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ABSTRAC:T

This thesis develops an alternative control strategy, for active noise and vibration

control systems, that does not require identification of the cancellation path transfer

function (between the control actuator input and error sensor output). It is errors in

the identification of the cancellation path transfer function that plague the most

commonly used algorithms. The control structure presented in this work uses a lattice

filter to generate orthogonal signals for each coefficient of a linear combiner (or

control filter). The aim of the Independent Quadratic Optimisation algorithm,

developed in this work, is to optimise the coefficients of the control filter

independently. For each control filter coefficient, estimates of the cost function are

made for different perturbations of the coefficient's value. These cost function

estimates, when fitted to a quadratic function, allow the optimum for each coefficient

to be determined.

It will be shown by theory, simulation and experiment, that this control strategy is

ideal for reducing harmonically related tonal noise. However, the speed of the

algorithm is reduced for other types of noise, as the cancellation path transfer function

degrades the independence of the control filter coefficients. The parameters that

affect the performance of the Independent Quadratic Optimisation algorithm are also

assessed using theory, simulation and experiment.
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1.1 History

Active noise and Vibration Control is considered to have been first proposed by the

German Physicist Paul Leug [1933]. His system was based on a feedforward means of

control, shown in Figure I-I, and requires knowledge of the disturbance to be

cancelled, to generate a suitably delayed out-of-phase control signal. However, unlike

current feedforward systems, Leug's system had no control aigorithm or error sensor

and thus was not adaptive. In a feedforward system, the control signal is generated

using a reference sensor that provides a signal coherent with the noise to be cancelled.

For ail but periodic noise, this type of system is only possibie for waves which

propagate slower than the active cancellation system can respond in real-time, and

thus exhibit causality. Further advances at this time were prevented by the low level

of technology and the political situation of this era.

Error
9enøor

Figure 1-1. Feedforward control configuration.
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Chapter L. Inroduction

The perfonnance of the control system is judged by an error sensor or combination of

error sensors (in the case of control of evanescent modes or power flow minimisation)

placed downstream from the control actuator. Ma,rimum achievable attenuation for

systems of this type is limited by reflecting surfaces within the duct. The additional

possibility of noise from the control actuator corrupting the signal at the reference

sensor contributed to the attempted development of a unidirectional control actuator

[Jessel, 1972; Swinbanks, 1973; Leventhall, 1976] through the use of different numbers

and configurations of control sources, and a unidirectionai error sensor [La Fontaine

and Shepherd, 1985] through the use of different numbers and configuration of error

sensors. These physical means of avoiding corruption are however limited to narrow-

band attenuation, dependent upon the spacing of the transducers. The minimisation

of corruption from the reference sensor can also be achieved through a more

sophisticated control system as will be discussed in chapter 2.

A later fundamental development by Olson and May [1953] was in the form of

feedback control, shown in Figure L-2. This form of control uses an error sensor to

generate an out-of-phase control signal and hence requires no prior knowledge of the

primary disturbance. For this reason the method is suited to applications where it is

not possible to obtain a coherent reference signal. Such applications include spatially

incoherent noise generated by turbulence, noise generated from many sources and

paths, and induced resonance where no coherent reference signal is available

[Swanson, 1991].

-3-
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Figure 1-2. Feedback Control Configuration

In a feedback control system, the error sensor signal passes through the controller

until it is minimised. This method is prone to instabilities as high gains are required

to generate a control signal from the error signal (once this signal itself has been

optimally minimised). The time delay from when the controi signal is applied to the

control actuator and when the response is detected at the error sensor means that

only narrow band signals may be cancelled, as will be further discussed in chapter 2.

This control arrangement is however particularly successful in headsets [Simshauser,

L955], as the small volume of air behaves as a lumped element therefore reducing

restrictions on controller stability and providing broad-band attenuation from an

otherwise narrow band control structure.
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+
<_
+
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Chapter 1. Introduction

It is important to note that all of the early developments used fixed filter analogue

control systems which were not adaptive to the changing environment within the

physical system. To achieve the necessary accuracy in the phase and amplitude of the

control signal (for 10-20 dB of attenuation), a complex analogue control system is

required. Further to this is the need for the control system to be adaptive in time to

the changing characteristics of actuators, sensors and the acoustic media in which they

are located. Since the 1980's, there has been a rapidly expanding interest in Active

Noise and Vibration Control, principally because of the availability of digital

technology, and the dramatic advances in the digital signal processing field initiated

for adaptive techniques by Widrow [1960]. The first active noise and vibration control

systems implementing digital techniques were developed by Kido 119721 for

transformer noise, and by Chaplin [1978] for more general physical systems. The

1980's has seen the development of many different control algorithms and electronic

architectures in attempts to overcome the major problems of acoustic feedback

between the actuators and sensors, and also the required knowledge of the transfer

function between these transducers.

To this point the electronic control element of the overall control system has only

been discussed, however the placement, location and type of control actuators and

error sensors are also of importance, as are the physical mechanisms that govern the

amount of attenuation possible. Jessel [1968] and Maþzhinets [1969] provided the

initial acoustic theory that has since been developed by many different researchers,

sporadically in the 1970's for one-dimensional physical systems, and more intensively

in the mid 1980's for general physical systems.

5



Chapter 1. Introduction

Conover [1956] envisaged the use of multiple control sources and error sensors to

control free-space radiation, and to some extent developed the first commercial

oriented application of active noise and vibration control to control transformer noise.

The rewarding commercial prospects together with countless research efforts can only

suggest that Active Noise and Vibration Control systems for general physical

applications will be available in the near future. Since the 1980's, the widespread

application of active noise and vibration control to many commercial problems has led

to the formation of companies specialising in this field.

The two major impediments to the progress of a general Active Noise and Vibration

Control System are digital signal processing technology and transducer technology.

Improvements in signal processing technology has led to advanced control algorithms

and electronic architectures. Advances in algorithms have been aimed at improving

performance parameters like control system stability, robustness, speed of adaptation

and frequency bandwidth of attenuation. Advances in electronic architecture has led

to increased speed of operations which, in conjunction with parallel processing, will

also inevitably enable the use of more complex control algorithms. The work

described here is concerned with developing a more stable control algorithm.

-6



Chapter l. Introduction

L2 Problem Definition

The aim of this work is the development of an adaptive algorithm and control

architecture, for implementation in active noise and vibration control systems, that

avoids the instabilities associated with phase inaccuracies in the cancellation path (or

otherwise known as the error path, secondary path, or auxiliary path) transfer function

estimation. Current methods of control require knowledge of the cancellation path to

reach the optimum of the performance surface in a stable manner. A survey of

recently published journal and conference proceedings reveals a body of work directed

towards improving transfer function estimates, but no work directed towards

developing means of making them unnecessary. Clearly, the latter would be the

preferred option in any practical system, and it is towards this option that the work

presented in this thesis is directed.

The achievement of this aim requires a significant departure from lines of thought

currently being followed in this field, a departure which is necessary if this noise and

vibration control technique is to progress to widespread commercial use with the

development of a general electronic control system incorporating multiple control

actuators and error sensors (and hence multiple error-paths). The specific aims of

this work are:

To study/develop an active control algorithm that eliminates the need to

estimate the cancellation path transfer function, by considering an alternative

search strategy of the performance surface (defined by error sensors) that

a

7-



a

Chapter 1. Introduction

requires no knowledge of the gradient (as most other search strategies do) and

relies only on estimates of the performance surface magnitude.

To develop an efficient means of searching the performance surface, using this

strategy, by identifying the principal a¡res that define the performance surface.

To demonstrate the effectiveness of this means of control with computer

simulations and practical implementation (on suitable digital signal processing

hardware) using existing experimental apparatus (for both acoustic control and

structural control).

13 Thesis Outline

Chapter 2 presents a literature review of the electronic controller development, from

a modern control theory perspective. It should be read alongwith the appendix, which

presents a background to the control theory concepts discussed in chapter 2. Chapter

2 unifies many of the common heuristically developed algorithms, and offers possible

modifications to these that enhance their performance. It assesses both feedforward

and feedback control systems (and their combination) using a minimum-variance

control scheme and recursive identification methods within the framework of self-

tuning regulators. More advanced algorithms are shown to follow from a generalised

criterion and robustness conditions related to the accuracy of the identification

process. Algorithms that do not require error-path transfer function estimation are

introduced, and the Independent Quadratic Optimisation algorithm (that forms the

a
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Chapter 1. Introduction

basis of this work) is conceptualised.

Chapter 3 introduces the lattice filter as a means of obtaining orthogonal signals. The

characteristics of the lattice filter are defined, as they relate to the Independent

Quadratic Optimisation algorithm, and the effects of a cancellation path transfer

function on the independence of control filter coefficients is assessed.

With the means of obtaining orthogonal signals defined, chapter 4 extends the

Independent Quadratic Optimisation algorithm concept by analysing its governing

equations and parameters. Chapter 4 also presents simulations of the Independent

Quadratic Optimisation algorithm for deterministic and random signals in single and

multi-channel systems. The simulations highlight the limitations of the Independent

Quadratic Optimisation algorithm as pre-empted in chapter 3.

Chapter 5 identifies the requirements of a digital signal processing system, with

specific regard to active noise and vibration control. Use is made of these concepts to

show the effectiveness of the Independent Quadratic Optimisation algorithm in the

real-time control of noise/vibration using various experimental apparatus (ie. a semi-

infinite duct and plate).

Finally chapter 6 summarises the findings of this study, and gives suggestions for

future research.

9
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L4 New Work

New work original to this thesis is as follows:

Literature review with recommendations for improving commonly used

algorithms in active noise and vibration control, as defined from a control

theory perspective.

Use of the lattice filter to provide orthogonal signals to a linear combiner (or

control filter), so that the control filter coefficients can be adapted

independently using the Independent Quadratic Optimisation algorithm.

3. The Independent Quadratic Optimisation algorithm, which uses three estimates

of the cost function for each independent control filter coefficient, and fits

these estimates to a quadratic function to determine the optimum coefficients.

Assessment of the effect of parameters of the Independent Quadratic

Optimisation algorithm on the performance of this control scheme.

2.

4.

5. Assessment of the limitations of the Independent Quadratic Optimisation

algorithm.

Experimental verification (both noise and vibration control) of the Independent

Quadratic Optimisation algorithm using a transputer network.

6

-10-
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Chapter 2. Cont¡ol Theory - Literature Review

2.1 Introduction

In this chapter the electronic controller that generates the control signal, for use in an

active noise and vibration control system, will be introduced from a "control theory"

perspective. The majority of active noise and vibration control systems developed

between 1980 and the early 1990's evolved heuristically from an adaptive signal

processing context, largely as a result of the work of Widrow and Stearns [1985]. It is

considered that this heuristic approach overlooked many key concepts that are

commonly used in control theory, which can simplify and enhance the common

algorithms used in active noise and vibration control.

This chapter will examine the standard control systems and their associated algorithms

using control theory developed since the 1950's. Classical and modern control will be

briefly revised, as will the important clarification between system identification and

control. The distinction between control and identification leads to the application of

"self-tuning regulators" to active noise and vibration control. The control scheme (that

is, control law and parameter adaptation, both of which will be defined shortly), that

will be used as a basis for summarising and enhancing common algorithms used in

active noise and vibration control, will be defined using a minimum variance approach

within the framework of self-tuning regulators. It will be shown that this type of

approach leads directly to more complex control schemes for more complex physical

systems.

This chapter will also highlight possible new approaches for control scheme

-t2-



Chapter 2. Control Theory - Literature Review

development, and the major problems that need to be addressed in the electronic

control system domain of active noise and vibration control.

Alternative methods of control outside the realm of standard control theory will be

introduced. As part of this investigation, the Independent Quadratic Optimisation

algorithm concept will be introduced as a means of overcoming some of the problems

encountered with the standard control algorithms. The Independent Quadratic

Optimisation algorithm forms the basis of the remainder of this work.

2.2 Classical versus Modern Control

A control scheme is required when a process output is to be regulated or stabilised

within certain desired bounds. Classical control theory was developed by Bode,

Nichols and Nyquist in the L940's, and is based on the graphical representation of the

transfer function of a process in "closed-loop" form. Typically a feedback control

compensator was used to compensate for poor closed-loop performance (defined by

the gain and phase margins of the closed-loop system). This method of control has

been applied to active headsets [Carme, 1987; Simshauser, 1955], for which a lumped

parameter model of the process is used, and broadband attenuation is achieved.

Nelson and Elliott 11992] give an excellent introduction to this method, and

appropriate references for a more general study, these being in particular Kuo [1980]

and Franklin et al [1990].

-73-



Chapter 2. Control Theory - Lite¡atu¡e Review

More recent control methods ("modern control theory") have used a state-space

representation of the physical system. Dohner and Shoureshi [1989], Wu et al [1995]

and Hull et aI Í19911 have given state-space forms with specific regard to active noise

and vibration control. Modern control concepts can be used to derive optimal control

laws for the system.

Continuous or discrete forms of controllers have been used, with the parameters of

discrete forms able to be adapted to account for process changes. Discrete forms of

control schemes usually use "adaptive filters", which are discussed in appendix 4.1.

Adaptive control is an important part of modern control, and it is in this realm that

the remainder of this work is focused. Adaptive control is essential as a result of the

ever-changing physical environment in which control of noise and vibration is

required, and it is this form of control which unless otherwise stated will be discussed

throughout this chapter.

It should be noted that the terms "process" and "system" will be used interchangeably,

but are to be interpreted as having the same meaning.

23 Control Yersus Identification

In this section the difference between the control of a system and the identification of

a system will be highlighted with regard to active noise and vibration control. In

particular, two models most commonly used to form a control and identification

-74-



Chapter 2. Control Theory - Literature Review

scheme, will be introduced.

To achieve control of a system (that is, to achieve a certain output from the system

regardless of the input), the expected response of the system (or a similar reference

system) to certain inputs is required. That is, to be able to predict the output of the

system from an input requires identification of the system. If the system is continually

changing then identification must be performed concurrently with control. It is the

interaction of these concurrent schemes that can cause the system to behave in an

unstable manner.

Unless otherwise stateci, the review of control theory will concentrate on single

channel systems; that is, systems with a single control source, an error sensor and

possibly a reference sensor. The theory for a single-channel system can be extended

readily to multi-channel systems.

A simple single channel control system (either feedforward, feedback, or a

combination), consisting of a disturbance within a duct that is to be controlled by a

single loudspeaker, and measured by a reference sensor and an error sensor is shown

in Figure 2-L. The notation used in Figure 2-1 is in keeping with modern control

theory. It may be possible to obtain a measure of the disturbance (whether stochastic

or deterministic) using the reference signal, d(n). The signal from the error sensor is

represented by y(n), and can be considered to be composed of a "reference model"

output (that is, the output from the error sensor due to the known and unknown

disturbances), yn'(n), and its inverse estimate (that is, the output from the error sensor

-15-



Chapter 2. Control Theory - Literature Review

due to the control signal), 9^@). Note that y,',(n) and l*(n) are unavailable as they

are combined in the vibro-acoustic domain. The control signal is represented as u(n).

These signal descriptors will be used to consider the two models commonly used to

form a control and identification scheme; that is a "Model Reference" or a "Model

Identification" system.

Keference

Figure 2-L. One-dimensional single channel (feedforward, feedback or a combination)

control system. A measure of the disturbance is given by d(n), the control signal is

represente d by u(n) and the "process output" is represented by y(n) . The process

output is composed of the disturbance output (or "reference model output"), y^(n),

and the output from the "control process" is given by 9^(n).

A typical Model Reference system is shown inFigne 2-2. The signal descriptors used

9enøor
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Chapter 2. Control Theory - Literatu¡e Review

in Figure 2-2 are as described above. The "process" is the cancellation path transfer

function (also termed the error path, secondary path or auxiliary path transfer

function), with the output from the process at the error sensor resulting from the

control signal input. The process output must correspond to the inverse estimate of

the reference model output.

Unknown
Oiøtstrbance

v,n(n)

ym (n)
Rnown
Oiølurbanae

9n.(n)
Troaeeø
OubpuL

Figre 2-2. Model Reference Adaptive System. The controller generates the control

signal that passes through a process (the cancellation path transfer function) and

results in a process output at the error sensor which should equal (but be out of phase

with) the reference model output at the error sensor, to achieve cancellation.

The reference model is the transfer function from some known disturbance input (eg.

duct ventilation fan) to the error sensor. The unknown disturbance could be caused

by, for example, flow generated noise within a duct.

REFERENCE
MOOEL

CONTKOL
TARAMETER
ADArfATION

Error
)iqnal = y(n)

CONÍROL LAW
(C o nt r ol F ilf,er / ìtr u ctu r e)

?ROCE99
(Cancellalion TaLh
Tranøfer Function)Control

9i6nal = u(n)
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Chapter 2. Control Theory - Literature Review

The term "control law" is the law from which the control signal is generated by control

filters formed in a certain structure (commonly a single filter). The term "control

parameter adaptation" relates to the scheme or algorithm used to adapt or optimise

the parameters used in the control law.

An alternative interpretation of a Model Reference system uses a theoretical model as

the reference model, and the output of the error sensor as the estimate of the

reference model output. This interpretation will not be considered further as it is very

difficult to accurately construct a theoretical model of complex physical systems. The

Model Reference approach represents a typical form of system identification with the

prediction error, y(n), also known as the "output-error" in the field of system

identification (since the parameters of the control structure are adapted so that the

control structure in combination with the process is equivalent to the reference model,

as discussed in appendix 4.2).

The Model Reference form of control and identification is not suitable for active

noise and vibration control because the reference model and its inverse estimate are

unavailable to the electronic control system, as they are combined in the vibro-

acoustic domain. (However, it will be shown in section 2.4.2 how these signals can be

estimated in a form of model reference or output-error control).

It is considered that the "Model Identification" form of control and identification is

more appropriate for active noise and vibration control. This system is shown in

Figure 2-3, and is more commonly known as a "Self-Tuning Regulator". As for the

18-



Chapter 2. Control Theory - Literatu¡e Review

Model Reference form, the process is equivalent to the cancellation path transfer

function, with however the process output equivalent to the output from the error

sensor. Unlike the model reference approach, both the input (ie. control signal) to

the process and the output from the process are available for identification. The

process has also known (eg. duct ventilation fan) and unknown (eg. flow generated

noise within the duct) disturbance inputs.

It should be noted that both the models shown in Figures 2-2 and 2-3, whilst being of

either or a combination of feedforward or feedback form, do not explicitly show

corruption of the reference signal, which will be made apparent in the next section.

This simplification was made so that the difference between the "Model Identification"

form and the "Model Reference" form is more readily observable.

The Model Identification scheme first identifies the process (using a model of the

process with the parameters of the model termed the identification parameters) and

then uses the knowledge of the process determine the control law parameters. In the

identification problem, a performance measure based on the prediction error (ie. the

difference between the process output and the process output predicted from a

model) is used as a means of attaining small identification parameter errors. In the

control problem, regulation to a zero process output is desired for active noise and

vibration control, with the possibility of substantial control law parameter errors yet

still satisfactory control [Cowan and Grant, 1985].
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Figure 2-3. Model Identification Adaptive System (Self-Tuning Regulator). The

process represents the cancellation path transfer function, with its output the error

signal, its input the control signal and the disturbances (which may be measured by

the reference sensor or may be unknown).

The control law parameters can be defined directly (or implicitly) if the algorithm

used to identify the parameters of the process model is implicitly integrated into the

control algorithm, or it can be defined explicitly (or indirectly) if the identification of

the process model is treated separately from the control probiem. Thus common

terms used in the control literature relate to separability (ie. the effect of treating

control and identification separately), certainty equivaience (use of the identification

parameter estimates as though they have no errors), cautiousness (use of the

identification parameters with some degree of identification parameter estimation
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error inbuilt into the control algorithm), and dual control (which means that the

control scheme must perform both the task of regulation and identification in a

cooperative manner; ie. if the optimal control signal is zero then some fluctuation of

this signal must be allowed so that identification can take place concurrently)

[Goodwin and Sin, 1985; Chalam, 1987; Isermann, 1991).

The key concept throughout this work is that a control law is defined from the

identified parameters of the process model. Thus only a single algorithm is required

to adapt the process model parameters, and the control law parameters can then be

determined (not through adaptation) directly from the identification parameters. In

active noise and vibration control, a heuristic development of common algorithms has

lead to a combination of both implicit and explicit control parameter determination.

The interaction between the identification and control parameter adaptation schemes

can lead to instability. The next section will show how these heuristically developed

algorithms can be enhanced through definition by the minimum variance approach,

discussed generally in appendix 4.3.

2.4 Modern Control Theory Applied to Active Noise and Vibration

Control

This section will conside¡ self-tuning regulators as applied to active noise and

vibration control. As discussed, a self-tuning regulator requires the identification of a

system before it can be controlled. The important attributes of an identification and
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control scheme have been defined by many researchers [Bitmead et al, t990; Goodwin

and Sin, 1985; Franklin et al, 1990] and relate principally to disturbance rejection (a

system that has good regulation in the presence of disturbance signals is said to have

good disturbance rejection), sensitivity (a system that has good regulation despite

changes in the process parameters, is said to have low sensitivity to these parameters),

robustness (a system that has good disturbance rejection and low sensitivity is robust)

and stability (bounded system inputs and outputs). These definitions will be used

throughout this section.

A self-tuning regulator has three essential components that are discussed in summary

form in the appendix. Terms and concepts defined in the appendix will be used

throughout this and other chapters, and the appendix is considered an essential

accompaniment to this chapter. The appendix is divided into sections as defined

below:

Adaptive digital filters as process models and for control law definition. The

different forms and responses of these types of filters are discussed in appendix

4.1.

Identification of process parameters. Appendix 4.2 discusses the models used

to identify processes, with particular regard to the advantages and

disadvantages of non-recursive and recursive forms. Two methodsfor algorithm

definition are assessed, with the algorithm type dependent on the process

model.

a

a

))
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Control law definition through minimising the variance of the process output.

Appendix 4.3 describes the minimum variance control approach, with regard to

knowledge of identified process parameters.

The common algorithms used in active noise and vibration control will be shown to

follow directly from the minimum variance control theory approach. Heuristic

improvements of these common algorithms, developed through from 1980 to 1990, will

be shown to be standardised by the minimum variance control theory approach.

Other means of improving the most common algorithms will be shown as derived

from this theory. The use of minimum variance control leads directly to Linear

Quadratic Gaussian (LOG) control for non-minimum-phase plants. H* control is a

further extension of this and is related to the development of a cautious (as opposed

to certainty-equivalence discussed above) controller.

The control theory can be presented using a state-space analysis, but in this chapter it

will be presented using transfer functions modelled by polynomials with the delay

operator, q-r (a discussion on the use of the delay operator to model transfer

functions using polynomials is given in appendix 4.1). The term transfer function is

used generically; That is, when used in the context of phase and amplitude, the

frequenry response form is implied, and when used in the context of delays and

convolutions, the impulse response form is implied (with further discussion given in

appendix 4.1).

Results will be presented for a single channel system, but they can be easily extended
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to multi-channel systems. This unified view of the most common algorithms is an

extension and review of the work by Doelman [1991] and Ren and Kumar [1989].

The most general form of control law incorporating both feedforward and feedback

forms of control, as well as allowing for input contamination, will now be considered.

Doelman [1991] defined such a system in which the disturbance was partly defined as

known or measurable, and partly unknown. The single channel system was excited by

these disturbances as well as the control signal. Feedforward control was achieved

using a "reference sensor" that unfortunately was also subjected to acoustic feedback

(otherwise known as input contamination) from the control source. Feedback control

was achieved using an "error sensor". The overall physical system that allows for a

feedforward, feedback or a combination of both control schemes is shown in Figure 2-

4, with the time delay between the reference sensor and error sensor given by r 2,

between the control actuator and the reference sensor by r 3, and between the control

actuator and the error sensor by rr. Note that the location of the algorithm used to

adapt the control law parameters is not shown for clarity in Figure 2-4. The signal

from the reference sensor is denoted d(n),that from the error sensor byy(n) (defined

simply to correspond with the control theory literature), and that to the control

actuator by u(n).

The corresponding block diagram form is shown in Figure 2-5, incorporating both

feedforward and feedback control filters with input contamination of the reference

sensor signal. Figure 2-5 shows both the feedforward, G"o, and feedback, G*,

control filters. The other transfer functions are related to the process and the

disturbance models. The cancellation path transfer function is represented by Gru

and the acoustic feedback transfer function is represented by Gr". The disturbance

models are given by Go^ representing the transfer function for the measurable

disturbance, and Go, representing the transfer function for the unmeasurable

disturbance.
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Before considering the feedforward and feedback components separately, the

Diophantine equation will be introduced and the minimum variance control law

formulated in its most general form. The Diophantine equation gives an insight into

the physical effects and requirements of feedforward and feedback control schemes,

which will be discussed in sections 2.4.11 and 2.4.1,.2. Feedforward and feedback

components will be considered separately, using simplifications of the theory to be

outlined in this section, and related to the extensive literature on active noise and

vibration control to show where commonly used algorithms can be improved.

Feedforward control will be considered firstly without and then with input

contamination, followed by consideration of feedback control. It will be shown that

the control filters can be of infinite (IIR) or finite (FIR) impulse response, dependent

upon the type of disturbance to be controlled.

The polynomials shown in Figure 2-5 should strictly be written as for example A(q),

but instead will be simplified to A, for ease of presentation. It can be shown using

Doelman's [1991] system representation, that the system output (error signal) is given

by

y(n) = 
]n-"u(n) 

+ 
|n-"x(n) 

+ 9*tr, Í2-Il

This can alternatively be written as

y(n+r r) = 
Turr, 

- 
]*{"*r fr z) * M e(n*rr) * #"r", Í2-21

where the Diophantine equation is

C

DA
=M +o-rt N,DA Í2-31
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with M of order (r, - 1) and N of order (no+n^-I). The unpredictable part of the

disturbance is Me(n+rr). The predictable part of the disturbance, !r@), can be
DA

rewritten in terms of the known signals, and incorporated into the system output

(error signal) to give

This equation could be used to define the control law (that is, the equation defining

how the control signal is to be generated), however the known disturbance is

measured by the corrupted reference sensor and is therefore not directly obtainable.

Therefore the reference signal should be used instead of the known disturbance when

i@+r r) = lt@) 
. u#"r"¡ . 

lq"-" 
W*(n)

forming the control law. The reference signal is given by

d(n) = x(n) * !u@-r r)
A

[2-4)

Í2-sl

t2-7)

[2-8a,b,c]

Hence the minimum variance predictor can now be written as

. N,\ (u*o FGMDy\n+rJ=¿t\n/-lC - EC 
q

),r, 
. 

$n',-', 
U24d(n) Í2-61T1-72-T3

The minimum variance control law can therefore be formed as (refer to appendix 4.3

for the formulation of the minimum-variance control law)

u(n) = -L ¿@) - [y@)
HH

where

K=NE
L = GMDAq'.-',

H=MD(BE-FGq't-'z-'z¡

Hence to control the system output (that is, regulate the error signal to zero) requires

a feedforward (represented by GRp = -L lH) and a feedback (represented by
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GRs = -K / H) control filter, each of infinite impulse response type (as their transfer

function requires both a numerator and denominator polynomial for accurate

representation). It is also apparent that the polynomials B,C,G and F must be

minimum-phase otherwise they would not be invertible (refer to appendix 4.1 for

stability of inverse based on minimum-phase characteristic). Doelman U9911

presented his work using a generalised criterion (as defined by equation (A-45) in

appendix 4.3), first proposed by Elliott et al [1987]. This generalised criterion

enables the "Generalised Minimum Variance" control law to include pole placement

(through use of the polynomials P and Q of the criterion given by equation (A-45) of

the appendix), and thus reduce the effect of non-minimum phase zeroes.

2,4.L Feedforward versus Feedback Control

Equations (2-7) and (2-8) give the requirements for feedforward and feedback control

laws. Feedback control is required if N'.0, which implies that feedback control is only

responsible for the reduction of the resonant response caused by stochastic

disturbances (ie. the predictable component of the unknown disturbance, as defined by

the Diophantine equation (2-3)). Feedforward control will have no impact on the

unknown disturbance, and will only reduce the known disturbance by an amount

dependent upon the coherence of the reference signal with the known disturbance (as

defined by equation (A-24) in appendtx A.2.2). The following sections discuss the

causality constraints for feedforward and feedback control schemes, and give a brief

insight into physical control mechanisms.
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2.4.I.L Causality Constraints

A system is causal if it has a response only after being excited. Causality is not a

concern for periodic (deterministic) disturbances (Burgess [1981], as noted by Swanson

[1991]), but greatly affects the achievable attenuation of stochastic disturbances. A

stochastic disturbance is one in which white Gaussian noise is passed through an

Autoregressive Moving Average (ARMA) filter (note that the AR part results in

resonance peaks in the spectrum, while the MA part results in anti-resonances or

dips/troughs). The causal constraint limits the frequency domain analysis of systems,

and requires a separate analysis in the time-domain. The following comments relate

specifically to causality constraints for the feedforward and feedback implementations.

Feedback System.a

The resonances (peaks) of the disturbance can always be cancelled (ie. they are

always a component of the predictable part of the disturbance as per the

Diophantine equation (2-3)), however the degree to which broadband or

coloured noise can be cancelled will depend on the time delay of the

cancellation path transfer function, r, (ie. the remaining coloured noise will be

the unpredictable component of the Diophantine equation (2-3)). If the delay is

minimised, good broadband attenuation can be achieved, and has been observed

by Elliott et al [1995].
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a Feedforward System.

Perfect cancellation of a stochastic disturbance is possible provided the time

taken for the disturbance to travel from the reference sensor to the control

source, rr, exceeds the time taken for a measure of the disturbance to pass

from the reference sensor through the controller and finally re-enter the

"physical system" via the control actuator (this "electronic" time delay is known

as the "group delay"), ro, and is shown in Figure 2-4 for both feedforward and

feedback control schemes. The solution of the Diophantine equation also

requires r, 2 r ,, which means that the distance from the control actuator to

the error sensor must be less than the distance from the reference sensor to the

error sensor.

2.4.1.2 PhysicalControlMechanisms

A control source can act to reflect energy (and in so doing possibly change the

impedance seen by the disturbance, provided it is placed near enough to it and the

disturbance is periodic) or absorb energy (although this can result in greater power

output by the disturbance and is therefore not an efficient form of control). A control

source generally acts to both absorb and reflect energy [Snyder and Hansen, 1989].

The physical control mechanism depends on the type of disturbance (eg. periodic or

stochastic), the directionality of the control actuator, the type of control scheme (ie.

feedforward or feedback), and the type of physical system (ie. reverberant or non-
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reverberant).

The impedance seen by a random noise source in a non-reverberant system cannot be

changed, as enforced by the causality principle. Therefore the physical control

mechanism for this type of source/system arrangement must be the absorption of

energy. However for a reverberant system with a random noise source, the control

mechanisms can be either absorption or impedance change.

Consider a periodic source in a duct. An omni-directional control source placed in a

duct acts to primarily reflect energy, unloading the disturbance source, and storing the

transient energy in a standing wave. This type of control source also acts to absorb

energy in a minor way to avoid any resonance between the control and disturbance

sources. Flowever, a directional control source placed in a duct, cannot change the

impedance seen by the disturbance source, therefore it can only absorb energy.

If it is possible to change the impedance seen by the disturbance, global attenuation

can be achieved. As feedforward systems require a measure of the disturbance, they

can be placed near the source of the disturbance and can therefore lead to global

attenuation. On the other hand, feedback systems require no a príori measure of the

disturbance and therefore result in zonal attenuation. Therefore, when feedback

control systems are placed in the free-field at remote distances from the disturbance

source, they must absorb energy to be effective. If the disturbance excites

modes/resonances of the physical system, then these resonances can be damped,

resulting in global attenuation by a feedback controller.
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2.4.2 Feedforward Control Algorithms

It is apparent from the minimum variance control law defined by equation (2-7) that

only a feedforward controller will be required if the predictable part of the unknown

disturbance is zero. This requires that the polynomial N is zero, which is possible

provided that DA is a factor of C, so that the Diophantine equation becomes

C/DA=M. This means that there is no correlation between the plant output (or error

signal) y(n), and any part of the unknown disturbance, implying that this disturbance

cannot be minimised at all. Thus only the known (or measurable) disturbance can be

minimised with feedforward control. As noted by Swanson [1991], and discussed

above, the principles of causality and coherence between the reference sensor and the

error sensor are essential to feedforward control.

Snyder [1991a] used a state-space representation of a system to show that feedforward

control alters the zeroes of a system, or the frequencies where a non-zero input will

have a zero output. Snyder [1991a] also notes that feedforward control, by altering

the zeroes of a system, in effect alters the impedance of a system to an incoming

disturbance. This has also been made apparent by Elliott and Darlington [1985], who

show that a feedforward system using a synchronously sampled reference signal is

effectively an adaptive notch filter with the notch centred at the frequency of the

disturbance.
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2.4.2.L Without Corruption

The simplest case of active noise and vibration control involves the use of a reference

sensor that is not corrupted by acoustic feedback from the control actuator.

The first active noise control system implemented by Conover [1956] managed to

avoid acoustic feedback. This system involved the control of noise from transformers,

radiating harmonic frequency components with a fundamental of twice the frequency

of the electrical supply. With full-wave rectification and band-pass filtering, the

harmonic reference signals were produced, the phase and amplitude of which could be

adapted in a feedforward sense to minimise the sound pressure level at discrete

locations. This is a typical example of wave-form synthesis of the reference signal

from synchronous sampling (eg. use of a tachometer on rotatingfreciprocating

machinery). Chaplin et al 17978,1980,19831 used synchronous sampling to provide a

periodic pulse, from which the control signal could be generated (by "waveform

synthesis") with frequency components corresponding to the fundamental and first few

harmonics of the periodic pulse. Elliott and Darlington U9851 have assessed

synchronous sampled signals as a special case of stability analysis, but also have shown

how waveform synthesis can be implemented digitally. Dines [1984] used the light

emission from unsteady burning in a turbulent flame, as the independent reference

and achieved broadband attenuation of the generated noise field.

Attempts to avoid acoustic feedback were made using unidirectional control sources

and reference sensors. Eghtesadi and Leventhal [1981] developed the "Chelsea
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Dipole" in which corruption of the reference sensor was eliminated by placing it equi-

distance between two control actuators driven out of phase and placed a half-

wavelength apart. Nelson and Elliott U9921 showed that acoustic feedback can be

reduced using two monopole sources driven out-of-phase with an appropriate delay

dependent upon their spacing. This type of "dipole" system was implemented by

Swinbanks U9l3). Nelson and Elliott 119921also showed that unidirectional radiation

can be achieved using a combination of a dipole and a monopole, as was first

suggested in the theory developed by Jessel [1968] and Malyuzhinets [1969]. This

approach was used by Jessel and Mangiante [1972) and is known as a "tripole system",

with similar studies performed later by Canevet [1978] and Berengier and Roure

[1980]. Attempts were also made by La Fontaine [1983] and Shepherd [1985] to make

the reference sensor directional. Warnaka 11982) gives a good summary of these

physical techniques, based on fixed-filter compensation.

The most commonly used adaptive feedforward algorithm in active noise and vibration

control will now be derived from the minimum variance control theory. The model

for this system is shown in Figure 2-6, where again it should be noted that the location

of the algorithm used to adapt the control law parameters is not shown for clarity.

The minimum variance controller can be written using equation (2-6) with N=0 and

C/DA=M, such that the predictor becomes

g@)=!
A

-"1"" * 
ffø"-"*@))

q 12-el

It is apparent (by comparison with appendix A.2.1) that the predictor is in output-
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error form, and the minimum variance control law is given by

u(n) = Wx(n)

with the control filter given by

* = -li,-")llï, ")

Keference
Signal

Error
,(n)

Figure 2-6. Feedforward Control without corruption of the reference signal.
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It is apparent from this equation that an IIR filter is required to estimate W, however

it is common to estimate I4z using a only a FIR filter. This simplification is often

used in ducts, for which E=A=I can be assumed as the system is non-reverberant,

and for periodic noise it can be shown that B is a factor of G.
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The most common implementation (in active noise and vibration control) of this

control scheme is the filtered-X algorithm (note that the most general form of the

least mean squares or stochastic gradient algorithm is defined in appendix 4.2.3), for

which the cancellation path transfer function is firstly identified. The means of

identifying this transfer function will be discussed shortly, but it is important to note

the assumed knowledge of this transfer function. In accordance with appendix 4.2.1.1,

the regressor (or set of delayed filtered reference signal samples), Q@), is defined

using the reference signal filtered by the cancellation path transfer function, and the

parameter vector (or set of control filter coefficients), g@), consists of only the

control filter coefficients, such that

e@) = Íxo(n),...,xF (n-u*) It
6@) = Ífr o@),...,û, n*(n))r

[2-12a,b]

where xF(n) represents the reference signal filtered by the cancellation path transfer

function. The prediction error, e(n), can be written strictly using the predictor, i(n),

in the form of equation (2-9), such that

e(n) =y(n) -Íuo(r) -e'ç"¡çç"¡1 Í2-r4l

This form of prediction error has been termed the "augmented error", however it is

commonly assumed that since control filter adaptation takes place slowly (if the Least

Mean Squares or equivalently Stochastic Gradient algorithm is used), then the law of

commutation holds (for the control filter and cancellation path transfer function

convolution operations on the reference signal) and uF@) = e'çn¡ççr¡. The effects

of this simplification will be discussed shortly, however with this simplification the

prediction error becomes e(n) = y(n), and the parameter vector (of control filter

coefficients) can be updated using the I-east Mean Squares algorithm (or stochastic
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gradient algorithm) which in this form has become known as the filtered-X algorithm.

o(n*t) = e@) - 2¡"to@)tØ) [2-r4]

This algorithm was originally derived heuristically from the work of Widrow et al

119751 and first used in active noise control by Burgess [1981]. It is important to

realise that the definition of the filtered-X algorithm relies on the assumption of slow

updating of the control filter coefficients and the approximations discussed in

appendix A.2.3 for the general least mean squares (or stochastic gradient) algorithm.

It is not easy to determine the required number of coefficients for the control filter.

