severe one. Such a recovery of pressure is not detected in

cases 4, 6 and 7 as can be observed in Figures 4.9, 4.11 and 4.12 because in these

cases, there is no mild stenosis following a more severe stenosis.

In fact, by examining the graphs of pressure drops against axial distance for all

the seven câ,ses, it would be fair to conclude that whenever there is a milder stenosis

following a more severe one, recovery of pressure is observed.



Figure 4.6: Pressure vs Axial Distance
for Case 1 (S-S-M)

Figure 4.8: Pressure vs Axial Distance
for Case 3 (S-M-M)
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Figure 4.7: Pressure vs Axial Distance
for Case 2 (S-M-S)

Figure 4.9: Pressure vs Axial Distance
for Case 4 (M-S-S)
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Figure 4.10: Pressure vs Axial Distance
for Case 5 (M-S-M)
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Figure 4.11: Pressure vs Axial Distance
for Case 6 (M-M-S)

Figure 4.12: Pressure vs Axial Distance for Case 7 (S-S-S)
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Streamline Plots

Typical streamline plots showing the recirculating zones are presented in Figures

4.13 through 4.19 for all the seven cases considered. We observe that recirculation is

more intense between two severe stenoses than between two mild stenoses. This can

be seen by examining the streamlines for cases 1 and 4 (Figures 4.13 and 4.16) and

cases 3 and 6 (Figures 4.15 and 4.18). Cases l and 4 have two consecutive severe

stenoses while cases 3 and 6 have 2 consecutive mild ones.

Recirculation between a mild and a severe stenosis with the milder one upstream

is relatively less intense. This can be observed in the streamline plots of cases 4, 5

and 6. However, if a mild stenosis follows a more severe one (as in cases 1, 3 and

5) then there is more intense recirculation between a severe and a mild stenosis.

This observation is consistent with the earlier observation made - that a pressure

recovery is observed whenever a mild stenosis follows a more severe one.

The presence of more intense recirculation would imply more rapid changes in

the flow velocities. This in turn means that higher shearing stresses are exerted

on the arterial walls. Hence, the streamline plots show qualitatively that as the

severity of a series of stenoses increases, the shearing stresses between the lesions

also increases. In addition, the location of the milder stenoses will also have an

effect on the shearing stresses. Since it is believed that shearing stresses on the

arterial walls may play an important role in the proliferation of arterial diseases

as previously discussed, the implication here is that factors such as differences in

the severity of the stenoses should be taken into consideration when examining and

interpreting angiograms of arteries with multiple stenoses.
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Slreamline Plot Caæ 2
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Figure 4.13: Streamline plot for Case 1 Figure 4.14: Streamline plot for Case 2

Süeamline Plot Case 4

t^tÆ

L,

Figure 4.15: Streamline plot for Case 3 Figure 4.16: Streamline plot for Case 4

Slreamline Plol Caæ 3

s M M

\



65

Streamline Plol Caæ 5
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Figure 4.17: Streamline plot for Case 5 Figure 4.18: Streamline plot for Case 6

Figure 4.19: Streamline plot for Case 7
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The effect of varying the inter-stenotic distance on the pressure drop in the case

of triple stenoses was studied by solving the model with various values of ,92 while

keeping ,S1 and ,Ss fixed.

Figure 4.20 shows the variation of the pressure drops across each stenosis and

the total pressure drop across the axis with the distance between the central and

proximal stenoses (i.e. Sz - St) for case 7. It is clear from the figure that in this

case, the pressure drops across the proximal, central and distal stenoses as well as

that across the entire triplet do not vary appreciably with the position of the central

stenosis. In general, it is observed that in a triplet of stenoses, if the distance

between the proximal and distal stenoses (i.e. 
^93 - Sr) is kept constant then varying

the position of the central stenosis has no significant effect on the pressure drop.

2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 3.8
Distance of central stenosis from proximal stenos¡s

Figure 4.20: Graph showing the variation of pressure drops with the relative position
of central stenosis for Case 7
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4.6 Conclusion

The results obtained in this study are consistent with those obtained by Johnston

and Kilpatrick (1991a) in their study of paired arterial stenoses. In the model

considered in this chapter, however, we have looked into the case ofvarying degrees of

stenosis in triplets and have demonstrated its effects on certain flow characteristics.

In particular, the following conclusions may be drawn :

1. In a triplet of stenoses, the effects of a milder stenosis are diminished in the

presence of a more severe stenosis.

2. Whenever there is a mild stenosis following a more severe one, pressure recov-

ery is observed.

3. Recirculation between stenoses is more intense with a milder stenosis following

a more severe one.

4. With two stenoses at a fixed length apart, the presence of a third stenosis in

between has no significant effect on the total pressure loss.

It is not uncommon to find multiple stenoses occurring in a single artery. How-

ever, despite its common occurrence, studies on multiply stenosed arteries have so

far been fairly limited. Most experimental models have been on single stenosis.

Chakravarty and Datta (1990) had used the finite difference formulation to study

the dynamic response of blood flow in multiply stenosed arteries. In the study de-

scribed in this chapter, we have demonstrated with a simple model that the geomet-

rical differences in the narrowings in a triplet have a significant effect on blood flow.

In particular, we have shown that the effects of a milder stenosis are considerably

diminished in the presence of a more severe stenosis.
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However it is important to note that the "mild" stenosis in this model is only mild

when compared to the "severe" stenosis. While its effects may have been diminished

in the presence of a more severe stenosis, the presence of the milder stenosis should

not be overlooked or disregarded.

Also, a pressure recovery is observed whenever a mild stenosis follows a more

severe one. This means that the presence of a mild stenosis could in fact help

increase or maintain the pressure head needed for flow. The implication here is that

in multiple stenoses, the total pressure drop across the stenotic region may not be

a good indication of the severity of the blockages.

It is also important to point out that we have assumed a rigid tube in this model.

Atherosclerosis usually occurs in older people, and our discussion in Chapter 2 (see

page 20) has mentioned that arteries lose their elastance with age. Hence it would

not be unreasonable to assume a rigid tube for a model of a stenosed artery.

Although the model discussed here is fairly idealised, it can be easily modified

to suit the needs of further investigations. Nevertheless, despite its simplicity, the

model has helped us understand and even made it possible to predict various hemo-

dynamic features associated with blood flow in multiply stenosed arteries.

The results from the study presented in this chapter have been published (see

Appendix E).



CHAPTER 5

MODEL II : SINGTE STENOSIS IN THREE
DIMENSIONS

5.1 Introduction

The model that we have discussed in the previous chapter is an axisymmetric model

solved in two dimensions. In reality, blood vessels are seldom symmetrical about

their axes and stenoses in them are generally irregular and not symmetrical.

In this chapter, we shall develop a model of blood flow through an artery with a

protrusion from one "side" of the arterial wall; that is, the artery has an asymmetri-

cal stenosis. The model is formulated and solved using the CFD code, PHOENICS.

Although Dvinsky and Ojha (1994) recently attempted to develop such a model and

obtained solutions using the computational code, HEMO, they have not discussed

the effects of wall shearing stresses in their study. This is an important aspect be-

cause the distribution of shear stress on the arterial walls can have a major influence

on the progression of arterial diseases, as pointed out by various researchers such as

Young (1963), Nerem (1992) and Fry (1963).

Hence, it is in our interest to understand the effects of stenoses on the shear-

ing stresses on the arterial walls. The model discussed in this chapter attempts to

provide a quantitative insight into the effects on various flow characteristics, includ-

ing the distribution of wall shearing stresses, due to the presence of an asymmetric

69
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stenosis. A geometrical description of the model is first presented. This is followed

by a discussion on the formulation of the problem in PHOENICS. Results in terms

of pressure drops and velocity fields will be presented together with a discussion on

the method used to estimate the shearing stresses on the arterial walls. Important

conclusions on the peak wall shear stresses will be made.

6.2 Geometrical Description of Model

Shape of Stenosis

Although stenotic constrictions can take different geometrical forms, Young and

Tsai (1973) suggested that they can be grouped into two basic categories : (a)

approximately axisymmetric stenosis, and (b) stenosis formed by an isolated surface

protuberance from one wall. The model to be discussed here is of the second type of

constriction and is geometrically similar to the experimental models used by Young

and Tsai. The main difference lies in the shape of the stenosis. In longitudinal

section, the stenosis shape in their model follows an arc whereas the stenosis in the

model here follows a more conventional and realistic cosine curve shape.

A representation of the model in longitudinal and cross sections is given in Fig-

ure 5.1. The model basically consists of a straight rigid tube having a circular cross

section with a protuberance from one wall. The side of the wall with the protuber-

ance is labelled Side A and the other unstenosed side is labelled Side B, as shown

in Figure 5.1a. The height of this protrusion is h and the physical radius of the

unobstructed part of the artery is Ro. The stenosis has a length of 2Zs. The cross

section at the throat ofthe stenosis, that is, the narrowest part ofthe vessel, is shown

in Figure 5.1b and Figure 5.1c shows a typical cross section through the stenotic

region.
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(a) Longitudinal section through axis
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Side A

(b) cross section through
origin

Side B
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BSider

D

(c) Typical cross section through stenotic region

Figure 5.1: Geometry of the asymmetric stenosis model
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Equation of the Boundary

The equation for the wall boundary is best described using cylindrical polar

coordinates (R,0,2) wifh its origin situated at O as shown in Figure 5.7a. R is the

radial distance from the axis of the tube, Z is the axial distance from the origin and

d is the angle from the "horizontal" plane as shown in Figure 5.1c.

Introducing the following dimensionless variables,

R,DZZg
': R, ' a: Ro ' z: Ro ' zo: 

Ro

the bounda,ry may be described by the following equation,

lrl 2 ,o

where / and d are given by,

lrl<ro andd <-ô,0>r*þ (5.1)

lrl < ,o

arcsin(1 - d)

R(r,,0, z) :

1

7-d
-sind

for

for

for1

ó

d

(5.2)

(5.3)ô cos
7fz

Percent Stenosis

For this asymmetric model, the percent stenosis defined in the previous chapter

needs to be modified. As usual, we define the percent stenosis (or degree of stenosis)

as the percentage of cross sectional area occluded at the throat of the stenosis.

Using dimensionless variables, this corresponds to the cross section of the artery at

z:0. It can be easily shown that the percentage areal occlusion for a stenosis with

dimensionless height, ô, is given by :

2zo

arccos 1-
1t

| - õ)\/ñ -T, x 100% (5.4)
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Equations of Motion

The equations governing the motion of fluid in the model are the continuity

equation and the steady Navier-Stokes equations. In cylindrical polar coordinates,

these may be written as (see Dinnar, Cardiouascular Fluid Dynamics, p. 87) :

*.ifrøa*I#:o

. 0u, , us 0u, 0u, ul
ur 6, *; æ ¡u" ôz - 

--L:

l7p . (0'u, . lõu, ur I 02u, 2 }ue . ô'r,\- par*'\O*;u- "-rrrar,r-rrao* *)

}ue u6 0u6 ?ue 'uon,o'ar*;æ¡u"ozn ,
L 0p . (}'ue . l0u6 u6 L 02us 2 0u, ð2ua

!"r_!____I I____!__

pr00 \â"' r0r 12'r2ô02 '1200' ôzz

(5.5)

(5.6)

(5.7)

ur
0u,
a,

u6 0u" *u, ôu, 
-rô0 0z

+

(5.8)

where ur, u" and u6 are the radial, axial and circumferential components of the fluid

velocity respectively, pis the density of the fluid andp is the dimensionless pressure

across the region of flow. It should be noted that for an axisymmetric case, as

discussed in the previous chapter, the circumferential component and the derivative

in that direction vanish. That is, ae : 0 ^td #: 0 and the above equations

would reduce to Equations (4.3), (a.a) and (4.5). The present model, however, is a

I}p. (0'o,.I7u, 102u"- pa"*'\o*; u + " ao2 
+

o2u"

ar,
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three dimensional model. Thus, no assumption about the circumferential velocities

is made and all the terms in the equations are retained.

Boundary Conditions

The following boundary conditions are applied :

1. No slip condition is applied at the arterial walls, that is,

'U, -- Az:'U0 :0 (5.e)

2. Af the inlet, a "paraboloid" velocity profile representing Poiseuille flow is

applied, that is,

lJr:U0-0

'l)r: W¿ 1- 12 )(

(5.10)

(5.11)

where W¿ is the maximum axial velocity at the inlet

3. At the outlet, 'we prescribe zero pressure and leave the velocity components

free.

The physical dimensions of the model have been chosen to coincide with those

commonly used by other researchers in their modelling studies of coronary arteries.

In particular, .Rs, the unobstructed radius, is fixed at 1.54 n'ùn't,, ãs used by Johnston

and Kilpatrick (1991) and Back eú øl (198a). ÃIso, Zs is fixed at 2.31 mm, or |Rs.
This corresponds to setting the stenotic length to three times the radius, which

is a reasonable and realistic assumption. The physical dimensions and boundary

conditions for the model are summarised in Figure 5.2 below.



no slip
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h
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Figure 5.2: Physical dimensions and boundary conditions of the model
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5.3 Formulation of the problem in PHOENICS

The equations governing the flow of fluid in the model described here are non-linear

and coupled. As stated before, no analytical solution to the equations has yet been

found. In the previous chapter, we have employed the CFD code, FIDAP to solve

the equations for an axisymmetric model. For the model described in this chapter,

we shall use PHOENICS (Version 2.0) to solve the governing equations.

A computational mesh must first be constructed. This can be done with the aid

of grid generation programs and one such program (called SATELLITE) is provided

in PHOENICS. For the purpose of grid generation and describing the grid, we shall

define two new space coordinates, ø and g, which are perpendicular to the z direction

as shown in Figure 5.3a.

In the present study, the solution domain was discretised into 10 x 10 x 110 cells

in the r, y and z directions respectively, making a total of 11,000 non-uniform cells.

