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'When once vv'e have discovered the physical phenom-

ena which constitute the foundation of sound, our ex-

plorations are in great measure transferred to another

field lying within the dominion of the principles of Me-

chanics. Important laws are in this way arrived at, to

which the sensations of the ear cannot but conform.

Lord Rayleigh 1878 Theory of Sounil.
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ABSTRACT

In this thesis, a series of numerical methods are developed for determining the acous-

tic characteristics of fluid ducting systems which contain one or more bends. The ducting

systems considered are assumed to contain a fluid which is essentially static, and to have

walls which are either perfectly rigid or perfectly compliant.

The numerical methods are developed by firstly considering straight and uniformly

curved ducts. Rectangular cross-sectioned ducts are analysed in some detail using stan-

dard analytical techniques. Variational principles are then called upon so that ducts of

more general cross-section can be analysed by the Rayleigh-Ritz method. In an example,

the acoustic modes within straight and uniformly curved ducts of elliptic cross-section

are determined. The interesting observation is made that the acoustic modes within uni-

formly curved ducts appear to be radially biased versions of the modes within straight

ducts. This bias is seen to be alvay from the centre of curvature of the duct's longitudinal

axis for propagating modes, and towards this centre of curvature for non-propagating

modes.

Next, the modal scattering characteristics of single sections of straight and uniformly

curved duct are studied. A general method, which is based upon the Rayleigh-Ritz

analysis used earlier, is presented so that modal scattering matrices for these sections

of duct can be calculated. In an example, the modal scattering matrix of a section

of uniformly curved, elliptic duct is calculated. Algorithms are then presented which

combine the modal scattering matrices of the curved and straight sections in a multi-

bend ducting system, to form a modal scattering matrix for the entire system. A

method for determining the acoustic field within each section of duct is also presented,

and out-of-plane and serpentine bends are considered.
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Finally, acoustic \¡/ave propagation within non-uniformly curved ducts is considered.

Two approaches to this problem are presented. In the first approach, the use of a gen-

eralised coordinate transformation is suggested. This transformation maps the curved

axis of the duct onto a straight line, thus enabling the acoustic field to be determined by

methods commonly used to analyse straight ducts. This approach is used in conjunction

with the Galerkin method to calculate the modal scattering matrix of a section of spi-

rally curved, rectangular duct. In the second approach, the non-uniformly curved duct is

approximately represented by a series of uniformly curved duct segments. The acoustic

characteristics of the duct are then determined with the aid of the previously derived

scattering matrix algorithms. The modal scattering matrix of the section of spirally

curved, rectangular duct considered earlier is calculated by this method, and compar-

isons ane made. The effectiveness of the second approach is then further illustrated by

using it to study the propagation of acoustic waves through sections of parabolically

curved, elliptic and circular duct. Through the examples given, it is shown that acous-

tic waves maintain quasi-modal characteristics within non-uniformly curved ducts. It is

also shown that higher order mode coupling effects within curved ducting systems are

mainly caused by the presence of duct curvature discontinuities.

The thesis is concluded with a review of the work presented. A list which hightights

the achievements of the thesis is also presented, and some suggestions for future research

are made.
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CHAPTER 1

o

INTRODUCTION

1.1 OPENING COMMENTS

When seeking solutions to the complex practical design problems posed by modern soci-

ety, todays engineers have at their disposal three standard tools: analytical techniques,

numerical methods and experimentation. Analytical techniques provide formulae which

yield quick, easily interpreted solutions, but often place undue restrictions upon the

physical characteristics of the problem being considered. Through experimentation,

complete sets of data corresponding to particular physical situations can be obtained,

but economic and test time limitations restrict the performance of large numbers of

tests. fn contrast to these, due to the increasing po\¡/er and decreasing cost of avail-

able computing facilities, numerical methods enable engineers to consider a wide range

of physical situations, and repeatedly obtain accurate results in a quick, cost-efficient

manner. Thus, the development of numerical methods is now a topic of considerable

importance in engineering science.

Problems which present a formidable challenge to any numerical method are those

which are truly three-dimensional in nature. As we live in a three-dimensional world,

such problems are often amongst those in most need of solution. Limits on computer

memory size, processing time and machine precision must all be considered when devel-

oping the numerical methods used to solve them. A problem which typically displays

these three-dimensional characteristics is that of studying acoustic wave propagation
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within curved ducting systems. From a practical viewpiont, such studies arise when

considering a wide variety of engineering situations. For example, it is often desirable

to minimise the acoustic transmissivity of duct bends when designing air-conditioning,

exhaust and various other ventilation and cooling systems. Alternatively, the determi-

nation of the phase velocity of these waves is a problem often considered in the field of

underwater acoustics. Further applications include the design and analysis of acoustical

delay lines and musical wind instruments. From an academic viewpoint, these stud-

ies are important as they represent a logical extension to the theory of acoustic wave

propagation within straight ducts.

The principal aim of this thesis is to develop numerical methods for accurately

determining the acoustic characteristics of curved ducting systems in a computationally

effi.cient manner.

1.2 PREVIOUS RESEARCH

Historically, the theoretical study of acoustic rvave propagation within ducts dates back

to at least 1878, when the straight duct problem was considered by Lord Rayleigh [1].

Since then, the straight duct problem has been well researched, mainly because of its

equivalence to the electromagnetic waveguide problem. Lord Rayleigh also considered

the propagation of long wavelength acoustic rvvaves within curved ducts. However, it
was not until 1939 that the first substantial analysis of modal wave propagation within

curved ducts \,\¡as presented. Buchholz l2], using a Bessel function formulation, consid-

ered the propagation of electromagnetic 1 waves within sections of uniformly curved,

rectangular waveguide. Although this formulation is in principle exact, the order of
1At this point, it is worth noting that the problems of acoustic and electromagnetic wave propagation

within curved ducts are theoretically equivalent when the cross-section of the duct is rectangular. For

other cross-sections however, this is not true.
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the Bessel functions must be found by implicitly solving complicated transcendental

equations. This (as Buchholz found) invariably places restrictions upon the attainable

accuracy of the solution. Such complications are typical of those which arise when

applying analytical techniques to the curved duct problem.

