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ABSTRACT

This thesis develops an alternative control strategy, for active noise and vibration
control systems, that does not require identification of the cancellation path transfer
function (between the control actuator input and error sensor output). It is errors in
the identification of the cancellation path transfer function that plague the most
commonly used algorithms. The control structure presented in this work uses a lattice
filter to generate orthogonal signals for each coefficient of a linear combiner (or
control filter). The aim of the Independent Quadratic Optimisation algorithm,
developed in this work, is to optimise the coefficients of the control filter
independently. For each control filter coefficient, estimates of the cost function are
made for different perturbations of the coefficient’s value. These cost function
estimates, when fitted to a quadratic function, allow the optimum for each coefficient

to be determined.

It will be shown by theory, simulation and experiment, that this control strategy is
ideal for reducing harmonically related tonal noise. However, the speed of the
algorithm is reduced for other types of noise, as the cancellation path transfer function
degrades the independence of the control filter coefficients. The parameters that
affect the performance of the Independent Quadratic Optimisation algorithm are also

assessed using theory, simulation and experiment.
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Active noise and Vibration Control is considered to have been first proposed by the

German Physicist Paul Leug [1933]. His system was based on a feedforward means of

control, shown in Figure 1-1, and requires knowledge of the disturbance to be

cancelled, to generate a suitably delayed out-of-phase control signal. However, unlike

current feedforward systems, Leug’s system had no control algorithm or error sensor

and thus was not adaptive. In a feedforward system, the control signal is generated

using a reference sensor that provides a signal coherent with the noise to be cancelled.

For all but periodic noise, this type of system is only possible for waves which

propagate slower than the active cancellation system can respond in real-time, and

thus exhibit causality. Further advances at this time were prevented by the low level

of technology and the political situation of this era.

Reference Control
Sensor Signal
- CONTROL
FILTER/STRUCTURE

Control Filter/Structure
Parameter Adaptation

CONTROL
ALGORITHM

-

Figure 1-1. Feedforward control configuration.

-2

Error
Sensor

r S



Chapter 1. Introduction

The performance of the control system is judged by an error sensor or combination of
error sensors (in the case of control of evanescent modes or power flow minimisation)
placed downstream from the control actuator. Maximum achievable attenuation for
systems of this type is limited by reflecting surfaces within the duct. The additional
possibility of noise from the control actuator corrupting the signal at the reference
sensor contributed to the attempted development of a unidirectional control actuator
[Jessel, 1972; Swinbanks, 1973; Leventhall, 1976] through the use of different numbers
and configurations of control sources, and a unidirectional error sensor [La Fontaine
and Shepherd, 1985] through the use of different numbers and configuration of error
sensors. These physical means of avoiding corruption are however limited to narrow-
band attenuation, dependent upon the spacing of the transducers. The minimisation
of corruption from the reference sensor can also be achieved through a more

sophisticated control system as will be discussed in chapter 2.

A later fundamental development by Olson and May [1953] was in the form of
feedback control, shown in Figure 1-2. This form of control uses an error sensor to
generate an out-of-phase control signal and hence requires no prior knowledge of the
primary disturbance. For this reason the method is suited to applications where it is
not possible to obtain a coherent reference signal. Such applications include spatially
incoherent noise generated by turbulence, noise generated from many sources and
paths, and induced resonance where no coherent reference signal is available

[Swanson, 1991].
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Control Reference/Error
Signal Sensor
CONTROL
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Figure 1-2. Feedback Control Configuration

In a feedback control system, the error sensor signal passes through the controller
until it is minimised. This method is prone to instabilities as high gains are required
to generate a control signal from the error signal (once this signal itself has been
optimally minimised). The time delay from when the control signal is applied to the
control actuator and when the response is detected at the error sensor means that
only narrow band signals may be cancelled, as will be further discussed in chapter 2.
This control arrangement is however particularly successful in headsets [Simshauser,
1955], as the small volume of air behaves as a lumped element therefore reducing
restrictions on controller stability and providing broad-band attenuation from an

otherwise narrow band control structure.
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It is important to note that all of the early developments used fixed filter analogue
control systems which were not adaptive to the changing environment within the
physical system. To achieve the necessary accuracy in the phase and amplitude of the
control signal (for 10-20 dB of attenuation), a complex analogue control system is
required. Further to this is the need for the control system to be adaptive in time to
the changing characteristics of actuators, sensors and the acoustic media in which they
are located. Since the 1980’s, there has been a rapidly expanding interest in Active
Noise and Vibration Control, principally because of the availability of digital
technology, and the dramatic advances in the digital signal processing field initiated
for adaptive techniques by Widrow [1960]. The first active noise and vibration control
systems implementing digital techniques were developed by Kido ([1972] for
transformer noise, and by Chaplin [1978] for more general physical systems. The
1980’s has seen the development of many different control algorithms and electronic
architectures in attempts to overcome the major problems of acoustic feedback
between the actuators and sensors, and also the required knowledge of the transfer

function between these transducers.

To this point the electronic control element of the overall control system has only
been discussed, however the placement, location and type of control actuators and
error sensors are also of importance, as are the physical mechanisms that govern the
amount of attenuation possible. Jessel [1968] and Malyuzhinets [1969] provided the
initial acoustic theory that has since been developed by many different researchers,
sporadically in the 1970’s for one-dimensional physical systems, and more intensively

in the mid 1980’s for general physical systems.

-5



Chapter 1. Introduction

Conover [1956] envisaged the use of multiple control sources and error sensors to
control free-space radiation, and to some extent developed the first commercial
oriented application of active noise and vibration control to control transformer noise.
The rewarding commercial prospects together with countless research efforts can only
suggest that Active Noise and Vibration Control systems for general physical
applications will be available in the near future. Since the 1980’s, the widespread
application of active noise and vibration control to many commercial problems has led

to the formation of companies specialising in this field.

The two major impediments to the progress of a general Active Noise and Vibration
Control System are digital signal processing technology and transducer technology.
Improvements in signal processing technology has led to advanced control algorithms
and electronic architectures. Advances in algorithms have been aimed at improving
performance parameters like control system stability, robustness, speed of adaptation
and frequency bandwidth of attenuation. Advances in electronic architecture has led
to increased speed of operations which, in conjunction with parallel processing, will
also inevitably enable the use of more complex control algorithms. The work

described here is concerned with developing a more stable control algorithm.
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1.2 Problem Definition

The aim of this work is the development of an adaptive algorithm and control
architecture, for implementation in active noise and vibration control systems, that
avoids the instabilities associated with phase inaccuracies in the cancellation path (or
otherwise known as the error path, secondary path, or auxiliary path) transfer function
estimation. Current methods of control require knowledge of the cancellation path to
reach the optimum of the performance surface in a stable manner. A survey of
recently published journal and conference proceedings reveals a body of work directed
towards improving transfer function estimates, but no work directed towards
developing means of making them unnecessary. Clearly, the latter would be the
preferred option in any practical system, and it is towards this option that the work

presented in this thesis is directed.

The achievement of this aim requires a significant departure from lines of thought
currently being followed in this field, a departure which is necessary if this noise and
vibration control technique is to progress to widespread commercial use with the
development of a general electronic control system incorporating muitiple control
actuators and error sensors (and hence multiple error-paths). The specific aims of

this work are:

. To study/develop an active control algorithm that eliminates the need to
estimate the cancellation path transfer function, by considering an alternative

search strategy of the performance surface (defined by error sensors) that

2%
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requires no knowledge of the gradient (as most other search strategies do) and

relies only on estimates of the performance surface magnitude.

. To develop an efficient means of searching the performance surface, using this

strategy, by identifying the principal axes that define the performance surface.

. To demonstrate the effectiveness of this means of control with computer
simulations and practical implementation (on suitable digital signal processing
hardware) using existing experimental apparatus (for both acoustic control and

structural control).

13 Thesis Outline

Chapter 2 presents a literature review of the electronic controller development, from
a modern control theory perspective. It should be read alongwith the appendix, which
presents a background to the control theory concepts discussed in chapter 2. Chapter
2 unifies many of the common heuristically developed algorithms, and offers possible
modifications to these that enhance their performance. It assesses both feedforward
and feedback control systems (and their combination) using a minimum-variance
control scheme and recursive identification methods within the framework of self-
tuning regulators. More advanced algorithms are shown to follow from a generalised
criterion and robustness conditions related to the accuracy of the identification
process. Algorithms that do not require error-path transfer function estimation are

introduced, and the Independent Quadratic Optimisation algorithm (that forms the

-8 -
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basis of this work) is conceptualised.

Chapter 3 introduces the lattice filter as a means of obtaining orthogonal signals. The
characteristics of the lattice filter are defined, as they relate to the Independent
Quadratic Optimisation algorithm, and the effects of a cancellation path transfer

function on the independence of control filter coefficients is assessed.

With the means of obtaining orthogonal signals defined, chapter 4 extends the
Independent Quadratic Optimisation algorithm concept by analysing its governing
equations and parameters. Chapter 4 also presents simulations of the Independent
Quadratic Optimisation algorithm for deterministic and random signals in single and
multi-channel systems. The simulations highlight the limitations of the Independent

Quadratic Optimisation algorithm as pre-empted in chapter 3.

Chapter 5 identifies the requirements of a digital signal processing system, with
specific regard to active noise and vibration control. Use is made of these concepts to
show the effectiveness of the Independent Quadratic Optimisation algorithm in the
real-time control of noise/vibration using various experimental apparatus (ie. a semi-

infinite duct and plate).

Finally chapter 6 summarises the findings of this study, and gives suggestions for

future research.
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14 New Work

New work original to this thesis is as follows:

Literature review with recommendations for improving commonly used
algorithms in active noise and vibration control, as defined from a control

theory perspective.

Use of the lattice filter to provide orthogonal signals to a linear combiner (or
control filter), so that the control filter coefficients can be adapted

independently using the Independent Quadratic Optimisation algorithm.

The Independent Quadratic Optimisation algorithm, which uses three estimates
of the cost function for each independent control filter coefficient, and fits

these estimates to a quadratic function to determine the optimum coefficients.

Assessment of the effect of parameters of the Independent Quadratic

Optimisation algorithm on the performance of this control scheme.

Assessment of the limitations of the Independent Quadratic Optimisation

algorithm.

Experimental verification (both noise and vibration control) of the Independent

Quadratic Optimisation algorithm using a transputer network.

- 10 -
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Chapter 2. Control Theory - Literature Review

2.1 Introduction

In this chapter the electronic controller that generates the control signal, for use in an
active noise and vibration control system, will be introduced from a "control theory"
perspective. The majority of active noise and vibration control systems developed
between 1980 and the early 1990’s evolved heuristically from an adaptive signal
processing context, largely as a result of the work of Widrow and Stearns [1985]. It is
considered that this heuristic approach overlooked many key concepts that are
commonly used in control theory, which can simplify and enhance the common

algorithms used in active noise and vibration control.

This chapter will examine the standard control systems and their associated algorithms
using control theory developed since the 1950’s. Classical and modern control will be
briefly revised, as will the important clarification between system identification and
control. The distinction between control and identification leads to the application of
"self-tuning regulators” to active noise and vibration control. The control scheme (that
is, control law and parameter adaptation, both of which will be defined shortly), that
will be used as a basis for summarising and enhancing common algorithms used in
active noise and vibration control, will be defined using a minimum variance approach
within the framework of self-tuning regulators. It will be shown that this type of
approach leads directly to more complex control schemes for more complex physical

systems.

This chapter will also highlight possible new approaches for control scheme

- 12 -



Chapter 2. Control Theory - Literature Review

development, and the major problems that need to be addressed in the electronic

control system domain of active noise and vibration control.

Alternative methods of control outside the realm of standard control theory will be
introduced. As part of this investigation, the Independent Quadratic Optimisation
algorithm concept will be introduced as a means of overcoming some of the problems
encountered with the standard control algorithms. The Independent Quadratic

Optimisation algorithm forms the basis of the remainder of this work.

2.2 Classical versus Modern Control

A control scheme is required when a process output is to be regulated or stabilised
within certain desired bounds. Classical control theory was developed by Bode,
Nichols and Nyquist in the 1940’s, and is based on the graphical representation of the
transfer function of a process in "closed-loop" form. Typically a feedback control
compensator was used to compensate for poor closed-loop performance (defined by
the gain and phase margins of the closed-loop system). This method of control has
been applied to active headsets [Carme, 1987; Simshauser, 1955], for which a lumped
parameter model of the process is used, and broadband attenuation is achieved.
Nelson and Elliott [1992] give an excellent introduction to this method, and
appropriate references for a more general study, these being in particular Kuo [1980]

and Franklin et al [1990].

-13 -



Chapter 2. Control Theory - Literature Review

More recent control methods ("modern control theory") have used a state-space
representation of the physical system. Dohner and Shoureshi [1989], Wu et al [1995]
and Hull et al [1991] have given state-space forms with specific regard to active noise
and vibration control. Modern control concepts can be used to derive optimal control

laws for the system.

Continuous or discrete forms of controllers have been used, with the parameters of
discrete forms able to be adapted to account for process changes. Discrete forms of
control schemes usually use "adaptive filters", which are discussed in appendix A.I.
Adaptive control is an important part of modern control, and it is in this realm that
the remainder of this work is focused. Adaptive control is essential as a result of the
ever-changing physical environment in which control of noise and vibration is
required, and it is this form of control which unless otherwise stated will be discussed

throughout this chapter.

It should be noted that the terms "process” and "system” will be used interchangeably,

but are to be interpreted as having the same meaning.

23 Control versus Identification

In this section the difference between the control of a system and the identification of
a system will be highlighted with regard to active noise and vibration control. In

particular, two models most commonly used to form a control and identification

- 14 -



Chapter 2. Control Theory - Literature Review

scheme, will be introduced.

To achieve control of a system (that is, to achieve a certain output from the system
regardless of the input), the expected response of the system (or a similar reference
system) to certain inputs is required. That is, to be able to predict the output of the
system from an input requires identification of the system. If the system is continually
changing then identification must be performed concurrently with control. It is the
interaction of these concurrent schemes that can cause the system to behave in an

unstable manner.

Unless otherwise stated, the review of control theory will concentrate on single
channel systems; that is, systems with a single control source, an error sensor and
possibly a reference sensor. The theory for a single-channel system can be extended

readily to multi-channel systems.

A simple single channel control system (either feedforward, feedback, or a
combination), consisting of a disturbance within a duct that is to be controlled by a
single loudspeaker, and measured by a reference sensor and an error sensor is shown
in Figure 2-1. The notation used in Figure 2-1 is in keeping with modern control
theory. It may be possible to obtain a measure of the disturbance (whether stochastic
or deterministic) using the reference signal, d(n). The signal from the error sensor is
represented by y(n), and can be considered to be composed of a "reference model"
output (that is, the output from the error sensor due to the known and unknown

disturbances), y,(n), and its inverse estimate (that is, the output from the error sensor

- 15 -



Chapter 2. Control Theory - Literature Review

due to the control signal), . (n). Note that y,(n) and y,(n) are unavailable as they
are combined in the vibro-acoustic domain. The control signal is represented as u(n).
These signal descriptors will be used to consider the two models commonly used to
form a control and identification scheme; that is a "Model Reference" or a "Model

Identification" system.

——g—— Reference «— Control = Error
Sensor -«  Actuator —m - Sensor

CONTROL
B~ STRUCTURE [

Control Structure
Adaptation

CONTROL
B ALGORITHM

lf

Figure 2-1. Omne-dimensional single channel (feedforward, feedback or a combination)
control system. A measure of the disturbance is given by d(n), the control signal is
represented by u(n) and the "process output" is represented by y(n). The process
output is composed of the disturbance output (or "reference model output"), y,(n),

and the output from the "control process" is given by J_(n).

A typical Model Reference system is shown in Figure 2-2. The signal descriptors used

- 16 -
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in Figure 2-2 are as described above. The "process" is the cancellation path transfer
function (also termed the error path, secondary path or auxiliary path transfer
function), with the output from the process at the error sensor resulting from the
control signal input. The process output must correspond to the inverse estimate of

the reference model output.

Unknown
Disturbance

— REFERENCE
MODEL
Error y._(n)
Signal = y(n) m
CONTROL < F
O— PARAMETER |«
ADAPTATION -
known R E— Yo ()
Disturbance
—P CONTROL LAW PROCESS
i P (Cancellation Path |— p- FProcess
p— oo eornenre) gqntr fl () %’ranaferaF:ﬁunct;n) (M) Output
ignal = u(n

Figure 2-2. Model Reference Adaptive System. The controller generates the control
signal that passes through a process (the cancellation path transfer function) and
results in a process output at the error sensor which should equal (but be out of phase

with) the reference model output at the error sensor, to achieve cancellation.

The reference model is the transfer function from some known disturbance input (eg.
duct ventilation fan) to the error sensor. The unknown disturbance could be caused

by, for example, flow generated noise within a duct.

-17 -



Chapter 2. Control Theory - Literature Review

The term "control law" is the law from which the control signal is generated by control
filters formed in a certain structure (commonly a single filter). The term "control
parameter adaptation” relates to the scheme or algorithm used to adapt or optimise

the parameters used in the control law.

An alternative interpretation of a Model Reference system uses a theoretical model as
the reference model, and the output of the error sensor as the estimate of the
reference model output. This interpretation will not be considered further as it is very
difficult to accurately construct a theoretical model of complex physical systems. The
Model Reference approach represents a typical form of system identification with the
prediction error, y(n), also known as the "output-error" in the field of system
identification (since the parameters of the control structure are adapted so that the
control structure in combination with the process is equivalent to the reference model,

as discussed in appendix A.2).

The Model Reference form of control and identification is not suitable for active
noise and vibration control because the reference model and its inverse estimate are
unavailable to the electronic control system, as they are combined in the vibro-
acoustic domain. (However, it will be shown in section 2.4.2 how these signals can be

estimated in a form of model reference or output-error control).

It is considered that the "Model Identification" form of control and identification is
more appropriate for active noise and vibration control. This system is shown in

Figure 2-3, and is more commonly known as a "Self-Tuning Regulator". As for the
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Model Reference form, the process is equivalent to the cancellation path transfer
function, with however the process output equivalent to the output from the error
sensor. Unlike the model reference approach, both the input (ie. control signal) to
the process and the output from the process are available for identification. The
process has also known (eg. duct ventilation fan) and unknown (eg. flow generated

noise within the duct) disturbance inputs.

It should be noted that both the models shown in Figures 2-2 and 2-3, whilst being of
either or a combination of feedforward or feedback form, do not explicitly show
corruption of the reference signal, which will be made apparent in the next section.
This simplification was made so that the difference between the "Model Identification"

form and the "Model Reference" form is more readily observable.

The Model Identification scheme first identifies the process (using a model of the
process with the parameters of the model termed the identification parameters) and
then uses the knowledge of the process determine the control law parameters. In the
identification problem, a performance measure based on the prediction error (ie. the
difference between the process output and the process output predicted from a
model) is used as a means of attaining small identification parameter errors. In the
control problem, regulation to a zero process output is desired for active noise and
vibration control, with the possibility of substantial control law parameter errors yet

still satisfactory control [Cowan and Grant, 1985].
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CONTROL IDENTIFICATION
PARAMETER —» PARAMETER  |(d——
ADAFTATION ADAPTATION
Process
. Output
—»  conTROL LAW PROCESS
(Control Fitter/Structure) Controib (Cancellation Pgth » or
. Transfer Function)
Signal ERtar
= u(n) f Signal = y(n)

known ("\5 Unknown

Disturbance Disturbance

Figure 2-3. Model Identification Adaptive System (Self-Tuning Regulator). The
process represents the cancellation path transfer function, with its output the error
signal, its input the control signal and the disturbances (which may be measured by

the reference sensor or may be unknown).

The control law parameters can be defined directly (or implicitly) if the algorithm
used to identify the parameters of the process model is implicitly integrated into the
control algorithm, or it can be defined explicitly (or indirectly) if the identification of
the process model is treated separately from the control problem. Thus common
terms used in the control literature relate to separability (ie. the effect of treating
control and identification separately), certainty equivalence (use of the identification
parameter estimates as though they have no errors), cautiousness (use of the

identification parameters with some degree of identification parameter estimation
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error inbuilt into the control algorithm), and dual control (which means that the
control scheme must perform both the task of regulation and identification in a
cooperative manner; ie. if the optimal control signal is zero then some fluctuation of
this signal must be allowed so that identification can take place concurrently)

[Goodwin and Sin, 1985; Chalam, 1987; Isermann, 1991].

The key concept throughout this work is that a control law is defined from the
identified parameters of the process model. Thus only a single algorithm is required
to adapt the process model parameters, and the control law parameters can then be
determined (not through adaptation) directly from the identification parameters. In
active noise and vibration control, a heuristic development of common algorithms has
lead to a combination of both implicit and explicit control parameter determination.
The interaction between the identification and control parameter adaptation schemes
can lead to instability. The next section will show how these heuristically developed
algorithms can be enhanced through definition by the minimum variance approach,

discussed generally in appendix A.3.

24 Modern Control Theory Applied to Active Noise and Vibration

Control

This section will consider self-tuning regulators as applied to active noise and
vibration control. As discussed, a self-tuning regulator requires the identification of a

system before it can be controlled. The important attributes of an identification and
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control scheme have been defined by many researchers [Bitmead et al, 1990; Goodwin
and Sin, 1985; Franklin et al, 1990] and relate principally to disturbance rejection (a
system that has good regulation in the presence of disturbance signals is said to have
good disturbance rejection), sensitivity (a system that has good regulation despite
changes in the process parameters, is said to have low sensitivity to these parameters),
robustness (a system that has good disturbance rejection and low sensitivity is robust)
and stability (bounded system inputs and outputs). These definitions will be used

throughout this section.

A self-tuning regulator has three essential components that are discussed in summary
form in the appendix. Terms and concepts defined in the appendix will be used
throughout this and other chapters, and the appendix is considered an essential
accompaniment to this chapter. The appendix is divided into sections as defined

below:

. Adaptive digital filters as process models and for control law definition. The
different forms and responses of these types of filters are discussed in appendix

Al

. Identification of process parameters. Appendix A.2 discusses the models used
to identify processes, with particular regard to the advantages and
disadvantages of non-recursive and recursive forms. Two methodsfor algorithm
definition are assessed, with the algorithm type dependent on the process

model.
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. Control law definition through minimising the variance of the process output.
Appendix A.3 describes the minimum variance control approach, with regard to

knowledge of identified process parameters.

The common algorithms used in active noise and vibration control will be shown to
follow directly from the minimum variance control theory approach. Heuristic
improvements of these common algorithms, developed through from 1980 to 1990, will
be shown to be standardised by the minimum variance control theory approach.
Other means of improving the most common algorithms will be shown as derived
from this theory. The use of minimum variance control leads directly to Linear
Quadratic Gaussian (LQG) control for non-minimum-phase plants. H_, control is a
further extension of this and is related to the development of a cautious (as opposed

to certainty-equivalence discussed above) controller.

The control theory can be presented using a state-space analysis, but in this chapter it
will be presented using transfer functions modelled by polynomials with the delay
operator, ¢! (a discussion on the use of the delay operator to model transfer
functions using polynomials is given in appendix A.1). The term transfer function is
used generically; That is, when used in the context of phase and amplitude, the
frequency response form is implied, and when used in the context of delays and
convolutions, the impulse response form is implied (with further discussion given in

appendix A.1).

Results will be presented for a single channel system, but they can be easily extended
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to multi-channel systems. This unified view of the most common algorithms is an

extension and review of the work by Doelman [1991] and Ren and Kumar [1989].

The most general form of control law incorporating both feedforward and feedback
forms of control, as well as allowing for input contamination, will now be considered.
Doelman [1991] defined such a system in which the disturbance was partly defined as
known or measurable, and partly unknown. The single channel system was excited by
these disturbances as well as the control signal. Feedforward control was achieved
using a "reference sensor" that unfortunately was also subjected to acoustic feedback
(otherwise known as input contamination) from the control source. Feedback control
was achieved using an "error sensor”. The overall physical system that allows for a
feedforward, feedback or a combination of both control schemes is shown in Figure 2-
4, with the time delay between the reference sensor and error sensor given by 7,,
between the control actuator and the reference sensor by 7,, and between the control
actuator and the error sensor by 7,. Note that the location of the algorithm used to
adapt the control law parameters is not shown for clarity in Figure 2-4. The signal
from the reference sensor is denoted d(n), that from the error sensor by y(n) (defined
simply to correspond with the control theory literature), and that to the control

actuator by u(n).

The corresponding block diagram form is shown in Figure 2-5, incorporating both
feedforward and feedback control filters with input contamination of the reference
sensor signal. Figure 2-5 shows both the feedforward, Gpz, and feedback, Gy,
control filters. The other transfer functions are related to the process and the
disturbance models. The cancellation path transfer function is represented by Gpp
and the acoustic feedback transfer function is represented by G,;. The disturbance
models are given by G, representing the transfer function for the measurable
disturbance, and G, representing the transfer function for the unmeasurable

disturbance.
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Disturbance —» L

Reference Control

Actuator Sensor

u(n)

CONTROL LAW y(n) |
(Control Filltsr'éﬁtmctu re)

d(n)

Figure 2-4. Physical layout of a single-channel control system (either feedforward,

feedback or a combination of both), with time delays between transducers shown.

Unknown
Disturbance €M)

Khown
Disturbance x(n)

Reference
Signal

Figure 2-5. Block diagram form of transfer functions comprising the single channel

system shown in Figure 2-4.
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Before considering the feedforward and feedback components separately, the
Diophantine equation will be introduced and the minimum variance control law
formulated in its most general form. The Diophantine equation gives an insight into
the physical effects and requirements of feedforward and feedback control schemes,
which will be discussed in sections 2.4.1.1 and 2.4.1.2. Feedforward and feedback
components will be considered separately, using simplifications of the theory to be
outlined in this section, and related to the extensive literature on active noise and
vibration control to show where commonly used algorithms can be improved.
Feedforward control will be considered firstly without and then with input
contamination, followed by consideration of feedback control. It will be shown that
the control filters can be of infinite (IIR) or finite (FIR) impulse response, dependent

upon the type of disturbance to be controlled.

The polynomials shown in Figure 2-5 should strictly be written as for example A(qg),
but instead will be simplified to 4, for ease of presentation. It can be shown using
Doelman’s [1991] system representation, that the system output (error signal) is given
by

y(n) - —j-q"*um) : %q‘”x(n) : l—%e(n) [2-1]

This can alternatively be written as

Yuvr) = Zul) v Zrerory) + Me(rery) = e(n) 22]

where the Diophantine equation is

L o omgn N [2-3]
DA DA
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with M of order (7, - 1) and N of order (n,+n, -1). The unpredictable part of the
disturbance is Me(n+7,). The predictable part of the disturbance, %e(n), can be
rewritten in terms of the known signals, and incorporated into the system output

(error signal) to give

BMD G o2 MDA

5 c x(n) [2-4]

u(n) +

P(nery) = %y(n) :

This equation could be used to define the control law (that is, the equation defining
how the control signal is to be generated), however the known disturbance is
measured by the corrupted reference sensor and is therefore not directly obtainable.
Therefore the reference signal should be used instead of the known disturbance when

forming the control law. The reference signal is given by

d(n) = x(n) + gu(n—'r3) [2-5]

Hence the minimum variance predictor can now be written as

BMD _ FGMD 1\-r;-r,
C EC

G T9-T5 MgA d(n) [2-6]

P(n+ry) = %y(n) ; u(w) + Zaq

The minimum variance control law can therefore be formed as (refer to appendix A.3

for the formulation of the minimum-variance control law)

L K
un) = -—d(n) - —y(n [2-7]
(n) T (n) = (n)
where
K = NE
L = GMDAq™™™ [2-8a,b,¢]

H = MD(BE - FGq"""" ™)
Hence to control the system output (that is, regulate the error signal to zero) requires

a feedforward (represented by Gy = -L/H) and a feedback (represented by
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Gy = -K/H) control filter, each of infinite impulse response type (as their transfer
function requires both a numerator and denominator polynomial for accurate
representation). It is also apparent that the polynomials B,C,G and F must be
minimum-phase otherwise they would not be invertible (refer to appendix A.1 for
stability of inverse based on minimum-phase characteristic). ~ Doelman [1991]
presented his work using a generalised criterion (as defined by equation (A-45) in
appendix A.3), first proposed by Elliott et al [1987]. This generalised criterion
enables the "Generalised Minimum Variance" control law to include pole placement
(through use of the polynomials P and Q of the criterion given by equation (A-45) of

the appendix), and thus reduce the effect of non-minimum phase zeroes.

24.1 Feedforward versus Feedback Control

Equations (2-7) and (2-8) give the requirements for feedforward and feedback control
laws. Feedback control is required if N#0, which implies that feedback control is only
responsible for the reduction of the resonant response caused by stochastic
disturbances (ie. the predictable component of the unknown disturbance, as defined by
the Diophantine equation (2-3)). Feedforward control will have no impact on the
unknown disturbance, and will only reduce the known disturbance by an amount
dependent upon the coherence of the reference signal with the known disturbance (as
defined by equation (A-24) in appendix A.2.2). The following sections discuss the
causality constraints for feedforward and feedback control schemes, and give a brief

insight into physical control mechanisms.
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2.4.1.1 Causality Constraints

A system is causal if it has a response only after being excited. Causality is not a
concern for periodic (deterministic) disturbances (Burgess [1981], as noted by Swanson
[1991]), but greatly affects the achievable attenuation of stochastic disturbances. A
stochastic disturbance is one in which white Gaussian noise is passed through an
Autoregressive Moving Average (ARMA) filter (note that the AR part results in
resonance peaks in the spectrum, while the MA part results in anti-resonances or
dips/troughs). The causal constraint limits the frequency domain analysis of systems,
and requires a separate analysis in the time-domain. The following comments relate

specifically to causality constraints for the feedforward and feedback implementations.

. Feedback System.

The resonances (peaks) of the disturbance can always be cancelled (ie. they are
always a component of the predictable part of the disturbance as per the
Diophantine equation (2-3)), however the degree to which broadband or
coloured noise can be cancelled will depend on the time delay of the
cancellation path transfer function, 7, (ie. the remaining coloured noise will be
the unpredictable component of the Diophantine equation (2-3)). If the delay is
minimised, good broadband attenuation can be achieved, and has been observed

by Elliott et al [1995].
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Feedforward System.

Perfect cancellation of a stochastic disturbance is possible provided the time
taken for the disturbance to travel from the reference sensor to the control
source, T,, exceeds the time taken for a measure of the disturbance to pass
from the reference sensor through the controller and finally re-enter the
"physical system" via the control actuator (this "electronic" time delay is known
as the "group delay"), 7, and is shown in Figure 2-4 for both feedforward and
feedback control schemes. The solution of the Diophantine equation also
requires 7, > 7,, which means that the distance from the control actuator to
the error sensor must be less than the distance from the reference sensor to the

CITOr SCnsor.

24.1.2  Physical Control Mechanisms

A control source can act to reflect energy (and in so doing possibly change the

impedance seen by the disturbance, provided it is placed near enough to it and the

disturbance is periodic) or absorb energy (although this can result in greater power

output by the disturbance and is therefore not an efficient form of control). A control

source generally acts to both absorb and reflect energy [Snyder and Hansen, 1989].

The physical control mechanism depends on the type of disturbance (eg. periodic or

stochastic), the directionality of the control actuator, the type of control scheme (ie.

feedforward or feedback), and the type of physical system (ie. reverberant or non-
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reverberant).

The impedance seen by a random noise source in a non-reverberant system cannot be
changed, as enforced by the causality principle. Therefore the physical control
mechanism for this type of source/system arrangement must be the absorption of
energy. However for a reverberant system with a random noise source, the control

mechanisms can be either absorption or impedance change.

Consider a periodic source in a duct. An omni-directional control source placed in a
duct acts to primarily reflect energy, unloading the disturbance source, and storing the
transient energy in a standing wave. This type of control source also acts to absorb
energy in a minor way to avoid any resonance between the control and disturbance
sources. However, a directional control source placed in a duct, cannot change the

impedance seen by the disturbance source, therefore it can only absorb energy.

If it is possible to change the impedance seen by the disturbance, global attenuation
can be achieved. As feedforward systems require a measure of the disturbance, they
can be placed near the source of the disturbance and can therefore lead to global
attenuation. On the other hand, feedback systems require no a priori measure of the
disturbance and therefore result in zonal attenuation. Therefore, when feedback
control systems are placed in the free-field at remote distances from the disturbance
source, they must absorb energy to be effective. If the disturbance excites
modes/resonances of the physical system, then these resonances can be damped,

resulting in global attenuation by a feedback controller.
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24.2 Feedforward Control Algorithms

It is apparent from the minimum variance control law defined by equation (2-7) that
only a feedforward controller will be required if the predictable part of the unknown
disturbance is zero. This requires that the polynomial N is zero, which is possible
provided that DA is a factor of C, so that the Diophantine equation becomes
C/DA=M. This means that there is no correlation between the plant output (or error
signal) y(n), and any part of the unknown disturbance, implying that this disturbance
cannot be minimised at all. Thus only the known (or measurable) disturbance can be
minimised with feedforward control. As noted by Swanson [1991], and discussed
above, the principles of causality and coherence between the reference sensor and the

error sensor are essential to feedforward control.

Snyder [1991a] used a state-space representation of a system to show that feedforward
control alters the zeroes of a system, or the frequencies where a non-zero input will
have a zero output. Snyder [1991a] also notes that feedforward control, by altering
the zeroes of a system, in effect alters the impedance of a system to an incoming
disturbance. This has also been made apparent by Elliott and Darlington [1985], who
show that a feedforward system using a synchronously sampled reference signal is
effectively an adaptive notch filter with the notch centred at the frequency of the

disturbance.
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2.4.2.1 Without Corruption

The simplest case of active noise and vibration control involves the use of a reference

sensor that is not corrupted by acoustic feedback from the control actuator.

The first active noise control system implemented by Conover [1956] managed to
avoid acoustic feedback. This system involved the control of noise from transformers,
radiating harmonic frequency components with a fundamental of twice the frequency
of the electrical supply. With full-wave rectification and band-pass filtering, the
harmonic reference signals were produced, the phase and amplitude of which could be
adapted in a feedforward sense to minimise the sound pressure level at discrete
locations. This is a typical example of wave-form synthesis of the reference signal
from synchronous sampling (eg. use of a tachometer on rotating/reciprocating
machinery). Chaplin et al [1978,1980,1983] used synchronous sampling to provide a
periodic pulse, from which the control signal could be generated (by "waveform
synthesis") with frequency components corresponding to the fundamental and first few
harmonics of the periodic pulse. Elliott and Darlington [1985] have assessed
synchronous sampled signals as a special case of stability analysis, but also have shown
how waveform synthesis can be implemented digitally. Dines [1984] used the light
emission from unsteady burning in a turbulent flame, as the independent reference

and achieved broadband attenuation of the generated noise field.

Attempts to avoid acoustic feedback were made using unidirectional control sources

and reference sensors. Eghtesadi and Leventhal [1981] developed the "Chelsea
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Dipole" in which corruption of the reference sensor was eliminated by placing it equi-
distance between two control actuators driven out of phase and placed a half-
wavelength apart. Nelson and Elliott [1992] showed that acoustic feedback can be
reduced using two monopole sources driven out-of-phase with an appropriate delay
dependent upon their spacing. This type of "dipole" system was implemented by
Swinbanks [1973]. Nelson and Elliott [1992] also showed that unidirectional radiation
can be achieved using a combination of a dipole and a monopole, as was first
suggested in the theory developed by Jessel [1968] and Malyuzhinets [1969]. This
approach was used by Jessel and Mangiante [1972] and is known as a "tripole system",
with similar studies performed later by Canevet [1978] and Berengier and Roure
[1980]. Attempts were also made by La Fontaine [1983] and Shepherd [1985] to make
the reference sensor directional. Warnaka [1982] gives a good summary of these

physical techniques, based on fixed-filter compensation.

The most commonly used adaptive feedforward algorithm in active noise and vibration
control will now be derived from the minimum variance control theory. The model
for this system is shown in Figure 2-6, where again it should be noted that the location

of the algorithm used to adapt the control law parameters is not shown for clarity.

The minimum variance controller can be written using equation (2-6) with N=0 and
C/DA =M, such that the predictor becomes

GA

R _B - , GA r-r [2-9]
y(n) a2 u(n) 257 x(n)

It is apparent (by comparison with appendix A.2.1) that the predictor is in output-
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error form, and the minimum variance control law is given by

u(n) = Wx(n) [2-10]
with the control filter given by
G - B - 2-11]
w e | G, / B - [
E 1 A 1

It is apparent from this equation that an IIR filter is required to estimate W, however
it is common to estimate W using a only a FIR filter. This simplification is often
used in ducts, for which E=A=1 can be assumed as the system is non-reverberant,

and for periodic noise it can be shown that B is a factor of G.

Unknown
Disturbance (1)

Known
Disturbance x(n)

Reference
Signal

y(n)

Figure 2-6. Feedforward Control without corruption of the reference signal.
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The most common implementation (in active noise and vibration control) of this
control scheme is the filtered-X algorithm (note that the most general form of the
least mean squares or stochastic gradient algorithm is defined in appendix A.2.3), for
which the cancellation path transfer function is firstly identified. The means of
identifying this transfer function will be discussed shortly, but it is important to note
the assumed knowledge of this transfer function. In accordance with appendix A.2.1.1,
the regressor (or set of delayed filtered reference signal samples), ¢(n), is defined
using the reference signal filtered by the cancellation path transfer function, and the
parameter vector (or set of control filter coefficients), é(n), consists of only the

control filter coefficients, such that
p(n) = [x(n),....x"(n-ny) "

2-12a,b
8(n) = [Wy(n), ..., ()]" [2-12a,b]

where xF(n) represents the reference signal filtered by the cancellation path transfer
function. The prediction error, e(n), can be written strictly using the predictor, y(n),
in the form of equation (2-9), such that

e(n) = y(n) - [u"(n) - & ()o(n) ] [-14]
This form of prediction error has been termed the "augmented error", however it is
commonly assumed that since control filter adaptation takes place slowly (if the Least
Mean Squares or equivalently Stochastic Gradient algorithm is used), then the law of
commutation holds (for the control filter and cancellation path transfer function
convolution operations on the reference signal) and u"(n) = éT(n)¢(n). The effects
of this simplification will be discussed shortly, however with this simplification the
prediction error becomes e(n) = y(n), and the parameter vector (of control filter

coefficients) can be updated using the Least Mean Squares algorithm (or stochastic
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gradient algorithm) which in this form has become known as the filtered-X algorithm.