More cells were placed in the vicinity of the stenosis as \rye expect a higher rate

of change in the variables in that region. Thus, we have a finer grid in the region

z : t1.5. The grid density in the stenotic section is twice that on the upstream

section and four times that on the downstream section. A section of the final grid

system is shown in Figure 5.3. Figure 5.3a shows the inside view of the stenosis

shape and Figure 5.3b shows the longitudinal section of the grid on the plane at

which 0 : i.

After some preliminary studies, it was decided that the inlet could be placed

about ten radii distance upstream from the start of the stenosis and the outlet

could be placed about forty radii distance downstream from the stenosis. These

dimensions ensured that fully developed Poiseuille flow was re-established at the

outlet.
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(a) Inside View
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Models with three different degrees of stenosis, namely, 53.18%, 65.75% and

77.65% areal occlusion, were set up. These correspond to ð'values of 1.05, 1.25 and

1.45 respectively. The inlet was placed at z : -12.0 and the outlet at z : 40.0.

The kinematic viscosity of blood, L/,was taken to be 3.6 x 10-6m2/t.

The Reynolds number, Re, in this model is defined as

2RoWo
_tle:

u
(5.12)

where IrTo is the mean axial velocity and the tube diameter is given by 2.Rs, i.e.

3.08 cm. Using this definition, Ws was varied to give a range of values of ,Re. Each

of the models was solved for Re ranging from about 100 to 700, corresponding to

mean axial velocities of between 11.69 cmf s and 81.82 cmf s.

In addition, in order to compare our results with available data, we have con-

structed a model with an 89% stenosis. This model has a stenosis whose shape

follows an arc, as in model M5 of Young and Tsai's (1973) study.

An example of an input data file in PHOENICS for the model described is given

in Appendix D. A typical run took about 55 to 65 minutes to converge. Convergence

is considered reached when the relative errors for all the variables are within 1 per-

cent. This is usually aided by the use of successive over-relaxation. In PHOENICS,

the relaxation factor may be altered at any time during the numerical computation

process and typical relaxation factors used in our simulations range between 0.5 to

0.75. Generally, about 200 to 250 srveeps are required to achieve convergence in all

cases in this study.
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5.4 Results and Discussion

After each successful PHOENICS run, values of the velocity components and pres-

sure at each cell in the entire solution domain are found and stored. Converged

solutions for steady laminar blood flow through a straight artery with a stenosis

were obtained for Re:105.33, 173.33, 270.67,316.00, 438.60, 526.32,614.04 and

70L.75 (corresponding to steady flow rates of 0.0550, 0.0906, 0.1101, 0.1651, 0.2292,

0.2750, 0.3208 and 0.3667 ltlmin respectively). Several important aspects of the

results for models with 53.18%, 65.75% and 77.65% stenosis are summarised in

Table 5.1.

In addition, from the results, we are able to obtain information on pressure drops

across a length of the artery as well as plot the velocity profiles for the stenosis

models. Also, shearing stresses on the arterial walls can be approximated from the

numerical solutions. This provides useful and important information as shearing

stresses are difficult to measure in an experimental set-up. In this section, we shall

discuss the results of this modelling study in terms of pressure drop, velocity field

and the wall shearing stresses.



Table 5.1: Summary of Model ll solutions

Reynolds number
lnflow Velocity, Wo (cm/s)
Steady flow rate (cc/s)
Steady flow rate (lt/min)

MAXTMUM AX|AL VELOCTTY (#)
53.18% stenosis
65.75% stenosis
77.65% stenosis

MAXIMUM WALL SHEAR STRESS
53.L8% stenosis

Side A
Side B

65.75% stenosis
Side A
Side B

77.65% stenosis
Side A
Side B

105.33
12.31

0.9173
0.0550

2.0345
2.6s35
3.8766

6.5115
3.1566

10.6510
5.6564

20.7607
Il.7714

173.33
20.26

1.5094
0.0906

1.8597
2.5L52
3.680s

7.2073
3.3131

11.9683

6.4923

23.L777
13.8589

2L0.67
24.62

1.8346
0.1101

L.8922
2.4535
3.6320

8.0058
3.6490

12.5908

6.7985

24.5984
14.6105

316.00
36.94

2.75L9
0.1651

1.8878
2.464L
3.6402

9.779t
4.0931

15.6298
7.7347

30.2151
L7.2245

438.60
5t.26

3.8196
0.2292

1.8566
2.4t34
3.s408

11.0263
4.4496

17.8385
8.5459

34.3056
20.2524

s26.32
61.52

4.5835
0.2750

1.8325
2.3847
3.4972

Lt.5423
4.6997

18.6897
9.0780

35.4957
27.9t43

6L4.04
7L.77

5.3474
0.3208

1.8173
2.3677
3.4673

11.8580
4.8918

19.2693
9.6437

36.2499
23.20Ls

70t.75
82.02

6.1112
0.3667

1.8055
2.3533
3.4428

12.1010
s.0870

79.6446
10.1171

36.1t70
24.1727

æ
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6.4.L Pressure Drop

Pressure drops are calculated by differencing the axial pressures at z : -12.0 and

z : 20.0 at 0 : i. The full influence of the constriction would have thus been

included. The graph of pressure drop against Reynolds number for the 89% stenosis

model is shown in Figure 5.4 together with the experimental data from Young and

Tsai (1973).

It can be seen from the graph that the pressure drop generally decreases with

increasing Reynolds number. In the 89% model, because of the severe constriction,

the numerical computation became unstable at Reynolds numbers higher than 700.

Therefore, it was only possible to obtain results for Reynolds numbers below 700 for

this percent stenosis. Nevertheless, a comparison between the results obtained and

those from Young and Tsai's experiment can still be made. From the graph, it can

be seen that generally there is a good agreement between the reported experimental

data and the computed results of the present model.
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Graph of Pressure Drop against Reynolds Number
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Figure 5.4: Graph showing pressure drop against Re for 89% stenosis in present

study and Model M5 in Young and Tsai's study
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The dimensionless pressure drop for flow across a stenosis may also be approxi-

mated by the equation proposed by Young and Tsai (1973) :

L^p Ko . KtlAo -\2
ffi: Re+;lE -') (5'13)

where Ao is the area of the stenosed vessel at the throat of the stenosis and A1 is the

area of the unobstructed vessel. K, and K¿ a,re constants related to the geometry

of the model. In this study, K, and K¿ ãre chosen so as to give the best fit of data

from our numerical simulation.

It would also be interesting to compare the pressure drops calculated from the

simulations with that for a Poiseuille flow across an unobstructed tube. To do this,

we first need to obtain a relationship between the dimensionless pressure drop and

the Reynolds number for a Poiseuille flow in a straight tube. Using Equations (3.2)

and (3.4), for Poiseuille flow in a straight tube, the relationship between the mean

axial velocity, Ws, and the pressure drop, AP, across the length, L, of. the tube may

be written as

ws:^Æ (b.14)
SvpL

where ,Rs is the radius of the tube, p and z are the density and kinematic viscosity

of the fluid.

From Equations (5.12) and (5.14), we obtain

1AP
M Re

(5.15)

Hence, the following Poiseuille relationship between dimensionless pressure drop
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grven

(#r) and Reynolds numbe r, Re, across a dimensionless lengtn (o, : å) t,

by

LP 16A¿

PWo' Re
(5.16)

Pressure drops for all three cases of stenosis severity considered here are shown

in Figure 5.5. The line marked "Poiseuille flow" in the figure refers to the variation

of pressure drop with Reynolds number for flow in the unobstructed tube and is

presented in the graph as a reference. This is given by Equation (5.16) with Az : 32.

The graph shows an increase in the pressure drops with increase in percent stenosis.

In each case, the data points deviate from a straight line at higher Reynolds numbers.

As mentioned in Chapter 3, the resistance to flow, K, is related to the pressure

drop, AP, and the volume flow rate, Q, by Equation (3.5), which is

K:4!.a'
This implies that given a constant flow rate, increase in pressure drop represents an

increase in flow resistance across the length.

As we can see from Figure 5.5, at a fixed Reynolds number, the presence of a

stenosis increases the pressure drop, and hence flow resistance, across it. Although

compensatory mechanisms such as vasodilatation and secondary circulation may be

present in the vascular system, it would not be unreasonable to conclude that there

is a tendency for severe stenoses to impede the flow of blood and hence reduce blood

supply to the regions.
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Graph of Pressure Drop against Reynolds number
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Figure 5.5: Graph showing pressure drop against.Re. Dotted lines are curves plotted
using Equation (5.13) for pressure drop.
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5.4.2 Velocity Field

In general, in a three dimensional model, it is no longer suitable to examine the flow

patterns using streamline plots. This is because the fluid particles are not restricted

to a single plane in a three dimensional model. In the present study, we overcome

this difficulty by examining the velocity profiles for the flow instead of studying the

streamlines, in a selected section on a chosen plane. Although any plane may be

chosen in principle, in this section, we have restricted the discussion to the velocity

profiles on the plane 0: i for asection of the artery between z:-3.5and z:
10.0.

Figures 5.6,5.7 and 5.8 show these profiles at selected locations along the axial

distance for models with 53.18T0, 67.757o and 77.76% stenosis respectively.

In the figures, the velocities have been scaled upstream at z : -3.5 in order

that comparison between the cases can be made. The profiles show fully developed

Poiseuille flow prior to the stenosis. At the throat of the stenosis, the axial velocity

increases rapidly and backflow is detected immediately after the stenosis.

In each case, the velocity profile is not symmetrical at the stenosis and in the

downstream vicinity of the stenosis. However, they return to the initial parabolic

shape, representing Poiseuille flow again, a certain distance downstream from the

stenosis. This distance for recovery is longer for higher Reynolds numbers, which

is what we would expect. It is also clear from the figures that the magnitude of

backflow increases with increase in percent stenosis.

While velocity profiles may provide graphic qualitative descriptions of the flow

patterns, it is equally useful to obtain quantitative information on the forces acting

on the arterial walls. This is discussed in the next subsection.
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6.4.3 Wall Shear Stress

For incompressible fluids with no slip condition at the rigid wall, the dimensional

wall shear stress, T., is given by :

,,: ,*1.*, (b.17)

where # it the partial derivative of the tangential velocity with respect to the unit

normal vector, n, at the wall in physical units and p is the viscosity of the fluid.

The value of H may be approximated by finding an estimate for the first deriva-

tive of the velocity profile at the wall with respect to a unit vector perpendicular to

the wall as shown in Figure 5.9. The two values of axial velocity components closest

to the wall (u.'1 and w2) and the no slip condition at the wall (tr.r¡ : 0) constitute

the values needed to fit a quadratic curve. The first derivative at the wall of the

resulting quadratic function then gives an approximate value for ff which is then

non-dimensionalised by scaling it with respect to the wall shear stress for Poiseuille

flow at the unobstructed section of the artery.

As the model studied here is not symmetrical about the axis of the artery, it
would be interesting to compare the shearing stresses on "opposite sides" of the

artery. Labelling "Side A" as the side with the stenosis and "Side B" as the side

with no protuberance (see Figure 5.1), graphs of shearing stresses along the walls

at 0 : I are obtained. Figures 5.10, 5.11 and 5.12 show the variation of wall shear

stress along the axial distance for models with 53.18%,65.75% and77.65To stenoses

respectively for a range of Reynolds numbers.
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Figure 5.9: Diagram showing the tangential velocity at the wall. The term ff is
approximated by the first derivative of the fitted quadratic curve at the wall.
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As can be seen from the graphs, maximum shear stresses on both Side A and

Side B are reached just before the throat of the stenosis (at z :0) as is the case

in other published works (see, for example, Morgan and Young,7974). Distinct

differences are observed in the shear stress distribution on the opposite sides of the

walls. On Side B, there is generally no significant negative shear stress. This implies

that no flow separation and no backflow occur on this side of the wall. On Side A,

however, there is clearly a region of negative shear stress in all cases. It is thus quite

apparent that flow separation occurs chiefly on Side A, the stenosed side.

The peak shear stress on Side A (S¡) is higher than that on Side B (S") in all

cases. Hence, for the range of Reynolds numbers considered in our study, the shear

stress ratio ff is above 1 in all the models considered. Figure 5.13 below depicts

the variation of ff with Reynolds number for all three cases of percent stenosis

considered.

As can been seen from the graph in Figure 5.13, the ratio ff typically takes

values between 1.5 and 2.5 for percent stenosis ranging from abouf $% 6 78%.

AIso, this ratio generally decreases with increase in the severity of the stenosis. For

a mild stenosis (for example, 53.18%), the shear stress ratio may be as high as 2.5 at

Reynolds numbers around 400. It appears that when the stenosis is mild, the stenotic

side experiences a significantly higher shear stress than the other unprotruded side.

As the stenosis becomes more severe, however, this difference is gradually reduced,

indicating that the shear stress on the unprotruded side gradually becomes just as

significant.
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It is believed that high shear stress on the arterial walls can cause damage to the

endothelium (Fry 1968). Although this could not explain the genesis of atherosclero-

sis, the relatively higher shear stress on the stenotic side could be an important con-

tributing factor to the progressive growth of the stenotic plaque. Shearing stresses

on the vessel wall may cause morphological changes to the endothelium. Although

the specific role of wall shear stress in the atherosclerotic process has not been

clearly established, the present study indicates that there is a distinct and signifi-

cant difference in the elevated shear stresses on the opposite sides of the walls in an

asymmetric stenosis. The shear stress ratio, #, ^ut 
play an important role in the

hemodynamics of the atherosclerotic process.

5.5 Conclusion

In this chapter, we have constructed and obtained solutions for a mathematical

model in three dimensions for blood flow through an asymmetric stenosis using a

computational fluid dynamic code, PHOENICS. Models for three different degrees

of stenosis are studied for a range of moderate Reynolds numbers.

The results have been presented in the form of pressure drops, velocity profiles

and shearing stresses on the arterial wall. Comparisons of the pressure drop graphs

in this study with those obtained by Young and Tsai (1973) have shown good agree-

ment.

One of the main objectives of this modelling study is to examine the differences

in the wall shear stress on the opposite sides of the walls in an artery with asym-

metric stenoses. The results from this study confirm that the wall with the stenosis

experiences a higher wall shear stress than the other unprotruded side. The ratio

of the peak shearing stress on the stenotic side to that on the unprotruded side of

the arterial wall can be as high as 2.5 times depending on the percent stenosis as
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well as the Reynolds number. In general, a more severe stenosis has a lower ratio.