If there are too many coefficients, the excitation will not be persistent. The persistent

excitation condition is discussed in appendtx A.2.2, and requires that there be no more

coefficients in the control filter than twice the number of spectral components in the

reference excitation. However in reality there will always be some noise in the input

at all frequencies (eg. from turbulence), therefore providing a uniquely determined set

of optimal coefficients. If this noise at some frequencies is very much lower than

other spectral components, the disparity will cause very slow convergence for some

coefficients. Thus control filter coefficient saturation and instability can occur. To

avoid this problem leakage of the coefficients is necessary [Honig and Messerschmitt,

19S4]. The use of a leakage term also aids incomplete cancellation of DC offsets,

quantisation noise and round-off errors. Isermann [1991] notes that the DC offsets

can also be modelled.

The ability to commutate the cancellation path transfer function estimate and the

control filter assumes that the control filter is only slowly time varying and therefore
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can be considered to be time invariant. The use of the recursive least squares

algorithm (discussed in appendtx A.2.3) can however increase the convergence rate

considerably, thereby invalidating this commutation process. Flockton [1991] has

shown by experiment that increased convergence speed, using the standard filtered-X

control algorithm, results in an initial instability in convergence that is dependent on

phase and delay characteristics of the cancellation path transfer function. Flockton

U991] proposed eliminating the effect of the cancellation path transfer function on the

weight adaptation, in a similar way to that of Johnson [1990], by augmenting the error

signal to directly obtain the disturbance to be minimised. It appears that a similar

approach has also been taken by Doelman [L99L] and Kim [199a].

The use of the augmented-error approach eliminates the interplay between system

identification and control that is present with the filtered-X algorithm. The degree to

which the augmented-error approach is useful, is dependent upon the accuracy in the

estimate of the cancellation path transfer function. Flockton's results are similar to

Johnson's, finding that the convergence rate of the filtered-X algorithm using the

augmented-error was improved only for accurately estimated delays in the cancellation

path that are substantially greater than the convergence time of the least mean

squares algorithm in the equivalent system with no cancellation path delay. Thus the

augmented-error approach is only useful for efficiently implemented fast adaptation

algorithms such as the recursive least squares algorithm implemented on a joint

process lattice filter [Park and Sommerfeldt, 1994].

Johnson [1990] notes that the augmented-error approach was first proposed by
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Ionescu and Monopoli 11977) for "Model Reference Adaptive Control (MRAC)"

systems. Astrom and Wittenmark [1989] use the augmented-error concepts to show

how the Self Tuning Regulator form is equivalent to the Model Reference Adaptive

Control form.

As discussed, the filtered-X algorithm requires the separate identification of the

cancellation path transfer function. The required knowledge of the cancellation path

transfer function complicates the adaptive control algorithm, unless an algorithm that

doesn't require knowledge of this transfer function is used (eg. Smith and Chaplin's

[1983] "power sensing" algorithm). A general discussion of these types of algorithms

will be presented in section 2.5.

Modelling of the cancellation path transfer function was performed by Eriksson [1989]

using a Galois sequence (or Pseudo Random Binary Sequence (PRBS)) as defined by

Schroeder [1984]. As discussed in appendix A.2, this is a variant of the instrumental

variables technique. It can be shown that the bound (known as the Cramer Rao

bound [Ljung and Soderstrom, 1983]) on the covariance of the parameter vector

(which now is the vector of parameter estimates for the cancellation path transfer

function) is given by [Johnson, 1992)

E{tô-eolt[o-oo]]> 1

t @2* I oz) 12-1'51

Here the power of the injected PRBS signal is ol and ol is the uncorrelated part of

the disturbance (ie. the input to the error sensor other than that resulting from the

PRBS). The ratio "'*lt: can be interpreted as the signal to noise ratio (SNR). It
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therefore follows that for low SNR's ( < < 1) essential for limited intrusion, the

convergence rate must be very low in order to maintain minimum variance of the

cancellation path transfer function estimate. This means that for accurate estimation

of the cancellation path transfer function, convergence will only be achieved after an

extended period, thus limiting this on-line method of system identification. Use of the

PRBS does however ensure the persistent excitation condition is met.

Johnson [1990] used perturbations of the control filter coefficients to obtain

substantially improved performance (accuracy and speed) of the estimate for the

cancellation path transfer function. Johnson [1990] notes that this novel method is

performed only when necessary, with its main disadvantage being its high

computational load.

Bao et al [1993] increased the SNR by reducing the power of the noise ø] using

adaptive noise (electrical or "in-wire") cancellation. They note that a substantially

improved speed of convergence results with this method.

The effect of errors in the cancellation path transfer function will now be discussed.

For the most general disturbance, the polynomial ,B (in equations (2-9) and (2-11))

must be minimum phase since it is inverted. It can be shown, using the hyperstability

principles developed by Popov or Ljung's Ordinary Differential Equation (ODE)

method [Cowan and Grant, 1985; Ljung, 1983], that a necessary condition for

convergence of the parameter estimates (which is apparent given the minimum-phase

condition on B and the Strictly Positive Real (SPR) condition on A, for algorithm
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[2-16]Re
Grr("j') > 0 V<,¡

Grr(er')

where Gpp = ]n-" 
is the cancellation path transfer function and ôro is the estimate

of this transfer function. This equation suggests that the error in phase between the

predicted and the actual cancellation path transfer function must be within + 90" for

stability, which as will be discussed, has been found by many other researchers. It can

be shown that the controller will achieve optimal convergence despite an error in the

cancellation path transfer function estimate, provided near complete cancellation of

the correlation between d(n) (the reference signal) and y(n) (the error signal) can be

achieved [Ren and Kumar, 1989].

Feintuch et al [L993] analysed the filtered-X algorithm in the frequency-domain, and

defined the bounds of stability for the convergence coefficient, þ, 4s

1 1þ< l2-nl
Px I GpF(e 

j') l2 PR

where P* represents the maximum power of a spectral term in the reference signal (it

can also be defined as the maximum eigenvalue of the autocorrelation matrix for the

reference signal), and I Gro(ri') | represents the amplitude of the discrete frequency

response of the cancellation path. Alternatively, P¡¡, can be used to represent the

maximum power of a spectral term in the filtered reference signal . Sommerfeldt and

Tichy [1990] also show that the stability bound for the convergence coefficient is given

by
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[2-18]þ<
Pxlrn^u*I12

with 1 the number of control filter coefficients, ,f the number of cancellation path

transfer function coefficients, and gpFn,"* the maximum coefficient of the cancellation

path transfer function.

The effect of errors in the cancellation path transfer function estimate have been well

researched. The earliest account of the effect of such errors is made by Morgan

[1980]. Errors in the estimates of the cancellation path reduce the bounds of stability

for the convergence coefficient, such that

l'¿ < cosâ"'('et') 
P-ßl

G.""rr(eJ')Po

where O"n(et') represents the error in the phase, urd Gru",r(et') represents the error

in magnitude of the cancellation path transfer function estimate, and P* is defined as

above. lf E"rr(er') is not within the range + 90o for all values of o, there will be no

stability region for the algorithm. It can further be shown that the time constant of

adaptation is given by

r(ar)=-., ?-20)2 P^Gro"rr(eJ')

Hence if G.o"..(el') is sufficiently small, with a small convergence coefficient, the time

taken for the algorithm to reach instability will be large.

Phase compensation filters and band limited inputs have been suggested as a means of

avoiding this unstable region. Feintuch [1993] suggested applying a simple delay to

the reference signal to maintain the error in phase estimation for the cancellation
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path transfer function to within t 90". This system will not work however if there are

resonances within the actuator or sensor response, so that the total phase response

cannot be predicted with a linear phase filter of this nature. Widrow and Stearns

[1985], as noted by Elliott and Nelson [1994], suggest that if the impulse response of

the estimated cancellation path transfer function has "at leest as great a transport delay"

as the actual response, stability can be assured.

Instead of filtering the reference signal with the cancellation path transfer function,

the inverse estimate of the cancellation path transfer function can be used to filter the

error signal (or process output). It is however possible that the inverse of the

cancellation path transfer function is not causal and therefore not physically realisable.

Extracting the time delay, q-" , from the cancellation path transfer function, Gru,

leaves only the inverse of the ARMA process with no dead-time, B/A, to be

determined. This can be viewed as a compensation filter. With this approach

however, the delay needs to be estimated and errors in this estimation can also reduce

the stability bounds for the convergence coefficient. The effect of a delay on the

standard LMS algorithm has been investigated by Kabal [1983]. The ability to model

the inverse of the cancellation path transfer function is also corrupted by the primary

disturbance, thereby causing the optimal filter to converge to a transfer function other

than the required inverse of the cancellation path transfer function, dependent upon

the level of the disturbance (ie. a biassed transfer function will result [Eriksson,

1991]). Further discussion of the effect of estimation inaccuracies in delay and

cancellation path transfer functions is given by Snyder and Hansen [1990].
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Elliott et al [1987] have considered equivalent transfer functions of adaptive systems,

fed with harmonic excitation, to assess the stability of the adaptive algorithm. This

analysis has been based upon the previous work of Glover U9771, and has also been

used for multichannel stability analysis by Boucher et al [1991] and Elliott et al Í19921.

Elliott has shown, using a z-transform of the weight adaptation process (in a similar

way that Kabal did, although Kabal's [1983] method is more general) that for a

synchronously sampled sinusoidal reference input, the adaptive feedforward system

can be written as an equivalent linear feedback system. The frequency response of

this transfer function represents a notch filter (and for harmonics a comb filter results

[Glover, 1977]) centred at the frequency of the reference signal. Recently Morgan

and Thi [1993] have proposed using this type of adaptive notch filter [Elliott and

Nelson, L9921 to extend the bandwidth of attenuation from narrowband to multi-

narrowband (ot an adaptive "comb" filter) and even broadband, by cascading a

number of these filters.

Analysis of the equivalent linear feedback transfer function using standard root-locus

theory can describe the pole movements from within the unit circle, lrl = 1, to their

bounds of stability on the unit circle. This then can provide the stability bounds of

the convergence coefficient, used in the LMS adaptive algorithm. The pole positions

can also show the effects of inaccurate delay and error-path estimates for the special

case of synchronous sampling. Characteristics (eg. system damping) of the learning

curve (mean square error versus sample number) are also elucidated by pole

positions.
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Darlington [1991] has shown that inaccuracies in delay estimates increases the

passband disturbance on both sides of the notch filter, thereby also reducing the

effective bandwidth. He has also shown that errors in the estimate of the cancellation

path phase increases the passband disturbance on one-side only, dependent upon

whether the phase error is positive or negative. The passband disturbance is a result

of time variance of the adaptive filter that causes modulation of the frequency

component (for a tone) of the filters input. The bandwidth is thus defined by the

degree of variance in the adaptive filter, or the rate of adaptation (or coefficient

modulation) defined by the convergence coefficient.

The filtered-x algorithm has also been implemented in the frequency domain by Shen

and Spanias [1992] based on the work of Widrow et al [1975]. This approach allows

independent modal control, with the elimination of the effect of spectral disparity that

plagues the equivalent time-domain algorithm. This type of approach also allows

control of intensity signals which would otherwise be difficult to control in the time-

domain. Another frequency domain approach using transmultiplexers [Cowan and

Grant, 19851 has recently been proposed by Thi and Morgan [1993]. Their technique

reduces the high computational burden of long FIR filters, with possibly increased

convergence speed due to reduced spectral dynamic range within each

transmultiplexer band.

The effects of transducer non-linearities [Beltran, 1995] necessitates the use of a

controller with a non-linear control characteristic. Neural networks have been

presented as a solution [Brown, 1993; Bozich, 1991], yet their speed of convergence is
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slow, and they require large amounts of computations [Klippel, 1995]. Recently

Klippel [1995] has proposed a non-linear ladder filter (based on a Volterra series) in

simplified form, with less complexity and more efficient implementation.

An improvement in the standard feedforward algorithm will now be broached. The

interplay between system identification and control can be minimised by rewriting

equation (2-9) as 
vi@) = Êu@) * Lx@) l2-2rl

where

V=AE
Ê = BEq-'. [2-22a,b,c]

L = GAq-"

The control filter coefficients can be found by an implicit system identification and an

implicit solution to the Diophantine equation, using the parameter vector and

regressor defined as

ô(rr) = lû0,...,í;nr,î

Q(n) = îu(r),...,u(n-n^),x(n),.

g, ... ,î nrrû r, '.. , ûnu ]t

,x(n-n ) ,9@-I) ,...,f(n-n r) It
12-23a,bl

12-241

From equation (2-21) the control law can be written as

i
u(n) = - 1*@)

H

or equivalently as

* û,nru(n-nø) I Í2-25\

This represents an IIR filter, with the coefficients determined directly from the

implicit system identification. Stability depends upon the accuracy of the estimate for

V. That is the Strictly Positive Real (SPR) condition is

_46_
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> o vco [2-261

This condition determines how accurately the poles of the disturbance model and

cancellation path transfer function are estimated. This approach requires only a

system identification process, not a combination of "control" and "system identification"

adaptations, that is commonly used and can readily result in instability.

The minimum variance predictor, defined by equation (2-2I), is in output-error form,

and so adaptation can be performed using either the algorithm defined by Hsia [198U

corresponding to the recursive prediction error method in simplified form, or the

algorithm defined by Feintuch [1976) corresponding to the recursive pseudo-linear

regression approach in simplified form. These algorithms are discussed in more detail

in appendtx A.2. Hsia's [1981] algorithm is more accurate and requires little more

computation. Ren and Kumar [1989] have defined a similar algorithm (to the

algorithm defined by Hsia) in SHARF form, and further note that ho + 0 for

causality. It should also be noted that the output-error approach can be improved

with the use of a residual term included in the regressor, to better approximate i(n),

as discussed in appendtx A.2.

Sommerfeldt and Tichy [1990,1991], Eriksson [1991], Kuo [1992] and van Overbeek

U9911 have developed similar techniques, and most recently, Reichard et al [1993]

and l.eung [1993] have proposed similar on-line system identification techniques for

the frequency domain. These authors predict the process output in a similar manner

to that of equation(2-2t), such that (note that they assume t-I as per the Recursive
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Pseudo-Linear Regression algorithms discussed in appendtx A.2)

i@)=Hu(n)*ix(n)

With the regressor and parameter vector defined as

ô(r) = lû0,...,ûnr,î 0,...,in.]t

Q@) = Lu(n),...,u(n -n^),x(n),...,x(n -n)lr
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Í2-271

[2-28a,b]

12-29a,b)

l2-30)

The parameter vector is adapted recursively using

¿(n) =y(n) -9@) =y(n) - çrçn¡6çn¡

0(n +t) = ô(r) * -o ç(n)e(n)
tJ + çr(n)ç(n)

where the autocorrelation matrix and gain factor are approximated by

yçn¡nrj:@) =
a

ß + qr(n)ç(n)

This algorithm is known as the projection algorithm or normalised LMS algorithm,

and is an extension of the stochastic gradient method for the recursive pseudo-linear

regression approach. At this point the control law could have been obtained as per

equation (2-25), however these authors used only H as the estimated cancellation

path transfer function, and the filtered-X algorithm defined by equation (2-15). The

use of the filtered-X algorithm causes biassed system identification terms É1 and L, if

the process output reaches zero before convergence of È and i çie. the control filter

coefficient adaptation scheme converges before the system identification adaptation

scheme) [\#angler and Heiland, 1992]. This is because, rf y(n) (ie. the error signal) is

held at zero by the "control" adaptation of the filtered-X algorithm (as it ideally will

be), then the "system identification" adaptation which attempts to minimise e(n), will

be forced to minimise y(n) instead. This means that H and L will converge to

incorrect values (possibly outside their stability range). If the physical system then
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changes and y(n) becomes non-zero, the control filter coefficients will be adapted

again using the last converged system identification term ,â. Thus if Ê is outside the

stability range, then instability will result. Similar results have also been found by Bao

et al [1993], who suggest that the rate of convergence of the filtered-X algorithm be

set less than the "on-line" system identification algorithm.

It is to be noted that if the filtered-X algorithm is not used in conjunction with the on-

line system identification algorithm, and instead the control coefficients are derived

from the implicit system identification as per equation (2-25), then the system will be

stable. The interplay between the control law scheme and the system identification

algorithm in this approach, is well explained by Bitmead et al [1990]. Their results

lead to a discussion on robust control in section 2.4.5.

To achieve global control of noise or vibration in three-dimensional physical systems,

will require multiple actuators and sensors. Elliott et al [1987] first developed a

multi-channel form of the filtered-X algorithm. The cost function for minimisation is

the sum of the squares of all the error sensors. Elliott et al [1987] suggested an

alternative cost function criterion known as the "minimax" criterion, which instead of

minimising the sum of all errors, minimises the largest error. Kuo [1993] presented a

method for efficiently measuring on-line the cancellation path transfer functions using

random noise, with each channel decoupled using an appropriate delay. As discussed,

the cancellation path transfer function can also be measured on-line using available

signals, without the addition of random noise, but this method is unreliable unless

certain precautions are taken (as discussed above), A reliable method of control
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using only a single adaptation scheme has also been described here.

A number of authors [Snyder et al, 1992a,b; Elliott et al, 1987, 1992: Boucher et al,

ßg\ have assessed the asymptotic properties of the multi-channel filtered-X

algorithm. Elliott et al [1987, 1992] and Boucher et al [1991] suggest that the

inclusion of an effort weighting (thus forming a Generalised Minimum Variance

(GMV) approach discussed in appendix 4.3) results in increased robustness to errors

in the cancellation path transfer function estimates. Elliott and Nelson [1994] note

that this term is equivalent to having a "leak" in the algorithm (as used for DC-offset

compensation [Gitlin et al, 1982]). Widrow and Stearns [1985], as noted by Elliott

and Nelson [1994], show that the presence of low level uncorrelated noise (eg. caused

by turbulence or the like) is also equivalent to having a "leak" in the algorithm. It is

considered here that this enhances compliance with the persistent excitation condition,

with more accurate parameter estimates determined. A weighting term also limits

high levels of control signals that could generate non-linearities from the control

actuators, therefore improving robustness.

Elliott and Nelson [199a] note that the convergence time of the different modes of the

system are dependent on the eigenvalues of the autocorrelation matrix, as has been

discussed for the single channel case. For a multi-channel system, the eigenvalues of

the autocorrelation matrix are not only dependent upon the spectral properties of the

reference signal, but also on the spatial distribution of transducers.

Elliott et al [1991] examined the effect of inter-channel coupling, by considering
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instead of a single multi-channel controller, a number of single-channel controllers.

They show that stability can be achieved provided the error sensor of a single channel

system is closer to the control actuator of that system than of another, which is similar

to the causality constraints defined for a one-dimensional feedforward system in

section 2.4.1,.1..

Swanson Í19931analysed the on-line system identification method, originally proposed

by Sommerfeldt and Tichy [1990], with the filtered-X algorithm in a multi-channel

system. He used a "polynomial matrix method" to allow individual or combinations of

error sensors to define the criterion for optimisation by particular control actuators.

He notes that the placement of the error sensors and control sources affects

convergence of the algorithm, with their optimal locations dependent on the spatial

modal structure of the disturbance. He also shows that if two or more of the control

source/error sensor paths are linearly dependent, then instability can occur.

Snyder and Hansen[1992a] have also examined the convergence characteristics of the

multi-channel filtered-X algorithm, finding similar results to Swanson [1993]. They

note that when the number of error sensors exceeds the number of control sources,

with some degree of redundancy (or linear dependence between control source/error

sensor paths) the minimum achievable mean square error will be non-zero. They note

that the convergence coefficient bound, discussed earlier in this section, is further

reduced as the number of error sensors is increased. They also note that the cross-

coupling between transducers defined by the eigen properties of the system, leads to

optimum control filters that are not unique, but depend on the adaptation strategy (ie.
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adapt all coefficients of each channel in turn, or adapt all coefficients of all channels

simultaneously). Their results suggest the inclusion of a control effort term in the

criterion, thus leading to Generalised Minimum Variance (GMV) control and

ultimately Linear Quadratic Gaussian (LOG) control to be discussed in section 2.4.5.

Snyder et al [1992b] also note the importance of observability and controllability

(state-space terminology) of offending modes, as defined by the placement of

transducers (a similar discussion can also be found in Swanson [1986]).

2.4.2.2 With Corruption

Figure 2-7 shows the inclusion of an acoustic feedback transfer function that results in

contamination of the reference sensor. From equation (2-6), with M=C/DA and

N=0, it is apparent that the minimumvariance predictor can be written as:

g@) = !q-'.ll t !9qr1-r2-Ì3lrtrl .
ALTBE)

AG
BE

q"-"d(n) [2-3\)

Í2-321

or by direct comparison of terms, it can be equivalently written as

f(n)=Crr¡nu@)*Wd(n)l
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G
B

PF==q
A

FGÊ=I qrl-r2-13

r1-r2
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l2-33a,b,cl

l2-341

Error

-Í1

BE

GÀW *q
BE

The control law is then given by

u(n) = -4orr,
H

Unknown
Diøturbance e\n)

Known
Diøturbance x\n)

Reference
Signal

,(n)

Figve 2-7. Feedforward control with corruption of the reference signal by acoustic

feedback from the controi actuator.
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Since Ê involves a transfer function difference, then it is unlikely that F/ is u factor

of W and therefore the use of an FIR filter is not possible and an IIR filter must be

used. It is interesting to note that W corresponds to the controller without

corruption, as defined in the last section. Eriksson 11987, L99la, 1991b] used a

modified form of the RLMS algorithm (developed by Feintuch [1976]), known as the

filtered-U algorithm, to adapt the coefficients of H and W based on an estimate of

the cancellation path transfer function ó.o. The cancellation path transfer function

was estimated on-line using a pseudo random binary sequence (PRBS) [Eriksson,

1989] as previously discussed. The filtered-U algorithm is defined using the parameter

vector and regressor, such that

ô(n) = Íû0,...,ûnr,û0,...,ún*] 
l2_35a,bl

e@) = lu 
o (r), ...,uF (n -ns), d u (r), ..., d' (r-uw) ]

where the superscript, F, refers to filtering by the cancellation path transfer function.

The prediction error and parameter vector update equation can be written as

e(n) = y(n) - çrçn¡6çn¡ l2-36a,bl
ô(n +t) = ô(n) - z¡tq(n)e(n)

Note however that the prediction error was estimated as e(n) - y(n), which as

discussed is only true for slow variations of the process (cancellation path transfer

function) and control filters. The interplay between control and system identification

can be eliminated using the "augmented-error".

The control law defined by equation (24\ can be written as

u(n) = -lWra{n) + ... + ¡¡n*d(n-n*¡ * û.p(n-l) * ... * ñnru(n-n )l lz-371
ho

Eriksson [1991a,b] first suggested the application of a fixed "SHARF filter" in active
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noise and vibration control, with the prefilter equivalent to the polynomial AE. The

use of such a filter is discussed in appendix 4.2. Eriksson [1987b] gives many

methods to obtain an estimate for the cancellation path transfer function.

It will be shown later that Eriksson [1991a,b] uses a combination of feedforward and

feedback control to obtain what he terms an "equation-error IIR filter", however the

IIR filter used in this section can be considered to be of output-error type. A FIR

control filter can be used by rewriting equation (2-32) as

9@) = ôru[(1 - ór"w¡"ç"'¡ * w¿(r)] [2-38]

with the control law thus becoming

u(n)= ! ^a@ p-3s)
l-GPBw

This equation can alternatively be written as

u(n) = W;ç"¡ [2-40)

where

V(n) = -Gr"u(n) * d.(n) 12-411

This form of control compensates for the acoustic feedback corruption of the

reference sensor, but requires the estimation of the acoustic feedback transfer

function, ô"u. With good compensation 7(n ) = x(n), and the controller is equivalent

to the feedforward controller without corruption, as defined by equation (2-10).

As discussed in the previous section, initial attempts to compensate for acoustic

feedback used fixed-filters to create uni-directional transducers. As noted by Eriksson

ll992l, Ross [1982] developed techniques using fixed filters, together with adaptive

-55-



Chapter 2. Control Theory - Literature Review

filters, to reduce the effect of acoustic feedback. Warnaka et al [1984] used similar

fixed filters (with adaptive filters) to compensate for acoustic feedback as well as the

cancellation path transfer function.

Besides the moving average parts of the plant transfer functions (ie. B, F and G)

complying with the minimum-phase condition, other stability conditions that ensure

convergence must be satisfied. Analysis of the stability of this system is given by

Swanson [1991], who notes, as does Eriksson [1991a,b], that the solution for ,â and

I2 is not unique. This has also been noted in appendix 4.3, in a general discussion

on minimum variance control.

An alternative updating method that requires no injection of a random sequence, and

requires only a single adaptation algorithm can be developed by rewriting equation (2-

31) as

AEf(n) = (BEq-''', - FGQ-'z-'s)u(n) + Acq-'d(r) 12-421

or equivalently

v9@) = Ê'u(n) * Laçn¡ 12-431

where

V=ÅE
û'=nnq-r -þfin-rz-rt

i = GÀn-"

Again this is an output-error form of control since there is no feedback of the process

output included in the predictor. Hence the algorithms of White [1975] or Landau

ll976l or simplifications thereof, can be used to adapt the parameter vector, with the

l2-44a,b,cl
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[2-4s)u(n) = - 4orr,
H,

This type of approach has been suggested by Doelman [1991] and Ren and Kumar

U989]. The minimum-variance criterion has been generalised by Doelman [1991] to

include a form of pole-placement Self Tuning Regulator (STR) that accounts for non-

minimum-phase transfer functions. This approach was first suggested by Wellstead

119791in an explicit form. Astrom and Wittenmark [1980] have proposed a pole-zero

placement approach. Non-minimum-phase transfer functions can be treated using a

Linear Quadratic Gaussian (LOG) approach, which will be summarised in section

2.4.5.

2.43 Feedback Control

Feedback control is required where no measurement of the disturbance is available.

This type of control scheme was first proposed by Olson [1953, 1956]. Swanson U9911

notes that such applications include spatially incoherent noise generated from

turbulence, noise generated from many sources and paths, and induced resonance.

Using a state-space system representation, Snyder [1991] notes that feedback control

modifies the poles or resonant frequencies of the system. That is, feedback control

alters the duration of the system transient response to an input. Snyder [1991] further

states that feedback control is not well suited to the attenuation of periodic
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disturbances since complete cancellation is possible [Swanson, l99I), therefore

resulting in infinitely high negative gains producing a potentially unstable system

response for transients in the error signal. In this section it will be shown that

feedback control can always attenuate (or damp) the spectral peaks of a disturbance,

but that the broadband attenuation is limited by the time delay between the control

actuator and error sensor transducers. Similarly, Swanson [1991] notes that the time

delay between the control actuator and the error sensor limits complete cancellation

to only periodic disturbances (though good cancellation can be achieved for the

spectral peaks of white Gaussian noise passed through an ARMA filter).

An excellent comprehensive study of the fixed filter design of feedback controllers can

be found in Nelson and Elliott [1992], with a good summary in Elliott and Nelson

t19941. The design of compensation filters to allow for the instabilities associated with

the linear phase response of a delay between the transducers, has been particularly

successful for active headsets [Simshauser and Hawley, 1955; Wheeler, 1986; Carme,

1987). Feedback control has been implemented with some success in ducts by

Eghtesadi et al [1983] and Trinder and Nelson [1983].

A purely feedback system is shown in Figure 2-8, where the location of the algorithm

or parameter adaptation scheme has not been shown for clarity. There is no measure

of a disturbance, hence the only transfer functions shown are the cancellation path

transfer function, Gro, the disturbance transfer function, Go.r, and the feedback

control filter, Go".
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Figure 2-8. Feedback control block diagram.

Chapter 2. Control Theory - Literature Review

v(n)

Í2-471

Reference
eignal

à(n)

Using equation (2-4) with G=0 and F=0, gives the predictor as

9@) = Yrø-"t@) . ]n"'[t - lr-")^ l2-461

Swanson [1991] notes that this is an ARMAX controller. It can be alternatively

written as

y(n) = Gro¡wy(n) * (r - GrrØu@)l

where

G

[2-48]

PF
-11

N
¿q

W
B
-qA

o
7F

bh)

^(q)a

u(n)
Error
9ignal
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12-4el
Wu(n)=- '^;Y(n)

('t. - GPFW)

The controller is able to cancel part of the stochastic disturbance (white Gaussian

noise passed through an ARMA filter) as defined by the Diophantine equation (2-3).

As discussed, the Diophantine equation separates the disturbance into predictable and

unpredictable components dependent upon the delay between the transducers. The

parameter estimates can be determined using the recursive least squares algorithm, or

simplifications thereof. Swanson [1986] used this type of approach, with a lattice filter

efficiently implementing the recursive identification algorithm.

The polynomials B and C must be minimum phase for stability. Swanson [1991] notes

that if the disturbance is modelled as an AR process (instead of ARMA), then no

attempt will be made to identify the zeroes of C, therefore avoiding estimating non-

minimum-phase zeroes. This means that the predictable zeroes (defined by C, or

more specifically N) will not be whitened but that the poles (defined by DA) will be

damped, therefore limiting the amount of achievable broadband attenuation.

Eriksson [1991a,b] has used the control law of equation Q-a9) in what he calls the

"purely recursive form of equation-error IIR", as shown in Figure 2-9. A similar

approach has also been taken by Elliott [1993], who also interestingly notes [Elliott

and Nelson, 1994] that in general ,B will not be minimum phase. Both Elliott [1993]

and Eriksson [1990,1gg7] approximat" W by a FIR filter. Elliott and Nelson [199a]

suggest that if óro is identical to Gro, the control system effectively becomes a
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feedforward tlpe. This transformation is realised using equation (2-49), such that with

lln¡ = y(n) - u(n)Gru [2-50]

then the equivalent feedforward control law becomes

u(n) = Wn@)

Unknown
Oiøturbance e\n)

Krown , xf nÌ'--uøÍrroânce \ /

l2-stl

v(n)

Figre 2-9. "Equation-Error IIR" detined by Eriksson [1991a,b].

If Gru represents a pure delay, then the control problem becomes one of linear

prediction, in which the process output (ie. error signal) will be whitened by an

amount dependent upon the delay (ie. the disturbance cannot be completely whitened

Reference
Siqnal

à(n)
Control
Signal

o _ c(q)
ou D(q)A(q)

/=
?F

Ø(a\

ffiq'"t

u (n)
Error
)iqnal
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as per the discussion of the Diophantine equation). The performance of the

controller depends upon the statistics of the disturbance, or in other words, how

predictable it is. This has distinct parallels with a lattice filter, as discussed in chapter

3.

Elliott et al [1995] describe the transformation of the control system from feedback to

feedforward as Internal Model Control (IMC). Elliott et al [1995] note that this

structure was first introduced by Newton et al [1956]. This technique has also been

described by Chalam [1987] and by Morari and Zofirou [1989] (as noted by Elliott et

al [1ee5]).

Finally, consider rewriting the estimate of the process output (error signal), such that

v¡(") = ky@) * Hu(n) f2-s2l

where

V=AC
k = ANq-'.

/ _-\H = Bq ''\C - Nq ''J
12-s3)

Í2-s4l

This results in the control law

(nu )) (nv
_K

^H

It is possible to determine the control filter coefficients implicitly using a single

adaptation process, and the ELS or RML algorithms (or simplifications thereof) as

appropriate (see Appendix 4.2 for the definition of these algorithms). This approach

will be stable provided B and C are minimum-phase.
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2.4.4 Combined Feedforward/FeedbackControlAlgorithms

This type of control system and its stability constraints can be derived from the

preceding work. Ren and Kumar [1989] and Doelman [1991] have considered this

system. Eriksson [1991a,b] has called this general form an "equation-error IIR filter".

Saunders et al [1993] have similarly implemented a "hybrid" controller incorporating

the feedback part using Linear Quadratic Gaussian control and H* robustness

conditions, and the feedforward part using the filtered-X algorithm.

2.4.5 Linear Quadratic Gaussian Control and 11- Control

Generalised minimum variance (GMV) controllers are subsets of Linear Quadratic

Gaussian (LOG) controllers [Peterka, 1984; Grimble, 1984]. Minimum variance

controllers require specific polynomials in the plant to be minimum-phase, thus

restricting the application of this control law scheme. Doelman [1993] cites

Tohoyama [1991] as evidence of non-minimum-phase polynomials in acoustic systems,

and Elliott and Nelson lL994l provide further evidence.

LQG controllers are able to treat non-minimum-phase polynomials. The criterion is

given generally by equation (A-45) in appendix 4.3, repeated here for ease of

reference.

J = El{P(q)y(n*k) * Q@)u(n)}'ln\ t2-ssl

As discussed by Isermann [1991], the use of. P=l and Q=r (a scalar constant) results
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in only the zeroes of the moving-average part of the disturbance model, C, affecting

stability.

The LQG control scheme is determined firstly by using spectral factorisation [Grimble

and Johnson, 1988] of the non-minimum-phase polynomial, into a polynomial with

non-minimum-phase zeroes and another with minimum-phase zeroes (termed a

Hurwitz polynomial). The minimum-phase zeroes can be cancelled; however, if non-

minimum-phase zeroes are used in the denominator of the regulator transfer function

(ie. control law scheme), then instability will result. If the reciprocal of the non-

minimum-phase polynomial is included in the regulator denominator, then the spectral

properties of the non-minimum-phase zeroes can be neutralised [Doelman, 1993].

This method of control has been applied to active noise and vibration control

problems in discrete time by Thomas [1995] and Bennett [1991]. It has been applied

to continuous time systems represented in state-space form by Bai [1995], who also

uses its capacity to effectively cancel spectral peaks (as discussed in section 2.4.5), in

conjunction with a technique known as Independent Modal Space Control [Oz and

Meirovitch, L983; Meirovitch, 19901 (which eliminates inter-modal coupling).

Elliott et al [1995] examined performance and robustness issues using 1/- control

theory. This type of controller incorporates a degree of cautiousness defined by a

model for the uncertainty in plant estimates [Doyle et al, 1992]. A similar approach

has also been developed by Imai et al [1995], also based on the work of Doyle et al

lLeezl.
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An excellent study of the interplay between the control law design schema (specifically

LQG) and parameter estimation (specifically RI-S) in closed-loop is presented using

the general framework of Adaptive Predictive Control by Bitmead et al [1990]. In

particular, Bitmead et al [1990] note the following points on the interplay:

Optimum parameter estimation requires persistently exciting inputs; Elliott et

al [1995] note that the injection of uncorrelated white Gaussian noise into a

closed-loop system can ensure sufficient persistent excitation.

a

a A feedback controller affects the spectral properties of the plant inputs,

therefore affecting the parameter estimates.

Bitmead et al [1990] discuss the potential of ,F1- optimal adaptive control, since it has

a design criterion deliberately specified to ensure closed-loop stability, and has many

similarities with LQG control. They note that 11- control is yet to be fully developed

for discrete-time systems.

2.5 AlternativeApproach

It has been shown that the stochastic gradient algorithms (LMS or RLMS) commonly

used in active noise and vibration control, adapt the coefficients of the control filter,

and in so doing require knowledge of part of the physical system, known as the

cancellation path transfer function. Gradient approximation in this way is "noisy"
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[Widrow and Stearns, ].985], and inaccurate estimates of the cancellation path transfer

function can result in instability, as has been discussed in chapter 2. Reliable methods

for on-line estimation of the system parameters (not simply the cancellation path

transfer function in an explicit form), and formulation of a control scheme have been

presented in chapter 2, alongwith original proposals for common algorithm

enhancement.

This section is concerned primarily with algorithms that avoid the need to estimate

system parameters. These algorithms require time averaged cost function estimates,

to avoid estimating the system parameters. Such algorithms can be divided into the

following categories:

"Derivative Measurement"a

The derivatives of the cost function are estimated using finite difference techniques

applied to time averaged cost function estimates, and from the derivative estimates

the control filter coefficients are adapted to their optima using the steepest-descent

algorithm or Newton's Method.

. "Curve-Fitting"

Time averaged cost function estimates can be fitted to the known shape of the cost

function ("g. parabolic) to determine the optimal control filter coefficients

corresponding to the minima of the fitted function.
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. Random Search

The optimum of the cost function is found by adapting the control filter coefficients

in random directions, thus forming the random search algorithm. Alternatively they

can be updated from time averaged cost function estimates at random locations,

thus forming the genetic optimisation algorithm.

Artificial Intelligencea

Rule-based intelligent learning systems, in which the control filter coefficients are

adapted to find their optimum values based upon minimisation of the time

averaged cost function. Allows global convergence for cost functions with multiple

local optima, as the cost function is divided into a number of "hyperspaces". Such

algorithms are known as "stochastic learning automata", or "furry logic".

Each type of algorithm described briefly above will now be discussed in more detail.

It is important to note that from this point, time averaging is implied by the "cost

function estimate" description.

2.5.L Derivative Estimation and Curve-Fitting

In this approach the derivatives of the cost function can be estimated using finite

difference techniques applied to cost function estimates, Such techniques have been
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developed and assessed in comparison to least-squares or stochastic approximation

algorithms, by Widrow and Stearns [1985] using "central differences". These authors

have thoroughly investigated the performance aspects of such algorithms, and

specifically compared the steepest-descent algorithm (in which only an estimate of the

gradient is used to adapt the coefficients) and Newton's Method (in which both an

estimate of the cost function gradient and second derivative are used to adapt the

coefficients).

In active noise and vibration control, this type of approach was first taken by Jones

[1987] and Silcox [1987]. Finite difference methods applied to cost function estimates

were used to estimate the gradient of the cost function in the direction of each control

filter coefficient. From this, the cost function was estimated (through time averaging)

at four points in the direction of the steepest gradient, and the cost function minimum

was found in this direction by fitting these points to a quadratic function. This

procedure was then repeated (ie. The direction of steepest gradient was found, a

curve-fit was performed in this direction, and the minimum of this curve was found

etc.). Jones [1987] and Silcox [1987] claim that this type of algorithm reaches the cost

function minimum in about three to four iterations.

This algorithm is shown in Figure 2-10 for adaptation of two control filter coefficients.

In Figure 2-10 the gradient is estimated (using finite differences applied to cost

function estimates) at the starting point (represented by E ). The gradient gives the

direction of steepest descent, along which the control coefficients are adapted, and

cost function estimates are made (represented by x ). The cost function estimates are
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fitted to a quadratic to determine the optimum control coefficients (represented by

A). This procedure is reiterated (ie. starting with a gradient estimate at the optimum

control filter coefficients, determined for the last direction of steepest descent) using

cost function estimates (represented by O), until the cost function minimum

(represented by . ) is found.