Since Buchholz, the problem of acoustic and electromagnetic rüave propagation

within uniformly curved, rectangular ducts has been extensively studied. Researchers

have used a wide variety of methods to alleviate the inherent difficulties associated with

this problem. These methods include those based upon: improved algorithms for de-

termining the order of the Bessel functions [3-6], approximate theories for large and

small curvature [7-9], high and low frequency limit cases [10,11], analyses that neglect

non-propagating modes [12-15], and purely numerical schemes [16-18].

Studies concerning uniformly curved ducts with cross-sections other than rectangular

have been considerably less prevalent than those above, and in general are limited to

the case of a circular cross-section. Prikhod'ko and Tvutekin [19] briefly described some

interesting results obtained by a small curvature, perturbation analysis. By considering

v/ave propagation in the long wavelength limit, Keefe and Benade [20] were able to

examine the acoustic properties of bends in musical wind instruments. However, the

most substantial results have come from researchers using numerical methods. These are

the surface element analysis of El-Raheb and \Magner [21], and the collocation approach

of Firth and Fahy [22].

Not surprisingly, analyses of nonuniformly curved ducts have also been fairly scarce

in the literature. Nevertheless, a number of interesting techniques have been used to

analyse rectangular cross-sectioned ducts. Quine [23], using a numerical procedure based

upon the theory of coupled modes, considered the propagation of electromagnetic \ryaves

in a sinusoidally curved duct. In an alternative approach, Bahar [24], and later Bahar

and Govindarajan [25] showed that such problems could be more efficiently analysed
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if the duct was considered to be comprised of a series of uniformly curved, differential

segments. Finally, Ahluwalia, Keller and Matkowsky [26] used ray-optical techniques

to study the propagation of high frequency, acoustic r,¡/aves. The case of non-uniformly

curved ducts having a cross-section more general than rectangular has been considered

by Ting and Miksis 1271, who have presented a formulation which is valid for slender

ducts.

Upon leaving the topic of previous research in the field of curved duct acoustics,

mention should be made of the work of El-Raheb 128, 291, and El-Raheb and Wagner

[30]. The significance of these papers is that they seem to be the only publications which

consider multi-modal wave propagation within ducting systems which contain more than

one bend. In these papers, rectangular cross-sectioned ducting systems which contain

sharp bends and bends of constant curvature are considered, however, the methods used

are basically different to the ones which will be presented in this thesis.

1.3 OUTLINE OF THESIS

In Chapter 2, acoustic wave propagation within straight and uniformly curved ducts is

considered. Due to their geometrical simplicity, ducts of rectangular cross-section are

initially analysed, and a number of general observations are made about the nature of the

acoustic field within them. The Rayleigh-Ritz method is then used in a numerical scheme

which is suitable for analysing ducts of more general cross-section. The effectiveness of

this scheme is illustrated by using it to analyse ducts of elliptic cross-section.

In general, the acoustic fields within the ducts considered in Chapter 2 take the form

of a superposition of forward and backward travelling wave modes. In Chapter 3, the

scattering of these rvave modes within ducting systems which contain one or more bends

is considered. The analysis begins with the definition of modal scattering matrices for
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sections of straight and uniformly curved duct. A general method, which uses the theory

of Chapter 2, is presented for calculating these matrices, and the modal scattering matrix

of a section of uniformly curved, elliptic duct is calculated in an example. Algorithms

are then presented which combine the modal scattering matrices of the curved and

straight sections in a multi-bend ducting system, to form a modal scattering matrix

for the entire system. A method for determining the acoustic field within each section

of duct is also presented, and the effect of out-of-plane and serpentine bends upon the

scattered modes is considered.

Acoustic'vl¡ave propagation within non-uniformly curved ducts is considered in Chap-

ter 4. Initially, two methods are presented for the analysis of rectangular cross-sectioned

ducts. In the first method, a generalised coordinate transformation is used to map the

interior region of the curved duct onto that of a straight duct. The Galerkin method

is then used to obtain an approximate expression for the acoustic field in the form of a

finite functional series. In an example, the first method is used to calculate the modal

scattering matrix of a section of spirally curved duct. In the second method, the curved

duct is approximately represented by a series of uniformly curved duct segments. The

acoustic characteristics of the duct are then determined with the aid of the theory pre-

sented in Chapter 3. The modal scattering matrix of the section of spirally curved,

rectangular duct considered earlier is calculated by this method, and comparisons are

made. It is then suggested that the second method be used for the analysis of ducts

having a more general cross-section. In a series of illustrative examples, this method

is used to study the propagation of acoustic waves through sections of parabolically

curved, elliptic and circular duct.

Chapter 5 concludes the thesis with a summary and review of the work presented.

A discussion of the achievements of the thesis is also presented, and some suggestions

for future research are made.
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1.4 INTRODUCTORY THEORY

The physical characteristics of the ducts considered in this thesis are taken to be the

same as those assumed by many of the previous researchers. That is, the fluid wiihin the

duct is assumed to be essentially static, with homogeneous properties such that sound

propagates through it at a constant velocit¡ u. Also, the duct walls are assumed to

have idealised properties corresponding to them being either perfectly rigid or perfectly

compliant.

The problem of determining the acoustic field within such ducts can be reduced to

that of solving the Helmholtz Wave Equation

V'O + lc2ø :0 (1.1)

throughout the duct, subject to either one of the wall conditions

(1.2)

or

Õ :0. (1.8)

Here Õ is the acoustic potential, 11 a vector normal to the duct wall and k the wavenum-

ber.