Also, it is found that the ratio generally remains unchanged or varies only slightly

with the Reynolds number for the range considered. Furthermore, the severity of

the asymmetric stenosis has a more significant effect on the peak shear stress ratio

than the Reynolds number.

The results from this chapter have provided quantitative information on the

effects of an asymmetric stenosis on the flow of blood, particularly with regards

to shearing stresses on the arterial walls. In general, we do not expect stenoses in

arteries to conform to any shape, much less to be perfectly symmetrical about the

axis as many previous models have assumed. By considering an asymmetric stenosis

in a model in three dimensions, we have made the model more realistic and shown

that the dynamics of blood flow are significantly altered by the geometry of the

narrowing.

The results from the study presented in this chapter have been accepted for

publication and will appear in the journal, Mathematical and Computer Modelling.



CHAPTER 6

MODET III : CURVED ARTERY MODET IN
THREE DIMENSIONS

6.1 Introduction

In the previous chapter, we have seen how computational fluid dynamic techniques

may be efficiently used to construct more realistic models in three dimensions to

study the flow of blood in arteries. The model described earlier has made it possible

to study of the effects of asymmetrical stenoses on blood flow characteristics.

However, blood vessels often bend and curve as they traverse around organs.

It has been shown that such bends and curvatures in arteries are one of the sites

of predilection and may be an important factor in the pathogenesis of arterial dis-

eases (Texon 1963; Nerem and Cornhill 1980). Therefore, it would be desirable to

construct a curved artery model and examine the effects of curvature on the flow

conditions.

In this chapter, we first present a geometrical description of a curved artery

model. Using PHOENICS, the model is solved for degrees of stenosis up to 70%

for Reynolds number ranging from 100 to 1200. Results in terms of pressure drops,

velocity fields and shearing stresses will be presented. In addition, secondary flow

phenomena will also be discussed in detail.
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6.2 Description of the Model

Development of the Model

Figure 6.1 shows angiograms of typical coronary arteries of a person suffering

from a coronary disease. As can be observed from the figure, coronary arteries

are generally not straight conduits. In fact, they usually curve and bend in some

tortuous manner. Also, it is not uncommon to find stenoses on the bends of such

arteries as can be observed from the angiograms in Figure 6.1

Sabbah et al (7984), Altobelli and Nerem (1985) and Back et al (1992) and are

among the earlier investigators to have studied flow in curved tubes simulating blood

flow in a curved artery. The experiments they performed have shown that the flow

conditions are significantly altered by the presence of curvature.

Perktold et al (7997) developed a model of flow in a slightly bent tube with

very gradual tapering and demonstrated the presence of secondary flow phenomena.

Padmanabhan and Jayaraman (1984) constructed a model of flow in a curved tube

with constriction and, using a perturbation method, produced an analytical solution

to their model. However, their method of solution can only handle flow with low

Reynolds numbers (Re : 20 - 100). Furthermore, their model has assumed an

axially symmetrical stenosis. Asakura and Karino, (1990) in their modelling study

using flow visualisation techniques, observed that the asymmetry in the stenoses at

bends and bifurcations has a significant effect on flow conditions.
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Figure 6.1: Typical angiograms showing the stenoses at bends of tortuous arteries.
The images shown here are digitally scanned from angiograms obtained from the
Wakefield Hospital, Adelaide.
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In recent years, many flow visualisation studies using artery casts have been

carried out to provide a realistic investigation of flow patterns in blood vessels.

In particular, Back et al (1992) had used a highly curved atherosclerotic coronary

artery cast with a significant "s" shaped reverse curvature in their experimental

study. They were able to measure wall pressure using pressure probes and had

demonstrated secondary flow phenomena in the vicinity of the bend.

The basic geometry of the model developed in the present study is similar to that

of the artery cast used by Back et al. This is so because some form of comparison

may be made between the results. Figure 6.2 shows the general geometrical form of

our model.

As we shall be using the computer code, PHOENICS, to generate the model, the

body fitted coordinate system (r, z,a) is used only for the purpose of describing the

model and presenting the results. In this system, r is the radial distance from the

centreline of the vessel, o is the angle subtended from the vertical, and z represents

the axial coordinate from the entry point following the shape of the centreline. r,
and r" are the radius of the tube and the radius of curvature respectively, and 0 is

the angle of curvature as shown in the figure. .L1 and .L3 are lengths of the tube

prior to and immediately after the bend. .L2 is the length of the curved portion.

We introduce a non-dimensional length, s, which is defined as

z

ru)
(6.1)

Thus, s represents the dimensionless distance from the entry point measured along

the centreline of the artery. In Figure 6.2, the values of s at certain points of interest

are shown.
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Figure 6.2: Geometrical representation of the Curved Artery Model with non-
symmetric stenoses. s is the dimensionless distance measured from the entrance,
along the centreline. The throat of the stenosis is located at s: 15.24.
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Percent Stenosis

The stenoses in our curved artery model are situated centrally on the bend. In

general, stenotic plaques can grow from either side of the wall even though it seems

more common to find atherosclerotic plaques on the inner side of the curved artery.

In the present model, ôr is the height of the protrusion from the inner wall (i.e.

inner side of the bend) and ô2 is that from the outer wall. This is designed so that

we have a more general case.

The degree of stenosis is determined by the percentage of cross sectional area

occluded at the throat (i.e. narrowest part) of the stenosis. Figure 6.3 below shows

the cross section of the model at s:75.24 for a general case. The shaded regions

represent the occluded or blocked area. It should be noted that the model here

suggests that the cross section of the lumen at the stenotic region is not circular. In

fact, it is not uncommon to find slit-like luminal cross sections at stenotic segments

of pathologic arteries (see Becker and Anderson 1983).

ôl

ô2

Figure 6.3: Cross section of model at the narrowest portion of the stenosis

It can be shown, as an extension to Equation (5.4), that for rr: l, the percent-

age of area occluded is given by

Î 2

D
i,=L

x 100%arccos(1-ô¿)-(1-ôn) 2õi - õ? (6.2)
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Governing Equations and Boundary Conditions

As can be seen from the description of the model above, there are a number of

geometrical parameters that can be varied. In this study, we wish to concentrate

on the effects of non-symmetric stenoses in curved arteries on blood flow and have

hence kept some of these parameters fixed.

The governing equations for the flow are the full Navier-Stokes equations for a

Newtonian fluid. This is justified as the non-Newtonian effects only become signif-

icant in vessels with a diameter of less than 500 ¡.lrn. In all our models, we have

set the radius of the unobstructed part of the artery, r*, to be 1.54 mm,, which

is a reasonable value for a typical right coronary artery of man and is the same

value used in Model II. We have also assumed the tube to be rigid as it has been

shown that for a stenosed artery, elasticity effects are negligible (Padmanabhan and

Devanathan 1931). At the vessel walls, no slip and no penetration conditions apply.

The angle of curvature, á, is fixed at 60o. This is a reasonable value for a typical

coronary artery. Also, À, defined as the ratio of r. to r., is fixed at approximately

10. Hence, the length of the curved segment, L2, is approximately 76.13 mm.

According to Chang and Tarbell (1988), the placement of the entry of the flow

prior to the curved segment may be decided using the following entry length corre-

lation,

"yo:4g4er/r^-r/2 (6.3)

where 7p is the entry length in degrees of axial curvature. In the present model, for

Re : 100 to Re :1200, '/¿ ranges from 71.92o to 154.95o, corresponding to about

7.2 to 2.6 times d. Hence, for this study, it is justiûed to place a fully developed

inflow at about 5 tube diameters from beginning of the curvature. Thus, .Lr is fixed

at 75.4 mm.

The length of tube downstream from the curvature is chosen to ensure that a
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fully developed flow is re-established. After some preliminary studies, it was decided

that ,L3 could be fixed at around 30.8 mm.

6.3 Formulation of the problem in PHOENICS

To study the effects of stenoses in curved arteries on blood flow, three groups of

models have been set up. Group A models a curved artery without any constric-

tion, Group B models a protrusion from the inner wall of the curvature and Group C

models protrusions from both the inner and the outer walls of the curvature. Vary-

ing degrees of stenosis have been modelled and Table 6.1 shows the set of models

presented in this study. Each of the models set up (4, 81 to 810, C1 to C6) was

solved for Reynolds numbers ranging from 100 to 1200. Models B5 to 810 have

been set up to have the same degree of stenosis as Models C1 to C6.

Table 6.1: Models of difFerent degrees of stenosis

Model õ,lr. õzlr- Percent Stenosis (%

A 0.0 0.0 0

B1 0.8s00 0.0 40.49
82 1.0500 0.0 53.18
B3 1.2500 0.0 65.75
B4 1.4500 0.0 77.65
B5 0.9039 0.0 43.89
B6 0.9639 0.0 47.70
87 1.0352 0.0 52.24
B8 1.1208 0.0 57.67
B9 1.2031 0.0 62.84
810 L.2978 0.0 68.67

C1 0.8500 0.15 43.89
c2 0.8s00 0.25 47.70
C3 0.8500 0.35 52.24
C4 0.8500 0.45 57.67
C5 0.8s00 0.55 62.84
C6 0.8500 0.65 68.67
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The governing equations of the flow may be solved using PHOENICS (Version

2.0). In order to apply PHOENICS to the model, the solution domains of each

set must first be discretised. For a preliminary run, the solution domain was first

discretised into 8,000 non-uniform cells. This was subsequently refined to give a

total of 32,000 cells.

The reason for using a coarse grid as a preliminary step is that it allows salient

features of the flow to be determined fairly speedily. Grid refinement then follows to

ensure that the solutions obtained are as "grid independent" as possible. However,

it must be noted that increasing the discretisation of the domain will also increase

the computational expense. Both computer run-time as well as computer storage

requirement are likely to increase. Hence, an optimal value of 32,000 cells was

decided after a number of experimental runs.

The grids generated in this set of models are curvilinear grids, which conform to

the shape of the body of the model. This system of grid formation is often called

the Body-Fitted Coordinate (or BFC) system. Figures 6.4 through 6.8 show some

examples of the discretised sections for Model 81.

Figure 6.4 and 6.5 show part of the computational grid in longitudinal section and

a cross section at an unstenosed portion respectively. It is highly desirable to have

"orthogonal" grid cells (that is, grid cells with edges at right angles) with an aspect

ratio as close to unity as possible. However, this is sometimes difficult to achieve

in practice. The PHOENICS grid generation program includes a facility which

colour-codes grid cells as they are formed, giving information about the geometrical

suitability of the grid. Using this facility as an aid, the grids were generated with

as high a degree of orthogonality as possible. Figures 6.6, 6.7 and 6.8 show the

transition of the grid cell distribution at three different points on the curved and

stenosed portion of the artery.
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LongiEudinal view of a secÈion
of the compuealional grid

DELTÀ1=o.85, DBtrTÆ-o.00, nE=100

0

L

Figure 6.4: A segment of the grid for Model B1 in longitudinal section

croEs section of grid at u6Èsoseal pÀrt

DEL"É-o 00, ¡E=100

,"9"

Y

L

Figure 6.5: Cross section of grid for Model 81 at unobstructed part
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Figure 6.6: Cross section of grid for Model 81 at s : 14.19

e

L

Figure 6.7: Cross section of grid for Model 81 at s : 14.89

s"

t

Figure 6.8: Cross section of grid for Model 81 at s : 15.59
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6.4 Results and Discussion

In all the models considered (A', 81 to 810, C1 to C6), the unobstructed radius, r,,, is

fixed at 7.54 mm. The stenotic length of the inner stenosis is approxim ately 3.I4 mm

and the outer stenosis, if present, has a length of about 3.84 mm. The viscosity and

density of blood is taken to be 3.6 x 10-6^'ls and 1.06 kgl*t respectively.

A typical PHOENICS run for models in Groups A and B took between 80 to

90 minutes to converge. Models in Group C took an average of about 120 minutes

for convergence. Convergence is considered reached when the relative errors for all

the variables are within 1 percent. This is usually aided by the use of successive

over-relaxation. In PHOENICS, the relaxation factor may be altered at any time

during the numerical computation process and typical relaxation factors used in the

simulations in the present study range between 0.5 and 0.85. Generally, for models

in Groups A and B, about 500 sweeps are required to achieve convergence whereas

Group C models may take up to 2900 sweeps.

The models are solved for Reynolds numbers ranging from 100 to 1200 corre-

sponding to flow rates ranging from 0.0523 to 0.6434 ltlmi,n. In this section, we

present the results obtained for the models. As it is not possible to report all the

findings, only representative results demonstrating the essential features of the study

will be presented in detail.

6.4.1 Pressure Drop

A graph showing the variation of pressure drop with Reynolds number for Models

A, 81 and C4 is given in Figure 6.9. Pressure drops are calculated by taking the

pressure difference between s : 1.0 and s : 29.0, i.e. approximately 8 to 9 radii

distance from each end of the curvature. Also shown in the graph for reference is
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the Poiseuille flow relation for a straight unobstructed tube given by the equation,

LP 32fu:fro' (6'4)

where left hand term is the non-dimensionalised pressure drop across As, the di-

mensionless length of tube in consideration.

In general, it can be seen that the calculated pressure drops for the models in

all the three Groups are higher than that in the unobstructed Poiseuille flow. This

difference, which translates to the relative flow resistance, progressively increases

with increasing Reynolds number.

For Group A, (i.e. curved artery with no constriction), the relative flow resistance

is about 12.7 percent higher at Re - 100, and about 67.5 percent higher at Re: 500

than a straight unobstructed tube. This compares fairly well with the 14 percent

and 70 percent respectively reported by Back et al (1992) in their experimental

study using a curved artery cast of man. The slight discrepancy may be attributed

to the fact that the artery cast model had a second bend and that contributed to

the overall resistance.