*1

CoøN Funcþion
Conþourø

!
Graàienl
Eølimabe

*o

Figure 2-L0. Adaptation of control coefficients based on steepest descent gradient

estimate and quadratic fitting. The solid lines represent the contours of the cost

function, A represents the starting point, x and O represent the cost function

estimates in the directions of steepest descent (' ' ' and - - ), I and . represent the

cost function minima in the directions of steepest descent (' ' ' and - -).
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However if the cost function incorporating the cancellation path transfer function can

be transformed such that each control filter coefficient represents a principal axis of

the cost function, then each control filter coefficient can be adapted independently. A

quadratic function needs only three points for complete definition, therefore cost

function estimates at three points in each independent control filter coefficient

direction leads directly to the optimum of each control filter coefficient, as shown in

Figure 2-1,7. This represents the Independent Quadratic Optimisation algorithm

concept. In Figure 2-11 the cost function contours are shown by the solid lines. The

cost function is estimated (through time averaging) initially at the location represented

by E. Two further estimates of the cost function (represented by x ) are made in

the direction of the independent control coefficient, kno. The optimum of the control

filter coefficient k*o (represented by I ), is found by fitting a quadratic to these

estimates. An estimate of the cost function is made at the optimum of the first

control filter coefficient, and two further estimates of the cost function are made

(represented by o), before determining the optimum of the second control filter

coefficient and therefore the global cost function minimum (represented by . ).

The Independent Quadratic Optimisation algorithm's development, simulation and

practical implementation are original to this thesis, and were first published in 1991

[Mackenzie and Hansen, 199ta; 1991b; Snyder et al, 1991c]. Without a transfer

function in the cancellation path, the control filter coefficients can be made

independent using orthogonal reference signals (as opposed to delayed samples of a

single reference signal) for each coefficient (refer to appendtx A.2.2, in particular

equation (A-26) and associated discussion on independent coefficients and principal
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Ð(es). This concept wilt be further discussed in chapter 3, as will the use of a lattice

filter to generate orthogonal signals. The effect of the cancellation path transfer

function on control filter coefficient independence wiii also be examined in chapter 3.

The effects of the cancellation path transfer function on the Independent Quadratic

Optimisation algorithm witl be further elucidated after the formulation and simulation

of this algorithm in chapter 4. Chapter 5 presents the results of experiments using

physical systems. Other work confirming this approach has been presented by

Botteldooren [1993].

k*o

Coøl Funclion
Conþourø

*o

Figure 2-11. Independent Quadratic Optimisation algorithm. Solid lines represent

contours of the cost function, I represents starting point, x represents estimates

along first control filter coefficient principal æris, I represents the optimum for first

control filter coefficient, o represents estimates along the second control filter

coefficient principal anis, and . represents the giobal cost function minimum.

*1

k,
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Recently Clark and Gibbs Í19921, Gibbs and Clark [1993] and Kewley et al [1995]

discussed a similar algorithm to that presented here, for controlling individual

harmonics. The technique presented by these authors uses each individual harmonic

and its orthogonal component independently (since harmonics are in effect

independent as will be shown in chapter 3). The algorithm used by these authors is

based on Newton's Method, and it will be shown in chapter 4 that it is identical to the

Independent Quadratic Optimisation algorithm developed here.

2.5.2 Random Search

Widrow and McCool [1976] have assessed a method of searching the cost function

using a random search direction. The control filter coefficients are updated in a

random direction based on estimates of the cost function, such that

w(n+t) = w(n) * ¡t¡Î1w@D - ÎW(n)*u(n))lu(n) [2-s6]

where W(n) is a vector of control filter coefficients, ¡r is the convergence coefficient,

11¡ is the estimate of the cost function dependent upon the values of the control filter

coefficients, and U(n) is a random control filter coefficient update direction. Widrow

and McCool [1976] have shown that the performance of this algorithm is equivalent to

the steepest-descent algorithm. The random search algorithm has the advantage of

ease of implementation.

Etter and Masukawa [1981], as cited by Widrow and Stearns [1985], have developed

an algorithm that examines random "locations" (instead of directions) to determine the
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optima of the cost function. This type of algorithm is known as a genetic optimisation

algorithm, and has been implemented for use in active noise and vibration control by

Curtis [1991] and Wangler 11994, 19951. The genetic optimisation algorithm uses an

"estimation universe" of sets, a,i (of which there are a total of Ð, of control filter

coefficients. The cost function is estimated, through time averaging, for each set of

control filter coefficients within the "estimation universe", and then a second

"adaptation universe" of control filter coefficient sets is derived, with each original set

replicated inversely proportional to the cost function estimate. From this derived

"adaptation universe", two sets of control filter coefficients are chosen at random

(known as "parents"), and "mutation" is performed to give a new set (known as the

"offspring") within a new "estimation universe". The cycle then continues with the cost

function again estimated for each set of control filter coefficients within the

"estimation universe". "Mutation" is performed by randomly selecting a control filter

coefficient from each "parent" to use for the corresponding control filter coefficient of

the "offspring". It is apparent that those control filter coefficients that perform better

(ie. have a lower cost function estimate) will have less probability of "mutation",

ultimately resulting in the "offspring" becoming more and more alike, leading to

optimum control filter coefficients. Wangler Í19941 gives various modifications that

can be made to this algorithm to improve its performance, including a means of

restricting the range of values control filter coefficients may take, therefore ensuring

stability.
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2.5.3 Artiflrcial Intelligence

The methods outlined to this point are capable of locating local minima of a cost

function, but not necessarily global minima. Intelligent learning algorithms (ie. Fuzzy

I-ogic [I-ebow et al, 1991) or Stochastic I-earning Automata [Tang and Mars, L99L])

search the cost function in a probabilistic manner, without reliance on system linearity.

Recently the use of stochastic learning automata has been applied to system

identification using the output-error form of IIR filter (specifically chosen to avoid

biassing of parameters by incorrectly modelled disturbances as per the equation-error

method). The use of the output-error form of system identification is particularly

suitable for testing the stochastic learning algorithm in comparison to gradient descent

algorithms, since it has a multi-modal cost function (ie. multiple local minima). The

block diagram of a learning automaton/environment model is shown in Figwe 2-12,

as applied to a control problem.

The simplest scheme for finding the optimal set of control filter coefficients uses only

a single automaton. This automaton is used to update each component, pi, of an

output probability vector, p, that determines the best performing actions, a,, within

the output set, a. Each action corresponds to a set of control filter coefficients.

Hence it can be said that the cost function parameter space is partitioned into a

number of hyperspaces, equal to the number of output actions [Tang and Mars, 1991].

The greater the number of output actions, the finer is the quantisation of the

parameter space, and therefore the greater is the level of optimisation. Since the
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parameter space is partitioned in this manner, the randomness is removed from the

search mechanism, and the parameter space is defined only by the stable ranges of the

control filter coefficients. The search mechanism can be performed in a hierarchical

malner, with a smail degree of quantisation of the parameter space initially used,

until the region of the global minimum is found, and then the parameter space could

be further quantised only in this region, or alternatively a hybrid search technique (eg.

gradient descent type etc.) could be used in this region.

Known
Oiølurbance

U nknown
Diølurbance

Reference
Signal

v(n)

Figne 2-I2. Stochastic Learning Automaton applied to active noise and vibration

control.

Fuzzy logic was introduced by Zadeh 119731. It was extended to adaptive control by

Procyk and Mamdaru 11979] and termed "self-organising controller". It has been

applied to active noise and vibration control by Lebow et al [1991] and Subramaniam

u(n)
Error
1ignalà(n)

Conlrol
)iqnal
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et al [1993]. A discussion of fuzzy logic adaptive control is given in Chalam [1987],

with its principles very similar to the discussion on stochastic learning automata.

2.5.4 Summary

In all of these time averaged cost function minimisation methods, the speed of

convergence to the optimum is severely restricted by the need to estimate the cost

function over a number of samples. The lower the number of samples used to

estimate the cost function, the less accurate will be the cost function estimates, and

the larger will be the convergence time (since inaccurate control filter coefficient

optima will be found from the inaccurate cost function estimates). However the

greater the number of samples used to estimate the cost function, the more accurate

will be the cost function estimates and the greater will be the convergence time.

Therefore there is an optimum number of samples for cost function estimation, that

corresponds to a minimum convergence time, which can only be found empirically and

depends on the statistics of the disturbance. To reduce the order of the parameter

space and hence increase convergence time, IIR filters can be used with less

coefficients than FIR filters.

The other disadvantages with these types of algorithms are that they can result in high

levels of the cost function (and thus poor on-line performance) if the entire parameter

space is searched, and they can require a large memory depending on the type of

algorithm and the amount of information it needs to store.
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The advantages of these types of approach are

They are amenable to non-linear systems, and systems in which stationarity cannot

be ensured;

. In avoiding biassed parameter estimates, the cost function has multiple local

optima, to which most other algorithms would converge. However, some of the

algorithms discussed in this section can achieve convergence to a global minimum.

. -fhey have simple hardware implementations (although some types may require

considerable memory), and can be applied to non-standard filters.

2.6 Summar¡r

In this chapter the application of modern control theory to active noise and vibration

control has been introduced. This theory involves the use of a model of the system,

an algorithm to estimate the parameters of the system model, and a control scheme to

achieve the desired process output. The differences in the models, and algorithms

used to estimate the model parameters have been stressed, and are discussed in the

appendix. The common control algorithms were shown to conform to the modern

control theory approach. These common algorithms were heuristically developed, and

the approach presented in this chapter has highlighted the following improvements

that can be made to these algorithms.
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Use of the "augmented-error" approach that avoids the interplay between

system identification and control schemes.

Use of a single adaptive scheme to estimate the parameters of the system

model on-line (ie. It is not necessary to identify the cancellation path transfer

function parameters and control filter coefficients in parallel; This can result

in instability, with the convergence conditions for the control algorithm affected

by the accuracy of the cancellation path transfer function estimates).

Use of the simplified forms (stochastic gradient) of the more accurate recursive

prediction error methods for both output-error and equation-error models.

Use of a Generalised Minimum Variance (GMV) criterion, instead of a

minimum variance criterion, to reduce the effect of non minimum-phase

processes.

In many of the models considered in this chapter, numerator polynomials have

been assumed to be close to unity so that algorithms for output-error and

equation-error forms (eg. ARMAX) can be simplified. This can result in a

reduction of broadband attenuation since the prediction of the zeroes of the

disturbance model are ignored, however it does avoid the destabilising effects

of non-minimum-phase zeroes.
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Use of the Linear Quadratic Gaussian control scheme with spectral

factorisation can allow control systems with non-minimum-phase transfer

functions to be controlled.

A comparison of adaptive feedforward and feedback control (both individually and in

combination) has highlighted many differences. It is apparent that feedforward

schemes are equivalent to output-error control models, and feedback schemes are

equivalent to equation-error type (such as ARMAX) control models.

The persistent excitation condition was shown to be critical in defining unbiased

parameter estimates, as was the choice of an output-error model or an equation-error

model. The persistent excitation condition of a system in closed-loop was shown to be

affected by the control input to the system, and the use of fI- control was discussed

as a means of ensuring closed-loop stability.

Finally alternative methods were considered to avoid the need to identify the

parameters of the system model. The Independent Quadratic Optimisation algorithm

was conceptualised in this chapter and forms the basis of this thesis.
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3.1 Introduction

Chapter 2 briefly described the concept of the Independent Quadratic Optimisation

algorithm, as a means of generating an optimal control signal without requiring

knowledge of the cancellation path transfer function. As discussed in chapter 2, this

algorithm adapts coefficients linked to orthogonal (or independent) signals obtained

from a lattice filter. The control structure is shown below for ease of reference.

Refercnce
9iqnal

Oiøþurbancc

Cont'rol
Signal

Figure 3-1. Active Noise and Vibration Control Structure.

As shown, there are two algorithms that operate concurrently; The lattice algorithm

adapts the coefficients of the lattice filter to generate orthogonal signals, and the

Independent Quadratic Optimisation algorithm adapts the coefficients (of the control

filter/linear combiner) associated with each orthogonal signal. The internal structure

LAffICE
AL@RIÍHM

LAffICE
FILfER

Error
Signal

INDETENDENÍ AUADKAÍIC
OTflMI9ATION ALGORIÍHM

CONÍKOL FILfER
(LTNEAR COMÞrNER)

CANCELLAfION PAÍH
TRAN5FER FUNCÍION
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of the lattice filter (feedforward type) combined with the control filter (linear

combiner) is shown in Figure 3-2. The stages within the lattice filter will be examined

later in more detail.

x(n)
Reference
9ignal

u(n)

= Conlrol )i7nal

Figure 3-2. Joint-Process or Tapped-Lattice Filter. The input/reference signal is

given by x(n), the backward and forward prediction errors by eo¡(n) and eri(n)

respectively, the control filter coefficients by k*(n) and the control signal by u(n).

The combination of a linear combiner with the lattice filter is formally known as a

Joint Process Lattice Filter, or a Tapped-Lattice Fiiter. This type of fiiter has been

used in active noise and vibration control previously [Swanson, 1986; 1991b] and more

recently [Park and Sommerfeldt, 1994; Char and Kuo, 1994], however, the algorithms

used by these researchers to adapt the coefficients of the filter, requires knowledge of

the cancellation path transfer function, as discussed in chapter 2.

9TAGE
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2
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This chapter will examine the generation of orthogonal signals by the lattice filter, the

use of these orthogonal signals to generate a control signal, and the effect of the

cancellation path transfer function on the independence of the control filter

coefficients individually associated with each orthogonal signal.

To examine the generation of orthogonal signals by the lattice filter, a brief overview

will be given of the signals and coefficients used to define the lattice filter. This

lattice filter will then be extended, by combination with a linear combiner (control

filter), to show how a control signal can be generated from orthogonal signals. It will

be shown that without a transfer function in the cancellation path, the control filter

coefficients used to generate the control signal are independent. The effect of the

cancellation path transfer function on the independence of the control filter

coefficients results in an independence condition that affects the Independent

Quadratic Optimisation algorithms speed of convergence to the optimum of the cost

function. This will be shown by way of computer simulations in chapter 4.

32 Lattice Filter Overview

In this section it will be shown briefly how the structure of the lattice filter is

obtained. These results will then be used to show how the lattice filter can generate

orthogonal signals. The characteristics of the lattice filter, that affect the Independent

Quadratic Optimisation algorithm, will then be identified (with further discussion in

chapter 4).
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3.2.1 Definition of the Lattice Filter

The lattice filter stems from forward and backward prediction errors of a set of

consecutive input signal samples, as shown in Figure 3-3. Given a set of consecutive

samples of the input signal, the forward prediction error is the error in predicting the

input signal for the next sample following this set, and the backward prediction error

is the error in predicting the input signal for the previous sample before this set.

In Figure 3-3, the consecutive input signal samples (total of Ð are

x(n), ... , x(n-N+l). The input signal to be predicted forward in time is x(n +1),

while the input signal to be predicted backward in time is given by x(n-l{). To

predict the signal forward in time requires forward prediction coefficients fi, ... , "fN,

while to predict the signal backward in time requires backward prediction coefficients

b1, ... , b¡. Thus the errors in predicting the input signal forward and backward in

time are e^(n +1) and eo*(n), respectively.

The forward coefficients are optimised to minimise the forward prediction error. The

optimisation criterion is given by (note that i as opposed to ,I is used as a descriptor

for the optimisation criterion as there will be many stages of the lattice filter whereas

J will be reserved for the optimisation criterion for the error signal(s) taken from the

acoustic domain)

jrN = n¡e'z^(n)l t3-11

with the forward prediction error written as
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enu(n) = x(n) - r,it"X*@-r)

where

r,T(r) = Í fr(n),.., /N(r) l

represents the forward prediction coefficients, and

xJ(") = [ x(n), x(n-r), ... , x(n -N+1) ]

represents the consecutive sequence of input signals.

ar*(n+1) - Forwarà ?reàiclion Error

Chapter 3. Orthogonal Signal Generation

13-21

t3-31

13-41

x(n+1)

= Reference
9iqnal

ør*(n) - Õackwarà ?reàiclion Error

Figure 3-3 Flow Diagram of Linear Prediction Errors. The reference/input signal is

x(n) and its estimate is î(n ), the forward and backward prediction coefficients are /
and ó, respectively, and the forward and backward prediction errors are e^(n) and

euN(n) respectively. A continuous set of N reference/input samples is given by

x(n),...¡(n-N+1), with x(n-lÐ the sample before this set and x(n+L) the sampie

after this set. A represents a single sample delay.
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Since time dependence has been introduced (to account for the forward prediction

coefficient adaptation required to minimise the cost function) into the linear

prediction coefficient in equation (3-2), it should also be introduced into the cost

function, which is therefore written as jr*(n ). The minimum of this cost function

occurs when its partial derivative with respect to the forward prediction coefficients,

equals zero. That is:

aj^(r)
= -28[e^(n)X*(n-1)] =0

ôF*(") t3-sl
F
' Nopt FNopt

This means that at the optimum, the forward prediction errors are orthogonal to the

previous N input signal samples, which can be written as

E[e^(n)x(n-i)) = 0 for l<i<N [3-6]

This orthogonality condition is critical to the lattice filter structure.

A similar orthogonality condition can be obtained for the backward prediction error.

The backward prediction error is orthogonal to the current and previous (N-1) input

signal samples, which can be written as

Eler*(n)x(n-i)) = 0 Íor 0<i sN-1 t3-7)

where

eoN(n) = x(n-1Ð - rfln[*1n¡ t3-8J

represents the backward prediction errors, with the backward prediction coefficients

represented by
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¡,I(") = I br(n),.., ó*(r) l

and the consecutive sequence of input signal samples is represented by equation (3-4).

It is apparent from equation (3-8) that eo*(n -1) is the error in predicting x(n-N-l)

from x(n-l), ... f@-N), while from equation (3-2) it is apparent that enu(n) is the

error in predicting x(n) from x(n-l), ... fØ-Ì'{). Thus the same set of consecutive

data samples can be used to predict the input signal both forward and backward in

time. This suggests that these prediction errors should be linked in some way.

To understand how the forward and backward prediction errors are linked, consider

the next order forward prediction error, such that

er1N.r¡(n) = x(n) - r'$.rqn¡x*.r(r-1) [3-10]

This requires prediction of x(n) from x(n-l), ... , x(n-lÐ, x(n-N-L) (where it should

be noted that x(n-N-l) is now also available, as the order has been increased). As

discussed above, it is known that x(n) and x(n-N-I) can be predicted from

x(n-I), ... x(n-1,¡). Further, since erN(n) contains all of the information regarding

the prediction of x(n) from x(n-l),...,x(n-N), and eo*(n -1) contains all of the

information regarding the prediction of x(n -N-1) from x(n-L),...,x(n-N, then it can

be postulated that:

e¡1¡,r¡(u) = e^(n) - kuqru*r;eu,u(n -l)

t3-el

where, using the orthogonality conditions given by (3-6) and (3-7), the coefficient

ko1**r¡ can be written as

ko1".r¡ - E[¿^(n)eo*(n-1)] 
þ-nl

jo*(, -1)
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A similar result can be formulated for the backward prediction error:

with the orthogonality conditions again allowing the definition for the coefficient

krlN*r¡ as

k,q**r¡ - E[e^(n)e'*(n-1)] 
Pivi)

jo.,(n )

The coefficients ko* and krN as described by the above equations, represent the

optimal PARCOR coefficients linking the forward and backward prediction errors of

the previous stage to the prediction of those errors for the current stage. It is

equations (3-11) and (3-13) that define the recursive stages of the lattice structure, as

they show that the forward and backward prediction errors are "linked" since they

relate to the same set of input signal samples. The structure of each stage of the

lattice filter is shown in Figure 3-4. This is known as a feedforward lattice structure.

It can be shown that it represents a transfer function with only zeroes.

Alternatively equations (3-11) and (3-13) can be rearranged so that a lattice structure

can be formed to represent a transfer function that includes poles (known as a

feedback structure), as shown in Figure 3-5. The relevance of this structure to Active

Noise and Vibration Control will be discussed in chapter 6. It is the feedforward type

of stage that is repeated in the lattice filter, and used throughout this work. Figure 3-4

represents a stage of the lattice filter shown in Figure 3-2.
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er*(n)

ert (n)

'tçN-t;(n)

'øçtt-t¡(n)

Figure 3-4. Feedforward Lattice Stage. Where eti(n) and eti(n) represent the

forward and backward prediction errors respectively, and krr(n) and kor(n) represent

the forward and backward PARCOR coefficients respectively.

er*(n)

err(n)

Figure 3-5. Feedback Lattice Stage. Where e,,(n) and eo,(n) represent the forward

and backrvard prediction errors respectively, and krr(r) and ko,@) represent the

forward and backward PARCOR coefficients respectiveiy.

When the lattice filter is used for estimation, prediction and controi, its PARCOR

coefficients are optimised to minimise a particular cost function. When used for

representing a direct-form transfer function, the PARCOR coefficients are defined

without regard to this optimisation. It is the adaptive form that is used throughout

this work.
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3,2.2 Properties of the Lattice Filter

The assessment of the lattice filter properties is not unique to this thesis, however the

relation of these properties to the Independent Quadratic Optimisation algorithm is

essential.

As shown in Figure 3-2, the lattice filter consists of stages of identical structure (but

varying parameters), the number of which relate to the order (or number of input

signal samples) used to predict the input signal. The order required to achieve

minimum prediction errors depends upon the statistics of the input signal (since it

generates prediction errors or errors relating to the ease and accuracy of predicting a

particular signal from a finite set of consecutive samples). For a pure tone, only two

stages would be required for optimal prediction, but for a statistically complex

autoregressive-moving average (ARMA) signal (as discussed in chapter 2), the order

required for optimal prediction could be in the hundreds.

The prediction errors at each stage of the lattice structure, are generated using

coefficients defined by the correlation between the forward and backward prediction

errors of the previous stage, as shown by equations (3-12) and (3-14). These

coefficients replace the linear prediction coefficients in the separate forward and

backward linear prediction error equations (ie. those coefficients shown in Figure 3-3).

The coefficients (termed PARCOR coefficients for partial correlation, or reflection

coefficients as they can model reflections in a vocal tract) of each stage of the lattice

filter are adapted independently (of later stages) to minimise the prediction errors at
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the output of each stage. This adaptation is essential to obtain orthogonal backward

prediction errors.

After the lattice structure has been adapted to produce the orthogonal backward

prediction errors, each backward prediction error is weighted by a control filter

coefficient, and summed to produce an estimate of the disturbance signal, as shown in

Figure 3-2. The Independent Quadratic Optimisation algorithm used to adapt the

control filter coefficients will be derived in the next chapter. The aim of the

Independent Quadratic Optimisation algorithm is to independently adjust the control

filter coefficients without requiring knowledge of the cancellation path transfer

function. The independence of the control filter coefficients will be shown in section

3.3.

Assuming the backward prediction coefficients have been optimised so that they no

longer vary with time, it can be shown (using the orthogonality conditions given by

equations (3-6) and (3-7) that

This shows that the backward prediction errors are orthogonal. This is a critical

property that is essential to the Independent Quadratic Optimisation algorithm

performing efficiently. As discussed in chapter 2, without orthogonal signals, the

control filter coefficients would not be independent. It will be shown later however

that despite the availability of orthogonal signals, the control filter coefficients'

independence is still dependent on the type of input/reference signal, when a transfer

function exists in the cancellation path (as for an active noise and vibration control

-91 -



Chapter 3. Orthogonal Signal Generation

system)

If the zeroes of an aLl-zero transfer function lie within the unit circle in the z-domain

(ie. the transfer function is minimum phase), then the inverse transfer function must

also be stable. It can be shown that this condition corresponds to forward and

backward PARCOR coefficients, lko*l and lk^|, being less than unity. Thus the

form of the lattice filter is such that stability is easily ascertained. This is a useful on-

line check of stability that further enhances the stable nature of the Independent

Quadratic Optimisation algorithm.

For a stationary input signal, the forward and backward prediction error powers are

equal, as are the forward and backward PARCOR coefficients, and therefore

k^(r) = ko*(n) e krro*(n) (with e meaning defined âS, and the subscript f/b

indicating that the PARCOR coefficient is used for both the forward and bachvard

PARCOR coefficients as these are equal). It is possible to show that the mean square

prediction errors can be estimated by the following order recursive equations:

i^(n) = irqN-,¡(n) [1 - k2,ro*(n)] [3-16]

and

jo*(r) = io1*-r;(n-l) [1 - k',/o*(r)] [3-17]

Thus it is apparent from the above equations, that with increasing order, the power

(or mean square) of the prediction errors decreases (since lkrTo* | must be less than

unity for stability). It can be shown [Honig and Messerschmitt, 1984] that the

orthogonality conditions indicate that increasing numbers of linear prediction

coefficients reduce the prediction error to increasingly white sequences, with reduced
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powers. Thus low order stages of the lattice filter will have PARCOR coefficients

close to unity (due to good correlation between fonvard and backward prediction

errors at these low order stages) and prediction error powers relatively similar to the

input signal power, while high order stages will have low prediction error powers and

PARCOR coefficients close to zero. Periodic signals require only two stages of a

lattice filter for accurate prediction (the remaining stages have very low powers and

are increasingly white). This is an important concept for the Independent Quadratic

Optimisation algorithm, since if the powers of the backward prediction errors are

reduced with increasing order, then the control filter coefficients will need to be very

large, possibly causing overflow. This will be considered further in chapter 5.

The prediction errors at the output of each stage of the lattice filter can be minimised

by adapting the PARCOR coefficients using either of the following algorithms.

Stochastic Gradient method (ie. Least Mean Squares (LMS) algorithm); The

forward and backward PARCOR coefficients are adapted to minimise each

forward @¡e!@)1) and backward @¡e!,@)1) prediction error cost tunction

separately, or to minimise their combination 1n¡e!@)l + EÍe:{n)l). The

PARCOR coefficients are adapted in the direction of, and in proportion to the

steepest descent gradient, determined from an estimate of the gradient of the

cost function. This algorithm is summarised in Table 3-1. In Table 3-1, p

represents the convergence coefficient, and the prediction errors and their

estimated powers are used to form a normalised stochastic gradient algorithm.

a
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Recursive Method (ie. Recursive Least Squares (RLS) algorithm); The lattice

filter consists of decoupled stages at each of which local minimisation of the

forward and backward prediction error cost functions occurs. It is the

independent adaptation of the PARCOR coefficients to locally minimise each

cost function, that makes a lattice filter ideally suited to the recursive least

squares algorithm. The recursive least squares algorithm for the lattice

structure requires variables to be updated in time and order, since for every

new data sample the forward and backward prediction errors must be

generated, and the coefficients used to generate them must be adapted. This

algorithm adapts the PARCOR coefficients in the direction of the optimum of

the forward and backward prediction error cost functions (not necessarily the

steepest direction of the cost function). This algorithm is summarised in Table

3-2. In Table 3-2, the factor y,(n) is known as the "gain constant" or "error

ratio", and it can be rewritten as

ri(n) = 1' - a,(n) [3-18]

where

ei(n) ={'t"XÍ-'ØV,@) [3-1e]

In these equations, í represents a stage of the lattice filter, Xt(r) represents the

vector of delayed reference signal samples, and the inverse of the sample auto-

correlation matrix representeO Uy nf-t1"¡. It is known [Cowan, C.F.N and

Grant, P.N., 19851 that o,(n) is a measure of the likelihood that the N most

recent input data samples come from a Gaussian process with sample auto-

correlation 
^Ïøl 

determined from all available past samples. A value of

a,(n) close to unity indicates that the recent data samples are likely to have

-94-



Chapter 3. Orthogonal Signal Generation

been generated by the Gaussian process described above, however a value of

a,(n) close to zero indicates that the recent data samples are unexpected.

Therefore when y,(n) is close to unity, it indicates that sudden changes in the

process generating the samples has occurred and the magnitude of the step

change in the coefficient update algorithm increases. As from the analysis of

appendix A.2.3, it is this ability to track changing signals that makes the

recursive algorithm very appealing. In appendtx A.2.3, the recursive algorithm

was shown to be unaffected by the eigenvalue disparity in the autocorrelation

matrix, further resulting in increased speed. It is because of all of these

advantages that in this work the recursive least squares algorithm will be used

to adapt the lattice filter PARCOR coefficients, and thus generate the

orthogonal signals.

In the equations in Tables 3-1. and 3-2, ß represents a "forgetting factor" that defines

the "memory" or expected stationarity of the input sequence. The optimal PARCOR

coefficients are independent of the order of the filter, that is the coefficients are

dependent only upon the previous stages and not subsequent stages. Thus the order

of a filter can be increased without affecting previously defined coefficients of lower

stages of the filter. Hence when the order of a predictor is unknown, the number of

stages of the lattice filter can be increased until the prediction error is sufficiently

white, andfor reduced in magnitude (as discussed previously). This aids the

Independent Quadratic Optimisation algorithm, as it means the coefficients in the

control filter can be easily increased.
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Table 3-1. Stochastic Approximation Algorithm.

beginILATTICEFILTERoFORDERN-1]
n=0
Time Initialisation

fori=0toN-1oo
en(0) =eo,(O) =0
k,,(1)=ko,(L)=0
j,,(o) =ßN-To, jo,(o) =ß(N-1)-io

arternativery jVo¡(O) = (1 + U-i-t¡ßYo
contlnue
Time Recurrence

saaflin = n + 7
Order Initialisation

en(n)=evo(n)=x(n)

i*(n) = ß i,o(n-I¡ * ert@),ioo@) = ß iw(n-l) * 
"i,01',)

arremativery ir¡oo(n) =ß jr/oo(n-l) * Ír1oØ) *eloçn-t¡1
Order Recurrence

fori=0toN-2ao
e r(,*r)(n) = e ti(n) - kot,*r)(r) eor(n -1)
er(¡*r)(n) = €a¡(n-l) - krrr.rr(n)er,(n)

krr,*rr(n +L) = krr,*r;(n) * 3n@).e1ci.r¡(n), jrr(n)

kr1,*r¡(n*1) = krrur>(n) * 2þi e,,(n)eor,_rr(n-t)

koçr,r¡(r*l) = ko<r*r>(n) * eo¡(n -1)e 

"'.'¡(n)jo,(n-l)

or korr*,,(n+l) = ko(,*r)(n) * 2pi eo,(n)errr_rr(n)

artemativery kr¡o1ur¡(r*1) = kr¡olur¡(r) * eo'(n-l)e'r'*'r(n) + e"(n)eoru'r(n)

it¡o,@)

or kr¡oçr*r¡(r*l) = kr¡r1r*r¡(r) ¡ ZFi feor(n)errr_r,(n) * err(n)eorr_rr(n-1)l

ir(i.r¡(n) = ßi(i.r)('-l) * e:e.L)@)

io1,.r¡(') = ßio(¡.r)(u-1) * ,!<,,.r>(n)

artemativery iyai(n) =ß j,/oi(n-l) +lel@¡ *elr@-t)l

or

continue
goto start

end
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Table 3-2. Recursive Algorithm.

I r-ATTTCE FTLTER OF ORDER N - 1 ]
begin

n =O
Time Initialisation

forr=0toN-1oo
en(O)=eo,(0)=0

kr(l) =ko,(L) =0

in(1) =ßN-)0, jo,(1) =ß(N-l)-To

vi(O) = 1

continue
Time Recurrence

start: ll = n + L
Order Initialisation

en@) =eao(n) =x(n)

j r(n+1) = ßj.(n) * y o(n -t)e'?*(n) = ßj n@) + xz(n)

ls(n) = |
joo(n +1) = ßioo(n) * yo@)elo(n) = ßjo/ø-) + xz(n)
Order Recur¡ence

fori =0toN -2¿o
erçi*t¡(n) = er,(n) - ko<ur>(n)eor(n -I)
e¡(i*r)(¿) = eor(n-l) - kr<ur>(n)e¡t(n)

kr1i.1¡(n *1) = kr(r*D(n) * 
yt(n-t).et'(n)eari.t¡(n)

' in(n*7)

krç,*r¡(n*l) = ko<r,r¡(n)

i rlur;(n*l) = ßir<,.rt(r) + T i,1(n-l)"?r,.r>(n)

* y ¡(n-l)eor(n-I)et ,.t (n)

jo,(n)

Yi.r(n) = r¡(n) - Y?Ø)'l'Ø)

io,(, * 1)

io1,.r¡(n *1) = ßio(i.r)(n) * Y¡-r(n)"|çr.r¡(n)
continue

goto start
end
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33 Control Filter Coefücient Independence

In this section it will be shown that the control filter coefficients are independent

because they are fed by orthogonal signals (ie. the backward prediction errors). The

lattice structure can be modified to generate estimation and control signals (as

opposed to purely prediction) with the addition of a control filter (linear combiner).

The control filter extracts each orthogonal signal generated by the lattice filter and

multiplies each signal by a coefficient. The control filter then sums each product to

generate the control signal.

Consider firstly the use of this control signal in a system without a cancellation path

transfer function, as shown in Figure 3-6 (the location were the cancellation path

transfer function would ordinarily be located is shown dotted). In the same manner as

the order recursive update equations for the forward and backward prediction errors,

it can be shown that the disturbance can be estimated from a linear combination of

where N represents the number of control filter coefficients or backward prediction

error signals,

¡Ç*(n) =lk*o(n),..,k*rN-rt(n)l l3-2ll

represents the vector of control filter coefficients,

Eo*(r) = I eoo(n), .., eot*-rt(u) ] 13-221

orthogonal backward prediction errors, such that

y(n) = p(n) * rfr1n¡ro*1n ¡

represents a set of orthogonal backward prediction errors, and

Rå = Elp'@)l

[3-20]

13-421

represents the power of the disturbanc. 
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x(n)

r(n)

u(n)

Figure 3-6. Control Structure without Cancellation Path Transfer Function. Where

x(n) is the input/reference signal, p(n) is the disturbance, y(n) the error signal, u(n)

the control signal, eai(n) the backward prediction errors and k*,(n) the control filter

coefficients.

It will now be shown that the cost function, I(n) = Elyt(r)], is independently defined

by the control filter coefficients. Using the error defined by equation (3-20) the cost

function becomes

r(n) = Rå * rä¡r)n,iior** @) * {1"¡{"' [3-23]

where

R;ï, = E[Er*(n)Eo*t(,r)] Í3-241

represents the correlation matrix of the backward prediction error signals (where the

use of the superscript q is to make this matrix distinct from that normally used for

the delayed reference signal), and

LATTICE
FILIER

LATTICE
ALØRIÍHM

v(n)k .fnl k*2þ)

CONÍROL FIL1ER

-t¡(n) INDEFENDENf QUADRAIIC
OñMI9AÍION ALGORITHM
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c,l"o = E[p(n)Eo*@)] 13-251

represents the cross-correlation of the backward prediction error signals with the

disturbance signal (where the use of the superscript peo is to make this vector distinct

from that normally used for the correlation of the reference signal with the

disturbance signal) .

Differentiating equation (3-23) with respect to the control filter coefficients yields

ôj*(t) C. D€.
2R**4.n, * 2q, " =0

ôÃÇ*(n) K**(r) =4on,

which gives the optimal control filter coefficients as

4o* = -nii-16'3"'

Substituting (3-27) into (3-23) yields the optimal cost function as

/oo, = Rå KT* opt
c,T'

13-261

+

13-27)

[3-28]

Using the above equation with (3-23) gives

I(n) = 40, * t¡Ç*(") - ÄÇ.o,ltn,i'*t¡Ç*t"l - ÃÇ"n,1 Í3-291

However, due to the orthogonality of the backward prediction errors, equation (3-24)

becomes (with jo, representing the power of the backward prediction errors)

R;'* = diagf jo, ] [3-30]

and hence equation (3-29) may be rewritten as

N-l
I(n) = 40, * D jo,(k*(n) - k*on)'

i=0

[3-3f]
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This equation shows that each coefficient of the control filter, k*(r), can be adapted

independently, as required for the Independent Quadratic Optimisation algorithm to

perform efficiently. That is, the control filter coefficients form principal axes of the

cost function, and the optimum value of each therefore doesn't depend on the values

of the other coefficients. The optimum control filter coefficients can be determined

from equation (3-27), which can be rewritten as

k*ioo,
EIp(n)eo,@)]

[3-32]
Jai

Thus it is also apparent that the optimal control filter coefficients are dependent upon

the correlation of the orthogonal backward prediction errors with the disturbance.

3.4 Cancellation Path Transfer Function Effect on Control Filter

Coefficient Independence

The previous section showed that the control filter coefficients were independent,

without a transfer function in the cancellation path. In this section consideration will

be given to the effect on the independence of the control filter coefficients, with the

inclusion of a time delay and then a more general transfer function in the cancellation

path. With a transfer function or specifically a time delay placed in the cancellation

path the structure can be modified to that shown in Figure 3-7. Note the reversal of

the order (commutation) of the control filter and the cancellation path transfer

function or time delay can be performed as shown, provided both filters are time

invariant (see discussion in chapter 2 and Flockton U993]).
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x(n )

P(n)

u(n)

Figure 3-7. Active Noise and Vibration Control Structure. Where x(n) is the

input/reference signal, p(n) is the disturbance, y(n) the error signal, u(n) the control

signal, eoi(n) the backward prediction errors, et¡(n) the filtered backward prediction

error signals and k*(n) the control filter coefficients. A represents a single sample

delay and An' represents m samples delay.

The efficiency, or speed of convergence of the Independent Quadratic Optimisation

algorithm relies upon the independence of the control filter coefficients. That is, if

each coefficient of the control filter forms a principal axis of the cost function, then

the optimum of the cost function will be obtained efficiently. However if the control

filter coefficients are not principal axes, and cannot therefore be adapted

independently, then the speed of the Independent Quadratic Optimisation algorithm

will be impaired. This effect on the Independent Quadratic Optimisation algorithm is

discussed in chapter 4.