Equation (L.1) was obtained by following the usual practice of assuming a harmonic

time dependence of the form exp( -iøt) for all variables in the equations of motion of

the duct fluid. It follows that k is related to the angular frequency c.r by the equation

k : u lu. ft is also related to the free-space wavelength of the acoustic disturbance X by

the equationk:2nlX.The spatial components of the acoustic particle velocity q and

pressure p are obtained from the acoustic potential via the relations

Ç:-VÕ (1.4)
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and

p: -'io,poÞ) (1.5)

where pe is the mean density of the duct fluid, and it is understood that only the real

part of the variables are considered. Typically, the frequency range considered when

performing the analyses presented in this thesis will be such that the cross-sectional

dimensions of the duct are of the same order of magnitude as the free-space wavelength

X.

For convenience, solutions to equation (1.1) subject to the homogeneous Neumann

wall condition (1.2) will be referred to as -ly'-modes. Similarly, solutions to equation

(1.1) subject to the homogeneous Dirichlet waIl condition (1.3) will be referred to as D-

modes. Equation (1.4) shows that the -l/-mode solutions describe acoustic v/aves within

perfectly rigid ducts - such as those constructed of metal or other impervious material.

Equation (1.5) shows that the D-mode solutions describe acoustic Ìryaves within perfectly

compliant or pressure release ducts - such as those constructed of a thin membraneous

material or bounded by a free surface.
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CHAPTER 2

-o-
ACOUSTIC \MAVE PROPAGATION .WITI{IN

STRAIGHT AND UNIFORMLY CURVED

DUCTS

2.1- INTRODUCTION AND PROBLEM FORMULATION

In this chapter, the characteristics of acoustic r,\¡aves within straight and uniformly

curved ducts are examined. It will be shown that general solutions to equations (1.1)-

(1.3) within these ducts take the convenient form of a superposition of exponentially

modulated modes, with the modes and modulation parameters being determined by

solving two-dimensional eigenvalue problems over the duct cross-section. Though solv-

ing these eigenvalue problems is not an easy task (especially for uniformly curved ducts),

the fact that they are two-dimensional means that the task of determining the acoustic

'wave field throughout the duct has been considerably simplified. Later, in Chapter

4, it will be seen that there are significant advantages to be gained by exploiting this

simplification when considering non-uniformly curved ducts.

2.L.L Straight ducts

Consider solving equations (1.1)-(1.3) within the straight duct shown in Figure 2.1. The

acoustic potential ç("), which specifies the wave field within this duct, is conveniently
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a

a

Figure 2.7: Top and cross-sectiona,I aiews of a straight duct.

\ I

r T

expressed with respect to the rectangular Cartesian coordinates (r, y,z) shown. Thus

Õ(") satisfies
azÕ(s) _ ô2Õ(") 6zç(s)

a*, - ff+#a¿2o("):¡¡ (2.1)

throughout the duct. Due to the invariance of the duct cross-section O with respect to

the y-coordinate, and the separable nature of equation (2.1), O(") may be written in the

form

q(") - þ(r,z)e+ipa. (2.2)

Substituting equatior' (2.2) into equations (2.1) and (1.2) or (1.3) yields the following

eigenvalue problem for p,2 and /, namely:

A2ó A2ó 
+ (k2 _ u2\ó _,., (2.3)arr+ arr+ (rc-- þ-)Q:v

within f), such that

(2.4)
I

for .l[-modes, or

ölr : o (2.5)

for D-modes. Solving equations (2.3) and (2.a) or (2.5) yields a doubly infinite set

of eigenvalves ¡.,"2*n and eigenfunctions ó^nl m.,n : 7r2r3... Finally, the linearity of

aó
0n -0

I



equations (1.1)-(1.3) allow a general expression for Q(") to be written as a superposition

of modes of the form suggested in equation (2.2). That is

q(")(r, a,z): Ë Ë lo*n"or^^o+p^ne-ir^^oló*n(*,"¡. (2.6)
m=7 n=7

Here the o,nn and pmn ¿,îe interpreted as being the complex amplitudes of modes as-

sociated with waves propagating in the ty directions respectively. Hence, a successful

analysis of acoustic 'vr/aves within straight ducts is based upon one's ability to solve

equations (2.3)-(2.5), and choose appropriate values of the modal coefficients o-,, and

P^n'

2.L.2 lJniforrnly curved ducts

Now consider solving equations (1.1)-(1.3) within the uniformly curved duct shown in

Figure 2.2. The acoustic potential ç,("), which specifies the wave field within this duct, is

conveniently expressed with respect to the cylindrical polar coordinates (r,0,2) shown.

v

-4 t

\ I
0

:x r

Figure 2.2: Top and cross-sectionul uiews of a uniformly curaed duct.
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Thus O(") satisfies

6zç(c) 1AÕ(4 1 ¿zç(c) 6zç(.)
ã*;-õ;*Aã*þ+fr2Õ("):o Q.T)

throughout the duct. Due to the invariance of the duct cross-section fl with respect to

the 9-coordinate, and the separable nature of equation (2.7), O(") may be written in the

form

Õ(") : $(r, z)e+i'o . (2.8)

Substituting equation (2.S) into equations (2.7) and (1.2) or (1.3) yields the following

eigenvalue problem for u2 and tþ, namely:

#.i#.#. (k' -,2 ¡,'¡E : s (2.e)

within Í-), such that
aúl
,"1": o (2'10)

for .l/-modes, or

,þlr : o (2.11)

for D-modes. Solving equations (2.9) and (2.10) or (2.11) yields a doubly infinite set

of eigenvalues uln and eigenfunctions ,þ^n(*r"); mrr¿: Lr2r3r... Finally, as with the

straight duct, the linearity of equations (1.1)-(1.3) allow a general expression for lÞ(") to

be written as a superposition of modes of the form suggested in equation (2.8). That is

<Þ(d(r, 0,,r) - Ë Ë lo^n"i,*-, I l3^ne-i,^^tf ,Þ*nçr,"¡. (2.r2)
m=l n=l

Here the a*n artd B^n are interpreted as being the complex amplitudes of modes as-

sociated with waves propagating in the t9 directions respectively. Hence, a successful

analysis of acoustic rü¡aves within uniformly curved ducts is based upon one's ability

to solve equations (2.9)-(2.11), and choose appropriate values of the modal coefficients

a^n and Brnn.
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2.L.3 Orthogonality of the modes