8(n+1) = b(n) - 2ue(n)y(n) [2-14]
This algorithm was originally derived heuristically from the work of Widrow et al
[1975] and first used in active noise control by Burgess [1981]. It is important to
realise that the definition of the filtered-X algorithm relies on the assumption of slow
updating of the control filter coefficients and the approximations discussed in

appendix A.2.3 for the general least mean squares (or stochastic gradient) algorithm.

It is not easy to determine the required number of coefficients for the control filter.
If there are too many coefficients, the excitation will not be persistent. The persistent
excitation condition is discussed in appendix A.2.2, and requires that there be no more
coefficients in the control filter than twice the number of spectral components in the
reference excitation. However in reality there will always be some noise in the input
at all frequencies (eg. from turbulence), therefore providing a uniquely determined set
of optimal coefficients. If this noise at some frequencies is very much lower than
other spectral components, the disparity will cause very slow convergence for some
coefficients. Thus control filter coefficient saturation and instability can occur. To
avoid this problem leakage of the coefficients is necessary [Honig and Messerschmitt,
1984]. The use of a leakage term also aids incomplete cancellation of DC offsets,
quantisation noise and round-off errors. Isermann [1991] notes that the DC offsets

can also be modelled.

The ability to commutate the cancellation path transfer function estimate and the

control filter assumes that the control filter is only slowly time varying and therefore
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can be considered to be time invariant. The use of the recursive least squares
algorithm (discussed in appendix A.2.3) can however increase the convergence rate
considerably, thereby invalidating this commutation process. Flockton [1991] has
shown by experiment that increased convergence speed, using the standard filtered-X
control algorithm, results in an initial instability in convergence that is dependent on
phase and delay characteristics of the cancellation path transfer function. Flockton
[1991] proposed eliminating the effect of the cancellation path transfer function on the
weight adaptation, in a similar way to that of Johnson [1990], by augmenting the error
signal to directly obtain the disturbance to be minimised. It appears that a similar

approach has also been taken by Doelman [1991] and Kim [1994].

The use of the augmented-error approach eliminates the interplay between system
identification and control that is present with the filtered-X algorithm. The degree to
which the augmented-error approach is useful, is dependent upon the accuracy in the
estimate of the cancellation path transfer function. Flockton’s results are similar to
Johnson’s, finding that the convergence rate of the filtered-X algorithm using the
augmented-error was improved only for accurately estimated delays in the cancellation
path that are substantially greater than the convergence time of the least mean
squares algorithm in the equivalent system with no cancellation path delay. Thus the
augmented-error approach is only useful for efficiently implemented fast adaptation
algorithms such as the recursive least squares algorithm implemented on a joint

process lattice filter [Park and Sommerfeldt, 1994].

Johnson [1990] notes that the augmented-error approach was first proposed by
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Ionescu and Monopoli [1977] for "Model Reference Adaptive Control (MRAC)"
systems. Astrom and Wittenmark [1989] use the augmented-error concepts to show
how the Self Tuning Regulator form is equivalent to the Model Reference Adaptive

Control form.

As discussed, the filtered-X algorithm requires the separate identification of the
cancellation path transfer function. The required knowledge of the cancellation path
transfer function complicates the adaptive control algorithm, unless an algorithm that
doesn’t require knowledge of this transfer function is used (eg. Smith and Chaplin’s
[1983] "power sensing" algorithm). A general discussion of these types of algorithms

will be presented in section 2.5.

Modelling of the cancellation path transfer function was performed by Eriksson [1989]
using a Galois sequence (or Pseudo Random Binary Sequence (PRBS)) as defined by
Schroeder [1984]. As discussed in appendix A.2, this is a variant of the instrumental
variables technique. It can be shown that the bound (known as the Cramer Rao
bound [Ljung and Soderstrom, 1983]) on the covariance of the parameter vector
(which now is the vector of parameter estimates for the cancellation path transfer

function) is given by [Johnson, 1992]
1

E{(6 - 6" - 8]} > ———
t(o,,/07)

[2-15]

Here the power of the injected PRBS signal is o‘zv and of is the uncorrelated part of
the disturbance (ie. the input to the error sensor other than that resulting from the

PRBS). The ratio o:‘N / of can be interpreted as the signal to noise ratio (SNR). It
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therefore follows that for low SNR’s (< <1) essential for limited intrusion, the
convergence rate must be very low in order to maintain minimum variance of the
cancellation path transfer function estimate. This means that for accurate estimation
of the cancellation path transfer function, convergence will only be achieved after an
extended period, thus limiting this on-line method of system identification. Use of the

PRBS does however ensure the persistent excitation condition is met.

Johnson [1990] used perturbations of the control filter coefficients to obtain
substantially improved performance (accuracy and speed) of the estimate for the
cancellation path transfer function. Johnson [1990] notes that this novel method is
performed only when necessary, with its main disadvantage being its high

computational load.

Bao et al [1993] increased the SNR by reducing the power of the noise oi using
adaptive noise (electrical or "in-wire") cancellation. They note that a substantially

improved speed of convergence results with this method.

The effect of errors in the cancellation path transfer function will now be discussed.
For the most general disturbance, the polynomial B (in equations (2-9) and (2-11))
must be minimum phase since it is inverted. It can be shown, using the hyperstability
principles developed by Popov or Ljung’s Ordinary Differential Equation (ODE)
method [Cowan and Grant, 1985; Ljung, 1983], that a necessary condition for
convergence of the parameter estimates (which is apparent given the minimum-phase

condition on B and the Strictly Positive Real (SPR) condition on A, for algorithm
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simplification as discussed in appendix A.2.3) is given by

: éPF(e jw)
Gpp(e)

>0 Vo [2-16]

where Gpp = Eq 7" is the cancellation path transfer function and G’PF is the estimate
A

of this transfer function. This equation suggests that the error in phase between the
predicted and the actual cancellation path transfer function must be within +90° for
stability, which as will be discussed, has been found by many other researchers. It can
be shown that the controller will achieve optimal convergence despite an error in the
cancellation path transfer function estimate, provided near complete cancellation of
the correlation between d(n) (the reference signal) and y(n) (the error signal) can be

achieved [Ren and Kumar, 1989].

Feintuch et al [1993] analysed the filtered-X algorithm in the frequency-domain, and

defined the bounds of stability for the convergence coefficient, u, as
1 1
U < eriaae [2-17]
Py | Gpgle™) |* Py

where Py represents the maximum power of a spectral term in the reference signal (it
can also be defined as the maximum eigenvalue of the autocorrelation matrix for the
reference signal), and | Gpe(e?”) | represents the amplitude of the discrete frequency
response of the cancellation path. Alternatively, Py, can be used to represent the
maximum power of a spectral term in the filtered reference signal . Sommerfeldt and
Tichy [1990] also show that the stability bound for the convergence coefficient is given

by
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2
IR———— 2-18
ngPanIJ2 (2181

with I the number of control filter coefficients, J the number of cancellation path
transfer function coefficients, and gpe  the maximum coefficient of the cancellation
X

path transfer function.

The effect of errors in the cancellation path transfer function estimate have been well
researched. The earliest account of the effect of such errors is made by Morgan
[1980]. Errors in the estimates of the cancellation path reduce the bounds of stability

for the convergence coefficient, such that
cos¢, (e')
oy [2-19]
GPFerr(e"")PR

where ¢__(e™) represents the error in the phase, and GPFm(ej“’) represents the error
in magnitude of the cancellation path transfer function estimate, and Py is defined as

above. If ¢_(e/) is not within the range +90° for all values of ®, there will be no

cIr

stability region for the algorithm. It can further be shown that the time constant of

adaptation is given by
1
2 PGpp (e™)

CIT

T(w) =

[2-20]

Hence if Gpp (e') is sufficiently small, with a small convergence coefficient, the time
€rr

taken for the algorithm to reach instability will be large.

Phase compensation filters and band limited inputs have been suggested as a means of
avoiding this unstable region. Feintuch [1993] suggested applying a simple delay to

the reference signal to maintain the error in phase estimation for the cancellation
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path transfer function to within #90°. This system will not work however if there are
resonances within the actuator or sensor response, so that the total phase response
cannot be predicted with a linear phase filter of this nature. Widrow and Stearns
[1985], as noted by Elliott and Nelson [1994], suggest that if the impulse response of
the estimated cancellation path transfer function has "at least as great a transport delay”

as the actual response, stability can be assured.

Instead of filtering the reference signal with the cancellation path transfer function,
the inverse estimate of the cancellation path transfer function can be used to filter the
error signal (or process output). It is however possible that the inverse of the
cancellation path transfer function is not causal and therefore not physically realisable.
Extracting the time delay, ¢ ', from the cancellation path transfer function, Gy,
leaves only the inverse of the ARMA process with no dead-time, B/4, to be
determined. This can be viewed as a compensation filter. With this approach
however, the delay needs to be estimated and errors in this estimation can also reduce
the stability bounds for the convergence coefficient. The effect of a delay on the
standard LMS algorithm has been investigated by Kabal [1983]). The ability to model
the inverse of the cancellation path transfer function is also corrupted by the primary
disturbance, thereby causing the optimal filter to converge to a transfer function other
than the required inverse of the cancellation path transfer function, dependent upon
the level of the disturbance (ie. a biassed transfer function will result [Eriksson,
1991]). Further discussion of the effect of estimation inaccuracies in delay and

cancellation path transfer functions is given by Snyder and Hansen [1990].
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Elliott et al [1987] have considered equivalent transfer functions of adaptive systems,
fed with harmonic excitation, to assess the stability of the adaptive algorithm. This
analysis has been based upon the previous work of Glover [1977], and has also been
used for multichannel stability analysis by Boucher et al [1991] and Elliott et al [1992].
Elliott has shown, using a z-transform of the weight adaptation process (in a similar
way that Kabal did, although Kabal’s [1983] method is more general) that for a
synchronously sampled sinusoidal reference input, the adaptive feedforward system
can be written as an equivalent linear feedback system. The frequency response of
this transfer function represents a notch filter (and for harmonics a comb filter results
[Glover, 1977]) centred at the frequency of the reference signal. Recently Morgan
and Thi [1993] have proposed using this type of adaptive notch filter [Elliott and
Nelson, 1992] to extend the bandwidth of attenuation from narrowband to multi-
narrowband (or an adaptive "comb" filter) and even broadband, by cascading a

number of these filters.

Analysis of the equivalent linear feedback transfer function using standard root-locus
theory can describe the pole movements from within the unit circle, |z| = 1, to their
bounds of stability on the unit circle. This then can provide the stability bounds of
the convergence coefficient, used in the LMS adaptive algorithm. The pole positions
can also show the effects of inaccurate delay and error-path estimates for the special
case of synchronous sampling. Characteristics (eg. system damping) of the learning
curve (mean square error versus sample number) are also elucidated by pole

positions.
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Darlington [1991] has shown that inaccuracies in delay estimates increases the
passband disturbance on both sides of the notch filter, thereby also reducing the
effective bandwidth. He has also shown that errors in the estimate of the cancellation
path phase increases the passband disturbance on one-side only, dependent upon
whether the phase error is positive or negative. The passband disturbance is a result
of time variance of the adaptive filter that causes modulation of the frequency
component (for a tone) of the filters input. The bandwidth is thus defined by the
degree of variance in the adaptive filter, or the rate of adaptation (or coefficient

modulation) defined by the convergence coefficient.

The filtered-x algorithm has also been implemented in the frequency domain by Shen
and Spanias [1992] based on the work of Widrow et al [1975]. This approach allows
independent modal control, with the elimination of the effect of spectral disparity that
plagues the equivalent time-domain algorithm. This type of approach also allows
control of intensity signals which would otherwise be difficult to control in the time-
domain. Another frequency domain approach using transmultiplexers [Cowan and
Grant, 1985] has recently been proposed by Thi and Morgan [1993]. Their technique
reduces the high computational burden of long FIR filters, with possibly increased
convergence speed due to reduced spectral dynamic range within each

transmultiplexer band.

The effects of transducer non-linearities [Beltran, 1995] necessitates the use of a
controller with a non-linear control characteristicc. Neural networks have been

presented as a solution [Brown, 1993; Bozich, 1991], yet their speed of convergence is
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slow, and they require large amounts of computations [Klippel, 1995]. Recently
Klippel [1995] has proposed a non-linear ladder filter (based on a Volterra series) in

simplified form, with less complexity and more efficient implementation.

An improvement in the standard feedforward algorithm will now be broached. The
interplay between system identification and control can be minimised by rewriting

equation (2-9) as

V9(n) = Hu(n) + Lx(n) [2-21]
where
V = AE
H = BEq ™" [2-22a,b,c]
L =Gaqg™

The control filter coefficients can be found by an implicit system identification and an
implicit solution to the Diophantine equation, using the parameter vector and

regressor defined as

0(n) = [gsereshty plgsesly s 91500sPy 1

PEE, Ay [2-23a,b]
¢(l’l) = [u(n) 9oy u(n —nH) ,x(n) 9 o ,X(n _nL) 95)\("’ _1) 300 a.),;(n _nV) ]T
From equation (2-21) the control law can be written as
u(n) = - £Ax(n) [2-24]

H
or equivalently as

u(n) = —Ai[ Zox(n) + o+ ian(n—nL) + IAllu(n—l) + o+ fanu(n—nH) 1 [2-25]
h,

This represents an IIR filter, with the coefficients determined directly from the
implicit system identification. Stability depends upon the accuracy of the estimate for

V. That is the Strictly Positive Real (SPR) condition is

- 46 -



Chapter 2. Control Theory - Literature Review

R\t 5 0 o (2-26]

Vie")
This condition determines how accurately the poles of the disturbance model and
cancellation path transfer function are estimated. This approach requires only a
system identification process, not a combination of "control" and "system identification"

adaptations, that is commonly used and can readily result in instability.

The minimum variance predictor, defined by equation (2-21), is in output-error form,
and so adaptation can be performed using either the algorithm defined by Hsia [1981]
corresponding to the recursive prediction error method in simplified form, or the
algorithm defined by Feintuch [1976] corresponding to the recursive pseudo-linear
regression approach in simplified form. These algorithms are discussed in more detail
in appendix A.2. Hsia’s [1981] algorithm is more accurate and requires little more
computation. Ren and Kumar [1989] have defined a similar algorithm (to the
algorithm defined by Hsia) in SHARF form, and further note that fzo # 0 for
causality. It should also be noted that the output-error approach can be improved
with the use of a residual term included in the regressor, to better approximate j(n),

as discussed in appendix A.2.

Sommerfeldt and Tichy [1990,1991], Eriksson [1991], Kuo [1992] and van Overbeek
[1991] have developed similar techniques, and most recently, Reichard et al [1993]
and Leung [1993] have proposed similar on-line system identification techniques for
the frequency domain. These authors predict the process output in a similar manner

to that of equation (2-21), such that (note that they assume Vel as per the Recursive
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Pseudo-Linear Regression algorithms discussed in appendix A.2)

$(n) = Hu(n) + Lx(n) [2-27]

With the regressor and parameter vector defined as

A — Ih [ 7 7 1T
8(n) = [Agymrhty slgsend, ]

iy’ [2-28a,b]
o(n) = [u(),...,u(n-ny),x(n),...x(n-n)1*
The parameter vector is adapted recursively using
e(n) = y(n) - 9(n) = y(n) - ¢"(n)B(n) roat
b(n+1) = B(n) + — % o(m)s(n) (225l
B+ ¢"(n)e(n)
where the autocorrelation matrix and gain factor are approximated by
v(n)Ryy(n) = = I [2-30]

B + ¢'(n)e(n)
This algorithm is known as the projection algorithm or normalised LMS algorithm,
and is an extension of the stochastic gradient method for the recursive pseudo-linear
regression approach. At this point the control law could have been obtained as per
equation (2-25), however these authors used only H as the estimated cancellation
path transfer function, and the filtered-X algorithm defined by equation (2-15). The
use of the filtered-X algorithm causes biassed system identification terms A and L, if
the process output reaches zero before convergence of H and L (ie. the control filter
coefficient adaptation scheme converges before the system identification adaptation
scheme) [Wangler and Heiland, 1992]. This is because, if y(n) (ie. the error signal) is
held at zero by the "control" adaptation of the filtered-X algorithm (as it ideally will
be), then the "system identification" adaptation which attempts to minimise e(n), will
be forced to minimise y(n) instead. This means that H and L will converge to

incorrect values (possibly outside their stability range). If the physical system then
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changes and y(n) becomes non-zero, the control filter coefficients will be adapted
again using the last converged system identification term H. Thus if A is outside the
stability range, then instability will result. Similar results have also been found by Bao
et al [1993], who suggest that the rate of convergence of the filtered-X algorithm be

set less than the "on-line" system identification algorithm.

It is to be noted that if the filtered-X algorithm is not used in conjunction with the on-
line system identification algorithm, and instead the control coefficients are derived
from the implicit system identification as per equation (2-25), then the system will be
stable. The interplay between the control law scheme and the system identification
algorithm in this approach, is well explained by Bitmead et al [1990]. Their results

lead to a discussion on robust control in section 2.4.5.

To achieve global control of noise or vibration in three-dimensional physical systems,
will require multiple actuators and sensors. Elliott et al [1987] first developed a
multi-channel form of the filtered-X algorithm. The cost function for minimisation is
the sum of the squares of all the error sensors. Elliott et al [1987] suggested an
alternative cost function criterion known as the "minimax" criterion, which instead of
minimising the sum of all errors, minimises the largest error. Kuo [1993] presented a
method for efficiently measuring on-line the cancellation path transfer functions using
random noise, with each channel decoupled using an appropriate delay. As discussed,
the cancellation path transfer function can also be measured on-line using available
signals, without the addition of random noise, but this method is unreliable unless

certain precautions are taken (as discussed above). A reliable method of control
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using only a single adaptation scheme has also been described here.

A number of authors [Snyder et al, 1992a,b; Elliott et al, 1987, 1992; Boucher et al,
1991] have assessed the asymptotic properties of the multi-channel filtered-X
algorithm. Elliott et al [1987, 1992] and Boucher et al [1991] suggest that the
inclusion of an effort weighting (thus forming a Generalised Minimum Variance
(GMV) approach discussed in appendix A.3) results in increased robustness to errors
in the cancellation path transfer function estimates. Elliott and Nelson [1994] note
that this term is equivalent to having a "leak" in the algorithm (as used for DC-offset
compensation [Gitlin et al, 1982]). Widrow and Stearns [1985], as noted by Elliott
and Nelson [1994], show that the presence of low level uncorrelated noise (eg. caused
by turbulence or the like) is also equivalent to having a "leak" in the algorithm. It is
considered here that this enhances compliance with the persistent excitation condition,
with more accurate parameter estimates determined. A weighting term also limits
high levels of control signals that could generate non-linearities from the control

actuators, therefore improving robustness.

Elliott and Nelson [1994] note that the convergence time of the different modes of the
system are dependent on the eigenvalues of the autocorrelation matrix, as has been
discussed for the single channel case. For a multi-channel system, the eigenvalues of
the autocorrelation matrix are not only dependent upon the spectral properties of the

reference signal, but also on the spatial distribution of transducers.

Elliott et al [1991] examined the effect of inter-channel coupling, by considering
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instead of a single multi-channel controller, a number of single-channel controllers.
They show that stability can be achieved provided the error sensor of a single channel
system is closer to the control actuator of that system than of another, which is similar
to the causality constraints defined for a one-dimensional feedforward system in

section 2.4.1.1.

Swanson [1993] analysed the on-line system identification method, originally proposed
by Sommerfeldt and Tichy [1990], with the filtered-X algorithm in a multi-channel
system. He used a "polynomial matrix method" to allow individual or combinations of
error sensors to define the criterion for optimisation by particular control actuators.
He notes that the placement of the error sensors and control sources affects
convergence of the algorithm, with their optimal locations dependent on the spatial
modal structure of the disturbance. He also shows that if two or more of the control

source/error sensor paths are linearly dependent, then instability can occur.

Snyder and Hansen [1992a] have also examined the convergence characteristics of the
multi-channel filtered-X algorithm, finding similar results to Swanson [1993]. They
note that when the number of error sensors exceeds the number of control sources,
with some degree of redundancy (or linear dependence between control source/error
sensor paths) the minimum achievable mean square error will be non-zero. They note
that the convergence coefficient bound, discussed earlier in this section, is further
reduced as the number of error sensors is increased. They also note that the cross-
coupling between transducers defined by the eigen properties of the system, leads to

optimum control filters that are not unique, but depend on the adaptation strategy (ie.
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adapt all coefficients of each channel in turn, or adapt all coefficients of all channels
simultaneously). Their results suggest the inclusion of a control effort term in the
criterion, thus leading to Generalised Minimum Variance (GMV) control and

ultimately Linear Quadratic Gaussian (LQG) control to be discussed in section 2.4.5.

Snyder et al [1992b] also note the importance of observability and controllability
(state-space terminology) of offending modes, as defined by the placement of

transducers (a similar discussion can also be found in Swanson [1986]).

2422 With Corruption

Figure 2-7 shows the inclusion of an acoustic feedback transfer function that results in
contamination of the reference sensor. From equation (2-6), with M =C/DA and

N =0, it is apparent that the minimum variance predictor can be written as:

FG r,-1,-1 AG r-r 2_31]
1 = 1712773 uln) + =— 1 Zdn [
[ T ] () 25 7 (n)

. B -
yn) = —q
A

or by direct comparison of terms, it can be equivalently written as

y(n) = Gpp[Hu(n) + Wd(n)] [2-32]
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where
2 B -7
Gpp = —q
A
f=1- G [2-33a,b,¢]
BE
W = %_qﬁ_w
BE
The control law is then given by
un) = - L) [2-34]
H

Unknhown
Disturbance (M)

Khown
Disturbance (n)

Rgferencc d(n) Control
Signal i

Figure 2-7. Feedforward control with corruption of the reference signal by acoustic

feedback from the control actuator.
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Since H involves a transfer function difference, then it is unlikely that H is a factor
of W and therefore the use of an FIR filter is not possible and an IIR filter must be
used. It is interesting to note that W corresponds to the controller without
corruption, as defined in the last section. Eriksson [1987, 1991a, 1991b] used a
modified form of the RLMS algorithm (developed by Feintuch [1976]), known as the
filtered-U algorithm, to adapt the coefficients of H and W based on an estimate of
the cancellation path transfer function GPF. The cancellation path transfer function
was estimated on-line using a pseudo random binary sequence (PRBS) [Eriksson,
1989] as previously discussed. The filtered-U algorithm is defined using the parameter

vector and regressor, such that

6(1) = [hgs iy, B iy, [2-35a,0]
o(n) = [uf(n),...uf(n-ny),d"(n),...,d"(n-ny)]

where the superscript, F, refers to filtering by the cancellation path transfer function.

The prediction error and parameter vector update equation can be written as

A e(n)
0(n+1)

y(n) - & (m)8(n) [2-36a,b]
8(n) - 2ue(n)e(n)

Note however that the prediction error was estimated as e(n) = y(n), which as
discussed is only true for slow variations of the process (cancellation path transfer
function) and control filters. The interplay between control and system identification

can be eliminated using the "augmented-error".

The control law defined by equation (2-34) can be written as

u(n) = —fli[wod(n) + ..+ vf)nwd(n—nw) + ﬁlu(n—l) + ..+ flnHu(n—nH)] [2-37]

Eriksson [1991a,b] first suggested the application of a fixed "SHARF filter" in active
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noise and vibration control, with the prefilter equivalent to the polynomial AE. The
use of such a filter is discussed in appendix A.2. Eriksson [1987b] gives many

methods to obtain an estimate for the cancellation path transfer function.

It will be shown later that Eriksson [1991a,b] uses a combination of feedforward and
feedback control to obtain what he terms an "equation-error IIR filter", however the
IIR filter used in this section can be considered to be of output-error type. A FIR
control filter can be used by rewriting equation (2-32) as

$(n) = Gl (1 = GoWu(n) + Wd(n)] [2-38]

with the control law thus becoming

A

u(n) = — Y __d(n) [2-39]

1-Gp W

This equation can alternatively be written as

u(n) = Wx(n) [2-40]

where

X(n) = -Gpgu(n) + d(n) [2-41]
This form of control compensates for the acoustic feedback corruption of the
reference sensor, but requires the estimation of the acoustic feedback transfer
function, GPB. With good compensation x(n) = x(n), and the controller is equivalent

to the feedforward controller without corruption, as defined by equation (2-10).

As discussed in the previous section, initial attempts to compensate for acoustic
feedback used fixed-filters to create uni-directional transducers. As noted by Eriksson

[1992], Ross [1982] developed techniques using fixed filters, together with adaptive
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filters, to reduce the effect of acoustic feedback. Warnaka et al [1984] used similar
fixed filters (with adaptive filters) to compensate for acoustic feedback as well as the

cancellation path transfer function.

Besides the moving average parts of the plant transfer functions (ie. B, F and G)
complying with the minimum-phase condition, other stability conditions that ensure
convergence must be satisfied. Analysis of the stability of this system is given by
Swanson [1991], who notes, as does Eriksson [1991a,b], that the solution for H and
W is not unique. This has also been noted in appendix A.3, in a general discussion

on minimum variance control.

An alternative updating method that requires no injection of a random sequence, and

requires only a single adaptation algorithm can be developed by rewriting equation (2-

31) as
AE§(n) = (BEq™™ - FGq > )u(n) + AGq "d(n) [2-42]
or equivalently
V$(n) = H un) + Ld(n) [2-43]
where
V = AE
I:I/ - é Aq Ty Féq ~T9~T3 [2-44a,b,c]
L =GAq™

Again this is an output-error form of control since there is no feedback of the process
output included in the predictor. Hence the algorithms of White [1975] or Landau

[1976] or simplifications thereof, can be used to adapt the parameter vector, with the
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minimum variance control law given by
L
H

un) = -—dn) [2-45]

/

This type of approach has been suggested by Doelman [1991] and Ren and Kumar
[1989]. The minimum-variance criterion has been generalised by Doelman [1991] to
include a form of pole-placement Self Tuning Regulator (STR) that accounts for non-
minimum-phase transfer functions. This approach was first suggested by Wellstead
[1979] in an explicit form. Astrom and Wittenmark [1980] have proposed a pole-zero
placement approach. Non-minimum-phase transfer functions can be treated using a
Linear Quadratic Gaussian (LQG) approach, which will be summarised in section

2.4.5.

243 Feedback Control

Feedback control is required where no measurement of the disturbance is available.
This type of control scheme was first proposed by Olson [1953, 1956]. Swanson [1991]
notes that such applications include spatially incoherent noise generated from

turbulence, noise generated from many sources and paths, and induced resonance.

Using a state-space system representation, Snyder [1991] notes that feedback control
modifies the poles or resonant frequencies of the system. That is, feedback control
alters the duration of the system transient response to an input. Snyder [1991] further

states that feedback control is not well suited to the attenuation of periodic
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disturbances since complete cancellation is possible [Swanson, 1991], therefore
resulting in infinitely high negative gains producing a potentially unstable system
response for transients in the error signal. In this section it will be shown that
feedback control can always attenuate (or damp) the spectral peaks of a disturbance,
but that the broadband attenuation is limited by the time delay between the control
actuator and error sensor transducers. Similarly, Swanson [1991] notes that the time
delay between the control actuator and the error sensor limits complete cancellation
to only periodic disturbances (though good cancellation can be achieved for the

spectral peaks of white Gaussian noise passed through an ARMA filter).

An excellent comprehensive study of the fixed filter design of feedback controllers can
be found in Nelson and Elliott [1992], with a good summary in Elliott and Nelson
[1994]. The design of compensation filters to allow for the instabilities associated with
the linear phase response of a delay between the transducers, has been particularly
successful for active headsets [Simshauser and Hawley, 1955; Wheeler, 1986; Carme,
1987). Feedback control has been implemented with some success in ducts by

Eghtesadi et al [1983] and Trinder and Nelson [1983].

A purely feedback system is shown in Figure 2-8, where the location of the algorithm
or parameter adaptation scheme has not been shown for clarity. There is no measure
of a disturbance, hence the only transfer functions shown are the cancellation path
transfer function, G,g, the disturbance transfer function, Gy, and the feedback

control filter, Gpy.
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Unknown
Disturbance €(1)

Known . 5‘
Disturbance x(n)

Control

Reference E 4 . h
Signal | (n) Signal o)
Figure 2-8. Feedback control block diagram.
Using equation (2-4) with G=0 and F=0, gives the predictor as
: N -7 B - N - [2-46]
$n) = =q y(n) + =q |1 - —q "un)
C A C

Swanson [1991] notes that this is an ARMAX controller. It can be alternatively

written as
$(n) = Gpp[Wy(n) + (1 - GppW)u(n)] [2-47]
where
GPF =—q "
[2-48]
v )
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The control law becomes

A

um) = -——__ym) [2-49]
(1 - GPFW)

The controller is able to cancel part of the stochastic disturbance (white Gaussian
noise passed through an ARMA filter) as defined by the Diophantine equation (2-3).
As discussed, the Diophantine equation separates the disturbance into predictable and
unpredictable components dependent upon the delay between the transducers. The
parameter estimates can be determined using the recursive least squares algorithm, or
simplifications thereof. Swanson [1986] used this type of approach, with a lattice filter

efficiently implementing the recursive identification algorithm.

The polynomials B and C must be minimum phase for stability. Swanson [1991] notes
that if the disturbance is modelled as an AR process (instead of ARMA), then no
attempt will be made to identify the zeroes of C, therefore avoiding estimating non-
minimum-phase zeroes. This means that the predictable zeroes (defined by C, or
more specifically N) will not be whitened but that the poles (defined by DA) will be

damped, therefore limiting the amount of achievable broadband attenuation.

Eriksson [1991a,b] has used the control law of equation (2-49) in what he calls the
"purely recursive form of equation-error IIR", as shown in Figure 2-9. A similar
approach has also been taken by Elliott {1993], who also interestingly notes [Elliott
and Nelson, 1994] that in general B will not be minimum phase. Both Elliott [1993]
and Eriksson [1990,1991] approximate W by a FIR filter. Elliott and Nelson [1994]

suggest that if Gpp is identical to Gy, the control system effectively becomes a
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feedforward type. This transformation is realised using equation (2-49), such that with

() = y(n) - un)Gyyg [2-50]

then the equivalent feedforward control law becomes

u(n) = Wi(n) [2-51]

Unknown
Disturbance &)

i

Known _
Disturbance x(n)

Control
Signal

Reference
Signal

e IR |

Figure 2-9. "Equation-Error IIR" defined by Eriksson [1991a,b].

If Gpp represents a pure delay, then the control problem becomes one of linear
prediction, in which the process output (ie. error signal) will be whitened by an

amount dependent upon the delay (ie. the disturbance cannot be completely whitened
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as per the discussion of the Diophantine equation). The performance of the
controller depends upon the statistics of the disturbance, or in other words, how
predictable it is. This has distinct parallels with a lattice filter, as discussed in chapter

3.

Elliott et al [1995] describe the transformation of the control system from feedback to
feedforward as Internal Model Control (IMC). Elliott et al [1995] note that this
structure was first introduced by Newton et al [1956]. This technique has also been
described by Chalam [1987] and by Morari and Zofirou [1989] (as noted by Elliott et

al [1995]).

Finally, consider rewriting the estimate of the process output (error signal), such that

V(n) = Ry(n) + Hu(n) [2-52]
where
V = AC
K = ANg™" [2-53]

This results in the control law

u(n) = Ky [2-54]
H

It is possible to determine the control filter coefficients implicitly using a single
adaptation process, and the ELS or RML algorithms (or simplifications thereof) as
appropriate (see Appendix A.2 for the definition of these algorithms). This approach

will be stable provided B and C are minimum-phase.
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244  Combined Feedforward/Feedback Control Algorithms

This type of control system and its stability constraints can be derived from the
preceding work. Ren and Kumar [1989] and Doelman [1991] have considered this
system. Eriksson [1991a,b] has called this general form an “"equation-error IIR filter".
Saunders et al [1993] have similarly implemented a "hybrid" controller incorporating
the feedback part using Linear Quadratic Gaussian control and H_ robustness

conditions, and the feedforward part using the filtered-X algorithm.

24.5 Linear Quadratic Gaussian Control and 7_ Control

Generalised minimum variance (GMV) controllers are subsets of Linear Quadratic
Gaussian (LQG) controllers [Peterka, 1984; Grimble, 1984]. Minimum variance
controllers require specific polynomials in the plant to be minimum-phase, thus
restricting the application of this control law scheme. Doelman [1993] cites
Tohoyama [1991] as evidence of non-minimum-phase polynomials in acoustic systems,

and Elliott and Nelson [1994] provide further evidence.

LQG controllers are able to treat non-minimum-phase polynomials. The criterion is
given generally by equation (A-45) in appendix A.3, repeated here for ease of

reference.
I = E[{P(q)y(n+k) + Q(q)u(n)}*|n] [2-55]

As discussed by Isermann [1991], the use of P=1 and Q=r (a scalar constant) results
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in only the zeroes of the moving-average part of the disturbance model, C, affecting

stability.

The LQG control scheme is determined firstly by using spectral factorisation [Grimble
and Johnson, 1988] of the non-minimum-phase polynomial, into a polynomial with
non-minimum-phase zeroes and another with minimum-phase zeroes (termed a
Hurwitz polynomial). The minimum-phase zeroes can be cancelled; however, if non-
minimum-phase zeroes are used in the denominator of the regulator transfer function
(ie. control law scheme), then instability will result. If the reciprocal of the non-
minimum-phase polynomial is included in the regulator denominator, then the spectral
properties of the non-minimum-phase zeroes can be neutralised [Doelman, 1993].
This method of control has been applied to active noise and vibration control
problems in discrete time by Thomas [1995] and Bennett [1991]. It has been applied
to continuous time systems represented in state-space form by Bai [1995], who also
uses its capacity to effectively cancel spectral peaks (as discussed in section 2.4.5), in
conjunction with a technique known as Independent Modal Space Control [Oz and

Meirovitch, 1983; Meirovitch, 1990] (which eliminates inter-modal coupling).

Elliott et al [1995] examined performance and robustness issues using H_ control
theory. This type of controller incorporates a degree of cautiousness defined by a
model for the uncertainty in plant estimates [Doyle et al, 1992]. A similar approach
has also been developed by Imai et al [1995], also based on the work of Doyle et al

[1992].
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An excellent study of the interplay between the control law design schema (specifically
LQG) and parameter estimation (specifically RLS) in closed-loop is presented using
the general framework of Adaptive Predictive Control by Bitmead et al [1990]. In

particular, Bitmead et al [1990] note the following points on the interplay:

. Optimum parameter estimation requires persistently exciting inputs; Elliott et
al [1995] note that the injection of uncorrelated white Gaussian noise into a

closed-loop system can ensure sufficient persistent excitation.

. A feedback controller affects the spectral properties of the plant inputs,

therefore affecting the parameter estimates.

Bitmead et al [1990] discuss the potential of H_ optimal adaptive control, since it has
a design criterion deliberately specified to ensure closed-loop stability, and has many
similarities with LQG control. They note that H_ control is yet to be fully developed

for discrete-time systems.

2.5 Alternative Approach

It has been shown that the stochastic gradient algorithms (LMS or RLMS) commonly
used in active noise and vibration control, adapt the coefficients of the control filter,
and in so doing require knowledge of part of the physical system, known as the

cancellation path transfer function. Gradient approximation in this way is "noisy"
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[Widrow and Stearns, 1985], and inaccurate estimates of the cancellation path transfer
function can result in instability, as has been discussed in chapter 2. Reliable methods
for on-line estimation of the system parameters (not simply the cancellation path
transfer function in an explicit form), and formulation of a control scheme have been
presented in chapter 2, alongwith original proposals for common algorithm

enhancement.

This section is concerned primarily with algorithms that avoid the need to estimate
system parameters. These algorithms require time averaged cost function estimates,
to avoid estimating the system parameters. Such algorithms can be divided into the

following categories:

¢ "Derivative Measurement"

The derivatives of the cost function are estimated using finite difference techniques
applied to time averaged cost function estimates, and from the derivative estimates
the control filter coefficients are adapted to their optima using the steepest-descent

algorithm or Newton’s Method.

« "Curve-Fitting"

Time averaged cost function estimates can be fitted to the known shape of the cost
function (eg. parabolic) to determine the optimal control filter coefficients

corresponding to the minima of the fitted function.
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¢ Random Search

The optimum of the cost function is found by adapting the control filter coefficients
in random directions, thus forming the random search algorithm. Alternatively they
can be updated from time averaged cost function estimates at random locations,

thus forming the genetic optimisation algorithm.

 Artificial Intelligence

Rule-based intelligent learning systems, in which the control filter coefficients are
adapted to find their optimum values based upon minimisation of the time
averaged cost function. Allows global convergence for cost functions with multiple
local optima, as the cost function is divided into a number of "hyperspaces". Such

algorithms are known as "stochastic learning automata", or "fuzzy logic".

Each type of algorithm described briefly above will now be discussed in more detail.
It is important to note that from this point, time averaging is implied by the "cost

function estimate" description.