LAffICE
FILfER

LAfftcÊ.
ALøRITHM

COMMUIEO CANCELLATION PATH
TRANgFER FUNCTION

Timc Delay = 6ñ, franøfer lunalion = W

n)

CONTROL FILTER

k 
1N-t¡(n)

INDETENDENT OUADRATIC
OTTIMI9AÍION ALGORIÍ HM
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3.4.1 Time Delay Effect

The effect of the time delay on the independence of the control filter coefficients will

firstly be considered, using the commuted control structure shown in Figure 3-7. The

inclusion of the time delay term, rt, in equation (3-20) (ignoring the adaptation of the

control filter coefficients to ensure valid commutation), leads to

y(n) = p(n) * rfr^a'o*(n -z) [3-33]

with the parameters defined as per equation (3-20). Substituting this into the cost

function yields (superscripts have been used to distinguish the use of the backward

prediction error signal as opposed to the more familiar delayed reference signal)

/ = Rå . zrJ*c,l"o * KåF;'*r$' 13-341

where

Rl, = Ef,pt(n)l [3-35]

represents the power of the disturbance signal, and

c,To = E[Eo*(n-m)p(n)] [3-36]

represents the cross-correlation of the delayed backward prediction error signals with

the disturbance signal, and

R;i, = E[Eo*@-m) Eon[@-m)] 13-371

represents the correlation of the delayed backward prediction error signals.

It can be shown that the non-diagonal terms of the auto-correlation matrix may be

wrrtten as:

Efer"(n-m) eou(n-m)l = 0

where u + v, u,v = 0...(N-1). Hence the control filter coefficients will be

[3-38]

-103-



Chapter 3. Orthogonal Signal Generation

independent, regardless of the time delay. That is, a time delay in the cancellation

path does not affect the independence of the control filter coefficients, and therefore

the Independent Quadratic Optimisation algorithm operates at peak efficiency.

3.4.2 Tlansfer Function Effect

The effect of a general transfer function (modelled by a finite impulse response filter)

in the cancellation path, on the independence of control filter coefficients will now be

considered using the commuted control structure shown in Figure 3-7. Consider the

inclusion of the transfer function in equation (3-20) (again ignoring the adaptation of

the control filter coefficients), such that

v(n) = p(n) * rfr{øo*1n)8ll.*"(n)} [3-39]

where N represents the number of control filter coefficients (and hence backrvard

prediction error signals), 4 represents the number of cancellation path transfer

function coefficients, and

Eo*(n)8ll,*(n) = | eoo(n)Øll"N.(n), ..., ¿o(N-r)(n)8ll,*,(n) lr 
[3-40]

with I representing the convolution operator, lØ.*"(n) the cancellation path transfer

function, and all other parameters defined as per equation (3-20).

Substituting equation (3-39) into the cost function yields

/ = R,o, . zrfr c$"0&" * r.hn,i'**"¡Ç*

where superscripts have again been used to make the use of the filtered (by the

[3-41]
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cancellation path transfer function) backward prediction errors distinct from the

delayed reference signal normally used, with

Rler = Elp'@)) [3-42]

representing the power of the disturbance signal,

a?€u&" = Elf,o*(n)82.*. .p(n)l Î3-431

representing the cross-correlation of the filtered (by the cancellation path transfer

function) backward prediction error signals with the disturbance signal, and

R'i'**" = E[(E¡N(n)82.*")(Eo*(n)8I7,,u")r] Í3-441

representing the correlation of the filtered (by the cancellation path transfer function)

backward prediction error signals. Equation (3-41) can be written in the form of (3-

29), with the independence of the control filter coefficients dependent on the off-

diagonal terms of the autocorrelation matrix defined by equation (3-aa). It can be

shown that the off-diagonal terms of the auto-correlation matrix may be written as

N.-1 N.-l

E[eo"(n)8I{2.*" .eo"(n)8llz.*"] =E E wstwsj
Eleo"@-i)ea,(n-j))
* Efe¡u(n-j)eo,(n-i)l

[3-4s]

i = 0 j=i*t

where tt + v u,v = 0,...,N-1.

independence is

Therefore the condition for control filter coefficient

where ffi = 0,...,4-1. The significance of this condition, will be considered for a

pure tone, a periodic signal and a white noise signal. If this condition is not met, it

means that the Independent Quadratic Optimisation algorithm will not operate at

peak efficiency, but will converge in a stable manner to the cost function optimum.

El eo"(n)eo"(r-^) * €ou(n-m)eo"(n)l = 0
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3.4.2.1 Pure Tone

To determine whether the independence condition is met for a pure tone, consider a

sinusoidal signal, defined with amplitude Xo, phase 00, frequenry t), sampling

frequency <o., and therefore ao = 2r<^¡/o. (with t./t the "sampling ratio"), such

that

x(n) = Xosin(n<,ro * 0o) = ero(n) = e¡o(n) 13-47)

Using equations (3-t2) and (3-13), it can be shown that

k:ro'- = ko"lt = cos <¡o [3-48]

and therefore that the backward prediction error generated by the first stage of the

lattice is given by

eor(n) = dsin<,rosin(noo - r/2) 13-491

Further analysis shows that k$et = -1 and hence that eo,(n) = 0 for i22. This is

intuitive since a pure tone can have only a single orthogonal component. It is

apparent that a pure tone satisfies the independence condition since each term of the

independence condition can be written as :

E[eoo(n)err(n-m)] = -1xn'rir,tosin(lrtoo) t3-501"zu

and

El eor(n -m) eor(n) I = |Xî 
tin<,ro sin(z <,ro) [3-s1]

and therefore their combination is zero.
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3.4,2.2 Periodic Signal

It will now be examined whether periodic signals satisff the independence condition.

It could be expected that the harmonic components of a periodic signal would each be

phase shifted by 90', indicating that the lattice filter would generate only a single

orthogonal signal for any periodic signal, and hence that the condition for coefficient

independence would also hold, as for a pure tone. A periodic disturbance with a

fundamental and a harmonic component will now be considered, with the reference

signal given by

x(n) = xosin(n.o) * xrsin(n.r) = evo(n) = erc(n) 13-521

with o, =kô0. Thefollowingknowledgeof expectationsforperiodicsignals <oo and

0r = ktoo where ke[. will be used :

E[sin(nr,ro *0u)sin(noo *0u)]=:cos(O" -eo) t3-531

and

E[sin(noo*00)sin(ntr*0r)] =0 [3-54]

Using equations (3-12) and (3-13), and the above knowledge, it can be shown that the

optimal PARCOR coefficients are given by

/.;l'
f1

_ Xo2cosoo * Xr2cosrr¡r

xî.xl
The backward prediction errors can be calculated using the PARCOR coefficients, to

give

optk [3-ss]
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It is apparent that the first stage orthogonal component generated by the lattice filter

does not consist of only the fundamental and harmonic terms shifted in phase by 90",

as intuitively expected. Therefore the independence condition is not necessarily

satisfied. It can readily be shown that eoo(n) and err(n) are orthogonal, and the

independence condition can be examined by considering each term of the

independence condition, such that

(_. I

Eteoo(n_m)eo,(n) t = :1_iä:::ffi ,. TÍi",iiå",, l 
p-s'l

eor(n) =

Elero(n)eor(n-m)l =

Xosinoosin(nto - r /2) + Xrsinorsin(na, - r /2)
X?* -;ì (cosr^ro - cos<,rr)Xosin(n <oo)

xi +Xi
x:,

(cosco, - cos<,ro)Xrsin(n ott)
XI+xi

- Xo'4osin(-ro) - XrArsin(mrr)

* Xo2Brcos(mrò * xlBocos(m <^rr)

Ao = dsin<,1', Ar = Xrsino,

Chapter 3. Orthogonal Signal Generation

t3-s6l

[3-s8]

[3-59a,b]

[3-60a,b]

and

1

2

where

and

X? X:
Br= -*(cosr.lo - cos<,lr) , Bo = -, "(costl, 

- cos<,lo)

X{ +Xi Xo +Xi
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The independence condition is therefore not satisfied as

Eleoo(n)err(r-*)l XiXi 1,
*EIevo(n_*¡"o,1,¡1=ffi[(cos<^lo-cosô1)(cos(noo)_cos(no'))]

Chapter 3. Orthogonal Signal Generation

[3-61]

Hence with a periodic input, the control filter coefficients will not be independent for

a cancellation path transfer function, due to the extraneous components generated by

the lattice. These extraneous components can be removed by orthogonalising each

harmonic in isolation. This has recently been proposed by Gibbs et al [1993] and

Kewley et al [1995].

An intuitive interpretation is that if extraneous components were not present, and the

lattice filter generated a single backward prediction error signal (or orthogonal signal,

with each harmonic component orthogonal by a 90o phase shift), then there would

only be two signals available to be fed into the control filter coefficients. This would

result in incomplete cancellation of a disturbance with the same two tones, as two

separate coefficients would be required for each tone (ie. four coefficients in total), to

achieve complete cancellation for each tonal component. That is, the optimal control

filter coefficients would be the average of those for each harmonic component in

isolation. Hence to obtain optimal control, or complete cancellation, it would be

expected that more than one orthogonal signal would be required to be generated by

the lattice filter, as is shown by the results above.

It can be shown that for each tone, components with and without a phase shift of 90'
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remain in each backward prediction error generated from increasing stages of a

lattice. However, the power of the prediction errors of orders greater than two,

rapidly decreases in magnitude as the number of stages in the filter increases. This

effect will be considered further in chapter 4, with regard to the Independent

Quadratic Optimisation algorithm.

3.4.2.3 \ühite Noise

Consider white noise passed through the lattice filter, with again the input signal

defined such that (r,(r) represents white noise)

x(n) = r*(n) = eoo(n) = erc(n) [3-62]

with

knoo'=kJ|t=o

and therefore

eoi(n) = r*(n-i) and eti(n) = r*(n) Í3-641

Hence the independence condition becomes

E I eo"(n -i) ro,(, -i), eo,(n -i) eo,@ -i) ]
= Elr*(n-u -i)r*(n-v -i) * r*(n -u-i) r*(n -v -;) l

[3-6s]

whichiszerounless (u+i) = (u*j) or (ø+j) = (v+i). Theindependenceconditionwill

however be non-zero for most non-diagonal terms. The same result holds for an

autoregressive moving average signal (ie. a signal generated by passing white noise

through an IIR filter). Therefore the independence condition is not satisfied for white

or broadband noise.

[3-63]
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3.4.2.4 Summary

The results discussed in the preceding section show that control filter coefficient

independence can be guaranteed for pure tones or periodic signals in which the

harmonics can be isolated and individually orthogonalised by a single stage lattice

filter, before use in a linear combiner. This concept is shown in Figure 3-8. This

satisfies the independence condition given by equation (3-46), since each individual

harmonic has been shown to satis$r it (according to section 3.4.2.I), and harmonics are

themselves independent as shown by equation (3-5a). The Independent Quadratic

Optimisation algorithm has been extended in this way by Botteldooren [1993] and also

by Clark et al $9921, Gibbs et al [1993] and Kewley et al [1995].

Reference
Signal

Tone N

Conlrol
Slgnal

Figure 3-8. Individual orthogonalisation of harmonic components of a periodic signal,

before combination in a linear combiner.
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For other signals, control filter coefficient independence cannot be guaranteed. If the

independence condition is not satisfied, the Independent Quadratic Optimisation

algorithm (to be developed in the next chapter) will be less efficient; That is, slower

to converge, but it will still have inherent stability.

3.5 Summary

In this chapter the lattice filter was introduced as a means of providing orthogonal

signals for use by the Independent Quadratic Optimisation algorithm. The lattice

filter was shown to be particularly suited to the extremely fast recursive least squares

algorithm, enabling the orthogonal backward prediction errors to be quickly available.

The lattice filter was found to have many desirable properties that were specifically

suited to the Independent Quadratic Optimisation algorithm, namely:

The lattice filter is a form of linear prediction with the prediction accrrraÇy

determined by the magnitude of the backward prediction error signals. That is,

the more complex the input/reference signal (in terms of signal statistics), the

more stages will be required for prediction. Hence the lattice filter, through the

generated backward prediction error signals, gives an indication of the number of

control filter coefficients required for control.

PARCOR coefficients of each stage of the lattice are adapted independently to

later stages, therefore the lattice can be extended to the required number of

a

a
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stages to achieve optimum control, without affecting previously converged

PARCOR coefficients.

The lattice filter is defined such that, provided the absolute magnitude of the

PARCOR coefficients is less than unity, stability is assured; This links well with

the established stability concept of the Independent Quadratic Optimisation

algorithm.

Although the backward prediction error signal generated by the lattice are orthogonal,

it should be emphasised that they represent prediction errors, and as such will

decrease in power with increasing stages of the lattice (ie. with increasing numbers of

samples used in prediction) eventually becoming white noise sequences with low signal

powers. As the power of the backward prediction error signals decrease, this means

that the control filter coefficients magnitude must increase to generate the control

signal, possibly leading to an overflow. This represents the only disadvantage of the

lattice filter when used to generate orthogonal signals.

When the backward prediction errors used with the individual coefficients of the

control filter (linear combiner), the control filter coefficients were found to be

independent provided no transfer function existed in the cancellation path. It was

shown that a delay in the cancellation path did not affect the independence of the

control filter coefficients; However, any other type of transfer function in the

cancellation path reduced the independence of the control filter coefficients for all

signals other than pure tones. Orthogonalising each harmonic individually has been
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shown to provide a means of overcoming this limitation. It was noted that loss of

independence of the control filter coefficients only reduced the speed of convergence

and not the stability of the Independent Quadratic Optimisation algorithm (as will be

shown in chapter 4).
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Chapter 4. The Independent Quadratic Optinrisation Algorithm

4.1 fntroduction

Chapter 2 examined the standard algorithms used in Active Noise and Vibration

Control, to achieve optimal control (ie. minimum mean square error) in the Presence

of destabilising system identification inaccuracies. Chapter 2 described an outline of

the Independent Quadratic Optimisation (IQO) algorithm, which uses orthogonal

signals to enable independent adaptation of control filter coefficients to reach the

optimum of a cost function based on a quadratic criterion. In so doing it eliminates

the need to estimate the cancellation path transfer function, and therefore avoids the

instabilities that plague the current standard algorithms, due to inaccuracies in this

estimate. Chapter 3 described the lattice filter as a means of generating orthogonal

signals to be used in the Independent Quadratic Optimisation algorithm. The

characteristics of the lattice filter were examined with regard to the Independent

Quadratic Optimisation algorithm. The structure of a typical single channel active

noise and vibration control system, with regard to the Independent Quadratic

Optimisation algorithm, is shown in Figure 4-1, for ease of reference.

The concept behind the Independent Quadratic Optimisation algorithm is revisited

before this novel algorithm is formally derived and analysed, with regard to the

parameters that affect its performance. Simulations of this algorithm will be

performed for a pure tone, white noise and their combination to confirm the theory

derived in this chapter. The algorithm will be extended for multi-channel control,

with further simulations highlighting effects that are similar to standard algorithms for

multi-channel control.
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Rafcrcnce

Siqnal

Diølurbance

Control
5i4nal

Figure 4-L. Single channei active noise and vibration control structure.

42 Concept

In this section the concept of the Independent Quadratic Optimisation algorithm will

be revisited using the work presented thus far. The Independent Quadratic

Optimisation algorithm will be applied to a feedforward control scheme, without

acoustic feedback corrupting the reference signal.

In chapter 2, it was shown (see equation (2-10)) that the control signal, u(n), cottldbe

obtained using a linear combination of coefficients wi(r), with delayed reference

signal samples x(n-i), such that (with N the number of control filter coefficients or

reference signal samples)

LAfTICE
FILfER

LATfICE
ALæRIÍHM

Êrror
Signal

CONTROL FILÍER
(LTNEAR COMÞrNER)

INDETENDENf QUADR,ATIC
OñIMI9AÍION ALGORITHM

CANCELLATION TATH
ÍRAN9FER FUNCÍION
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u(n) = wlçn¡x*ç"¡

and the vector of delayed reference signal samples is given by

X*(r) = | x(n),-..,x(n-¡l*1)lr

Chapter 4. The Independent Quadratic Optimisation Algorithm

[4-1]

Í4-31

where the vector of control filter coefficients (ie. the parameter vector, 0 ) is given by

W*(n) = [ wo(n),...,w*-r(n) Jr [4-2]

It was also shown that the regressor, @(n ), is given by a vector of delayed filtered

reference signal samples (see equation (2-12)), such that using the theory outlined in

app endix A 2 2 .']åîïTî 
:ä:ä îíl],,.i,, ä:;îi' iJ,j,can 

be -'u'iT.iì

with ./o0,, the optimum of the cost function with corresponding optimal control filter

coefficients Wop, and R* the autocorrelation matrix of the delayed filtered reference

signal samples. It was further shown in appendtx A.2.2, that this equation could be

simplified by diagonalising the autocorrelation matrix using its eigenvalues and

associated eigenvectors, such that (see equation (A-26))

J(n) =/on, * tz*r1n;nz*1n¡ t4-51

where

viØ) = Q"r(w*(n) - z*on,) [4-6]

represents a set of principal axes of the cost function, with /t the eigenvalue matrix

(in which the off diagonal terms aÍe zero and the diagonal terms correspond to the

eigenvalues), and Q is the corresponding modal matrix of eigenvectors.

The Independent Quadratic Optimisation algorithm concept uses the principal axes of

the cost function to avoid the need to estimate the cancellation path transfer function.
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The Independent Quadratic Optimisation algorithm concept is shown in Figure 4-2.

In Figure 4-2, wo(n) and wr(n) are components of the vector W*(n), and k*(n) and

k*r(n) are coefficients of the vector Vi@). As shown in Figure 4-2, wo and w,

represent arbitrary anes of the cost function, and k* and knr(n) represent principal

axes of the cost function. For each coefficient in turn, the Independent Quadratic

Optimisation algorithm determines its optimum by estimating the cost function at

three points in the direction of each coefficients anis, and fitting a quadratic to these

estimates to find the optimum coefficient corresponding to the minimum of the

quadratic. Figure 4-2 shows that with coefficients that are principal axes of the cost

function (such coefficients will be termed independent), the minimum of the cost

function is reached in two steps (with three estimates per step), while for coefficients

that are arbitrary axes of the cost function (such coefficients are termed dependent),

the optimum of the cost function is reached after a considerably greater number of

steps.

The principal axes cannot be found in practice since diagonalising a matrix would take

too long and expectations would be required. An alternative means of obtaining

independent coefficients was shown in chapter 3. In chapter 3, it was shown that the

cost function could be written as (see equation (3-31) of section 3-3)

N-1

J(n) = /oo, * D io, G*@) - k*oo,) 14-71

i=0

where, on comparison with equation (4-5), jo, corresponds to the eigenvalues of the

autocorrelation matrix, and (k*(n) - k*"0,) represent the principal axes of the cost

function. The effect of the cancellation path transfer function on the control filter
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coefficient independence was also examined in chapter 3. It was apparent in that

examination, that if the independence of the coefficients is degraded, the speed of

convergence of this algorithm is reduced. This limitation will be discussed later in this

chapter

k^
Coøl FuncLion
Conlourø

k.
WI

*o

Figure 4-2. The paths to the cost function optimum are shown by - + - for

optimisation along the axes w0, wt, and by X"'for optimisation along the principal

axes, k*, k,rr. Cost function contours are also shown.

43 Formulation

In this section the equations used to define the Independent Quadratic Optimisation

algorithm will be derived. A heuristic assessment of the effects of parameters, used to

*1
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define the algorithm, on the stability and minimum obtainable value of the cost

function will be made and proved in a later section of this chapter.

The Independent Quadratic Optimisation algorithm can be developed to ensure

efficient adaptation as follows:

(a) Delay estimating the mean square error (after changing any part of the control

filter) by a number of samples equivalent to a time greater than the time taken

for the control signal to reach the error sensor.

(b) Perform a sufficient average of the mean square error dependent upon the

required variance of the mean square error estimate from the actual mean

square error value This will affect the minimum mean square error obtained

and the level of stability.

(c) Change the particular value of the control filter coefficient (based upon the

level of the mean square error last predicted) and perform (a) to (b) twice

more. If the second mean square error estimate is greater than the first,

change the control filter coefficient to be used for the third estimate in the

opposite "direction" to that of the first change.

(d) Determine the optimum value for the particular control filter coefficient by

fitting the estimated points to a quadratic function.
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(e) Change to a new control filter coefficient and repeat (a) to (e)

As discussed in chapter 3, the lattice structure generates orthogonal signals using the

Recursive Least Squares algorithm discussed in chapters 2 and 3. It is only the

coefficients of the control filter (linear combiner) that are adapted by the Independent

Quadratic Optimisation algorithm.

Consider a quadratic defined by three estimates of the mean square error at three

values of an independent control coefficient of the control filter (linear combiner), as

shown in Figure 4-3. Such a quadratic function can be written, using the theory

outlined for equation (4-7), as (with jo, representing the power of the backward

prediction error fed from the lattice filter, into the ith control filter coefficient)

4. = 4on, * io,(k*. - k*oo,)' [4-8]

where 0 < i < N-1, and i corresponds to the control filter coefficient number, and

0 < m < 2, with rn corresponding to the estimate number. Note that "[ has been

used as a descriptor for the cost function, with the cost function dependent on all

control filter coefficients, with however the others remaining fixed while k*, is

changed.

Equation (4-8) can be rewritten as

J _J
lopt

küoo, = k*r 
=

To eliminate the need to know or estimate io, (which is affected by the cancellation

path transfer function since commutation of the cancellation path transfer function

lm
14-el

j bi
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leads to filtered backward prediction error signals, as per equation (3-44) and Figure

3-7), in determining the optimal control filter coefficient value (corresponding to

minimum mean square error), three control filter coefficient sample points are

required, as shown in Figure 4-3.

CoeT, Funclion
Magniluàe

î
t2

j.
^r1J,

^toJ.
,o?x

Conl,rol Filfer
Coefficienl

k*iz k*io kwio?r kril

Figure 4-3. Quadratic defined by three values of a control filter coefficient

k*0, k*r, and k*r, with respective cost function estimates Î,0, Îrr, and Îrr. The

optimum of the quadratic is given by i"n, ât k*op,.

The control filter coefficient step size should ideally be made proportional to the

inverse of ju¡, since it relates to the gradient of the cost function (ie. the steeper the

gradient, the smaller the step size should be and vice-versa), however this term is not

available as it is affected by the cancellation path transfer function. Therefore the

control filter coefficient step size is made proportional to the cost function magnitude

at the last estimation point, such that
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where CIi represents the control filter coefficient step-size factor

Chapter 4. The Independent Quadratic Optimisation Algorithm

[4-11]

Solving for k*¡oo, using equation (4-8) for estimates m = 0 and 1 yields

I &3, - k3,) - **",,(k*o - k*,)

lv¡ T J
ro l1

Similarly, solving fof k*oo, using equation (4-8) for estimates m = 0 and2 yields

1 @3" - k3,) - zk*"r,(k*o - k*,r)
14-121

iui î,o - it,

Equating (4-11) and (4-12) gives the optimal control filter coefficient (corresponding

to minimum mean square error) as

Thus it has been shown that the optimal control filter coefficients can be obtained

from three estimates of the cost function corresponding to each adjusted control filter

coefficient value.

The parameters affecting the accuracy of the estimated optimal control filter

coefficients (corresponding to minimum mean square error), aÍe considered

heuristically :

k*"o, = 
),

[4.13]
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(a) The number of samples taken to estimate the cost function

The number of samples taken to estimate the cost function results in a more

accurate estimate of the cost function minimum [Mackenzie, N.C., 1991.a,

1991b]. The accuracy of the cost function estimate relative to the actual value

(ie. the standard deviation) is dependent upon the signal statistics of the

sampled disturbance, relative to the level of extraneous noise present. For

periodic signals, the standard deviation will be dependent upon the number of

samples taken during any period, and the number of periods over which

samples are taken. For ARMA signals however, a very large number of

averages are required to obtain a "reasonable" estimate of the cost function.

(b) The control coefficient step size is based upon the control coefficient step size

factor a,.

As shown in Figure 4-4, the control filter coefficient step size influences the

number of averages required to obtain accurate estimates of the control

coefficients corresponding to the cost function minimum [Mackenzie, N.C.,

1991b]. The control filter coefficient step size also dictates the required

accuracy of the cost function estimates to achieve a certain excess mean square

error [Mackenzie, N.C., 1991b]. The excess mean square error is the mean

square error above the minimum achievable, once adaptation of control filter

coefficients has reached steady-state. In Figure 4-4 two different control filter

coefficient step size factors, o, are shown for cost function estimates ! and ¡ .
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Coøtr Funclion
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Figure 4-4. Effect of control filter coefficient step size and number of averages on

determination of optimal control coefficients (corresponding to the minimum cost

function). n represents a sufficiently large step size and a represents a step size that

is too small.

Consider the estimates of the cost function represented by a ! in Figure 4-4.

The control filter coefficients corresponding to these estimates are at large

enough steps to allow some inaccuracy in the cost function estimates. The

optimum control filter coefficient will not be too far removed from the ideal,

upon fitting a quadratic to these estimates. However the same cannot be said

for the estimates of the cost function represented by a a in Figure 4-4. Here

any inaccuracies in the cost function estimates will lead to algorithm instability,

as optimum control filter coefficients determined from a quadratic fitted to the

cost function estimates, will have large random deviations from the ideal
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because the control filter coefficient step size is not large enough. Hence the

smaller the control filter coefficient step size factor, the larger the number of

averages required to reduce the inaccuracy in the cost function estimate.

As shown by equation (4-10), the control filter coefficient step size was chosen

to be proportional to the current mean square error estimate or its square root

[Mackenzie, N.C., I991,a). This was deliberately imposed so that upon reaching

the minimum mean square error, the variance of the mean square error about

the optimum (known as the excess mean square error) would be minimal.

However, it is apparent from the above discussion, that there is a minimum

control filter coefficient step size factor for a given number of averages, above

which stability of the algorithm will be ensured. This is given by the degree of

curvature of the cost function for any particular control filter coefficient. As

shown by equation (4-8), the degree of curvature is given by the second

derivative of the cost function which equals jo,. Hence an estimate of io, i,

also required and can be found from equations (4-11) and (4-12), such that

î,o(k*, - k*.,) * i,,(k*o - k*,r) * î,r(k*,., - k*o)
14-t4li

l bi (k*o - k*,) (k*o - k*r)(k*, - k*,)

where the control filter coefficient values are k*0, k*r, and k*,r, with

respective cost function estimates i¡0, Î rr, and Î,r. Hence for "highly curved"

quadratic cost functions, the control filter coefficient step size can be relatively

small, while for relatively "flat" quadratic cost functions, the control filter

coefficient step size needs to be relatively large [Mackenzie, N.C., 1991b]. The

degree of curvature is not however available until the first estimates have been
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made. Thus the initial value of the control filter coefficient step size factor

needs to be set based on the allowed maximum output voltage from the

controller, the magnitude of the backward prediction error signals, and a

limited understanding of the gain imparted by the control source(s). Its value

will depend upon the levels of deviation from the initial mean square error that

it allows. A limit on the control signal output voltage can be set so that if it is

exceeded as a result of the magnitude of the step size factor, the step size

factor can be reduced as required, and tested again. This iterative approach

will only occur at the start of control, with initially a conservative low value of

the step size factor set. Once steady state has been reached, the control filter

coefficient step size factor for each control filter coefficient is proportional to

the degree of curvature, as discussed.

Consider now estimates of the cost function at distances remote from the

minimum. Here the cost function estimates will have a large step size, which

could result in overload of the actuators and algorithm instability. The

maximum step size is thus also defined as inversely proportional to the degree

of curvature. Thus for highly curved cost functions, the maximum step size

must be strictly enforced. Again, initially a measure of the curyature will be

unknown, and so a limit must be based on the control signal output voltage.

(c) The extraneous noise (uncorrelated to the disturbance as measured by the

reference or error signal) content of the disturbance (or signal to noise ratio).
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As discussed at remark (a), the signal to noise ratio will affect the number of

averages required to obtain reasonably accurate cost function estimates.

(d) The independence condition discussed in chapter 3, section 3.4.2.

It was shown in chapter 3 that the independence condition was satisfied for

pure tones, but for ARMA signals (ie. broadband noise) or periodic signals, the

condition was not satisfied. With the control filter coefficients not completely

independent, the Independent Quadratic Optimisation algorithm will converge

at a slower speed. Thus the statistics of the disturbance not only affect the

required number of averages but also the independence condition. It should be

noted that the periodic or harmonic content of the disturbance relative to the

ARMA (broadband) content is a separate consideration to the signal to noise

(ie. extraneous) parameter discussed above.

The following section will simulate the Independent Quadratic Optimisation algorithm

for control of a pure tone, white noise and their combination. This will be performed

to confirm the Independent Quadratic Optimisation algorithm concept.

4.4 Simulations

The following set of simulations highlight the limitations of the Independent

Quadratic Optimisation algorithm. The simulations consider reference signals
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consisting of a pure tone andfor white noise. The Independent Quadratic

Optimisation algorithm will be considered with fixed parameters (ie. control filter

coefficient step size factor, and number of averages).

Knowledge of the cancellation path transfer function is not required for the

Independent Quadratic Optimisation algorithm. The cancellation path transfer

function has been chosen with a phase change of 90". This was specifically chosen

because if the standard algorithms (discussed in chapter 2) were to operate with this

magnitude of error in the cancellation path transfer function phase, they would

become unstable (ie. If standard algorithms were to assume there was no transfer

function in the cancellation path, then the cancellation path transfer function used

here, can be viewed as an error in estimating the cancellation path transfer function

by the standard algorithms, causing instability). Hence it would seem that the use of

this cancellation path transfer function is a good test of the Independent Quadratic

Optimisation algorithm's stability.

Figure 4-5 shows the disturbance and cancellation path transfer functions to be used

in the simulations. For all types of signals considered in the simulations to follow, the

disturbance and cancellation path transfer functions have two FIR type coefficients.

The disturbance transfer function (arbitrarily chosen) had the coefficients 5.761 and -

4.576, corresponding to an amplitude change of 2.0 and a phase change of 45'. The

number of samples delay used was 5 for a delay in the cancellation path. The

cancellation path transfer function had the coefficients 3.078 and -3.236, corresponding

to an amplitude change of 1.0 and a phase change of 90'.
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Diøl,u¡þance

Figure 4-5. Transfer functions used to simulate an Active Noise and Vibration

Control System. The disturbance transfer function represented by FIR filter

coefficientS, tü¿6, wü, aîd the cancellation path transfer function is represented by

FIR filter coefficients ws', ws1. The lattice Filter generates orthogonal signals

eoo(n), err(n), which are used in the control filter (linear combiner) with control

coefficients k*(n), k*r(r). A represents a single sample delay and A- represents a

delay of m samples.
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The other parameters used for the simulation were arbitrarily chosen. The sampling

ratio used was 20, the number of samples delay before averaging was 10, and the

number of averages taken for the pure tone reference signal was 200, while for the

white noise reference signal, with or without the pure tone component, the number of

averages taken was 2000. There was no uncorrelated white noise in the error signal.

The coefficients of the control filter (linear combiner), fed with orthogonal signals

from the lattice filter, were initialised to zero.

4.4.1 Pure Tone Reference Signal

The power of the pure tone reference signal used was arbitrarily chosen as 0.5 (to give

a unit amplitude sinusoidal wave). The control filter coefficient step size factor was

arbitrarily chosen as 0.5 for control filter coefficient k*, and for control filter

coefficient k*, it was 1.5 since the magnitude of the backward prediction error signal

corresponding to this coefficient was lower than the reference signal.

Figures a-6 (a) to (c) show the path of the control filter coefficients to the minimum

mean square error, projected onto the mean square error contour map, for various

types of cancellation path transfer functions (ie. none, time delay, and phase change).

As shown in the figures as well as theoretically in chapter 3, the control filter

coefficients are independent for a pure tone despite the addition of a cancellation

path transfer function (phase change or delay; Note that reference to a delay means a

certain number of sampling period delays, whereas a phase change is a variable time
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delay, as considered in chapter 3, sections 3.4.1, and 3.4.2 respectively). The

Independent Quadratic Optimisation algorithm converges to the optimum without

knowledge of the cancellation path transfer function. Upon reaching the optimum

control filter coefficients, adaptation continues with the control filter coefficients

adapted proportional to the mean square error at the optimum, to ensure minimum

excess mean square error.
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Figure a-6(a). The paths of the control filter coefficients are shown numbered (with

estimated cost function locations given by tr) leading to the optimum of the cost

function. The cost function contours are also shown as solid curved lines. The results

in this figure are representative of no transfer function in the cancellation path.
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Figure 4-6(b). The paths of the control filter coefficients are shown numbered (with

estimated cost function locations given by fl) leading to the optimum of the cost

function. The cost function contours are also shown as solid curved lines. The results

in this figure are representative of a time delay in the cancellation path.
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Figure a-6(c). The paths of the control filter coefficients are shown numbered (with

estimated cost function locations given by n) leading to the optimum of the cost

function. The cost function contours are also shown as solid curved lines. The results

in this figure are representative of a transfer function (phase change) in the

cancellation path.
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Figure 4-7 shows the convergence of the error signal magnitude for no transfer

function in the cancellation path. As discussed, the excess mean square error at the

optimum is dependent upon the number of averages taken and the control filter

coefficient step size factor. Figure 4-8 shows the control filter coefficient adaptation

for no transfer function in the cancellation path. Figures 4-7 and 4-8 illustrate the

Independent Quadratic Optimisation algorithm, showing the step in each control filter

coefficient (proportional to the mean square error) and corresponding change in the

magnitude of the error signal. The error signal and control filter coefficient for the

cases in which a transfer function (phase change or delay) exists in the cancellation

path are very similar, and will therefore not be shown.
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o.o 500.0 1000.0 1500.0
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Figure 4-7. Error signal magnitude versus sample number, for no transfer function

(phase change or delay) in the cancellation path.
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500.0 1000.0 1500.0
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Figure 4-8. Control filter coefficient values versus sample number, for no transfer

function (phase change or delay) in the cancellation path. The first control filter

coefficient, k^(r), is represented by while the second control filter coefficient,

k*r(n), is represented by - - - .

4.4.2 White Noise Reference Signal

The power of the white noise reference signal used was chosen to be the same as was

used for the sinusoidal signat 0.5. The control filter coefficient step size factor was

arbitrarily chosen as 0.7 for both control filter coefficients k*, and k*r, as both were

of the same magnitude.

Figures a-9 (a) to (c) show the path of the control filter coefficients to the optimum

0.0
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mean square error, projected onto the mean square error contour map, for various

types of cancellation path transfer functions (ie. none, time delay, and phase change).

It should be noted that when white noise is passed through a lattice filter, no

adaptation of the lattice filter's PARCOR coefficients are required as the white noise

signal samples are already orthogonal, and therefore the lattice filter acts as a tapped-

delay-line (or transversal filter); Refer to section 3.4.2.3 for further discussion.

USE CONTOURS < pAï)t
5.0

5.0

1.0

-1.0

-3.0-6.0 -¡t.0 -2,O 0.0 2.0 4.0
KwO

Figure a-9@). The paths of the control filter coefficients are shown numbered (with

estimated cost function locations given by tr) leading to the optimum of the cost

function. The cost function contours are also shown as solid curved lines. The results

in this figure are representative of no transfer function in the cancellation path.

Figure a-9@) corresponds to no transfer function in the cancellation path, and shows

that the control filter coefficients are independent, and therefore the Independent

Quadratic Optimisation algorithm adapts the control coefficients to reach the

ìY
23

I
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optimum of the cost function in an efficient manner (as discussed in section 4.2). It is

apparent that the absolute optimum is not immediately achieved; The attenuation

achieved, or proximity to the optimum, will depend on the accuracy of the cost

function estimates (ie. number of averages) and the step size factor.

USE CONTOURS < pAïH

2.O

'Y 0.0

-2.O
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2.O 4.0

Figure 4-9(b). The paths of the control filter coefficients are shown numbered (with

estimated cost function locations given by n) leading to the optimum of the cost

function. The cost function contours are also shown as solid curved lines. The results

in this figure are representative of a time delay in the cancellation path.

Figure 4-9(b) corresponds to a delay in the cancellation path. Since the delay of 5 in

the cancellation path is greater than the number of coefficients within the control

filter (linear combiner), the minimum mean square error is non-zero; That is, with

only two control filter coefficients corresponding to a time delayed white noise

reference signal (since the backward prediction error signals are delayed samples of

4.0
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?e

ry
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the white noise signal, which are orthogonal by definition), it is impossible to generate

a control signal delayed by more than two samples, therefore resulting in a non-zero

minimum mean square error. As the optimum mean square error is non-zero, the

control filter coefficients have large deviations about their optimum values (since the

step size factor is proportional to the last cost function estimate), as shown in Figure

4-9(b). Further, the optimal control filter coefficients for a delay of this magnitude

are zero (since any cancellation is impossible), and since the control filter coefficients

ate initialised to zero, they are already at the optimum. Evidence of the

independence of control filter coefficients can be seen from Figure 4-9(b), despite the

delay in the cancellation path.
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Figure a-9(c). The paths of the control filter coefficients are shown numbered (with

estimated cost function locations given by tr) leading to the optimum of the cost

function. The cost function contours are also shown as solid curved lines. The results

in this figure are representative of a transfer function (phase change) in the

cancellation path.
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As shown in chapter 3, and evident in Figure a-9@) which corresponds to a transfer

function in the cancellation path, the control filter coefficients lose their independence

upon the inclusion of a cancellation path transfer function. However, the Independent

Quadratic Optimisation algorithm converges to the optimum without knowledge of the

cancellation path transfer function, and only it's speed (or efficiency) are impaired;

This effect will be discussed further in section 4.5.

Figures a-10 (a) and (b) show the convergence of the error signal magnitude. A near

zero minimum mean square error is clearly found for the case for which there is no

transfer function in the cancellation path, Figure 4-10(a), with a similar signal variance

characteristic also found for the case of a transfer function in the cancellation path.

As discussed, the minimum mean square error obtained for these cases is dependent

upon the number of averages of the cost function, and the control filter coefficient

step size factor. However results shown in Figure 4-10(b), for the case with a delay in

the cancellation path, show that a near zero optimum cannot be reached, as discussed.

In both figures, steps are apparent in the error signals corresponding to changes in the

control filter coefficients.