A property of the modes which often enables their coefficients to be conveniently de-

termined is that of orthogonality. It follows from equations (2.3)-(2.5) and (2.9)-(2.11)

that, subject to appropriate normalisations, the eigenfunctions S^n and ry'-,o satisfy the

orthogonality relations

! | O^"Orn d,r d,z : 6^p6nq (2.18)
o

and
rr7

J J ;rþ^"rþoo 
dr dz : 6*p6nq, (2.74)

o

where

6*n:
L if.m:n
0 if mln

(2.15)

As an example of the use of these orthogonality relations, consider acoustic rü/aves

propagating in the *d direction down a uniformly curved duct when the wave field is

specified at the entrance (d : 0), to the duct. That is, for a given function F(r,z),

suppose
oo oo

ç(")(r, 0, z) : t I a^ntþ^n(r, z) : F(r, z). (2.16)

Muttiplying through equation (r;;t;r=t rþro(r,z)fr, integrating over the duct cross-

section O, and then using equation (2.14) yields

(2.17)

Hence, the acoustic field throughout the duct is expressed in terms of the known entrance

function F(r, z).

trr: II
o

!rrþ", d,r d,zr '"
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2.L.4 Energy transmission

In general, the mean (time averaged) po\Mer flux associated with a simple time-harmonic

acoustic field at any point is given by the mean acoustic intensity vector

(2.18)

where the asterisk denotes complex conjugation. Equation (2.18), when combined with

equations (1.2)-(1.5), shows that for ducts of the type considered in this thesis, no

power will flow into the duct walls. Hence, acoustic energy will be conserved within

these ducts, with a net power flow only occurring in a longitudinal direction down the

duct. The total mean poln¡er flow within the duct is therefore obtained by integrating

the longitudinal component of. J over the duct's cross-section.

\Me now calculate the total mean power flow associated with a wave field which is

propagating in the *y direction down a straight duct. From equation (2.6),, the acoustic

potential which specifies this wavefi,eld is

MJVoooo
q(")(r, a,z)::rp, o^neip^"!ó*n(r,") * 

*4*r,Ì*, 
o^n¿-tr^n!ó^n(r,,2), (2.19)

where non-propagating "evanescent modes" (whose corresponding eigenvalues, p,fun, are

negative) appear explicitly in the second summation. Non-propagating modes with a

positive exponential y-coordinate dependence are excluded from equation (2.19) due

to the requirement that each mode should be finite throughout the duct. Using equa-

tions (1.4) and (1.5) in conjunction with equation (2.18), the y-component of the mean

acoustic intensity vector is found to be

4:ffn{;ot"raÑ.} e.2o)

Substituting equation (2.19) into equation (2.20), integrating the resulting expression

over the duct's cross-section and using the orthogonality relation (2.13) finally yields

t:I*{r{),

13



the total mean acoustic po\Ã/er

(2.21)

Equations (2.2I) and (2.22) define polver spectra for wavefields propagating within

straight and uniformly curved ducts, with each term in the summations specifying the

relative proportion of power allocated to a particular mode. Note that evanescent modes

do not contribute to these spectra. Basically, this is because the ducts are assumed to

be of infinite extent. However, if one considers the presence of discontinuities within

the ducts, evanescent modes can make significant contributions to the transfer of energy

between modes in the vicinity of these discontinuities. This transfer of energy occurs in

a way which is analogous to the Quantum Mechanical description of the penetration of

a barrier potential by a particle.

2.L.6 Variational forrnulation

An alternative definition of the acoustic modes within straight and uniformly curved

ducts follows from the theory of the calculus of variations. According to this theory [31],

the eigenvalues and eigenfunctions of equations (2.3)-(2.5) and (2.9)-(2.11) determine

the stationary values of the quadratic functionals

¡")(d) : l{ l(rl' . (#)' _ (r, _ t\ó,] dædz (22s)

Yt¡G) -ry ̂ rf ,*,lo^*l'.

In a similar manner, the total mean acoustic polürer associated with a wave field

which is propagating in the *d direction down a uniformly curved duct can be shown

to be

wþ) : ry F_f r^.1o,,*1'. (2.22)
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and

(2.24)

respectively. Posing the eigenvalue problems in this way can be useful as it allows

a number of so-called "direct" methods to be used to determine approximate series

solutions. In particular, there is the Rayleigh-Ritz method, which will be used in the

numerical solution procedure presented in section 2.3.

2.2 ANALYTIC SOLUTIONS

One of the major factors limiting the effective use of analytical techniques for deter-

mining the acoustic potential within uniformly curved ducts is the fact that equation

(2.9) is only separable in its present form. Therefore, analytic solutions to equations

(2.9)-(2.77) can only readily be obtained when the duct cross-section is rectangular,

with the walls being defined by equations of the form r : const. and z : const. For

this reason, only ducts having a rectangular cross-section of the form shown in Figure

2.3 will be considered in this section. By examining the analytic solutions to equations

v

H

r(')(,þ): I!'l(*)' .(y)' -(r" -,'t,\,þ"f o,o,

W

I

A B rrr

Figure 2.3: Cross-sectional geometry of the straight and uniformly curaed, d,ucts analysed,

by analytical techniques.

f¿

15



(2.3)-(2.5) and (2.9)-(2.1L) within these ducts, a qualitative appreciation of some gen-

eral characteristics of acoustic waves within straight and uniformly curved ducts can

be obtained. These characteristics will later be observed in the numerical solutions

presented in section 2.3.

2.2.L Exact solutions

Separating variables, one finds that the required solutions to equations (2.3)-(2.5) are

ó(*,r) : X(r)Z(z) (2.25)

where fot mrn, : !r2r3r...

x(r): for .ly'-modes

for D-modes

cos

,i"l-tiù] (2.26)

(2.27)

(2.28)

(2.2e)

(2.30)

and

| .", ¡qFa] ro, .ôy'_modes
Z(z\ : I\ / 

| ri" l+] for D-modes.