2.5.1 Derivative Estimation and Curve-Fitting

In this approach the derivatives of the cost function can be estimated using finite

difference techniques applied to cost function estimates. Such techniques have been
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developed and assessed in comparison to least-squares or stochastic approximation
algorithms, by Widrow and Stearns [1985] using "central differences". These authors
have thoroughly investigated the performance aspects of such algorithms, and
specifically compared the steepest-descent algorithm (in which only an estimate of the
gradient is used to adapt the coefficients) and Newton’s Method (in which both an
estimate of the cost function gradient and second derivative are used to adapt the

coefficients).

In active noise and vibration control, this type of approach was first taken by Jones
[1987] and Silcox [1987]. Finite difference methods applied to cost function estimates
were used to estimate the gradient of the cost function in the direction of each control
filter coefficient. From this, the cost function was estimated (through time averaging)
at four points in the direction of the steepest gradient, and the cost function minimum
was found in this direction by fitting these points to a quadratic function. This
procedure was then repeated (ie. The direction of steepest gradient was found, a
curve-fit was performed in this direction, and the minimum of this curve was found
etc.). Jones [1987] and Silcox [1987] claim that this type of algorithm reaches the cost

function minimum in about three to four iterations.

This algorithm is shown in Figure 2-10 for adaptation of two control filter coefficients.
In Figure 2-10 the gradient is estimated (using finite differences applied to cost
function estimates) at the starting point (represented by ). The gradient gives the
direction of steepest descent, along which the control coefficients are adapted, and

cost function estimates are made (represented by x ). The cost function estimates are
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fitted to a quadratic to determine the optimum control coefficients (represented by
®). This procedure is reiterated (ie. starting with a gradient estimate at the optimum
control filter coefficients, determined for the last direction of steepest descent) using
cost function estimates (represented by ©), until the cost function minimum

(represented by ¢ ) is found.

A

"1
Cost Function
Contours
Gradient
Estimate
Gra lﬁi/
Estimate /
///
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Figure 2-10. Adaptation of control coefficients based on steepest descent gradient
estimate and quadratic fitting. The solid lines represent the contours of the cost
function, X represents the starting point, x and O represent the cost function
estimates in the directions of steepest descent (- - and~ ~ ), ® and ¢ represent the

cost function minima in the directions of steepest descent (- - -and - -).
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However if the cost function incorporating the cancellation path transfer function can
be transformed such that each control filter coefficient represents a principal axis of
the cost function, then each control filter coefficient can be adapted independently. A
quadratic function needs only three points for complete definition, therefore cost
function estimates at three points in each independent control filter coefficient
direction leads directly to the optimum of each control filter coefficient, as shown in
Figure 2-11. This represents the Independent Quadratic Optimisation algorithm
concept. In Figure 2-11 the cost function contours are shown by the solid lines. The
cost function is estimated (through time averaging) initially at the location represented
by ®. Two further estimates of the cost function (represented by x ) are made in
the direction of the independent control coefficient, k,,. The optimum of the control
filter coefficient k,, (represented by &), is found by fitting a quadratic to these
estimates. An estimate of the cost function is made at the optimum of the first
control filter coefficient, and two further estimates of the cost function are made
(represented by O), before determining the optimum of the second control filter

coefficient and therefore the global cost function minimum (represented by ).

The Independent Quadratic Optimisation algorithm’s development, simulation and
practical implementation are original to this thesis, and were first published in 1991
[Mackenzie and Hansen, 1991a; 1991b; Snyder et al, 1991c]. Without a transfer
function in the cancellation path, the control filter coefficients can be made
independent using orthogonal reference signals (as opposed to delayed samples of a
single reference signal) for each coefficient (refer to appendix A.2.2, in particular

equation (A-26) and associated discussion on independent coefficients and principal
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axes). This concept will be further discussed in chapter 3, as will the use of a lattice
filter to generate orthogonal signals. The effect of the cancellation path transfer
function on control filter coefficient independence will also be examined in chapter 3.
The effects of the cancellation path transfer function on the Independent Quadratic
Optimisation algorithm will be further elucidated after the formulation and simulation
of this algorithm in chapter 4. Chapter S presents the results of experiments using
physical systems. Other work confirming this approach has been presented by
Botteldooren [1993].

4 :

Wy

Cost Function
Contours

Figure 2-11. Independent Quadratic Optimisation algorithm. Solid lines represent
contours of the cost function, [X represents starting point, x represents estimates
along first control filter coefficient principal axis, ® represents the optimum for first
control filter coefficient, O represents estimates along the second control filter

coefficient principal axis, and ¢ represents the global cost function minimum.
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Recently Clark and Gibbs [1992], Gibbs and Clark [1993] and Kewley et al [1995]
discussed a similar algorithm to that presented here, for controlling individual
harmonics. The technique presented by these authors uses each individual harmonic
and its orthogonal component independently (since harmonics are in effect
independent as will be shown in chapter 3). The algorithm used by these authors is
based on Newton’s Method, and it will be shown in chapter 4 that it is identical to the

Independent Quadratic Optimisation algorithm developed here.

2.5.2 Random Search

Widrow and McCool [1976] have assessed a method of searching the cost function
using a random search direction. The control filter coefficients are updated in a
random direction based on estimates of the cost function, such that

Wn+1) = Win) + ulJ (W) - I (Wn)+U(n)]U(n) (2-5¢]
where W(n) is a vector of control filter coefficients, u is the convergence coefficient,
J () is the estimate of the cost function dependent upon the values of the control filter
coefficients, and U(n) is a random control filter coefficient update direction. Widrow
and McCool [1976] have shown that the performance of this algorithm is equivalent to
the steepest-descent algorithm. The random search algorithm has the advantage of

ease of implementation.

Etter and Masukawa [1981], as cited by Widrow and Stearns [1985], have developed

an algorithm that examines random "locations" (instead of directions) to determine the
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optima of the cost function. This type of algorithm is known as a genetic optimisation
algorithm, and has been implemented for use in active noise and vibration control by
Curtis [1991] and Wangler [1994, 1995]. The genetic optimisation algorithm uses an
"estimation universe" of sets, «; (of which there are a total of N), of control filter
coefficients. The cost function is estimated, through time averaging, for each set of
control filter coefficients within the "estimation universe, and then a second
"adaptation universe" of control filter coefficient sets is derived, with each original set
replicated inversely proportional to the cost function estimate. From this derived
"adaptation universe", two sets of control filter coefficients are chosen at random
(known as "parents"), and "mutation" is performed to give a new set (known as the
"offspring") within a new "estimation universe". The cycle then continues with the cost
function again estimated for each set of control filter coefficients within the
"estimation universe". "Mutation" is performed by randomly selecting a control filter
coefficient from each "parent" to use for the corresponding control filter coefficient of
the "offspring”. It is apparent that those control filter coefficients that perform better
(ie. have a lower cost function estimate) will have less probability of "mutation”,
ultimately resulting in the "offspring" becoming more and more alike, leading to
optimum control filter coefficients. Wangler [1994] gives various modifications that
can be made to this algorithm to improve its performance, including a means of
restricting the range of values control filter coefficients may take, therefore ensuring

stability.
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2.53 Artificial Intelligence

The methods outlined to this point are capable of locating local minima of a cost
function, but not necessarily global minima. Intelligent learning algorithms (ie. Fuzzy
Logic [Lebow et al, 1991] or Stochastic Learning Automata [Tang and Mars, 1991))

search the cost function in a probabilistic manner, without reliance on system linearity.

Recently the use of stochastic learning automata has been applied to system
identification using the output-error form of IIR filter (specifically chosen to avoid
biassing of parameters by incorrectly modelled disturbances as per the equation-error
method). The use of the output-error form of system identification is particularly
suitable for testing the stochastic learning algorithm in comparison to gradient descent
algorithms, since it has a multi-modal cost function (ie. multiple local minima). The
block diagram of a learning automaton/environment model is shown in Figure 2-12,

as applied to a control problem.

The simplest scheme for finding the optimal set of control filter coefficients uses only
a single automaton. This automaton is used to update each component, p,, of an
output probability vector, p, that determines the best performing actions, «;, within
the output set, a. Each action corresponds to a set of control filter coefficients.
Hence it can be said that the cost function parameter space is partitioned into a
number of hyperspaces, equal to the number of output actions [Tang and Mars, 1991].
The greater the number of output actions, the finer is the quantisation of the

parameter space, and therefore the greater is the level of optimisation. Since the
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parameter space is partitioned in this manner, the randomness is removed from the
search mechanism, and the parameter space is defined only by the stable ranges of the
control filter coefficients. The search mechanism can be performed in a hierarchical
manner, with a small degree of quantisation of the parameter space initially used,
until the region of the global minimum is found, and then the parameter space could
be further quantised only in this region, or alternatively a hybrid search technique (eg.

gradient descent type etc.) could be used in this region.

Known Unknown
Disturbance Disturbance

Error (n)
Signal | Y

Reference | 4(n Control |
Signal () Signal ()

S ;?“ %

STOCHASTIC
AUTOMATON

Figure 2-12. Stochastic Learning Automaton applied to active noise and vibration

control.

Fuzzy logic was introduced by Zadeh [1973]. It was extended to adaptive control by
Procyk and Mamdani [1979] and termed "self-organising controller”. It has been

applied to active noise and vibration control by Lebow et al [1991] and Subramaniam
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et al [1993]. A discussion of fuzzy logic adaptive control is given in Chalam [1987],

with its principles very similar to the discussion on stochastic learning automata.

2.54 Summary

In all of these time averaged cost function minimisation methods, the speed of
convergence to the optimum is severely restricted by the need to estimate the cost
function over a number of samples. The lower the number of samples used to
estimate the cost function, the less accurate will be the cost function estimates, and
the larger will be the convergence time (since inaccurate control filter coefficient
optima will be found from the inaccurate cost function estimates). However the
greater the number of samples used to estimate the cost function, the more accurate
will be the cost function estimates and the greater will be the convergence time.
Therefore there is an optimum number of samples for cost function estimation, that
corresponds to a minimum convergence time, which can only be found empirically and
depends on the statistics of the disturbance. To reduce the order of the parameter
space and hence increase convergence time, IIR filters can be used with less

coefficients than FIR filters.

The other disadvantages with these types of algorithms are that they can result in high
levels of the cost function (and thus poor on-line performance) if the entire parameter
space is searched, and they can require a large memory depending on the type of

algorithm and the amount of information it needs to store.
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The advantages of these types of approach are:

» They are amenable to non-linear systems, and systems in which stationarity cannot

be ensured;

e In avoiding biassed parameter estimates, the cost function has multiple local
optima, to which most other algorithms would converge. However, some of the

algorithms discussed in this section can achieve convergence to a global minimum.

» They have simple hardware implementations (although some types may require

considerable memory), and can be applied to non-standard filters.

2.6 Summary

In this chapter the application of modern control thedry to active noise and vibration
control has been introduced. This theory involves the use of a model of the system,
an algorithm to estimate the parameters of the system model, and a control scheme to
achieve the desired process output. The differences in the models, and algorithms
used to estimate the model parameters have been stressed, and are discussed in the
appendix. The common control algorithms were shown to conform to the modern
control theory approach. These common algorithms were heuristically developed, and
the approach presented in this chapter has highlighted the following improvements

that can be made to these algorithms.
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Use of the "augmented-error" approach that avoids the interplay between

system identification and control schemes.

Use of a single adaptive scheme to estimate the parameters of the system
model on-line (ie. It is not necessary to identify the cancellation path transfer
function parameters and control filter coefficients in parallel; This can result
in instability, with the convergence conditions for the control algorithm affected

by the accuracy of the cancellation path transfer function estimates).

Use of the simplified forms (stochastic gradient) of the more accurate recursive

prediction error methods for both output-error and equation-error models.

Use of a Generalised Minimum Variance (GMV) criterion, instead of a
minimum variance criterion, to reduce the effect of non minimum-phase

processes.

In many of the models considered in this chapter, numerator polynomials have
been assumed to be close to unity so that algorithms for output-error and
equation-error forms (eg. ARMAX) can be simplified. This can result in a
reduction of broadband attenuation since the prediction of the zeroes of the
disturbance model are ignored, however it does avoid the destabilising effects

of non-minimum-phase zeroes.
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. Use of the Linear Quadratic Gaussian control scheme with spectral
factorisation can allow control systems with non-minimum-phase transfer

functions to be controlled.

A comparison of adaptive feedforward and feedback control (both individually and in
combination) has highlighted many differences. It is apparent that feedforward
schemes are equivalent to output-error control models, and feedback schemes are

equivalent to equation-error type (such as ARMAX) control models.

The persistent excitation condition was shown to be critical in defining unbiased
parameter estimates, as was the choice of an output-error model or an equation-error
model. The persistent excitation condition of a system in closed-loop was shown to be
affected by the control input to the system, and the use of H_ control was discussed

as a means of ensuring closed-loop stability.

Finally alternative methods were considered to avoid the need to identify the

parameters of the system model. The Independent Quadratic Optimisation algorithm

was conceptualised in this chapter and forms the basis of this thesis.
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3.1 Introduction

Chapter 2 briefly described the concept of the Independent Quadratic Optimisation
algorithm, as a means of generating an optimal control signal without requiring
knowledge of the cancellation path transfer function. As discussed in chapter 2, this
algorithm adapts coefficients linked to orthogonal (or independent) signals obtained

from a lattice filter. The control structure is shown below for ease of reference.

Reference

Signal
©

LATTICE S e LATTICE

FILTER ALGORITHM {

R

Disturbance

CONTROL FILTER INDEPENDENT QUADRATIC
(LINEAR COMBINER) OPTIMISATION ALGORITHM

- CANCELLATION PATH
Control TRANSFER FUNCTION
Signal

Figure 3-1. Active Noise and Vibration Control Structure.

As shown, there are two algorithms that operate concurrently; The lattice algorithm
adapts the coefficients of the lattice filter to generate orthogonal signals, and the
Independent Quadratic Optimisation algorithm adapts the coefficients (of the control

filter/linear combiner) associated with each orthogonal signal. The internal structure
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of the lattice filter (feedforward type) combined with the control filter (linear

combiner) is shown in Figure 3-2. The stages within the lattice filter will be examined

later in more detail.

x(n)
= Reference
Signal

u(h
= Control Signal

Figure 3-2. Joint-Process or Tapped-Lattice Filter. The input/reference signal is
given by x(n), the backward and forward prediction errors by ey (n) and eg(n)

respectively, the control filter coefficients by k,,(n) and the control signal by u(n).

The combination of a linear combiner with the lattice filter is formally known as a
Joint Process Lattice Filter, or a Tapped-Lattice Filter. This type of filter has been
used in active noise and vibration control previously [Swanson, 1986; 1991b] and more
recently [Park and Sommerfeldt, 1994; Char and Kuo, 1994], however, the algorithms
used by these researchers to adapt the coefficients of the filter, requires knowledge of

the cancellation path transfer function, as discussed in chapter 2.
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This chapter will examine the generation of orthogonal signals by the lattice filter, the
use of these orthogonal signals to generate a control signal, and the effect of the
cancellation path transfer function on the independence of the control filter

coefficients individually associated with each orthogonal signal.

To examine the generation of orthogonal signals by the lattice filter, a brief overview
will be given of the signals and coefficients used to define the lattice filter. This
lattice filter will then be extended, by combination with a linear combiner (control
filter), to show how a control signal can be generated from orthogonal signals. It will
be shown that without a transfer function in the cancellation path, the control filter
coefficients used to generate the control signal are independent. The effect of the
cancellation path transfer function on the independence of the control filter
coefficients results in an independence condition that affects the Independent
Quadratic Optimisation algorithms speed of convergence to the optimum of the cost

function. This will be shown by way of computer simulations in chapter 4.

3.2 Lattice Filter Overview

In this section it will be shown briefly how the structure of the lattice filter is
obtained. These results will then be used to show how the lattice filter can generate
orthogonal signals. The characteristics of the lattice filter, that affect the Independent
Quadratic Optimisation algorithm, will then be identified (with further discussion in

chapter 4).
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3.2.1 Definition of the Lattice Filter

The lattice filter stems from forward and backward prediction errors of a set of
consecutive input signal samples, as shown in Figure 3-3. Given a set of consecutive
samples of the input signal, the forward prediction error is the error in predicting the
input signal for the next sample following this set, and the backward prediction error

is the error in predicting the input signal for the previous sample before this set.

In Figure 3-3, the consecutive input signal samples (total of N) are
x(n), ..., x(n-N+1). The input signal to be predicted forward in time is x(n+1),
while the input signal to be predicted backward in time is given by x(n-N). To
predict the signal forward in time requires forward prediction coefficients f, ... , f,
while to predict the signal backward in time requires backward prediction coefficients
by, ..., by. Thus the errors in predicting the input signal forward and backward in

time are eqn(n+1) and e, (n), respectively.

The forward coefficients are optimised to minimise the forward prediction error. The
optimisation criterion is given by (note that j as opposed to J is used as a descriptor
for the optimisation criterion as there will be many stages of the lattice filter whereas
J will be reserved for the optimisation criterion for the error signal(s) taken from the
acoustic domain)

Jin = E[efil(n)] [3-1]

with the forward prediction error written as
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en(n) = x(n) - Fy (m)Xy(n-1) [3-2]

where

Fe@) = [ i), - f(n) ] [3-3]

represents the forward prediction coefficients, and

Xg(n) = [ x(n), x(n-1), ... , x(n-N+1) ] [3-4]

represents the consecutive sequence of input signals.

efN(n+1) = Forward Frediction Error

x(n+1)
= Reference
Signal

ebN(n) = Backward Prediction Error

Figure 3-3 Flow Diagram of Linear Prediction Errors. The reference/input signal is
x(n) and its estimate is £(n), the forward and backward prediction coefficients are f,
and b, respectively, and the forward and backward prediction errors are eqn(n) and
e,n(n) respectively. A continuous set of N reference/input samples is given by
x(n),..x(n-N+1), with x(n-N) the sample before this set and x(n+1) the sample

after this set. A represents a single sample delay.
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Since time dependence has been introduced (to account for the forward prediction
coefficient adaptation required to minimise the cost function) into the linear
prediction coefficient in equation (3-2), it should also be introduced into the cost
function, which is therefore written as j;\(n). The minimum of this cost function
occurs when its partial derivative with respect to the forward prediction coefficients,

equals zero. That is:

9 m(n)
oF(n)

= -2E[en(n)Xy(n-1)] =0 [3-5]
F F

Nopt Nopt

This means that at the optimum, the forward prediction errors are orthogonal to the
previous N input signal samples, which can be written as

E[en(n)x(n-i)] = 0 for 1<i<N [3-6]

This orthogonality condition is critical to the lattice filter structure.

A similar orthogonality condition can be obtained for the backward prediction error.
The backward prediction error is orthogonal to the current and previous (N-I) input
signal samples, which can be written as

Ele (n)x(n-i)] = 0 for 0<i<N-1 [3-7]

where

e.n() = x(n-N) - By (n)Xy(n) [3-8]
represents the backward prediction errors, with the backward prediction coefficients

represented by
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By(n) = [ by(n), -, by(n) ] 3-9]

and the consecutive sequence of input signal samples is represented by equation (3-4).

It is apparent from equation (3-8) that e \(n-1) is the error in predicting x(n-N-1)
from x(n-1), ... x(n-N), while from equation (3-2) it is apparent that eg(n) is the
error in predicting x(n) from x(n-1), ... x(n-N). Thus the same set of consecutive
data samples can be used to predict the input signal both forward and backward in

time. This suggests that these prediction errors should be linked in some way.

To understand how the forward and backward prediction errors are linked, consider
the next order forward prediction error, such that

erpany () = X(1) = Fy (M) Xy (n-1) [3-10]
This requires prediction of x(n) from x(n-1), ... , x(n-N), x(n-N-1) (where it should
be noted that x(n-N-1) is now also available, as the order has been increased). As
discussed above, it is known that x(n) and x(n-N-1) can be predicted from
x(n-1), ... x(n-N). Further, since ep(n) contains all of the information regarding
the prediction of x(n) from x(n-1),..,x(n-N), and e (n-1) contains all of the
information regarding the prediction of x(n-N-1) from x(n-1),...,x(n-N), then it can

be postulated that:

ef(Nq)(n) = en(n) - kb(N+1)ebN(n—’1) [3-11]

where, using the orthogonality conditions given by (3-6) and (3-7), the coefficient

kon.1y Can be written as

_ Elen(n) epn(n-1)]

Ky = [3-12]
P jon(n-1)
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A similar result can be formulated for the backward prediction error:

eb{N*l)(n) = ebN(n"]) - kf(Nﬂ)efN(n) [3'13]

with the orthogonality conditions again allowing the definition for the coefficient

Kenery @S

_ Elen(n)epn(n-1)]

kf(N+1) - ] (n) [3-14]
fN

The coefficients k., and kg as described by the above equations, represent the
optimal PARCOR coefficients linking the forward and backward prediction errors of
the previous stage to the prediction of those errors for the current stage. It is
equations (3-11) and (3-13) that define the recursive stages of the lattice structure, as
they show that the forward and backward prediction errors are "linked" since they
relate to the same set of input signal samples. The structure of each stage of the
lattice filter is shown in Figure 3-4. This is known as a feedforward lattice structure.

It can be shown that it represents a transfer function with only zeroes.

Alternatively equations (3-11) and (3-13) can be rearranged so that a lattice structure
can be formed to represent a transfer function that includes poles (known as a
feedback structure), as shown in Figure 3-5. The relevance of this structure to Active
Noise and Vibration Control will be discussed in chapter 6. It is the feedforward type
of stage that is repeated in the lattice filter, and used throughout this work. Figure 3-4

represents a stage of the lattice filter shown in Figure 3-2.
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Figure 3-4. Feedforward Lattice Stage. Where eg(n) and e (n) represent the
forward and backward prediction errors respectively, and k;(n) and k,,(n) represent

the forward and backward PARCOR coefficients respectively.

Figure 3-5. Feedback Lattice Stage. Where ey(n) and e, (n) represent the forward
and backward prediction errors respectively, and ky(n) and k. (n) represent the

forward and backward PARCOR coefficients respectively.

When the lattice filter is used for estimation, prediction and control, its PARCOR
coefficients are optimised to minimise a particular cost function. When used for
representing a direct-form transfer function, the PARCOR coefficients are defined
without regard to this optimisation. It is the adaptive form that is used throughout

this work.
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3.2.2 Properties of the Lattice Filter

The assessment of the lattice filter properties is not unique to this thesis, however the
relation of these properties to the Independent Quadratic Optimisation algorithm is

essential.

As shown in Figure 3-2, the lattice filter consists of stages of identical structure (but
varying parameters), the number of which relate to the order (or number of input
signal samples) used to predict the input signal. The order required to achieve
minimum prediction errors depends upon the statistics of the input signal (since it
generates prediction errors or errors relating to the ease and accuracy of predicting a
particular signal from a finite set of consecutive samples). For a pure tone, only two
stages would be required for optimal prediction, but for a statistically complex
autoregressive-moving average (ARMA) signal (as discussed in chapter 2), the order

required for optimal prediction could be in the hundreds.

The prediction errors at each stage of the lattice structure, are generated using
coefficients defined by the correlation between the forward and backward prediction
errors of the previous stage, as shown by equations (3-12) and (3-14). These
coefficients replace the linear prediction coefficients in the separate forward and
backward linear prediction error equations (ie. those coefficients shown in Figure 3-3).
The coefficients (termed PARCOR coefficients for partial correlation, or reflection
coefficients as they can model reflections in a vocal tract) of each stage of the lattice

filter are adapted independently (of later stages) to minimise the prediction errors at
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the output of each stage. This adaptation is essential to obtain orthogonal backward

prediction errors.

After the lattice structure has been adapted to produce the orthogonal backward
prediction errors, each backward prediction error is weighted by a control filter
coefficient, and summed to produce an estimate of the disturbance signal, as shown in
Figure 3-2. The Independent Quadratic Optimisation algorithm used to adapt the
control filter coefficients will be derived in the next chapter. The aim of the
Independent Quadratic Optimisation algorithm is to independently adjust the control
filter coefficients without requiring knowledge of the cancellation path transfer
function. The independence of the control filter coefficients will be shown in section

3.3.

Assuming the backward prediction coefficients have been optimised so that they no
longer vary with time, it can be shown (using the orthogonality conditions given by

equations (3-6) and (3-7) that
Ele,n(n)ey(n)] = 0 for 0<j<N-1 [3-15]

This shows that the backward prediction errors are orthogonal. This is a critical
property that is essential to the Independent Quadratic Optimisation algorithm
performing efficiently. As discussed in chapter 2, without orthogonal signals, the
control filter coefficients would not be independent. It will be shown later however
that despite the availability of orthogonal signals, the control filter coefficients’
independence is still dependent on the type of input/reference signal, when a transfer

function exists in the cancellation path (as for an active noise and vibration control
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system).

If the zeroes of an all-zero transfer function lie within the unit circle in the z-domain
(ie. the transfer function is minimum phase), then the inverse transfer function must
also be stable. It can be shown that this condition corresponds to forward and
backward PARCOR coefficients, |k,| and |kq|, being less than unity. Thus the
form of the lattice filter is such that stability is easily ascertained. This is a useful on-
line check of stability that further enhances the stable nature of the Independent

Quadratic Optimisation algorithm.

For a stationary input signal, the forward and backward prediction error powers are
equal, as are the forward and backward PARCOR coefficients, and therefore
key(n) = kon(n) 2 kgpn(n) (with & meaning defined as, and the subscript f/b
indicating that the PARCOR coefficient is used for both the forward and backward
PARCOR coefficients as these are equal). It is possible to show that the mean square
prediction errors can be estimated by the following order recursive equations:

ij(n) = jf(N—l)(n) [1 - sz/bN(n)] [3'16]

and

Jon(m) = Jon-n(r-D[1 = k2 ()] [3-17]
Thus it is apparent from the above equations, that with increasing order, the power
(or mean square) of the prediction errors decreases (since |kf/bN| must be less than
unity for stability). It can be shown [Honig and Messerschmitt, 1984] that the
orthogonality conditions indicate that increasing numbers of linear prediction

coefficients reduce the prediction error to increasingly white sequences, with reduced
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powers. Thus low order stages of the lattice filter will have PARCOR coefficients
close to unity (due to good correlation between forward and backward prediction
errors at these low order stages) and prediction error powers relatively similar to the
input signal power, while high order stages will have low prediction error powers and
PARCOR coefficients close to zero. Periodic signals require only two stages of a
lattice filter for accurate prediction (the remaining stages have very low powers and
are increasingly white). This is an important concept for the Independent Quadratic
Optimisation algorithm, since if the powers of the backward prediction errors are
reduced with increasing order, then the control filter coefficients will need to be very

large, possibly causing overflow. This will be considered further in chapter 5.

The prediction errors at the output of each stage of the lattice filter can be minimised

by adapting the PARCOR coefficients using either of the following algorithms.

. Stochastic Gradient method (ie. Least Mean Squares (LMS) algorithm); The
forward and backward PARCOR coefficients are adapted to minimise each
forward (E[eff(n)]) and backward (E[ebzi(n)]) prediction error cost function
separately, or to minimise their combination (E[eff(n)] + E[ebzi(n)]). The
PARCOR coefficients are adapted in the direction of, and in proportion to the
steepest descent gradient, determined from an estimate of the gradient of the
cost function. This algorithm is summarised in Table 3-1. In Table 3-1, u
represents the convergence coefficient, and the prediction errors and their

estimated powers are used to form a normalised stochastic gradient algorithm.
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Recursive Method (ie. Recursive Least Squares (RLS) algorithm); The lattice
filter consists of decoupled stages at each of which local minimisation of the
forward and backward prediction error cost functions occurs. It is the
independent adaptation of the PARCOR coefficients to locally minimise each
cost function, that makes a lattice filter ideally suited to the recursive least
squares algorithm. The recursive least squares algorithm for the lattice
structure requires variables to be updated in time and order, since for every
new data sample the forward and backward prediction errors must be
generated, and the coefficients used to generate them must be adapted. This
algorithm adapts the PARCOR coefficients in the direction of the optimum of
the forward and backward prediction error cost functions (not necessarily the
steepest direction of the cost function). This algorithm is summarised in Table
3-2. In Table 3-2, the factor y,(n) is known as the "gain constant" or “"error
ratio", and it can be rewritten as

yin) = 1 - ayn) [3-18]

where

a(n) = X (R} ()X(n) [3-19]
In these equations, i represents a stage of the lattice filter, X(n) represents the
vector of delayed reference signal samples, and the inverse of the sample auto-
correlation matrix represented by ﬁ?f_l(n). It is known [Cowan, C.F.N and
Grant, P.N., 1985] that «,(n) is a measure of the likelihood that the N most
recent input data samples come from a Gaussian process with sample auto-

X

correlation IEl(n) determined from all available past samples. A value of

a(n) close to unity indicates that the recent data samples are likely to have
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been generated by the Gaussian process described above, however a value of
a,(n) close to zero indicates that the recent data samples are unexpected.
Therefore when v,(n) is close to unity, it indicates that sudden changes in the
process generating the samples has occurred and the magnitude of the step
change in the coefficient update algorithm increases. As from the analysis of
appendix A.2.3, it is this ability to track changing signals that makes the
recursive algorithm very appealing. In appendix A.2.3, the recursive algorithm
was shown to be unaffected by the eigenvalue disparity in the autocorrelation
matrix, further resulting in increased speed. It is because of all of these
advantages that in this work the recursive least squares algorithm will be used
to adapt the lattice filter PARCOR coefficients, and thus generate the

orthogonal signals.

In the equations in Tables 3-1 and 3-2, B represents a "forgetting factor” that defines
the "memory" or expected stationarity of the input sequence. The optimal PARCOR
coefficients are independent of the order of the filter, that is the coefficients are
dependent only upon the previous stages and not subsequent stages. Thus the order
of a filter can be increased without affecting previously defined coefficients of lower
stages of the filter. Hence when the order of a predictor is unknown, the number of
stages of the lattice filter can be increased until the prediction error is sufficiently
white, and/or reduced in magnitude (as discussed previously). This aids the
Independent Quadratic Optimisation algorithm, as it means the coefficients in the

control filter can be easily increased.
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Table 3-1. Stochastic Approximation Algorithm.

[ LATTICE FILTER OF ORDER N -1 ]
begin

n=20
Time Initialisation

fori =0wN - 14
eq(0) = €y(0)
kg(1) = k(1) =0
jfi(o) = BN_ljo » Jw(0) = B(N_l)_ijo

alternatively jf/bi(()) = (1 " B_i_l)BNjo

continue
Time Recurrence

statt: 1 =1 + 1
Order Initialisation

en(n) = ey(n) = x(n)
Jo(n) = B jp(n-1) + ef?)(n) Jbo() = B jy(n-1) + ebzo(”)

alternatively jf/bo(n) =f} jf/bo(n—l) i [eff)(n) + ebzo(n—l)]
Order Recurrence

fori B OtoN - 2do
ef(i+1)(n) = eg(n) - kb(i+1)(n)ebi(n_1)
€)= €yi(n=1) = kg ,qy(n)eg(n)

eg(n)ey.1)(n)
kf(i+1)(n+1) = kf(m)(n) + —F_#
Ji(n)

or kf(i+1)(n+1) = kf(m)(n) + 2, eﬁ(n)eb(i_l)(n—l)

eni(n-1)eg;.1)(n)
Joi(n-1)
or kb(i+1)(n+1) N kb(i+1)(n) + 2 ebi(n)ef(i—l)(n)

kb(i+1)(”+1) = kb(i+1)(n) +

ebi(n_l)ef(i+1)(n) * efi(n)eb(i+1)(n)
jf/bi(n)
or kf/b(i+1)(n+1) = kf/b(i+1)(n) + 24, [ebi(n)ef(i—l)(n) + efj(n)eb(i—l)(n_l)]

alternatively kf/b(i+1)(n+1) = kf/b(i+1)(n) +

: . 2
Jiieny®™) = B jgaay(n-1) + eg.q(n)
. . 2
Jb(i+1)(”) =B ]b(i+1)(”“1) + eb(i+1)(n)
aematively jp (1) = B jo(n-1) + [eg(n) + eg(n-1)]
continue

goto start
end
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Table 3-2. Recursive Algorithm.
[ LATTICE FILTER OF ORDER N -1 ]

begin

n=20

Time Initialisation

forl =0wN - 140
e;(0) =e,(0) =0
kg(1) = ky(1) = 0
Ja() = 8%y, j(1) = 8D,
v(0) =1

continue
Time Recurrence

start: M =n + 1
Order Initialisation

en(n) = ey(n) = x(n)

jp+1) = Bjg(n) + yo(n-Del(n) = Bjy(n) + x%n)
Yo(n) = 1

Joo@+1) = Bjyo(n) + yo(m)eg(n) = Bjpg(n) + x%(n)

Order Recurrence

forif =0twN - 2 do
erisy() = eg(n) - kyg.qy(m)ey(n-1)
epi)(t) = ey(n-1) = kyj,qy(n)eg(n)

Yi(n _1)efi(n)eb(i+1)(n)
Ji(n+1)

kegoy(n+1) = kg qy(n) +

vi(n-Dey(n-1)eg;.,(n)
Jui(1)

kb(i+1)(”+1) = kb(i+1)(n) +

Jigsy(m+1) = ij(i+1)(n) * 'Yi+1(n‘1)ef2(i+1)(n)

i y:(n)el(n)
Veal) =) =

. . 2
]b(i+1)(n+1) = B]b(i+1)(n) i Yi+1(n)eb(i+1)(n)
continue
goto start
end
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3.3 Control Filter Coefficient Independence

In this section it will be shown that the control filter coefficients are independent
because they are fed by orthogonal signals (ie. the backward prediction errors). The
lattice structure can be modified to generate estimation and control signals (as
opposed to purely prediction) with the addition of a control filter (linear combiner).
The control filter extracts each orthogonal signal generated by the lattice filter and
multiplies each signal by a coefficient. The control filter then sums each product to

generate the control signal.

Consider firstly the use of this control signal in a system without a cancellation path
transfer function, as shown in Figure 3-6 (the location were the cancellation path
transfer function would ordinarily be located is shown dotted). In the same manner as
the order recursive update equations for the forward and backward prediction errors,
it can be shown that the disturbance can be estimated from a linear combination of
orthogonal backward prediction errors, such that

y(n) = pn) + K (Ey() [3-20]
where N represents the number of control filter coefficients or backward prediction
error signals,

K () = [ kyg(n), o ko) ] [3-21]

represents the vector of control filter coefficients,
En(n) = [ ew(®), - eynony() ] [3-22]

represents a set of orthogonal backward prediction errors, and

RY, = Elp ) (342

represents the power of the disturbance signal.
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San

LATTICE
FILTER

%k-ﬂ("] %(wl(n) %(WZ(n)

CONTROL FILTER

LATTICE
ALGORITHM

p(n)

INDEPENDENT QUADRATIC
OPTIMISATION ALGORITHM

Figure 3-6. Control Structure without Cancellation Path Transfer Function. Where
x(n) is the input/reference signal, p(n) is the disturbance, y(n) the error signal, u(n)
the control signal, e,,(n) the backward prediction errors and k,,(n) the control filter

coefficients.

It will now be shown that the cost function, J(n) = E[y*(n)], is independently defined
by the control filter coefficients. Using the error defined by equation (3-20) the cost

function becomes

J(n) = RE + K(MRGK (1) + 2K ()G * [3-23]
where
Ry = E[E,(n)E,"(n) ] [3-24]

represents the correlation matrix of the backward prediction error signals (where the
use of the superscript e, is to make this matrix distinct from that normally used for

the delayed reference signal), and

- 99 .



Chapter 3. Orthogonal Signal Generation
P¢p =
G = E[p(ME ()] [3-23]
represents the cross-correlation of the backward prediction error signals with the
disturbance signal (where the use of the superscript pe, is to make this vector distinct

from that normally used for the correlation of the reference signal with the

disturbance signal) .

Differentiating equation (3-23) with respect to the control filter coefficients yields
Ijn(n)

— = 2R:K,
oK, \(n) K () = Kvopt NN

Pey _
ot T 2n =0 [3-26]

which gives the optimal control filter coefficients as

e, -1 _pe -
K, =-Ry Gy [3-27]

opt NN

Substituting (3-27) into (3-23) yields the optimal cost function as
pe
Jopt = Rﬁ o K;'r CN ’ [3-28]

opt
Using the above equation with (3-23) gives
) = T + Kon(m) = K, I"RQUKN0) - K, ] [3-29]
However, due to the orthogonality of the backward prediction errors, equation (3-24)

becomes (with j,, representing the power of the backward prediction errors)

Ry = diagl ji; | [3-30]
and hence equation (3-29) may be rewritten as
N-1
Jn) = Jop = 3 Ji i) - kwiopt)z [3-31]
i-0
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This equation shows that each coefficient of the control filter, k_.(n), can be adapted
independently, as required for the Independent Quadratic Optimisation algorithm to
perform efficiently. That is, the control filter coefficients form principal axes of the
cost function, and the optimum value of each therefore doesn’t depend on the values
of the other coefficients. The optimum control filter coefficients can be determined

from equation (3-27), which can be rewritten as
_ E[p(m)ey(n)]
Joi

[3-32]

Wiopt

Thus it is also apparent that the optimal control filter coefficients are dependent upon

the correlation of the orthogonal backward prediction errors with the disturbance.

34 Cancellation Path Transfer Function Effect on Control Filter

Coefficient Independence

The previous section showed that the control filter coefficients were independent,
without a transfer function in the cancellation path. In this section consideration will
be given to the effect on the independence of the control filter coefficients, with the
inclusion of a time delay and then a more general transfer function in the cancellation
path. With a transfer function or specifically a time delay placed in the cancellation
path the structure can be modified to that shown in Figure 3-7. Note the reversal of
the order (commutation) of the control filter and the cancellation path transfer
function or time delay can be performed as shown, provided both filters are time

invariant (see discussion in chapter 2 and Flockton [1993]).
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LATTICE e LATTICE
FILTER SSastents ALGORITHM

COMMUTED CANCELLATION FPATH
TRANSFER FUNCTION

Time Delay = o™, Transfer Function = W
8

p(n)

: : Y

: (m)

’%k ’:k J%k k - INDEPENDENT QUADRATIC Y
") W‘("]U‘Vz(")...iww-ﬂ(") : OPTIMISATION ALGORITHM 2

et
CONTROL FILTER

u(n)

Figure 3-7. Active Noise and Vibration Control Structure. Where x(n) is the
input/reference signal, p(n) is the disturbance, y(n) the error signal, u(n) the control
signal, e (n) the backward prediction errors, g,(n) the filtered backward prediction
error signals and k(n) the control filter coefficients. A represents a single sample

delay and A™ represents m samples delay.