The graph shows that the presence of even a mild stenosis in the curved segment

increases the relative flow resistance quite significantly. In particular, for a 40.49 %

stenosis from one wall (the inner wall of the curvature), at Re :500, the relative

flow resistance is 26.52 percent higher than in a curved unobstructed artery. For

the same Reynolds number, a 57.67 % stenosis with narrowings on both walls, the

relative flow resistance is increased by 42.65 percent.
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Graph of Pressure Drop against Reynolds Number

10

100 1000
Re

Figure 6.9: Graph of dimensionless pressure drop against .Re for Models A, 81 and
C4. Model 81 has protrusion from inner wall only and Model C4 has protrusions
from both inner and outer walls.
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Graph of Total Pressure Drop against Percent Stenosis at Re=400
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Figure 6.10: Comparison of pressure drops in present curved artery model (for
Models 85 to 810 and Cl to C6) with Equation (6.5) at Re: 400

Although the actual values of pressure drops may be fairly low in the range of

percent stenosis considered, \rye can observe from the graph in Figure 6.10 that the

pressure drop, and hence the relative flow resistance, for flow in a curved artery with

stenoses generally increases with increase in percent stenosis. Also, flow resistances

in models with only protrusions from only the inner wall (Group B models) are

higher than that in models with protrusions from both walls (Group C models). For

the range of percent stenosis considered here, the pressure drops in Group B models

are between 10 to 38 percent higher than pressure drops in Group C models, showing

that asymmetry of the stenosis has a significant effect on the pressure drops.
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6.4.2 Velocity Field

Maximum Relative Axial Velocity

After each successful PHOENICS run, values of the velocity components in each

grid cell in the entire flow domain are found and stored. A summary of the maxi-

mum relative velocity is given in Table 6.2. Relative axial velocity is calculated by

dividing the axial component of the velocity (W) in the direction of the body-fitted

coordinate, z, by the maximum axial velocity at the inflow (I/¿).

It was observed that in general, the maximu # in each case occurred on the

o : 0 plane, i.e. the "vertical" plane passing through the centreline of the tube

(see Figure6.2). Hence, the values reported in Table 6.2 arc computed maximum

values on the a : 0 plane. For Model A, the maximum ff occuts near s : 13.89.

For models in Groups B and C, it occurs at or immediately after the throat of the

stenosis (near s: L5.24). The results also show that in general, there is only a

slight decrease in the maximum ff with increasing Reynolds number, although this

is not significant.

A qualitative comparison may be made with the experimental study by Talbort

and Gong (1983). In their investigation of flow through curved pipes, it was reported

that there is a shift of maximum axial velocity along the pipe from the inner wall to-

wards the outer wall at locations downstream of the bend. This agrees qualitatively

with the results in the present study (as shall be seen later when velocity profiles

are examined in detail). However, quantitative comparisons are not possible in this

case because the flow conditions in their experiments are significantly different from

those used here.



Table 6.2: Summary of Maximum Relative Axial Velocities for Models A, 81 to 84 and Cl to C6

Reynolds number
lnflow Velocity, Wo (cm/s)
Steady flow rate (cc/s)
Steady flow rate (lt/min)

MAXIMUM RELATIVE
AX|AL VELOCTTY (#)
Unstenosed

Stenosis on inner wall
40.49% (Model 81)
53.L8% (Model 82)
65.7s% (Model 83)
77.65% (Model Ba)

43.89% (Model Bs)
47J0% (Model 86)
52.24% (Model 87)
57.67% (Model BB)

62.84% (Model 89)
68.67% (Model B10)

Stenoses on both walls
43.89% (Model Cl)
47.70% (Model C2)

52.24% (Model C3)
57.67% (Model Ca)

62.84% (Model C5)

68.67% (Model C6)

Model A 1.2455 I.2L99 1.1659 1.1480 7.1226 1.1135 1.0990 1.0933

100

11.69
0.8710
0.0523

200
23.38

t.7420
0.1045

1.2L95
L.4802
1.9512
2.8922

t.2t25
L.295L
L.4242
t.6372
t.9770
2.3822

400
46.75

3.4832
0.2090

t.r747
t.42L2
1.8801
2.8080

500
54.44

4.3541
0.2612

1.1514
r.2ttt
1.4031
1.6834
1.9901
2.423L

700
81.82

6.0961
0.3658

800
93.51

6.967L
0.4180

L.t266
1.39r3
L.8432
2.6847

1.1697
1.2560
t.4207
1.5325
L.674t
1.8373

1.1 123
1.1970
7.4t27
1.6554
1.9445
2.3446

1000
116.88

8.7083
0.5225

1.1066
t.3773
7.8267
2.5970

1100
L28.s7
9.5792
0.5748

1.0985
1.3625
1.8118
2.542L

L.2455
1.50s6
2.0066
3.0062

1.1620
t.4122
1.8705
2.7701

1.137s
1.4029
1.8517
2.7034

1.3026
t.3674
t.4772
L.5446
1.6675
1.8082

L.270t
1.3545
t.4323
L.5742
r.7067
1.8748

t.2233
1.2868
r.3976
1.5500
L.7420
1.9376

7.2092
t.2702
1.4110
1.5605
1.7t97
1.91s7

L.L799
t.2575
1.4294
1.5517
1.6975
1.8592

1.1564
L.2540
1.4063
1.5091
1.6481
1.8186

1.1s66
1.2s19
1.3881
1.5032
1.6430
1.8081

L.2453
1.3084
1.4633
r.6674
L.9377
2.31ss

1.1657
r.2277
1.3896
t.6728
2.0723
2.4449

t.t224
1.1985
t.42t4
L.6745
L.9629
2.3666

1.0987
1.1954
1.3984
1.6318
1.9185
2.3258

1.0992
1.1930
1.3803
r.626r
1.9133
2.31s3

H
lr
O)
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Axial Velocity Profiles

Experiments like those performed by Sabbah et al (L984) using flow visualisation

techniques and by Back eú al (7992) using artery casts may provide some information

on the flow behaviour of blood in curved arteries. However, the numerical solutions

obtained from the present study using CFD codes can give a more complete picture

of the flow field in the entire flow domain. Furthermore, there is total flexibility

in the display of these information. To facilitate a closer examination of the flow

velocities of the models, axial velocity profiles were computed at several locations

in the flow field on the c : 0 plane. The six locations chosen for the present

analysis are shown in Figure 6.11. Also, it should be noted that in our models, the

curvature lies between s : 10.00 arrd 20.47, and the stenosis, if present, stretches

from approximately s : 13.49 to about s : 16.98.

The velocity profiles were computed for a selection of cases at Re : 400 (i.e.

at a physiologic flow rate of 0.209 ltlmin) to illustrate the general trend of the

flow behaviour. The profiles for Models A, 83 and Cl computed at locations s :

5.00, 13.39, 15.24, 16.98, 18.73 and 33.81, are shown in Figures 6.L2 to 6.14. In

addition, for comparison between cases, Figure 6.15 shows the axial velocity profiles

for Models A, 88 and C4, at two locations in the stenotic region. In all the figures

mentioned, the outer wall is at *1.54 mmfrom the centreline and the inner wall is

at -1.54 rnrn distance from the centreline.

In Figure 6.12a (Model A), we observe a shift in the maximum axial velocity

towards the outer wall as the flow enters the curvature. The skewness and asym-

metry in the profile is maintained after the bend (e.g. at s : 18.73) but the profile

gradually returns to the normal Poiseuille flow profile further downstream (Figure

6.12b). This agrees qualitatively with results from studies by Perktold et al (199I)

and Talbort and Gong (1983).
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ê- 5.00
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s =13.39
i s=ls.zq

" 
s,=16.98

s =18.73

0

s =33.81

centreline

\=o plane

Figure 6.11: Cross sections at which the axial velocity profiles are computed in
graph. Axial distances are dimensionless and measured from the inflow boundary.



119

Figure 6.13 shows the axial velocity profiles for Model 83, which is a curved

artery with a protrusion from the inner wall af 65.76% stenosis. In Figure 6.13a,

we observe a similar trend of a shift of maximum axial velocity towards the outer

wall as the blood flows through the curved portion. In addition, because of the

stenosis on the inner wall, there is a significant increase in the axial velocity of up

to about L9W¡ near the throat of the stenosis (at s: 75.24). Furthermore, Figure

6.13b indicates that there is a clear region of reverse flow on the inner wall at the

post-stenotic region.

Figure 6.14 shows the axial velocity profiles for Model C1, which is a curved

artery with protrusions from both the inner and outer walls at 43.89% stenosis. With

a lower percent stenosis, the maximum axial velocity at the throat is not significantly

increased although the shift towards the outer wall is still evident (Figure 6.14a).

No reverse flow is observed for this case in the downstream portion of the artery.

This could be due to the fact that the percent stenosis in this case is quite mild

(43.8e%).

A comparison of the velocity profiles between cases in the different groups of

models can be made by examining Figure 6.15. It should be noted that Model 88

and C4 have different geometries but the same degree of stenosis (aí57.67%). Profile

for Model A is given in the figure as a reference.

From Figure 6.15a, we observe that at the throat of the stenosis, Model C4 has

a slightly higher maximum axial velocity (7.7W¿) compared to Model BS (1.55ølr)1

even though both have the same percent stenosis of 57.76%. Downstream of the

stenosis, reverse flows are present for both 88 and C4, although the magnitude of

backflow is higher in C4. Also, in both cases, backflow only occurs on the inner wall

(Figure 6.15b). This trend is also present in all the other corresponding cases in

Groups B and C.

lThis can also be observed from Table 6.2 on page 116.
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Figure 6.12: Axial velocity profiles at o : 0 for Model A (curved artery with no
stenosis) at various locations (see Figure 6.11) along the artery aI Re:400
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Figure 6.13: Axial velocity profiles aI a:0 for Model 83 (curved artery with one
protrusion of 65.76% stenosis) at various locations (see Figure 6.11) along the artery
at Re: 400
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Figure 6.14: Axial velocity profiles at e, : 0 for Model Cl (curved artery with
protrusions from both walls,43.89% stenosis) at various locations (see Figure 6.11)
along the artery al Re: 400
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Figure 6.15: Comparison of axial velocity profiles at a:0 for Models A, B8 and C4
at two selected locations at Re: 400. B8 and C4 are models with 56.67% stenosis.
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Secondary Flow Velocity

In curved passâges, a velocity component occurs in the plane perpendicular to

the flow axis. This movement is known as secondary flow. In the core of a curved

tube, the secondary motion is directed towards the outer wall of the bend and

circumferentially back near the side wall. A detailed description of this phenomenon

has been given by several authors, such as Pedley (1980) and Berger et al (1933).

The influence of the secondary motion on the primary flow and, consequently, on

the flow patterns of blood in arteries could play an important role in the initiation

of endothelial damage or the genesis of other arterial disorders (Nerem 1992). In the

straight tube model described in Chapter 5, such secondary flow motion was either

not present or very insignificant in comparison with the axial velocity. However, the

curved artery models described in this chapter reveal that secondary flow motion

significantly contributes to the overall flow patterns. As it is not possible to report

all findings, a representative selection of cases (namely, Models A, B1 and C4) will

be discussed in some detail here and general conclusions, where appropriate, will be

made.

A summary of the maximum secondary velocity expressed as a percentage of the

maximum axial velocity for Models A, B1 and C4 at various locations in the bend

of the models for Reynolds numbers 400 and 700 is given in Table 6.3. The case for

Model 88, which has the same percent stenosis as C4, (i.e. 57.76%) at Reynolds

number 400 is included in the table for comparison with Model C4.

For the sake of convenience in the discussion to follow, we shall define ø as

Maximum Secondarv Velocitv
Maximum Axial Velocity



Table 6.3: Maximum Secondary Velocity (as a percentage of Maximum Axial Velocity
and computed at various locations on the curved segment) for Models A, 81 and C4 at
Re :400 and 700 and for Model B8 at Re : 400

": x 100%

725

% stenosis :
s Re:

Model A
0o/o

Model 81
40.49o/o

Model C4

57J6%
Model 88

57.760/o

700 400 700 400 700 400 400

12.09 2.9 2.9 2.9 2.8 2.9 2.8 2.8

13.84 2.7 2.8 2.8 3.0 2.8 2.9 3.1

L4.54 2.6 2.7 3.0 3.2 3.3 3.5 3.8

t5.24 2.5 2.7 3.3 3.5 4.2 4.4 5.1

15.93 2.5 2.7 3.1 3.3 3.7 3.9 4.2

L6.63 2.5 2.7 2.8 3.0 3.0 3.4 3.6

17.33 2.5 2.7 2.6 2.9 2.7 3.1 3.3

L8.73 2.4 2.7 2.4 2.8 2.5 2.9 3.1

It is clear from the table that there is only a very slight difference in the o values

(generally less than 0.4%) at different Reynolds numbers for each of the Models A,

81 and C4. This agrees qualitatively with the results of Perktold et al (1991) in

their curved tube model of the Left Main Coronary Artery with slight tapering.

At different locations along the curved segment, ø remains fairly constant in

Model A, where there is no stenosis. However, in both Models 81 and C4, the

value of o increases gradually as the flow approaches the throat of the stenosis and

decreases gradually downstream of the stenosis. This shows that stenoses on the

bends of arteries can alter the flow conditions to some extent.

At Re - 400, the o values for Model 88 show a similar trend. Moreover, in

comparison to Model C4 (which has the same degree of stenosis), the ø value in

Model 88 increases more rapidly and attains a slightly higher maximum value (o :

5.1 at s:15.24). In fact, this general trend prevails in the other corresponding cases;
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that is, the o values in the stenotic region of Group B models are comparatively

higher than those in the corresponding Group C models.

The main difference between 88 and C4 lies in the geometry of the models.

Model 88 has a protrusion from the inner wall and C4 has protrusions from both

inner and outer walls. The results reported seem to suggest that the presence of a

stenosis on the outer wall helps in lowering the effects of increased secondary flow

velocities brought about by the stenosis on the inner wall of the bend.

Although the models set up here are realistic, experiments in similar geometrical

conditions are not available in the literature for quantitative comparisons. However,

qualitative agreement between the data reported here and the experiments by Tal-

bort and Gong (1933) as well as Perktold et at (7991) suggests a reasonable validity

of the models.