Equations (2.26) and (2.27) imply that the straight duct eigenvalues are

..2 _l r, _ lW)2 _ ¡r"tv12 for -rú_modes
þrnn: Ir-nlrl 

I r, - lW]' - lf)' fo, D-modes.

Similarly, one finds that the required solutions to equations (2.9)-(2.11) are

,þ(r,") : R(r)Z(z)

Here, u2 ar.d.R(r) satisfy the one-dimensional eigenvalue problem

12 R" + rR' r (r'À' - u2)R : o

within lA, Bl, such that

R'l,=La : o

16
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for .ly'-modes,

for D-modes, and where

r 2 I r, - lþ+.]' for ry'-modes
Ào:l t 

r"-rrt (2.33)

I r'- lf] ' ro, D-modes.

Equation (2.30) is recognised as being Bessel's equation of order z, which has solutions

of the form

,B(r) : J"Q,r) * (const.)Y,Q,r) (2.J4)

where J, andY, are Bessel functions of the first and second kind respectively. Apptying

the boundary conditions (2.31) and (2.32) to expression (2.84) finally yields

Ê(r) : I 
t''^n - lJ''(^A)lYiQ'A)lY'Qr) for n-modes

I J,(\r) - lJ,(^A)lY,(^Ðln(^r) for D-modes. 
(2'35)

The orders of the Bessel functions are infinite in number, and are given by ihe real and

imaginary roots of the characteristic equation F(u): 0, where

Rl,=48 : o

r |QA)YJ(ÀB) - r 

'(^B)YJQ 

A)

J "(^A)Y"(ÀB) - J "(^B)Y,(^ A)

(2.32)

(2.36)F(u): for ly'-modes

for D-modes

So it is seen that there are indeed doubly infinite sets of solutions to equations (2.3)-

(2.5) and (2.9)-(2.11) within straight and uniformly curved, rectangular ducts. The

solutions within straight ducts are easily calculated and interpreted. Equations (2.25)-

(2.27) show that the straight duct eigenfunctions take the form of regularly spaced crests

and troughs over the duct cross-section, the number of crests and troughs increasing

with rn and n. Also, equation (2.28) shows tlnat ¡-r3,,, 1kr, and when m and n are

such that p'^^ < 0, equation (2.6) shows that the corresponding straight duct modes

will be evanescent. Finally, one can verify the orthogonality relation (2.13) without

diffi.culty using well known properties of trigonometric functions. However, due to the
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complicated nature of rB(r), the solutions within uniformly curved ducts are not easily

calculated or interpreted. In order to obtain a clearer view of the behaviour of A("),

solutions to equations (2.30)-(2.32) will now be re-derived in circumstances where the

duct curvature can be considered to be "small".

2.2.2 Slightly curved ducts

Expressing equations (2.30)-(2.32) with respect to the new variable u, defined by the

equation

r: AIWu, (2.87)

yields the following one-dimensional eigenvalue problem for B2 and .R(u), namely:

(1+ eu)2È" + e(\ ! eu)R'+ [(t + eu)2a2 - B2lR: o (2.38)

within [0,1], such that

Ã'l,r=o,, : o (2.39)

for .fy'-modes,

(2.40)

for D-modes, and where

e:WlA, a:W\, þ:WulA. (2.4r)

For slightly curved ducts e ( 1, and when € : 0, equations (2.38)-(2.40) reduce to those

describing acoustic rwaves within straight ducts. Hence, approximate expressions for B2

and rR(z) may be sought in the form of perturbation series expansions with respect to

the small parameter e. Therefore let

rB(u) : Ão(") * e.R1(z) + e2R2(u) + ... (2.42)

and

0r:þ3+ep?+e2B|+...

Ã1,=0,, : o

18
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Substituting expressions (2.42) and (2.a3) into equations (2.38)-(2.40) and equating

pov/ers of e yields:

For powers of eo

RlÅ+(*'- þ|)Ro:0;
Rå(o) : r¿å(1) : o for -¡y'-modes,

Ro(0) : Ao(1) :0 for D-modes.

(2.44)

For powers of el

n| + (.' - þÐR' : (P? - 2a2u)Ro - Ãi - 2u&li;

,Rl(o) : f¿l(1) : o for .lú-modes,

Ãt(0) : Ãr(1) :0 for D-modes.

(2.45)

For powers of. e2

n| + (o' - þÐR, : (P? - 2a2u)R, - R. - 2ufu|

+@3 - a2 u2)Rs - uH'o - u' R'å;

,B;(o) : Ã;(1) : o for -ll-modes,

Ãr(0) : l?z(1) :0 for D-modes.

(2.46)

Though the algebra becomes quite complicated, equations (2.aa)-Q.46) can be solved by

standard techniques to yield the following expressions for Eo(r), . . . Rr(u) arrd B!,. . .PZ.

They are:

Ão(u) :

P3 : o' -'l'

(m - 7)n for .l[-modes

TrLTt for D-modes

cos(7u) for -ll-modes

sin(7u) for D-modes,
(2.47)

where

(2.4s)

"Y

19

(2.4e)



and rn :7r2r3r.

For -fl-modes when Tr¿ : 7, because R"(") : 1, we have

,?t(") : o,2 (2.50)

(2.51)

(2.52)

(2.53)

(2.64)

(2.55)

(2.56)

(2.57)

(2.58)

1

1

p? : d2,

R(u): #(
p;:+(

Rt(") : nt(u)Rs(u) + q'(")nå("),

p? : p3,

R (u) : nz(u)Rs(u) + ør@)noç"¡,

ß? : I -#rr' +2t) + #o' +q -É ror N-modes
t z 

| -#rfr'- 15) + #0' -q -# ror D-modes

o¿2: _ 
2^y2u,

a{u): #r"'-u)+6,
pz(u) : oun +bu" + cuz ¡ du,

ez(u) : "r"+lu'+gu+h

{\,, _{u" *5/ 2

+)

t

\un-t,
)15

t)u
a4

45
+o+

+

a
72

Otherwise

where

and

Pr(u)

pt
o,

b

8"y'
pt
4j"
2

e aO, -
^1"

p3

6'y'
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^ 3 , p3 (_ or\r : 2j,b-tf (.t*T)'
31c : -|"+ fi(n "ft - p36) - " - 0â),

(2.5e)

Substituting equations (2.47)-(2.59) back into equations (2.42) and (2.a3) enables O(r')

approximate expressions for R(z) and 13" to be formed.