Figure a-11 (a) and (b) show the control filter coefficient variation for the case of no

transfer function, and the case of a time delay in the cancellation path, respectively.

From Figure 4-11(b) it is apparent that the control filter coefficients return to their

original, optimal values as discussed, while those shown in Figure a-Í@) are altered

to their optimal values (results are similar for a transfer function in the cancellation

path).
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Figure a-10(a). Error signal magnitude versus sample number, for no transfer

function (phase change or delay) in the cancellation path.
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Figure 4-10(b). Error signal magnitude versus sample number, for a delay in the

cancellation path.

0.0

z(,
an

É,o
e,
É,
l¡¡

0.0

2.I
,n
Ê.ô
G
É,
¡¡¡

-t41-



Chapter 4. The Independent Quadratic Optimisation Algorithm
6.0

4.0

2.0

0.0

-2.0

-4.0

-6.0 10575.0 r 4t 00.o0.0 3525.0 7050.0

Figure a-11(a). Control filter coeffi.i"JTltffå versus sample number, for no transfer

function (phase change or delay) in the cancellation path. The first control filter

coefficient, k*(r), is represented by 
- 

while the second control filter coefficient,

k*r(r), is represented by

if .O

2.O

0.0

-2.0

-4.0 t 4t 00.o0.0 3525.0 7050.0
SAMPLES

10575.0

vlÀ
Þ

vtÀ
l-

Figure 4-11(b). Control filter coefficient values versus sample number, for a delay in

the cancellation path. The first control filter coefficient, k*(r), is represented by 
-

while the second control filter coefficient, k*t(r), is represented by - - - .
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4.4.3 Pure Tone with White Noise Reference Signal

The power of the pure tone used was 0.5 (as this has been used previously), while that

for the white noise signal was arbitrarily chosen as 0.L, giving a form of "signal to

noise ratio" of 7 dB. The control filter coefficient step size factor for the first control

filter coefficient, k*, was arbitrarily chosen as 0.7 while for the second control

coefficient, kn , it was 1.0 as the magnitude of the backward prediction error

corresponding to this coefficient was lower.

Figures a-n @) to (c) show the path of the control filter coefficients to the optimum

mean square error, projected onto the mean square error contour map, for the various

types of cancellation path transfer functions (ie. none, time delay, and phase change).

As shown theoretically in chapter 3, the control filter coefficients lose their

independence at the inclusion of a transfer function in the cancellation path, as

apparent in Figure 4-12(c), but remain independent without a transfer function and

despite the inclusion of a delay in the cancellation path, as apparent in Figures 4-12

(a) and (b). In all cases the Independent Quadratic Optimisation algorithm converges

to the optimum of the cost function without knowledge of the delay or the transfer

function. Upon reaching the optimal control coefficient values, the excess mean

square error is minimised by adjusting the control filter coefficients proportional to

the optimum mean square error. As already discussed, the effects of a transfer

function in the cancellation path impair only the speed (or efficienry) of the

Independent Quadratic Optimisation algorithm, as the control filter coefficients are

not exactly independent; This will be discussed further in section 4.5.
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Figure a-Iz(a). The paths of the control filter coefficients are shown numbered (with

estimated cost function locations given by !) leading to the optimum of the cost

function. The cost function contours are also shown as solid curved lines. The results

in this figure are representative of no transfer function in the cancellation path.
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Figure 4-12(b). The paths of the control filter coefficients are shown numbered (with

estimated cost function locations given by tr) leading to the optimum of the cost

function. The cost function contours are also shown as solid curved lines. The results

in this figure are representative of a time delay in the cancellation path.
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Figure a-n@). The paths of the control filter coefficients are shown numbered (with

estimated cost function locations given by n) leading to the optimum of the cost

function. The cost function contours are also shown as solid curved lines. The results

in this figure are representative of a transfer function (phase change) in the

cancellation path.

Figures a-13 (a) to (c) show the convergence of the error signal for the various types

of cancellation path transfer functions. As discussed, the minimum mean square error

is dependent upon the number of averages taken and the control filter coefficient step

size factor. The minimum mean square error is non-zero with a transfer function

(delay or phase change) in the cancellation path, as evident by Figures 4-13(b) and

(c), and Figures 4-12(b) and (c). The mean square error is non-zero for a delay of 5

in the cancellation path, since this delay means that the white noise cannot be

cancelled by the two coefficient control filter (linear combiner), as discussed in the

last section. The mean square error is non-zero for an arbitrary phase change in the
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cancellation path, since whilst there will be optimal control coefficients for the white

noise component, these optimal control coefficients will be different for the tonal

component (since the tone is orthogonalised by the lattice filter), with the resulting

coefficients an average of the optimal coefficients for the signals considered in

isolation.

Figure 4-L4 shows the typical convergence characteristics of the control filter

coefficients to the optimum for the case of no transfer function in the cancellation

path; Step changes in the control filter coefficients are evident, as is a period in

which all coefficients remain fixed while the cost function is estimated. The

characteristics with a transfer function (whether a pure delay or phase change) in the

cancellation path are very similar to those shown in Figure 4-14.
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Figure a-13(a). Error signal magnitude versus sample number, for no transfer

function (phase change or delay) in the cancellation path.

J
z(,
.tt
eo
É,É
L¡

t 0.0

5.0

0.0

-5.0

- 10.0
0.0

-146-



Chapter 4. The Independcnt Quadratic Optimisation Algorithm

z
I
t^
Éo
É,
É,
¡¡¡

9.0

4.5

0.0

-4.5

-9.0
0.0 5525.0 7050.0

SAIIPLES
r0575.0 I ¿f l OO.O

Figure 4-13(b). Error signal magnitude versus sample number, for a delay in the

cancellation path.
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Figure a-13(c). Error signal magnitude versus sample number, for a transfer function

(phase change) in the cancellation path.
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Figure 4-14. Control filter coefficient values versus sample number, for no transfer

function (phase change or delay) in the cancellation path. The first control filter

coefficient, k*(n), is represented by 
- 

while the second control filter coefficient,

k*r(n), is represented by - - -.

4.4.4 Summary

It has been shown by simulation that the Independent Quadratic Optimisation

algorithm enables stable minimisation of the mean square error cost function as it

does not require knowledge of the cancellation path transfer function. It has however

been shown that with a general transfer function (ie. not a pure time delay but an

arbitrary phase change) in the cancellation path the control coefficients lose their

independence for all but pure tones. The effects of the number of averages used to

estimate the cost function, and the step size factor, on the achievable minimum mean

5.0

,n
o-

-148-



Chapter 4. The Independent Quadratic Optimisation Algorithm

square error were discussed. When the disturbance consists of white noise in addition

to a pure tone, the white noise reduces the efficiency of the Independent Quadratic

optimisation algorithm, as the control filter coefficients lose their independence

thereby reducing the speed at which the minimum achievable mean square error is

achieved. It was also observed that when the delay in the cancellation path transfer

function exceeds the number of control filter coefficients, attenuation is impossible for

a white noise disturbance. Finally it should be noted that as the step size factor is

combined with the cost function estimate to update the control filter coefficients, the

excess mean square error will depend on both the minimum achievable mean square

error and the magnitude of the step size factor (which ultimately is adjusted

depending on the degree of curvature in the direction of each control filter

coefficient).

It must be emphasised that the simulations that the cancellation path transfer function

reduces the speed (or efficiency), but not stability, of the Independent Quadratic

Optimisation algorithm obtaining the optimum control coefficients, but does not affect

the stability of the algorithm. This limitation of the Independent Quadratic

Optimisation algorithm will be discussed in the next section.

4.5 Limitation

Chapter 3 discussed the generation of orthogonal signals and their combination with a

control filter to enable each control filter coefficient to be adapted independently of
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one another. Chapter 3 also showed theoretically, the effect of a transfer function

(either a pure delay or a more general form of finite impulse response) on the

independence of the control filter coefficients. The Independent Quadratic

Optimisation algorithm was conceptualised in chapter 2 and formally defined in the

beginning of this chapter. The simulation results from the previous section confirm

the results from the theory of chapter 3. This section will summarise the key

limitation to the Independent Quadratic Optimisation algorithm and suggests means

of overcoming it. In doing So, an alternative formulation of the Independent

Quadratic Optimisation algorithm was discovered (discussed in section 4.6), being very

similar to Newton's Method for finding the zeroes of a function. The alternative

formulation leads to a theoretical definition (discussed in section 4.7) of the heuristic

interpretation, made in section 4.3, for the manner in which the parameters of the

Independent Quadratic Optimisation algorithm affect its performance (ie. minimum

achievable mean square error, excess mean square error and convergence time and

stability).

It was shown in section 4.2 that if the cost function could be written as (equation (4-7)

repeated here for clarity)
N-1

J(n)=/oo,*E io,(k*(") -k*oo,)' [4-15]
i=0

then the control filter coefficients could be adapted independently using the

Independent Quadratic Optimisation algorithm. It was shown in chapter 3 (section

3.4.2) that when a transfer function is included in the cancellation path, the cost

function for a control signal generated from orthogonal signals becomes (equation (3-
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41) repeated here for clarity, with section 3.4.2 defining all terms in the equation):

r(n) = R,o, * zrfr(n)c{"oa*" * rfr1n¡n,io***"*Ç*(r¡ F-t6J

The conversion to the form of equation (4-15) dependent on the condition for

independence of the control filter coefficients, ,ÃÇ", given by (as discussed in chapter

3, section 3.4.2, with equation (3-46) repeated here for clarity)

Eleo"(n)eo,(r-^)*€n(n-m)eo,(n)l =0 Í4-l7l

where u + v Lt,v = 0,...,N-1, and, m = 0,...,4-1 with N. the number of coefficients

defining the cancellation path transfer function. It was shown in chapter 3, that the

independence condition will only hold for a pure tone. This has also been shown

from the simulation results of the section 4.4. If the independence condition is not

satisfied, the path that the control filter coefficients take to the optimum of the cost

function (through adaptation by the Independent Quadratic Optimisation algorithm)

will be slower, as more estimates and quadratic fits are required for each control filter

coefficient. However, regardless of whether the independence condition is satisfied,

the Independent Quadratic Optimisation algorithm will still converge in a stable

manner, to the optimum of the cost function without knowledge of the cancellation

path transfer function. The speed of convergence will depend upon the non-zero

value of the expectation given by equation (4-77), that is, the degree of independence

of the control filter coefficients.

As the Independent Quadratic Optimisation algorithm converges ideally for pure

tones only, it leads to the notion of considering in isolation each individual harmonic

with and without a 90" change of phase (ie. The orthogonal components of each

harmonic). This is a natural extension of the Independent Quadratic Optimisation
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concept, that has been published originally by Gibbs et al [1993] and Kewley et al

t19951. The algorithm for independent control filter coefficient optimisation used by

these authors was derived from Newton's Method, but it is however similar to that

developed in this thesis, as will be shown in the next section.

4.6 Nternative Formulation

In this section the Independent Quadratic Optimisation algorithm will be shown to be

similar to Newton's Method. Newton's Method is a method used for finding the

zeroes of a function ie. f@) = 0 [Widrow and Stearns, 1985]. A zero is found by

recursively adjusting the coefficient w, , to wr*r, that is the point on the abscissa that

intersects the line defined by the gradient of f(w) at wr, and the point l(w,). This

type of adaptation when used to find the zero of a function is shown in Figure 4-15,

where it can seen that

= Ít(w^) =
l@^)

dw wn - w^t1

dl(*)

and hence the updated coefficient, 
'vm*1, 

can

Wnr*L = Wm -

be written as

l(r^)
l'(*^)

[4-18]

14-Iel

In estimating the minimum of a cost function such as the mean square error, the

requirement is for l(w) = Jt = 0. Thus each coefficient, wnt, is updated based on the

substitution of /(w*) = J'l*,. âûd l'@^) = J" l*. into equation (4-19), such that

Jtl*^
wm*r = *^ - 

lË 14-201
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f(*)

f(wç)

Zero of f(w)
at VoinI wO

f(w1)

f(w5) w

*3 *1 *o

r(w2)

Figure 4-L5. Newton's Method of optimisation used to find the zero of a function,

Í(w). The zero of /(w) is found by starting at wo, and updating the coefficientw

(points w1,w2,w3 and w*) until the zero of /(w) is found atpoint wo.

the can be estimated by the

the 985; Kewley, D.L. et aI,

ates

f4-2rl
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J _ 
il,*.-Â*,) -2Îl*, *ilq*.*a*,¡

(ar^)'

Hence, after substituting (4-21) and (4-22) into (4-20), and for clarity using

i*. =il,*.+Àw,)
În"s = il,*. - Â*,)

wm
Í4-221

l4-23a,b,cl

14-241

[4-2s]

l4-26a,b,cl

J =J wm

results in the control coefficient update equation (4-20) becoming

W^*l =
(2r^ - A wn')i*. - (4w^)Î 

".n 
* (2w^ * a4)1n.,

2liw" - 2î",n * in"r]

This can be compared with the optimal control filter coefficient defined by equation

(4-13) in section 4.3 for the Independent Quadratic Optimisation algorithm, where the

optimal control filter coefficients are determined by fitting three estimates of the cost

function to a quadratic function. On the other hand , Newton's Method is based on a

gradient search of the cost function, in which the control coefficients are adapted until

a gradient of zero is found. It will now be shown that equation (4-24) is equivalent to

equation (4-13). Equation (4-13) is shown below for ease of reference.

cen

î,okl". - t l) * î,.(kl^, - kl^") * î,,(k|^o - t 3,,.)

i.(k*. - k*r) * î r.(k*, - k*o) * î,r(k*o - fr*.,)

Consider the following substitutions for the variables used in equation (4-13,25)

k*r= 14.,'n + Alun with irr=î*" =il(rr,"*a.,r.)

k*o = wn - Âven' witlt i,o = in", = il(** - Â*,n)

k*, =,n wítlt ir, = Îr.n = il*.

k.wopt
1

2

with
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[4-27]

[4-28]

Starl

glves

1
Wm*1

2
cen2îpos

j 't neg

which is equal to equation (4-24), thus showing that Newton's Method, when used to

find the minimum of a quadratic function, is equivalent to using three estimates of the

cost function to find the minimum of a parabola formed by these points. If the cost

function is not parabolic (ie. if the optimum cannot be found in one cycle) then the

cycle continues, until the shape of the cost function approximates that of a parabola.

This is shown in Figure 4-16.

Coøl Functíon

Quaàraxic
Fftfor o

Ma7niluàe

3 1.,,, Function

6 lEøti^auu
Quaàratia
Fit lor L Optimum Conlrol FilLcr

Coefficíenl lrom Quaàra\ic Fil t

O.uaàral,ic
Fit lor O

A

o Control FílIcr
CoefricienliMin¡*r-

Figure 4-16. Newton's Method as a form of Quadratic Curve Fitting. Quadratic fits

to estimates (numbered from start) made as per the Independent Quadratic

Optimisation algorithm are shown, leading to the minimum of the cost function.

5

7
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This is a very interesting result, and suggests that the performance of the Independent

Quadratic Optimisation algorithm derived in section 4.3 on a quadratic curve-fit basis

using independent control filter coefficients, can be described by considering the

discrete estimate form of Newton's Method already analysed by Widrow and Stearns

t1985]. The discrete estimate form of Newton's Method will be considered in the next

section, to confirm the heuristic comments made in section 4.3, regarding the

parameters affecting the Independent Quadratic Optimisation algorithm's

performance.

4.7 Performance Analysis

In this section, the analysis by Widrow and Stearns [1985] will be used to confirm the

heuristic interpretation (made in section 4.3) of the Independent Quadratic

Optimisation algorithm. To simplify this analysis, a constant control filter coefficient

step size factor wilt be used, such that a constant step size in the control filter

coefficients can be defined as

5' = (k*, - k*o) = (k*, - k*r) Í4-291

Widrow and Stearns [1985] define the "performance penalty", y, âs the error in

estimating d"n from ,I*, and Jn", such tha

v =:(in"g *ipo,) -i."n [4-3ol

The "performance penalty" gives the average increase in the cost function from

perturbations (or constant deviations) in the control filter coefficients; That is, the
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greater the "performance penalty" the better the lesser the achievable mean square

error, however the improved performance (in terms of minimum achievable mean

square error) comes with a penalty as at the optimum the excess mean square error or

variance about the optimum will be greater. An intuitive interpretation of the

"performance penalty" comes after substituting the cost function for a single control

filter coefficient k* (defined by equation (4-7)), with equation (4-30) now written as

y = joi62 [4-31]

Hence the "performance penalty" incorporates the effects discussed in section 4.3,

namely the degree of curvature (described by jo,) and the step size (described by 6 ),

and is not dependent upon the particular value of the control filter coefficient. As

discussed in section 4-3 (and shown in Figure 4-4), the higher the curvature, the lower

the step size needs to be to obtain an accurate curve fit and therefore optimum

control coefficient estimate. This will be shown in theory shortly. The "performance

penalty" can be normalised using the minimum of the cost function such that the

"perturbation" can defined as [Widrow and Stearns, 1985]

P= T =ia¡62
40, Ior,

and when multiple coefficients (total Àf are considered this becomes
, ..'t..ò'

P = tti- [4_33]

4n,

', N-l
with jo, = , Ð U,. The physical significance of the "perturbation" will become

more apparent later in this section. It will be shown to affect the excess mean square

14-32)

error
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Widrow and Stearns [1985] show that the variance of the estimates of the cost

function can be given by

varli^) = 
*J^ 

= o, Î4-341
M-m

where K is a constant dependent upon the probability distribution of samples of the

cost function, M is the number of averages and .,t (with m the estimate number) is

the mean of the probability distribution (ie. the actual value of the cost function). For

an acoustic error signal J = Elez@)], and since e(n) has a zero mean (providing DC

offsets are cancelled in ADC's, amplifiers etc.) and a likely Gaussian (or normal)

distribution, K will equal 2.0. Thus from equation (4-34), for the same number of

averages, M,the variance in the cost function estimatê, aI^, is likely to be greater for

higher values of the cost function, Jn,. It is also apparent from equation (4-34) that

for a large number of averages, M, the variance in the cost function estimate is

reduced and hence it would be expected that the variance of the cost function about

the optimum would also be reduced (since a more accurate curve-fit results); This

will become more apparent with the definition of the misadjustment.

Widrow and Stearns [1985] show that the misadjustment (a dimensionless measure of

the performance of an adaptive process in terms of the variance of the cost function,

or mean square error about the optimum once adaptation has reached steady state) is

given by (with I meaning defined as)

N /ui $fio,)
misadiustntent à 

Ë 
=

N /on, $/jo,)
gM 62
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This equation could also have been derived by considering the effect of the cost

function variance on the optimum control filter coefficient value given by equation (4-

13).

From equation (4-35) it is apparent that:

I-arger values of the perturbation, P, (associated with step size and degree of

curvature) result in reduced misadjustment (and therefore a more accurate

curve-fit) and increased performance. However a large perturbation can result

from a large step size, and therefore an increased possibility of creating an

overflow of the control filter coefficients and thereby control actuators. A

large perturbation can also be a result of a high degree of curvature (as

defined by joi) or a low value of the optimum cost function (as defined by

/on, ). That is, a low value of the cost function at its minimum results in

reduced variance in the cost function estimates, as defined by equation (a-3a).

The cost function minimum depends upon the amount of extraneous noise

present in the physical system, as well as the statistics of the disturbance and

the number of control filter coefficients used to estimate the disturbance.

These parameters have also been discussed in section 4.3.

Larger number of averages M, result in reduced misadjustment (and therefore

more accurate curve-fit) and increased performance. However a large number

of averages increases the time taken to reach steady state or convergence.
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I-arger number of control filter coefficients, N, increases misadjustment and

reduces performance. This is because there is an increased variance about the

cost function minimum, as a result of the variance of additional control filter

coefficients. However a large number of taps increases the bandwidth of

attenuation (Note that for a pure tone only two coefficients are required in the

control filter (linear combiner)).

The factor ioi (I/jo,) will depend upon the disparity in the frequency

components of the filtered orthogonal signals. If the frequenry components are

highly disparate the misadjustment will increase, however if they are relatively

equivalent this factor will not affect the misadjustment.

Hence it is apparent that the signal statistics will affect the required number of

averages, and the control filter coefficient step size factor (ie. the control filter

coefficients are changed proportional to the cost function estimate) will be determined

by the required attenuation and number of averages.

The Independent Quadratic Optimisation algorithm has the added feature of a

variable control filter coefficient step size through the use of the control filter

coefficient step size factor, and the ability to step only in the direction of decreasing

mean square error (ie. it doesn't have to sample about a point as do the discrete

gradient estimation methods).

It is also apparent that a minimum perturbation must exist to ensure stability, as
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discussed in section 4.3 (ie. If the perturbation were zero, the misadjustment would be

infinite, indicating instability).

The Independent Quadratic Optimisation algorithm can also be quite slow during

convergence since for each control filter coefficient, the cost function must be

estimated three times before the value of the control filter coefficient corresponding

to the cost function minimum can be found. Each coefficient of the control filter is

also adapted separately, further slowing convergence. Therefore although the

algorithm is very stable, it is also quite slow at converging. This will be shown in

chapter 5, when a comparison is made between the filtered-X LMS algorithm and the

Independent Quadratic Optimisation algorithm.

4.8 Mutti-Channel Systems

A multi-channel control system utilising a lattice filter for the active control of noise

or vibration of a complex system is shown schematically in Figure 4-L7.

A multi-channel system which made use of transversal filters and a multi-channel

version of the filtered-X LMS algorithm was first analysed by Elliott, Stothers and

Nelson [1987]. As discussed in chapter 2, fhe bounds of stability for the convergence

coefficient of the filtered-X LMS algorithm are limited by the accuracy of the

cancellation path transfer function estimate; Flowever, it may also be shown that the

bounds are reduced further as the number of error sensors is increased [Snyder,

Hansen and Clarke, 19931.
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Figure 4-17. Multi-channel control system. Total of L error sensors and M control actuators.
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For the system considered here and shown in Figure 4-L7, instead of passing the

reference signal to a set of transversal filters, the lattice filter generates a set of

orthogonal signals which are passed to each control filter (linear combiner). For this

system, the cost function given by the mean sum of the square of the signals from

each error sensor, can be shown to be a quadratic function of each of the control

filter coefficients thus enabling the parabola corresponding to each control filter

coefficient to be estimated and the optimum control filter coefficients determined

using the Independent Quadratic Optimisation algorithm. If the coefficients are not

independent within each control filter (linear combiner) or between the control filters

(linear combiners), only the speed of convergence of the control filter coefficients to

the values corresponding to the cost function minimum, will be impaired.

4.8.1 Independence Conditions

The independent condition derived in chapter 3 (for the single channel case) will now

be examined for the multi-channel system. An attempt will be made in this section to

reduce the cost function for a multi-channel system to a form similar to equation (3-

31). Consider the cost function of the multi-channel system shown in Figure 4-L7.

L

I=E I:,'(n) [4-36]

where / is the error sensor number, with L the total number of error sensors, n the

sample number and ¡(n) the error signals given by:

l=1
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M G-1

yín) =p,(n) * Dt h,^,(n)u^(n-g) [4-37]
m=l g=0 Þ

where rn is the control source number with M the total number of control actuators,

pr(n) is the disturbance signal at the particular error sensor, hr^r(n) represents a

coefficient of the cancellation path transfer function with g the coefficient number

and G the total number of coefficients, and u^(n) are the control signals given by:

I-1

un(n) = Ek*",,(n)eo,(n) [4-38]
i=0

where k*^,(r) are the control filter coefficients and eoi(n) are the orthogonal

backward prediction error signals, with i the lattice stage number and 1 the total

number of stages in the lattice filter.

Ignoring the adaptation of the control filter coefficients (to ensure that commutation

of the cancellation path transfer function is valid, as per the discussion in chapter 2),

equation (4-37) can be rewritten as (with the superscript eo shown to highlight the use

of backward prediction error signals as opposed to delayed reference signal samples):

r{n) = p,(n) * 48,"o(r) 14-391

where the control filter coefficient vector is defined as:

trÇ = ¡ knto,.'., k*r,,-r, I ... I k**0, ..., ko,rr,-,1 ]T [4-40]

and the vector of filtered orthogonal backward prediction error signals is defined as:

e,'o(r) = I ø,ii{"), ..., e,'ro,,_.,(n) I .. I ø,ilr{r), ..., q,i?._,,(r) rt l4-4ll

where
G-1

q::,@) = E/,,."(n)eo,@-g) 14-421
g=0
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Substituting equation (4-39) into equation (4-36) leads to:

r = i{ qo,'@)l * IçE[Q,", (r)Q,'o' (r)FÇ * z$ n¡q'" @)p,(ù]]
l=1

From which the optimal control filter coefficients may be found by setting to zero the

partial derivative of the cost function, given by equation (4-43), with respect to the

control filter coefficients. This leads to the following definition for the control filter

coefficients:

Í4-431

14-4414* = r 
lå 

q'o{,)e,'oi"l] 
'r 

lË 
n"',,,o,r,]

and the optimum value of the cost function may be found by substituting the optimum

control filter coefficients into the cost function (equation (a-a3)) such that
L( 

". ì
/opt = El tto,'tn)l * rcT",,nlQi'@)p,(ù)l l4-4sl

l=l

Using equations (4-44) and (4-45), the cost function defined by equation (4-43) may

be written as

To understand the physical significance of this equation, the expectation term will be

considered for the following cases:

two error sensors and one control actuator;

one error sensor and two control actuators.

a

a

-165-



Chapter 4. The Independent Quadratic Optimisation Algorithm

The single channel system was examined in chapter 3 and resulted in the definition of

the independence condition for control filter coefficient independence, given again

here for ease of reference:

E[eo"(n)eo"(n-^) * €vu(n-m)eo,(n)] = 0

where U,y = 0,...,N-1 and m = 0,...,N.-1, with { the number of cancellation path

transfer function coefficients, and N the number of control filter coefficients. It was

shown in chapter 3 that this condition was satisfied only for pure tones.

4.8.1.1 TVo Error Sensors and One Control Actuator

Figure 4-18 shows the cancellation path transfer functions, disturbance transfer

functions, control actuators and error sensors. For this system the expectation in

equation (4-46) (ie. the expectation of the product of the matrix, containing backward

prediction errors filtered by the cancellation path transfer functions, with its

transform) becomes:

(e oo(n)Øh rr¡z + (e oo(n)Øh rr)t
(e oo(n)Ø h rr) (e 

o r@)Ø h rr)
+ (e oo(n)Øh rr) (e or(n)Øh rr)

E
(e or@)Øh r, ) (eoo(n ) 8lr r, )
+ (e rr(n)Ølt rr) (e oo(n)Øh rr)

(eor(n)Øh rr)' * (, or(n)Øh rr)2

where 8, represents the convolution operator used between the backward prediction

error signals, eoo(n) or eor(n), and the cancellation path transfer functions, /z' or hrr.

From this equation, it can be shown that the following condition must hold, for the

control filter coefficients to be adapted independently :

[4-48]
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where s*y ¡ u,r = 0,...,i/-1,, and i, j = 0,...,N.-1, with N, the number of

cancellation path transfer function coefficients, and N the number of control filter

coefficients.

Figure 4-18. Transfer functions for physical system consisting of two error sensors and

one control actuator. Transfer functions hn, arrd hn, are between the disturbance

actuator and error sensors l- and 2, and transfer functions h' and h^ are between

the control actuator and error sensors L and 2.

This condition will hold for pure tones since the expectation in this equation is

equivalent to that given by equation @a7) for the single channel case. However,

equation (4-49) also introduces the additional term relating to the transfer functions
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between the control actuators and the error sensors. If this additional term is zero,

the control filter coefficients will be independent regardless of the type of reference

signal. For the two error sensor, one control actuator example, it can be shown that

orthogonal cancellation path transfer functions with only two coefficients (ie. FIR

type) will ensure the independence condition (equation (4-49)) will be met regardless

of the type of reference signal; This effect will be shown from simulations in the next

section.

It is also worthwhile considering the minimum mean square error of this particular

system. From equation (4-45) the minimum mean square error is given by:

/oo, ,l o'Ytx(n)Øhor * (4*ø:t'lY:' .l r4-s0ltt 
| * x@)Øtrrz lx(n)Øt¿p2 * ((r"o,Eo*(r))8/r,ll

where hp, and hn2, have been introduced as the transfer functions between the

disturbance actuator and the error sensor. Converting this representation from the

time domain (where the transfer functions are modelled as impulse responses) to the

frequency domain (where the transfer functions are modelled as frequency responses),

and solving for the relation between the transfer functions for a zeÍo optimum

condition gives:

Hrr(et') Hor(eJ')
[4-s1]

Hn (eJ')

Hrr(et')Hrr(ri') Hpt(ei')

Thus it is apparent that the optimum cost function can be reduced to near zero if the

relative phase and amplitude between h6 and hnz is the same as that between/r'

and hr, but also that the relative phase is 90" and the relative amplitude is unity. If

this condition is not met, the optimum cost function will be non-zero, as will be shown
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by simulation. Snyder et al [1993] suggest that if equation (4-50) is non-zero, an error

sensor is redundant, and therefore that there should be at least as many error sensors

as control actuators to ensure there aÍe no redundant transducers, and that a

minimum mean square error close to zeÍo can be achieved. The minimum mean

square error will however depend on the coupling between each control actuator and

the error sensors, as will be considered next.

4.8.L.2 TWo Control Actuators and One Error Sensor

Figure 4-19 shows the cancellation path transfer functions, disturbance transfer

functions, control actuators and error sensors.

Figure 4-19. Transfer functions for physical system consisting of one error sensor and

two control actuators. The transfer functions ll' and h' are between each control

actuator and the error sensor, while the transfer function hpt is between the

disturbance actuator and the error sensor.
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For this system the expectation in equation (4-46) (ie. the expectation of the product

of the matrix, containing backward prediction errors filtered by the cancellation path

transfer functions, with its transform) becomes (note that the terms are numbered for

further explanation):
(cro(a)8ár,)2

E
¡Xa¡o(n)Eåt

(en(n)Øhrr)(er,(n)8å¡¡) {t) (aro(n)8árr)@¡{n)Øhr) {2) (er(n)8å¡1)@r,(n)Øhr)

,) 
(') 1a.r(n)8å,)2 (cb,ø)Øhì(¿b/ø)Øhr) Q' (eô/n;Phú)(ebr@)Øht)

r) e) (¿ro(¡)8á,¡arr(n)8á¡¡) (!) 1c¡þ)Øhò2 (en@)phr)(err(n)8år)

¡) o) (err(ø)8il t¡cbrøì8,hÍ) et (co,@)Øhrr)(e¡{n)Øhr) o' (er,(n)Øhrrf

As shown by equation (4-52) and (4-46), the independence of the control filter

coefficients within each controller depends upon the terms in equation (4-52)

numbered (1), while the independence of the control coefficients between control

filters (linear combiners) depends on terms in equation (-52) numbered (2) and (3).

For complete independence of all the control coefficients, the terms in equation (4-

51) numbered (1), (2) and (3) should equal zeto. These terms will now be

considered, with the assumption that each cancellation path transfer function has only

two coefficients and is of FIR type.

[4-s2]

[4-s3]

Terms of type (1) can be written similar to

h'oh rr.,E |e oo(n) e or(n -1) + eoo(n -1)e or(n)l

This term represents the standard independence condition (ie. represented by

equation (4-47)), which is modified for more than one error sensor, as shown by

equation (4-49). Terms of this type will be zero provided the reference signal is a

pure tone.

Terms (2) and (3) represent the inter-channel coupling terms. A typical type (2) term

-\10-



Chapter 4. The Independent Quadratic Optimisation Algorithm

can be written similar to

(hrrohrro * Irrr.hpr)nl,"3] * (lrrrohrr. * lrrr.hrro)Efero(n)eoo(r-1)] 14-541

Terms of this type will be zero if the cancellation path transfer functions, h' and hr2,

are orthogonal (ie. 90' phase difference between the transfer functions). This will

enable partial decoupling of the channels, but they will not be completely decoupled

unless terms of type (3) are also zero. Terms of type (3) can be written similar to

E[eoo(n)eor(r-1)Urrrohrr. * E[e,oo(n-I)eor@)]hrr.lrrro t4-551

For this type of term the cancellation path transfer functions are entwined with the

standard independence condition. Hence it appears very difficult to ensure that this

term is zero. Therefore it appears unlikely that the channels can ever be completely

decoupled.

As discussed, there should be at least as many error sensors as control actuators to

ensure no transducers are redundant. It will be shown by simulation, that if there are

more control actuators than error sensors, the system will be over-determined possibly

resulting in less attenuation.

4.8.2 Control Coefficient Adaptation Methods

For multi-channel systems, the Independent Quadratic Optimisation algorithm may be

implemented using two alternative methods, described fully in Tables 4-I and 4-2.

Method 1 : All the control coefficients for a control filter can be adapted

before continuing to the next control filter;

a
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Method 2 : A control coefficient for all the control channels may be updated

before continuing to the next control coefficient.

As for a single channel system, it is only the control filters (linear combiners) that use

the Independent Quadratic Optimisation algorithm. The lattice filter uses the

recursive algorithm discussed in chapter 3. Simulations will now be considered using

these two methods of adaptation for a multi-channel system. The number of control

actuators relative to error sensors will be considered, as will their coupling effects.

Simulations will be performed for a pure tone only, since as discussed, the

Independent Quadratic Optimisation algorithm performs most efficiently for this type

of signal.

4.8.3 Simulations

The simulations performed in this section are for a pure tone only, and will show the

effect of the number and location of error sensors and control actuators, by

comparison with a single channel case. The power and sampling ratio of the pure tone

were arbitrarily chosen as 0.5 and 20 respectively. The control filter coefficient step

size factor used was o = 0.05 for both control filter coefficients of all control filters.

The coefficients for each control filter were initialised to zeÍo. The mean square

error was estimated using 200 samples (ie. averaging performed over L0 periods), with

a delay of 20 samples before averaging. The arbitrary transfer functions between the

disturbance and control actuators, and the error sensors were used as per the single

channel simulations discussed in section 4.4, and shown in Figure 4-5.
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Table 4-1. METHOD 1: Adapt all the control coefficients for a control channel,

before continuing to the next channel.

Initialise the control coefficíents for each control filter (linear combíner).

For each corúrol filter (ineør combiner) do the following:

For each control coefficient:

(a) Delay estímating the nxean square effor by a number of samples

equivalent to a time greater than the largest time taken for the signals

emitted from the control actuators to reach the enor sensors;

(b) Perform a sufficient average of the mean square enor dependent upon

the accuracy (Le. minimum mean square error) required;

(c) Change the value of the partícular control coefficient, based upon the

level of the mean square enor and the accuracy (ie. minimum mean

square enor) required. Perþrm (a) to (b) twice more;

(d) Determine the optimum value for the particular control coefficient by

frttin7 the estimated points to a quadratic function.

Advance to the next confrol coefficiet.

Advance to the next control filter (linear combiner).
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Table 4-2. METHOD 2: Adapt a control coefficient for all the channels before

continuing to the next control coefficient.

Initialise the control coefficients for each control filter (linear combiner)

For each confrol coelficient do the following:

For each control filter (linear combiner):

(a) Delay estimating the mean square error by a number of samples

equivalent to a time greater than the largest time taken for the signals

emítted from the control actuators to reach the enor sensors;

(b) Perform a sufficient average of the mean square error dependent upon

the accuracy (ie. minimum mean sçluare ercor) required;

(c) Change the value of the particular control coefficient, based upon the

level of the mean square enor and the accuracy (ie. minimum mean

square error) required. Perform (a) to (b) twice more;

(d) Determine the optimum value for the particulør control coefficient by

fltting the estimated poínts to a quadratic function.

Advance to the next control filter (linea, combiner).

Advance to tlrc next control coefficient.
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The final control filter coefficients, amount of attenuation and error signal are shown

for the single channel case with arbitrary disturbance and cancellation path transfer

functions (as used in section 4.4), in Figures a-20(a) and (b). These results are similar

to those shown in section 4.4.7.
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Figure a-20(a). Attenuation and

optimal control filter coefficients with

arbitrary transfer functions, as for

single channel case.

Figure 4-20(b). Error signal magnitude

with arbitrary transfer functions, for

single channel case.

Figures a-21,(a) and (b) show similar results for the system when the number of error

sensors is increased. Increasing the number of error sensors reduces the attenuation

at each error sensor, however it increases the amount of global attenuation. The

amount of attenuation decreases as the number of error sensors increases, due to the

controller reaching the limit of the achievable minimum mean square error set by the

system configuration [Snyder, Clarke and Hansen, 1993]. The optimum control filter

coefficients will be an average of those for controlling the signal at each error sensor
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independently. That is they will be determined by equation (4-44) to achieve good

reduction of the total mean square error for the given system configuration.

0
o

o
ô

o
oÞ

FINAL

ATTEN

ATTEN

Figure a-21(a). Attenuation and

optimal control filter coefficients with

arbitrary transfer functions, for two

error sensors and one control actuator.

Figure 4-21(b). Total error signal

magnitude with arbitrary transfer

functions, for two error sensors and one

control actuator.
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In section 4.8.1 it was claimed that if the relative phase and amplitude of the transfer

functions between the disturbance actuator and the error sensors were the same as the

relative phase and amplitude of the transfer function between the control actuator and

error sensors, then the minimum cost function will be equivalent to that of a single

channel system. This is shown in Figures a-22(a) and (b), with a relative phase of 90'

and a relative amplitude of 1.0. Control of this system configuration yields the same

attenuation as for the single channel case (shown in Figures 4-20(a) and (b)), but

possibly greater global attenuation (dependent upon whether the error sensors sense

the same mode or different modes; the same mode could be sensed by separating the

sensors by a quarter of a wavelength).
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Figure a-22(z). Attenuation and

optimal control filter coefficients for

orthogonal transfer functions between

the disturbance actuator and each error

sensor, and the control actuator and

each error sensor.
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Figure 4-22(b). Total error signal for

orthogonal transfer functions between

the disturbance actuator and each error

sensor, and the control actuator and

each error sensor.

Simulations shown in Figures a-n@) and (b), using two control actuators with a single

error sensor, highlight the difference between the two methods of control discussed in

section 4.8.2. Note that in theory, only a single control actuator is required for a single

error sensor for cancellation of a pure tone.