Secondary flow fields can also be examined qualitatively in a more graphic man-

ner. The post processor (PHOTON) in PHOENICS allows plots of the velocity field

to be created in views from different angles at different locations. Figure 6.16 shows

the locations chosen for the plots to be presented here. The directions in which the

plots are viewed are perpendicular to the plane of interest and are indicated by the

arrou/s in Figure 6.16

Figures 6.17 to 6.22 show plots of the secondary velocity fields for Models A,

81 and C4. As there is no significant difference in the secondary flow field at

different Reynolds numbers (in the range considered in this study), only flow fields

at Re: 400 are examined. The plots have been generated at locations s : 12.09,

13.84, 15.24 and 17.33 to provide a comprehensive representation in the curved

segment although in principle, any location on the modelled artery may be chosen.

In all the figures ofsecondary flow fields to be presented, the cross sections are drawn

with the outer wall at the top and the inner wall at the bottom of each figure.
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From Figures 6.17 and 6.18, the gradual development of secondary flow motion

in Model A may be observed. As the flow enters the curved segment (at s : 12.09),

secondary motion becomes evident, and gradually becomes more intense. This is

maintained in the latter part of the curvature (Figure 6.18) with little significant

change in the intensity of the flow motion or the magnitude of the flow velocities.

The secondary flow fields for Model B1 are shown in Figures 6.19 and 6.20. As in

the case for Model A, secondary flow begins to develop as the flow enters the curved

segment (s : 12.09) and increases in intensity. In Figure 6.20a, at the throat of the

stenosis (s : L5.24), we observe the development of a fairly significant flow velocity

in a direction perpendicular to the axis of the primary flow along the stenosed wall.

This may have a significant effect on the stenotic plaque formed. This suggests that

lesions on the inner walls of curved segments of arteries are under an added influence

from the secondary flow motion.

Figures 6.21 and 6.22 ðepict the secondary flow fields for Model C4. Secondary

flow motion begins to develop as the flow enters the curvature (s : 12.09) and be-

comes quite complex as it approaches the stenotic region. The expected secondary

flow motion (from inner to outer wall in the core of the vessel and back circum-

ferentially along the sides) is accompanied by a flow motion near the outer wall in

the opposite direction (i.e. directed towards the inner wall in the core) as shown

in Figure 6.21b. This continues to develop into a complex flow pattern as the flow

approaches the throat of the stenosis (Figure 6.22a). As the flow leaves the stenotic

region, the general flow direction is towards the inner wall of the bend.

Although quantitative analysis of the flow field from these graphic plots is not

possible, these figures give a very clear qualitative view of the flow patterns asso-

ciated with secondary flow motion. A quantitative analysis of the shearing stresses

on the walls is more useful and will be carried out below.
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6.4.3 'Wall Shear Stress

It has already been mentioned that for incompressible fluids with no slip condition

at the rigid wall, the dimensional wall shear stress, rr, in the axial direction may

be given by :

ôw
Tu: þnoft uall

where ff is ttre partial derivative of the tangential velocity with respect to the unit

normal vector at the wall in physical units and p is the viscosity of the fluid. The

manner in which the axial wall shear stress may be estimated from the velocity

components has already been discussed in Section 5.4.3 and will not be repeated

since the same procedure has been used here in the estimation of wall shear stress.

Axial'Wall Shear Stress

Morgan and Young (1974) obtained an equation for the shearing stresses along

the arterial wall using an integral method. Although the equation is for a straight

tube with an axisymmetric obstruction, it would be interesting to compare our

results with that obtained from the equation. Figures 6.23 and 6.24 show the graphs

of the distribution of shearing stress on the walls along the axial position for Models

81 and C4 at.Re : 100.

In Figure 6.23, the graphs for the wall shear stress on both sides of the walls

are quite different in magnitude at the curvature and stenotic region. This is to be

expected as in this case, only the inner wall has a protrusion. The shearing stresses

on this side hence increases quite rapidly, reaching a maximum value of more than

twice that on the outer unstenosed wall. However, on both the inner and outer

walls, the maximum shear stress is achieved just before the throat of the stenosis,

and this is consistent with the model proposed by Morgan and Young.

(6 6)
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In Figure 6.24, the shearing stresses on both walls are more or less similar in

behaviour and magnitude. This is also to be expected as in this case, stenotic

plaques are present in both walls. Also, the results are more consistent with the

axisymmetric model of Morgan and Young although there are some differences in

the pre-stenotic and post-stenotic regions. This is largely due to the effects of

curvature of the present model at these locations.

The shearing stresses along the wall in the axial direction for Models 81 and C4

for Reynolds numbers 100, 400, 700 and 1000 are shown graphically in Figures 6.25

and 6.26. In each of these graphs, the shearing stresses along both the inner and

outer walls (i.e. at e : z' and 0 respectively) are plotted along the dimensionless

axial distance from the inlet.

From the graphs, we observe that at low Reynolds numbers (e.g. ,Re : 100),

the a><ial wall shear stresses on both walls for 81 and C4 arc essentially positive.

Backflow at both walls is hence not present at low Reynolds numbers. However, at

moderate and high Reynolds numbers, the inner wall for Model B1 experiences a

substantial magnitude of negative shear stress. Therefore, for a curved artery with

a protrusion from the inner wall, we can expect backflow on the inner wall but not

on the outer wall for moderate to high Reynolds numbers. The peak shear stresses

along the inner wall are significantly higher than on the outer wall for the range of

Reynolds number considered.

For Model C4, the graphs in Figure 6.26 show that for .Re - 400, 700 and

1000, backflow is detected at both the inner and outer walls. This may be deduced

from the negative shear stress on the walls. The flow separation region ranges from

s : 15.59 to s : 18.37 on the inner wall, and from s : 15.93 to s : 16.63 on the

outer wall. On the average, for Re :400 to Re :1000, the flow separation on the

inner wall is about four times longer on the inner wall than on the outer wall for

Model C4, in which the ratio of the stenotic heights, fr is around 1.89. However,
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the peak shear stresses on both walls in this case are essentially equal.

A comparison of the ratios of peak shear stresses on the inner wall to the outer

wall for Reynolds number ranging from 100 to 1200 is shown in Figure 6.27. As

can be seen from the graph, the outer wall of a curved artery without any stenosis

experiences a higher peak shear stress. This difference in shear stress could be an

important factor in the genesis of atherosclerotic plaques.

It is common to find plaques growing first from the inner wall of the curvature

and our Model 81 shows a significant rise in the relative shear stress on the inner

wall at 40.5 % stenosis. A growth of plaque on the outer wall to about half the

height of that in the inner wall, as in Model C4, would cause the shear stress on the

outer wall to rise to a level almost equal to that on the inner wall. This is not so in

a straight tube or axisymmetric case,
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Secondary'Wall Shear Stress

It has already been shown in Section 6.4.2 that significant secondary flow motion

has been detected in the models considered here. The shear stress along the walls

in the circumferential direction due to secondary flow motion is defined in a similar

\May as the axial wall shear stress and may be calculated or estimated in a similar

way as discussed before. However, it should be mentioned that for the calculation

of secondary wall shear stress, instead of the axial velocity components, the velocity

components used for quadratic curve fitting procedure are the components tangent

to both the primary axis of flow and the wall. Like before, the two values closest to

the wall and the no-slip condition form the three points necessary for the quadratic

curve fitting.

The shearing stresses are also non-dimensionalised in the same manner as before.

A typical set of graphs showing the secondary wall shear stress along the transverse

position (i.e. along the walls and perpendicular to the z axis) at Re: 700 at various

positions along the curved artery is presented in Figures 6.28 through 6.32. In

these figures, the horizontal axes are the dimensionless distance from the centreline,

measured along the wall (either the inner or outer) in a direction perpendicular to

the z axis. Although only results from Models A, 81 and C4 are shown, the same

pattern is observed in the other models.

Figure 6.28 shows that at the entrance of the curvature, i.e. at s : 10.00, the

shear stresses on both the inner and outer walls due to secondary flow motion, though

still insignificant, are beginning to be detected. There is virtually no difference at

this point between Models A, B1 and C4, as would be expected. The secondary

wall shear stresses on the inner wall and outer wall are of opposite signs in all the

graphs, showing distinct secondary motion in the velocity field.

Figure 6.29 shows that ât s : 13.49, i.e. at the portion of the bend before



143

the stenotic region, shearing stresses on the walls start to become more significant.

However, for both Models 81 and C4, the presence of the stenosis on the inner wall

of the bend results in a lower shear stress relative to that in Model A, which has no

stenosis as can be seen in Figure 6.29(a). On the outer wall (Figure 6.29(b)), the

presence of a stenosis in C4 elevates the secondary wall shear stress slightly, whereas

there is no difference in Models A and 81 as would be expected.

At s : L5.24, the narrowest portion of the artery for Models 81 and C4, the

shearing stresses on both the inner and outer walls for 81 and C4 become signif-

icantly higher than in Model A as can be seen in Figures 6.30 (a) and (b). The

stenosis had begun to play an important role in creating significant secondary mo-

tion and causing the wall shear stress to rise up to five times that in an unstenosed

bend.

From Figure 6.31, we observe even more significant rise in the secondary wall

shear stress at s : 16.98, a position on the stenosed artery immediately after the

stenosis. On the inner wall of Model 81, we observe a ten-fold increase in the

secondary wall shear stress. This could be due to the asymmetry of the stenosis

that is present in 81. On the other hand, Model C4 shows that the presence of a

stenosis on the outer wall increases the secondary wall shear stress more significantly

than on the inner wall despite the fact that the outer wall stenotic height is only

about half that on the inner wall for Model C4.

Figures 6.32 (a) and (b) shows the situation at s : 20.47, at the exit of the

curvature. We observe a drop in the secondary flow motion compared to at the

bend. The secondary wall shear stresses on both walls begin to diminish.
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Secondary Shear Stress on the inner wall (Re=700) at s=10.00
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Figure 6.28: Graphs showing dimensionless wall shear stress al Re: 700 along the
(a) inner wall and (b) outer wall, at s : 10.00
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Secondary Shear Stress on the inner wall (Re=700) at s=16.98
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Figure 6.31: Graphs showing dimensionless wall shear stress al Re:700 along the
(a) inner wall and (b) outer wall, at s: 16.98
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Secondary Shear Stress on the inner wall (Re=700) at s=20.47
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Figure 6.32: Graphs showing dimensionless wall shear stress at Re: 700 along the
(a) inner wall and (b) outer wall, at s:20.47
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6.5 Conclusion

In this chapter, we have developed a model simulating blood flow in a curved artery

with different conditions of stenosis at the bend. Some fluid mechanical phenomena

have been discussed. In particular, we have examined the effects of curvature on

the pressure drop, velocity profiles and shearing stresses on the walls, as well as

secondary flow phenomena.

In terms of pressure drops, our models have shown that the curvature of an artery

and the presence of stenoses in an artery will give rise to an increase in the pressure

drop. This translates to a rise in relative flow resistance. Hence, one expects a

higher resistance to blood flow in a curved stenosed artery than in a straight artery

suffering from the same degree of stenosis.

The models include stenoses with percent stenosis ranging from about 40 to

about 70%. As blood is assumed to be Newtonian in our models, we have not

considered percent stenosis beyond 70%, since this would have reduced the lumen

size and brought about non-Newtonian effects. Nonetheless, with the range of per-

cent stenosis considered, the models examined in this chapter have been able to

demonstrate the effects on the various flow characteristics due to the presence of

asymmetric stenoses in a curved artery.

The elevated axial velocities and presence of significant secondary flow velocities

found in the models due to the presence of stenoses in the curvature are also impor-

tant factors for cardiologists to consider as these may lead to complications such as

thrombosis or rupture of the plaques. The models also show that the geometry of

the artery and the location (whether on the inner wall only or on both walls) of the

stenoses are also possible contributing factors to these problems.

It is believed that high shear stress on the arterial walls may cause endothelial
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damage (Fry 1968). Although the actual contribution of this factor in atherogen-

esis is still debatable, the relatively high shear stress on the stenotic side could be

an important contributing factor to the overall progressive growth of the stenotic

plaque. Nerem (1992) pointed out the importance of secondary wall shear stress

in the atherosclerotic process. The models in this chapter have demonstrated the

significant presence of secondary flow motion in curved arteries, particularly in the

region between the throat of the stenosis and the downstream end of the stenosis.

They have also shown that the presence of the stenosis and the asymmetry of it may

cause the secondary wall shear stresses to rise very significantly.

As stresses are difficult to measure experimentally, it is thus useful to be able

to examine them in a mathematical model and in this chapter, we have developed

models of curved arteries which will help us gain further insight into this important

aspect of hemodynamics.



CHAPTER 7

CONCTUSION

7.L A Brief Summary

The three CFD models reported in this thesis provide detailed quantitative descrip-

tions for the steady flow of blood through stenosed arteries. Flow characteristics

such as pressure drops, flow velocities and shearing stresses on the arterial walls

have been examined in detail.

The first model, Model I, compared to Model II and Model III, is fairly simple.

It considers blood flow through an axisymmetric vessel with three stenoses in series,

modelling a multiply stenosed artery. The equations are solved using the FIDAP

code at a fixed Reynolds number. The results indicate the potential effectiveness

of using commercial CFD codes in blood flow models. Moreover, Model I is an

extension of a previously published work on paired stenoses.

Model II is constructed in three dimensions and it consists of an asymmetric

stenosis, making the model physiologically more realistic in terms of geometry. The

CFD code, PHOENICS, is employed to solve the system of equations for a range

of Reynolds numbers and for three degrees of stenosis. The results from Model II

include details of how stresses on the arterial walls may be estimated and analysed.

Model III is the most realistic of all three models. Like Model II, it also utilises

151
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the PHOENICS code in the solution of the equations. Model III consists of three

groups of models, namely, curved artery without constriction (Group A), curved

artery with one protrusion from the inner wall of the bend (Group B) and curved

artery with protrusions from both inner and outer walls of the bend (Group C). The

numerical solutions from these groups of models provide information on pressure

drops, flow velocities and wall shearing stresses for flow through a curved artery for

various degrees of stenosis and for a range of Reynolds numbers. Secondary flow

phenomena have also been examined in some detail and it has been shown that these

have a significant effect on the overall flow pattern.