Using the perturbation series expansions for 82,, the following approximate expres-

sions for the eigenvalues of equations (2.30)-(2.32) can be obtained. They are:

tu' :,t2 t2 (t + Y) + wtf(w2 
^2 

+ s) (2.60)

for the fundamental (m: 1) Iü-mode,

, - l,*-ir"l')
(m-7)212-2

1+ +)
' l(* - r)rn, + 6l + l#òr] 

nt(* 
- r)"nr+ 211)

u2: o, (^

-#(

d: -t++('.+),
s: +"-#(u'.#*"')
. I Gl12)d for.ly'-modes
h:l

I o for D-modes,

" I -*'l(þn) for .ly'-modes
þ:l

I o for D-modes.

(

I

(2.61)

for the higher order (* :2,3,4,. . .) l{-modes, and

u2 : o" (^, - lW]') (t + i)
-i (*,-'" -'ri#)'¡n:,n - 6l + l#l^l*,*, - ,ul) Q'62)

for the (* :7)2,,3r. . .) D-modes; where the second term in each of these equations is of

O(r'). Looking at equations (2.60)-(2.62),, if the O(r') terms are neglected, one can see
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that the straight and curved duct eigenvalues are approximately proportional so that

u*n N A(7 + wlA)' p^^ N (A iwf 2) ¡t^*, (2.63)

where Lhe y,*n are defined by equation (2.28). Thus, the well known centreline radius

approximation for the curved duct propagation constants is obtained. It follows from

this observation that there will approximately be a one-to-one correspondence between

the modes in the straight and curved ducts. Also, if a straight duct mode propagates

and is not near t'cut-off" (i.e. # : 0), then the correspou.ding curved duct mode will

also propagate. These observations are illustrated in Table 2.1, where approximate and

exact values of the first six curved duct, I{-mode propagation constants are presented

when À:4¡r,w - 1.0 and e:wlA- 0.2,0.1. The values of (A+Wl2)p in Table

e:0.2 e:0.1

(A + wlz)¡t O(e2) v Exact u (A + wl2)¡t O(e2) u Ðxacl, u

69.11

66.92

59.85

45.72

0.000

51.83i

74.80

61.84

59.16

45.44

0.8660i

51.65i

72.02

65.10

59.1 1

45.43

0.8657i

51.65i

132.0

727.8

774.2

87.28

0.000

98.96i

135.0

125.2

113.9

87.13

0.8660i

98.86i

134.1

126.7

113.9

87.13

0.8659i

98.86i

Table 2.1: Approrim,ate and, eract aalues of u for N-modes when ),:4tr, W : I.0,

e:0.2r0.L and m : Ir. ..6.

2.1 show that, except for the mode at cut-off, if the rnúh straight duct mode propagates,

then so will the mth ctrved duct mode. Also, as expected, one can see that u is more

accurately approximated when e is small. However, notice how the O(rt) values of. u are
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less accurate when the mode number rn is small. This characteristic of the perturbation

solution means that the greatest errors will be present in the dominant eigenvalues.

Further, if À (and therefore the acoustic frequency ar) is increased, these errors will

become more pronounced. Hence, the perturbation solution will not accurately predict

the dominant eigenvalues at high frequencies, especially when the duct is more than

slightly curved. Here, a frequency is assumed to be "high" when it is such that many

modes can propagate within the duct.

Now the perturbation series expansions for l?(u) are considered. In general, they are

of the form .R(z) : p(u),Ro(u)+q(u)Ro(r), *h"te Ãs(z) is a solution of the straight duct

eigenvalue problem, and p(z) and q(u) are polynomials whose behaviour is such that

p(u) - 1 and q(") - 0 as e --+ 0. Hence, the analysis indicates that the eigenfunctions

within the straight and slightly curved ducts will have similar physical characteristics,

with the differences being governed by the behaviour of the modulating polynomials p(u)

and q(u). Plots showing some typical characteristics of .l?(u) appear in Figures 2.4-2.6.

In Figure 2.4, Ihe plots show how the fundamental m : 1, l/-mode eigenfunction

becomes increasingly biased towards the outer wall of the duct as e, and therefore the

curvature of the duct, is increased. Figures 2.5 and 2.6 show how the higher order .f{-

mode eigenfunctions are also biased, but more towards the inner wall of the duct as the

mode number rn is increased. Notice how the rn : 3 mode in Figure 2.5 is quite close

to cut-off and has essentially no bias. This feature is typical of modes near cut-off, and

suggests that in general, propagating modes will be biased towards the outer wall of a

curved duct and evanescent modes will be biased towards the inner wall of a curved duct

- the degree of bias being greater the further the mode is from cut-off. Unfortunately,

due to the limitations of the perturbation solution, it is not possible to provide examples

which show greater evidence of the bias just described. However, with the aid of the

numerical solution procedure to be presented in the next section, this will be possible.
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Figure 2.4: Plotsof the m= 1 N-modeeigenÍunctiotT)u,= 2n;e= 0.0,0.05,0.1.
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2.3 A NUMERICAL SOLUTION

As stated in subsection 2.1.5, the eigenvalues and eigenfunctions of equations (2.3)-(2.5)

and (2.9)-(2.11) determine the stationary values of the quadratic functionals (2.23) and

(2.24) respectively. Having posed the transverse field eigenvalue problems in this man-

ner, an effective means of approximately generating the eigenvalues and eigenfunctions

is via the Rayleigh-Ritz method. Applying this method requires that the approximate

eigenfunctions be sought in the form of finite functionai series expansions using a set of

suitably chosen basis functions. That is, let

IJ
ó(r, r): t la¿¡f¿¡(r, z) (2.64)

i=L j=!

andrJ

,þ(r,"): Ð lU¿¡¡¿¡(r,z). (2.65)
i=l i=l

The basis functions are chosen to be sufficiently smooth and linearly independent over

the duct's cross-sectional domain f). They are also chosen so that they satisfy the

appropriate boundary conditions on l, according to whether .ll or D-mode solutions

are required.