Consider Figures a-%@) and (b). For arbitrary transfer functions, method 1 (ie.

update all coefficients for a control filter before continuing to next control filter) uses

only one control actuator and achieves attenuation equal to that of a single channel

controller. When considering optimisation of the second channel using this method,

the Independent Quadratic Optimisation algorithm realises that the second channel is

not required (since optimal reduction of the mean square error has already been
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achieved by only the single channel) and it therefore leaves the second channel

essentially unchanged (ie. control filter coefficients have a value close to zero, and a

control signal is not generated). However method 2 (ie. update a coefficient for all

control filters before continuing to next control filter) attempts to use both control

actuators and achieves significantly less attenuation than for the single channel case.

This is because only a single channel is required, and therefore attempting to use two

control actuators to cancel the disturbance results in an over-determined system, as

discussed previously. Snyder et al [1993] remark that using a similar "round-robbin"

approach to control filter adaptation can result in excess effort by a controller using

method 1 (possibly leading to overloading of the control actuator), while method 2

can distribute the control effort between the actuators.

ATTEN ATTEN.

Figure a-%@). Attenuation and

optimal control filter coefficients with

arbitrary transfer functions, using

method 1 for control using two

actuators and one error sensor.

Figure 4-23(b). Attenuation and

optimal control filter coefficients with

arbitrary transfer functions, using

method 2 for control using two

actuators and one error sensor.
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4.9 Summary

In this chapter the Independent Quadratic Optimisation algorithm concept was

introduced and formally derived. It fits a quadratic curve to three estimates of the

cost function for each independent control filter coefficient. It was shown that the use

of Newton's Method as outlined in recent papers is similar to the Independent

Quadratic Optimisation algorithm presented here. This comparison has led to

formalising the heuristic comments (regarding number of averages, control filter

coefficient step size and degree of cost function curvature) made about the

Independent Quadratic Optimisation algorithms performance, using Widrow and

Stearns [1985] analysis of Newton's Method for a multi-coefficient single channel

system.

Simulations were presented for a pure tone and white noise separately and in

combination, illustrating the effects on control filter coefficient independence of a

transfer function in the cancellation path, as presented theoretically in chapter 3. It

was shown that loss of independence only a limitation in that it reduced the speed of

convergence, but not stability, of the Independent Quadratic Optimisation algorithm

for all but pure tone signals. The Independent Quadratic Optimisation algorithm has

been extended to control periodic noise/vibration by Gibbs et al [1993] and Kewley et

al [1995].

Simulations were also performed in this chapter, for a multi-channel system using the

Independent Quadratic Optimisation algorithm with two alternative methods of
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control filter coefficient adaptation. Theory was developed with regard to the

conditions for independence of control filter coefficients within each channel and

between channels. It was shown that for the case of a control actuator and two error

sensors, control filter coefficient independence was assured provided the independence

condition presented in chapter 2 was met, or the cancellation path transfer functions

and the primary disturbance to error sensor transfer functions were orthogonal;

However, if these transfer functions were not orthogonal, the system would be over-

determined, with redundancy of an error sensor as found by Snyder, Clark and

Hansen [1993] in an analysis of the standard filtered-X LMS algorithm. It was further

shown that for the case of one error sensor and two control actuators, independence

of the control filter coefficients between channels was impossible; This result suggests

that it is more effective to use method 1 for adaptation of control filter coefficients as

the coefficients are independent for each channel.
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5.1 fnhoduction

This chapter describes the issues of concern when practically implementing the

Independent Quadratic Optimisation algorithm. It describes the essence of the electronic

hardware and software chosen to best suit the Independent Quadratic Optimisation

algorithm. Additionally, the filtered-X LMS algorithm was implemented on two types of

processor configurations (ie. serial integer and parallel floating types), and a comparison

of the implementation issues found from these configurations is also made.

A comparison is made between the effectiveness of the Independent Quadratic

Optimisation algorithm relative to the filtered-X LMS algorithm, in terms of:

Achievable attenuation;

Signal types (with particular regard to those with a high eigenvalue disparity);

The ability to track changing system conditions;

The ability to not only reduce vibro-acoustic levels but also vibro-acoustic intensity

or power flow.

The effect of uncorrelated noise on the achievable attenuation.

It will be shown that the Independent Quadratic Optimisation algorithm achieves good

attenuation without any knowledge of the system transfer functions. The effect of the

parameters of the Independent Quadratic Optimisation algorithm on the misadjustment

and achievable minimum mean square error will be assessed to compare practical results

with the theory developed in chapter 4.

a

a

a

a
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The effect of Independent Quadratic Optimisation algorithm parameters, and a

comparison of this algorithm with the filtered-X LMS algorithm is performed for:

Verification of algorithm implementation;a

a

This scenario was performed first to confirm the theory presented in chapter 3,

relating to the reduction in power of the backward prediction error signals with

increasing stages of the lattice filter, and the orthogonality and statistics of the

backward prediction error signals for pure tones, periodic and broadband

disturbances. This assessment will show that the power of the backward

prediction error signals give an indication of the disturbance statistics, thereby also

giving an indication of the number of control filter coefficients required for

control.

The self-induced noise scenario effectively mimiced the case of simply a delay (ie.

a certain number of sampling periods) in the cancellation path, with results shown

for both algorithms. This test was performed prior to tests with apparatus using

actuators and sensors that could be easily damaged.

Vibro-acoustic apparatus ;

Results are presented for the Independent Quadratic Optimisation algorithmwhen

used in single-channel form on experimental apparatus to reduce plane-wave

radiation constrained to one-dimension in a duct with zero air-flow, and finally
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when used in multi-channel form to reduce the vibration levels (and/or power

flow) in a semi-infinite plate.

52 HardwardSoftrvare Design

The Independent Quadratic Optimisation algorithm concept and filtered-X LMS

algorithm both have parallel natures. That is, the Independent Quadratic Optimisation

algorithm concept requires orthogonal signals to be generated (and maintained

orthogonal), control signals to be generated from these orthogonal signals (for each

control actuator) and the control filter coefficients to be adapted to generate the

optimum control signals. The filtered-X LMS algorithm requires the cancellation path

filter coefficients to be estimated, the control signals to be generated, and the control

filter coefficients to be adapted to generate optimal control signals.

Due to the parallel natures of these algorithms, their implementation was performed

using a network of parallel processors. The processors used were developed by Inmos

and are known as Transputers. Transputers are very similar to standard DSP's (Digital

Signal Processors) in that they have a CPU (Central Processing Unit) that performs

arithmetic operations and data storage and retrieval from memory (RAM, ROM etc).

However, they are quite different from other DSP's as the communication links between

transputers can be considered as DMA (Direct Memory Access) controllers, capable of

transferring data from the memory of one processor to another without interrupting the

CPU. Transputers can perform arithmetic using floating point (real) or fixed-point
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(integer) operations. Fixed point processors have the advantage of fast arithmetic

operations at low cost, but have many disadvantages, namely:

. Scaling;

. Overflow;

. Precision or Round-Off Errors.

Floating point processors are slower at performing arithmetic operations and more costly,

but they do not have any of the above disadvantages. The Transputer network used

floating-point transputers for coefficient (control filter or lattice filter) adaptation and

fixed-point transputers for control signal generation. Code for the Transputers was

written with regard to the hardware architecture (ie. the transputer layout and

communication links were initially defined in the software), using a high level language

known as OCCAM (and an associated editor that used Hyertext). It is interesting to note

that OCCAM was designed with communication protocol as a priority (in contrast to

PASCAL and C), since communication is essential to the concurrent operation of parallel

processors. Key features of OCCAM are PRI (a prioritised instruction), ALT (an

alternation or multi-tasking instruction) and PAR (a parallel or concurrent processing

instruction).

The transputer architecture is shown in Figure 5-1. This network is defined specifically

for the Independent Quadratic Optimisation algorithm, although in this form it can also

operate using the filtered-X LMS algorithm, as was done during this work but will not

be discussed further. This network was used as a development system \ilith T414's (fixed-

point) interchangeable with T800's (floating-point). The converters (ADC's and DAC's)

were memory mapped 16-bit devices (Motorola DSP56-ADC16 and DSP56-DAC16). The
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Figure 5-1. Transputer network architecture.
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converters used analog anti-aliasing and reconstruction (anti-imaging) filters that were

external to the system, and as such they required sample and holds. Programmable gain

amplifiers were not used. The sampling rate used was 1250 Hz (divided down from the

2ÙMHzprocessor clock), to ensure sufficient time for the generation of orthogonal signals

by the lattice filter.

The network was connected to a development board from which the code was compiled

and downloaded to each transputer accordingly. This board used a transputer to run

programs for monitoring the algorithm performance and to store data in a file on the

computer for later analysis. The development board also ran standard Inmos software

to assess hardware architecture features. The network was connected to a terminal for

stand-alone system operation.

The primary transputer (a T800) in the network was responsible for collecting the error

signal samples, storage of information (ie. parameters), definition of the required

operation (eg. type of algorithm; Independent Quadratic Optimisation algorithm or

filtered-X algorithm) and adaptation of control filter coefficients. The secondary

transputer (also a T800) was solely responsible for sampling the reference signal and

generating orthogonal signals. Once generated the orthogonal signals were passed on a

high priority communication link to the slave transputers (T414's). The slave transputers

generated the control signals according to their current filter configuration. A low

priority link was used to transfer new filter coefficients (and other information) between

the transputers.
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The T800 uses 64 bit floating point arithmetic at a rate of 1.5 MFLOPS (million floating

point operations per second). There is only 4K of on-chip RAM (access rate of 80

Mb¡es/second). It is capable of operating at arate of 10 MIPS (million instructions per

second). The T414 uses 32 bit integer arithmetic, and can perform arithmetic operations

about 10 times faster than the floating point operation rate of the T800.

During the period this work was undertaken, the filtered-X LMS algorithm was not only

implemented on the transputer network, it was also implemented in multi-channel form

on a serial integer processor known as the Texas Instruments TMS320C25 (16 Bit Integer

Arithmetic). This processor used multi-tasking (since it had only one CPU) to perform

the algorithm operations that could be adapted concurrently on the transputer network.

The TMS320C25 \ryas programmed using assembly language to initially develop efficient

code that could later be used as a library of procedures or functions for a C-compiler.

The library formed a "real-time Kernel", which enabled control signal generation at

interrupts, and data to be passed from the interrupt work-space to the non-real-time

adaptive workspace. The real-time kernel needed to be efficiently designed to ensure

minimum time was spent processing interrupts. Therefore internal memory was used for

variables and circular buffers were used to store delayed signal samples. Attention to

data transfer between the interrupt and non-real-time adaptive workspace was required

to minimise the possibility of an interrupt occurring during this transfer.

At times when the CPU was not attending to interrupts, it adapted filter coefficients

(both control filter and cancellation path filter coefficients). The control filter and
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cancellation path filter coefficient adaptive programs were written in C using the library

for the real-time kernel. Storage of the relevant variables in the slower external memory

enabled transfer of data to a computer for later analysis. The code was down-loaded to

the TMS320C2,5 using a Motorola MC 68000 processor, that also ran a program known

as SPaM (Signal Processing and Matrices) which enabled controller operation to be

altered easily using user defined parameters. A summary of this system is shown in

Figure 5-2.

When completed this system was as easy to program using C as the Transputer system

was in OCCAM. Initially though, all the code for the TMS320C25 was written in

assembly, which proved difficult to debug, and used only integer arithmetic. It was only

after the real-time kernel was written that C was used to purely adapt coefficients using

floating point arithmetic.

For both the Transputer Development System, and the TMS320C25 system, care with DC

offsets was required for the filtered-X LMS algorithm. If DC offsets were not accounted

for in the filtered-X LMS algorithm using leakage (see chapter 2), or through differencing

(ie. a digital high pass filter) the two most recent input signals (whether reference or

error), they caused overflow or saturation of the filter coefficients (whether control or

cancellation path). The DC offsets did not affect the Independent Quadratic

Optimisation algorithm, as the control filter coefficients are not adapted directly using

instantaneous signals values (as is the filtered-X LMS algorithm). The PARCOR

coefficients of the lattice filter (associated with the Independent Quadratic Optimisation

algorithm concept) were not found to be affected by DC offsets.
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Figure 5-2. TMS320C25 Architecture.
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53 Experimentål Verification

Before conducting experiments using specific acoustic and vibration test apparatus, the

following initial experiments were performed:

Analysis of I-attice Filter Implementation.

This was done to assess the influence of the number of control filter coefficients

and the PARCOR convergence coefficient on the auto and cross correlations of

the tapped backward prediction errors (orthogonal signals) for a pure tone of

different frequencies, multiple tones (not necessarily harmonics), and variable

band-passed white noise. This assessment will confirm the theory presented in

chapter 3, relating to the reduction in power of the backward prediction error

signals with increasing stages of the lattice filter, and the orthogonality and

statistics of the backward prediction error signals for pure tones, periodic and

broadband disturbances. This assessment will also show that the power of the

backward prediction error signals give an indication of the disturbance statistics,

thereby also giving an indication of the number of control filter coefficients

required for control.

Analysis of a Single Channel System with Self Induced Noise.

To ensure the Independent Quadratic Optimisation algorithm was implemented

correctly before testing on apparatus using actuators and sensors that could be
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easily damaged, self induced noise was generated using suitably initialised control

filter coefficients. The control signal was generated and fed back into the

controller as an error signal. The unknown plant in this case consisted of only the

control system transfer functions at input and output (ie. The converters and

filters). The influence of various Independent Quadratic Optimisation algorithm

parameters on the attenuation characteristics were assessed for pure tone, multi-

tone and band-passed white noise inputs. Comparisons were made with the

filtered-X LMS algorithm.

5.3.1. Lattice Filter Assessment

In this section the lattice filter parameters will be assessed to not only ensure its correct

implementation, but also to illustrate how various types of input/reference signals are

orthogonalised.

The lattice filter was implemented experimentally and adapted using the stochastic

approximation (ie. LMS) algorithm as discussed in chapter 3. The structure of the lattice

filter is shown in Figure 5-3, for ease of reference.

The lattice filter implementation was firstly tested with a pure tone reference signal of

125 fÌz, and a PARCOR convergence coefficient of about 0.03. The reference signal had

an amplitude of about 2Y pp, which corresponds to a signal power of 2.0Y2. The first

test of the lattice filter implementation was to illustrate how the power of the backward
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prediction errors changed with increasing stages, as the backward prediction errors are

an essential part of the Independent Quadratic Optimisation algorithm. It should be

noted that a pure tone requires only one stage of a lattice filter, as it can only have one

orthogonal signal.

Keference
Siqnal

Control
9iqnal

Figure 5-3. Structure of lattice filter coupled to a linear combiner. en(n) and eo,(n)

represent forward and backward prediction errors respectively, krr(n) and kot(n) represent

the forward and backward PARCOR coefficients, and A represents a single sample

delay.

Table 5-L gives the expectations of the backward prediction errors with themselves

(autocorrelation) and with others (cross correlation), by averaging their products. The

diagonal shaded terms represent the autocorrelations of the backward prediction errors.

The off-diagonal terms represent the cross correlation of the backward prediction errors.

Since Table 5-1 is diagonal, results are only shown for the diagonal and upper triangle.

Lattice
Staqe N

kþ1(n)

kf1 (n)

Lat'tice
1taqe 1
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All results have been estimated from 1000 samples of the backward prediction error

signals after the PARCOR coefficients had converged.

eao(n) eat(n) eoz(n) eor(n)

eoo(n) 2.0 0.03 -0.06 -0.06

en(n) 0.64 0.06 0.001

erz(n) 0.01 0.007

eot(n) 0.01

Table 5-L. Auto and cross correlations of backward prediction errors for a pure tone

reference/input signal.

As anticipated, the only backward prediction errors with significant powers were the

reference signal (eoo@)) and the first stage backward prediction error (eor@)). It is also

apparent from Table 5-1, that as the cross-correlation between pairs of backward

prediction error signals is so small, it indicates orthogonality. This was observed also by

comparing time traces and Lissajous figures of the signals; The Lissajous figures began

as ellipses with arbitrary axes (ie. not principal), and were transformed in time through

the adaptation of the PARCOR coefficients, to ellipses with principal axes.

It can be shown that the power of the first backward prediction error is given by

A2 /çzsin2oo) , with -4 representing the input/reference signal amplitude of 2.0, and

6o = 2r f X, where X is the sampling ratio of 20. Using these values, the power of the
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first backward prediction error signal is 0.69, in good agreement with that found

experimentally.

It is worthwhile examining the first PARCOR coefficient as it is adapted with differing

convergence coefficients. It is seen from Figure 5-4, that increasing the convergence

coefficient of the stochastic gradient approximation (LMS) algorithm (used for the

PARCOR coefficient adaptation), results in extremely fast convergence of the PARCOR

coefficients with little variance upon convergence. This is very useful for the Independent

Quadratic Optimisation algorithm, as it indicates that the orthogonal backward prediction

error signals will be available almost immediately after adaptation of the PARCOR

coefficients commences, using the stochastic gradient (ie. LMS) algorithm discussed in

chapter 3.

Similar results were found for frequencies of 156.25 Hz and 208.3 Hz (ie. Sampling ratios

of 8 and 6 respectively). It is interesting to note what effect additional tones in the

input/reference signal, have on the auto and cross correlations of the backward

prediction errors generated by the lattice filter. Tones of 125 Hz, 156.25 Hz and 208.3

Hz were combined with varying phases but equal amplitudes. The auto and cross

correlations of the backward prediction errors were determined as for Table 5-L, and are

shown in Table 5-2, with shaded numbers indicating auto-correlations. In Table 5-2, the

powers have been normalised by that of the reference signal, and only the results for the

diagonal and upper diagonal are shown as Table 5-2 is diagonal. The results have been

estimated from 1000 samples of the backward prediction error signals, after the

PARCOR coefficients had converged.
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Figure 5-4. Adaptation of PARCOR coefficients with differing convergence coefficients.

From Table 5-2 it is apparent that the power of the backward prediction error signals

decreases dramatically with increasing stages of the lattice filter. As discussed in section

3.4.2.2, the tonal components of the reference signal are not just shifted in phase by 90';

This was also confirmed in these experiments by measuring the phase difference between

each tone in the input/reference signals, and each tone in the backward prediction error

signals. This suggests the control filter coefficients may overflow due to the low

backward prediction error signal magnitudes at higher stages of the lattice. The control

filter coefficients, when adapted in this manner will be further examined for control of

a multi-tone acoustic disturbance.

300

Somples

cvg.coeff.=0.3
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eno(n) eor(n) err(n) en (n) eoo(n) err(n) eou(n)

eoo(n) 1.0 0.02 0.01 0.003 0.003 0.001 0.0M

eor(n) 0.55 0.005 0.003 0.0003 0.002 -0.002

eoz(n) 0.07 0.002 0.0006 0.0001 0.0005

err(n) 0.03 0.0001 0.00001 0.0001

ew(n) 0.01 0.00001 0.00001

err(n) 0,001 0.00001

eou(n)

Table 5-2. Auto and cross correlations of backward prediction errors for a multi-tone

reference/input signal.

Table 5-2 indicates that the estimated power of the backward prediction errors should

be used inversely, as a factor in determining the control filter coefficient step size, as

discussed in chapter 4 and shown by equation (a-10). It was discussed in chapter 4 that

this factor was not to be used since it was affected by the cancellation path transfer

function, however it will only be used as a guide to provide an order of magnitude for

steps of the control filter coefficients. The Independent Quadratic Optimisation

algorithm will still perform without knowledge of the cancellation path transfer function.

Finally, it is interesting to consider the powers of the backward prediction error signals

for a reference/input signal consisting of white noise filtered through a band pass filter
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with width 50 Hz and centre frequency 300 Hz, in comparison to white noise filtered

through a band pass filter with width 200 Hz and centre frequency 300 Hz. Table 5-3

and 5-4 respectively give the normalised auto and cross correlations of the backward

prediction errors for 50 Hz and200Hz band passed white noise reference/input signals.

Again, only the results for the diagonal and upper diagonal are shown, as Table 5-3 is

diagonal. The results have been estimated from 1000 samples of the backward prediction

error signals, after the PARCOR coefficients had converged.

eoo(n) eor(n) eor(n) eot(n) eoo(n)

ero(n) 1.0 0.04 0.04 0.07 0.06

eor(n) r.2 0.003 0.01 0.003

eor(n) 0.3 0.05 0.03

eoz(n) 0.3 0.06

e*(n) 0.2

Table 5-3. Auto and cross correlations of backward prediction errors for a white

noise input/reference signal filtered through a band-pass filter with width 50 Hz and

centre frequenry 300 Hz.

It is interesting to note that a comparison of the diagonal terms (shaded) of Tables 5-3

and 5-4, shows less of a dramatic decline in the powers of the backward prediction errors

as the width of the band passed white noise is increased. This is considered to result
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from the increasing bandwidth of white noise causing the input/reference signal to be

increasingly white. Since the samples of a purely white noise sequence are orthogonal,

the PARCOR coefficients will not need to be adapted, and the lattice filter will act as

a tapped-delay-line (or transversal filter). The lattice filter will also act as a tapped-

delay-line, if the PARCOR coefficients are initialised to zero.

eoo(n) eor(n) eor(n) err(n) eoo(n)

eoo(n) 1.0 0.05 0.02 0.002 0.01

eor(n) 0.88 0.01 0.02 0.02

eor(n) 0.65 0.02 0.04

eæ(n) 0.63 0.01

e*(n)

Table 5-4. Auto and cross correlations of backward prediction errors for a white

noise input/reference signal filtered through a band-pass filter with width 200 Hz and

centre frequency 300 Hz.

Figure 5-5 shows the PARCOR coefficients during adaptation, with a white noise

referencefinput signal filtered through a 400 Hz band pass filter with a centre frequency

of 300 Hz. As shown from Figure 5-5, the PARCOR coefficients vary randomly about

zero for high order stages of the lattice filter, and converge close to a non-zero but small

value for lower order stages of the lattice filter. This is likely to be a result of the noise
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not being completely white across 400 Hz, with the higher order stages having zero

PARCOR coefficients as expected.

0.1

-0.3
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Ø
c
.9
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o
3 -0.1
æ.o
O
æ.
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-o.2

0 100 500

Stoge l coeff SiogeScoeff.

Figure 5-5. PARCOR coefficients for different stages of the lattice filter, fed with a

400fJz band passed (300H2 centre frequency) white noise input/reference signal.

5.3.2 Self Induced Noise

In this section the Independent Quadratic Optimisation algorithm implementation is

assessed before conducting tests using actuators and sensors that could be damaged (eg.

piezoceramic crystals). All the control filter coefficients were initialised to the maximum

positive 16 bit integer (2's complement) of 32767. The control signal generated was fed

300

Somples

Sioge 2 coeff

400

*-!*¿'¿
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directly back into the controller through an error signal input. The cancellation path

transfer function therefore comprised of the delays, phase and amplitude changes in the

converters, and anti-aliasing and reconstruction filters. This system is shown in Figure

s-6(a).

(a)

lnpullKeference
Signal

Error
5i6nal

Conlrol
Siqnal

(b)

lnput) Reference
Signal

Contol
eignal

Figure 5-6(a) and (b). Structure for the control of self induced noise, with the control

signal is fed directly back as the error signal. er,(r) represent the backward prediction

errors, k*(n) represent the control filter coefficients, and x(n) represent the reference

signal. The Analogue to Digital Converter is shown as ADC, and the Digital to analogue

converter is likewise DAC.

LAfTICE
ALGORIfHM

LAffICE
FILfER

ADCINDEPENDENf OUADRAÍIC
OPTI Ìvl I 9Af ION A LGORITH M

CONTROL FILTER

oAC
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9Y9fEM
rDENftFtcAftoñ

LAÍfICE FILfER
WIÍH TARCOR

CôÊFFlClÉ.Nfã = O

fKAN9VERSAL
FILfER

A0c

INOEPEN'ENf AUADRAfIC
OTfIMI9AfION ALGORIIHM

k ^fnl

CONfROL FILfER

-r;(n)

É.rror
9iqnal

DAC
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Throughout this work the Independent Quadratic Optimisation algorithm was considered

to commence with the adaptation of the lattice filter PARCOR coefficients. As the

lattice filter PARCOR coefficients were initialised to zero, it acted initially as a tapped-

delay-line (transversal filter), and therefore the before control situation was identical to

that for the filtered-X LMS algorithm, as shown in Figure 5-ó(b). The attenuation

achieved by the Independent Quadratic Optimisation algorithm, for each type of

input/reference signal, will be directly compared with that achieved by the filtered-X

LMS algorithm. The influence of the various Independent Quadratic Optimisation

algorithm parameters on the attenuation of self induced noise will be assessed for a pure

tone, multi-tones and band-passed white noise reference signals.

Consider firstly the attenuation of a pure tone reference signal with a frequency of 125

Hz. The control filter had two coefficients. F'igures 5-7 (a) and (b) show the path of the

control filter coefficients to the optimum of the cost function (shown by contours), when

adapted by the Independent Quadratic Optimisation algorithm and filtered-X LMS

algorithms respectively. The corresponding error signals are shown in Figures 5-8 (a) and

(b). It is interesting to note the difference in the path of the control filter coefficients

to the optimum and the comparative speed in reaching the optimum, between the

Independent Quadratic Optimisation algorithm and the filtered-X LMS algorithm. Note

that a system identification is performed by the filtered-X LMS algorithm between 0 and

2000 samples (also using only two filter coefficients to identify the cancellation path

transfer function). The convergence coefficient for the filtered-X LMS algorithm was

increased to its value corresponding to "critical convergence", and the Independent

Quadratic Optimisation algorithm used only 10 averages to estimate the cost function

(approximately one period of the error signal), though with a delay of 50 before

averaging (this is considered to have been too long, but no shorter delays were tested).
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-3 -1

kw0

Figure 5-7(a). Path of the independent control filter coefficients Gr- (shown as kw}
and kwL) used by the Independent Quadratic Optimisation algorithm, to reach the
optimum of the cost function (represented by the contours ) for a self-induced
pure-tone (125 }{z) disturbance. The cost function estimates are represented by a D.

-1

-3
-3 -1

w0

Figure 5-7(b). Path of the control filter coefficients - - -- (shown as w0 and wl) used
by the filtered-X LMS algorithm to reach the optimum of the cost function (represented
by contours ) for a self-induced pure-tone (125 Hz) disturbance.
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Figure 5-8(a). Error signal magnitude versus sample number, using the Independent
Quadratic Optimisation algorithm to minimise the error, for a self-induced pure-tone (125

Hz) disturbance.
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Figure 5-S(b). Error signal magnitude versus sample number, using the Independent
Quadratic Optimisation algorithm to minimise the error, for a self-induced pure-tone (L25

Hz) disturbance.
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It is apparent from Figure 5-7 (a) and (b) that the control filter coefficients used by the

Independent Quadratic Optimisation algorithm formed principal axes of the cost function

(ie. they were independent), while the control filter coefficients used by the filtered-X

LMS algorithm were not principal axes of the cost function (ie. they were dependent).

Finally it is worth noting the minimum variance of the control filter coefficients upon

reaching the optimum, resulting in reduced excess mean square error.

It is interesting to compare the attenuation achieved by each algorithm, shown in Figure

5-9 (the peak at 150 Hz is from a ground loop). As shown Figure 5-9, the filtered-X

LMS algorithm achieves an additional 20 dB of attenuation over the Independent

Quadratic Optimisation algorithm. This is considered to result from extraneous noise in

the error signal that is uncorrelated with the error signal. That is, the filtered-X LMS

algorithm uses the instant error signal to adapt the control filter coefficients, whereas the

Independent Quadratic Optimisation algorithm uses the cost function estimates, thereby

losing frequency content information. Figure 5-10 shows the effect of the number of

averages on the level of attenuation (the peak at 150 Hz is from a ground loop). In

Figure 5-10, case 1. corresponds to 500 samples, case 2 corresponds to 250 samples, and

case 3 corresponds to only 10 samples (ie. one complete period) of the error signal used

to estimate the cost function. It is apparent from Figures 5-9 and 5-10, that despite the

low number of samples of the error signal used to estimate the cost function, the

attenuation remained unchanged at the frequency corresponding to the pure tone (ie. L25

H"). The attenuation at frequencies on either side of the tone was reduced for case 3

since the control filter coefficients were adapted at a faster rate than for the other cases,

and with fixed variance (step size).
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Figure 5-L1 shows the convergence of the error signal with a control filter coefficient step

size factor one tenth that used to obtain the error signal in Figure 5-8(a). It is apparent

from comparing Figure 5-8(a) and Figure 5-11, that a lower control filter coefficient step

size factor results in slower convergence as the quadratic fit is not as accurate. It is also

apparent, from a comparison of the error signal after convergence, that the excess mean

square error is however reduced with a lower control filter coefficient step size factor.
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Figure 5-9. Comparison of the reduction of self induced pure tone (125 }ìz) disturbance

by the Independent Quadratic Optimisation algorithm and the filtered-X LMS algorithm.
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Figure 5-10. Comparison of the power of the error signal after control of self induced
pure tone (125 }lz) disturbance by the Independent Quadratic Optimisation algorithm
with differing numbers of samples of the error signal used to estimate the cost function.
Case 1(-) used 500 estimates, case2 (- - -- ) used 250 estimates and case 3 (- -)
used 10 estimates.
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Figure 5-L1. Error signal magnitude versus sample number, using the Independent
Quadratic Optimisation algorithm to minimise the self induced pure tone (125 }lz)
disturbance, with the control filter coefficient step size factor one tenth that used for the
error signal shown in Figure 5-8(a).
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The Independent Quadratic Optimisation algorithm was tested with a reference signal

containing two tones, namely I25 Hz and 756.25 }Iz. The attenuation obtained for the

Independent Quadratic Optimisation algorithm in this case was greater than that for the

filtered-X LMS algorithm, as shown in Figure 5-12. This was most likely a result of the

eigenvalue disparity, as was evident from the error signal for the filtered-X LMS

algorithm (although not shown here), which initially converged quickly and then

converged very slowly to the optimum of the cost function. The control filter for both

algorithms used four coefficients.
0.0
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-80.0

- 1 00.0
100 120 140 160 180 200

Frequency (Hz)

Unoltenuoled lnd. Quod. Opt. Filtered-X

Figure 5-12. Comparison of the reduction of self induced noise (from I25 Hz and 156.25

Hz tones) by the Independent Quadratic Optimisation algorithm and the filtered-X LMS

algorithm. The power spectra of the error signal before and after control is shown versus

frequency.
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Finally a reference signal comprised of white noise filtered through a band-pass filter with

a centre frequenry of 300 Hz (and with variable bandwidth) was considered. Figures 5-13

(a) to (d) show a comparison of the attenuation achieved between the Independent

Quadratic Optimisation algorithm and the filtered-X LMS algorithm for band passed

white noise centred at 300 Hz with bandwidths of 50 Hz, 1.00 }l2,200 Hz and 400 Hz

respectively. It is apparent from these Figures that the bandpass filter was not ideal, with

not all frequencies passed. Both algorithms used 8 control filter coefficients. The

Independent Quadratic Optimisation algorithm used 500 averages, with the control filter

coefficient step size factor equivalent to that used for the analysis of pure tones.

It is apparent from Figures 5-13 (a) to (d) that generally the filtered-X LMS algorithm

performs better, particularly at high frequencies (greater than 300 Hz), than the

Independent Quadratic Optimisation algorithm. This is considered to result from the

filtered-X LMS algorithm using the error signal directly to adapt the control filter

coefficients rather than adapting them based on the cost function estimate, thereby losing

frequency information within the signal. It is also considered that complete attenuation

was not possible as the delay in the cancellation path exceeded the number of control

fitter coefficients (in later sections a FIFO will be used to reduce the required number

of control filter coefficients as determined by the delay in the cancellation path transfer

function).
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Figure 5-13(a). Comparison of the reduction of self induced noise (white noise filtered
through a band pass filter with a width of 50 Hz and centre frequency of 300 Hz) by the
Independent Quadratic Optimisation algorithm ( ) and the filtered-X LMS algorithm
( - - ). The power spectra of the error signal before and after control is shown
versus frequency.
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Figure 5-13(b). Comparison of the reduction of self induced noise (white noise filtered
through a band pass filter with a width of 100 Hz and centre frequency of 300 Hz) by the
Independent Quadratic Optimisation algorithm ( ) and the filtered-X LMS algorithm
e - ). The power spectra of the error signal before and after control is shown
versus frequency.
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Figure 5-13(c). Comparison of the reduction of self induced noise (white noise filtered
through a band pass filter with a width of 200 Hz and centre frequency of 300 Hz) by the
Independent Quadratic Optimisation algorithm ( - - ) and the filtered-X LMS algorithm
( - - ). The power spectra of the error signal before (- ) and after control is shown
versus frequency.
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Figure 5-13(d). Comparison of the reduction of self induced noise (white noise filtered
through a band pass filter with a width of 400 Hz and centre frequency of 300 Hz) by the
Independent Quadratic Optimisation algorithm ( ) and the filtered-X LMS algorithm
( - - ). The power spectra of the error signal before (- ) and after control is shown
versus frequency.
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5.4 Acoustic Control

In section 5.3 the Independent Quadratic Optimisation algorithm implementation and

lattice filter implementation were briefly assessed, based on control of self-induced noise

(where the cancellation path is effectively a certain number of samples delay), and shown

to work effectively for control of pure tone, multi-tone and band passed white noise

signals.

In this section results will be presented in more detail, for the performance of a single

channel controller incorporating the Independent Quadratic Optimisation algorithm,

when tested on an actual acoustic system with more general actuator and sensor transfer

functions. More specifically, the performance of the Independent Quadratic Optimisation

algorithm will be compared with the filtered-X LMS algorithm, for various types of

disturbances (those used in chapter 3 and 4), in terms of convergence speed, achievable

attenuation, bandwidth of attenuation, and the ability to track changing system conditions.

The effects of the Independent Quadratic Optimisation algorithms parameters

(specifically number of samples used to estimate the cost function, and the control filter

coefficient step size, and the power of the backward prediction error signals and

associated number of control filter coefficients) on control performance will also be

assessed and compared with the theory developed in chapter 4, with regard to the same

performance descriptive terms.

The system used was a replica of a small air-conditioning duct constructed from 0.8mm

galvanised sheet metal, with dimensions 215mm x 215mm square. The duct was
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terminated anechoically at one end, and a disturbance loudspeaker (with a cone diameter

of about 100mm) was placed at the other end of the duct. A control loudspeaker (with

a cone diameter of about 100mm) was placed mid-way along the duct, and an error

sensing microphone was placed towards the end of the duct. The layout is shown in

Figure 5-14.
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ACfUATOR

EKROR
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Figure 5-14. Layout of acoustic control structure; A detailed description of the

controller layout is shown in Figure 5-L.

Control of a pure tone was firstly attempted. The attenuation achieved for this system

using the Independent Quadratic Optimisation algorithm and the filtered-X LMS

algorithm are shown in Figure 5-15. Figure 5-15 gives the power spectra of the error

signal before control and after control. It is apparent that both algorithms achieve the

same level of attenuation using oniy two control filter coefficients. It is also apparent
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that the bandwidth of attenuation by the filtered-X LMS algorithm is greater than that

for the Independent Quadratic Optimisation algorithm. It is considered that this results

from the filtered-X algorithm using the error signal sample to adapt the control filter

coefficients, whereas the Independent Quadratic Optimisation algorithmuses the estimate

of the cost function to adapt the control filter coefficients, thereby losing information

about the frequency content of the error signal; That is, the cost function estimate is

affected by the power of the other frequencu components of the error signal. The fixed

variance of the control filter coefficients at the optimum also reduces the bandwidth of

attenuation about the tone.

Figure 5-16 gives a comparison of the power spectra of the error signal for differing

parameters of the Independent Quadratic Optimisation algorithm. Case L can be

considered the standard, with case 2 having twice the control filter coefficient step size

factor as case L, and case 3 having ten times as many samples used to estimate the cost

function as case L. It is apparent that increasing the number of averages narrows the

bandwidth of the error signal spectra about the tone. This is considered to result from

less variance in the error signal as the control filter coefficients are adapted less

frequently, and improved accuracy of the cost function estimates as a result of an

increased number used of samples used in the estimation (although it would be expected

that the attenuation at the frequency of the tone would increase with improved accuracy

of the estimates, which is not evident from Figure 5-16). Increasing the control filter

coefficient step size factor had little effect on the power spectra of the error signal,

however on viewing the error signals for cases 1 and 2 (not shown here) the excess mean

square error was found to increase with the increased control filter coefficient step size

factor (as found in section 5.3). Both changes from the standard (case 1) did not result

in increased attenuation.
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Figure 5-1-5. Comparison of the reduction of a pure tone in the acoustic test apparatus by the Independent

Quadratic Optimisation algorithm (- - -) and the filtered-X LMS algorith- (- -). The power spectra of
the error before (-) and after control is shown versus frequency.
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Figure 5-1-6. Comparison of the reduction of the acoustic disturbance by the Independent Quadratic
Optimisation algorithm using case 1 (-) as the standard, with case 2 (- - - ) having twice the control
filter coefficient step size factor as case 1, and case 3 (- -) having ten times as many samples used to
estimate the cost function as case L. The power spectra of the error signal after control is shown versus

frequency.
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The tracking ability of the Independent Quadratic Optimisation algorithm was examined.

Control of a tone at 125 Hz was firstly achieved. The frequency of the tone was then

changed to 156.25 }Jz. This test was performed for both the Independent Quadratic

Optimisation algorithm and the filtered-X LMS algorithm. A system identification was

performed on-line by the filtered-X LMS algorithm. As with all other tests, the control

filter coefficients were initialised to zero. Only two control filter coefficients were used

by both algorithms.

Figures 5-1.7 and 5-1.8 show control of the disturbance by the Independent Quadratic

Optimisation algorithm. Figure 5-17 shows the error signal initially converging for 125

IJz, and subsequently converging as the frequency is changed instantly to 156.25 }Jz.

Figure 5-18 shows the path of the control filter coefficients (with the cost function

estimates numbered), mapped onto the contours of the cost functions for a tone of.125

Hz and a tone of L56.25 }Jz. Figure 5-19 and 5-20 show similar results for the error

signal and control filter coefficients, as control is performed by the filtered-X LMS

algorithm.