The efficiency, or speed of convergence of the Independent Quadratic Optimisation
algorithm relies upon the independence of the control filter coefficients. That is, if
each coefficient of the control filter forms a principal axis of the cost function, then
the optimum of the cost function will be obtained efficiently. However if the control
filter coefficients are not principal axes, and cannot therefore be adapted
independently, then the speed of the Independent Quadratic Optimisation algorithm
will be impaired. This effect on the Independent Quadratic Optimisation algorithm is

discussed in chapter 4.
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3.4.1 Time Delay Effect

The effect of the time delay on the independence of the control filter coefficients will
firstly be considered, using the commuted control structure shown in Figure 3-7. The
inclusion of the time delay term, »1, in equation (3-20) (ignoring the adaptation of the
control filter coefficients to ensure valid commutation), leads to
y(n) = p(n) + KWTNEbN(n—m) [3-33]
with the parameters defined as per equation (3-20). Substituting this into the cost
function yields (superscripts have been used to distinguish the use of the backward
prediction error signal as opposed to the more familiar delayed reference signal)
T =R+ 2K G+ KoRK [3-34]
where
Rj = Elp*(n)] [3-33]
represents the power of the disturbance signal, and
Cx " = E[Epy(n-m)p(n)] [3-36]
represents the cross-correlation of the delayed backward prediction error signals with
the disturbance signal, and

Ry = E[Ep\(n-m) Ey(n-m)] [3-37]

represents the correlation of the delayed backward prediction error signals.

It can be shown that the non-diagonal terms of the auto-correlation matrix may be

written as:
Ele, (n-m) e, (n-m)] = 0 [3-38]

where u # v, u,v = 0..(N-1). Hence the control filter coefficients will be
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independent, regardless of the time delay. That is, a time delay in the cancellation
path does not affect the independence of the control filter coefficients, and therefore

the Independent Quadratic Optimisation algorithm operates at peak efficiency.

3.4.2 Transfer Function Effect

The effect of a general transfer function (modelled by a finite impulse response filter)
in the cancellation path, on the independence of control filter coefficients will now be
considered using the commuted control structure shown in Figure 3-7. Consider the
inclusion of the transfer function in equation (3-20) (again ignoring the adaptation of
the control filter coefficients), such that
y(n) = p(n) + Ky (Ep(m)@Wyy (n)) [3-39]
where N represents the number of control filter coefficients (and hence backward
prediction error signals), N, represents the number of cancellation path transfer
function coefficients, and
[3-40]
E\(n)®Wn(n) = [ eng()BWy (1), -y €)Wy (1) T
with & representing the convolution operator, Wy (n) the cancellation path transfer

function, and all other parameters defined as per equation (3-20).

Substituting equation (3-39) into the cost function yields

e, Ow e, Qw
J = Rlpl + ZKSNCIED S+ KwTNRNT\J KN [3-41]

where superscripts have again been used to make the use of the filtered (by the
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cancellation path transfer function) backward prediction errors distinct from the
delayed reference signal normally used, with

Rf} = E[p*(n)] [3-42]

representing the power of the disturbance signal,

pe,®w,
CN

= E[EbN(n)®WsNS . p(n)] [3-43]
representing the cross-correlation of the filtered (by the cancellation path transfer
function) backward prediction error signals with the disturbance signal, and

RE™ = ELEn )@,y ) (Eyp()BWy )] [3-44]
representing the correlation of the filtered (by the cancellation path transfer function)
backward prediction error signals. Equation (3-41) can be written in the form of (3-
29), with the independence of the control filter coefficients dependent on the off-

diagonal terms of the autocorrelation matrix defined by equation (3-44). It can be

shown that the off-diagonal terms of the auto-correlation matrix may be written as

= = Eley,(n-i)ey,(n)] [3-45]
. ® - W bu bv .
Elew Mo, nWon) = Lo 1 Wit |+ By (1-j)ey(1-D)]

where u # v u,v = 0,..,N-1. Therefore the condition for control filter coefficient

independence is

El ey, (n)en(n-m) + ey (n-m)e,(n)] = 0 [3-46]

where m = 0,..,N,-1. The significance of this condition, will be considered for a
pure tone, a periodic signal and a white noise signal. If this condition is not met, it
means that the Independent Quadratic Optimisation algorithm will not operate at

peak efficiency, but will converge in a stable manner to the cost function optimum.
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3.4.2.1 Pure Tone

To determine whether the independence condition is met for a pure tone, consider a
sinusoidal signal, defined with amplitude X,, phase 6,, frequency «, sampling
frequency w,, and therefore w, = 271 w/w, (With w /w the "sampling ratio"), such
that

x(n) = Xysin(nw, + 0,) = ey,(n) = ep(n) [3-47)

Using equations (3-12) and (3-13), it can be shown that
kit =k, = coswy [3-48]
and therefore that the backward prediction error generated by the first stage of the
lattice is given by
e,,(n) = Xysinwgsin(nw, - 7/2) [3-49]
Further analysis shows that kor = -1 and hence that e,(n) = 0 for i22. This is
intuitive since a pure tone can have only a single orthogonal component. It is

apparent that a pure tone satisfies the independence condition since each term of the

independence condition can be written as :

El ey(n)ey,(n-m) ] = —%onsinmosin(m(oo) [3-50]

and

E[e,(n-m)ey,(n)] = %onsinmosin(mmo) [3-51]

and therefore their combination is zero.
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3.4.2.2 Periodic Signal

It will now be examined whether periodic signals satisfy the independence condition.
It could be expected that the harmonic components of a periodic signal would each be
phase shifted by 90° indicating that the lattice filter would generate only a single
orthogonal signal for any periodic signal, and hence that the condition for coefficient
independence would also hold, as for a pure tone. A periodic disturbance with a
fundamental and a harmonic component will now be considered, with the reference
signal given by

x(n) = Xysin(nwy) + X;sin(hw;) = ey(n) = ey(n) [3-52]
with @, = kw,. The following knowledge of expectations for periodic signals w, and

®, = kw, where kel ™ will be used :

E[sin(nw, + 8,)sin(nw, + 8,)] = -;-cos(ﬁa - 8,) [3-53]

and
E[sin(nw, + 6y )sin(nw, + 6,)] =0 [3-54]

Using equations (3-12) and (3-13), and the above knowledge, it can be shown that the

optimal PARCOR coefficients are given by

2 2
K = kP X, cosw, + X/ cosw, [3-55]

bl
2 2
X + X

The backward prediction errors can be calculated using the PARCOR coefficients, to

give
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X sinw sin(new, - 7/2) + X;sinwsin(nw, - 7/2)

X2
h .
+ _ﬁ(cosm0 - cosw) X sin(nw,)
ebl(n) = XO + Xl [3'56]
X7 .
+ —— (cosw; - coswy)X;sin(nw,)
on + X12

It is apparent that the first stage orthogonal component generated by the lattice filter
does not consist of only the fundamental and harmonic terms shifted in phase by 90°,
as intuitively expected. Therefore the independence condition is not necessarily
satisfied. It can readily be shown that e (n) and e, (n) are orthogonal, and the
independence condition can be examined by considering each term of the

independence condition, such that

1 1 XpAsin(meg) + X A sin(mo,) [3-57]
Efey(n -m)e,(n)] = = 2 2
2 |+ X, B,cos(mw,) + X, B,cos(mw,)
and
1 1 - Xpdpsin(mey) - XA sin(mo,) [3-58]
E[ ebo(n)ebl(n -m)] = - 2 2
2 |+ X, B,cos(mw,) + X, B,cos(mw,)
where
A, = X sinw, , 4, = X sinw, [3-59a,b]
and
X2 2
B, = — 1 (cosw, - cosw,) , By = —(cosw,; - cosw,) [3-60a,b]
X, + X} X2+ X}
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The independence condition is therefore not satisfied as

E[ey(n)e, (n-m)] X x;}

+ E[ ebo(n—m)ebl(n)] - X02_+ X12 [(COSQO - COS(:)I)(COS(m(‘)O) - COS(m(ol))] [3'61]

Hence with a periodic input, the control filter coefficients will not be independent for
a cancellation path transfer function, due to the extraneous components generated by
the lattice. These extraneous components can be removed by orthogonalising each
harmonic in isolation. This has recently been proposed by Gibbs et al [1993] and

Kewley et al [1995].

An intuitive interpretation is that if extraneous components were not present, and the
lattice filter generated a single backward prediction error signal (or orthogonal signal,
with each harmonic component orthogonal by a 90° phase shift), then there would
only be two signals available to be fed into the control filter coefficients. This would
result in incomplete cancellation of a disturbance with the same two tones, as two
separate coefficients would be required for each tone (ie. four coefficients in total), to
achieve complete cancellation for each tonal component. That is, the optimal control
filter coefficients would be the average of those for each harmonic component in
isolation. Hence to obtain optimal control, or complete cancellation, it would be
expected that more than one orthogonal signal would be required to be generated by

the lattice filter, as is shown by the results above.

It can be shown that for each tone, components with and without a phase shift of 90°
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remain in each backward prediction error generated from increasing stages of a
lattice. However, the power of the prediction errors of orders greater than two,
rapidly decreases in magnitude as the number of stages in the filter increases.  This
effect will be considered further in chapter 4, with regard to the Independent

Quadratic Optimisation algorithm.

3.4.2.3 White Noise

Consider white noise passed through the lattice filter, with again the input signal

defined such that (r,(n) represents white noise)

x(n) = r(n) = ey (n) = ey(n) [3-62]
with
kP = kP =0 [3-63]
and therefore
ey(n) = r(n=i) and egn) = r(n) [3-64]

Hence the independence condition becomes

E[ey,(n-e,,(n-)) + ey (n-je, (m-i)] 365
= E[r(n-u-i)r(n-v-j) + r(n-u-j)rn-v-i)]

which is zero unless (u+i) = (v+) or (u+j) = (v+i). The independence condition will
however be non-zero for most non-diagonal terms. The same result holds for an
autoregressive moving average signal (ie. a signal generated by passing white noise
through an IIR filter). Therefore the independence condition is not satisfied for white

or broadband noise.
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3.4.24 Summary

The results discussed in the preceding section show that control filter coefficient
independence can be guaranteed for pure tones or periodic signals in which the
harmonics can be isolated and individually orthogonalised by a single stage lattice
filter, before use in a linear combiner. This concept is shown in Figure 3-8. This
satisfies the independence condition given by equation (3-46), since each individual
harmonic has been shown to satisfy it (according to section 3.4.2.1), and harmonics are
themselves independent as shown by equation (3-54). The Independent Quadratic
Optimisation algorithm has been extended in this way by Botteldooren [1993] and also

by Clark et al [1992], Gibbs et al [1993] and Kewley et al [1995].

Reference
Signal =3 DISCRETE FOURIER TRANSFORM
Tone 1 Tone 2 Tone N
Single Single Single
Stage Stage | . .... Stage
™ Lattice ™ Lattice i Lattice
Filter Filter Filter

LINEAR COMBINER

Control
Slghal

Figure 3-8. Individual orthogonalisation of harmonic components of a periodic signal,

before combination in a linear combiner.
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For other signals, control filter coefficient independence cannot be guaranteed. If the
independence condition is not satisfied, the Independent Quadratic Optimisation
algorithm (to be developed in the next chapter) will be less efficient; That is, slower

to converge, but it will still have inherent stability.

3.5 Summary

In this chapter the lattice filter was introduced as a means of providing orthogonal
signals for use by the Independent Quadratic Optimisation algorithm. The lattice
filter was shown to be particularly suited to the extremely fast recursive least squares
algorithm, enabling the orthogonal backward prediction errors to be quickly available.
The lattice filter was found to have many desirable properties that were specifically

suited to the Independent Quadratic Optimisation algorithm, namely:

o The lattice filter is a form of linear prediction with the prediction accuracy
determined by the magnitude of the backward prediction error signals. That is,
the more complex the input/reference signal (in terms of signal statistics), the
more stages will be required for prediction. Hence the lattice filter, through the
generated backward prediction error signals, gives an indication of the number of

control filter coefficients required for control.

« PARCOR coefficients of each stage of the lattice are adapted independently to

later stages, therefore the lattice can be extended to the required number of
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stages to achieve optimum control, without affecting previously converged

PARCOR coefficients.

« The lattice filter is defined such that, provided the absolute magnitude of the
PARCOR coefficients is less than unity, stability is assured; This links well with
the established stability concept of the Independent Quadratic Optimisation

algorithm.

Although the backward prediction error signal generated by the lattice are orthogonal,
it should be emphasised that they represent prediction errors, and as such will
decrease in power with increasing stages of the lattice (ie. with increasing numbers of
samples used in prediction) eventually becoming white noise sequences with low signal
powers. As the power of the backward prediction error signals decrease, this means
that the control filter coefficients magnitude must increase to generate the control
signal, possibly leading to an overflow. This represents the only disadvantage of the

lattice filter when used to generate orthogonal signals.

When the backward prediction errors used with the individual coefficients of the
control filter (linear combiner), the control filter coefficients were found to be
independent provided no transfer function existed in the cancellation path. It was
shown that a delay in the cancellation path did not affect the independence of the
control filter coefficients; However, any other type of transfer function in the
cancellation path reduced the independence of the control filter coefficients for all

signals other than pure tones. Orthogonalising each harmonic individually has been
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shown to provide a means of overcoming this limitation. It was noted that loss of
independence of the control filter coefficients only reduced the speed of convergence
and not the stability of the Independent Quadratic Optimisation algorithm (as will be

shown in chapter 4).
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4.1 Introduction

Chapter 2 examined the standard algorithms used in Active Noise and Vibration
Control, to achieve optimal control (ie. minimum mean square error) in the presence
of destabilising system identification inaccuracies. Chapter 2 described an outline of
the Independent Quadratic Optimisation (IQO) algorithm, which uses orthogonal
signals to enable independent adaptation of control filter coefficients to reach the
optimum of a cost function based on a quadratic criterion. In so doing it eliminates
the need to estimate the cancellation path transfer function, and therefore avoids the
instabilities that plague the current standard algorithms, due to inaccuracies in this
estimate. Chapter 3 described the lattice filter as a means of generating orthogonal
signals to be used in the Independent Quadratic Optimisation algorithm. The
characteristics of the lattice filter were examined with regard to the Independent
Quadratic Optimisation algorithm. The structure of a typical single channel active
noise and vibration control system, with regard to the Independent Quadratic

Optimisation algorithm, is shown in Figure 4-1, for ease of reference.

The concept behind the Independent Quadratic Optimisation algorithm is revisited
before this novel algorithm is formally derived and analysed, with regard to the
parameters that affect its performance. Simulations of this algorithm will be
performed for a pure tone, white noise and their combination to confirm the theory
derived in this chapter. The algorithm will be extended for multi-channel control,
with further simulations highlighting effects that are similar to standard algorithms for

multi-channel control.
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LATTICE
FILTER

CONTROL FILTER
(LINEAR COMBINER)

LATTICE
ALGORITHM

INDEPENDENT QUADRATIC
OPTIMISATION ALGORITHM

CANCELLATION PATH

Control
Signal

Figure 4-1. Single channel active noise and vibration control structure.

4.2 Concept

TRANSFER FUNCTION

Error
Signal

Disturbance

In this section the concept of the Independent Quadratic Optimisation algorithm will

be revisited using the work presented thus far.

The Independent Quadratic

Optimisation algorithm will be applied to a feedforward control scheme, without

acoustic feedback corrupting the reference signal.

In chapter 2, it was shown (see equation (2-10)) that the control signal, u(n), could be

obtained using a linear combination of coefficients wi(n), with delayed reference

signal samples x(n-i), such that (with N the number of control filter coefficients or

reference signal samples)
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u(n) = WNT(n)XN(n) [4-1]

where the vector of control filter coefficients (ie. the parameter vector, 8) is given by
Wi(n) = [ wy(n),...,wy_q(n) 1° [4-2]

and the vector of delayed reference signal samples is given by
X (n) = [ x(n),....x(n-N+1)]* [4-3]

It was also shown that the regressor, ¢(n), is given by a vector of delayed filtered
reference signal samples (see equation (2-12)), such that using the theory outlined in
appendix A.2.2 (in particular equation (A-25)), the cost function J(r) can be written as

J(n) = Jopt * (Wi(n) - WNopt)TRM(WN(n) - WNopt) [4-4]

with J

opt» the optimum of the cost function with corresponding optimal control filter

coefficients W

opt> and Ry, the autocorrelation matrix of the delayed filtered reference

signal samples. It was further shown in appendix A.2.2, that this equation could be
simplified by diagonalising the autocorrelation matrix using its eigenvalues and
associated eigenvectors, such that (see equation (A-26))

J(n) = I, + Vi (m)AVyg(n) [4-5]

where

Ve(m) = QT(Wy(n) - WNopt) [4-6]

represents a set of principal axes of the cost function, with A the eigenvalue matrix
(in which the off diagonal terms are zero and the diagonal terms correspond to the

eigenvalues), and Q is the corresponding modal matrix of eigenvectors.

The Independent Quadratic Optimisation algorithm concept uses the principal axes of

the cost function to avoid the need to estimate the cancellation path transfer function.
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The Independent Quadratic Optimisation algorithm concept is shown in Figure 4-2.
In Figure 4-2, w(n) and w,(n) are components of the vector W\(n), and k,,(n) and
k. (n) are coefficients of the vector V(n). As shown in Figure 4-2, w, and w,
represent arbitrary axes of the cost function, and k, and k, (n) represent principal
axes of the cost function. For each coefficient in turn, the Independent Quadratic
Optimisation algorithm determines its optimum by estimating the cost function at
three points in the direction of each coefficients axis, and fitting a quadratic to these
estimates to find the optimum coefficient corresponding to the minimum of the
quadratic. Figure 4-2 shows that with coefficients that are principal axes of the cost
function (such coefficients will be termed independent), the minimum of the cost
function is reached in two steps (with three estimates per step), while for coefficients
that are arbitrary axes of the cost function (such coefficients are termed dependent),
the optimum of the cost function is reached after a considerably greater number of

steps.

The principal axes cannot be found in practice since diagonalising a matrix would take
too long and expectations would be required. An alternative means of obtaining
independent coefficients was shown in chapter 3. In chapter 3, it was shown that the

cost function could be written as (see equation (3-31) of section 3-3)
N-1

J(n) =T + Y Julkn) - Kuigry) [4-7]
i=0

where, on comparison with equation (4-5), j,; corresponds to the eigenvalues of the
autocorrelation matrix, and (k,,(n) - k; t) represent the principal axes of the cost
op

function. The effect of the cancellation path transfer function on the control filter
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coefficient independence was also examined in chapter 3. It was apparent in that
examination, that if the independence of the coefficients is degraded, the speed of
convergence of this algorithm is reduced. This limitation will be discussed later in this

chapter. ‘

Cost Function P
Contours

Figure 4-2. The paths to the cost function optimum are shown by --O-- for
optimisation along the axes w,, w,, and by---X---for optimisation along the principal

axes, k., k,,. Cost function contours are also shown.

43 Formulation

In this section the equations used to define the Independent Quadratic Optimisation

algorithm will be derived. A heuristic assessment of the effects of parameters, used to
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define the algorithm, on the stability and minimum obtainable value of the cost

function will be made and proved in a later section of this chapter.

The Independent Quadratic Optimisation algorithm can be developed to ensure

efficient adaptation as follows:

(2)

(b)

(©)

(d)

Delay estimating the mean square error (after changing any part of the control
filter) by a number of samples equivalent to a time greater than the time taken

for the control signal to reach the error sensor.

Perform a sufficient average of the mean square error dependent upon the
required variance of the mean square error estimate from the actual mean
square error value This will affect the minimum mean square error obtained

and the level of stability.

Change the particular value of the control filter coefficient (based upon the
level of the mean square error last predicted) and perform (a) to (b) twice
more. If the second mean square error estimate is greater than the first,
change the control filter coefficient to be used for the third estimate in the

opposite "direction" to that of the first change.

Determine the optimum value for the particular control filter coefficient by

fitting the estimated points to a quadratic function.
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(e)  Change to a new control filter coefficient and repeat (a) to (e).

As discussed in chapter 3, the lattice structure generates orthogonal signals using the
Recursive Least Squares algorithm discussed in chapters 2 and 3. It is only the
coefficients of the control filter (linear combiner) that are adapted by the Independent

Quadratic Optimisation algorithm.

Consider a quadratic defined by three estimates of the mean square error at three
values of an independent control coefficient of the control filter (linear combiner), as
shown in Figure 4-3. Such a quadratic function can be written, using the theory
outlined for equation (4-7), as (with j,. representing the power of the backward

prediction error fed from the lattice filter, into the ith control filter coefficient)

J = Aiopt + ik, = i) [4-8]
where 0 < i < N-1, and i corresponds to the control filter coefficient number, and
0 < m < 2, with m corresponding to the estimate number. Note that JAl has been
used as a descriptor for the cost function, with the cost function dependent on all

control filter coefficients, with however the others remaining fixed while k is

changed.

Equation (4-8) can be rewritten as

[4-9]

To eliminate the need to know or estimate j,, (which is affected by the cancellation

path transfer function since commutation of the cancellation path transfer function

- 122 -



Chapter 4. The Independent Quadratic Optimisation Algorithm

leads to filtered backward prediction error signals, as per equation (3-44) and Figure
3-7), in determining the optimal control filter coefficient value (corresponding to
minimum mean square error), three control filter coefficient sample points are

required, as shown in Figure 4-3.

Cost Function
Magnitude

'opt ; i
: Contro!l Filter
: ! : Coefficient
& © @ & =
kwiz kwio kWiopt kwi1

Figure 4-3. Quadratic defined by three values of a control filter coefficient
k., k.., and k., with respective cost function estimates T , J , and J The
0 Wiy 2 i i

optimum of the quadratic is given by jiopt at kwiopt'
The control filter coefficient step size should ideally be made proportional to the
inverse of j,, since it relates to the gradient of the cost function (ie. the steeper the
gradient, the smaller the step size should be and vice-versa), however this term is not
available as it is affected by the cancellation path transfer function. Therefore the
control filter coefficient step size is made proportional to the cost function magnitude

at the last estimation point, such that
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k, ak, * al [4-10]

where «; represents the control filter coefficient step-size factor.

Solving for kWiopt using equation (4-8) for estimates m = 0 and 1 yields

2 2
1 - (kWio - kWi1) - 2kWiopt(kWiO - k“’i1)

= - b [4-11]
i J. =T
0 1
Similarly, solving for kwiopt using equation (4-8) for estimates m = 0 and 2 yields
2 2
-_1. = (k“”o kW]Z) A_ 2kwiopt(kWi0 - leZ) [4_12]
Joi J, -7,
0 2

Equating (4-11) and (4-12) gives the optimal control filter coefficient (corresponding

to minimum mean square €rror) as

o 0h 2 2 g D 2 & @2 2
< 0 Sl - ku) + T (kys, = ko)) * I (ki = ki) (413]
Wigpt 2 : ~ ~ - ~
Ji Ui, - Kyip) i (K, = Kiy) J iz(kw.{, kyi,)

Thus it has been shown that the optimal control filter coefficients can be obtained
from three estimates of the cost function corresponding to each adjusted control filter

coefficient value.

The parameters affecting the accuracy of the estimated optimal control filter

coefficients (corresponding to minimum mean square error), are considered

heuristically :

- 124 -



(a)

(b)

Chapter 4. The Independent Quadratic Optimisation Algorithm

The number of samples taken to estimate the cost function,

The number of samples taken to estimate the cost function results in a more
accurate estimate of the cost function minimum [Mackenzie, N.C., 1991a,
1991b]. The accuracy of the cost function estimate relative to the actual value
(ie. the standard deviation) is dependent upon the signal statistics of the
sampled disturbance, relative to the level of extraneous noise present. For
periodic signals, the standard deviation will be dependent upon the number of
samples taken during any period, and the number of periods over which
samples are taken. For ARMA signals however, a very large number of

averages are required to obtain a "reasonable" estimate of the cost function.

The control coefficient step size is based upon the control coefficient step size

factor ;.

As shown in Figure 4-4, the control filter coefficient step size influences the
number of averages required to obtain accurate estimates of the control
coefficients corresponding to the cost function minimum [Mackenzie, N.C,
1991b]. The control filter coefficient step size also dictates the required
accuracy of the cost function estimates to achieve a certain excess mean square
error [Mackenzie, N.C., 1991b]. The excess mean square error is the mean
square error above the minimum achievable, once adaptation of control filter
coefficients has reached steady-state. In Figure 4-4 two different control filter

coefficient step size factors, «, are shown for cost function estimates O and a.
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Cost Function

Magnitude Fitted

- Quadratic

Actual Cost
Function

Fitted
Quadratic

Errors

Control Filter

Coefficient
-

Figure 4-4. Effect of control filter coefficient step size and number of averages on
determination of optimal control coefficients (corresponding to the minimum cost
function). O represents a sufficiently large step size and a represents a step size that

is too small.

Consider the estimates of the cost function represented by a O in Figure 4-4.
The control filter coefficients corresponding to these estimates are at large
enough steps to allow some inaccuracy in the cost function estimates. The
optimum control filter coefficient will not be too far removed from the ideal,
upon fitting a quadratic to these estimates. However the same cannot be said
for the estimates of the cost function represented by a a in Figure 4-4. Here
any inaccuracies in the cost function estimates will lead to algorithm instability,
as optimum control filter coefficients determined from a quadratic fitted to the

cost function estimates, will have large random deviations from the ideal
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because the control filter coefficient step size is not large enough. Hence the
smaller the control filter coefficient step size factor, the larger the number of

averages required to reduce the inaccuracy in the cost function estimate.

As shown by equation (4-10), the control filter coefficient step size was chosen
to be proportional to the current mean square error estimate or its square root
[Mackenzie, N.C., 1991a]. This was deliberately imposed so that upon reaching
the minimum mean square error, the variance of the mean square error about
the optimum (known as the excess mean square error) would be minimal.
However, it is apparent from the above discussion, that there is a minimum
control filter coefficient step size factor for a given number of averages, above
which stability of the algorithm will be ensured. This is given by the degree of
curvature of the cost function for any particular control filter coefficient. As
shown by equation (4-8), the degree of curvature is given by the second
derivative of the cost function which equals j,,. Hence an estimate of j; is

also required and can be found from equations (4-11) and (4-12), such that
= J io(kwi2 - kwi1) +J i1(kwio - kWiz) +J iz(kwi1 - kWiO)

i = [4-14]
(kwio - kwi1) (kWiO - kWiZ) (kwi2 - kw11)

where the control filter coefficient values are k. k

wip’

and kWi2 , with

A

respective cost function estimates J;,

J i and J i Hence for "highly curved"
quadratic cost functions, the control filter coefficient step size can be relatively
small, while for relatively "flat" quadratic cost functions, the control filter
coefficient step size needs to be relatively large [Mackenzie, N.C., 1991b]. The

degree of curvature is not however available until the first estimates have been
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made. Thus the initial value of the control filter coefficient step size factor
needs to be set based on the allowed maximum output voltage from the
controller, the magnitude of the backward prediction error signals, and a
limited understanding of the gain imparted by the control source(s). Its value
will depend upon the levels of deviation from the initial mean square error that
it allows. A limit on the control signal output voltage can be set so that if it is
exceeded as a result of the magnitude of the step size factor, the step size
factor can be reduced as required, and tested again. This iterative approach
will only occur at the start of control, with initially a conservative low value of
the step size factor set. Once steady state has been reached, the control filter
coefficient step size factor for each control filter coefficient is proportional to

the degree of curvature, as discussed.

Consider now estimates of the cost function at distances remote from the
minimum. Here the cost function estimates will have a large step size, which
could result in overload of the actuators and algorithm instability. The
maximum step size is thus also defined as inversely proportional to the degree
of curvature. Thus for highly curved cost functions, the maximum step size
must be strictly enforced. Again, initially a measure of the curvature will be

unknown, and so a limit must be based on the control signal output voltage.

The extraneous noise (uncorrelated to the disturbance as measured by the

reference or error signal) content of the disturbance (or signal to noise ratio).
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As discussed at remark (a), the signal to noise ratio will affect the number of

averages required to obtain reasonably accurate cost function estimates.

(d)  The independence condition discussed in chapter 3, section 3.4.2.

It was shown in chapter 3 that the independence condition was satisfied for
pure tones, but for ARMA signals (ie. broadband noise) or periodic signals, the
condition was not satisfied. With the control filter coefficients not completely
independent, the Independent Quadratic Optimisation algorithm will converge
at a slower speed. Thus the statistics of the disturbance not only affect the
required number of averages but also the independence condition. It should be
noted that the periodic or harmonic content of the disturbance relative to the
ARMA (broadband) content is a separate consideration to the signal to noise

(ie. extraneous) parameter discussed above.

The following section will simulate the Independent Quadratic Optimisation algorithm
for control of a pure tone, white noise and their combination. This will be performed

to confirm the Independent Quadratic Optimisation algorithm concept.

44 Simulations

The following set of simulations highlight the limitations of the Independent

Quadratic Optimisation algorithm. The simulations consider reference signals
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consisting of a pure tone and/or white noise. The Independent Quadratic
Optimisation algorithm will be considered with fixed parameters (ie. control filter

coefficient step size factor, and number of averages).

Knowledge of the cancellation path transfer function is not required for the
Independent Quadratic Optimisation algorithm. The cancellation path transfer
function has been chosen with a phase change of 90°. This was specifically chosen
because if the standard algorithms (discussed in chapter 2) were to operate with this
magnitude of error in the cancellation path transfer function phase, they would
become unstable (ie. If standard algorithms were to assume there was no transfer
function in the cancellation path, then the cancellation path transfer function used
here, can be viewed as an error in estimating the cancellation path transfer function
by the standard algorithms, causing instability). Hence it would seem that the use of
this cancellation path transfer function is a good test of the Independent Quadratic

Optimisation algorithm’s stability.

Figure 4-5 shows the disturbance and cancellation path transfer functions to be used
in the simulations. For all types of signals considered in the simulations to follow, the
disturbance and cancellation path transfer functions have two FIR type coefficients.
The disturbance transfer function (arbitrarily chosen) had the coefficients 5.767 and -
4,576, corresponding to an amplitude change of 2.0 and a phase change of 45° The
number of samples delay used was S for a delay in the cancellation path. The
cancellation path transfer function had the coefficients 3.078 and -3.236, corresponding

to an amplitude change of 1.0 and a phase change of 90°.
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DISTURBANCE
TRANSFER FUNCTION
AAmp. = 2.0, APhase = 45°

@ Signal

LATTICE
FILTER

LATTICE
ALGORITHM

INDEPENDENT QUADRATIC
OPTIMISATION ALGORITHM

Control
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TRANSFER FUNCTION
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3

Error
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Figure 4-5. Transfer functions used to simulate an Active Noise and Vibration

Control System. The disturbance transfer function represented by FIR filter

coefficients, w,, w,,, and the cancellation path transfer function is represented by

FIR filter coefficients wg, w.

The lattice Filter generates orthogonal signals

ey o), e,,(n), which are used in the control filter (linear combiner) with control

coefficients k o(n), k,(n). A represents a single sample delay and A™ represents a

delay of m samples.
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The other parameters used for the simulation were arbitrarily chosen. The sampling
ratio used was 20, the number of samples delay before averaging was 10, and the
number of averages taken for the pure tone reference signal was 200, while for the
white noise reference signal, with or without the pure tone component, the number of
averages taken was 2000. There was no uncorrelated white noise in the error signal.
The coefficients of the control filter (linear combiner), fed with orthogonal signals

from the lattice filter, were initialised to zero.

4.4.1 Pure Tone Reference Signal

The power of the pure tone reference signal used was arbitrarily chosen as 0.5 (to give
a unit amplitude sinusoidal wave). The control filter coefficient step size factor was
arbitrarily chosen as 0.5 for control filter coefficient k,, and for control filter
coefficient k,, it was 1.5 since the magnitude of the backward prediction error signal

corresponding to this coefficient was lower than the reference signal.

Figures 4-6 (a) to (c) show the path of the control filter coefficients to the minimum
mean square error, projected onto the mean square error contour map, for various
types of cancellation path transfer functions (ie. none, time delay, and phase change).
As shown in the figures as well as theoretically in chapter 3, the control filter
coefficients are independent for a pure tone despite the addition of a cancellation
path transfer function (phase change or delay; Note that reference to a delay means a

certain number of sampling period delays, whereas a phase change is a variable time
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delay, as considered in chapter 3, sections 3.4.1 and 3.4.2 respectively). The
Independent Quadratic Optimisation algorithm converges to the optimum without
knowledge of the cancellation path transfer function. Upon reaching the optimum
control filter coefficients, adaptation continues with the control filter coefficients
adapted proportional to the mean square error at the optimum, to ensure minimum

€XCESS mean squarc €Iror.
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Figure 4-6(a). The paths of the control filter coefficients are shown numbered (with
estimated cost function locations given by O) leading to the optimum of the cost
function. The cost function contours are also shown as solid curved lines. The results

in this figure are representative of no transfer function in the cancellation path.
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Figure 4-6(b). The paths of the control filter coefficients are shown numbered (with
estimated cost function locations given by O) leading to the optimum of the cost
function. The cost function contours are also shown as solid curved lines. The results
in this figure are representative of a time delay in the cancellation path.
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Figure 4-6(c). The paths of the control filter coefficients are shown numbered (with
estimated cost function locations given by [1) leading to the optimum of the cost
function. The cost function contours are also shown as solid curved lines. The results
in this figure are representative of a transfer function (phase change) in the

cancellation path.

- 134 -



Chapter 4. The Independent Quadratic Optimisation Algorithm

Figure 4-7 shows the convergence of the error signal magnitude for no transfer
function in the cancellation path. As discussed, the excess mean square error at the
optimum is dependent upon the number of averages taken and the control filter
coefficient step size factor. Figure 4-8 shows the control filter coefficient adaptation
for no transfer function in the cancellation path. Figures 4-7 and 4-8 illustrate the
Independent Quadratic Optimisation algorithm, showing the step in each control filter
coefficient (proportional to the mean square error) and corresponding change in the
magnitude of the error signal. The error signal and control filter coefficient for the
cases in which a transfer function (phase change or delay) exists in the cancellation

path are very similar, and will therefore not be shown.

25

ERROR SIGNAL

0.0 500.0 1000.0 1500.0
SAMPLES

Figure 4-7. Error signal magnitude versus sample number, for no transfer function

(phase change or delay) in the cancellation path.
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Figure 4-8. Control filter coefficient values versus sample number, for no transfer
function (phase change or delay) in the cancellation path. The first control filter
coefficient, k_y(n), is represented by — while the second control filter coefficient,

k.. (n), is represented by - - - .

4.4.2 White Noise Reference Signal

The power of the white noise reference signal used was chosen to be the same as was
used for the sinusoidal signal 0.5. The control filter coefficient step size factor was
arbitrarily chosen as 0.7 for both control filter coefficients k_,, and k,,, as both were

of the same magnitude.

Figures 4-9 (a) to (c) show the path of the control filter coefficients to the optimum
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mean square error, projected onto the mean square error contour map, for various
types of cancellation path transfer functions (ie. none, time delay, and phase change).
It should be noted that when white noise is passed through a lattice filter, no
adaptation of the lattice filter’s PARCOR coefficients are required as the white noise
signal samples are already orthogonal, and therefore the lattice filter acts as a tapped-

delay-line (or transversal filter); Refer to section 3.4.2.3 for further discussion.

MSE CONTOURS —& PATH

Kw1

Figure 4-9(a). The paths of the control filter coefficients are shown numbered (with
estimated cost function locations given by [) leading to the optimum of the cost
function. The cost function contours are also shown as solid curved lines. The results

in this figure are representative of no transfer function in the cancellation path.

Figure 4-9(a) corresponds to no transfer function in the cancellation path, and shows
that the control filter coefficients are independent, and therefore the Independent

Quadratic Optimisation algorithm adapts the control coefficients to reach the
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optimum of the cost function in an efficient manner (as discussed in section 4.2). It is
apparent that the absolute optimum is not immediately achieved; The attenuation
achieved, or proximity to the optimum, will depend on the accuracy of the cost

function estimates (ie. number of averages) and the step size factor.

—— MSE CONTOURS — PATH

Kw1

Figure 4-9(b). The paths of the control filter coefficients are shown numbered (with
estimated cost function locations given by ) leading to the optimum of the cost
function. The cost function contours are also shown as solid curved lines. The results

in this figure are representative of a time delay in the cancellation path.

Figure 4-9(b) corresponds to a delay in the cancellation path. Since the delay of 5 in
the cancellation path is greater than the number of coefficients within the control
filter (linear combiner), the minimum mean square error is non-zero; That is, with
only two control filter coefficients corresponding to a time delayed white noise

reference signal (since the backward prediction error signals are delayed samples of
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the white noise signal, which are orthogonal by definition), it is impossible to generate
a control signal delayed by more than two samples, therefore resulting in a non-zero
minimum mean square error. As the optimum mean square error is non-zero, the
control filter coefficients have large deviations about their optimum values (since the
step size factor is proportional to the last cost function estimate), as shown in Figure
4-9(b). Further, the optimal control filter coefficients for a delay of this magnitude
are zero (since any cancellation is impossible), and since the control filter coefficients
are initialised to zero, they are already at the optimum. Evidence of the
independence of control filter coefficients can be seen from Figure 4-9(b), despite the

delay in the cancellation path.
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Figure 4-9(c). The paths of the control filter coefficients are shown numbered (with
estimated cost function locations given by ) leading to the optimum of the cost
function. The cost function contours are also shown as solid curved lines. The results
in this figure are representative of a transfer function (phase change) in the

cancellation path.
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As shown in chapter 3, and evident in Figure 4-9(c) which corresponds to a transfer
function in the cancellation path, the control filter coefficients lose their independence
upon the inclusion of a cancellation path transfer function. However, the Independent
Quadratic Optimisation algorithm converges to the optimum without knowledge of the
cancellation path transfer function, and only it’s speed (or efficiency) are impaired;

This effect will be discussed further in section 4.5.