Substituting the series approximations (2.64) and (2.65) into the functionals (2.23)

and (2.24) respectively, and seeking stationary values with respect to each of the series

coefficients yields the following sets of linear algebraic equations. They are

Dtrc[j),a¡¿:p'D
Jt

l=I
akI

lc=l l=1

and

k=l I=l

where i : 7,... I; i - 1,....I and

IJ I

IJIJ
D D R[íl,br, :,' DÐ uliÌ,t*

le =L

k=l I=l

(2.66)

(2.67)

I I l*' 
t','r' - ** - **) dr dz'
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| | tt,ot"l d'x d'2,

o

I!,lr',,¡r*,-*W-*Wl

(2.6e)

dr dz, (2.70)

I liV¿¡rnú d'r d"z' (2.71)

Equations (2.66) and (2.67) can be written more compactly as the (I J x.I..I) generalised

matrix eigenvalue problems

K(")ø : ¡tryÞ)a e.72)

and

X(4¿ - ,rgþ)b. (2.73)

Solving equations (2.72) and (2.73) yields two sets of IJ eigenvalues and eigenvectors

which approximately specify the dominant eigenvalues and eigenfunctions of equations

(2.3)-(2.5) and (2.e)-(2.1 1).

The approximate solutions provided by the Rayleigh-Ritz method have a number

of favourable characteristics. Firstly, the dominant eigenvalues and eigenfunctions are

determined with greatest accuracy, wiih this accuracy being readily improved by in-

creasing I and J. Also, the approximate eigenvalues always converge to the exact

eigenvalues from below, a property which enables one to extrapolate more accurately

when estimating the exact eigenvalues. Finally, interchanging the indices i,lc and j,I

in equations (2.63)-(2.7I) shows that the matrices ¡ç("), ¡4("), K(") and M(") are sym-

metric. These matrices are also real. As a consequence, the eigenvectors of equations

(2.72) and (2.73) are M-orthogonal ([32], sect. 10.2). That is

{^*I.[þ) ooo : 6^p6nr{^*I..4þ) 
"**

(2.74)

and

ú*v@ hrn : 6 *16 nrúnnMk) P*n,

o
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where 6*n is as defined by equation (2.15) and the 7 superscript signifies the matrix

operation of transpose. Referring back to the definitions of the matrices ¡4(") ¿n¿ ¡4(")

in equations (2.69) and (2.71), one can see that equations (2.74) and (2.75) imply that

(after M-normalising the eigenvectors) the approximate eigenfunctions also satisfy the

orthogonality relations (2.13) and (2.14). Hence, the eigenfunctions determined by the

Rayleigh-Ritz method can be used in equations such as (2.17) to give an approximate

representation of a particular solution within a straight or curved duct.

In the following subsection, the Rayleigh-Ritz method will be used to approximately

determine the dominant eigenvalues and eigenfunctions of equations (2.3)-(2.5) and

(2.9)-(2.11) when the duct cross-section is elliptic.

2.3.L A duct of elliptic cross-section

Here a duct of elliptic cross-section, with dimensions as shown in Figure 2.7 is considered.

The axes of the ellipse are assumed to be aligned with the (r,z) coordinate axes, with

the centre of the cross-section being located a distance c from the z-axis. The equation

of the duct wall is therefore
(r-")' , "' -.o,'|b,:'' (2'76)

Lowson and Baskaran [33] used the method of separation of variables to determine the

acoustic field within a straight duct of elliptic cross-section. However, as mentioned

in section 2.2, this method cannot be used when the longitudinal axis of the duct is

curved, and some form of approximate analysis must be employed. Elliptic ducts are

often studied to determine the effects of imperfect concentricity upon propagation in

circular cross-sectioned ducts. They also serve as a useful model of non-circular intake

manifolds on jet aircraft. Applying the Rayleigh-Ritz method to this problem therefore

offers a good opportunity to illustrate the techniques involved with a useful application.
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r

c

Figure 2.7: Elliptic duct cross-sect'i,on.

When using the Rayleigh-Ritz method, ideally, the exact eigenfunctions of the

straight duct problem should be used as basis functions. They are linearly indepen-

dent and satisfy the required boundary conditions. They also bring an extra degree

of accuracy to the formulation which will be used in section 3.2 for calculating the

modal scattering matrix of a section of uniformly curved duct. Thus, for rectangular

cross-sectioned ducts, the eigenfunctions specified by equations (2.2ó)-(2.27) should be

used. For circular cross-sectioned ducts, the combinations of Bessel and trigonometric

functions used by Firth and Fahy [22] should be used. However, as shown by Lowson

and Baskaran [33], the exact eigenfunctions for straight, elliptic ducts involve compli-

cated Mathieu functions. In the analysis presented here, the diffi.culties associated with

explicitly using these Mathieu functions are avoided. This is done by applying a co-

ordinate transformation to the cross-sectional domain of the duct. Such an approach

has the advantage that it enables simpler trigonometric functions to be used as basis

functions.
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So, referring to Figure 2.8ra transformation is made from the (rrz) coordinates to

the elliptic coordinates ((,ri). The transformation (r,z) + (€,ry) is deflned by the pair

\: r12

\ : const.

rl \:07t

T'T:-r
(: const

rl: -r12

Figure 2.8: Elliptic coordinate system.

of equations

r: c*/cosh({)cos(a) Q.77)

and

z : Lsinh(() sin(4), (2.7S)

where 0 < € 1 t^o, and -zr 1 r7 I r. The curves € : const. and 4 : const. form

an orthogonal system of confocal ellipses and hyperbolae, with the duct wall being

represented by the ellipse € : t,no,, which has foci at (r, z) : (c + L,0). Substituting

equations (2.77) and (2.78) into the equation of the duct wall (2.76) enables the following

expressions for [. and (-o, in terms of a and ó to be determined. They are

t- a2 -b2 (2.7e)

and

c

€*o,:-(#)

t,(,

6:0

29
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For equations (2.77)-(2.79) to be valid, the inequality b < a, < c must be satisfied.