A comparison of the error signals shown in Figures 5-17 and 5-19 shows that initially the

filtered-X LMS algorithm needs to identify the system before control can cornmence (ie.

system identification performed up to sample number 2000). Control by the filtered-X

LMS algorithm appears to be slower than that by the Independent Quadratic

Optimisation algorithm, probably resulting from the use of a control filter convergence

coefficient that was too small. As the frequency was suddenly changed, the error signal

corresponding to the Independent Quadratic Optimisation algorithm deviated to a larger

extent than the filtered-X LMS algorithm. If the lattice filter implementation had used
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Chapter 5. Practical Implementation of the Independent Quadratic Optimisation Algorithm

the Recursive Least Squares algorithm to adapt the PARCOR coefficients, then the error

ratio used by this adaptation method would have indicated a sudden change in the

reference signal. This could be used by the Independent Quadratic Optimisation

algorithm to alert it of an imminent change, and cause it to reset the control filter

coefficients before adapting to the change. It should be noted that the Independent

Quadratic Optimisation algorithm is not designed for fast tracking capabilities, but for

more stable control of noise and vibration in slowly changing system conditions. It should

however be noted that if the sudden system change had been too immediate to be

tracked by the on-line system identification algorithm used by the filtered-X LMS

algorithm, it could have caused instability in this algorithm, whereas the Independent

Quadratic Optimisation algorithm would not have been affected as it requires no

knowledge of the cancellation path.

Finally a comparison between the paths of the control filter coefficients shown by Figures

5-18 and 5-20 show the difference in the orthogonal nature of the coefficients used by the

Independent Quadratic Optimisation algorithm, as opposed to the non-orthogonal nature

of those used by the filtered-X LMS algorithm. It is apparent from Figure 5-18 that the

variance in the control filter coefficients is reduced upon reduction of the cost function,

resulting in reduced excess mean square error at the optimum. From Figure 5-18, it is

apparent that more than one curve-fit is required to reach the optimum; This is because

of the effect of extraneous (or uncorrelated) noise on the accuracy of the cost function

estimates. The path of the control filter coefficients to the optimum, as adapted by the

filtered-X LMS algorithm appears to be oscillating, and drifting away from the optimum,

possibly a result of DC offsets.
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Figure 5-17. The error signal showing the ability of the Independent Quadratic
Optimisation algorithm to track changing system conditions. The error signal magnitude
is shown versus the number of samples.
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Chapter 5. Practical Implementation of the Independent Quadratic Optimisation Algorithm
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Figure 5-L9. The error signal showing the ability of the filtered-X LMS algorithm to
track changing system conditions. The error signal magnitude is shown versus the
number of samples.
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Chapter 5. Practical Inrplementation of the lndcpendent Quadratic Optimisation Algorithm

The final test for control of a disturbance consisting of a pure tone, was to corrupt the

pure tone using variable magnitude band passed white noise. The tone used had a

frequency of L25 }{z. The band pass filter had a bandwidth of 50 Hz and a centre

frequency of 125 Hz, but was without an ideal flat response. Results are shown for the

tone 15 dB and 35 dB above the level of filtered white noise, in Figure 5-2I (a) and (b)

respectively. Figures 5-21 (a) to (c) show the power spectra of the error signal before

and after control by the Independent Quadratic Optimisation algorithm, and the filtered-

X LMS algorithm. Only two control filter coefficients were used by both algorithms. It

is apparent from Figures 5-21(a) to (c), that the filtered-X LMS algorithm achieves

almost twice as much attenuation as the Independent Quadratic Optimisation algorithm.

This is considered to result from the use of the error signal samples to directly adapt the

control filter coefficients, as opposed to the Independent Quadratic Optimisation

algorithm which uses the error signal to estimate the cost function estimates thereby

losing information about the frequency content of the error signal. The Independent

Quadratic Optimisation algorithm therefore attempts to cancel other disturbances, even

if they aren't correlated to the reference signal. This effect has been noted previously.

The number of control filter coefficients was insufficient to result in cancellation of the

filtered white noise, as expected.

The path of the control filter coefficients to the optimum for a pure tone 35 dB above

the level of filtered white noise, as adapted by the Independent Quadratic Optimisation

algorithm, is shown in Figure 5-22. Figure 5-22 also indicates a reason for less

attenuation by the Independent Quadratic Optimisation algorithm compared with the

filtered-X LMS algorithm, since there appears a large variance of the control filter

coefficients about the optimum. The variance of the control filter coefficients about the

optimum, as adapted by the filtered-X LMS algorithm, are shown in Figure 5-23. It is

apparent from Figure 5-23 that the variance after convergence is smaller (as a result of

a lower minimum mean square error) than that caused by the Independent Quadratic

Optimisation algorithm.
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Figure 5-21(a). The power spectra of the error signal before (-) and after control by the Independent

Quadratic Optimisation algorithm (- - - -) and the filtered-X LMS algorith- (- -). The disturbance

comprised a tone at 125 Hz corrupted by band pass filtered white noise (bandwidth of 50 Hz and centre

frequency of L25 Hz). The tone was L5 dB above the filtered white noise level.
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Figure 5-21(b). The power spectra of the error signal before and after control by the Independent Quadratic
Optimisation algorithm and the filtered-X LMS algorithm. The disturbance comprised a tone at L25 Hz
corrupted by band pass filtered white noise (bandwidth of 50 Hz and centre frequency of.I25 }Jz). The tone

was 35 dB above the filtered white noise level.

120 130

Frequency (Hr)
140 150

40

co
!

o

o
o)
o-

tJ)

¡-
oì
o
(L

-30

-50

-60

\
ô

\
Þ^I t

/,.
t,

t:
ù'
lt
Ir

I

.t'

^:

I

¡

\'
I

I

I
I

\'

\

11",,
tl/
'l

\/

\

\
\

\

\

I

V

| -)
l\t
Ì/
V

-22t-



5
Chapter 5. Practical Implementation of the Independent Quadratic Optimisation Algorithm

5

')ó
oo

@

2o
oo

@

'o
o;

>¿
oo

-1

-3 -1
Kw0

Figare 5-22. Path of the control filter coefficientS EF- to the optimum of the cost

function (represented by contours 
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). The cost function estimates are represented

by ¡ The control filter coefficients are adapted by the Independent Quadratic
Optimisation algorithm. The disturbance comprised a tone at 125 Hz corrupted by band
pass filtered white noise (bandwidth of 50 Hz and centre frequency of 725 Hz). The tone
was 35 dB above the filtered white noise level.
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Figure 5-23. The control filter coefficients (Coeff. 0-, Coeff. 1 - - - -) during
adaptation by the filtered-X LMS algorithm. The disturbance comprised a tone at I25
Hz corrupted by band pass filtered white noise (bandwidth of 50 Hz and centre frequency
of I25 Hz). The tone was 35 dB above the filtered white noise level.
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Chapter 5. Practical Implementation of the Independent Quadratic Optimisation Algorithm

Control of dual-tones was attempted, with the Independent Quadratic Optimisation

algorithm (with four control filter coefficients) achieving marginally more attenuation

than the filtered-X LMS algorithm (with six control filter coefficients), as shown in Figure

5-24.
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Figwe 5-24. The power spectra of the error signal before and after control by the
Independent Quadratic Optimisation algorithm and the filtered-X LMS algorithm. The
disturbance comprised a tone at I25 Hz and another at 156.25 Hz.

Figure 5-25 shows the effect on the attenuation achieved by the Independent Quadratic

Optimisation algorithm, through doubling the control filter coefficient step size factor

(case 2) and increasing the number of samples used to estimate the cost function by a

multiple of five (case 3), in comparison with case 1. Doubling the control filter

coefficient step size factor had an insignificant effect on the power spectra of the error
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Chapter 5. Practical Implententation of the Independent Quadratic Optimisation Algorithm

signal after control, whereas increasing the number of samples used to estimate the cost

function resulted in an additional 7 dB of attenuation. This relates well with the theory,

specifically the level of misadjustment defined by equation (4-34), which predicts a

change of 7dB.
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Figure 5-25. The power spectra of the error signal before and after control by the

Independent Quadratic Optimisation algorithm. The disturbance comprised a tone atL25

Hz and another at 156.25 }lz. Case 2 ( - ) has double the control filter coefficient

step size factor as case 1(-), and case 3 (- -) has five times the number of

samples used to estimate the cost function as case L.

The effect of low power (ie. small magnitude) backward prediction errors has been

discussed in chapters 3 and 4, as well as previously in this chapter. It was found that the
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Chapter 5. Practical Implementation of the Independent Quadratic Optimisation Algorithm

power of the backward prediction errors reduce with increasing stages of the lattice,

possibly leading to overflow of the control signal. Figure 5-26 shows the control filter

coefficients normalised to the ma¡<imum possible 16 bit integer. The control filter

coefficients corresponding to backward prediction errors of higher order stages (ie.

greater than the first stage) of the lattice are shown to be significantly larger than those

for lower order stages. The magnitude of the control filter coefficient step size is also

shown to vary inversely in proportion to the estimated power of the backward prediction

errors, as suggested in chapter 4. Figure 5-27 shows the convergence of the error signal,

showing initial reduction after convergence of the first two control filter coefficients, and

subsequent further reduction after convergence of the next two control filter coefficients

(corresponding to backward prediction errors with low powers).
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Figure 5-27. Convergence of the error signal for control of a dual-tone disturbance, with

initial convergence for low order stages and subsequent convergence for higher order

stages.

It is interesting to note the effect of the number of control filter coefficients used by the

filtered-X LMS algorithm. To achieve the same attenuation as the Independent

Quadratic Optimisation algorithm required six control filter coefficients. The power

spectra of the error signal after control by the filtered-X LMS algorithm, using four and

six control filter coefficients, is shown in Figure 5-28. It is apparent that an additional

10dB of attenuation is achieved by increasing the number of coefficients, but there also

appears to be a reduction in attenuation about the tone (considered to result from the

additional coefficients attempting to cancel uncorrelated components of the signal and

in effect creating an overdetermined system). It should be noted that the persistent

excitation condition discussed in chapter 2 and the appendix, requires sufficient noise in

¿..11---:..-- r. -- r-¡ -l
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Chapter 5. Practical Implementation of the Independent Quadratic Optimisation Algorithm

the filtered reference signal to ensure that the autocorrelation matrix for this signal is

invertible. Should there be insufficient noise in the filtered reference signal for the

number of control filter coefficients, instability can result.
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Figure 5-28. The power spectra of the error signal before and after control by the

filtered-X LMS algorithm using four 

-and 
six - - - - control filter coefficients.

Consider now the control of white noise filtered through a band-pass filter. A FIFO

(First-In-First-Out) delay was included in the algorithms to reduce the number of control

filter coefficients (ie. A delay of 10 samples in the cancellation path would require at

least L0 control filter coefficients to achieve any attenuation, therefore with a L0 sample

delay FIFO, a smaller number of control filter coefficients is required). Figure 5-29

shows the power spectra of the error signal before and after control of 50 Hz band
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Chapter 5. Practical lmplementation of the Independent Quadratic Optimisation Algorithm

passed white noise (with centre frequency of 300 Hz) by the Independent Quadratic

Optimisation algorithm and the filtered-X LMS algorithm. The control filters for both

algorithms used 8 coefficients with a FIFO delay of 8 (as the time delay between the

control source and the error sensor was about 10 samples at a sampling frequency of

1250 Hz). It is apparent from Figure 5-29, that with this number of control filter

coefficients, about the same level of attenuation is achieved by both algorithms.

Figure 5-30 shows the power spectra of the error signal before and after control of 400

Hz band passed white noise (with centre frequency of 300 IIz) by the Independent

Quadratic Optimisation algorithm and the filtered-X LMS algorithm. A FIFO delay of

8 was used only for the Independent Quadratic Optimisation algorithm. Figure 5-30

shows the level of attenuation achieved by the Independent Quadratic Optimisation

algorithm with and without the FIFO delay, and by the filtered-X LMS algorithm without

the FIFO delay. The control filter had 15 coefficients for both algorithms. It is apparent

from Figure 5-30 that the attenuation achieved by the Independent Quadratic

Optimisation algorithm was significantly greater with the inclusion of a FIFO delay.
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Figure 5-29. "|he power spectra of the error signal before 1..-) and after control by the Independent
Quadratic Optimisation algorithm ( - - - ), and the filtered-X LMS algorith- (- -), both incorporating a
FIFO delay. The disturbance was 50 Hz band passed white noise centred on 3(X) Hz.
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Figure 5-30. The power spectra of the error signal before (-) and after control by the Independent
Quadratic Optimisation algorithm (with a FIFO delay (- -), and without a FIFO delay ( - - - ), and the
flrltered-X LMS algorithm ( ) (without a FIFO delay). The disturbance was 400 Hz band passed white
noise centred on 300 Hz.
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Chapter 5. Practical Implementation of the Independent Quadratic Optimisation Algorithm

5.5 Vibration Control

In section 5.3, results were presented to verify the implementation of both the

Independent Quadratic Optimisation algorithm and associated lattice filter, with tests

performed using self-induced noise (ie. effectively a time delay in the cancellation path).

In section 5.4, the analysis of the Independent Quadratic Optimisation algorithm was

extended to the more general cancellation path, with an assessment of single channel

control of an acoustic disturbance in a semi-infinite duct. The results of section 5.4 relate

to the effect on performance of the Independent Quadratic Optimisation algorithm's

parameters, and a comparison was made with the performance obtained using the

filtered-X LMS algorithm. The results of section 5.3 and 5.4 related to all types of

disturbances considered in chapters 3 and 4, and the theory presented in these chapters

was confirmed.

In this section, results for the multi-channel control of vibration levels (and power flow

or structural intensity) in a semi-infinite plate will be presented for the case of a pure

tone disturbance only. This section will highlight the effects of the different methods of

control coefficient adaptation discussed in chapter 4, and relate the effects of changes in

the control filter coefficient step size and number of averages to the theory presented in

chapter 4. This section will also show how the Independent Quadratic Optimisation

algorithm has the advantage over other types of algorithms in that it can work with any

type of cost function; For example, the Independent Quadratic Optimisation algorithm

can minimise structural power flow, whereas the standard filtered-X LMS algorithm

cannot. This section will therefore consider the effectiveness of far field attenuation for
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the following types of cost function (where the error signals are denotedby er(n), with

brackets [..] indicating paired error sensors):

Error signal amplitude ie. el@) * ,l1r¡ *...;

Structural power flow ie. [er(n).er(n)] + ler(n).eo@)l + ...; and

Acoustic intensity ie. tel@) - ":@)l 
* ¡e!@) - "11"¡1 

* ....

The experimental arrangement consisted of a 3mm steel plate, with a free length of L.4m

and width 0.5m. One end of the plate was embedded in a triangular box filled with sand,

while the other end was not supported. The sides of the plate were mounted on thin

steel shims (modelling simply supported boundary conditions).

Bending waves were excited in the plate using a pair of piezoceramic crystals bonded to

both sides of the plate, and driven out of phase but with the same amplitude. Three

pairs of this type of actuator were linked together and used to generate a disturbance,

and another three pairs of this type of actuator were driven individually to control the

vibration levels (or power flow) in the plate. Four pairs of accelerometers were used as

error sensors. They were located in pairs so that not only could they act as eight

individual error sensors, but they could also act as four structural intensity sensors. A rov

accelerometer was used to measure the vibration levels on the plate before and after

control. Figure 5-31 shows the experimental setup.
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Figure 5-31. Experimental arrangement of actuators, sensors and associated equipment for the control of vibration levels in a semi-infinite plate.
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Chapter 5, Practical Implementation of the Indep€ndent Quadratic Optimisation Algorithm

As discussed, control of intensity illustrates another advantage of the Independent

Quadratic Optimisation algorithm, since for example, the instantaneous acoustic intensity

is given by the sample product of pressure and particle velocity for a particular frequenry.

This product corresponds to an "adaptive" error signal having twice the frequency and a

constant term dependent upon the phase difference between the pressure and particle

velocity; Since the "adaptive" error signal has twice the frequency, it means that

adaptation of the control filter coefficients using this type of error signal (as per

adaptation using stochastic gradient methods) cannot take place. However the

Independent Quadratic Optimisation algorithm uses the estimate of the time averaged

product of pressure and particle velocity to achieve reduction of intensity as it would for

any qpe of cost function. That is, the cost function used is the intensity (or mean square

intensity).

It has been shown that the structural power flow is proportional to the product of the

signals from two closely spaced accelerometers [Pavic,1976]. It has also been shown that

this is only a measure of the power flow if the accelerometers are in the near field of the

control actuators [Pan and Hansen, 1993]. If the accelerometers are in the far field of

the control actuators then they act as amplitude sensors.

The semi-infinite plate was excited at the 3rd modal resonance frequency (259 Hz).

Structural power flow in the plate was initially controlled using all of the control

actuators linked together and driven using a single control filter, with all eight error

sensors used in pairs to reduce the power flow in the plate. The attenuation achieved

from this type of control is shown in Figure 5-32, and ranged from -10 dB to 25 dB. The
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control filter coefficients were adapted using method 1 of the Independent Quadratic

Optimisation algorithm (ie. all coefficients of a channel were adapted before continuing

to the next channel). It is apparent from Figure 5-32,that the peak attenuationwas in

small isolated regions near the edge of the plate and near the control actuators.

500

375

125

0

725 855 98s 1115

x (Length (mm))

1375

Figure 5-32. Attenuation achieved in the semi-infinite plate between the error sensors

and the anechoic termination, as determined from control of power flow using all of the
control actuators linked together as a single channel. The length of the plate runs from
the error sensor location to the anechoic termination. Refer to Figure 5-31 for locations
of primary sources, control sources and error sensors.

Results from minimisation of the cost function estimate (ie. total structural power flow)

by the Independent Quadratic Optimisation algorithm with different parameters is shown

in Figure 5-33. In Figure 5-33, the estimates of the cost function are those made by the

Independent Quadratic Optimisation algorithm to determine the optimal control filter

coefficients corresponding to the minimum of the cost function. In Figure 5-33, case L

1245
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Chapter 5. Practical Implementation of the Independent Quadratic Optimisation Algorithm

corresponds to the standard, case 2 has the control filter coefficient step size factor

reduced to one fifth that of case 1, and case 3 has the number of samples used to

estimate the cost function doubled in comparison to case L. As expected the steps in the

cost function are the same for case L and 3, but for case 2 they have been reduced.
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Figure 5-33. The reduction of the cost function (total structural power flow) estimate by

adaptation of the control filter coefficients using the Independent Quadratic Optimisation
algorithm. Control was achieved using all of the control actuators linked together as a

single channel. Case L (-) corresponds to the standard, case 2 (-- --) has the

control filter coefficient step size factor reduced to one fifth that of case L, and case 3

( - -) has the number of samples used to estimate the cost function doubled in
comparison to case L.

The cost function at convergence (ie. for samples greater than 5000) is shown in Figure

5-34, for the same sets of parameters. The theory presented in chapter 4 suggested that

if the control filter coefficient step size factor was reduced by a fifth, then the excess cost
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function estimate would be reduced by about 7 dB. This is shown clearly in Figure 5-34

for case 2. However doubling of the number of samples used to estimate the cost

function should have resulted in a 3dB decrease in the excess cost function estimate,

which is not apparent from Figure 5-34.
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Figure 5-34. The reduction of the cost function (total structural power flow) estimate by
adaptation of the control filter coefficients using the Independent Quadratic Optimisation
algorithm. Control was achieved using all of the control actuators linked together as a
single channel. Case 1 ) corresponds to the standard, case 2 (-- --) has the
control filter coefficient step size factor reduced to one fifth that of case 1, and case 3
( - -) has the number of samples used to estimate the cost function doubled in
comparison to case 1.

The control actuators were next driven independently, with the control filter coefficients

again adapted using method 1 of the Independent Quadratic Optimisation algorithm.

The power flow was again minimised using pairs of error sensors. The level of

o)
P
rO
t
P
tn
l¿l

=o

u
E
5
l¡-
+,
,n
o(J

f,,
It
I

I

r

I

I

I

I

II
I

-'ì

\ ,J-

\jl
t'I
,'l f

l/1

I

t¡
,'fl',
,' 11 

,

i
tl
/l

I

I

I

I

I

l

l'
-,1

4

I

I

I I

I I

I
I

I

ll'
ï

t

I

I

'f

I

tl
,l

I

,lI I

I

f

I

ii-'
I

I

\

I

I

ll
I

I

L

tl

f

l¡

I

I

I

- 236



Chapter 5. Practical Implementat¡on of the Indep€ndent Quadratic Optimisation Algorithm

attenuation achieved is shown in Figure 5-35, and ranged from 0 to 30 dB. It is apparent

from Figure 5-35, that levels of attenuation greater than 10 dB were achieved over large

regions of the plate. To compare the effectiveness of control approaches on far field

attenaution, instead of minimising power flow in the plate, the total sum of the squares

of each error signal was minimised. The attenuation achieved for this form of cost

function is shown in Figure 5-36, and also ranged from 0 to 30 dB. The attenuation

levels and distribution over the plate is similar to that for power flow reduction shown

in Figure 5-35, therefore an indication that the error sensors were in the far field; that

is, er(n).e¡(n) = eiz(n) = "rt(n).
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Figure 5-35. Attenuation achieved in the semi-infinite plate between the error sensors

and the anechoic termination, as determined from control of power flow using all of the

control actuators driven individually. The length of the plate runs from the error sensor

location to the anechoic termination.
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Figure 5-36. Attenuation achieved in the semi-infinite plate between the error sensors
and the anechoic termination, as determined from control of sum of the square of each
error signal using all of the control actuators driven individually. The length of the plate
runs from the error sensor location to the anechoic termination.

An assessment will now be made of the effectiveness (based on far field attenuation) of

the control approach using a cost function criterion equivalent to that of "acoustic

intensity" (ie. The difference between the square of each error sensor pair was used, or

equivalently, the product of the sum of the signals from the error sensor pair by their

difference). Again the control filter coefficients were adapted using Method 1 of the

Independent Quadratic Optimisation algorithm, with the level of attenuation achieved

shown in Figure 5-37. In Figure 5-37, a 10 dB increase in attenuation levels can be

observed, with the attenuation ranging from 10 dB to 40 dB. Although a detailed

investigation of the physical control mechanisms, underlying active noise or vibration
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control in any context, is outside the scope of this work, it is broached that the

attenuation increased with this type of cost function as it is a more appropriate cost

function for measuring power flow in the far field.
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Figure 5-37. Attenuation achieved in the semi-infinite plate between the error sensors

and the anechoic termination, as determined from control of "acoustic intensity" using all
of the control actuators driven individually. The length of the plate runs from the error
sensor location to the anechoic termination.

The two methods of adapting the control filter coefficients using the Independent

Quadratic Optimisation algorithm (ie. method 1 - optimising all the coefficients of a

channel before continuing to the next channel, or method 2 - optimising a coefficient of

all the channels before continuing to the next coefficient) were compared by minimising

the amplitudes at four accelerometer positions, using three pairs of control actuators

driven individually. Figure 5-38 shows the reduction of the total mean square error

estimates using each method. It is apparent from Figure 5-38, that the Independent
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Chapter 5. Practical Implementation of the Independent Quadratic Optimisation Algorithm

Quadratic Optimisation algorithm takes longer to converge using method 2 than using

method 1. This is considered to result from the control filter coefficients being

independent within each channel, but not between channels. The final level of

attenuation was about 16 dB at the error sensor locations for both methods.
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Figure 5-38. The reduction of the cost function (amplitude based) estimate by adaptation
of the control filter coefficients using the two alternative methods (method | 

- 
,

method 2 - - - -) associated with the Independent Quadratic Optimisation algorithm.
Control was achieved using all of the control actuators linked together as a single
channel.

An example of the convergence of the error signal from a particular error sensor is shown

for each method in Figures 5-39 (a) and (b). It is also apparent from Figures 5-39 (a)

and (b), that the convergence of the Independent Quadratic Optimisation algorithm is

slower for method 2. Finally the control filter coefficients were assessed for each method

of control filter coefficient adaptation. Figures 5-a0 (a) to (c) show the convergence of
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Chapter 5. P¡actical Implementation of the Independent Quadratic Optimisation Algorithm

the coefficients for each control filter. Figure 5-a0(a) shows that the coefficients of the

first channel (control filter) are very similar for both methods 1 and 2, while Figure 5-

40(b) and (c) show that the coefficients of the channels (control filters) are quite different

for each method of adaptation using the Independent Quadratic Optimisation algorithm.
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Figure 5-39(a). Error signal for control coefficient adaptation using method 1 of the
Independent Quadratic Optimisation algorithm.
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Figure 5-39(b). Error signal for control coefficient adaptation using method 2 of the
Independent Quadratic Optimisation algorithm.
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Figure 5-a0(a). Control filter coefficients versus sample number for both methods of
control filter coefficient adaptation by the Independent Quadratic Optimisation algorithm.
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Chonnel 2-lQO Method Comporison

Ø
L
0)

o

0)
o
O

o
=ü
õ

o
O

ø

o)

o

o)
o()
L
o
=i;
õ
c
o
O

oq

2.0

1.5

1.0

0.5

0.0

-0.5

-1.0

-1.5

-2.0
ôE_L.J

2.5

2.0

1.5

1.0

0.5

0.0

0 1 0000 20000

Somples

Melhod 1-Coef f .0
Melhod 2-Coef f .0

30000

Melhod 1 -Coeff.1
Melhod 2-Coeff.l

40000

Figure 5-40(b). Control filter coefficients versus sample number for both methods of
control filter coefficient adaptation by the Independent Quadratic Optimisation algorithm.
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control filter coefficient adaptationbythe Independent Quadratic Optimisationalgorithm.
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5.6 Summary

In this chapter the Independent Quadratic Optimisation algorithm, and associated lattice

filter, implemented in both single and multi-channel form, have been tested

experimentally for the control of both an acoustic disturbance and a vibration

disturbance.

In verifying the lattice filter implementation, it was observed that the power of the

backward prediction errors gave an indication of the statistics of the reference signal, and

therefore an indication of the number of control filter coefficients required. This is not

obvious when using a transversal filter and the filtered-X LMS algorithm. Too many

control filter coefficients used for the filtered-X LMS algorithm can not only result in

instability (since the persistent excitation condition may not be satisfied) as discussed in

chapter 2 and the appendix, but also in reduced attenuation bandwidth as was shown

later in this chapter. The estimated power of the backward prediction error signals was

also used to provide a means of adjusting the control filter coefficient step size in the

Independent Quadratic Optimisation algorithm, as suggested in chapter 4.

The Independent Quadratic Optimisation algorithm was found to perform as effectively

in most cases as the filtered-X LMS algorithm. The Independent Quadratic Optimisation

algorithm was able to achieve good attenuation for disturbances ranging from pure tones

to broadband noise (for which a FIFO was used to reduce the required number of control

filter coefficients) without the need for system identification of the physical system. It

was also shown to be capable of tracking sudden changes in system conditions. The
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Independent Quadratic Optimisation algorithm was found to have an advantage over the

filtered-X LMS algorithm for control of disturbances with high eigenvalue disparity (ie.

tones with high powers well separated in frequenry), and for control of structural or

acoustic intensity. The effect of uncorrelated noise on the level of attenuation, alongwith

the possibiliry of the control filter coefficient overflowing, were the key disadvantages of

the Independent Quadratic Optimisation algorithm. These key disadvantages can be

overcome as follows:

The use of individual harmonics [Clark et al,1992;Gibbs et al,1993;Kewley et al,

19951 or tones (through band pass filtering the reference signal) eliminates the

possibility of overflow of the control filter coefficients; That is, the coefficients

overflow as a result of low powers of their corresponding backward prediction

error signals, and this overflow can be avoided with the use of individual

harmonics (that may be synthesised) of constant power. Alternatively a variable

gain factor can be used with the control filter coefficients with, however, a loss in

resolution.

a

a The level of uncorrelated noise could be reduced by band pass filtering key

frequencies in the error signal.

The effect of parameters (ie. control filter coefficient step size and number of averages)

of the Independent Quadratic Optimisation algorithm on performance (ie. attenuation

level, bandwidth of attenuation and convergence speed) were assessed and found to

compare favourably with the theory presented in chapter 4.
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The use of different types of cost function (ie. Based on amplitude, and structural or

acoustic intensity) was shown to give differing results for attenuation achieved in the far

field of a semi-infinite plate, with results dependent on whether the error sensors were

in the near or far field.

Besides the experimental verification of the Independent Quadratic Optimisation

algorithm in this work, its performance has also been demonstrated recently.

Botteldooren [1993] used the Independent Quadratic Optimisation algorithm to reduce

pure tones in the drivers cabin of a large agricultural machine. The tones originated

from rotating machinery components. The overall noise level was reduced by 15 dB in

about L0 seconds.
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Chapter 6. C-onclusions and Recommendations.

6.1 Conclusions

The objective of this work was the development of an adaptive algorithm and control

architecture, for implementation in active noise and vibration control systems, that

avoids the instabilities associated with phase inaccuracies in the cancellation path (or

otherwise known as the error path, secondary path, or auxiliary path) transfer function

estimation. Current methods of control require knowledge of the cancellation path to

reach the optimum of the performance surface in a stable manner.

Chapter 2 provided a basis from which to branch into the novel work presented in this

thesis. In this chapter modern control theory was applied to active noise and

vibration control to unify the most commonly used algorithms. This theory involved

the use of a model of the system, an algorithm to estimate the parameters of the

system model, and a control scheme to achieve the desired process output. The

common algorithms were heuristically developed, and the approach presented in

chapter 2 highlighted the following improvements that could be made to these

algorithms (note that these improvements were not tested in simulations or

experiments).

Use of the "augmented-error" approach that avoids the interplay between

system identification and control schemes.

a

a Use of a single adaptive scheme to estimate the parameters of the system

model on-line (ie. It is not necessary to identify the cancellation path transfer
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function parameters and control filter coefficients in parallel; This can result

in instability, with the convergence conditions for the control algorithm affected

by the accuracy of the cancellation path transfer function estimates).

Use of the simplified forms (stochastic gradient) of the more accurate recursive

prediction error methods for both output-error and equation-error models.

Use of a Generalised Minimum Variance (GMV) criterion, instead of a

minimum variance criterion, to reduce the effect of minimum-phase plants.

In many of the models considered in this chapter, numerator polynomials have

been assumed to be close to unity so that algorithms for output-error and

equation-error forms (eg. ARMAX) can be simplified. This can result in a

reduction of broadband attenuation, with the prediction of the zeroes of the

disturbance model ignored (avoiding effects of non-minimum-phase zeroes).

Use of the Linear Quadratic Gaussian control scheme with spectral

factorisation to control systems with non-minimum-phase transfer functions.

a

Alternative methods were considered to avoid the need to identify the parameters of

the system model. This led to the concept of the Independent Quadratic Optimisation

algorithm.

Chapter 3 introduced the lattice filter as a means of providing orthogonal signals for
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use by the Independent Quadratic Optimisation algorithm. The lattice filter was

shown to be particularly suited to the extremely fast recursive least squares algorithm,

enabling the orthogonal backward prediction errors to be quickly available. The

lattice filter was found to have many desirable properties that were specifically suited

to the Independent Quadratic Optimisation algorithm, namely:

The lattice filter is a form of linear prediction with the prediction accuracy

determined by the magnitude of the backward prediction error signals. That is,

the more complex the input/reference signal (in terms of signal statistics), the

more stages will be required for prediction. Hence the lattice filter, through

the generated backward prediction error signals, gives an indication of the

number of control filter coefficients required for control.

PARCOR coefficients of each stage of the lattice are adapted independently to

later stages, therefore the lattice can be extended to the required number of

stages to achieve optimum control, without affecting previously converged

PARCOR coefficients.

a

The lattice filter is defined such that, provided the absolute magnitude of the

PARCOR coefficients is less than unity, stability is assured; This links well

with the established stability concept of the Independent Quadratic

Optimisation algorithm.

Although the backward prediction error signal generated by the lattice are orthogonal,
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it should be emphasised that they represent prediction errors, and as such will

decrease in power with increasing stages of the lattice (ie. with increasing numbers of

samples used in prediction) eventually becoming white noise sequences with low signal

powers. As the power of the backward prediction error signals decrease, this means

that the control filter coefficients magnitude must increase to generate the control

signal, possibly leading to an overflow. This represents the only disadvantage of the

lattice filter when used to generate orthogonal signals.

When the backward prediction errors used with the individual coefficients of the

control fitter (linear combiner), the control filter coefficients were found to be

independent provided no transfer function existed in the cancellation path. It was

shown that a delay in the cancellation path did not affect the independence of the

control filter coefficients; However, any other type of transfer function in the

cancellation path reduced the independence of the control filter coefficients for all

signals other than pure tones. Orthogonalising each harmonic individually has been

shown to provide a means of overcoming this limitation. It was noted that loss of

independence of the control filter coefficients only reduced the speed of convergence

and not the stability of the Independent Quadratic Optimisation algorithm.

In chapter 4, the Independent Quadratic Optimisation algorithm concept was

introduced and formally derived. It fits a quadratic curve to three estimates of the

cost function for each independent control filter coefficient. It was shown that the use

of Newton's Method as outlined in recent papers is similar to the Independent

Quadratic Optimisation algorithm presented here. This comparison led to formalising
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the heuristic comments (regarding number of averages, control filter coefficient step

size and degree of cost function curvature) made about the Independent Quadratic

Optimisation algorithms performance, using Widrow and Stearns [1985] analysis of

Newton's Method for a multi-coefficient single channel system.

Simulations were presented for a pure tone and white noise separately and in

combination, illustrating the effects on control filter coefficient independence of a

transfer function in the cancellation path, as presented theoretically in chapter 3. It

was shown that loss of independence only a limitation in that it reduced the speed of

convergence, but not stability, of the Independent Quadratic Optimisation algorithm

for all but pure tone signals. The Independent Quadratic Optimisation algorithm has

been extended to control periodic noise/vibration by Gibbs et al [1993] and Kewley et

al [1995].

Simulations were also performed in this chapter 4, for a multi-channel system using

the Independent Quadratic Optimisation algorithm with two alternative methods of

control filter coefficient adaptation. Theory was developed with regard to the

conditions for independence of control filter coefficients within each channel and

between channels. It was shown that for the case of a control actuator and two error

sensors, control filter coefficient independence was assured provided the independence

condition presented in chapter 2 was met, or the cancellation path transfer functions

and the primary disturbance to error sensor transfer functions were orthogonal;

However, if these transfer functions were not orthogonal, the system would be over-

determined, with redundancy of an error sensor as found by Snyder, Clark and
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Hansen [1993] in an analysis of the standard filtered-X LMS algorithm. It was further

shown that for the case of one error sensor and two control actuators, independence

of the control filter coefficients between channels was impossible; This result suggests

that it is more effective to use method 1 for adaptation of control filter coefficients as

the coefficients are independent for each channel.

In chapter 5, the Independent Quadratic Optimisation algorithm, and associated

lattice filter, implemented in both single and multi-channel form, were tested

experimentally for the control of both an acoustic disturbance and a vibration

disturbance.

In veriffing the lattice filter implementation, it was observed that the power of the

backward prediction errors gave an indication of the statistics of the reference signal,

and therefore an indication of the number of control filter coefficients required. This

is not obvious when using a transversal filter and the filtered-X LMS algorithm. Too

many control filter coefficients used for the filtered-X LMS algorithm can not only

result in instability (since the persistent excitation condition may not be satisfied) as

discussed in chapter 2 arrd the appendix, but also in reduced attenuation bandwidth as

was also shown in chapter 5. The estimated powers of the backward prediction error

signals were also used to provide a means of adjusting the control filter coefficient

step size in the Independent Quadratic Optimisation algorithm, as suggested in

chapter 4.

The Independent Quadratic Optimisation algorithm was found to perform as
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effectively in most cases as the filtered-X LMS algorithm. The Independent

Quadratic Optimisation algorithm was able to achieve good attenuation for

disturbances ranging from pure tones to broadband noise (for which a FIFO was used

to reduce the required number of control filter coefficients) without the need for

system identification of the physical system. It was also shown to be capable of

tracking sudden changes in system conditions. The Independent Quadratic

Optimisation algorithm was found to have not only an inherent stability advantage

over the filtered-X LMS algorithm, but it was also found to perform better for control

of disturbances with high eigenvalue disparity (ie. tones with high powers well

separated in frequency), and for control of structural or acoustic intensity. The effect

of uncorrelated noise on the level of attenuation, alongwith the possibility of the

control filter coefficient overflowing, were the key disadvantages of the Independent

Quadratic Optimisation algorithm. These key disadvantages can be overcome as

follows:

The use of individual harmonics [Clark et al, 1992; Gibbs et al, L993; Kewley et

al, 1995] or tones (through band pass filtering the reference signal) eliminates

the possibility of overflow of the control filter coefficients; That is, the

coefficients overflow as a result of low powers of their corresponding backward

prediction error signals, and this overflow can be avoided with the use of

individual harmonics (that may be synthesised) of constant power.

Alternatively a variable gain factor can be used with the control filter

coefficients with, however, a loss in resolution.

a
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The level of uncorrelated noise could be reduced by band pass filtering key

frequencies in the error signal.

The effect of parameters (ie. control filter coefficient step size and number of

averages) of the Independent Quadratic Optimisation algorithm, on performance (ie.

attenuation level, bandwidth of attenuation and convergence speed) were assessed and

found to compare favourably with the theory presented in chapter 4.

The use of different types of cost function (ie. Based on amplitude, and structural or

acoustic intensity) was shown to give differing results for attenuation achieved in the

far field of a semi-infinite plate, with results dependent on whether the error sensors

were in the near or far field.

62 Recommendations

As discussed throughout this work, and summarised above, the Independent Quadratic

Optimisation algorithm performs optimally for periodic or deterministic disturbances,

where the tonal components of the disturbance can be individually orthogonalised (as

has already been presented by Clark and Gibbs f1992, 19931and Kewley et al [1995]).

Narrow band filtering of the offending tones from the error signal, for use in the cost

function estimate can reduce the effect of uncorrelated noise. Alternatively, instead

of narrowband filtering using fixed filters, an adaptive notch or comb filter could be
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used to extract from the error signal, only those frequencies of interest. This

approach should then provide as much attenuation as the filtered-X LMS algorithm in

the experimental studies of chapter 5.