Where possible, comparisons between results obtained and available published

results are made. The behaviour of the models is generally consistent with published

reports, although in some cases, only qualitative comparisons are possible. Never-

theless, this study has achieved its objective of obtaining quantitative descriptions

of blood flow through stenosed vessels through the use of CFD techniques, thus pro-

viding further insight into how the dynamics of blood flow may be related to some

arterial disorders.

7.2 Clinical Significance of Present Study

The present study yields solutions to a number of mathematical models for blood

flow through stenosed arteries. In particular, mathematical models of asymmetric

arteries and curved arteries in three dimensions have been lacking in the literature

even though such models may be more physiologically realistic. The present study

has provided an analysis of such models using a powerful tool in CFD.

Results obtained in this study are particularly relevant to cardiologists who per-

form angioplasty procedures for coronary lesions. Model I provides information on

the effects of multiple stenoses in arteries. One of the important conclusions drawn
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from this model is that the effects of milder stenoses are diminished in the presence

of more severe stenoses. However, the severity of the stenoses are relative, i.e. the

mild stenoses are only mild when compared to the more severe stenoses. When

treating an artery with a series of stenoses, the common practice among cardiol-

ogists is to deal with only the most severe lesion. The conclusion from Model I,

however, shows that even though their effects may have been diminished, the other

less severe stenoses should not be disregarded.

Model II examines asymmetrical stenoses and their effects on shearing stresses on

the walls, providing some insight into the possible role of wall shear stress in athero-

genesis. Model III concludes that the presence of curvature augments the increased

resistance due to stenotic lesions. In practice, application of balloon angioplasty

treatment on stenoses in a straight segment of the artery is far less complicated

than that in a curved segment. Hence, if there are more than one stenosis of similar

severity to treat, the usual practice is to give prior attention to the one on the less

tortuous artery. However, the results from our study indicate that curved arteries

with a stenosis generally experience a significantly higher flow resistance. In addi-

tion, the presence of secondary flow phenomena in curved arteries, bringing about

elevated shear stress on the vessel walls, further suggests that both curvature and

stenosis should be considered when interpreting coronary angiograms.

CFD codes have been used to solve the complex mathematical models and have

provided valuable and detailed quantitative data for various flow characteristics in

the models. Such detailed information may be difficult, if not impossible, to be at-

tained through experiments. This study has successfully employed commercial CFD

codes to construct and solve models, providing useful insight into the hemodynam-

ics of blood flow in stenosed arteries. Accordingly, the long term application of this

form of research promises to be an effective tool for gaining further insight into the

pathology of arterial diseases. Consequently, in addition to angiographic procedures
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and other experimental research, cardiologists may be provided with more informa-

tion on the characteristics of flow in diseased vessels, thus assisting them in making

certain practical decisions.

7.3 Recommendations for Future Study

While the present study has provided a comprehensive set of models on blood flow

through arteries, there are still avenues where more research could be carried out in

the continued search for more realistic and complete models.

The complete understanding of the complex fluid dynamics of flow through

stenosed arteries and the associated pathological complications requires more than

a steady flow and rigid tube analysis. Indeed, the effects of pulsatile flow and elastic

wall boundaries have received much attention in modelling studies. Thus, incorpo-

rating these conditions in a curved artery model such as the one described in this

study would result in an even more realistic model.

Although for reasons already discussed in preceding chapters, non-Newtonian ef-

fects have not been considered in the present study, it is possible to construct models

of non-Newtonian flow in vessels where these effects become important. Many CFD

codes nowadays have provisions for modelling of non-Newtonian flows (for exam-

ple, PHOENICS uses the power-law model), making it possible to incorporate these

features in the model.

The focus of the present study has been on coronary arteries, the main reason be-

ing the fact that coronary heart diseases are the main cause of death in the Western

world. However, stenoses can also occur in other vessels in the arterial system. Mod-

elling flows in other arteries may take a similar form. However, differences in vessel

dimensions and flow characteristics may yield different results and implications, and

this could be an interesting area for future study.
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Experiments can be set up to verify and validate the models described in this

study. This would usually involve the use of sophisticated equipment in a specialised

biofluids laboratory. However, due to the constraints of time and other factors, the

present study has not included an experimental study.

Nevertheless, the present study has produced results which are clinically signifi-

cant, through the use of an increasingly popular CFD technique. The application of

mathematical modelling and computational fluid dynamic techniques for the eval-

uation of the flow characteristics of blood in stenosed arteries has been and will

continue to be a powerful and efficient way of providing valuable information.
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FIMESH

FIINP

Terminal

Terminal

FIOUT

Terminal

FDOUT

FPOUT

Terminal

FIPREP

FDINP

FIDAP

FDPOST

FIPOST

FIDAP file system and information flow
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The basic flow of information is from FIPREP to FIDAP to FIPOST. An input

file (called FIINP) describing the geometry of the model and the grid definition is

fed to the FIPREP module. This is a pre-processing run where the grid information

is checked and the grid generated. The process may also take place interactively at

the computer terminal. The essential output of this module are the files FIMESH,

FIOUT and FDINP. FIMESH contains information on the grid or mesh generation.

FIOUT contains a listing of the valid commands entered and FDINP is used as an

input for the next phase, FIDAP.

FIDAP accepts the input file FDINP, performs the numerical simulation and

solves the equations, and writes the results to output files, FDOUT and FDPOST.

FDOUT is a readable output file containing a summary of the information specified

in the problem definition like node and element information, boundary condition

data. It also contains information on values of the solved variables like velocity

components, pressures and so on. Solution data is also available in a post-processing

file FDPOST.

FDPOST is used by the next module, FIPOST, which performs post-processing

tasks like graph-plotting and so on. FIPOST may also be used interactively, in

which case terminal keyboard supplies the input and the terminal screen displays

the output. FIPOST creates an output file FPOUT which summarises the input

and the program response.
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Q1

PINTO

SATELLITE

eardat xyz

EARTH

phi

PHOTON

AUTOPLOT

GUIDE

PHOENICS program relationships and file system
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The input file in PHOENICS is known as the Q1 file which can either be cre-

ated using an editor or through the interactive use of the SATELLITE module. Q1

contains information on the geometry of the model, the grid composition, fluid prop-

erties, boundary conditions of the flow and various solution options. The language

used in the Q1 file is the PHOENICS Input Language, or PIL.

In the pre-processing phase, the Q1 file serves as the input for SATELLITE which

checks the various parameters. SATELLITE is run interactively and can be used

to display the geometry of the model, the boundary conditions and so on. Upon

exiting SATELLITE, two files "eardat" and "*yt" are created. eardat contains

relevant data to be used in EARIH, the next module. EARTH also uses xyz, a file

containing information on the geometry of the model.

EARTH is the actual processing or "number-crunching" program, which utilises

the finite volume CFD code and the SIMPLER algorithm to solve the governing

equations. During the execution, the user is able monitor the values of the primitive

variables at any chosen cell in the grid as well as the convergence patterns. EARTH

allows the user to alter the relaxation factor for any one of the variables to be

solved to aid the convergence. When either convergence is achieved or the maximum

number of iterations is reached, the execution is halted and the output file, "phi"
containing the values of the solved variables is created.

A post-processor, PHOTON, is another interactive program which first reads in

the phi and xyz files, and performs various post-processing tasks. PHOTON may be

used to plot velocity fields, pressure and temperature distributions and streamline

plots of flow.

AUTOPLOT is a graph plotting program which accepts command on-line and

produce various graphs using the data obtained by EARTH and stored in phi and

xyz. PINTO is an interpolation program used for grid refrnement. GUIDE is a

"standalone" on-line user guide.

The following page shows a typical output on the screen at the end of an inter-

active EARTH run when convergence is achieved.
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*TITLE
FL0ht THR0UGH TRIPLE STEN0SES Re = 100 (90 96 91)
*FIMESH (2-D , IMAX=27 , JMAX=3)

EXPI (DELTAS)

1 0 8 0 8 0 14 0 8 0 720 140 16 0 140 16 0 16 0 18 0 16 0 14

EXPJ (DELTAS)

lt23
1018

PARAMETER

VGRAD 4.0
HGRAD 0.9

P0INT(SYSTEH=1)
/Pt* r

11
23
35
47
59
6 11

713
815
9L7

10 19
11 2I
L2 23
13 25
14 27
15 27
16 25
L7 23
18 2L
19 19
20 t7
2L 15
22 13
23 11

249
257
265
273
28 1

JKxyz
110 0

1 1 10.25 0
1120 0

318 1

317 t
3 1 6.5 0

314 L

3 1 3.5 0

1 1 1.5 0
112.25 0
1 1 3.75 0
1 1 4.25 0
1 1 4.75 0

1 1 5.25 0
1 1 6.75 0
1 1 7.25 0
1 1 7.75 0

1 1 8.25 0
1 1 9.75 0

3120 1

3110 1

3 1 9.5 0
3 1 8.5 0

3 1 5.5 0

315 1

3 1 2.5 0

312 L

310 1

505
505

434
434

434
434

LINE
/ Start Pt. End Pt

1. 28 VGBAD 4
2 27 VGRAD 4
3 26 VGRAD 4
4 25 VGRAD 4
5 24 VGRAD 4
6 23 VGRAD 4

Ratio IRAT Flag
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VGRAD 4
VGRAD 4
VGRAD 4
VGRAD 4
VGRAD 4
VGRAD 4
VGRAD 4
VGRAD 4

/Defiue curved edge
CI'RVE

/Startpt Endpt #Datapt Ratio IRAT Flag
27264

244
0.530
0.637
0.753
0.875

722
82L
920

10 19

11 18

12 t7
13 16
t4 15
72

28 27
23
34
45
56

24 23
67
78
89
910

20 19
10 11

LL L2
t2 13

13 t4
16 15

875
753
637
530

9
353
287
239
2t0
200
2L0
239
287
353

0
0
0
0

2.7
2.2
2.3
2.4

3.6
3.7
3.8
3.9

VECI'R

26

CI'RVE

25

CURVE

4

25
0
0
0
0
0
0
0
0
0

2.6
2.7
2.8
2.9
3.0
3.1
3.2
3.3
3.4

2223
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5.1
5.2
5.3
5.4

2L
6.6
6.7
6.8
6.9

0
0
0
0

875
753
637
530

CI'RVE

0
0
0
0
0
0
0
0

2r0
200
2r0
239
287
353

5.7
5.8
5.9
6.0
6.1
6.2
6.3
6.4

22
5.6

CITRVE

77
9.6

2L9
0.353

287
239

204
0.530
0.637
0.753
0.875

CITRVE

CI'RVE

19
8.1
8.2
8.3
8.4

CI'RVE

18

184
0.890
0.784
0.682
0.589

L79
0.434
0.376
0.334
0.309
0.300
0.309
0.334
0.376
o.434

164
0.589
0.682
0.784
0.890

SI'R^FACE

115
ELEMENTS (QUADRILATERAL , NODES=9 , ALL)
BCNODE(TIX)

28 15 0.
BCNODE(IIY)

1 14 0.
28 15 0.

8.6
8.7
8.8
8.9
9.0
9.1
9.2
9.3
9.4

9.7
9.8
9.9
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t 28 0.
BCN0DE (UX, PARAB0LIC=1 )
1 28 1.0
END
i.FIPREP

PROBLEM (AXI-SYMMETRIC, NONL INEAR)
EXECUTION (NEhIJOB)

DENSITY(CONSTANT=1. )
VISCOSITY (CONSTANT= . 01 )
PRESSIIRE (PENALTY=1 . E-6)
ICNODE(STOKES)

S¡LUTISN (Q . N. =6)
STRATEGY (S . S. =3)
DATAPRINT(NORI.IAL)

PRINTOUT(ALL)
NODES(FIMESH)

ELEMENTS (NODES=9, QUADRILATERAL, FIMESH)

RENTIHBER

END

*END
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TALK=T;RUN( 1, 1) ;VDU=XI1-TERM
IRUNN = I;LIBREF= Q

*,f + ***:* '1.*** *,1.** ¡t* * ***'È*** ** *¡1.*** ** '1.*'f ***** ***+ *:ß *** * * * ***** *
Group 1. Run Tlt1e

TEXT(STEN0SIS in 3-D, D=1.45, RE=245.33 )
****¡l********,i**************:ß**********:t ********************
Group 2. Tra¡sience

STEADY = J
'1.**¡1.***++**¡fi******,i****!¡*¡¡***¡¡*****'t **********¡t*****'¡*******
Groups 3, 4, 5 Grid Infornation

* 0verall number of ceIls, RSET(M,NX,NY,NZ,to1era¡ce)
RSET (M, 10, 10,70)

* 0vera11 donain extent, RSET(D,naTne,XULAST,YVLAST,ZI¡¡LAST)
RSET(D,CHAM, 1. 000E+00, 1.000E+00,2. 800E+01)
* * * * * * * * * * * * * * t * * * * * *,t * *,i * * * * * * *'i * * * * * * * * *,¡ * * t *,t * * * {. *,t * * * * * *
Group 6. Body-Fitted coordinates

BFC=T
* Set points

GSET (P, P1, -7 . 07008-0I, -7. 0700E-01, 0 . 0000E+00)
GSET(P,P2,0. 0000E+00,-1. 0000E+00,0. 0000E+00)
GSET (P, P3, 7 . 0700E-01, -7 . 0700E-01, 0. 00008+00)
GSET(P,P4,L.00008+00,0. 0000E+00, 0. 0000E+00)
GSET(P,P5,7.0700E-01,7. 0700E-01,0. 0000E+00)
GSET(P,P6,0. 0000E+00, 1. 0000E+00,0. 0000E+00)
GSET (P, P7, -7 . 0700E-01, 7 . 07008-01, 0. 0000E+00)
GSET(P,P8, -1. 0000E+00,0. 0000E+00,0. 0000E+00)