Figures 4-10 (a) and (b) show the convergence of the error signal magnitude. A near
zero minimum mean square error is clearly found for the case for which there is no
transfer function in the cancellation path, Figure 4-10(a), with a similar signal variance
characteristic also found for the case of a transfer function in the cancellation path.
As discussed, the minimum mean square error obtained for these cases is dependent
upon the number of averages of the cost function, and the control filter coefficient
step size factor. However results shown in Figure 4-10(b), for the case with a delay in
the cancellation path, show that a near zero optimum cannot be reached, as discussed.
In both figures, steps are apparent in the error signals corresponding to changes in the

control filter coefficients.

Figure 4-11 (a) and (b) show the control filter coefficient variation for the case of no
transfer function, and the case of a time delay in the cancellation path, respectively.
From Figure 4-11(b) it is apparent that the control filter coefficients return to their
original, optimal values as discussed, while those shown in Figure 4-11(a) are altered
to their optimal values (results are similar for a transfer function in the cancellation

path).
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Figure 4-10(a). Error signal magnitude versus sample number, for no transfer

function (phase change or delay) in the cancellation path.
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Figure 4-10(b). Error signal magnitude versus sample number, for a delay in the

cancellation path.
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Figure 4-11(a). Control filter coefficient values versus sample number, for no transfer

function (phase change or delay) in the cancellation path. The first control filter
coefficient, k 4(n), is represented by — while the second control filter coefficient,

k. (n), is represented by - - -

4.0

0.0

TAPS

-4.0 ' 1
0.0 3525.0 7050.0 10575.0 14100.0

SAMPLES
Figure 4-11(b). Control filter coefficient values versus sample number, for a delay in
the cancellation path. The first control filter coefficient, k ,(n), is represented by —

while the second control filter coefficient, k,,(n), is represented by - - -.
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4.4.3 Pure Tone with White Noise Reference Signal

The power of the pure tone used was 0.5 (as this has been used previously), while that
for the white noise signal was arbitrarily chosen as 0.1, giving a form of "signal to
noise ratio" of 7 dB. The control filter coefficient step size factor for the first control
filter coefficient, k,,, was arbitrarily chosen as 0.7 while for the second control

coefficient, k

wl»

it was 1.0 as the magnitude of the backward prediction error

corresponding to this coefficient was lower.

Figures 4-12 (a) to (c) show the path of the control filter coefficients to the optimum
mean square error, projected onto the mean square error contour map, for the various
types of cancellation path transfer functions (ie. none, time delay, and phase change).
As shown theoretically in chapter 3, the control filter coefficients lose their
independence at the inclusion of a transfer function in the cancellation path, as
apparent in Figure 4-12(c), but remain independent without a transfer function and
despite the inclusion of a delay in the cancellation path, as apparent in Figures 4-12
(a) and (b). In all cases the Independent Quadratic Optimisation algorithm converges
to the optimum of the cost function without knowledge of the delay or the transfer
function. Upon reaching the optimal control coefficient values, the excess mean
square error is minimised by adjusting the control filter coefficients proportional to
the optimum mean square error. As already discussed, the effects of a transfer
function in the cancellation path impair only the speed (or efficiency) of the
Independent Quadratic Optimisation algorithm, as the control filter coefficients are

not exactly independent; This will be discussed further in section 4.5.
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Figure 4-12(a). The paths of the control filter coefficients are shown numbered (with

estimated cost function locations given by [1) leading to the optimum of the cost
function. The cost function contours are also shown as solid curved lines. The results

in this figure are representative of no transfer function in the cancellation path.
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Figure 4-12(b). The paths of the control filter coefficients are shown numbered (with
estimated cost function locations given by O) leading to the optimum of the cost
function. The cost function contours are also shown as solid curved lines. The results

in this figure are representative of a time delay in the cancellation path.
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Figure 4-12(c). The paths of the control filter coefficients are shown numbered (with
estimated cost function locations given by ) leading to the optimum of the cost
function. The cost function contours are also shown as solid curved lines. The results

in this figure are representative of a transfer function (phase change) in the

cancellation path.

Figures 4-13 (a) to (c) show the convergence of the error signal for the various types
of cancellation path transfer functions. As discussed, the minimum mean square error
is dependent upon the number of averages taken and the control filter coefficient step
size factor., The minimum mean square error is non-zero with a transfer function
(delay or phase change) in the cancellation path, as evident by Figures 4-13(b) and
(c), and Figures 4-12(b) and (c). The mean square error is non-zero for a delay of 5
in the cancellation path, since this delay means that the white noise cannot be
cancelled by the two coefficient control filter (linear combiner), as discussed in the

last section. The mean square error is non-zero for an arbitrary phase change in the
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cancellation path, since whilst there will be optimal control coefficients for the white
noise component, these optimal control coefficients will be different for the tonal
component (since the tone is orthogonalised by the lattice filter), with the resulting
coefficients an average of the optimal coefficients for the signals considered in

isolation.

Figure 4-14 shows the typical convergence characteristics of the control filter
coefficients to the optimum for the case of no transfer function in the cancellation
path; Step changes in the control filter coefficients are evident, as is a period in
which all coefficients remain fixed while the cost function is estimated. The
characteristics with a transfer function (whether a pure delay or phase change) in the

cancellation path are very similar to those shown in Figure 4-14.
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Figure 4-13(a). Error signal magnitude versus sample number, for no transfer

function (phase change or delay) in the cancellation path.
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Figure 4-13(b). Error signal magnitude versus sample number, for a delay in the

cancellation path.
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Figure 4-13(c). Error signal magnitude versus sample number, for a transfer function

(phase change) in the cancellation path.

- 147 -



Chapter 4. The Independent Quadratic Optimisation Algorithm

5.0
3.0 .
T :
I : L
£ 1 ' :
« 1.0 — ] ! [
.- 1 ! ]
: l
-1.0 ; :
~3.0 | | 1
0.0 3525.0 7050.0 10575.0 14100.0
SAMPLES

Figure 4-14. Control filter coefficient values versus sample number, for no transfer
function (phase change or delay) in the cancellation path. The first control filter

coefficient, k,(n), is represented by —— while the second control filter coefficient,

k., (n), is represented by - - -.

4.4.4 Summary

It has been shown by simulation that the Independent Quadratic Optimisation
algorithm enables stable minimisation of the mean square error cost function as it
does not require knowledge of the cancellation path transfer function. It has however
been shown that with a general transfer function (ie. not a pure time delay but an
arbitrary phase change) in the cancellation path the control coefficients lose their
independence for all but pure tones. The effects of the number of averages used to

estimate the cost function, and the step size factor, on the achievable minimum mean
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square error were discussed. When the disturbance consists of white noise in addition
to a pure tone, the white noise reduces the efficiency of the Independent Quadratic
optimisation algorithm, as the control filter coefficients lose their independence
thereby reducing the speed at which the minimum achievable mean square error is
achieved. It was also observed that when the delay in the cancellation path transfer
function exceeds the number of control filter coefficients, attenuation is impossible for
a white noise disturbance. Finally it should be noted that as the step size factor is
combined with the cost function estimate to update the control filter coefficients, the
excess mean square error will depend on both the minimum achievable mean square
error and the magnitude of the step size factor (which ultimately is adjusted
depending on the degree of curvature in the direction of each control filter

coefficient).

It must be emphasised that the simulations that the cancellation path transfer function
reduces the speed (or efficiency), but not stability, of the Independent Quadratic
Optimisation algorithm obtaining the optimum control coefficients, but does not affect
the stability of the algorithm. This limitation of the Independent Quadratic

Optimisation algorithm will be discussed in the next section.

4.5 Limitation

Chapter 3 discussed the generation of orthogonal signals and their combination with a

control filter to enable each control filter coefficient to be adapted independently of

- 149 -



Chapter 4. The Independent Quadratic Optimisation Algorithm

one another. Chapter 3 also showed theoretically, the effect of a transfer function
(either a pure delay or a more general form of finite impulse response) on the
independence of the control filter coefficients. = The Independent Quadratic
Optimisation algorithm was conceptualised in chapter 2 and formally defined in the
beginning of this chapter. The simulation results from the previous section confirm
the results from the theory of chapter 3. This section will summarise the key
limitation to the Independent Quadratic Optimisation algorithm and suggests means
of overcoming it. In doing so, an alternative formulation of the Independent
Quadratic Optimisation algorithm was discovered (discussed in section 4.6), being very
similar to Newton’s Method for finding the zeroes of a function. The alternative
formulation leads to a theoretical definition (discussed in section 4.7) of the heuristic
interpretation, made in section 4.3, for the manner in which the parameters of the
Independent Quadratic Optimisation algorithm affect its performance (ie. minimum
achievable mean square error, excess mean square error and convergence time and

stability).

It was shown in section 4.2 that if the cost function could be written as (equation (4-7)

repeated here for clarity)
N-1
J) = Ty + X k) - Koy P [4-15]
i=0

then the control filter coefficients could be adapted independently using the
Independent Quadratic Optimisation algorithm. It was shown in chapter 3 (section
3.4.2) that when a transfer function is included in the cancellation path, the cost

function for a control signal generated from orthogonal signals becomes (equation (3-
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41) repeated here for clarity, with section 3.4.2 defining all terms in the equation):
pe, ®W,

Jo) = R+ 2K KmRE Konn) [4-16]
The conversion to the form of equation (4-15) dependent on the condition for
independence of the control filter coefficients, K, given by (as discussed in chapter
3, section 3.4.2, with equation (3-46) repeated here for clarity)

E[ep,()en(n-m) + e, (n-m)e,(n)] = 0 [4-17)
where u # v u,v = 0,..,N-1, and m = 0,..,N,-1 with N, the number of coefficients
defining the cancellation path transfer function. It was shown in chapter 3, that the
independence condition will only hold for a pure tone. This has also been shown
from the simulation results of the section 4.4. If the independence condition is not
satisfied, the path that the control filter coefficients take to the optimum of the cost
function (through adaptation by the Independent Quadratic Optimisation algorithm)
will be slower, as more estimates and quadratic fits are required for each control filter
coefficient. However, regardless of whether the independence condition is satisfied,
the Independent Quadratic Optimisation algorithm will still converge in a stable
manner, to the optimum of the cost function without knowledge of the cancellation
path transfer function. The speed of convergence will depend upon the non-zero
value of the expectation given by equation (4-17), that is, the degree of independence

of the control filter coefficients.

As the Independent Quadratic Optimisation algorithm converges ideally for pure
tones only, it leads to the notion of considering in isolation each individual harmonic
with and without a 90° change of phase (ie. The orthogonal components of each

harmonic). This is a natural extension of the Independent Quadratic Optimisation
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concept, that has been published originally by Gibbs et al [1993] and Kewley et al
[1995]. The algorithm for independent control filter coefficient optimisation used by
these authors was derived from Newton’s Method, but it is however similar to that

developed in this thesis, as will be shown in the next section.

4.6 Alternative Formulation

In this section the Independent Quadratic Optimisation algorithm will be shown to be
similar to Newton’s Method. Newton’s Method is a method used for finding the
zeroes of a function ie. fiw) = 0 [Widrow and Stearns, 1985]. A zero is found by
recursively adjusting the coefficient wi, to w,,,, that is the point on the abscissa that
intersects the line defined by the gradient of f(w) at w;, and the point f(w,). This
type of adaptation when used to find the zero of a function is shown in Figure 4-15,

where it can seen that

dIW) g1y, - S [4-18]

dw W, = Wi

can be written as
 Fw)
f/ (Wm)

In estimating the minimum of a cost function such as the mean square error, the

and hence the updated coefficient, w

m+1?

m+1 ~ Wm

[4-19]

requirement is for f(w) =J’ = 0. Thus each coefficient, w,,, is updated based on the

substitution of f(w_ ) =J’ |, and ffw,) =J" |, into equation (4-19), such that
J,

= = m [4-20]

I,
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‘ f(w)

Zero of f(w)
at point Wy

Figure 4-15. Newton’s Method of optimisation used to find the zero of a function,
f(w). The zero of f(w) is found by starting at w,, and updating the coefficientw

(points w,,w,,w, and w,, ) until the zero of f(w) is found at point w,.

The gradient and the second derivative of the cost function can be estimated by the
central difference theorem [Widrow, B. and Stearns, S.D., 1985; Kewley, D.L. et al,
1995], using estimates of the cost function, such that

5 J |{wm + Awq) -J i(wm - Awg) [4_21]

m 2Aw

m

j!

-

and
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~ _ 5 A A
j// _ J |(wm - Awp) J |wm ) I(wrn + Awg) [4_22]

" (A wm)2

i,

Hence, after substituting (4-21) and (4-22) into (4-20), and for clarity using

]pos = Jl(wm + Aw )

]neg - Jl(wm - [4-23a,b,c]
jcen = jlwm
results in the control coefficient update equation (4-20) becoming
. @Cw, - Awm)JpOs - (4w M., + Cw, + Awm)Jneg [4.24]

2[jpos - 2jcen + jneg]

This can be compared with the optimal control filter coefficient defined by equation
(4-13) in section 4.3 for the Independent Quadratic Optimisation algorithm, where the
optimal control filter coefficients are determined by fitting three estimates of the cost
function to a quadratic function. On the other hand , Newton’s Method is based on a
gradient search of the cost function, in which the control coefficients are adapted until
a gradient of zero is found. It will now be shown that equation (4-24) is equivalent to
equation (4-13). Equation (4-13) is shown below for ease of reference.

T, = b ) + T Gy = k) + (ks = k)

. - = [4-25]
+J (ky, = Kyip) * T (Kiy = i)

1
Wiopt E

Jio(kWi1 -

wiy)

Consider the following substitutions for the variables used in equation (4-13,25)

k“’i2 =Wt Awy, with Ty = = Jl(wm + Aw,)
kwio =w, - Aw_ with J, = Jneg =] |(wm - Aw) [4-26a,b,c]
kwil = Wn with Jil = Jcen = J|wm

with
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[4-27]

gives

_ ) (2wm - Awm).;:pos B (4wm)fcen * (2Wm * Awm)fneg [4_28]

m+1
2

w
.]pos - 2]cen +-]neg

which is equal to equation (4-24), thus showing that Newton’s Method, when used to
find the minimum of a quadratic function, is equivalent to using three estimates of the
cost function to find the minimum of a parabola formed by these points. If the cost
function is not parabolic (ie. if the optimum cannot be found in one cycle) then the
cycle continues, until the shape of the cost function approximates that of a parabola.

This is shown in Figure 4-16.
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Cost Function Fit for O
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Quadratic
Fitfora | Optimum Control Filter

Coefficient from Quadratic Fit

Quadratic
Fit for O

Control Filter
Coefficient
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: , -

Figure 4-16. Newton’s Method as a form of Quadratic Curve Fitting. Quadratic fits
to estimates (numbered from start) made as per the Independent Quadratic

Optimisation algorithm are shown, leading to the minimum of the cost function.
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This is a very interesting result, and suggests that the performance of the Independent
Quadratic Optimisation algorithm derived in section 4.3 on a quadratic curve-fit basis
using independent control filter coefficients, can be described by considering the
discrete estimate form of Newton’s Method already analysed by Widrow and Stearns
[1985]. The discrete estimate form of Newton’s Method will be considered in the next
section, to confirm the heuristic comments made in section 4.3, regarding the
parameters affecting the Independent Quadratic Optimisation algorithm’s

performance.

4.7 Performance Analysis

In this section, the analysis by Widrow and Stearns [1985] will be used to confirm the
heuristic interpretation (made in section 4.3) of the Independent Quadratic
Optimisation algorithm. To simplify this analysis, a constant control filter coefficient
step size factor will be used, such that a constant step size in the control filter
coefficients can be defined as

§ = (kwil - kwio) = (kWiz - kwil) [4-29]
Widrow and Stearns [1985] define the "performance penalty", y, as the error in

estimating J.., from J, and J ., such that

S

1,. . .
Y = E(jneg +]pos) - ]cen [4-30]

The "performance penalty" gives the average increase in the cost function from

perturbations (or constant deviations) in the control filter coefficients; That is, the
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greater the "performance penalty" the better the lesser the achievable mean square
error, however the improved performance (in terms of minimum achievable mean
square error) comes with a penalty as at the optimum the excess mean square error or
variance about the optimum will be greater. An intuitive interpretation of the
"performance penalty” comes after substituting the cost function for a single control
filter coefficient k, (defined by equation (4-7)), with equation (4-30) now written as

Y =8 [4-31]
Hence the "performance penalty" incorporates the effects discussed in section 4.3,
namely the degree of curvature (described by j..) and the step size (described by &),
and is not dependent upon the particular value of the control filter coefficient. As
discussed in section 4-3 (and shown in Figure 4-4), the higher the curvature, the lower
the step size needs to be to obtain an accurate curve fit and therefore optimum
control coefficient estimate. This will be shown in theory shortly. The "performance
penalty" can be normalised using the minimum of the cost function such that the

"perturbation” can defined as [Widrow and Stearns, 1985]

. -62
p-2 M [4-32]
opt Jopt

and when multiple coefficients (total N) are considered this becomes

)
p - loil [4-33]
J

opt

_ N-1

with j . = % Y j,- The physical significance of the "perturbation” will become
i=0

more apparent later in this section. It will be shown to affect the excess mean square

CITOT.
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Widrow and Stearns [1985] show that the variance of the estimates of the cost

function can be given by

var[J 1 = — = g, [4-34]

where K is a constant dependent upon the probability distribution of samples of the
cost function, M is the number of averages and J, (with m the estimate number) is
the mean of the probability distribution (ie. the actual value of the cost function). For
an acoustic error signal J = E[e?(n) ], and since e(n) has a zero mean (providing DC
offsets are cancelled in ADC’s, amplifiers etc.) and a likely Gaussian (or normal)
distribution, K will equal 2.0. Thus from equation (4-34), for the same number of
averages, M, the variance in the cost function estimate, ay , is likely to be greater for
higher values of the cost function, J . It is also apparent from equation (4-34) that
for a large number of averages, M, the variance in the cost function estimate is
reduced and hence it would be expected that the variance of the cost function about
the optimum would also be reduced (since a more accurate curve-fit results); This

will become more apparent with the definition of the misadjustment.

Widrow and Stearns [1985] show that the misadjustment (a dimensionless measure of
the performance of an adaptive process in terms of the variance of the cost function,
or mean square error about the optimum once adaptation has reached steady state) is

given by (with 2 meaning defined as)

Nij. (/i) NI (1/j.
misadjustment & Jo (i) o (1) [4-35]
8MP 8M &2
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This equation could also have been derived by considering the effect of the cost
function variance on the optimum control filter coefficient value given by equation (4-

13).

From equation (4-35) it is apparent that:

. Larger values of the perturbation, P, (associated with step size and degree of
curvature) result in reduced misadjustment (and therefore a more accurate
curve-fit) and increased performance. However a large perturbation can result
from a large step size, and therefore an increased possibility of creating an
overflow of the control filter coefficients and thereby control actuators. A
large perturbation can also be a result of a high degree of curvature (as
defined by j_'bi) or a low value of the optimum cost function (as defined by
Jop)- That is, a low value of the cost function at its minimum results in
reduced variance in the cost function estimates, as defined by equation (4-34).
The cost function minimum depends upon the amount of extraneous noise
present in the physical system, as well as the statistics of the disturbance and
the number of control filter coefficients used to estimate the disturbance.

These parameters have also been discussed in section 4.3.
. Larger number of averages M, result in reduced misadjustment (and therefore

more accurate curve-fit) and increased performance. However a large number

of averages increases the time taken to reach steady state or convergence.
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. Larger number of control filter coefficients, N, increases misadjustment and
reduces performance. This is because there is an increased variance about the
cost function minimum, as a result of the variance of additional control filter
coefficients. However a large number of taps increases the bandwidth of
attenuation (Note that for a pure tone only two coefficients are required in the

control filter (linear combiner)).

. The factor ]_'bi (1/j,,) Will depend upon the disparity in the frequency
components of the filtered orthogonal signals. If the frequency components are
highly disparate the misadjustment will increase, however if they are relatively

equivalent this factor will not affect the misadjustment.

Hence it is apparent that the signal statistics will affect the required number of
averages, and the control filter coefficient step size factor (ie. the control filter
coefficients are changed proportional to the cost function estimate) will be determined

by the required attenuation and number of averages.

The Independent Quadratic Optimisation algorithm has the added feature of a
variable control filter coefficient step size through the use of the control filter
coefficient step size factor, and the ability to step only in the direction of decreasing
mean square error (ie. it doesn’t have to sample about a point as do the discrete

gradient estimation methods).

It is also apparent that a minimum perturbation must exist to ensure stability, as
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discussed in section 4.3 (ie. If the perturbation were zero, the misadjustment would be

infinite, indicating instability).

The Independent Quadratic Optimisation algorithm can also be quite slow during
convergence since for each control filter coefficient, the cost function must be
estimated three times before the value of the control filter coefficient corresponding
to the cost function minimum can be found. Each coefficient of the control filter is
also adapted separately, further slowing convergence. Therefore although the
algorithm is very stable, it is also quite slow at converging. This will be shown in
chapter S, when a comparison is made between the filtered-X LMS algorithm and the

Independent Quadratic Optimisation algorithm.

4.8 Multi-Channel Systems

A multi-channel control system utilising a lattice filter for the active control of noise

or vibration of a complex system is shown schematically in Figure 4-17.

A multi-channel system which made use of transversal filters and a multi-channel
version of the filtered-X LMS algorithm was first analysed by Elliott, Stothers and
Nelson [1987]. As discussed in chapter 2, the bounds of stability for the convergence
coefficient of the filtered-X LMS algorithm are limited by the accuracy of the
cancellation path transfer function estimate; However, it may also be shown that the
bounds are reduced further as the number of error sensors is increased [Snyder,

Hansen and Clarke, 1993].
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Figure 4-17. Multi-channel control system. Total of L error sensors and M control actuators.
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For the system considered here and shown in Figure 4-17, instead of passing the
reference signal to a set of transversal filters, the lattice filter generates a set of
orthogonal signals which are passed to each control filter (linear combiner). For this
system, the cost function given by the mean sum of the square of the signals from
each error sensor, can be shown to be a quadratic function of each of the control
filter coefficients thus enabling the parabola corresponding to each control filter
coefficient to be estimated and the optimum control filter coefficients determined
using the Independent Quadratic Optimisation algorithm. If the coefficients are not
independent within each control filter (linear combiner) or between the control filters
(linear combiners), only the speed of convergence of the control filter coefficients to

the values corresponding to the cost function minimum, will be impaired.

4.8.1 Independence Conditions

The independent condition derived in chapter 3 (for the single channel case) will now
be examined for the multi-channel system. An attempt will be made in this section to
reduce the cost function for a multi-channel system to a form similar to equation (3-

31). Consider the cost function of the multi-channel system shown in Figure 4-17.

L
J=E Eylz(n)} [4-36]
-1

where [ is the error sensor number, with L the total number of error sensors, n the

sample number and y(n) the error signals given by:
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G-

M
5 = p(n) + XX i (Wt () [4-37]

m=1 g=

—

where m is the control source number with M the total number of control actuators,

pn) is the disturbance signal at the particular error sensor, h (n) represents a
g

coefficient of the cancellation path transfer function with g the coefficient number

and G the total number of coefficients, and u_(n) are the control signals given by:
I-1
U, (1) = Yk, (M)ey(n) [4-38]
i=0

where k. (n) are the control filter coefficients and e, (n) are the orthogonal
backward prediction error signals, with i the lattice stage number and I the total

number of stages in the lattice filter.

Ignoring the adaptation of the control filter coefficients (to ensure that commutation
of the cancellation path transfer function is valid, as per the discussion in chapter 2),
equation (4-37) can be rewritten as (with the superscript ¢, shown to highlight the use
of backward prediction error signals as opposed to delayed reference signal samples):

%) = pn) + KO (n) [4-39]
where the control filter coefficient vector is defined as:

K, = [k o by o | by o g, T [4-40]

and the vector of filtered orthogonal backward prediction error signals is defined as:

Q°(m) = [ 4y, (), s ay, () | .| g (1), o qlizu—n(n) T [4-41]
where
. G-1
qlr:i(n) = Ehlmg(n)ebi(n_g) [4-42]
g=0
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Substituting equation (4-39) into equation (4-36) leads to:

L
J = E{ Elp’(m)] + K EIQ™mQ™ (mIK, + 21<3E[Q.°"<n>p,(n)1} [4-43]
1=1

From which the optimal control filter coefficients may be found by setting to zero the
partial derivative of the cost function, given by equation (4-43), with respect to the

control filter coefficients. This leads to the following definition for the control filter

coefficients:
-1

E [4-44]

K, =-E

opt

L e en T N e
Y00 " () Y O (m)p(n)
1=1 1=1

and the optimum value of the cost function may be found by substituting the optimum

control filter coefficients into the cost function (equation (4-43)) such that
L
To = S| Elp700) + KE_EIQ™ () [4-45]
=1

opt
1

Using equations (4-44) and (4-45), the cost function defined by equation (4-43) may

be written as

K,-K, | [4-46]

Wapt

J =Jy + KK, T'E

opt

L s
Y 00> (n)
I=1

To understand the physical significance of this equation, the expectation term will be

considered for the following cases:

. two error sensors and one control actuator;

. one error sensor and two control actuators.
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The single channel system was examined in chapter 3 and resulted in the definition of
the independence condition for control filter coefficient independence, given again

here for ease of reference:

E[e, (n)e, (n-m) + e, (n-m)e, (n)] =0 [4-47]

where u,v = 0,..,N-1 and m = 0,..,N,-1, with N, the number of cancellation path
transfer function coefficients, and N the number of control filter coefficients. It was

shown in chapter 3 that this condition was satisfied only for pure tones.

4.8.1.1 Two Error Sensors and One Control Actuator

Figure 4-18 shows the cancellation path transfer functions, disturbance transfer
functions, control actuators and error sensors. For this system the expectation in
equation (4-46) (ie. the expectation of the product of the matrix, containing backward
prediction errors filtered by the cancellation path transfer functions, with its

transform) becomes:

| (€ho()hy) (e, (n)Bhy,) |
(ebo(n)®hu)2 + (ebo("l)®h21)2 . (ebo(n)®h21)(eb1(n)®h21)
£ [4-48)

(M)®h b,
iy O - 008

where ®, represents the convolution operator used between the backward prediction
error signals, e (1) or e,,(n), and the cancellation path transfer functions, h,; or hy.
From this equation, it can be shown that the following condition must hold, for the

control filter coefficients to be adapted independently :
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; i, =
s huih”i E[e, (n-De,(n)) + ey, (n-je,(n-i)] =0 [4-49]
e o :

where wu#v , u,v

= 0,...,N-1,

and i,j =

0,..,N,-1, with N, the number of

cancellation path transfer function coefficients, and N the number of control filter

coefficients.

CONTROLLER

Error
Sensors

Disturbance

PHYSICAL
SYSTEM

Control
Actuator

Figure 4-18. Transfer functions for physical system consisting of two error sensors and

one control actuator. Transfer functions A, and h, are between the disturbance

actuator and error sensors 1 and 2, and transfer functions h,; and h,, are between

the control actuator and error sensors 1 and 2.

This condition will hold for pure tones since the expectation in this equation is

equivalent to that given by equation (4-47) for the single channel case. However,

equation (4-49) also introduces the additional term relating to the transfer functions
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between the control actuators and the error sensors. If this additional term is zero,
the control filter coefficients will be independent regardless of the type of reference
signal. For the two error sensor, one control actuator example, it can be shown that
orthogonal cancellation path transfer functions with only two coefficients (ie. FIR
type) will ensure the independence condition (equation (4-49)) will be met regardless
of the type of reference signal; This effect will be shown from simulations in the next

section.

It is also worthwhile considering the minimum mean square error of this particular

system. From equation (4-45) the minimum mean square error is given by:

x(n)®h'pl [x(")®hp1 i (KVT OPtEbN(n) )®hy;]

Jou = E P [4-50]
+ x(n)®hy, [x(n)®h, + (K, OptEbN(n))®h21]

where h, and h,, have been introduced as the transfer functions between the

p2’
disturbance actuator and the error sensor. Converting this representation from the
time domain (where the transfer functions are modelled as impulse responses) to the
frequency domain (where the transfer functions are modelled as frequency responses),

and solving for the relation between the transfer functions for a zero optimum

condition gives:
H (e™) . H,(e*) i} H ,(e™)
H,,(e*) H (e 2 H (e )

[4-51]

Thus it is apparent that the optimum cost function can be reduced to near zero if the
relative phase and amplitude between A, and h, is the same as that betweenh,,
and h,,, but also that the relative phase is 90° and the relative amplitude is unity. If

this condition is not met, the optimum cost function will be non-zero, as will be shown
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by simulation. Snyder et al [1993] suggest that if equation (4-50) is non-zero, an error
sensor is redundant, and therefore that there should be at least as many error sensors
as control actuators to ensure there are no redundant transducers, and that a
minimum mean square error close to zero can be achieved. The minimum mean
square error will however depend on the coupling between each control actuator and

the error sensors, as will be considered next.

4.8.1.2 Two Control Actuators and One Error Sensor

Figure 4-19 shows the cancellation path transfer functions, disturbance transfer

functions, control actuators and error sensors.

' Disturbance

hp1 PHYSICAL
SYSTEM

CONTROLLER

Control
Actuators

Yy

Figure 4-19. Transfer functions for physical system consisting of one error sensor and
two control actuators. The transfer functions 4,, and A, are between each control
actuator and the error sensor, while the transfer function h, is between the

disturbance actuator and the error sensor.
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For this system the expectation in equation (4-46) (ie. the expectation of the product
of the matrix, containing backward prediction errors filtered by the cancellation path
transfer functions, with its transform) becomes (note that the terms are numbered for

further explanation):
(e, (M®h, )} (e, M®h, Y, (MBh) O (6, (MBh, Ne,m®hy,) @ (e, (Dhy ) ey, (M)Rh,,) ¥
B (e, (B, (e, (MBh, ) @ (e, (MDh,)? (€, (M®h, (e, (MBh ) @ (e,,(MBh, e, (MBh,,) @
CakmBh (e mOh,) @ (e, (MBhy,Xe, (MR, @ (€, m®h,,)* (EsWBhy,) e, (MBhy) © [4-52]
(€ (BN ) (e (MBhy) @ (e, (NBh Xy (B D (e, (MBhy) (e, m®hy) P (e, (MBh )

As shown by equation (4-52) and (4-46), the independence of the control filter
coefficients within each controller depends upon the terms in equation (4-52)
numbered (1), while the independence of the control coefficients between control
filters (linear combiners) depends on terms in equation (4-52) numbered (2) and (3).
For complete independence of all the control coefficients, the terms in equation (4-
51) numbered (1), (2) and (3) should equal zero. These terms will now be
considered, with the assumption that each cancellation path transfer function has only

two coefficients and is of FIR type.

Terms of type (1) can be written similar to
h110h111E[eb0(n)ebl(n—1) + epo(n-1)ey(n)] [4-53]

This term represents the standard independence condition (ie. represented by
equation (4-47)), which is modified for more than one error sensor, as shown by
equation (4-49). Terms of this type will be zero provided the reference signal is a

pure tone.

Terms (2) and (3) represent the inter-channel coupling terms. A typical type (2) term
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can be written similar to
(hyy g, + oy b VELeg] + (hyy hyy + hyy by, JEe(n)ey(n-1)]  [4-54]
Terms of this type will be zero if the cancellation path transfer functions, 4,; and h,,,
are orthogonal (ie. 90° phase difference between the transfer functions). This will
enable partial decoupling of the channels, but they will not be completely decoupled
unless terms of type (3) are also zero. Terms of type (3) can be written similar to
Eley(n)ey(n=-1)]hy by, + Eley(n-1)ey(n)]h; by, [4-55]
For this type of term the cancellation path transfer functions are entwined with the
standard independence condition. Hence it appears very difficult to ensure that this
term is zero. Therefore it appears unlikely that the channels can ever be completely

decoupled.

As discussed, there should be at least as many error sensors as control actuators to
ensure no transducers are redundant. It will be shown by simulation, that if there are
more control actuators than error sensors, the system will be over-determined possibly

resulting in less attenuation.
4.8.2 Control Coefficient Adaptation Methods

For multi-channel systems, the Independent Quadratic Optimisation algorithm may be

implemented using two alternative methods, described fully in Tables 4-1 and 4-2.

. Method 1 : All the control coefficients for a control filter can be adapted

before continuing to the next control filter;
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. Method 2 : A control coefficient for all the control channels may be updated

before continuing to the next control coefficient.

As for a single channel system, it is only the control filters (linear combiners) that use
the Independent Quadratic Optimisation algorithm. The lattice filter uses the
recursive algorithm discussed in chapter 3. Simulations will now be considered using
these two methods of adaptation for a multi-channel system. The number of control
actuators relative to error sensors will be considered, as will their coupling effects.
Simulations will be performed for a pure tone only, since as discussed, the
Independent Quadratic Optimisation algorithm performs most efficiently for this type

of signal.

4.8.3 Simulations

The simulations performed in this section are for a pure tone only, and will show the
effect of the number and location of error sensors and control actuators, by
comparison with a single channel case. The power and sampling ratio of the pure tone
were arbitrarily chosen as 0.5 and 20 respectively. The control filter coefficient step
size factor used was a = 0.05 for both control filter coefficients of all control filters.
The coefficients for each control filter were initialised to zero. The mean square
error was estimated using 200 samples (ie. averaging performed over 10 periods), with
a delay of 20 samples before averaging. The arbitrary transfer functions between the
disturbance and control actuators, and the error sensors were used as per the single

channel simulations discussed in section 4.4, and shown in Figure 4-5.
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Table 4-1. METHOD 1: Adapt all the control coefficients for a control channel,

before continuing to the next channel.

Initialise the control coefficients for each control filter (linear combiner).

For each control filter (linear combiner) do the following:

For each control coefficient:

(a) Delay estimating the mean square error by a number of samples
equivalent to a time greater than the largest time taken for the signals
emitted from the control actuators to reach the error sensors;

(b) Perform a sufficient average of the mean square error dependent upon
the accuracy (i.e. minimum mean square error) required;

(c) Change the value of the particular control coefficient, based upon the
level of the mean square error and the accuracy (ie. minimum mean
square error) required. Perform (a) to (b) twice more;

(d) Determine the optimum value for the particular control coefficient by

fitting the estimated points to a quadratic function.

Advance to the next control coefficient.

Advance to the next control filter (linear combiner).
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Table 4-2. METHOD 2: Adapt a control coefficient for all the channels before

continuing to the next control coefficient.

Initialise the control coefficients for each control filter (linear combiner).

For each control coefficient do the following:

For each control filter (linear combiner):

(a) Delay estimating the mean square error by a number of samples
equivalent to a time greater than the largest time taken for the signals
emitted from the control actuators to reach the error sensors;

(b) Perform a sufficient average of the mean square error dependent upon
the accuracy (i.e. minimum mean square error) required;

(c) Change the value of the particular control coefficient, based upon the
level of the mean square error and the accuracy (ie. mimimum mean
square error) required. Perform (a) to (b) twice more;

(d) Determine the optimum value for the particular control coefficient by

fitting the estimated points to a quadratic function.

Advance to the next control filter (linear combiner).

Advance to the next control coefficient.
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The final control filter coefficients, amount of attenuation and error signal are shown
for the single channel case with arbitrary disturbance and cancellation path transfer
functions (as used in section 4.4), in Figures 4-20(a) and (b). These results are similar

to those shown in section 4.4.1.

il l I | il 'J;Ii".ll. |
\i\il‘\il,w\:_]nln_‘xHurl[ulﬂ

-0.574
FINAL 6

Tojal Error Signal

ATTENUATION 3 35 dB_J® Ean _36 ZC.JO 460 660 BC'!D 1OIC)O 12‘00 14.00 1600
Sampies
Figure 4-20(a). Attenuation and Figure 4-20(b). Error signal magnitude
optimal control filter coefficients with with arbitrary transfer functions, for
arbitrary transfer functions, as for single channel case.

single channel case.

Figures 4-21(a) and (b) show similar results for the system when the number of error
sensors is increased. Increasing the number of error sensors reduces the attenuation
at each error sensor, however it increases the amount of global attenuation. The
amount of attenuation decreases as the number of error sensors increases, due to the
controller reaching the limit of the achievable minimum mean square error set by the
system configuration [Snyder, Clarke and Hansen, 1993]. The optimum control filter

coefficients will be an average of those for controlling the signal at each error sensor
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independently. That is they will be determined by equation (4-44) to achieve good

reduction of the total mean square error for the given system configuration.
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Figure 4-21(a). Attenuation and Figure 4-21(b). Total error signal
optimal control filter coefficients with magnitude with arbitrary transfer
arbitrary transfer functions, for two functions, for two error sensors and one
error sensors and one control actuator. control actuator.

In section 4.8.1 it was claimed that if the relative phase and amplitude of the transfer
functions between the disturbance actuator and the error sensors were the same as the
relative phase and amplitude of the transfer function between the control actuator and
error sensors, then the minimum cost function will be equivalent to that of a single
channel system. This is shown in Figures 4-22(a) and (b), with a relative phase of 90°
and a relative amplitude of 1.0. Control of this system configuration yields the same
attenuation as for the single channel case (shown in Figures 4-20(a) and (b)), but
possibly greater global attenuation (dependent upon whether the error sensors sense
the same mode or different modes; the same mode could be sensed by separating the

sensors by a quarter of a wavelength).
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Figure 4-22(b). Total error signal for
orthogonal transfer functions between

the disturbance actuator and each error

the disturbance actuator and each error sensor, and the control actuator and

sensor, and the control actuator and each error sensor.

each error sensor.