A further development of the Independent Quadratic Optimisation algorithm would

be to incorporate poles into the lattice filter structure. The poles can be generated

using the feedback form of the lattice filter shown in chapter 3. The stability of the

transfer function defined by the lattice structure can be ensured by maintaining the

PARCOR coefficients less than unity. The use of an IIR filter in this form would also

reduce the number of coefficients used in the linear combiner. A IIR filter would be

in the form of an output-error IIR filter, which would not necessarily have a quadratic

cost function [Widrow and Stearns, 1985]. A form of equation-error IIR filter that

would have a quadratic cost function could be formed by passing not only the

reference signal through a lattice, but also the error signal, thus forming a

feedforward/feedback controller. This could increase the bandwidth about minimised

tonal components.

The Independent Quadratic Optimisation algorithm has been shown to be ideal only

for periodic disturbances, and since periodic disturbances are easiest to obtain using a

reference signal that is not affected by the control actuator, acoustic feedback was not

considered in this work. The effect of acoustic feedback on the Independent

Quadratic Optimisation algorithm should however be examined.

The inclusion of an effort weighting term in the cost function could ensure control

-256-



Chapter 6. Conclusions and Recommendations.

actuators are not overdriven. This is particularly important for the Independent

Quadratic Optimisation algorithm, in view of the fact that simulations in chapter 4

suggested that it was best to optimise the coefficients of each control filter in turn.

This type of criterion is identical to that used for the Generalised minimum variance

control scheme.

Coupling between the control actuators was shown to reduce the effectiveness of the

Independent Quadratic Optimisation algorithm. Recent results [Elliott et al, 199L]

suggest that a set of single channel feedforward controllers could be used in place of a

multi-channel controller, provided certain conditions are met, thus eliminating strong

coupling between control actuators and error sensors.

The convergence speed of the Independent Quadratic Optimisation algorithm could

be dramatically improved by optimising all the coefficients of the control filter at

once, instead of optimising each individually. This would mean only three cost

function estimates would be required. The optimal control filter coefficients should

not be too difficult to calculate from these three estimates.

The Independent Quadratic Optimisation algorithm can be used with any cost

function of quadratic nature. It is recommended that its use with non-linear filters

such as those based on a Volterra approach [Klippel, 1995] be considered.

The Independent Quadratic Optimisation algorithm could be applied to a frequency

domain approach, since harmonic bandpass filter outputs would be independent. This
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could extend the bandwidth of application of the Independent Quadratic Optimisation

algorithm, from not only tonal noise but to broad band noise.

The Independent Quadratic Optimisation control strategy could be particularly useful

in large ducts, for control of the blade passage frequency (and associated harmonics)

of large centrifugal fans. Multiple single-channel controllers could be used to

minimise the tone particularly if the tones propagate as higher-order modes. The

Independent Quadratic Optimisation algorithm is also particularly suited to using a

measure of intensity as a performance criterion. This could further assist with the

reduction of tones propagating as higher-order modes.

As the Independent Quadratic Optimisation algorithm is suited to tonal control, it

could prove successful at reducing vibration levels, or minimising structure-borne

sound using modal actuators and sensors [Nitzsche, 1993].

The lattice form of IIR filter has observable stability characteristics [Honig and

Messerschmitt, 1984]. This would make it extremely suitable to other alternative

optimisation approaches that do not require the cost function to be quadratic, such as

a "stochastic learning automaton" which could result in broadband attenuation using

the parameters of an output-error form of IIR lattice.

The lattice filter form is such that minimum modelling approaches, as described in

Chalam [1987], should be considered. That is, the order of the lattice can be

increased without affecting previously optimised coefficients (unlike a transversal
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filter).

Finally, the lattice filter structure relative to the statistics of the input signal suggest

that it could be used in conjunction with the Linear Quadratic Gaussian control

scheme and robustness conditions defined by H* control theory, since the statistics of

the input signal play a major part in defining the degree of "cautiousness" a controller

should apply. From the literature review of chapter 2, LQG control has a great

potential in active noise and vibration control systems, and together with fI- control,

controllers with good performance, stability and robustness conditions will be

achievable in the not too distant future.

Besides research efforts into control algorithms, other work could be directed towards

improving the minimum-phase characteristics of transducers, developing uni-

directional compact transducers, improving modal sensing and actuating transducers,

and finally designing "feedback transducers" that have minimal time delay between the

sensor and the actuator.
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Appendix A. Control Theory - Background

A-l Adaptive Filters

This section will consider systems defined in discrete-time using adaptive filters

[Widrow and Stearns, 1985; Bellanger, 7984; Cowan and Grant, 1985; Honig and

Messerschmitt, 19841. A digital filter is adaptive if its coefficients defining its

response can be altered with time. The response of a digital filter in the time domain

is known as the "impulse response", denoted å(n) (with n representing the number of

samples), and in the frequency domain it is known as the "frequency response",

denoted H(etu¡ (the Fourier transform of the impulse response, with <o representing

the frequency, and the response normalised by the sampling frequency and limited to

half the sampling frequenry.

A filter with a finite impulse response is non-recursive, and is known as a "tapped-

delay-line", a "transversal" or a "moving average (MA)" filter. The output of the filter

is defined as the weighted sum of current and previous inputs:
I-l

u(n) =E a,x(n-i) [A-1]
i=0

where a(n) is the filter output, h(i) = ø, defines the filter coefficients (of which there

are I) and the impulse response, and x(n) is the input to the filter. Taking z-

transforms yields the characteristic equation of the filter, with the roots of this

equation defining the zeroes (or dips in the spectrum with a white Gaussian noise

input) of the filter.

HQ) = yy),- = a0 + arz-l * ... * or-F-'*' lA-2)
x(z)
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A filter with an infinite impulse response is recursive, and is also known as an

"autoregressive-moving average (ARMA)" filter. The output of this filter may be

defined as the sum of the current input and previous inputs and outputs:

I-1 K oo

u(n)=la,x(n-t)-E buu(n-k)=lc,x(n-í) tA-31
i-0 k=l i=0

where ø(n) is the filter output, h(i) = c, defines the impulse response, ai and bk

represent the filter coefficients, and x(n) is the input to the filter. An "autoregressive"

filter can be formed from the sum of only the previous outputs. Taking z-transforms of

equation (A-3) yields

H(z\ = U(,) = 
ao + a'rz-r + "' + ar-F-r'l 

tA-41
XØ I+b(-1 +...+b*z

The roots of the numerator polynomial (in z -1¡ define the zeroes (or dips in the

spectrum with a white Gaussian noise input) of the filter, while the roots of the

denominator polynomial (in z-1) define the poles (or peaks in the spectrum with a

white Gaussian noise input). The denominator polynomial is termed monic if its first

coefficient is unitary.

The "direct" forms (there are other "canonical" forms) of these filters can be defined

from the above equations and are shown in figures A-1 (a) and (b). An alternative

"canonical" form is infact the lattice filter, the introduction of which is left to chapter

3.
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x(n)

u(n)

Figure A-l(a). Finite impulse response filter in direct form implementation. The

coefficients of this filter are a,, with input x(n), and output u(n) .

*(n) u(n)

Figure A-l(b). Infinite impulse response filter in direct form implementation. The

coefficients of this filter are a, and b,, with input x(n), and output u(n).

It should be noted that a discrete-time transfer function is only realisable if the

causality principle is satisfied (that is, the filter cannot respond before excitation).

Thus a realisable filter has a zero response until the instant an impulse is applied at

aoØ)

^ ^b1$)

^ n( )'N-r
A

ø*-, (n)

'*-r(n) v^-r(n)
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the input. Causality is observed easily in a time-domain analysis, but is concealed in a

frequency domain analysis.

A filter is stable if its response is appropriate for a given excitation. External stability

relates to the external inputs and outputs of the filter. It can be shown that bounded

input-bounded output (BIBO) stability requires

Ë I h&)l < oo tA-sl
k=0

This condition also ensures the convergence of the transfer function H(z) for | tl>1,

implying that H(z) is analytic on and outside the unit circle and therefore only has

poles in lrl < I [Ljung, 1987]. Thus it can be said that a transfer function Hþ) is

stable provided its poles lie within the unit circle. A transfer function can be divided

into partial fractions, with at most second order denominators. The poles of second

order denominators define the transient behaviour of the system, with the proximity of

poles to the unit circle defining their degree of damping. If the zeroes of a system lie

within the unit circle in the z-domain, then the system is termed "minimum-phase",

and its inverse is stable. This concept is critical to the discussions on control schemes

throughout chapter 2.

Rather than using z-transforms to define transfer functions for system modelling, it is

also common to use the "forward shift operatol", q, and the backward shift operator,

q-r, and work in the time-domain. Thus a convolution in the z-domain as given by

equation (A-1) would become
I-1

u(r) =E a,q-ix(n) = H(q)x(n) tA-61
i=0

where ä(q) is a polynomial in the delay operator, q -1
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A2 System Identifrcation

System identification is necessary to determine how a process responds to certain

inputs, so that the most appropriate control signal can be generated to regulate the

output. System identification involves defining a model of the system, and then

identiffing the parameters of this model. Figure A-2 shows the typical layout of the

flow diagram showing the input and output to and from the process to be identified

(usually the cancellation path transfer function) and the input and output to and frorir

the model of the process. The aim is to ensure that the parameters defining the

model are as close as possible to those of the process, with the prediction error

("(") = y(n) - iØ)) giving a measure of the parameter estimation errors. The

location of the identification scheme within the controller is shown in figure 2-3 of.

chapter 2. In this section, the models and algorithms used to identify the model

parameters will be briefly reviewed.

7reàiction
E¡or= e(n) =V(n) -9(n)

Conlrol
7iqnal = u(n)

Figure A-2. Classical system identification problem.

Ercor
7iqnal = y(n)

IDENTIFICATION
TARAMETER
ADATTATION

IDENTIFICATION
or 7ROCE33I'ÀODEL

v(n)

i(n)

TROCEE9
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L.z.L Models

A model of a process requires a model of the transfer function linking the input to the

output, as well as a model of the disturbance from white Gaussian noise passed

through a transfer function to the output. There are two basic forms of model, known

as "output-error" (or equivalently "Model Reference Adaptive Control") and "equation-

error" (or "ARX" meaning Auto-Regressive noise model with eXogeneous input). A

very common extension to the equation-error form is known as the "ARMAX"

(meaning Auto-Regressive Moving-Average noise model with eXogeneous input)

structure. The output-error form does not model the disturbance, while the equation-

error form models the disturbance in different ways (ie. there are many types of

equation-error form). The properties of these three common models will be briefly

discussed as they will be referred to in section 2.4 of chapter 2,

L.2,IJ Output-Error

The model used to identify the process is shown in figure A-3(a). When linked with

the input and outputs from the unknown system, its relation to "Model Reference

Adaptive Control" [Landau,L979] is evident by comparison of figure A-3(b) with figure

2-2. The disturbance, v(n), is not modelled, and is shown here as white Gaussian

noise, e(n). In figures A-3(a) and (b) the system is shown as ,B(q) lf@).
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n) =While Gauøøian
Diøturbance

e(n) =White Gauøsian
Oiølurbance

u(n) v(n) u(n)

Figure A-3(a). Output-Error Model of

a system with u(n) the input, y(n) the

output, and v(n) the unknown

disturbance equal to white Gaussian

noise, e(n).

v(n)

î(n)

Figure A-3(b). Output-Error Model

applied to unknown system, with !(n)

the predictor used to estimate the

system output y(n), with prediction

error e(n).

e(n)

The predictor (ie. the predicted system output) at time n is dependent on the

parameter vector (ie. the vector of parameters defining the model), 0, at that time.

Hence the parameter vector, 0, is included in the predictor at time n, wrth descriptor,

i(n le), to highlight this dependency. The predictor can be written as (with É(q)

monic as defined in A.1)

i@le) = n-^@) rçr) = otø(n,o) tA-71
F(q)

where the parameter vector is written as

ô = [6r, ...,6no,îr,...,înf, [A-8]

and the regressor (being a vector of samples of the input and output signals to and

Ø(q)

rø)

UNKNOWN
gY)IEM
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Q@,0) = [u(n- 1), ...,u(n -nò, -y (n -I I O), ..., -|(n-r, | 0) ]t
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lA-el

The parameter vector is included in both the predictor and regressor to highlight its

effect on both. If the system model (again note that the disturbance is not modelled)

is accurate, the prediction error will equal the disturbance (ie. white noise), with the

parameters (within the parameter vector) being adapted until the prediction error is

whitened. This form of parameter estimation is known as a pseudo-linear regression

since the effect of including the predictor in the regressor is non-linear.

A linear regression results if F(q)=I, Ieaving B(q) which is then a FIR filter.

However the general form is a recursive filter, and as such requires approximations

(due to the non-linearity) to be implemented efficiently. Since this method does not

estimate a model for the disturbance, it will be shown later, that it is not susceptible

to biassed parameter estimates. A family of output-error related models can be

represented by the "Box-Jenkins" model structure [Ljung, 1987].

L.2,L.2 Equation-Error (ARX)

The model used to identify the process in an equation-error (or ARX) approach is

shown in figure A-a(a). Figure A-4(b) shows this system linked with the unknown

system inputs and outputs. The disturbance is now modelled as white Gaussian noise

passed through an autoregressive (AR) process. Hence the name ARX, with X

corresponding to the exogenous input, ø(n).
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ø(q)

A(q)
y(n) u(n)

Figure A-a(a). Equation-Error Model

of a system with u(n) the input, y(n)

the output and e(n) the white Gaussian

noise input to generate the disturbance

v(n).

Appendix A. Control Theory - Background

n) = White Gauøeian
Dieturbance

v(n)

e(n)

9(n)

Figure A-4(b). Equation-Error Model

applied to unknown system, with l(n)

the predictor used to estimate the

system output y(n), with prediction

error e(n ).

e(n) =White Gauøøian
Dielurbance

u(n

In this form, the predictor can be written as (with Å@) monc, as defined in section

A.1)

9@lÐ = ng¡rçn) * (1 -À(ò)y(")= e'o@) [A-10]

where the parameter vector is written as

ã = lâ1,...,â.n^,61,...,6n0]t lA-111

and the regressor can be written as

e(n) = I I Ø- 1), ..., -y (n -n^),u(n -I), ...,u(n -nb) lr lA-r2l

If the system model and the disturbance model are accurate, then the prediction error

UNKNOWN
9YETEM
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will be whitened. This model is important as the predictor defines a Linear regression,

and is non-recursive (linear) since it feeds back the actual process output, y(n), ralher

than the estimated process output, ¡î(n) (note ç(n) in equation (A-10) and (A-1,2) as

opposed to E(n,0) in equation (A-7) and (A-9)). It is however susceptible to biassed

parameters (as wilt be shown later) since if the disturbance model is not accurate, the

process output used in the regressor will be correlated with the unmodelled

disturbance.

L2.1.3 ARMAX

Finally consider the most common model of a process that models the disturbance as

an ARMA sequence (hence the name ARMAX, with X corresponding to the

"exogenous" input, u(n)), distinct from the AR disturbance model shown above. The

process model is shown in figure A-5, with the association with the unknown system as

it is a simple modification to that shown in figure A-4(b).

e(n) =Whiüe Gauøøian
DiøXurbance

u(n v(n)

Figure A-5. ARMAX model of a process.

c(q)
A(q)
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In this form, the predictor (termed a pseudo-linear regression) can be written as

Í(n l0) = n-^@) urn) * (1 -4@)¡rg)= ô'o(r,0) tA-131
c(q) c(q)

The prediction error (or innovation) can be written as (for all models)

e(n,o) = y(n) - i@lo) [A-14]

and therefore it can be shown that the regressor can be written as

O(n,O) = I f (n- 1), ..., ) (n -n),u(n- 1), ...,u(n -nt),
e (n - 1,0),..., e (n -n,,O))T

lA-1sl

and the parameter vector can written as

g = Íâr,...,ân^,û1,...,6n0,ôr,...,ôn"]t [A-16]

As for the equation-error model, biassed parameters result for inaccurate disturbance

models. As the ARMAX model is recursive and can be written as a pseudo-linear

regression, it can be treated in a similar manner to the output-error model. The

ARMAX model is a form of equation-error model.

A model that incorporates both equation error and output-error model types in their

most general form has been described by Ljung [1987] and Ljung and Soderstrom

[1e83].

^.2.2 
Cost Functions and Parameter Estimation

The model parameters forming the parameter vectors, are adapted to minimise (or

whiten) the magnitude of the prediction error (or innovation). The cost function to

be minimised can be based on the expectation of the squared prediction error
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(forming the "Mean Square Error" or "stochastic" approach [Ljung and Soderstrom,

1983]), or the expectation can be approximated by sample means (forming the "Least-

Squares" approach [Ljung and Soderstrom, 1983]). The cost functions can thus be

written as:

(e) = Elez(n)) -1Ë e27k'¡ = J(g,Z^) lA-171
ll y=t

where e(n) is the prediction error, "f(e) is the stochastic cost function, and J(0,2") is

the estimate of the cost function using the average of samples of the prediction error

to time n. The cost function can also be viewed as a performance surface [Cowan and

Grant, 1985; Widrow and Stearns, 1985]. The prediction error can be prefiltered to

provide a means of frequency weighting [Ljung, 1987]. A "windowing" term can be

added to the least squares estimate, to allow for quasi-stationary processes, in which

stationarity is definite for only a certain number of samples [Ljung, 1987]. The

estimated cost function with a windowing term (or forgetting factor) can be written as:

I(e,Z^) = v(rr)Ë ßn-ke2(k) tA-181
k=1

where ß is the forgetting factor and takes a value close to but less than unity (usually

between 0.98 and 0.995), giving an effective memory (or number of samples which can

be considered to be generated from a stationary process) of 1/(1-ß). The termy(n)

is a normalising term (which can be approximated by (1-ß)), and is included so that

J(O,Z^) approaches /(e) as t? approaches infinity.

The stochastic approach will now be used together with an equation-error model

(chosen because it is non-recursive) to define by example the critical concepts of

biassed parameter estimates, persistent excitation, the difference between minimum
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and excess mean square (as defined by the misadjustment), and finally the definition

of the principal axes of the cost function, all of which are relevant to the Independent

Quadratic Optimisation (IQO) algorithm.

Using the linear regression model (equation-error), the optimum parameter estimates

can be found from derivatives of the stochastic cost function (defined by equation (A-

17)) in expanded form, such that

e =R:!C [A-19]opr .Pe yq

where

Rôó = Elo(n)Or(n)l lA-201

represents the autocorrelation matrix of the regressor and

Cyó = Ely(n)q(n)) lA-21)

represents the cross-correlation vector of the regressor and the process output.

Suppose now that the observed data was actually generated by

y(n) = eoø(n) + vo(n) [A-22]

If this were true, it means that the disturbance model is not accurate, resulting in a

coloured unmodelled disturbance vo(n) instead of white Gaussian noise. The

optimum parameter estimates can be found by substituting equation (A-22) into (A-

19), such that

oop, = eo + RrlE[vo(n)9(n)] tA-23)

The parameter estimates are termed "consistent" if 0op, = 00, which will occur

provided the following conditions are met:
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The autocorrelation matrix, Rrr, is non-singular. This will require the input to

the process to be persistently exciting. The persistently exciting condition

implies that the number of parameters in a linear model that can be uniquely

determined is limited by the power spectrum of the input irrespective of the

complexity of the unknown process [Honig and Messerschmitt, 1984]. If this

condition is not met the parameter estimates will not converge to their true

values.

The disturbance, vo(n), is independent of the regressor, Q(n), components.

This requires that the disturbance, vo(n), be a sequence of independent

random variables with zero mean. That is, the model of the disturbance must

be exact to ensure unbiased parameter estimates. If this condition is not met,

the parameters will be biassed by the correlation of the unmodelled

disturbance with the regressor components (these components specifically being

the process output and the prediction error).

Biassing can be eliminated by using the method of instrumental variables [Ljung and

Soderstrom, 1983], using a more accurate model of the disturbance, or injecting an

uncorrelated signal into the system. The method of instrumental variables is

equivalent to using an output-error (or model reference) approach, since no attempt is

made to model the disturbance. That is, since the regressor of the output-error model

uses the process output estimate rather than the actual process output, there can be

no correlation between the unmodelled disturbance and any component of the

regressor. This is the key difference between the output-error and the equation-error
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methods of system identification.

The distinction between equation-error and output-error forms has been well

explained by Bitmead et al [1990], who note the advantages of each scheme as:

The equation-error method predicts a model of both the system and the

disturbance.

a

a The output-error method predicts a model only for the system therefore

avoiding biassed parameter estimates.

Bitmead et al [1990] note that the use of the equation-error method will provide a

good disturbance model that is essential to achieve adequate disturbance rejection (as

will be seen when considering minimum variance control), while use of the output-

error method will provide a close (unbiased) system model that is required for

stability and robustness.

It can further be shown [Tang and Mars, 1991] that the equation-error method has a

unique global minimum, with no local minima (however the resulting parameter

estimates that form the recursive system model need to be checked to ensure the

model is not unstable as a result of biassed parameter estimates). This can be

contrasted to the output-error method which has multiple local minima and requires

stability monitoring since it uses a recursive filter. This has particular relevance to

alternative methods of optimisation to be discussed in section 2.5 of. chapter 2,
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Returning now to the stochastic cost function, it can be shown that the stochastic cost

function optimum (or minimum mean square error) is given by

/oo, = rn - CrTra"o, lA-241

where r,, is the autocorrelation or power of the process output. This equation shows

that the stochastic cost function optimum (minimum mean square error) is dependent

upon the correlation of the regressor components with the process output. It can

further be shown that the cost function is composed of the minimum mean square

error and the excess mean square error:

(o) =/oo,* (e-eop,)rRóö(g-0o0,) l -251

The excess mean square error is dependent upon the variance of the parameter

estimates about their optima. Another term that gives a useful indication of the

performance of an algorithm is the misadjustment, which is the ratio of the excess

mean square error to the minimum mean square error. These items are discussed in

chapters 4 and 5 with regard to the Independent Quadratic Optimisation algorithm.

Finally, the autocorrelation matrix can be written in normal form using its eigenvalue

matrix, 
^ 

(in which the off diagonal terms are zero and the diagonal terms

correspond to the eigenvalues of the autocorrelation matrix), and the corresponding

modal matrix of eigenvectors, Q, such that

(0) = /on, * V*r LV' [A-26]

where the components of V' = Q'@ -0o0,) define the principal axes of the cost

function, and the eigenvalues of the autocorrelation matrix correspond to the second

derivative of the cost function relative to the principal axes. That is, the eigenvalues

relate to the degree of curvature of the cost function in the direction of the principal
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Ð(es. The principal axes can also be formed using orthogonal components of the

regressor. This is a critical concept for the Independent Quadratic Optimisation

algorithm, for which the regressor consists of orthogonal signals generated by a lattice

filter, as will be shown in chapter 3.

The concepts of minimum and excess mean square error, principal axes and degree of

curvature of the cost function in the direction of the principal axes, are important to

the Independent Quadratic Optimisation algorithm to be developed in subsequent

chapters. The concepts of biassed parameters and persistent excitation are critical to

system identification, and therefore to many of the common control algorithms.

^,2.3 
Optimisation Methods

The parameters defining a model can be updated using a steepest-descent approach,

or the modified steepest-descent approach known as Newton's Method. These

approaches can be written generally as [Ljung and Soderstrom, 1983]:

ô(n +t) = ô(n) - y(n)I'(o,Z\Jtt (s,2") lA-271

where I lt (0,2"), represents the double derivative of the stochastic cost function and

is known as the "Hessian" matrix, and J/(9,2"), represents the derivative of the

stochastic cost function and is known as the "gradient vector", and y(n) corresponds

to the step factor. The gradient vector defines the direction of steepest descent, while

the Hessian matrix modifies this direction to account for differences in the gradient

with respect to each parameter (i.. The inclusion of the Hessian matrix avoids
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eigenvalue disparity effects that plague algorithms based solely on the method of

steepest descent or approximations thereof).

The models discussed in section A.2.I can be divided into a linear regression type and

a pseudo-linear regression type. The linear-regression can be treated as a special type

of pseudo-linear regression, and therefore will not be treated specifically. Recursive

parameter estimates for pseudo-linear regression can be classified as "Recursive

Prediction Error Methods" or "Recursive Pseudo Linear Regressions".

Recursive Prediction Error Methods (RPEM)a

The recursive update equation uses the gradient of the cost function to update

the parameter vector. It can be shown [Ljung, 1987] that the gradient vector

and the Hessian matrix of the cost function are given by

.I t (o,2") = -e(n,o)U(n,o)
J, (0,21 = 

^;içì> 
' [A-28a'b]

where

ü(n,o) = gP ÍA-zs)

has become known as the gradient vector, R*, is the autocorrelation matrix for

this form of gradient vector, and e(n,O) is the prediction error. It can be

shown that the gradient vector for the output-error model is given by

nçq¡t¡çr,e) = ó(n,0), while the gradient vector for the ARMAX model is

Cçq¡t¡6,e) = ó(n,0), and finally the gradient vector for the linear regressive

equation-error (or ARX) model is equal to the regressor, V(tt) = 0(n).
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Calculating e(n,O) and ü(n,0) is computationally inefficient as they are

recursive, hence their dependence on 0 is ignored [Ljung, 1987], and the

recursive prediction error algorithm becomes:

Recursive Pseudo-Linear Regression (RPLR) Method

The recursive prediction error method ultimately required the approximation

that f(n,O) was non-recursive in 0. If this approximation is taken from the

beginning, then the gradient vector becomes

û(n,o) = ôi9o) - e(n,o) tA-311
d0

The use of this approximation gives the recursive pseudo-linear regression

algorithm, such that

e(n) =y(n) -i@) =y(n) - {(")ô1r-t¡
ô(r) = ô1"-r¡ * y(n)Rr)@)a@)e(n)

nrr(n) = Rrr(n-l) * y(n) lo@)o@) - Rrr(n-,Dl

lÑ-3Za;b;cJ

The recursive prediction error method is a more accurate method as it uses less

approximations, but in so doing requires more computations than the recursive

e(n) = y(n) - i@) =y(n) - {@)6Ø-t)
6çn¡ = ô1n -r¡ * y(n)R*lØ)û(n)e(n)

nrr@) = Rrr(n-r) * y(n)[û(n)ü(¿) - R¡r(n-r)l
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pseudo-linear regression algorithm. The discerning difference between these

algorithms lies in the use of O (as per RPEM) instead of r[ (as per RPLR). The

effect of this approximation will be discussed shortly. As discussed above, the

gradient vector for the equation-error (ARX) model is U(n) = QØ), hence for the

equation-error model the recursive prediction error method is equivalent to the

recursive pseudo-linear regression method, and the resulting algorithm is commonly

known as the "Recursive Least Squares (RLS)" algorithm, with the inverse

autocorrelation matrix defined by recursive adaptation as will now be discussed.

In both these methods, the autocorrelation matrix (of either the regressor or the

gradient vector) R -t(n) can be adapted recursively using the matrix inversion lemma

[Ljung, 1987], with P(n ) = R -1(¿). The recursive update of. P(n) can be defined

using this lemma as (with ß a constant defined to avoid division by zero at

initiatisation of the algorithm):

[A-33a,b]

Alternatively the matrix R -t(n) can be approximated using the stochastic cost

function, and the "Robbins-Munro" scheme [Ljung and Soderstrom, 1983]. The

method so defined is known as the "Stochastic Gradient Method", with R(n) = 1' The

gain y(n) can be a constant or normalised by some means. This algorithm has been

extensively used in adaptive signal processing by Widrow and Stearns [L985], with

regard to a linear regression, and is commonly known as the "I-east Mean Squares"

algorithm.
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The stochastic gradient method or least mean squares algorithm is affected by the

eigenvalue disparity of the autocorrelation matrix. This disparity (given by the

maximum difference in the powers of the spectral components of the reference signal)

affects the speed of convergence of the parameter estimates. Eigenvalue disparity will

not affect the speed of convergence if a recursive algorithm is used (like the recursive

least squares (RI^S)). The recursive least-squares approach is based on Newton's

Method of searching a cost function, with instead of the parameters adapted in the

direction of steepest descent, they are adapted in a modified direction towards the

optimum of the cost function. The stochastic gradient method or least mean squares

algorithm also has a greater misadjustment than the algorithms that incorporate a

more accurate estimate of the inverse autocorrelation matrix, because the

approximation of the gradient estimate is so "noisy" it results in increased variance of

the parameter estimates about their optima.

The recursive identification schemes have been developed and named for different

tlpes of systems and models. These are summarised in table A-1, only for the models

considered in section A.2.1, [Ljung, 1987]. In table A-1, RML stands for the

"Recursive Maximum Likelihood" algorithm developed from a Bayesian approach, and

ELS stands for the "Extended I-east Squares" algorithm. A good summary of these

methods, which can be derived from the models given in section A.2.1., is presented in

Isermann [1991] and Ljung [1987].
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Model Structure

Algorithm Type

Recursive Prediction
Error Method (RPEM)

Recursive Pseudo-Linear
Regression Method (RPLR)

ARX (Equation-Error)

Output-Error (Model Reference)

ARMAX (Equation-Error type)

RI.S

whire [1975], Hsia [1981]

RML

RI-S

Landau [1976), Feintuch [.976]

Ers

Table A-1. Summary of algorithms defined from the use of recursive pseudo-linear

regression and prediction error methods for different process/disturbance models.

As discussed, the difference between the RPLR approach and the RPEM approach

lies in the use of p instead of qr. The effect of this approximation will now be

considered for the equation-error model type (ie. ELS algorithm). It can be shown

[Ljung, 1987; Ljung and Soderstrom, 1983] for the ARMAX model that a sufficient

condition for convergence of the parameter vector to the true parameters is

dependent upon

Va¡ lA-341

where Co@) is the true moving average polynomial defining the moving average

component of the disturbance (see section A.zJ, for the model definition). This is

known as the "strictly positive real (SPR)" condition, and can alternatively be written

lCo(ej,) - 1l < lA-3sl

It is apparent from this equation that convergence to the true parameters depends

>1
2

AS
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upon the roots of c(z) = 0 lying within the unit circle in the z-domain (ie. minimum

phase condition). This theory was developed by Popov and Lyapunov, with a good

discussion given in Cowan and Grant [1985], who relate it to the Nyquist stability

criterion. Ljung and Soderstrom [1983], using an ordinary differential equation

(ODE) approach to convergence analysis, further show that

Re {Co@t')} > 0 Vto [A-36]

Astrom and Wittenmark [1989] note that a system with a frequency response that

satisfies this "positive real" condition is termed passive. Thus passivity and minimum-

phase conditions are closely related.

The stability criteria for the RPLR method can be related to those just defined for the

RPEM. As the recursive prediction error method uses an estimate of the function,

C1":'¡, then it is considered the stability conditions defined for the RPLR method will

hold for the difference between the estimate of C(et') and the actual function. Thus

the above conditions may be extended to the recursive prediction error method, with

the difference in phase and magnitude between the estimate of C(e:') and the actual

value to be no more than 90" for convergence of the parameter estimates, as indicated

by equation (A-36). The conditions discussed relate to the equation-error model type

(ie. ARMAX) and associated algorithms; similar conditions can be shown for the

output-error model type.

Feintuch U9761 used a stochastic gradient form of the recursive pseudo-linear

regression approach and applied it to an output-error model (Landau [1976] first

proposed the exact form of the RPLR method using the model reference approach).
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This algorithm was shown to converge to false minima [Johnson and Larimorc, 1977].

The convergence coefficients must be kept very small for convergence to a non-unique

minimum of the cost function, dependent upon the initial values of the coefficients

[Cowan and Grant, 1985; Tang and Mars, 199I]. Johnson ll979bl then proposed an

algorithm known as the "Hyperstable Adaptive Recursive Filter (HARF)", in which

the prediction error was pre-filtered by a fixed filter. Johnson [1979a, 1981] also

proposed a stochastic gradient form known as the "Simple HARF (SHARF)". Ljung

and Soderstrom [1983] note that these algorithms are identical to the recursive

prediction error method provided the prefilter is time-variant and equivalent to

t /n@). Hsia t19811 developed the stochastic gradient form of the recursive

prediction error method for the output-error model type, with the exact algorithm

originally defined by White Í1975).

Of final note in the identification of systems is the work by Isermann [1991]. In his

summary an attempt is made to define the impact of biassing on closed-loop (ie.

feedback control system) parameter estimation. It was stated earlier that biassed

parameter estimates can be avoided using an instrumental variables approach (of

which the output-error or model-reference is a special case) or by injecting an

uncorrelated signal into the system (ie. an external perturbation signal). Isermann

[1991] notes that if an instrumental variables approach is used in closed-loop (ie.

feedback control system) it could result in biassed parameter estimates. In closed-

loop, the RI-S, ELS and RML algorithms provide unbiased estimates provided the

disturbance is correctly modelled. An external perturbation signal yields unbiased

estimates provided it is sufficiently persistentiy exciting.
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4.3 Minimum Variance Control

The previous section addressed methods for identifying the parameters of a process.

These methods will now be coupled with a control law defined from a minimum-

variance approach, which is shown in section 2.4 of. chapter 2, to be particularly

suitable to active noise and vibration control. The common algorithms used in active

noise and vibration control will be shown to follow directly from this control theory

approach.

Consider the control of an ARMAX process, shown in figure A-6. The disturbance is

generated by passing white Gaussian noise through an ARMA filter, and the system

has a time delay (or dead-time) of k samples (typical of the propagation delay

between a control actuator and an error sensor) also with an infinite impulse

response. It is to be noted that the same denominator polynomial is used, as it relates

to the modes of the physical system, as described in section A.L.

Diølurbance e(n)

u(n

Figure A-6. ARMAX process, with e(n) represents a white Gaussian noise sequence,

u(n) is the control input, y(n) is the process output, and v(n) is an ARMA

disturbance.

Trocaeø
lnVut

c(q)
A(q)
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The minimum variance control scheme (originalty proposed by Astrom and

Wittenmark [1973]) obtains its name as it attempts to minimise the variance of the

process output. The cost function to be minimised by the controller (using only data

upto time n) is given bY

J = EÍyz(n+k)lnl [A-37]

with

lA-381

Equation (A-38) can alternatively be written as

e(n+k) =
A(q)y(n*k) - B(q)u(n) lA-3el

c(q)

It is important to note that the only data available to generate the control signal is

that up to time n (ie. u(i), y(i), and e(i) for iln). It can be seen however that to

predict y(n+k) using data up to time n is not possible since e(n+k) is required (as per

equation (A-38)), and yet e(n+k) depends on the process output y(n+k) (as per

equation (A-39)), which is unavailable. That is, there is a causality constraint which

restricts the amount by which the variance can be minimised. Optimal control would

reduce the variance to a white sequence, therefore the minimum variance controller is

known as a sub-optimal controller.

With regard to predicting y(n+k), as per equation (A-38), the polynomial C(q) must

be separated into that part of e(n) that is available (ie. samples up to time n), and

that part which is unavailable (ie. samples in the range n+l 3 n < n+k). The

equation that redefines C(q) in this manner is termed a "Diophantine equation", and
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can be written as

c(q) 
= r@) * GQq) n-u tA-4ol

'q@) A(q)

where the polynomial F(q) has order (k-1), and G(q) has order (n^-I). Thus it can

be shown that the minimum achievable prediction error (or equivalently, that part of

the disturbance that cannot be predicted using the data available upto time n) is given

by

e(n+kln) = y(n+k) - i@+kln) = F(q)e(n+k) [A-41]

It is apparent that the prediction error is not a white sequence for k>1. In this

equation the minimum variance predictor is given by

i@+kln) = B(q)F(q) u@) * 9\n!rø> tL^-4zlc(q) c(q)

Therefore the control law that provides optimal regulation to a zero set point is given

by

G(q)
B(q)F(q)

lA-431u(n) = - v(n)

Thus the minimum-variance control scheme obtained its name since it is based on the

form of the predictor that minimises the variance of the process output. The

certainty-equivalence control law can be written with E(q)=B(q)F(q), such that

u(n) = -!t g*<") + ... * Êno!(n-nc) * êru(n-1) * ... ê,ru(n-nu) I lA-441
eo

where estimates of the parameters required to form the control law have now been

introduced. The polynomiats Clq) ana Êg¡ must be predicted using the EI-S or

RML algorithms since the predictor given by equation (A-az) is of equivalent form to

the ARMAX predictor presented in section A.2.1,.3 (note in passing that the

prediction error component of the regressors, see equation (A-15), can be made more
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accurate by using the updated parameter estimate, with the prediction error then

known as the a posteriori prediction error, or residual as will be shown in section 2.4

by example). Since the polynomials B(q) and C(q) are inverted, they must be

minimum-phase to ensure stability of the controller. The SPR condition for

convergence of the parameter estimates has been addressed in the previous section.

The direct (or implicit) estimation of C(q) ana ng¡ represents a more efficient

means of obtaining the controller parameters, since A(q), B(q) and C(q) do not need

to be identified explicitly before solving the Diophantine equation for F(q) and G(q).

This type of controller is termed "certainty equivalence" as the estimates of the

parameters are assumed to be exact.

Clarke [1985] notes that the polynomial C(q) can be neglected without affecting the

controller since C(q) anO nç¡ are only required, and therefore the RLS algorithm

can be used to estimate Cçfl ana É1q¡ lsitrce the model would then become linear).

Clarke 119851 also notes that the polynomiatr ô(q) ana Êçq¡ are not unique, and can

be governed in some way by fixing the parameter ê0.

For unique determination of the parameters, Isermann [1991] notes that two

identifiability conditions must be met:

The orders of the process model must be exactly known;a

The order of the control numerator, G(q), must be greater than or equal toa
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(no-k), and the order of the control denominator, E(q) = B(q)F(q), must be

greater than or equal to n".

The minimum variance controller has been extended to more general cost functions

that include an effort weighting:

I = E[{P(q)y(n*k) * Q@)u(n)}'ln] [A-4s]

This type of control is known as Generalised Minimum Variance (GMV) control, and

was proposed by Clarke and Gawthrop [1975, 1979] and Gawthrop ll977l. Isermann

[1991] notes that the use of Q@)=r allows B(q) to be non-minimum-phase. The use

of this criterion with regard to active noise and vibration control, will be discussed in

section 2.4.
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