** points for K32 *t
GSET(P, P11, -0. 66346, -0. 74821, tO. 30000)
GSET(P,p12,-0.70710, 0.70710, 10. 30000)
GSET(P,P13,-0.50000, 0.86600, 10.30000)
GSET(P,p14, 0.00000, 1.00000,10.30000)
GSET(P,P15, 0.50000, 0.86600,10.30000)
GSET(P,P16, 0.707t0, 0.70710, 10.30000)
GSET(P,P17, 0. 66346,-O.7482L,10.30000)

** points for K33 **
GSET(P,P21, -0. 96144,-O.27500,10. 60000)
GSET(P,P22,-0.70710, 0.70710, 10.60000)
GSET (P, P23, -0 . 50000, 0 . 86600, 10 .60000)
GSET(p,p24, 0.00000, 1.00000,10.60000)
GSET(P,P25, 0.50000, 0.86600, 10.60000)
GSET(P,P26, 0.70710, 0.70710,10.60000)
GSET(p,p27, 0.96144,-0.27500, 10.60000)

** points for K34 **
GSET(P,P31,-0.99385, 0. 11076, 10.90000)
GSET(P,P32,-O.707LO, 0.70710,10.90000)
GSET(P,P33,-0.50000, 0.86600, 10.90000)
GSET (P, P34, 0.00000 , 1 . 00000, 10 . 90000)
GSET (P, P35 , 0. 50000, 0 . 86600, 10 . 90000)
GSET(P,P36, 0.70710, 0 .70710,10.90000)
GSET(P,P37, 0.99385, 0. 11076,10.90000)
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** points for K35 **
GSET(P,P41,-0.93196, 0.36255, 11.20000)
csET(p,p42,-0.707L0, 0.70710, 11.20000)
csET(p,p43,-0.50000, 0.86600, 11.20000)
csET(p,p44, 0.00000, 1.00000,11.20000)
GSET(P,P45, 0.50000, 0.86600,11.20000)
csET(p,p46, 0.70710, 0.70710, 11.20000)
GSET(p,P47, 0.93196, 0.36255,11.20000)

** points for K36 i.*
GSET(p,P51,-0.89303, 0.45000, 11.50000)
GSET(p,p52, -0 .7O7LO, 0 .7O7L0,11.50000)
GSET(P,P53,-0.50000, 0.86600, 11.50000)
GSET(P,P54, 0.00000, 1.00000,11.50000)
GSET(P,P55, 0.50000, 0.86600,11.50000)
GSET(P,P56, 0. 70710, 0.7071O, 11.50000)
GSET(P,P57, 0.89303, 0.45000, 11.50000)

** points for K37 **
csET(p,p61,-0.93196, 0.36255, 11.80000)
csET(p,p62,-0.70710, 0 .707t0,11.80000)
csET(p,p63,-0.50000, 0.86600, 11.80000)
csET(p,p64, 0.00000, 1.00000,11.80000)
GSET(P,P65, 0.50000, 0.86600, 11.80000)
csET (p, p66, 0 . 70710, 0 . 70710 , 11 . 80000)
GSET(P,P67, 0.93196, 0.36255,11.80000)

** points for K38 *+
csET(p,p71,-0.99385, 0. 11076, 12. 10000)
GSET(p,p72,-0.7O7t0, 0.70710, 12. 10000)
csET(p,p73,-0.50000, 0.86600,12. 10000)
GSET(p,p74, 0.00000, 1.00000,12. 10000)
csET(p,p75, 0.50000, 0.86600, 12. 10000)
csET(p,p76, 0.70710, 0.70710,12. 10000)
GSET(P,P77, 0.99385, 0. 11076,12. 10000)

** points for K39 ¡1.*

GSET(p, P81, -0.96144, -0.27500, 12.40000)
csET(p,p82,-0.70710, 0.70710, 12.40000)
csET(p,p83,-0.50000, 0.86600, 12.40000)
GSET(P,P84, 0.00000, 1.00000, 12.40000)
GSET(P,P85, 0.50000, 0.86600,12.40000)
GSET(P,P86, 0.70710, O.707L0, 12.40000)
GSET(P,P87, 0.96144,-0.27500, 12.40000)

'r* points for K40 *'1.

csET (p,P91, -0. 66346, -0. 7482t,t2.70000)
GSET(P,P92,-0 .707!0, 0.70710, 12.70000)
csET(p,p93,-0.50000, 0.86600, 12.70000)
csET(p,P94, 0.00000, 1.00000,12.70000)
GSET(P,P95, 0.50000, 0.86600,12.70000)
csET(p,P96, 0 .707tO, 0.70710,12.70000)
csET(p,P97, 0.66346,-0.7482L,12.70000)

r,* points for K41 **
csET(p,p101 , -7. O7O0E-01, -7.07008-01 , 1.3E+01)
GSET(P,P102,0. OOOOE+oo, -1 .0000E+00, 1 .3E+01)
csET (p, p103, 7 . 0700E- 0L, -7. 0700E-01, 1 . 3E+01)
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GSET (P, P 104, 1 . 0000E+00, 0. 0000E+00, 1 . 3E+01)
GSET (P, P 105, 7 . 0700E-01, 7. 07008-01, 1 . 3E+01)
GSET (P, P106,0.0000E+00, 1.0000E+00, 1 .3E+01)
GSET(P,P107,-7 .O7}OE-OL,7 .0700E-01, 1. 3E+01)
GSET (P, P108, -1 .0000E+00,0.0000E+00, 1.3E+01)

* Set lines/arcs
GSET (L, A1, P1, P3, 10, 52, ARC,P2)
GSET (L, A2, Pt,P7, 10,52, ARc,P8)
GSET (L, A3 , P3, P5 , 10 , 52, ARC, P4)

GSET(L,A4,P7,P5, 10,52,ARC,P6)
+ Iines,/arcs for K32

GSET (L, LA1 , P1 1 , P17 , 10, S.85)
GSET(L, LA2, P11,P13, 10, 52, ARC, P12)
GSET(L, LA3, P17, P15, 10, 52, ARC, P16)
GSET(L, LA4, P13, P15, 10,52, ARC, P14)

* lines/arcs for K33

GSET (L, LB1 ,P2t ,P27, 10, S . 85)
GSET (L, LB2,P2t,P23, 10, 52, ARC, P22)
GSET (L, LB3 ,P27 ,P25 ,10, 52, ARC, P26)
GSET(L, L84,P23,P25,10,52, ARC, P24)

* lines/arcs for K34
GSET(L, LC1 , P31 , P37, 10, S.85)
GSET(L, LC2,P31 , P33, 10, 32, ARC, P32)
GSET(L, LC3,P37, P35, 10, 52, ARC, P36)
GSET (L, LC4, P33,P35, 10,52, ARC, P34)

* lines/arcs for K35
GSET(L,LD1,P41,P47,10,S. 85)
GSET(L, LD2,P41,P43, 10, 32, ARC,P42)

GSET(L, LD3,P47,P45,10, 52, ARC, P46)
GSET(L, LD4,P43,P45, 10,52, ARC,P44)

* lines,/a¡cs for K36
GSET(L, LE1 ,P51 ,P57,10, S.85)
GSET(L, LE2, P51, P53, 10,52, ARC,P52)

GSET (L, LE3, P57,P55, 10, 52, ARC,P56)

GSET(L, LE4,P53,P55, 10,32, ARC, P54)
* Iiues/arcs for K37

GSET(L,LF1,P61,P67, 10,S. 85)
GSET(L, LF2,P61,P63, 10, 52, ARC, P62)
GSET(L, LF3,P67,P65, 10,52, ARC, P66)
GSET (L , LF4 , P63 , P65 , 10 , 52 ,ARC , P64)

* tines/a¡cs for K38

GSET(L,LGl,P7 t,P77,10,S. 85)
GSET(L, LG2,P7 7,P73, 10,52, ARC,P72)

GSET(L,LG3,P77,P75,10,52,ARC,P76)
GSET (L, LG4,P73,P75, 10, 52, ARC, P74)

* lines/arcs for K39

GSET(L, LHl, P81 , P87, 10, S.85)
GSET(L, LH2, P81,P83, 10,52, ARC, P82)
GSET(L, LH3, P87,P85, 10, 52, ARC,P86)

GSET(L, LH4,P83, P85, 10,52, ARC,P84)
* lines/arcs for K40

GSET (L, Lr1 ,P91,P97,10, S.85)
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GSET (L, Lr2,P91, P93, 10, 52, ARC, P92)
GSET (L, Lr3, P97, P95, 10, 52,ARC, P96)
GSET (L, Lr4, P93, P95, 10, 52, ARC, P94)

* liues/arcs for K41
GSET (L, AA1, P101 , P103, 10, 32, ARC,P102)
GSET (L, AA2, P101,P107, 10, 52,ARC,P108)
GSET (L, AA3, P103,P105, 10, 52, ARC,P104)
GSET (L, AA4, P107,P105, 10, 52, ARC,P106)

* Set frames
GSET(F,F1,P1, -,P3, -,P5,-,P7,-)
GSET(F,F32,P11, -,P!7,-,P15, -,P13, -)
GSET (F, F33,P2L, -,P27,-,P25,-,P23,-)
GSET(F,F34,P31, -,P37,-,P35, -,P33, -)
GSET (F, F35 ,P4L ,- ,P47 ,-, P45, - , P43 , -)
GSET(F, F36, P51 , -, P57, -, P55, -, P53, -)
GSET(F,F37,P61, -,P67, -,P65, -,P63, -)
GSET(F,F38,P7 t,-,P77,-,P75,-,P73, -)
GSET (F, F39, P81, -, P87, -, P85, -,P83, -)
GSET(F, F40, P91, -,P97,-, P95, -,P93, -)
GSET(F,F41,P101, -,P103, -,P105, -,P107, -)

* Match a grid nesh
GSET(M, F1, +I+J, 1, 1,1 ,LAP5)
GSET(M, F32, +I+J, 1, 1, 32, LAPS)

GSET(M,F33, +I+J, 1, 1, 33,LAP5)
GSET(M,F34, +I+J, 1, 1, 34,LAP5)
GSET(M,F35,+I+J, 1, 1, 35,LAP5)
GSET(M,F36,+I+J, 1, 1, 36,LAP5)
GSET(M,F37,+I+J, 1, 1, 37,LAP5)
GSET (11,F38, +r+J, 1, 1, 38, LAPS)

GSET (M,F39, +I+J, 1, 1, 39, LAPS)
GSET(M,F40,+r+J, 1, 1,40,L4P5)
GSET (M, F41 , +I+J, t ,L,4L, LAPS)

* Copy/Transfer/Block grid planes
GSET (C,K31, F,K1, 1, 10,1, 10, +,0,0, 10, rNC, 1)
GSET (T, K32, F,K31, 1, 10, 1,10, 1)
GSET(T,K33,F,K32,1, 10, 1, 10, 1)
GSET(T, K34,F,K33, 1, 10, 1, 10, 1)
GSET(T,K35,F,K34, 1, 10, 1, 10, 1)
GSET(T, K36,F, K35, 1 , 10, 1 , 10, 1)
GSET(T, K37,F, K36,1 ,10, 1 ,10, 1)
GSET (T,K38, F, K37, 1,10, 1,10, 1)
GSET(T,K39,F,K38, 1, 10, 1, 10, 1)
GSET(T,K40,F,K39, 1, 10, 1, 10, 1)

GSET(T, K41 ,F,K40, 1 ,10, 1 , 10, 1)
ttif;i11il;*nt' 1' 10' 1' 10'+'o'o' 15' rNc' 1)

NONORT = J
* X-cyclic boundaries s¡¡itched

*¡i '1.* * 't** ¡1.* ¡ß¡1.*¡lt¡1.* * t* **rk¡l.t * * *****rlt ¡¡ ¡1.***¡1.*¡¡*'f **¡t** t*t¡l.t *¡l +*,È'1.

Group 7. Variables: ST0REd,SOLVEd,NAMEd
ONEPHS = f

'¡ Non-default variable names
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NAME(43) =HP0R ; NAME(44) =NP0R
NAME(4S) =EPOR ; NAME(46) =VP0R
NAME(47) =WCRT ; NAME(48) =VCRT
NAME(49) =DEN1 ; NAME(5O) =UCRT

* Solved variables list
S0LVE(P1 ,U1 ,V1 ,ÌJ1 )

* Stored variables list
STORE (UCRT, DEN 1, VCRT, T.ICRT, VPOR, EPOR, NPOR, HPOR)

* Additional solver options
SOLUTN(P1,Y,Y,Y,N,N,N)
**********+******¡l*******f ***************,t rf rt'¡****'¡**+*****x*
Group 8. Terns & Devices

**¡1.*'1.**t***,t************rfi***¡¡{.*t*rl*******,i¡i*****************
Group 9. Properties

RH01 = 1.000E+03
ENUL = 3.88-3 ;ENUT = 0.000E+00
***¡1.*******'l*******,1.,***'t***********¡**,i***:t,t,ß+***'ß'¡*'f 

't *¡i*****
Group 10.Inter-Phase Tra¡sfer Processes

***f ********¡t *****+*rf ************!ß'¡***,***,¡*¡i********¡¡***¡t **¡¡
Group 11. Initialise VarlPorosity Fields

FIINIT(HP0R) = 1.000E+00 ;FIINIT(NPOR) = 1.O0OE+00
FIINIT(EPOR) = 1.OOOE+OO ;FIINIT(VPOR) = 1.OOOE+OO
FIINIT(UCRT) = 0.000E+00

No PATCHes used for this Group

RSTGRD F

INIADD = þ
******¡i*********¡t*,t*******¡ß¡t *******,t,tr********'t*************t
Group 12. Convection and diffusion adjustnents

* * t¡Ì '1.**'1.* '1.* * * *'ß**'1.*r¡ ************ ** ***** ****{.rl.r¡ * *,1.***** ******
Group 13. Boundary & Special Sources

PATCH (KESoIIRCE,PHASEM, 1, 10,1, 10,1,70, 1,1)