Simulations shown in Figures 4-23(a) and (b), using two control actuators with a single
error sensor, highlight the difference between the two methods of control discussed in
section 4.8.2. Note that in theory, only a single control actuator is required for a single
error sensor for cancellation of a pure tone.

Consider Figures 4-23(a) and (b). For arbitrary transfer functions, method 1 (ie.
update all coefficients for a control filter before continuing to next control filter) uses
only one control actuator and achieves attenuation equal to that of a single channel
controller. When considering optimisation of the second channel using this method,

the Independent Quadratic Optimisation algorithm realises that the second channel is

not required (since optimal reduction of the mean square error has already been
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achieved by only the single channel) and it therefore leaves the second channel
essentially unchanged (ie. control filter coefficients have a value close to zero, and a
control signal is not generated). However method 2 (ie. update a coefficient for all
control filters before continuing to next control filter) attempts to use both control
actuators and achieves significantly less attenuation than for the single channel case.
This is because only a single channel is required, and therefore attempting to use two
control actuators to cancel the disturbance results in an over-determined system, as
discussed previously. Snyder et al [1993] remark that using a similar "round-robbin"
approach to control filter adaptation can result in excess effort by a controller using
method 1 (possibly leading to overloading of the control actuator), while method 2

can distribute the control effort between the actuators.

[ I

-0.574 -0.574

-2.644 -1.974

ATTEN. ATTEN.

Figure 4-23(a). Attenuation and Figure 4-23(b). Attenuation and

optimal control filter coefficients with
arbitrary  transfer functions, using
method 1 for control using two

actuators and one error sensor.

optimal control filter coefficients with
arbitrary transfer functions, using
method 2 for control wusing two

actuators and one error sensor.
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4.9 Summary

In this chapter the Independent Quadratic Optimisation algorithm concept was
introduced and formally derived. It fits a quadratic curve to three estimates of the
cost function for each independent control filter coefficient. It was shown that the use
of Newton’s Method as outlined in recent papers is similar to the Independent
Quadratic Optimisation algorithm presented here. This comparison has led to
formalising the heuristic comments (regarding number of averages, control filter
coefficient step size and degree of cost function curvature) made about the
Independent Quadratic Optimisation algorithms performance, using Widrow and
Stearns [1985] analysis of Newton’s Method for a multi-coefficient single channel

system.

Simulations were presented for a pure tone and white noise separately and in
combination, illustrating the effects on control filter coefficient independence of a
transfer function in the cancellation path, as presented theoretically in chapter 3. It
was shown that loss of independence only a limitation in that it reduced the speed of
convergence, but not stability, of the Independent Quadratic Optimisation algorithm
for all but pure tone signals. The Independent Quadratic Optimisation algorithm has
been extended to control periodic noise/vibration by Gibbs et al [1993] and Kewley et

al [1995].

Simulations were also performed in this chapter, for a multi-channel system using the

Independent Quadratic Optimisation algorithm with two alternative methods of
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control filter coefficient adaptation. Theory was developed with regard to the
conditions for independence of control filter coefficients within each channel and
between channels. It was shown that for the case of a control actuator and two error
sensors, control filter coefficient independence was assured provided the independence
condition presented in chapter 2 was met, or the cancellation path transfer functions
and the primary disturbance to error sensor transfer functions were orthogonal;
However, if these transfer functions were not orthogonal, the system would be over-
determined, with redundancy of an error sensor as found by Snyder, Clark and
Hansen [1993] in an analysis of the standard filtered-X LMS algorithm. It was further
shown that for the case of one error sensor and two control actuators, independence
of the control filter coefficients between channels was impossible; This result suggests
that it is more effective to use method 1 for adaptation of control filter coefficients as

the coefficients are independent for each channel.
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Chapter 5. Practical Implementation of the Independent Quadratic Optimisation Algorithm

5.1 Introduction

This chapter describes the issues of concern when practically implementing the
Independent Quadratic Optimisation algorithm. It describes the essence of the electronic
hardware and software chosen to best suit the Independent Quadratic Optimisation
algorithm. Additionally, the filtered-X LMS algorithm was implemented on two types of
processor configurations (ie. serial integer and parallel floating types), and a comparison

of the implementation issues found from these configurations is also made.

A comparison is made between the effectiveness of the Independent Quadratic

Optimisation algorithm relative to the filtered-X LMS algorithm, in terms of:

° Achievable attenuation,;

. Signal types (with particular regard to those with a high eigenvalue disparity);

. The ability to track changing system conditions;

. The ability to not only reduce vibro-acoustic levels but also vibro-acoustic intensity

or power flow.

. The effect of uncorrelated noise on the achievable attenuation.

It will be shown that the Independent Quadratic Optimisation algorithm achieves good
attenuation without any knowledge of the system transfer functions. The effect of the
parameters of the Independent Quadratic Optimisation algorithm on the misadjustment
and achievable minimum mean square error will be assessed to compare practical results

with the theory developed in chapter 4.
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The effect of Independent Quadratic Optimisation algorithm parameters, and a

comparison of this algorithm with the filtered-X LMS algorithm is performed for:

. Verification of algorithm implementation;

This scenario was performed first to confirm the theory presented in chapter 3,
relating to the reduction in power of the backward prediction error signals with
increasing stages of the lattice filter, and the orthogonality and statistics of the
backward prediction error signals for pure tones, periodic and broadband
disturbances. This assessment will show that the power of the backward
prediction error signals give an indication of the disturbance statistics, thereby also
giving an indication of the number of control filter coefficients required for

control.

The self-induced noise scenario effectively mimiced the case of simply a delay (ie.
a certain number of sampling periods) in the cancellation path, with results shown
for both algorithms. This test was performed prior to tests with apparatus using

actuators and sensors that could be easily damaged.

. Vibro-acoustic apparatus;

Results are presented for the Independent Quadratic Optimisation algorithm when
used in single-channel form on experimental apparatus to reduce plane-wave

radiation constrained to one-dimension in a duct with zero air-flow, and finally
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when used in multi-channel form to reduce the vibration levels (and/or power

flow) in a semi-infinite plate.

5.2 Hardware/Software Design

The Independent Quadratic Optimisation algorithm concept and filtered-X LMS
algorithm both have parallel natures. That is, the Independent Quadratic Optimisation
algorithm  concept requires orthogonal signals to be generated (and maintained
orthogonal), control signals to be generated from these orthogonal signals (for each
control actuator) and the control filter coefficients to be adapted to generate the
optimum control signals. The filtered-X LMS algorithm requires the cancellation path
filter coefficients to be estimated, the control signals to be generated, and the control

filter coefficients to be adapted to generate optimal control signals.

Due to the parallel natures of these algorithms, their implementation was performed
using a network of parallel processors. The processors used were developed by Inmos
and are known as Transputers. Transputers are very similar to standard DSP’s (Digital
Signal Processors) in that they have a CPU (Central Processing Unit) that performs
arithmetic operations and data storage and retrieval from memory (RAM, ROM etc).
However, they are quite different from other DSP’s as the communication links between
transputers can be considered as DMA (Direct Memory Access) controllers, capable of
transferring data from the memory of one processor to another without interrupting the

CPU. Transputers can perform arithmetic using floating point (real) or fixed-point
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(integer) operations. Fixed point processors have the advantage of fast arithmetic

operations at low cost, but have many disadvantages, namely:

. Scaling;
. Overflow;
. Precision or Round-Off Errors.

Floating point processors are slower at performing arithmetic operations and more costly,
but they do not have any of the above disadvantages. The Transputer network used
floating-point transputers for coefficient (control filter or lattice filter) adaptation and
fixed-point transputers for control signal generation. Code for the Transputers was
written with regard to the hardware architecture (ie. the transputer layout and
communication links were initially defined in the software), using a high level language
known as OCCAM (and an associated editor that used Hyertext). It is interesting to note
that OCCAM was designed with communication protocol as a priority (in contrast to
PASCAL and C), since communication is essential to the concurrent operation of parallel
processors. Key features of OCCAM are PRI (a prioritised instruction), ALT (an
alternation or multi-tasking instruction) and PAR (a parallel or concurrent processing

instruction).

The transputer architecture is shown in Figure 5-1. This network is defined specifically
for the Independent Quadratic Optimisation algorithm, although in this form it can also
operate using the filtered-X LMS algorithm, as was done during this work but will not
be discussed further. This network was used as a development system with T414’s (fixed-
point) interchangeable with T800’s (floating-point). The converters (ADC’s and DAC’s)

were memory mapped 16-bit devices (Motorola DSP56-ADC16 and DSP56-DAC16). The
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converters used analog anti-aliasing and reconstruction (anti-imaging) filters that were
external to the system, and as such they required sample and holds. Programmable gain
amplifiers were not used. The sampling rate used was 1250 Hz (divided down from the
20MHz processor clock), to ensure sufficient time for the generation of orthogonal signals

by the lattice filter.

The network was connected to a development board from which the code was compiled
and downloaded to each transputer accordingly. This board used a transputer to run
programs for monitoring the algorithm performance and to store data in a file on the
computer for later analysis. The development board also ran standard Inmos software
to assess hardware architecture features. The network was connected to a terminal for

stand-alone system operation.

The primary transputer (a T800) in the network was responsible for collecting the error
signal samples, storage of information (ie. parameters), definition of the required
operation (eg. type of algorithm; Independent Quadratic Optimisation algorithm or
filtered-X algorithm) and adaptation of control filter coefficients. The secondary
transputer (also a T800) was solely responsible for sampling the reference signal and
generating orthogonal signals. Once generated the orthogonal signals were passed on a
high priority communication link to the slave transputers (T414’s). The slave transputers
generated the control signals according to their current filter configuration. A low
priority link was used to transfer new filter coefficients (and other information) between

the transputers.
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The T800 uses 64 bit floating point arithmetic at a rate of 1.5 MFLOPS (million floating
point operations per second). There is only 4K of on-chip RAM (access rate of 80
Mbytes/second). It is capable of operating at a rate of 10 MIPS (million instructions per
second). The T414 uses 32 bit integer arithmetic, and can perform arithmetic operations

about 10 times faster than the floating point operation rate of the T800.

During the period this work was undertaken, the filtered-X LMS algorithm was not only
implemented on the transputer network, it was also implemented in multi-channel form
on a serial integer processor known as the Texas Instruments TMS320C2S (16 Bit Integer
Arithmetic). This processor used multi-tasking (since it had only one CPU) to perform

the algorithm operations that could be adapted concurrently on the transputer network.

The TMS320C25 was programmed using assembly language to initially develop efficient
code that could later be used as a library of procedures or functions for a C-compiler.
The library formed a "real-time Kernel", which enabled control signal generation at
interrupts, and data to be passed from the interrupt work-space to the non-real-time
adaptive workspace. The real-time kernel needed to be efficiently designed to ensure
minimum time was spent processing interrupts. Therefore internal memory was used for
variables and circular buffers were used to store delayed signal samples. Attention to
data transfer between the interrupt and non-real-time adaptive workspace was required

to minimise the possibility of an interrupt occurring during this transfer.

At times when the CPU was not attending to interrupts, it adapted filter coefficients

(both control filter and cancellation path filter coefficients). The control filter and
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cancellation path filter coefficient adaptive programs were written in C using the library
for the real-time kernel. Storage of the relevant variables in the slower external memory
enabled transfer of data to a computer for later analysis. The code was down-loaded to
the TMS320C25 using a Motorola MC 68000 processor, that also ran a program known
as SPaM (Signal Processing and Matrices) which enabled controller operation to be
altered easily using user defined parameters. A summary of this system is shown in

Figure 5-2.

When completed this system was as easy to program using C as the Transputer system
was in OCCAM. Initially though, all the code for the TMS320C25 was written in
assembly, which proved difficult to debug, and used only integer arithmetic. It was only
after the real-time kernel was written that C was used to purely adapt coefficients using

floating point arithmetic.

For both the Transputer Development System, and the TMS320C25 system, care with DC
offsets was required for the filtered-X LMS algorithm. If DC offsets were not accounted
for in the filtered-X LMS algorithm using leakage (see chapter 2), or through differencing
(ie. a digital high pass filter) the two most recent input signals (whether reference or
error), they caused overflow or saturation of the filter coefficients (whether control or
cancellation path). The DC offsets did not affect the Independent Quadratic
Optimisation algorithm, as the control filter coefficients are not adapted directly using
instantaneous signals values (as is the filtered-X LMS algorithm). The PARCOR
coefficients of the lattice filter (associated with the Independent Quadratic Optimisation

algorithm concept) were not found to be affected by DC offsets.
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5.3 Experimental Verification

Before conducting experiments using specific acoustic and vibration test apparatus, the

following initial experiments were performed:

. Analysis of Lattice Filter Implementation.

This was done to assess the influence of the number of control filter coefficients
and the PARCOR convergence coefficient on the auto and cross correlations of
the tapped backward prediction errors (orthogonal signals) for a pure tone of
different frequencies, multiple tones (not necessarily harmonics), and variable
band-passed white noise. This assessment will confirm the theory presented in
chapter 3, relating to the reduction in power of the backward prediction error
signals with increasing stages of the lattice filter, and the orthogonality and
statistics of the backward prediction error signals for pure tones, periodic and
broadband disturbances. This assessment will also show that the power of the
backward prediction error signals give an indication of the disturbance statistics,
thereby also giving an indication of the number of control filter coefficients

required for control.

. Analysis of a Single Channel System with Self Induced Noise.

To ensure the Independent Quadratic Optimisation algorithm was implemented

correctly before testing on apparatus using actuators and sensors that could be
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easily damaged, self induced noise was generated using suitably initialised control
filter coefficients. The control signal was generated and fed back into the
controller as an error signal. The unknown plant in this case consisted of only the
control system transfer functions at input and output (ie. The converters and
filters). The influence of various Independent Quadratic Optimisation algorithm
parameters on the attenuation characteristics were assessed for pure tone, multi-
tone and band-passed white noise inputs. Comparisons were made with the

filtered-X LMS algorithm,

5.3.1 Lattice Filter Assessment

In this section the lattice filter parameters will be assessed to not only ensure its correct
implementation, but also to illustrate how various types of input/reference signals are

orthogonalised.

The lattice filter was implemented experimentally and adapted using the stochastic
approximation (ie. LMS) algorithm as discussed in chapter 3. The structure of the lattice

filter is shown in Figure S-3, for ease of reference.

The lattice filter implementation was firstly tested with a pure tone reference signal of
125 Hz, and a PARCOR convergence coefficient of about 0.03. The reference signal had
an amplitude of about 2V pp, which corresponds to a signal power of 2.0 V% The first

test of the lattice filter implementation was to illustrate how the power of the backward
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prediction errors changed with increasing stages, as the backward prediction errors are
an essential part of the Independent Quadratic Optimisation algorithm. It should be
noted that a pure tone requires only one stage of a lattice filter, as it can only have one

orthogonal signal.

LATTICE FILTER

Reference o 1o Lattice Lattice
Signal e Stage N

Control
Signal

Figure 5-3. Structure of lattice filter coupled to a linear combiner. egy(n) and e,;(n)
represent forward and backward prediction errors respectively, kg(n) and k;(n) represent
the forward and backward PARCOR coefficients, and A represents a single sample

delay.

Table 5-1 gives the expectations of the backward prediction errors with themselves
(autocorrelation) and with others (cross correlation), by averaging their products. The
diagonal shaded terms represent the autocorrelations of the backward prediction errors.
The off-diagonal terms represent the cross correlation of the backward prediction errors.

Since Table 5-1 is diagonal, results are only shown for the diagonal and upper triangle.
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All results have been estimated from 1000 samples of the backward prediction error

signals after the PARCOR coefficients had converged.

eyo(n) e, (n) e,,(n) eys(n)
eyo(n) 2.0 0.03 -0.06 -0.06
e, () 0.64 0.06 0.001
epa(1) 0.01 0.007
ey4(n) 0.01

Table 5-1. Auto and cross correlations of backward prediction errors for a pure tone

reference/input signal.

As anticipated, the only backward prediction errors with significant powers were the
reference signal (e, ,(n)) and the first stage backward prediction error (e,,(n)). It is also
apparent from Table 5-1, that as the cross-correlation between pairs of backward
prediction error signals is so small, it indicates orthogonality. This was observed also by
comparing time traces and Lissajous figures of the signals; The Lissajous figures began
as ellipses with arbitrary axes (ie. not principal), and were transformed in time through

the adaptation of the PARCOR coefficients, to ellipses with principal axes.

It can be shown that the power of the first backward prediction error is given by
A?/(2sin*w,), with A representing the input/reference signal amplitude of 2.0, and

w, = 27 /X, where X is the sampling ratio of 20. Using these values, the power of the
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first backward prediction error signal is 0.69, in good agreement with that found

experimentally.

It is worthwhile examining the first PARCOR coefficient as it is adapted with differing
convergence coefficients. It is seen from Figure 5-4, that increasing the convergence
coefficient of the stochastic gradient approximation (LMS) algorithm (used for the
PARCOR coefficient adaptation), results in extremely fast convergence of the PARCOR
coefficients with little variance upon convergence. This is very useful for the Independent
Quadratic Optimisation algorithm, as it indicates that the orthogonal backward prediction
error signals will be available almost immediately after adaptation of the PARCOR
coefficients commences, using the stochastic gradient (ie. LMS) algorithm discussed in

chapter 3.

Similar results were found for frequencies of 156.25 Hz and 208.3 Hz (ie. Sampling ratios
of 8 and 6 respectively). It is interesting to note what effect additional tones in the
input/reference signal, have on the auto and cross correlations of the backward
prediction errors generated by the lattice filter. Tones of 125 Hz, 156.25 Hz and 208.3
Hz were combined with varying phases but equal amplitudes. The auto and cross
correlations of the backward prediction errors were determined as for Table 5-1, and are
shown in Table 5-2, with shaded numbers indicating auto-correlations. In Table 5-2, the
powers have been normalised by that of the reference signal, and only the results for the
diagonal and upper diagonal are shown as Table 5-2 is diagonal. The results have been
estimated from 1000 samples of the backward prediction error signals, after the

PARCOR coefficients had converged.
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Figure 5-4. Adaptation of PARCOR coefficients with differing convergence coefficients.

From Table 5-2 it is apparent that the power of the backward prediction error signals

decreases dramatically with increasing stages of the lattice filter. As discussed in section

3.4.2.2, the tonal components of the reference signal are not just shifted in phase by 90°;

This was also confirmed in these experiments by measuring the phase difference between

each tone in the input/reference signals, and each tone in the backward prediction error

signals.

This suggests the control filter coefficients may overflow due to the low

backward prediction error signal magnitudes at higher stages of the lattice. The control

filter coefficients, when adapted in this manner will be further examined for control of

a multi-tone acoustic disturbance.
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() | ey(n) epo(n) €p3(n) () | eys(n) | ens(n)
eyo(r) 1.0 0.02 0.01 0.003 0.003 0.001 0.004
e,,(n) 0.55 0.005 0.003 0.0003 | 0.002 | -0.002
e,,(n) 0.07 0.002 0.0006 | 0.0001 | 0.0005
e,5(n) 0.03 0.0001 {0.00001 | 0.0001
en (1) 0.01 |0.00001 | 0.00001
e,s(n) 0.001 |0.00001
eys(1) 0.001

Table 5-2. Auto and cross correlations of backward prediction errors for a multi-tone

reference/input signal.

Table 5-2 indicates that the estimated power of the backward prediction errors should
be used inversely, as a factor in determining the control filter coefficient step size, as
discussed in chapter 4 and shown by equation (4-10). It was discussed in chapter 4 that
this factor was not to be used since it was affected by the cancellation path transfer
function, however it will only be used as a guide to provide an order of magnitude for
steps of the control filter coefficients.

The Independent Quadratic Optimisation

algorithm will still perform without knowledge of the cancellation path transfer function.

Finally, it is interesting to consider the powers of the backward prediction error signals

for a reference/input signal consisting of white noise filtered through a band pass filter
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with width 50 Hz and centre frequency 300 Hz, in comparison to white noise filtered
through a band pass filter with width 200 Hz and centre frequency 300 Hz. Table 5-3
and 5-4 respectively give the normalised auto and cross correlations of the backward
prediction errors for 50 Hz and 200 Hz band passed white noise reference/input signals.
Again, only the results for the diagonal and upper diagonal are shown, as Table 5-3 is
diagonal. The results have been estimated from 1000 samples of the backward prediction

error signals, after the PARCOR coefficients had converged.

() | en(n) €2(n) ep3(n) €ps(n)
e o) 1.0 0.04 0.04 0.07 0.06
e,,(n) 12 0.003 0.01 0.003
e,,(n) 0.3 0.05 0.03
e (n) 0.3 0.06
e .(n) 0.2

Table 5-3. Auto and cross correlations of backward prediction errors for a white
noise input/reference signal filtered through a band-pass filter with width 50 Hz and

centre frequency 300 Hz.

It is interesting to note that a comparison of the diagonal terms (shaded) of Tables 5-3
and 5-4, shows less of a dramatic decline in the powers of the backward prediction errors

as the width of the band passed white noise is increased. This is considered to result
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from the increasing bandwidth of white noise causing the input/reference signal to be
increasingly white. Since the samples of a purely white noise sequence are orthogonal,
the PARCOR coefficients will not need to be adapted, and the lattice filter will act as
a tapped-delay-line (or transversal filter). The lattice filter will also act as a tapped-

delay-line, if the PARCOR coefficients are initialised to zero.

epo() | en(n) ena(n) eps(n) €pq(17)
e,(n) 1.0 0.05 0.02 0.002 0.01
e, (1) 0.88 0.01 0.02 0.02
e,,(n) 0.65 0.02 0.04
e,,(n) 0:63 0.01
€pa(17) 0.63

Table 5-4. Auto and cross correlations of backward prediction errors for a white
noise input/reference signal filtered through a band-pass filter with width 200 Hz and

centre frequency 300 Hz.

Figure 5-5 shows the PARCOR coefficients during adaptation, with a white noise
reference/input signal filtered through a 400 Hz band pass filter with a centre frequency
of 300 Hz. As shown from Figure 5-5, the PARCOR coefficients vary randomly about
zero for high order stages of the lattice filter, and converge close to a non-zero but small

value for lower order stages of the lattice filter. This is likely to be a result of the noise
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not being completely white across 400 Hz, with the higher order stages having zero

PARCOR coefficients as expected.
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PARCOR Coefficients
| |
o o
N o

I
o
N

-0.3 | | | J
0 100 200 300 400 500

Samples

—— Stage 1 coeff. ----- Stage 2 coeff. — — Stage 3 coeff.

Figure 5-5. PARCOR coefficients for different stages of the lattice filter, fed with a

400Hz band passed (300Hz centre frequency) white noise input/reference signal.

5.3.2 Self Induced Noise

In this section the Independent Quadratic Optimisation algorithm implementation is
assessed before conducting tests using actuators and sensors that could be damaged (eg.
piezoceramic crystals). All the control filter coefficients were initialised to the maximum

positive 16 bit integer (2’s complement) of 32767. The control signal generated was fed
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directly back into the controller through an error signal input. The cancellation path
transfer function therefore comprised of the delays, phase and amplitude changes in the

converters, and anti-aliasing and reconstruction filters. This system is shown in Figure

5-6(a).
(a)
m LATTICE e | LATTICE
FILTER 2 o ALGORITHM
Input/Reference
Signal
INDEPENDENT QUADRATIC
- OPTIMISATION ALGORITHM
CONTROL FILTER
Control
Signal L DAC
ADC
Input/Reference
Signal
LATTICE FILTER TRANSYERSAL SYSTEM
WITH PARCOR = FILTER. IDENTIFICATION
COEFFICIENTS = 0
INDEPENDENT QUADRATIC
OPTIMISATION ALGORITHM
ADC
4 Error
i} Signal
- DAC

Figure 5-6(a) and (b). Structure for the control of self induced noise, with the control
signal is fed directly back as the error signal. e,;(n) represent the backward prediction
errors, k,;(n) represent the control filter coefficients, and x(n) represent the reference
signal. The Analogue to Digital Converter is shown as ADC, and the Digital to analogue

converter is likewise DAC.
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Throughout this work the Independent Quadratic Optimisation algorithm was considered
to commence with the adaptation of the lattice filter PARCOR coefficients. As the
lattice filter PARCOR coefficients were initialised to zero, it acted initially as a tapped-
delay-line (transversal filter), and therefore the before control situation was identical to
that for the filtered-X LMS algorithm, as shown in Figure 5-6(b). The attenuation
achieved by the Independent Quadratic Optimisation algorithm, for each type of
input/reference signal, will be directly compared with that achieved by the filtered-X
LMS algorithm. The influence of the various Independent Quadratic Optimisation
algorithm parameters on the attenuation of self induced noise will be assessed for a pure

tone, multi-tones and band-passed white noise reference signals.

Consider firstly the attenuation of a pure tone reference signal with a frequency of 125
Hz. The control filter had two coefficients. Figures 5-7 (a) and (b) show the path of the
control filter coefficients to the optimum of the cost function (shown by contours), when
adapted by the Independent Quadratic Optimisation algorithm and filtered-X LMS
algorithms respectively. The corresponding error signals are shown in Figures 5-8 (a) and
(b). It is interesting to note the difference in the path of the control filter coefficients
to the optimum and the comparative speed in reaching the optimum, between the
Independent Quadratic Optimisation algorithm and the filtered-X LMS algorithm. Note
that a system identification is performed by the filtered-X LMS algorithm between 0 and
2000 samples (also using only two filter coefficients to identify the cancellation path
transfer function). The convergence coefficient for the filtered-X LMS algorithm was
increased to its value corresponding to “critical convergence”, and the Independent
Quadratic Optimisation algorithm used only 10 averages to estimate the cost function
(approximately one period of the error signal), though with a delay of 50 before

averaging (this is considered to have been too long, but no shorter delays were tested).
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Figure 5-7(a). Path of the independent control filter coefficients @—— (shown as kw0
and kwl) used by the Independent Quadratic Optimisation algorithm, to reach the
optimum of the cost function (represented by the contours ) for a self-induced
pure-tone (125 Hz) disturbance. The cost function estimates are represented by a [.

3

wl

Figure 5-7(b). Path of the control filter coefficients ----  (shown as w0 and wl) used
by the filtered-X LMS algorithm to reach the optimum of the cost function (represented
by contours —— ) for a self-induced pure-tone (125 Hz) disturbance.
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Figure 5-8(a). Error signal magnitude versus sample number, using the Independent
Quadratic Optimisation algorithm to minimise the error, for a self-induced pure-tone (125

Hz) disturbance.
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Figure 5-8(b). Error signal magnitude versus sample number, using the Independent
Quadratic Optimisation algorithm to minimise the error, for a self-induced pure-tone (125

Hz) disturbance.
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It is apparent from Figure 5-7 (a) and (b) that the control filter coefficients used by the
Independent Quadratic Optimisation algorithm formed principal axes of the cost function
(ie. they were independent), while the control filter coefficients used by the filtered-X
LMS algorithm were not principal axes of the cost function (ie. they were dependent).
Finally it is worth noting the minimum variance of the control filter coefficients upon

reaching the optimum, resulting in reduced excess mean square error.

It is interesting to compare the attenuation achieved by each algorithm, shown in Figure
5-9 (the peak at 150 Hz is from a ground loop). As shown Figure 5-9, the filtered-X
LMS algorithm achieves an additional 20 dB of attenuation over the Independent
Quadratic Optimisation algorithm. This is considered to result from extraneous noise in
the error signal that is uncorrelated with the error signal. That is, the filtered-X LMS
algorithm uses the instant error signal to adapt the control filter coefficients, whereas the
Independent Quadratic Optimisation algorithm uses the cost function estimates, thereby
losing frequency content information. Figure 5-10 shows the effect of the number of
averages on the level of attenuation (the peak at 150 Hz is from a ground loop). In
Figure 5-10, case 1 corresponds to 500 samples, case 2 corresponds to 250 samples, and
case 3 corresponds to only 10 samples (ie. one complete period) of the error signal used
to estimate the cost function. It is apparent from Figures 5-9 and 5-10, that despite the
low number of samples of the error signal used to estimate the cost function, the
attenuation remained unchanged at the frequency corresponding to the pure tone (ie. 125
Hz). The attenuation at frequencies on either side of the tone was reduced for case 3
since the control filter coefficients were adapted at a faster rate than for the other cases,

and with fixed variance (step size).
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Figure 5-11 shows the convergence of the error signal with a control filter coefficient step
size factor one tenth that used to obtain the error signal in Figure 5-8(a). It is apparent
from comparing Figure 5-8(a) and Figure 5-11, that a lower control filter coefficient step
size factor results in slower convergence as the quadratic fit is not as accurate. It is also
apparent, from a comparison of the error signal after convergence, that the excess mean

square error is however reduced with a lower control filter coefficient step size factor.
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Figure 5-9. Comparison of the reduction of self induced pure tone (125 Hz) disturbance
by the Independent Quadratic Optimisation algorithm and the filtered-X LMS algorithm.

The power spectra of the error signal before and after control is shown versus frequency.
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Figure 5-10. Comparison of the power of the error signal after control of self induced
pure tone (125 Hz) disturbance by the Independent Quadratic Optimisation algorithm
with differing numbers of samples of the error signal used to estimate the cost function.

Case 1 ( ) used 500 estimates, case 2 (- - - - ) used 250 estimates and case 3 (— —)
used 10 estimates.
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Figure 5-11. Error signal magnitude versus sample number, using the Independent
Quadratic Optimisation algorithm to minimise the self induced pure tone (125 Hz)
disturbance, with the control filter coefficient step size factor one tenth that used for the
error signal shown in Figure 5-8(a).
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The Independent Quadratic Optimisation algorithm was tested with a reference signal
containing two tones, namely 125 Hz and 156.25 Hz. The attenuation obtained for the
Independent Quadratic Optimisation algorithm in this case was greater than that for the
filtered-X LMS algorithm, as shown in Figure 5-12. This was most likely a result of the
eigenvalue disparity, as was evident from the error signal for the filtered-X LMS
algorithm (although not shown here), which initially converged quickly and then
converged very slowly to the optimum of the cost function. The control filter for both

algorithms used four coefficients.
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Figure 5-12. Comparison of the reduction of self induced noise (from 125 Hz and 156.25
Hz tones) by the Independent Quadratic Optimisation algorithm and the filtered-X LMS
algorithm. The power spectra of the error signal before and after control is shown versus

frequency.
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Finally a reference signal comprised of white noise filtered through a band-pass filter with
a centre frequency of 300 Hz (and with variable bandwidth) was considered. Figures 5-13
(a) to (d) show a comparison of the attenuation achieved between the Independent
Quadratic Optimisation algorithm and the filtered-X LMS algorithm for band passed
white noise centred at 300 Hz with bandwidths of 50 Hz, 100 Hz, 200 Hz and 400 Hz
respectively. It is apparent from these Figures that the bandpass filter was not ideal, with
not all frequencies passed. Both algorithms used 8 control filter coefficients. The
Independent Quadratic Optimisation algorithm used S00 averages, with the control filter

coefficient step size factor equivalent to that used for the analysis of pure tones.

It is apparent from Figures 5-13 (a) to (d) that generally the filtered-X LMS algorithm
performs better, particularly at high frequencies (greater than 300 Hz), than the
Independent Quadratic Optimisation algorithm. This is considered to result from the
filtered-X LMS algorithm using the error signal directly to adapt the control filter
coefficients rather than adapting them based on the cost function estimate, thereby losing
frequency information within the signal. It is also considered that complete attenuation
was not possible as the delay in the cancellation path exceeded the number of control
filter coefficients (in later sections a FIFO will be used to reduce the required number
of control filter coefficients as determined by the delay in the cancellation path transfer

function).
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Figure 5-13(a). Comparison of the reduction of self induced noise (white noise filtered
through a band pass filter with a width of 50 Hz and centre frequency of 300 Hz) by the
Independent Quadratic Optimisation algorithm ( - - - - ) and the filtered-X LMS algorithm
(— —). The power spectra of the error signal before (——) and after control is shown
versus frequency.

-20.0

-40.0

-60.0

Power Spectra (dB)

-80.0

~100.0 1 | | 1 | | L
0 100 200 300 400 500 600 700 800

Frequency (Hz)

Figure 5-13(b). Comparison of the reduction of self induced noise (white noise filtered
through a band pass filter with a width of 100 Hz and centre frequency of 300 Hz) by the
Independent Quadratic Optimisation algorithm (- - - - ) and the filtered-X LMS algorithm
(— — ). The power spectra of the error signal before ( ) and after control is shown
versus frequency.
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Figure 5-13(c). Comparison of the reduction of self induced noise (white noise filtered
through a band pass filter with a width of 200 Hz and centre frequency of 300 Hz) by the
Independent Quadratic Optimisation algorithm ( - - - - ) and the filtered-X LMS algorithm
(— —). The power spectra of the error signal before ( ) and after control is shown
versus frequency.

-20.0

-40.0

-60.0

Power Spectra (dB)

-80.0

-100.0 ' L L | 1 I |
0 100 200 300 400 500 600 700 800

Frequency (Hz)

Figure 5-13(d). Comparison of the reduction of self induced noise (white noise filtered
through a band pass filter with a width of 400 Hz and centre frequency of 300 Hz) by the
Independent Quadratic Optimisation algorithm ( - - - - ) and the filtered-X LMS algorithm
( — —). The power spectra of the error signal before ( ) and after control is shown
versus frequency.

- 211 -



Chapter S. Practical Implementation of the Independent Quadratic Optimisation Algorithm

5.4 Acoustic Control

In section 5.3 the Independent Quadratic Optimisation algorithm implementation and
lattice filter implementation were briefly assessed, based on control of self-induced noise
(where the cancellation path is effectively a certain number of samples delay), and shown
to work effectively for control of pure tone, multi-tone and band passed white noise

signals.

In this section results will be presented in more detail, for the performance of a single
channel controller incorporating the Independent Quadratic Optimisation algorithm,
when tested on an actual acoustic system with more general actuator and sensor transfer
functions. More specifically, the performance of the Independent Quadratic Optimisation
algorithm will be compared with the filtered-X LMS algorithm, for various types of
disturbances (those used in chapter 3 and 4), in terms of convergence speed, achievable
attenuation, bandwidth of attenuation, and the ability to track changing system conditions.
The effects of the Independent Quadratic Optimisation algorithms parameters
(specifically number of samples used to estimate the cost function, and the control filter
coefficient step size, and the power of the backward prediction error signals and
associated number of control filter coefficients) on control performance will also be
assessed and compared with the theory developed in chapter 4, with regard to the same

performance descriptive terms.

The system used was a replica of a small air-conditioning duct constructed from 0.8mm

galvanised sheet metal, with dimensions 215mm x 215mm square. The duct was
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terminated anechoically at one end, and a disturbance loudspeaker (with a cone diameter
of about 100mm) was placed at the other end of the duct. A control loudspeaker (with
a cone diameter of about 100mm) was placed mid-way along the duct, and an error

sensing microphone was placed towards the end of the duct. The layout is shown in

Figure 5-14.
< 355 m
M 45 m >
N 5,85 m i
DISTURBANCE
ACTUATOR _
0.86mm GALYANISED SHEET METAL DUCT = _ANECHOIC S
251mm X 215mm SQUARE TERMINATION
CONTROL ERROR
ACTUATOR ' SENSOR
POWER POWER VOLTAGE
AMPLIFIER AMPLIFIER AMPLIFIER
CONTROLLER
INCORPORATING
—|  ANTI-ALIASING AND e —
RECONSTRUCTION
FILTERS

FUNCTION GENERATOR
INCORPORATING BAND-FASS
FILTER IF REQUIRED

Figure 5-14. Layout of acoustic control structure; A detailed description of the

controller layout is shown in Figure 5-1.

Control of a pure tone was firstly attempted. The attenuation achieved for this system
using the Independent Quadratic Optimisation algorithm and the filtered-X LMS
algorithm are shown in Figure 5-15. Figure 5-15 gives the power spectra of the error
signal before control and after control. It is apparent that both algorithms achieve the

same level of attenuation using only two control filter coefficients. It is also apparent
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that the bandwidth of attenuation by the filtered-X LMS algorithm is greater than that
for the Independent Quadratic Optimisation algorithm. It is considered that this results
from the filtered-X algorithm using the error signal sample to adapt the control filter
coefficients, whereas the Independent Quadratic Optimisation algorithm uses the estimate
of the cost function to adapt the control filter coefficients, thereby losing information
about the frequency content of the error signal; That is, the cost function estimate is
affected by the power of the other frequencu components of the error signal. The fixed
variance of the control filter coefficients at the optimum also reduces the bandwidth of

attenuation about the tone.

Figure 5-16 gives a comparison of the power spectra of the error signal for differing
parameters of the Independent Quadratic Optimisation algorithm. Case 1 can be
considered the standard, with case 2 having twice the control filter coefficient step size
factor as case 1, and case 3 having ten times as many samples used to estimate the cost
function as case 1. It is apparent that increasing the number of averages narrows the
bandwidth of the error signal spectra about the tone. This is considered to result from
less variance in the error signal as the control filter coefficients are adapted less
frequently, and improved accuracy of the cost function estimates as a result of an
increased number used of samples used in the estimation (although it would be expected
that the attenuation at the frequency of the tone would increase with improved accuracy
of the estimates, which is not evident from Figure 5-16). Increasing the control filter
coefficient step size factor had little effect on the power spectra of the error signal,
however on viewing the error signals for cases 1 and 2 (not shown here) the excess mean
square error was found to increase with the increased control filter coefficient step size
factor (as found in section 5.3). Both changes from the standard (case 1) did not result

in increased attenuation.
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Figure 5-15. Comparison of the reduction of a pure tone in the acoustic test apparatus by the Independent

Quadratic Optimisation algorithm (- - -) and the filtered-X LMS algorithm (— —). The power spectra of
the error signal before (: ) and after control is shown versus frequency.
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Figure 5-16. Comparison of the reduction of the acoustic disturbance by the Independent Quadratic
Optimisation algorithm using case 1 ¢ ) as the standard, with case 2 (- - - -) having twice the control
filter coefficient step size factor as case 1, and case 3 (— —) having ten times as many samples used to
estimate the cost function as case 1. The power spectra of the error signal after control is shown versus

frequency.