** inlet definitions '¡'¡

INLET
VALI'E
VALI'E
VALITE

VALI'E
VALIIE

(BFCIN11
(BFCIN11
(BFCIN11
(BFCIN11
(BFCINl 1

(BFCIN11

(BFCIN12
(BFCIN12
(BFCIN12
(BFCIN12
(BFCIN12
(BFCIN12

L0I.l

P1

U1

V1

l¡1
l.¡CRT

,1,10r1,1,#1,#1r1,1)
GRND1 )
GRND1 )
GRND1 )
GRND1 )
2.520E-01)

, 1, 10, 10, 10,#1,#1, 1, 1)INLET
VALI'E
VALIIE
VALI'E
VALIIE
VALITE

, Lol¡

,P1
,ul
,v1

'W1
,llcRT

GRNDl

GRNDl

GRNDl

GRNDl

2 520E-01

)
)
)
)
)

rNLET (BFCrN13,LoLr,r,L,2,g,#1,#1,1,1)
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VALI]E

VALI]E

VALI'E
VALIIE
VALI'E

(BFCIN13
(BFCIN13
(BFCIN13
(BFCIN13
(BFCIN13

(BFCIN14
(BFCIN14
(BFCIN14
(BFCIN14
(BFCIN14
(BFCIN14

(BFCIN21
(BFCIN21
(BFCIN21
(BFCIN21
(BFCIN21
(BFCIN21

(BFCIN22
(BFCIN22
(BFCIN22
(BFCIN22
(BFCIN22
(BFCIN22

(BFCIN23
(BFCIN23
(BFCIN23
(BFCIN23
(BFCIN23
(BFCIN23

(BFCIN24
(BFCIN24
(BFCIN24
(BFCIN24
(BFCIN24
(BFCIN24

INLET
VALI]E
VALI'E
VALTIE

VALI]E

VALIJE

INLET
VALTTE

VALI]E
VALI'E
VALUE

VALITE

INLET
VALITE

VALI'E
VALT'E

VALI]E

VALI'E

INLET
VALI'E
VALIIE
VALIJE

VALIIE

VALITE

INLET
VALITE

VALI'E
VALIIE
VALIJE

VALI]E

,P1 , GRND1 )
,u1 , GRND1 )
,V1 , GRND1 )
,}I1 , GRND1 )
,ülcRT, 2.5208-01)

,Lol|l, 10, 10,2,9,#1,#1, 1, 1)

,P1 , GRND1 )

,Ul , GRND1 )

,vl , GRND1 )
,l¡1 , GRND1 )
,lIcRT, 2.520E-01)

,LOli,2,9,2,2,*I r*L,t,L)
,P1 , GRND1 )
,U1 , GRND1 )
,V1 , GRND1 )
,I{1 , GRND1 )
,llcRT, 4.480E-01)

, Loïl ,2,9,9 ,9, #1 , #1 , 1 , 1)

,P1 , GRND1 )
,u1 , GRND1 )
,vl , GRND1 )
,ll1 , GRND1 )
,llcRT, 4.480E-01)

,LDtil,2 12 r3,8r#1,#1, 1, 1)
,Pl , GRND1 )
,u1 , GRND1 )
,v1 , GRND1 )
,ll1 , GRND1 )
,hrcRT, 4.490E-01)

,Lo[l,9,9,3,8,#1,#1, 1, 1)

,P1 , GRND1 )
,U1 , GRND1 )
,v1 , GRND1 )
,lJ1 , GRND1 )
,lJcRT, 4.480E-01)

, Lol|l ,3,8,3,3, #1 , #1 , 1, 1)

,P1 , GRND1 )
,u1 , GRND1 )
,v1 , GRND1 )

,tù1 , GRND1 )
,ülcRT,5.880E-01)

INLET
VALT'E

VALI'E
VALI'E
VALITE

VALT'E

(BFCIN31
(BFCIN31
(BFCIN31
(BFCIN31
(BFCIN31
(BFCIN31

INLET (BFCIN32

VALI'E (BFCIN32
VALI'E (BFCIN32

VALI'E (BFCIN32

,3,8,8r8,#1,*1,1,1)
, GRND1 )
, GRND1 )
, GRND1 )

, LOL¡

,P1
,u1
,v1
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VALIIE (BFCIN32 ,II1 , GRND1 )
VALIIE (BFCIN32,htCRT, 5.880E-01)

INLET
VALI'E
VALIJE

VALIIE
VALIIE

VALITE

(BFCIN33
(BFCIN33
(BFCIN33
(BFCIN33
(BFCIN33
(BFCIN33

,L0LI,3r3,4 r7,#1,#1, 1, 1)
,P1 , GRND1 )
,U1 , GRND1 )
,V1 , GRND1 )
,1.l1 , GRND1 )
,llcRT, 5.880E-01)

,Low r8r8 14,7,*L,#1,1,1)
,Pl , GRND1 )
,U1 , GRND1 )
,v1 , GRND1 )
,lJ1 , GRND1 )
,I.lcRT, 5.8808-01)

,L1vl ,4,7 1414,*1 ,

,P1 , GRND1 )
,U1 , GRNDI )
,v1 , GRND1 )
,lì11 , GRND1 )
,l,lCRT,6.720E-01)

#1,1r1)

,LOW,4 r7 17,7,#1r#1, 1, 1)

,Pl , GRND1 )
,U1 , GRND1 )
,Vl , GRND1 )
,ïü1 , GRND1 )
,llcRT, 6.720E-01)

, Loll ,4,4,5 ,6, #1 , #1 , 1 , 1)

,P1 , GRND1 )
,U1 , GRND1 )
,V1 , GRND1 )
,W1 , GRND1 )
,htcRT, 6.720E-01)

,Low r7,7 r516,#L,#I ,7,7)
,P1 , GRND1 )

,U1 , GRND1 )
,V1 , GRND1 )

,W1 , GRND1 )

,llcRT, 6.720E-01)

, LoLI ,5 ,6,5,6, #1 , #1 , 1 , 1)

,Pl , GRND1 )
,u1 , GRND1 )
,V1 , GRND1 )
,I'11 , GRND1 )
,l¡cRT, 7.000E-01)

INLET
VALI'E
VALI'E
VALIIE
VALI'E
VALI'E

INLET
VALI'E
VALTIE

VALIIE
VALIIE
VALI'E

(BFCIN34
(BFCIN34
(BFCIN34
(BFCIN34
(BFCIN34
(BFCIN34

(BFCIN41
(BFCIN41
(BFCIN41
(BFCIN41
(BFCIN41
(BFCIN41

(BFCIN42
(BFCIN42
(BFCIN42
(BFCIN42
(BFCIN42
(BFCIN42

INLET
VALI'E
VALIIE
VALTIE

VALITE

VALT'E

INLET
VALIIE

VALT'E

VALIIE
VALITE

VALI]E

INLET
VALUE

VALI'E
VALIIE
VALI'E
VALT'E

INLET
VALI'E
VALTIE

VALITE

VALIJE

VALUE

(BFCIN43
(BFCIN43
(BFCIN43
(BFCIN43
(BFCIN43
(BFCIN43

(BFCIN44
(BFCIN44
(BFCIN44
(BFCIN44
(BFCIN44
(BFCIN44

(BFCINs
(BFCINs
(BFCINs
(BFCINS
(BFCINs
(BFCINs
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PATCH (OUT

COVAL (OUT

PATCH (}¡1

covAl (r¡1
covAl (h¡1

PATCH (W2

covAl (v¡2

c0vAL (r.¡2

PATCH (W3

covAl (rI3
COVAL (IJ3

,HrGH,#1,#1,#1,#1,#L2,#L2,r,t)
,P1, FIXVAL, 0.000E+00)

,wlIALL,#1,#1,#1,#1,#L,#12,t,!)
,V1,GRND2 ,0.000E+00)
,!{1,GRND2 ,0.000E+00)

,EIIALL ,#1 ,#1,#1 ,#1 ,#t,#L2,
,vl ,GRND2 ,0.0008+00
,I.¡1 ,GRND2 ,0.0008+00

, StrlALL , #1 , #1 , #1 , #1 , #1 , #12, 1 , 1)

,U1,GRND2 ,0.000E+00)
,W1,GRND2 ,0.000E+00)

1, 1)

)
)

PATCH (h'4

covAl (hr4

COVAL (II4

,NWALL ,#1 ,#1,#1,#1 ,#7,#12,7,t)
,u1,GRND2 ,0.000E+00)
,tl1,GRND2 ,0.000E+00)

BFCA = 1.000E+03
****'¡***,È*'i*****,t ***¡t ******'ß'¡***'¡**********'¡******'1.*********
Group 14. Downstrea¡l Pressure For PARAB

¡ß*rß*****¡t **rt *¡1.¡¡**'¡:¡*****************t***'i***¡i**x¡ß***********
Group 15. Terninate Sweeps

LShTEEP = 3000
SELREF = J
RESFAC = 1.0008-02
*** rl.* * * rl.¡i ri * *,1.***{.**rl.rl.rl.*** ** *¡t tl.¡i*¡i¡1.*,1.**+¡1.¡1.*¡*¡fi *+*¡1.**tl.**tl.**:ttl.!t *

Group 16. Terninate Iterations
¡1.**,1.* * * rtrl * * *********'1.**** *¡1.¡i+¡l *,*+* * ****** *** {.**** ***********

Group 17. Relaxation
RELAX(P1,LINRLX, 1.000E-01)
RELAX(U1,FALSDT, 5.0008-01)
RELAX(V1,FALSDT, 5.oooE-O1)
RELAX(hr1,FALSDT, 5.000E-01)
¡¡ * t* ¡1.*** **** '1.¡l*¡1.***t¡ ¡1.**** ***** 'f *** * *¡fi ***¡1. * **+* * *'fi¡ßX t **** ****

Group 18. Linits
*¡t *t*****!¡*rß******t****+*****'1.**¡t****+,1.****,1**'1.**********+**
Group 19. EARTH Calls To GROUND Station

GENK = J
**** '| *** rß*** ¡¡ ******¡i*** *¡t**** *** ******'t¡i:f *** *¡1.¡1.+ * *'1.*+*¡¡*****
Group 20. Prelininary Printout

ECH0 = J
* ** ** '¡ *** ¡i * ** '¡ '1.** *¡t* *,t**¡¡ ***** ** ** ¡1.**¡1.* '¡*****'1.* ** *****'Í*****

Group 21. Print-out of Variables
OUTPUT(HPOR, N,N,N, Y,N, N)

OUTPUT (NPOR, N, N,N, Y, N, N)

OIITPUT (EPOR, N, N,N, Y,N,N)
OIITPUT (VPOR, N, N,N,Y, N, N)

'ß 
r! * '1.* * ** * * ¡1.** * 'i ****'1.** * **** 'l** * * +¡fi ¡¡ ** ** *'1.'t '1.***'t ***¡È**:1.¡1.*****

Group 22. Monitor Print-0ut
IXMON = $ ;IYM0N = $ ;IZMON = 35
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TSTSI.¡P = 1

¡t * * * *** * *¡1. *tt¡1.** *'i* t*** t ***,t*¡itf ¡1.*** +*¡f +'1.*'1.¡1.**¡¡*¡t**'1.*¡l.tl* ******

Group 23.Field Print-0ut & Plot Control
No PATCHes used for this GrouP

*¡i**¡f t***{.+ *** ***+********1. **¡i **** **'t ** *+t** *,1.***¡l¡t*********
Group 24. Dunps For Resta¡ts

*:t * **¡|** t*** *+*rl.¡t *,1.* *¡l * ¡fi***'ß**** ***¡1.***tl.* * ** *¡ttÈ+**¡fi ¡1.¡1.**'È*¡l t ¡l'

MENSAV(S,RELX,DEF, 1. 0000E-01,5. 0000E-02,0)
MENSAV(S,PHSPRoP,DEF,2O0,O, 1. 00058+03, 1. 78808-06)
MENSAV (S , FLPRP , DEF , LAMINAR, CONSTANT, AIR-CONSTANT)

STOP



Appendix E 
 
Ang, K.C. and Mazumdar, J. (1995) Mathematical modelling of Triple Arterial 
Stenoses. 
Australasian Physical & Engineering Sciences in Medicine, v. l8 (2), pp.89-94, 1995 

 
 
 
 
 
 
 
 
 
 
 

 
NOTE:  This publication is included on pages 174-179 in the print 

copy of the thesis held in the University of Adelaide Library. 
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trRRATA

1. On page 35, the following paragraph should appear before the beginning of the

section on Poiseuille Flow Formula :

Typical values of Reynolds number for blood flow range fi'om very low va,lues

of about 10 to as high as 2000 (McDonald 1960), and enteling into regions

of turbulent flow, depending on various factors such as size and natule of the

artery. However, in numerical modeliing of blood flow, the range of Reynolds

number that can be used without causing instabilities is usually limitecl by

factors such as tþe ¡rethocl of solution, the computational grid size ancl the

geometr.y of the rnoclel. In the plesent study, the cornputational analysis had

permitted a tarìge of Reynolcls nurnbel up to alound 1000'

2. On page 60, the following palagraph should appeal aftel the last line of text :

It should be noted that in each of these glaphs, the outlet pr-esstlre is onl¡'

approximately zeÏo ancl not exactlS, 2s¡s. The slight cliscrepancy is drre to

accumulated, computational erlols, which may be neglected since our plincipal

interest is in the qualitative compaÎison between the cases here.

3. On page 82, the following line should be aclded to the caption of Figure 5.4 :

(Note that more simulations ha,ve been callied out in this case to genelate mole

data points so as to give a bettel illustration of the genelal tlencl)

4. On page 85, the following line shoulcl be added to the caption of Figure 5.5 :

Note that additional clata points vr'ele genelated from sirnulations (not I'eported

in the rnain text) in ordel to provide values so that a smoother cul'\/e Ina,1r l1ç

plotted.

5. On page 161, the follorving line shoulcl appear below the titlefol Appenclix C :

(Note : the quantities in the input file ale dirnensionless)

6. On page 165, the following line should appear belorv the title fol Appenclix D :

(Note : the quantities in the input file are climensionless)