- 215 -



Chapter 5. Practical Implementation of the Independent Quadratic Optimisation Algorithm

The tracking ability of the Independent Quadratic Optimisation algorithm was examined.
Control of a tone at 125 Hz was firstly achieved. The frequency of the tone was then
changed to 156.25 Hz. This test was performed for both the Independent Quadratic
Optimisation algorithm and the filtered-X LMS algorithm. A system identification was
performed on-line by the filtered-X LMS algorithm. As with all other tests, the control
filter coefficients were initialised to zero. Only two control filter coefficients were used

by both algorithms.

Figures 5-17 and 5-18 show control of the disturbance by the Independent Quadratic
Optimisation algorithm. Figure 5-17 shows the error signal initially converging for 125
Hz, and subsequently converging as the frequency is changed instantly to 156.25 Hz.
Figure 5-18 shows the path of the control filter coefficients (with the cost function
estimates numbered), mapped onto the contours of the cost functions for a tone of 125
Hz and a tone of 156.25 Hz. Figure 5-19 and 5-20 show similar results for the error
signal and control filter coefficients, as control is performed by the filtered-X LMS

algorithm.

A comparison of the error signals shown in Figures 5-17 and 5-19 shows that initially the
filtered-X LMS algorithm needs to identify the system before control can commence (ie.
system identification performed up to sample number 2000). Control by the filtered-X
LMS algorithm appears to be slower than that by the Independent Quadratic
Optimisation algorithm, probably resuiting from the use of a control filter convergence
coefficient that was too small. As the frequency was suddenly changed, the error signal
corresponding to the Independent Quadratic Optimisation algorithm deviated to a larger

extent than the filtered-X LMS algorithm. If the lattice filter implementation had used
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the Recursive Least Squares algorithm to adapt the PARCOR coefficients, then the error
ratio used by this adaptation method would have indicated a sudden change in the
reference signal. This could be used by the Independent Quadratic Optimisation
algorithm to alert it of an imminent change, and cause it to reset the control filter
coefficients before adapting to the change. It should be noted that the Independent
Quadratic Optimisation algorithm is not designed for fast tracking capabilities, but for
more stable control of noise and vibration in slowly changing system conditions. It should
however be noted that if the sudden system change had been too immediate to be
tracked by the on-line system identification algorithm used by the filtered-X LMS
algorithm, it could have caused instability in this algorithm, whereas the Independent
Quadratic Optimisation algorithm would not have been affected as it requires no

knowledge of the cancellation path.

Finally a comparison between the paths of the control filter coefficients shown by Figures
5-18 and 5-20 show the difference in the orthogonal nature of the coefficients used by the
Independent Quadratic Optimisation algorithm, as opposed to the non-orthogonal nature
of those used by the filtered-X LMS algorithm. It is apparent from Figure 5-18 that the
variance in the control filter coefficients is reduced upon reduction of the cost function,
resulting in reduced excess mean square error at the optimum. From Figure 5-18, it is
apparent that more than one curve-fit is required to reach the optimum; This is because
of the effect of extraneous (or uncorrelated) noise on the accuracy of the cost function
estimates. The path of the control filter coefficients to the optimum, as adapted by the
filtered-X LMS algorithm appears to be oscillating, and drifting away from the optimum,

possibly a result of DC offsets.
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Figure 5-17. The error signal showing the ability of the Independent Quadratic
Optimisation algorithm to track changing system conditions. The error signal magnitude
is shown versus the number of samples.

37

3
X
—1
—34
=5
KwO
Figure 5-18. Path of the control filter coefficients ----- o to the optimum of the cost
functions for 125 Hz (represented by contours —— ), and 156.25 Hz (represented by

contours =—). The cost function estimates (numbered) are represented by O . The
control filter coefficients are adapted by the Independent Quadratic Optimisation
algorithm.
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Figure 5-19. The error signal showing the ability of the filtered-X LMS algorithm to
track changing system conditions. The error signal magnitude is shown versus the
number of samples.
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Figure 5-20. Path of the control filter coefficients ----- to the optimum of the cost
functions for 125 Hz (represented by contours —— ), and 156.25 Hz (represented by
contours ). The control filter coefficients are adapted by the filtered-X LMS
algorithm.
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The final test for control of a disturbance consisting of a pure tone, was to corrupt the
pure tone using variable magnitude band passed white noise. The tone used had a
frequency of 125 Hz. The band pass filter had a bandwidth of S0 Hz and a centre
frequency of 125 Hz, but was without an ideal flat response. Results are shown for the
tone 15 dB and 35 dB above the level of filtered white noise, in Figure 5-21 (a) and (b)
respectively. Figures 5-21 (a) to (c) show the power spectra of the error signal before
and after control by the Independent Quadratic Optimisation algorithm, and the filtered-
X LMS algorithm. Only two control filter coefficients were used by both algorithms. It
is apparent from Figures 5-21(a) to (c), that the filtered-X LMS algorithm achieves
almost twice as much attenuation as the Independent Quadratic Optimisation algorithm.
This is considered to result from the use of the error signal samples to directly adapt the
control filter coefficients, as opposed to the Independent Quadratic Optimisation
algorithm which uses the error signal to estimate the cost function estimates thereby
losing information about the frequency content of the error signal. The Independent
Quadratic Optimisation algorithm therefore attempts to cancel other disturbances, even
if they aren’t correlated to the reference signal. This effect has been noted previously.
The number of control filter coefficients was insufficient to result in cancellation of the

filtered white noise, as expected.

The path of the control filter coefficients to the optimum for a pure tone 35 dB above
the level of filtered white noise, as adapted by the Independent Quadratic Optimisation
algorithm, is shown in Figure 5-22. Figure 5-22 also indicates a reason for less
attenuation by the Independent Quadratic Optimisation algorithm compared with the
filtered-X LMS algorithm, since there appears a large variance of the control filter
coefficients about the optimum. The variance of the control filter coefficients about the
optimum, as adapted by the filtered-X LMS algorithm, are shown in Figure 5-23. It is
apparent from Figure 5-23 that the variance after convergence is smaller (as a result of
a lower minimum mean square error) than that caused by the Independent Quadratic

Optimisation algorithm.
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Figure 5-21(a). The power spectra of the error signal before ( ) and after control by the Independent
Quadratic Optimisation algorithm (- - - -) and the filtered-X LMS algorithm (— —). The disturbance
comprised a tone at 125 Hz corrupted by band pass filtered white noise (bandwidth of 50 Hz and centre
frequency of 125 Hz). The tone was 15 dB above the filtered white noise level.
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Figure 5-21(b). The power spectra of the error signal before and after control by the Independent Quadratic
Optimisation algorithm and the filtered-X LMS algorithm. The disturbance comprised a tone at 125 Hz
corrupted by band pass filtered white noise (bandwidth of 50 Hz and centre frequency of 125 Hz). The tone
was 35 dB above the filtered white noise level.
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Figure 5-22. Path of the control filter coefficients = to the optimum of the cost
function (represented by contours —— ). The cost function estimates are represented
by O . The control filter coefficients are adapted by the Independent Quadratic
Optimisation algorithm. The disturbance comprised a tone at 125 Hz corrupted by band
pass filtered white noise (bandwidth of 50 Hz and centre frequency of 125 Hz). The tone
was 35 dB above the filtered white noise level.
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Figure 5-23. The control filter coefficients (Coeff. 0 , Coeff. 1----) during
adaptation by the filtered-X LMS algorithm. The disturbance comprised a tone at 125
Hz corrupted by band pass filtered white noise (bandwidth of 50 Hz and centre frequency
of 125 Hz). The tone was 35 dB above the filtered white noise level.

-222 -



Chapter 5. Practical Implementation of the Independent Quadratic Optimisation Algorithm

Control of dual-tones was attempted, with the Independent Quadratic Optimisation
algorithm (with four control filter coefficients) achieving marginally more attenuation

than the filtered-X LMS algorithm (with six control filter coefficients), as shown in Figure

5-24.
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Figure 5-24. The power spectra of the error signal before and after control by the
Independent Quadratic Optimisation algorithm and the filtered-X LMS algorithm. The
disturbance comprised a tone at 125 Hz and another at 156.25 Hz.

Figure 5-25 shows the effect on the attenuation achieved by the Independent Quadratic
Optimisation algorithm, through doubling the control filter coefficient step size factor
(case 2) and increasing the number of samples used to estimate the cost function by a
multiple of five (case 3), in comparison with case 1. Doubling the control filter

coefficient step size factor had an insignificant effect on the power spectra of the error
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signal after control, whereas increasing the number of samples used to estimate the cost
function resulted in an additional 7 dB of attenuation. This relates well with the theory,
specifically the level of misadjustment defined by equation (4-34), which predicts a

change of 7dB.

=55

|
n
W

|
~
[6,]

Power Spectra (dB)

-95 ' :
120 130 140 150 160

Frequency (Hz)

Figure 5-25. The power spectra of the error signal before and after control by the
Independent Quadratic Optimisation algorithm. The disturbance comprised a tone at 125

Hz and another at 156.25 Hz. Case 2 (- - - -) has double the control filter coefficient

step size factor as case 1 ( ), and case 3 (— —) has five times the number of

samples used to estimate the cost function as case 1.

The effect of low power (ie. small magnitude) backward prediction errors has been

discussed in chapters 3 and 4, as well as previously in this chapter. It was found that the
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power of the backward prediction errors reduce with increasing stages of the lattice,
possibly leading to overflow of the control signal. Figure 5-26 shows the control filter
coefficients normalised to the maximum possible 16 bit integer. The control filter
coefficients corresponding to backward prediction errors of higher order stages (ie.
greater than the first stage) of the lattice are shown to be significantly larger than those
for lower order stages. The magnitude of the control filter coefficient step size is also
shown to vary inversely in proportion to the estimated power of the backward prediction
errors, as suggested in chapter 4. Figure 5-27 shows the convergence of the error signal,
showing initial reduction after convergence of the first two control filter coefficients, and
subsequent further reduction after convergence of the next two control filter coefficients

(corresponding to backward prediction errors with low powers).

10

Control Filter Coefficients

-15 ' '
0 2000 4000 6000 8000

Figure 5-26. Convergence of the control filter coefficients for control of a dual-tone disturbance, with low
order coefficients (0——and 1----) converging to much lower values than higher order coefficients
(2— —and 3 ).
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Figure 5-27. Convergence of the error signal for control of a dual-tone disturbance, with
initial convergence for low order stages and subsequent convergence for higher order

stages.

It is interesting to note the effect of the number of control filter coefficients used by the
filtered-X LMS algorithm. To achieve the same attenuation as the Independent
Quadratic Optimisation algorithm required six control filter coefficients. The power
spectra of the error signal after control by the filtered-X LMS algorithm, using four and
six control filter coefficients, is shown in Figure 5-28. It is apparent that an additional
10dB of attenuation is achieved by increasing the number of coefficients, but there also
appears to be a reduction in attenuation about the tone (considered to result from the
additional coefficients attempting to cancel uncorrelated components of the signal and
in effect creating an overdetermined system). It should be noted that the persistent

excitation condition discussed in chapter 2 and the appendix, requires sufficient noise in
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the filtered reference signal to ensure that the autocorrelation matrix for this signal is
invertible. Should there be insufficient noise in the filtered reference signal for the

number of control filter coefficients, instability can result.
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Figure 5-28. The power spectra of the error signal before and after control by the

filtered-X LLMS algorithm using four and six - - - - control filter coefficients.

Consider now the control of white noise filtered through a band-pass filter. A FIFO
(First-In-First-Out) delay was included in the algorithms to reduce the number of control
filter coefficients (ie. A delay of 10 samples in the cancellation path would require at
least 10 control filter coefficients to achieve any attenuation, therefore with a 10 sample
delay FIFO, a smaller number of control filter coefficients is required). Figure 5-29

shows the power spectra of the error signal before and after control of 50 Hz band
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passed white noise (with centre frequency of 300 Hz) by the Independent Quadratic
Optimisation algorithm and the filtered-X LMS algorithm. The control filters for both
algorithms used 8 coefficients with a FIFO delay of 8 (as the time delay between the
control source and the error sensor was about 10 samples at a sampling frequency of
1250 Hz). It is apparent from Figure 5-29, that with this number of control filter

coefficients, about the same level of attenuation is achieved by both algorithms.

Figure 5-30 shows the power spectra of the error signal before and after control of 400
Hz band passed white noise (with centre frequency of 300 Hz) by the Independent
Quadratic Optimisation algorithm and the filtered-X LMS algorithm. A FIFO delay of
8 was used only for the Independent Quadratic Optimisation algorithm. Figure 5-30
shows the level of attenuation achieved by the Independent Quadratic Optimisation
algorithm with and without the FIFO delay, and by the filtered-X LMS algorithm without
the FIFO delay. The control filter had 15 coefficients for both algorithms. It is apparent
from Figure 5-30 that the attenuation achieved by the Independent Quadratic

Optimisation algorithm was significantly greater with the inclusion of a FIFO delay.
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Figure 5-29. The power spectra of the error signal before (——_) and after control by the Independent
Quadratic Optimisation algorithm ( - - - ), and the filtered-X LMS algorithm (— —), both incorporating a
FIFO delay. The disturbance was 50 Hz band passed white noise centred on 300 Hz.
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Figure 5-30. The power spectra of the error signal before (. ) and after control by the Independent
Quadratic Optimisation algorithm (with a FIFO delay (— —}, and without a FIFO delay ( - - -), and the

filtered-X LMS algorithm (- ) (without a FIFO delay). The disturbance was 400 Hz band passed white
noise centred on 300 Hz.
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5.5 Vibration Control

In section 5.3, results were presented to verify the implementation of both the
Independent Quadratic Optimisation algorithm and associated lattice filter, with tests
performed using self-induced noise (ie. effectively a time delay in the cancellation path).
In section 5.4, the analysis of the Independent Quadratic Optimisation algorithm was
extended to the more general cancellation path, with an assessment of single channel
control of an acoustic disturbance in a semi-infinite duct. The results of section 5.4 relate
to the effect on performance of the Independent Quadratic Optimisation algorithm’s
parameters, and a comparison was made with the performance obtained using the
filtered-X LMS algorithm. The results of section 5.3 and 5.4 related to all types of
disturbances considered in chapters 3 and 4, and the theory presented in these chapters

was confirmed.

In this section, results for the multi-channel control of vibration levels (and power flow
or structural intensity) in a semi-infinite plate will be presented for the case of a pure
tone disturbance only. This section will highlight the effects of the different methods of
control coefficient adaptation discussed in chapter 4, and relate the effects of changes in
the control filter coefficient step size and number of averages to the theory presented in
chapter 4. This section will also show how the Independent Quadratic Optimisation
algorithm has the advantage over other types of algorithms in that it can work with any
type of cost function; For example, the Independent Quadratic Optimisation algorithm
can minimise structural power flow, whereas the standard filtered-X LMS algorithm

cannot. This section will therefore consider the effectiveness of far field attenuation for

- 230 -



Chapter 5. Practical Implementation of the Independent Quadratic Optimisation Algorithm

the following types of cost function (where the error signals are denoted by ¢(n), with

brackets [..] indicating paired error sensors):

. Error signal amplitude ie. elz(n) + ez2 (n) +..;
. Structural power flow ie. [e,(n).e,(n)] + [e5(n).e,(n)] + ...; and
. Acoustic intensity ie. [elz(n) - ez2 (n)] + [e32 (n) - e42(n)] + s

The experimental arrangement consisted of a 3mm steel plate, with a free length of 1.4m
and width 0.5m. One end of the plate was embedded in a triangular box filled with sand,
while the other end was not supported. The sides of the plate were mounted on thin

steel shims (modelling simply supported boundary conditions).

Bending waves were excited in the plate using a pair of piezoceramic crystals bonded to
both sides of the plate, and driven out of phase but with the same amplitude. Three
pairs of this type of actuator were linked together and used to generate a disturbance,
and another three pairs of this type of actuator were driven individually to control the
vibration levels (or power flow) in the plate. Four pairs of accelerometers were used as
error sensors. They were located in pairs so that not only could they act as eight
individual error sensors, but they could also act as four structural intensity sensors. A rov
accelerometer was used to measure the vibration levels on the plate before and after

control. Figure 5-31 shows the experimental setup.
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Experimental arrangement of actuators, sensors and associated equipment for the control of vibration levels in a semi-infinite plate.

A detailed description of the controller is shown in Figure 5-1.
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As discussed, control of intensity illustrates another advantage of the Independent
Quadratic Optimisation algorithm, since for example, the instantaneous acoustic intensity
is given by the sample product of pressure and particle velocity for a particular frequency.
This product corresponds to an "adaptive" error signal having twice the frequency and a
constant term dependent upon the phase difference between the pressure and particle
velocity; Since the "adaptive" error signal has twice the frequency, it means that
adaptation of the control filter coefficients using this type of error signal (as per
adaptation using stochastic gradient methods) cannot take place. However the
Independent Quadratic Optimisation algorithm uses the estimate of the time averaged
product of pressure and particle velocity to achieve reduction of intensity as it would for
any type of cost function. That is, the cost function used is the intensity (or mean square

intensity).

It has been shown that the structural power flow is proportional to the product of the
signals from two closely spaced accelerometers [Pavic, 1976]. It has also been shown that
this is only a measure of the power flow if the accelerometers are in the near field of the
control actuators [Pan and Hansen, 1993]. If the accelerometers are in the far field of

the control actuators then they act as amplitude sensors.

The semi-infinite plate was excited at the 3rd modal resonance frequency (259 Hz).
Structural power flow in the plate was initially controlled using all of the control
actuators linked together and driven using a single control filter, with all eight error
sensors used in pairs to reduce the power flow in the plate. The attenuation achieved

from this type of control is shown in Figure 5-32, and ranged from -10 dB to 25 dB. The
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control filter coefficients were adapted using method 1 of the Independent Quadratic
Optimisation algorithm (ie. all coefficients of a channel were adapted before continuing
to the next channel). It is apparent from Figure 5-32, that the peak attenuation was in

small isolated regions near the edge of the plate and near the control actuators.
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Figure 5-32. Attenuation achieved in the semi-infinite plate between the error sensors
and the anechoic termination, as determined from control of power flow using all of the
control actuators linked together as a single channel. The length of the plate runs from
the error sensor location to the anechoic termination. Refer to Figure 5-31 for locations
of primary sources, control sources and error sensors.

Results from minimisation of the cost function estimate (ie. total structural power flow)
by the Independent Quadratic Optimisation algorithm with different parameters is shown
in Figure 5-33. In Figure 5-33, the estimates of the cost function are those made by the
Independent Quadratic Optimisation algorithm to determine the optimal control filter

coefficients corresponding to the minimum of the cost function. In Figure 5-33, case 1
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corresponds to the standard, case 2 has the control filter coefficient step size factor
reduced to one fifth that of case 1, and case 3 has the number of samples used to
estimate the cost function doubled in comparison to case 1. As expected the steps in the

cost function are the same for case 1 and 3, but for case 2 they have been reduced.
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Figure 5-33. The reduction of the cost function (total structural power flow) estimate by
adaptation of the control filter coefficients using the Independent Quadratic Optimisation
algorithm. Control was achieved using all of the control actuators linked together as a
single channel. Case 1 (; ) corresponds to the standard, case 2 (- ---) has the
control filter coefficient step size factor reduced to one fifth that of case 1, and case 3
(— —) has the number of samples used to estimate the cost function doubled in

comparison to case 1.

The cost function at convergence (ie. for samples greater than 5000) is shown in Figure
5-34, for the same sets of parameters. The theory presented in chapter 4 suggested that

if the control filter coefficient step size factor was reduced by a fifth, then the excess cost
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function estimate would be reduced by about 7 dB. This is shown clearly in Figure 5-34
for case 2. However doubling of the number of samples used to estimate the cost
function should have resulted in a 3dB decrease in the excess cost function estimate,

which is not apparent from Figure 5-34.
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Figure 5-34. The reduction of the cost function (total structural power flow) estimate by
adaptation of the control filter coefficients using the Independent Quadratic Optimisation
algorithm. Control was achieved using all of the control actuators linked together as a
single channel. Case 1 ( ) corresponds to the standard, case 2 (- ---) has the
control filter coefficient step size factor reduced to one fifth that of case 1, and case 3
(— —) has the number of samples used to estimate the cost function doubled in
comparison to case 1.

The control actuators were next driven independently, with the control filter coefficients
again adapted using method 1 of the Independent Quadratic Optimisation algorithm.

The power flow was again minimised using pairs of error sensors. The level of
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attenuation achieved is shown in Figure 5-35, and ranged from 0 to 30 dB. It is apparent
from Figure 5-35, that levels of attenuation greater than 10 dB were achieved over large
regions of the plate. To compare the effectiveness of control approaches on far field
attenaution, instead of minimising power flow in the plate, the total sum of the squares
of each error signal was minimised. The attenuation achieved for this form of cost
function is shown in Figure 5-36, and also ranged from 0 to 30 dB. The attenuation
levels and distribution over the plate is similar to that for power flow reduction shown
in Figure 5-35, therefore an indication that the error sensors were in the far field; that

is, e(n).(n) = eiz(n) ~ ejz(n).
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Figure 5-35. Attenuation achieved in the semi-infinite plate between the error sensors
and the anechoic termination, as determined from control of power flow using all of the
control actuators driven individually. The length of the plate runs from the error sensor
location to the anechoic termination.
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Figure 5-36. Attenuation achieved in the semi-infinite plate between the error sensors
and the anechoic termination, as determined from control of sum of the square of each
error signal using all of the control actuators driven individually. The length of the plate
runs from the error sensor location to the anechoic termination.

An assessment will now be made of the effectiveness (based on far field attenuation) of
the control approach using a cost function criterion equivalent to that of "acoustic
intensity" (ie. The difference between the square of each error sensor pair was used, or
equivalently, the product of the sum of the signals from the error sensor pair by their
difference). Again the control filter coefficients were adapted using Method 1 of the
Independent Quadratic Optimisation algorithm, with the level of attenuation achieved
shown in Figure 5-37. In Figure 5-37, a 10 dB increase in attenuation levels can be
observed, with the attenuation ranging from 10 dB to 40 dB. Although a detailed

investigation of the physical control mechanisms, underlying active noise or vibration
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control in any context, is outside the scope of this work, it is broached that the
attenuation increased with this type of cost function as it is a more appropriate cost

function for measuring power flow in the far field.
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Figure 5-37. Attenuation achieved in the semi-infinite plate between the error sensors

and the anechoic termination, as determined from control of "acoustic intensity" using all

of the control actuators driven individually. The length of the plate runs from the error
sensor location to the anechoic termination.

The two methods of adapting the control filter coefficients using the Independent
Quadratic Optimisation algorithm (ie. method 1 - optimising all the coefficients of a
channel before continuing to the next channel, or method 2 - optimising a coefficient of
all the channels before continuing to the next coefficient) were compared by minimising
the amplitudes at four accelerometer positions, using three pairs of control actuators
driven individually. Figure 5-38 shows the reduction of the total mean square error

estimates using each method. It is apparent from Figure 5-38, that the Independent
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Quadratic Optimisation algorithm takes longer to converge using method 2 than using
method 1. This is considered to result from the control filter coefficients being
independent within each channel, but not between channels. The final level of

attenuation was about 16 dB at the error sensor locations for both methods.
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Figure 5-38. The reduction of the cost function (amplitude based) estimate by adaptation
of the control filter coefficients using the two alternative methods (method 1 ——,
method 2 - - - -) associated with the Independent Quadratic Optimisation algorithm.

Control was achieved using all of the control actuators linked together as a single
channel.

An example of the convergence of the error signal from a particular error sensor is shown
for each method in Figures 5-39 (a) and (b). It is also apparent from Figures 5-39 (a)
and (b), that the convergence of the Independent Quadratic Optimisation algorithm is
slower for method 2. Finally the control filter coefficients were assessed for each method

of control filter coefficient adaptation. Figures 5-40 (a) to (c) show the convergence of
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the coefficients for each control filter. Figure 5-40(a) shows that the coefficients of the
first channel (control filter) are very similar for both methods 1 and 2, while Figure 5-
40(b) and (c) show that the coefficients of the channels (control filters) are quite different

for each method of adaptation using the Independent Quadratic Optimisation algorithm.
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Figure 5-39(a). Error signal for control coefficient adaptation using method 1 of the
Independent Quadratic Optimisation algorithm.
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Figure 5-39(b). Error signal for control coefficient adaptation using method 2 of the

Independent Quadratic Optimisation algorithm.
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Figure 5-40(a). Control filter coefficients versus sample number for both methods of
control filter coefficient adaptation by the Independent Quadratic Optimisation algorithm.
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Figure 5-40(b). Control filter coefficients versus sample number for both methods of

control filter coefficient adaptation by the Independent Quadratic Optimisation algorithm.
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Figure 5-40(c). Control filter coefficients versus sample number for both methods of
control filter coefficient adaptation by the Independent Quadratic Optimisation algorithm.
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5.6 Summary

In this chapter the Independent Quadratic Optimisation algorithm, and associated lattice
filter, implemented in both single and multi-channel form, have been tested
experimentally for the control of both an acoustic disturbance and a vibration

disturbance.

In verifying the lattice filter implementation, it was observed that the power of the
backward prediction errors gave an indication of the statistics of the reference signal, and
therefore an indication of the number of control filter coefficients required. This is not
obvious when using a transversal filter and the filtered-X LMS algorithm. Too many
control filter coefficients used for the filtered-X LMS algorithm can not only result in
instability (since the persistent excitation condition may not be satisfied) as discussed in
chapter 2 and the appendix, but also in reduced attenuation bandwidth as was shown
later in this chapter. The estimated power of the backward prediction error signals was
also used to provide a means of adjusting the control filter coefficient step size in the

Independent Quadratic Optimisation algorithm, as suggested in chapter 4.

The Independent Quadratic Optimisation algorithm was found to perform as effectively
in most cases as the filtered-X LMS algorithm. The Independent Quadratic Optimisation
algorithm was able to achieve good attenuation for disturbances ranging from pure tones
to broadband noise (for which a FIFO was used to reduce the required number of control
filter coefficients) without the need for system identification of the physical system. It

was also shown to be capable of tracking sudden changes in system conditions. The
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Independent Quadratic Optimisation algorithm was found to have an advantage over the
filtered-X LMS algorithm for control of disturbances with high eigenvalue disparity (ie.
tones with high powers well separated in frequency), and for control of structural or
acoustic intensity. The effect of uncorrelated noise on the level of attenuation, alongwith
the possibility of the control filter coefficient overflowing, were the key disadvantages of
the Independent Quadratic Optimisation algorithm. These key disadvantages can be

overcome as follows:

. The use of individual harmonics [Clark et al, 1992;Gibbs et al, 1993;Kewley et al,
1995] or tones (through band pass filtering the reference signal) eliminates the
possibility of overflow of the control filter coefficients; That is, the coefficients
overflow as a result of low powers of their corresponding backward prediction
error signals, and this overflow can be avoided with the use of individual
harmonics (that may be synthesised) of constant power. Alternatively a variable
gain factor can be used with the control filter coefficients with, however, a loss in

resolution.

. The level of uncorrelated noise could be reduced by band pass filtering key

frequencies in the error signal.

The effect of parameters (ie. control filter coefficient step size and number of averages)
of the Independent Quadratic Optimisation algorithm on performance (ie. attenuation
level, bandwidth of attenuation and convergence speed) were assessed and found to

compare favourably with the theory presented in chapter 4.
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The use of different types of cost function (ie. Based on amplitude, and structural or
acoustic intensity) was shown to give differing results for attenuation achieved in the far
field of a semi-infinite plate, with results dependent on whether the error sensors were

in the near or far field.

Besides the experimental verification of the Independent Quadratic Optimisation
algorithm in this work, its performance has also been demonstrated recently.
Botteldooren [1993] used the Independent Quadratic Optimisation algorithm to reduce
pure tones in the drivers cabin of a large agricultural machine. The tones originated
from rotating machinery components. The overall noise level was reduced by 15 dB in

about 10 seconds.
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Chapter 6. Conclusions and Recommendations.

6.1 Conclusions

The objective of this work was the development of an adaptive algorithm and control
architecture, for implementation in active noise and vibration control systems, that
avoids the instabilities associated with phase inaccuracies in the cancellation path (or
otherwise known as the error path, secondary path, or auxiliary path) transfer function
estimation. Current methods of control require knowledge of the cancellation path to

reach the optimum of the performance surface in a stable manner.

Chapter 2 provided a basis from which to branch into the novel work presented in this
thesis. In this chapter modern control theory was applied to active noise and
vibration control to unify the most commonly used algorithms. This theory involved
the use of a model of the system, an algorithm to estimate the parameters of the
system model, and a control scheme to achieve the desired process output. The
common algorithms were heuristically developed, and the approach presented in
chapter 2 highlighted the following improvements that could be made to these
algorithms (note that these improvements were not tested in simulations or

experiments).

. Use of the "augmented-error" approach that avoids the interplay between

system identification and control schemes.

. Use of a single adaptive scheme to estimate the parameters of the system

model on-line (ie. It is not necessary to identify the cancellation path transfer
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function parameters and control filter coefficients in parallel; This can result
in instability, with the convergence conditions for the control algorithm affected

by the accuracy of the cancellation path transfer function estimates).

Use of the simplified forms (stochastic gradient) of the more accurate recursive

prediction error methods for both output-error and equation-error models.

Use of a Generalised Minimum Variance (GMV) criterion, instead of a

minimum variance criterion, to reduce the effect of minimum-phase plants.

In many of the models considered in this chapter, numerator polynomials have
been assumed to be close to unity so that algorithms for output-error and
equation-error forms (eg. ARMAX) can be simplified. This can result in a
reduction of broadband attenuation, with the prediction of the zeroes of the

disturbance model ignored (avoiding effects of non-minimum-phase zeroes).

Use of the Linear Quadratic Gaussian control scheme with spectral

factorisation to control systems with non-minimum-phase transfer functions.

Alternative methods were considered to avoid the need to identify the parameters of

the system model. This led to the concept of the Independent Quadratic Optimisation

algorithm.

Chapter 3 introduced the lattice filter as a means of providing orthogonal signals for
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use by the Independent Quadratic Optimisation algorithm. The lattice filter was
shown to be particularly suited to the extremely fast recursive least squares algorithm,
enabling the orthogonal backward prediction errors to be quickly available. The
lattice filter was found to have many desirable properties that were specifically suited

to the Independent Quadratic Optimisation algorithm, namely:

. The lattice filter is a form of linear prediction with the prediction accuracy
determined by the magnitude of the backward prediction error signals. That is,
the more complex the input/reference signal (in terms of signal statistics), the
more stages will be required for prediction. Hence the lattice filter, through
the generated backward prediction error signals, gives an indication of the

number of control filter coefficients required for control.

. PARCOR coefficients of each stage of the lattice are adapted independently to
later stages, therefore the lattice can be extended to the required number of
stages to achieve optimum control, without affecting previously converged

PARCOR coefficients.

° The lattice filter is defined such that, provided the absolute magnitude of the
PARCOR coefficients is less than unity, stability is assured; This links well
with the established stability concept of the Independent Quadratic

Optimisation algorithm.

Although the backward prediction error signal generated by the lattice are orthogonal,
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it should be emphasised that they represent prediction errors, and as such will
decrease in power with increasing stages of the lattice (ie. with increasing numbers of
samples used in prediction) eventually becoming white noise sequences with low signal
powers. As the power of the backward prediction error signals decrease, this means
that the control filter coefficients magnitude must increase to generate the control
signal, possibly leading to an overflow. This represents the only disadvantage of the

lattice filter when used to generate orthogonal signals.

When the backward prediction errors used with the individual coefficients of the
control filter (linear combiner), the control filter coefficients were found to be
independent provided no transfer function existed in the cancellation path. It was
shown that a delay in the cancellation path did not affect the independence of the
control filter coefficients; However, any other type of transfer function in the
cancellation path reduced the independence of the control filter coefficients for all
signals other than pure tones. Orthogonalising each harmonic individually has been
shown to provide a means of overcoming this limitation. It was noted that loss of
independence of the control filter coefficients only reduced the speed of convergence

and not the stability of the Independent Quadratic Optimisation algorithm.

In chapter 4, the Independent Quadratic Optimisation algorithm concept was
introduced and formally derived. It fits a quadratic curve to three estimates of the
cost function for each independent control filter coefficient. It was shown that the use
of Newton’s Method as outlined in recent papers is similar to the Independent

Quadratic Optimisation algorithm presented here. This comparison led to formalising
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the heuristic comments (regarding number of averages, control filter coefficient step
size and degree of cost function curvature) made about the Independent Quadratic
Optimisation algorithms performance, using Widrow and Stearns [1985] analysis of

Newton’s Method for a multi-coefficient single channel system.

Simulations were presented for a pure tone and white noise separately and in
combination, illustrating the effects on control filter coefficient independence of a
transfer function in the cancellation path, as presented theoretically in chapter 3. It
was shown that loss of independence only a limitation in that it reduced the speed of
convergence, but not stability, of the Independent Quadratic Optimisation algorithm
for all but pure tone signals. The Independent Quadratic Optimisation algorithm has
been extended to control periodic noise/vibration by Gibbs et al [1993] and Kewley et

al [1995),

Simulations were also performed in this chapter 4, for a multi-channel system using
the Independent Quadratic Optimisation algorithm with two alternative methods of
control filter coefficient adaptation. Theory was developed with regard to the
conditions for independence of control filter coefficients within each channel and
between channels. It was shown that for the case of a control actuator and two error
sensors, control filter coefficient independence was assured provided the independence
condition presented in chapter 2 was met, or the cancellation path transfer functions
and the primary disturbance to error sensor transfer functions were orthogonal;
However, if these transfer functions were not orthogonal, the system would be over-

determined, with redundancy of an error sensor as found by Snyder, Clark and
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Hansen [1993] in an analysis of the standard filtered-X LMS algorithm. It was further
shown that for the case of one error sensor and two control actuators, independence
of the control filter coefficients between channels was impossible; This result suggests
that it is more effective to use method 1 for adaptation of control filter coefficients as

the coefficients are independent for each channel.

In chapter 5, the Independent Quadratic Optimisation algorithm, and associated
lattice filter, implemented in both single and multi-channel form, were tested
experimentally for the control of both an acoustic disturbance and a vibration

disturbance.

In verifying the lattice filter implementation, it was observed that the power of the
backward prediction errors gave an indication of the statistics of the reference signal,
and therefore an indication of the number of control filter coefficients required. This
is not obvious when using a transversal filter and the filtered-X LMS algorithm. Too
many control filter coefficients used for the filtered-X LMS algorithm can not only
result in instability (since the persistent excitation condition may not be satisfied) as
discussed in chapter 2 and the appendix, but also in reduced attenuation bandwidth as
was also shown in chapter 5. The estimated powers of the backward prediction error
signals were also used to provide a means of adjusting the control filter coefficient
step size in the Independent Quadratic Optimisation algorithm, as suggested in

chapter 4.

The Independent Quadratic Optimisation algorithm was found to perform as
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effectively in most cases as the filtered-X LMS algorithm. The Independent
Quadratic Optimisation algorithm was able to achieve good attenuation for
disturbances ranging from pure tones to broadband noise (for which a FIFO was used
to reduce the required number of control filter coefficients) without the need for
system identification of the physical system. It was also shown to be capable of
tracking sudden changes in system conditions. @ The Independent Quadratic
Optimisation algorithm was found to have not only an inherent stability advantage
over the filtered-X LMS algorithm, but it was also found to perform better for control
of disturbances with high eigenvalue disparity (ie. tones with high powers well
separated in frequency), and for control of structural or acoustic intensity. The effect
of uncorrelated noise on the level of attenuation, alongwith the possibility of the
control filter coefficient overflowing, were the key disadvantages of the Independent
Quadratic Optimisation algorithm. These key disadvantages can be overcome as

follows:

. The use of individual harmonics [Clark et al, 1992; Gibbs et al, 1993; Kewley et
al, 1995] or tones (through band pass filtering the reference signal) eliminates
the possibility of overflow of the control filter coefficients; That is, the
coefficients overflow as a result of low powers of their corresponding backward
prediction error signals, and this overflow can be avoided with the use of
individual harmonics (that may be synthesised) of constant power.
Alternatively a variable gain factor can be used with the control filter

coefficients with, however, a loss in resolution.
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o The level of uncorrelated noise could be reduced by band pass filtering key

frequencies in the error signal.

The effect of parameters (ie. control filter coefficient step size and number of
averages) of the Independent Quadratic Optimisation algorithm, on performance (ie.
attenuation level, bandwidth of attenuation and convergence speed) were assessed and

found to compare favourably with the theory presented in chapter 4.

The use of different types of cost function (ie. Based on amplitude, and structural or
acoustic intensity) was shown to give differing results for attenuation achieved in the
far field of a semi-infinite plate, with results dependent on whether the error sensors

were in the near or far field.

6.2 Recommendations

As discussed throughout this work, and summarised above, the Independent Quadratic
Optimisation algorithm performs optimally for periodic or deterministic disturbances,
where the tonal components of the disturbance can be individually orthogonalised (as

has already been presented by Clark and Gibbs [1992, 1993] and Kewley et al [1995]).

Narrow band filtering of the offending tones from the error signal, for use in the cost
function estimate can reduce the effect of uncorrelated noise. Alternatively, instead

of narrowband filtering using fixed filters, an adaptive notch or comb filter could be
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used to extract from the error signal, only those frequencies of interest. This
approach should then provide as much attenuation as the filtered-X LMS algorithm in

the experimental studies of chapter 5.

A further development of the Independent Quadratic Optimisation algorithm would
be to incorporate poles into the lattice filter structure. The poles can be generated
using the feedback form of the lattice filter shown in chapter 3. The stability of the
transfer function defined by the lattice structure can be ensured by maintaining the
PARCOR coefficients less than unity. The use of an IIR filter in this form would also
reduce the number of coefficients used in the linear combiner. A IIR filter would be
in the form of an output-error IIR filter, which would not necessarily have a quadratic
cost function [Widrow and Stearns, 1985]. A form of equation-error IIR filter that
would have a quadratic cost function could be formed by passing not only the
reference signal through a lattice, but also the error signal, thus forming a
feedforward/feedback controller. This could increase the bandwidth about minimised

tonal components.

The Independent Quadratic Optimisation algorithm has been shown to be ideal only
for periodic disturbances, and since periodic disturbances are easiest to obtain using a
reference signal that is not affected by the control actuator, acoustic feedback was not
considered in this work. The effect of acoustic feedback on the Independent

Quadratic Optimisation algorithm should however be examined.

The inclusion of an effort weighting term in the cost function could ensure control
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actuators are not overdriven. This is particularly important for the Independent
Quadratic Optimisation algorithm, in view of the fact that simulations in chapter 4
suggested that it was best to optimise the coefficients of each control filter in turn.
This type of criterion is identical to that used for the Generalised minimum variance

control scheme.

Coupling between the control actuators was shown to reduce the effectiveness of the
Independent Quadratic Optimisation algorithm. Recent results [Elliott et al, 1991]
suggest that a set of single channel feedforward controllers could be used in place of a
multi-channel controller, provided certain conditions are met, thus eliminating strong

coupling between control actuators and error sensors.

The convergence speed of the Independent Quadratic Optimisation algorithm could
be dramatically improved by optimising all the coefficients of the control filter at
once, instead of optimising each individually. This would mean only three cost
function estimates would be required. The optimal control filter coefficients should

not be too difficult to calculate from these three estimates.

The Independent Quadratic Optimisation algorithm can be used with any cost
function of quadratic nature. It is recommended that its use with non-linear filters

such as those based on a Volterra approach [Klippel, 1995] be considered.

The Independent Quadratic Optimisation algorithm could be applied to a frequency

domain approach, since harmonic bandpass filter outputs would be independent. This
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could extend the bandwidth of application of the Independent Quadratic Optimisation

algorithm, from not only tonal noise but to broad band noise.

The Independent Quadratic Optimisation control strategy could be particularly useful
in large ducts, for control of the blade passage frequency (and associated harmonics)
of large centrifugal fans. Multiple single-channel controllers could be used to
minimise the tone particularly if the tones propagate as higher-order modes. The
Independent Quadratic Optimisation algorithm is also particularly suited to using a
measure of intensity as a performance criterion. This could further assist with the

reduction of tones propagating as higher-order modes.

As the Independent Quadratic Optimisation algorithm is suited to tonal control, it
could prove successful at reducing vibration levels, or minimising structure-borne

sound using modal actuators and sensors [Nitzsche, 1993].

The lattice form of IIR filter has observable stability characteristics [Honig and
Messerschmitt, 1984]. This would make it extremely suitable to other alternative
optimisation approaches that do not require the cost function to be quadratic, such as
a "stochastic learning automaton" which could result in broadband attenuation using

the parameters of an output-error form of IIR lattice.

The lattice filter form is such that minimum modelling approaches, as described in
Chalam [1987], should be considered. That is, the order of the lattice can be

increased without affecting previously optimised coefficients (unlike a transversal

- 258 -



Chapter 6. Conclusions and Recommendations.

filter).

Finally, the lattice filter structure relative to the statistics of the input signal suggest
that it could be used in conjunction with the Linear Quadratic Gaussian control
scheme and robustness conditions defined by H_ control theory, since the statistics of
the input signal play a major part in defining the degree of "cautiousness" a controller
should apply. From the literature review of chapter 2, LQG control has a great
potential in active noise and vibration control systems, and together with H_ control,
controllers with good performance, stability and robustness conditions will be

achievable in the not too distant future.

Besides research efforts into control algorithms, other work could be directed towards
improving the minimum-phase characteristics of transducers, developing uni-
directional compact transducers, improving modal sensing and actuating transducers,
and finally designing "feedback transducers” that have minimal time delay between the

sensor and the actuator.
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A.1 Adaptive Filters

This section will consider systems defined in discrete-time using adaptive filters
[Widrow and Stearns, 1985; Bellanger, 1984; Cowan and Grant, 1985; Honig and
Messerschmitt, 1984]. A digital filter is adaptive if its coefficients defining its
response can be altered with time. The response of a digital filter in the time domain
is known as the "impulse response”, denoted h(n) (with n representing the number of
samples), and in the frequency domain it is known as the "frequency response”,
denoted H(e') (the Fourier transform of the impulse response, with @ representing
the frequency, and the response normalised by the sampling frequency and limited to

half the sampling frequency.

A filter with a finite impulse response is non-recursive, and is known as a "tapped-
delay-line", a "transversal" or a "moving average (MA)" filter. The output of the filter
is defined as the weighted sum of current and previous inputs:

u(n) = Iz_l: ax(n-i) [A-1]

i=0

where u(n) is the filter output, A(i) = a defines the filter coefficients (of which there
are /) and the impulse response, and x(n) is the input to the filter. Taking z-
transforms yields the characteristic equation of the filter, with the roots of this

equation defining the zeroes (or dips in the spectrum with a white Gaussian noise

input) of the filter.

H(z) = U@ a, +a;z”t + . +a_z™ [A-2]
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A filter with an infinite impulse response is recursive, and is also known as an
"autoregressive-moving average (ARMA)" filter. The output of this filter may be

defined as the sum of the current input and previous inputs and outputs:

I-1 0o

K
un) =Y. ax(n-i) - Y, bu(n-k) =Y, cx(n-i) [A-3]

i=0 i=0
where u(n) is the filter output, A(i) = ¢, defines the impulse response, @ and b,
represent the filter coefficients, and x(n) is the input to the filter. An "autoregressive"
filter can be formed from the sum of only the previous outputs. Taking z-transforms of

equation (A-3) yields

1 I+1

Uz) G * &z + . +ap gz

X(@) 1+bzl+.. +b2X

H(z) [A-4]

The roots of the numerator polynomial (in z ') define the zeroes (or dips in the
spectrum with a white Gaussian noise input) of the filter, while the roots of the
denominator polynomial (in z ') define the poles (or peaks in the spectrum with a
white Gaussian noise input). The denominator polynomial is termed monic if its first

coefficient is unitary.

The "direct" forms (there are other "canonical’ forms) of these filters can be defined
from the above equations and are shown in figures A-1 (a) and (b). An alternative
"canonical” form is infact the lattice filter, the introduction of which is left to chapter

1
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Figure A-1(a). Finite impulse response filter in direct form implementation. The

coefficients of this filter are a,, with input x(n), and output u(n).

Figure A-1(b). Infinite impulse response filter in direct form implementation. The

coefficients of this filter are g and b,, with input x(n), and output u(n).

It should be noted that a discrete-time transfer function is only realisable if the
causality principle is satisfied (that is, the filter cannot respond before excitation).

Thus a realisable filter has a zero response until the instant an impulse is applied at
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the input. Causality is observed easily in a time-domain analysis, but is concealed in a

frequency domain analysis.

A filter is stable if its response is appropriate for a given excitation. External stability
relates to the external inputs and outputs of the filter. It can be shown that bounded

input-bounded output (BIBO) stability requires

T hE)] < w [A-5]

k=0
This condition also ensures the convergence of the transfer function H(z) for |z|>1,
implying that H(z) is analytic on and outside the unit circle and therefore only has
poles in |z| <1 [Ljung, 1987]. Thus it can be said that a transfer function H(z) is
stable provided its poles lie within the unit circle. A transfer function can be divided
into partial fractions, with at most second order denominators. The poles of second
order denominators define the transient behaviour of the system, with the proximity of
poles to the unit circle defining their degree of damping. If the zeroes of a system lie
within the unit circle in the z-domain, then the system is termed "minimum-phase",

and its inverse is stable. This concept is critical to the discussions on control schemes

throughout chapter 2.

Rather than using z-transforms to define transfer functions for system modelling, it is

also common to use the "forward shift operator”, g, and the backward shift operator,

q ', and work in the time-domain. Thus a convolution in the z-domain as given by
equation (A-1) would become
I-1

u(n) = E a.qx(n) = H(q)x(n) [A-6]

i=0

where H(q) is a polynomial in the delay operator, g .
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A2 System Identification

System identification is necessary to determine how a process responds to certain
inputs, so that the most appropriate control signal can be generated to regulate the
output. System identification involves defining a model of the system, and then
identifying the parameters of this model. Figure A-2 shows the typical layout of the
flow diagram showing the input and output to and from the process to be identified
(usually the cancellation path transfer function) and the input and output to and from
the model of the process. The aim is to ensure that the parameters defining the
model are as close as possible to those of the process, with the prediction error
(e(n) = y(n) - y(n)) giving a measure of the parameter estimation errors. The
location of the identification scheme within the controller is shown in figure 2-3 of
chapter 2. In this section, the models and algorithms used to identify the model

parameters will be briefly reviewed.

IDENTIFICATION  (t———
—> PARAMETER D
ADAPTATION <

) IDENTIFICATION
or PROCESS MODEL |
y(n)

Y ¢ p Prediction

4 Error = g(n) = y(n) - §(n)
Cotttrol PROCESS ¥(n) Error
Sighal = u(n) —p|  (Cancellation Path P o onal = y(n)

Transfer Function) g

Figure A-2. Classical system identification problem.
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A.2.1 Models

A model of a process requires a model of the transfer function linking the input to the
output, as well as a model of the disturbance from white Gaussian noise passed
through a transfer function to the output. There are two basic forms of model, known
as "output-error” (or equivalently "Model Reference Adaptive Control") and "equation-
error" (or "ARX" meaning Auto-Regressive noise model with eXogeneous input). A
very common extension to the equation-error form is known as the "ARMAX"
(meaning Auto-Regressive Moving-Average noise model with eXogeneous input)
structure. The output-error form does not model the disturbance, while the equation-
error form models the disturbance in different ways (ie. there are many types of
equation-error form). The properties of these three common models will be briefly

discussed as they will be referred to in section 2.4 of chapter 2,

A.2.1.1  Output-Error

The model used to identify the process is shown in figure A-3(a). When linked with
the input and outputs from the unknown system, its relation to "Model Reference
Adaptive Control" [Landau,1979] is evident by comparison of figure A-3(b) with figure
2-2. The disturbance, v(n), is not modelled, and is shown here as white Gaussian

noise, e(n). In figures A-3(a) and (b) the system is shown as B(q)/F(q).
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e(n) = White Gaussian
l Disturbance

e(n) = White Gaussian
Disturbance UNKNOWN

SYSTEM

u(n)—=

y(h)

Figure A-3(a). Output-Error Model of Figure A-3(b). Output-Error Model

a system with u(n) the input, y(n) the

v(n)

disturbance equal to white Gaussian

output, and the unknown

noise, e(n).

applied to unknown system, with y(n)
the predictor used to estimate the
system output y(n), with prediction

error e(n).

The predictor (ie. the predicted system output) at time z is dependent on the
parameter vector (ie. the vector of parameters defining the model), 8, at that time.
Hence the parameter vector, 8, is included in the predictor at time n, with descriptor,
$(n|8), to highlight this dependency. The predictor can be written as (with F(g)
monic as defined in A.1)

$(n|6) = @u(n) = 0" ¢(n.8) [A-7]

F(q)

where the parameter vector is written as

8 = [byroby oo ® [A-8)

and the regressor (being a vector of samples of the input and output signals to and
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from the process and estimation models) is written as

o(n,0) = [u(n-1),..,u(n-n),H(n-110),..., $H(n-n|6)]" [A-9]
The parameter vector is included in both the predictor and regressor to highlight its
effect on both. If the system model (again note that the disturbance is not modelled)
is accurate, the prediction error will equal the disturbance (ie. white noise), with the
parameters (within the parameter vector) being adapted until the prediction error is
whitened. This form of parameter estimation is known as a pseudo-linear regression

since the effect of including the predictor in the regressor is non-linear.

A linear regression results if F(q)=1, leaving B(g) which is then a FIR filter.
However the general form is a recursive filter, and as such requires approximations
(due to the non-linearity) to be implemented efficiently. Since this method does not
estimate a model for the disturbance, it will be shown later, that it is not susceptible
to biassed parameter estimates. A family of output-error related models can be

represented by the "Box-Jenkins" model structure [Ljung, 1987].

A2.12 Equation-Error (ARX)

The model used to identify the process in an equation-error (or ARX) approach is
shown in figure A-4(a). Figure A-4(b) shows this system linked with the unknown
system inputs and outputs. The disturbance is now modelled as white Gaussian noise
passed through an autoregressive (AR) process. Hence the name ARX, with X

corresponding to the exogenous input, u(n).
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e(n) = White Gaussian
Disturbance

e(n) = White Gaussian
l Disturbance
_| UNKNOWN
SYSTEM
¥(n)
+
u(n)—> &(n)
§(n)
Figure A-4(a). Equation-Error Model Figure A-4(b). Equation-Error Model
of a system with u(n) the input, y(n) applied to unknown system, with j(n)
the output and e(n) the white Gaussian the predictor used to estimate the
noise input to generate the disturbance system output y(n), with prediction
v(n). error e(n).

In this form, the predictor can be written as (with /i(q) monic, as defined in section

All)
9(n18) = Blg)u(n) + (1-A(@))y(n)= 8 ¢ (n) [A-10]
where the parameter vector is written as
8 = [2y,s8, 0,0, 1" [A-11]
and the regressor can be written as
o(n) = [y(n-1),.., y(n-n),u(n-1),..,un-n)* [A-12]

If the system model and the disturbance model are accurate, then the prediction error
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will be whitened. This model is important as the predictor defines a linear regression,
and is non-recursive (linear) since it feeds back the actual process output, y(n), rather
than the estimated process output, y(n) (note ¢(n) in equation (A-10) and (A-12) as
opposed to ¢(n,8) in equation (A-7) and (A-9)). It is however susceptible to biassed
parameters (as will be shown later) since if the disturbance model is not accurate, the
process output used in the regressor will be correlated with the unmodelled

disturbance.

A2.13 ARMAX

Finally consider the most common model of a process that models the disturbance as
an ARMA sequence (hence the name ARMAX, with X corresponding to the
"exogenous” input, u(n)), distinct from the AR disturbance model shown above. The
process model is shown in figure A-5, with the association with the unknown system as

it is a simple modification to that shown in figure A-4(b).

e(n) = White Gaussian
Disturbance

u(n)

Figure A-5S. ARMAX model of a process.
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In this form, the predictor (termed a pseudo-linear regression) can be written as

A B A ;
9in10) = 2D umy + 1-29)y)= 66 (n0) [A-13]
Ca) ()
The prediction error (or innovation) can be written as (for all models)
e(n,8) = y(n) - y(n|0) [A-14]

and therefore it can be shown that the regressor can be written as

¢(n,0) = [-y(n-1),.., y(n-n),u(n-1),...u(n-n), [A-15]
e(n-1,0),...,e(n-n_0) i

and the parameter vector can written as

A

8 = [a,,...a, ,byyesb, ,)yee, IF [A-16]

sy . ”
As for the equation-error model, biassed parameters result for inaccurate disturbance
models. As the ARMAX model is recursive and can be written as a pseudo-linear
regression, it can be treated in a similar manner to the output-error model. The

ARMAX model is a form of equation-error model.

A model that incorporates both equation error and output-error model types in their
most general form has been described by Ljung [1987] and Ljung and Soderstrom

[1983].

A.2.2 Cost Functions and Parameter Estimation

The model parameters forming the parameter vectors, are adapted to minimise (or
whiten) the magnitude of the prediction error (or innovation). The cost function to

be minimised can be based on the expectation of the squared prediction error
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(forming the "Mean Square Error" or "Stochastic" approach [Ljung and Soderstrom,
1983]), or the expectation can be approximated by sample means (forming the "Least-
Squares" approach [Ljung and Soderstrom, 1983]). The cost functions can thus be

written as:

J(8) = E[¢X(n)] »%2 e2(k) = J(6,Z") [A-17]
k=1

where e(n) is the prediction error, J(8) is the stochastic cost function, and J(6,Z") is
the estimate of the cost function using the average of samples of the prediction error
to time n. The cost function can also be viewed as a performance surface [Cowan and
Grant, 1985; Widrow and Stearns, 1985]. The prediction error can be prefiltered to
provide a means of frequency weighting [Ljung, 1987]. A "windowing" term can be
added to the least squares estimate, to allow for quasi-stationary processes, in which

stationarity is definite for only a certain number of samples [Ljung, 1987]. The

estimated cost function with a windowing term (or forgetting factor) can be written as:

J(e,zZ™ = y(n)znj B *e2(k) [A-18]
k=1

where B is the forgetting factor and takes a value close to but less than unity (usually
between 0.98 and 0.995), giving an effective memory (or number of samples which can
be considered to be generated from a stationary process) of 1/(1-8). The termy(n)
is a normalising term (which can be approximated by (1-8)), and is included so that

J(8,Z") approaches J(8) as n approaches infinity.

The stochastic approach will now be used together with an equation-error model
(chosen because it is non-recursive) to define by example the critical concepts of

biassed parameter estimates, persistent excitation, the difference between minimum
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and excess mean square (as defined by the misadjustment), and finally the definition
of the principal axes of the cost function, all of which are relevant to the Independent

Quadratic Optimisation (IQO) algorithm.

Using the linear regression model (equation-error), the optimum parameter estimates
can be found from derivatives of the stochastic cost function (defined by equation (A-

17)) in expanded form, such that

-1 N
Bop = Rys Cyo [A-19]

where
R,, = E[¢(n)¢"(n)] [A-20]

represents the autocorrelation matrix of the regressor and
Cys = Ely(n)o(n)] [A-21]

represents the cross-correlation vector of the regressor and the process output.
Suppose now that the observed data was actually generated by

y(n) = 8,6(n) + vo(n) [A-22]
If this were true, it means that the disturbance model is not accurate, resulting in a
coloured unmodelled disturbance v, (n) instead of white Gaussian noise. The
optimum parameter estimates can be found by substituting equation (A-22) into (A-
19), such that

eopt =0, + R¢_;E[v0(n)¢(n)] [A-23]

The parameter estimates are termed "consistent' if 6., = 6,, which will occur

provided the following conditions are met:
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The autocorrelation matrix, R, is non-singular. This will require the input to
the process to be persistently exciting. The persistently exciting condition
implies that the number of parameters in a linear model that can be uniquely
determined is limited by the power spectrum of the input irrespective of the
complexity of the unknown process [Honig and Messerschmitt, 1984]. If this
condition is not met the parameter estimates will not converge to their true

values.

The disturbance, vy(n), is independent of the regressor, ¢(n), components.
This requires that the disturbance, v (n), be a sequence of independent
random variables with zero mean. That is, the model of the disturbance must
be exact to ensure unbiased parameter estimates. If this condition is not met,
the parameters will be biassed by the correlation of the unmodelled
disturbance with the regressor components (these components specifically being

the process output and the prediction error).

Biassing can be eliminated by using the method of instrumental variables [Ljung and

Soderstrom, 1983], using a more accurate model of the disturbance, or injecting an

uncorrelated signal into the system. The method of instrumental variables is

equivalent to using an output-error (or model reference) approach, since no attempt is

made to model the disturbance. That is, since the regressor of the output-error model

uses the process output estimate rather than the actual process output, there can be

no correlation between the unmodelled disturbance and any component of the

regressor. This is the key difference between the output-error and the equation-error
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methods of system identification.

The distinction between equation-error and output-error forms has been well

explained by Bitmead et al [1990], who note the advantages of each scheme as:

. The equation-error method predicts a model of both the system and the
disturbance.
. The output-error method predicts a model only for the system therefore

avoiding biassed parameter estimates.

Bitmead et al [1990] note that the use of the equation-error method will provide a
good disturbance model that is essential to achieve adequate disturbance rejection (as
will be seen when considering minimum variance control), while use of the output-
error method will provide a close (unbiased) system model that is required for

stability and robustness.

It can further be shown [Tang and Mars, 1991] that the equation-error method has a
unique global minimum, with no local minima (however the resulting parameter
estimates that form the recursive system model need to be checked to ensure the
model is not unstable as a result of biassed parameter estimates). This can be
contrasted to the output-error method which has multiple local minima and requires
stability monitoring since it uses a recursive filter. This has particular relevance to

alternative methods of optimisation to be discussed in section 2.5 of chapter 2.
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Returning now to the stochastic cost function, it can be shown that the stochastic cost
function optimum (or minimum mean square error) is given by

Jot =Ty = CyyBopy [A-24]
where r,  is the autocorrelation or power of the process output. This equation shows
that the stochastic cost function optimum (minimum mean square error) is dependent
upon the correlation of the regressor components with the process output. It can

further be shown that the cost function is composed of the minimum mean square

error and the excess mean square error:

J(®) =T, +(8-8,, )'R,, (6 -0,,,) [A-25]

The excess mean square error is dependent upon the variance of the parameter
estimates about their optima. Another term that gives a useful indication of the
performance of an algorithm is the misadjustment, which is the ratio of the excess

mean square error to the minimum mean square error. These items are discussed in

chapters 4 and 5 with regard to the Independent Quadratic Optimisation algorithm.

Finally, the autocorrelation matrix can be written in normal form using its eigenvalue
matrix, A (in which the off diagonal terms are zero and the diagonal terms
correspond to the eigenvalues of the autocorrelation matrix), and the corresponding
modal matrix of eigenvectors, O, such that

J@©) =J, + VIAV® [A-26]

where the components of VV* = QT(6-8_,) define the principal axes of the cost

opt
function, and the eigenvalues of the autocorrelation matrix correspond to the second
derivative of the cost function relative to the principal axes. That is, the eigenvalues

relate to the degree of curvature of the cost function in the direction of the principal
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axes. The principal axes can also be formed using orthogonal components of the
regressor. This is a critical concept for the Independent Quadratic Optimisation
algorithm, for which the regressor consists of orthogonal signals generated by a lattice

filter, as will be shown in chapter 3.

The concepts of minimum and excess mean square error, principal axes and degree of
curvature of the cost function in the direction of the principal axes, are important to
the Independent Quadratic Optimisation algorithm to be developed in subsequent
chapters. The concepts of biassed parameters and persistent excitation are critical to

system identification, and therefore to many of the common control algorithms.

A.2,3 Optimisation Methods

The parameters defining a model can be updated using a steepest-descent approach,
or the modified steepest-descent approach known as Newton’s Method. These
approaches can be written generally as [Ljung and Soderstrom, 1983]:

8(n+1) = B(n) - v(n)J'(8,Z")J" (B.Z") (A-27]
where J” (8,Z"), represents the double derivative of the stochastic cost function and
is known as the "Hessian" matrix, and J/(8,Z"), represents the derivative of the
stochastic cost function and is known as the "gradient vector", and y(n) corresponds
to the step factor. The gradient vector defines the direction of steepest descent, while
the Hessian matrix modifies this direction to account for differences in the gradient

with respect to each parameter (ie. The inclusion of the Hessian matrix avoids
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eigenvalue disparity effects that plague algorithms based solely on the method of

steepest descent or approximations thereof).

The models discussed in section A.2.1 can be divided into a linear regression type and
a pseudo-linear regression type. The linear-regression can be treated as a special type
of pseudo-linear regression, and therefore will not be treated specifically. Recursive
parameter estimates for pseudo-linear regression can be classified as "Recursive

Prediction Error Methods" or "Recursive Pseudo Linear Regressions".

. Recursive Prediction Error Methods (RPEM)

The recursive update equation uses the gradient of the cost function to update
the parameter vector. It can be shown [Ljung, 1987] that the gradient vector

and the Hessian matrix of the cost function are given by
/ ny _— _

J'(8,Z") = 8(’1,9_);.[!(71,6) [A-28a,b]

J" e,z = R, (n)

where

dy(n,0)

¥(n,9) = [A-29]

has become known as the gradient vector, R, is the autocorrelation matrix for
this form of gradient vector, and €(n,0) is the prediction error. It can be
shown that the gradient vector for the output-error model is given by
F(g@)¥(n,8) = ¢(n,8), while the gradient vector for the ARMAX model is
C(q) ¥(n,8) = ¢(n,8), and finally the gradient vector for the linear regressive

equation-error (or ARX) model is equal to the regressor, y(n) = ¢(n).
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Calculating €(n,8) and ¢(n,0) is computationally inefficient as they are
recursive, hence their dependence on 6 is ignored [Ljung, 1987], and the

recursive prediction error algorithm becomes:

e(n) = y(n) - §(n) =y(n) - ¢"(n)8(n-1)
é(n) =) é(n-l) + ‘Y(n)R‘;‘z(n) llj(n)e(n) [A'.?’Of’l,b,C]
Ry () = Ryy(n-1) + y(n)[¥(m)w(n) = Ry (n-1)]

. Recursive Pseudo-Linear Regression (RPLR) Method

The recursive prediction error method ultimately required the approximation
that y(n,0) was non-recursive in 8. If this approximation is taken from the

beginning, then the gradient vector becomes

¥(n,0) = %’ze) = ¢(n.0) [A-31]

The use of this approximation gives the recursive pseudo-linear regression

algorithm, such that

e(n) = y(n) - $(n) =y(n) - " (W)8(n-1)
8(n) = 8(n-1) + Y()R,(m)@(n)e(n) [A-322b,c)
R¢¢(n) B R¢¢(n_1) + y(n)[o(n)e(n) - R¢¢(n_:1;)‘]

The recursive prediction error method is a more accurate method as it uses less

approximations, but in so doing requires more computations than the recursive
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pseudo-linear regression algorithm.  The discerning difference between these
algorithms lies in the use of ¢ (as per RPEM) instead of ¢ (as per RPLR). The
effect of this approximation will be discussed shortly. As discussed above, the
gradient vector for the equation-error (ARX) model is §(n) = ¢(n), hence for the
equation-error model the recursive prediction error method is equivalent to the
recursive pseudo-linear regression method, and the resulting algorithm is commonly
known as the "Recursive Least Squares (RLS)" algorithm, with the inverse

autocorrelation matrix defined by recursive adaptation as will now be discussed.

In both these methods, the autocorrelation matrix (of either the regressor or the
gradient vector) R “!(n) can be adapted recursively using the matrix inversion lemma
[Ljung, 1987], with P(n) = R '(n). The recursive update of P(n) can be defined
using this lemma as (with B a constant defined to avoid division by zero at

initialisation of the algorithm):
P(n-1)

B + #(n)P(n-1)e(n)

Py = Upu-1) - PeDeme ()P(n-1)
B B + ¢T(n)P(n-1)o(n)

R(n) =
[A-33a,b]

Alternatively the matrix R(n) can be approximated using the stochastic cost
function, and the "Robbins-Munro" scheme [Ljung and Soderstrom, 1983]. The
method so defined is known as the "Stochastic Gradient Method", with R(n) = I. The
gain y(n) can be a constant or normalised by some means. This algorithm has been
extensively used in adaptive signal processing by Widrow and Stearns [1985], with
regard to a linear regression, and is commonly known as the "Least Mean Squares”

algorithm.
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The stochastic gradient method or least mean squares algorithm is affected by the
eigenvalue disparity of the autocorrelation matrix. This disparity (given by the
maximum difference in the powers of the spectral components of the reference signal)
affects the speed of convergence of the parameter estimates. Eigenvalue disparity will
not affect the speed of convergence if a recursive algorithm is used (like the recursive
least squares (RLS)). The recursive least-squares approach is based on Newton’s
Method of searching a cost function, with instead of the parameters adapted in the
direction of steepest descent, they are adapted in a modified direction towards the
optimum of the cost function. The stochastic gradient method or least mean squares
algorithm also has a greater misadjustment than the algorithms that incorporate a
more accurate estimate of the inverse autocorrelation matrix, because the
approximation of the gradient estimate is so "noisy" it results in increased variance of

the parameter estimates about their optima.

The recursive identification schemes have been developed and named for different
types of systems and models. These are summarised in table A-1, only for the models
considered in section A2.1 [Ljung, 1987]. In table A-1, RML stands for the
"Recursive Maximum Likelihood" algorithm developed from a Bayesian approach, and
ELS stands for the "Extended Least Squares" algorithm. A good summary of these
methods, which can be derived from the models given in section A.2.1, is presented in

Isermann [1991] and Ljung [1987].
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Algorithm Type

Model Structure Recursive Prediction Recursive Pseudo-Linear
Error Method (RPEM) Regression Method (RPLR)

ARX (Equation-Error) RLS RLS
Output-Error (Model Reference) | White [1975], Hsia [1981] | Landau [1976], Feintuch [1976]
ARMAX (Equation-Error type) RML ELS

Table A-1. Summary of algorithms defined from the use of recursive pseudo-linear

regression and prediction error methods for different process/disturbance models.

As discussed, the difference between the RPLR approach and the RPEM approach
lies in the use of ¢ instead of y. The effect of this approximation will now be
considered for the equation-error model type (ie. ELS algorithm). It can be shown
[Ljung, 1987; Ljung and Soderstrom, 1983] for the ARMAX model that a sufficient
condition for convergence of the parameter vector to the true parameters is

dependent upon

1 > Yo [A-34]

Re _ !
Cye™) 2
where Cy(q) is the true moving average polynomial defining the moving average
component of the disturbance (see section A.2.1 for the model definition). This is
known as the "strictly positive real (SPR)" condition, and can alternatively be written
as

|Cole) - 1] <1 Vo [A-35]

It is apparent from this equation that convergence to the true parameters depends
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upon the roots of C(z) = 0 lying within the unit circle in the z-domain (ie. minimum
phase condition). This theory was developed by Popov and Lyapunov, with a good
discussion given in Cowan and Grant [1985], who relate it to the Nyquist stability
criterion. Ljung and Soderstrom [1983], using an ordinary differential equation
(ODE) approach to convergence analysis, further show that

Re{Cye™)} >0 Vo [A-36]
Astrom and Wittenmark [1989] note that a system with a frequency response that
satisfies this "positive real" condition is termed passive. Thus passivity and minimum-

phase conditions are closely related.

The stability criteria for the RPLR method can be related to those just defined for the
RPEM. As the recursive prediction error method uses an estimate of the function,
é(e )| then it is considered the stability conditions defined for the RPLR method will
hold for the difference between the estimate of C(e®) and the actual function. Thus
the above conditions may be extended to the recursive prediction error method, with
the difference in phase and magnitude between the estimate of C(e’”) and the actual
value to be no more than 90° for convergence of the parameter estimates, as indicated
by equation (A-36). The conditions discussed relate to the equation-error model type
(ie. ARMAX) and associated algorithms; similar conditions can be shown for the

output-error model type.

Feintuch [1976] used a stochastic gradient form of the recursive pseudo-linear
regression approach and applied it to an output-error model (Landau [1976] first

proposed the exact form of the RPLR method using the model reference approach).
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This algorithm was shown to converge to false minima [Johnson and Larimore, 1977].
The convergence coefficients must be kept very small for convergence to a non-unique
minimum of the cost function, dependent upon the initial values of the coefficients
[Cowan and Grant, 1985; Tang and Mars, 1991]. Johnson [1979b] then proposed an
algorithm known as the "Hyperstable Adaptive Recursive Filter (HARF)", in which
the prediction error was pre-filtered by a fixed filter. Johnson [1979a, 1981] also
proposed a stochastic gradient form known as the "Simple HARF (SHARF)". Ljung
and Soderstrom [1983] note that these algorithms are identical to the recursive
prediction error method provided the prefilter is time-variant and equivalent to
1/F(g). Hsia [1981] developed the stochastic gradient form of the recursive
prediction error method for the output-error model type, with the exact algorithm

originally defined by White [1975].

Of final note in the identification of systems is the work by Isermann [1991]. In his
summary an attempt is made to define the impact of biassing on closed-loop (ie.
feedback control system) parameter estimation. It was stated earlier that biassed
parameter estimates can be avoided using an instrumental variables approach (of
which the output-error or model-reference is a special case) or by injecting an
uncorrelated signal into the system (ie. an external perturbation signal). Isermann
[1991] notes that if an instrumental variables approach is used in closed-loop (ie.
feedback control system) it could result in biassed parameter estimates. In closed-
loop, the RLS, ELS and RML algorithms provide unbiased estimates provided the
disturbance is correctly modelled. An external perturbation signal yields unbiased

estimates provided it is sufficiently persistently exciting.
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A3 Minimum Variance Control

The previous section addressed methods for identifying the parameters of a process.
These methods will now be coupled with a control law defined from a minimum-
variance approach, which is shown in section 2.4 of chapter 2, to be particularly
suitable to active noise and vibration control. The common algorithms used in active
noise and vibration control will be shown to follow directly from this control theory

approach.

Consider the control of an ARMAX process, shown in figure A-6. The disturbance is
generated by passing white Gaussian noise through an ARMA filter, and the system
has a time delay (or dead-time) of k& samples (typical of the propagation delay
between a control actuator and an error sensor) also with an infinite impulse
response. It is to be noted that the same denominator polynomial is used, as it relates

to the modes of the physical system, as described in section A.1.

Disturbance e(h)

Process

Process
y(n) Output

Input u(h)

Figure A-6. ARMAX process, with e(n) represents a white Gaussian noise sequence,
u(n) is the control input, y(n) is the process output, and v(n) is an ARMA

disturbance.
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The minimum variance control scheme (originally proposed by Astrom and
Wittenmark [1973]) obtains its name as it attempts to minimise the variance of the
process output. The cost function to be minimised by the controller (using only data

upto time #») is given by

J = E[y¥n+k)|n] [A-37]

with
+k) = _B@ + % + A-38
y(n+k) @) u(n) @) e(n+k) [A-38]

Equation (A-38) can alternatively be written as

e(n+k) = A(q)y(n +12(q‘) B(q)u(n) [A-39]

It is important to note that the only data available to generate the control signal is
that up to time n (ie. u(i), y(i), and e(i) for i<n). It can be seen however that to
predict y(n+k) using data up to time n is not possible since e(n+k) is required (as per
equation (A-38)), and yet e(n+k) depends on the process output y(n+k) (as per
equation (A-39)), which is unavailable. That is, there is a causality constraint which
restricts the amount by which the variance can be minimised. Optimal control would
reduce the variance to a white sequence, therefore the minimum variance controller is

known as a sub-optimal controller.

With regard to predicting y(n+k), as per equation (A-38), the polynomial C(q) must
be separated into that part of e(n) that is available (ie. samples up to time n), and
that part which is unavailable (ie. samples in the range n+l <n < n+k). The

equation that redefines C(g) in this manner is termed a "Diophantine equation”, and
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can be written as

C@ . g + C@D [A-40]
1@ 9" S

where the polynomial F(g) has order (k-1), and G(q) has order (n,-1). Thus it can
be shown that the minimum achievable prediction error (or equivalently, that part of
the disturbance that cannot be predicted using the data available upto time n) is given
by

e(n+k|n) = y(n+k) - J(n+k|n) = F(g)e(n+k) [A-41]
It is apparent that the prediction error is not a white sequence for k>7. In this

equation the minimum variance predictor is given by

v(n + = —_B(q)F(q) + &Q) A-42
J(n+k|n) @ u(n) C(q)y(n) [A-42]

Therefore the control law that provides optimal regulation to a zero set point is given
by

__ G A-43
u(n) ——B(q)F(q)y(n) [A-43]

Thus the minimum-variance control scheme obtained its name since it is based on the
form of the predictor that minimises the variance of the process output. The
certainty-equivalence control law can be written with E(g) =B(q)F(q), such that

u(n) = -éi[ (1) + o+ Boy(nong) + 2u(n-1) + .. &, u(n-ng) 1 [A44)
0

where estimates of the parameters required to form the control law have now been
introduced. The polynomials é(q) and E(q) must be predicted using the ELS or
RML algorithms since the predictor given by equation (A-42) is of equivalent form to
the ARMAX predictor presented in section A.2.1.3 (note in passing that the

prediction error component of the regressors, see equation (A-15), can be made more
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accurate by using the updated parameter estimate, with the prediction error then
known as the a posteriori prediction error, or residual as will be shown in section 2.4
by example). Since the polynomials B(q) and C(q) are inverted, they must be
minimum-phase to ensure stability of the controller. The SPR condition for

convergence of the parameter estimates has been addressed in the previous section.

The direct (or implicit) estimation of G(g) and E(q) represents a more efficient
means of obtaining the controller parameters, since 4(qg), B(q) and C(g) do not need
to be identified explicitly before solving the Diophantine equation for F(g) and G(qg).
This type of controller is termed "certainty equivalence" as the estimates of the

parameters are assumed to be exact.

Clarke [1985] notes that the polynomial C(g) can be neglected without affecting the
controller since G(g) and E(q) are only required, and therefore the RLS algorithm
can be used to estimate é(q) and E(q) (since the model would then become linear).
Clarke [1985] also notes that the polynomials G(g) and E‘(q) are not unique, and can

be governed in some way by fixing the parameter é,.

For unique determination of the parameters, Isermann [1991] notes that two

identifiability conditions must be met:

. The orders of the process model must be exactly known;

. The order of the control numerator, G(g), must be greater than or equal to
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(n,-k), and the order of the control denominator, E(q) = B(q)F(gq), must be

greater than or equal to n,.

The minimum variance controller has been extended to more general cost functions
that include an effort weighting:

J = E[{P@)y(n+k) + Q@u(m)}*|n] [A-453]
This type of control is known as Generalised Minimum Variance (GMV) control, and
was proposed by Clarke and Gawthrop [1975, 1979] and Gawthrop [1977]. Isermann
[1991] notes that the use of Q(q)=r allows B(g) to be non-minimum-phase. The use
of this criterion with regard to active noise and vibration control, will be discussed in

section 2.4.
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