If the cross-section is such that ó ) a, an alternative definition of the transformation

equations is required, namelY

r: c-lsinh(()sin(r7) (2.81)

and

z : lcosh({) cos(z), (2.82)

where now 0 < ( < €^o', -T12 < r¡ < 3nf2 and

t,- b2-a2 (2.83)

Equations (2.81) and (2.S2) where obtained by effectively rotating the ellipse in Figure

2.8 anticlockwise through an angle of. r 12 radians.

Now, using equations (2.77), (2.78), (2.S1) and (2.82), the functionals (2.23) and

(2.24) transform to

/(4(d) : l,,l* 1,,;":,,[(#)' . (H)' -(r" - t\s'ó')d,Ëdn (2 84)

and

where

and

í.)(Ð: I,'J* I,::,::,." l(#)' 
.(H)" -(r, -,"t,\n'ú')

-7t ifb<a

-"12 if.b> a,

¡t ilb<a
3rl2 if b> a

d€ dn (2.85)

(2.86)

(2.87)

:I

:l
Qmàn

\mao

g'(C,rù: /' [cosh'(€) - ""s2(r7)] ;
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92 being the Jacobian determinant of the coordinate transformations. Seeking approx-

imate solutions in the form given by equations (2.64) and (2.65), and applying the

Rayleigh-Ritz method yields the matrix eigenvalue problems given by equations (2.72)

and (2.73), where the matrix elements are

K!;1, :
M{;1, :
KI;T, :
M:;ì, :

l,'l-* l,::,::,.1r' n' ro, rr, - æW - WW] o, or,

I,'lo"' l,::,::,-ls' r o r r ^) 
dË d,t,

l,':* I,::,::,-, lr' n' roo rr, - æW - WW) o, or,

l,'l-* l,::,::,_l ln' ¡,, ¡") oe o,

!G^",,ry): o for 'ly'-modes,

'þ(€*o,,ry) 
: 0 for D-modes'

(2.8e)

(2.e0)

(2.e1)

(2.e2)

The basis functions are chosen so that both /((,4) and ,þ(€,n) have the following

five properties:

1. The boundary condition on the duct wall t: €^o, is satisfied. That is

2. tþ is periodic in 4, with period r ot 2¡r

3. r/ is orthogonally continuous when crossing the interfocal line z :\rc - l, < r <

c-f(.if b<aotr:c,,-(12<(. if ö>ø. Thatis

,þ(0,,n) : ,þ(0, -q).

4. The gradient of t/ is orthogonally continuous when crossing the interfocal line

z:0,c- (. < r < c+ ¿if b < a or r : c.,-t 1z < (. if á > ø. That is

Hrr,ù:-H(0,-ry)
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5. r/ has either an even or odd symmetry about the r-axis. That is about ? : 0 if

b<aotr¡:r12if.b>a.

The following basis functions satisfy these requirements. They are

fo¡(íri) : cos(,  ¿¡€ + B ¡) cos(C ¡r¡ + D ¡) (2.e3)

such that:

o If ó ( ø and ty' is even about the r-axis

A¿i:

A¿j:

(i-t\r
€-ot

for .lf-modes

for D-modes,

for JV-modes

for D-modes,

Bj:0, C¡:j-I, Dj:0. (2.s4)

(2.e5)

o If ó ( ¿ and r/ is odd about the r-axis

x1f

Ê^o,

oIf.b>a

Bj : -T12, C¡ :j, Dj : -T12.

j - L if t/ is even about the r-axis

j if t/ is odd about the r-axis
Cj:

and if i :7,3,5,. . .

else if j :2,4,6,. . .

I g¡ for rü-modes
A,, : I cmoo

I W for D-modes,

Bj:0, Dj:0,

A¿j:
for .lf-modes

for D-modes,x1f

Ê^o,

Bi:-¡r12, Dj:-T12.
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When using these basis functions, The elements of the matric"r K("), ¡4(") .n¿ ¡ç(")

can be evaluated analytically. However, this is not possible for the elements of the

matrix M(") due to the presence of the r-1 term in the integrand. In practice, this

problem can be overcome by means similar to those employed by Firth and Fahy ([22],

sect. 3.1), whereby r-1 is represented as a binomial series

-1 "-'[t+ ((.lc)cosh(()cos(a)]-' if ö< o

"-'[1 - (t.lc)sin:n(() sin(ry)]-' if. b > o

c-l DÊo lG¿|")cosh(() cos(q)l' if b < a

c-l DÊo l@lr)sinh(() sin(r7)1" if b > a.
(2.e7)

Each term in the series provides integrals which can be evaluated analytically by recur-

sion, the series being truncated when sufficient accuracy is achieved. Upon obtaining

solutions to the matrix eigenvalue problems (2.72) and (2.73), approximations to / and

tþ can be evaluated for given values of ( and 4. Values of / and t/ in the original

(r,z)-plane can therefore be obtained after numerically inverting the transformation

equations (2.77) and (2.78) (or (2.81) and (2.82)).

The results of calculations of various straight and curved duct, .l/ and D-mode

eigenfunctions are norvv presented. For the cases considered, it will be assumed that,

unless otherwise specified, the free-space acoustic wavelength X : 1.0 - meaning that

all other length dimensions will be expressed as multiples of this wavelength. Tables

2.2 and 2.3 show values obtainedfor the first six even and odd, curved duct,.ly'-mode

eigenvalues when ¿:0.8, å:0.5, c:2.0 and.[: J:4,618110,12. One can see the

convergence of the approximate eigenvalues from below, indicating that the I : J :72
estimates of u2 are accurate to at least four significant figures. In Figures 2.9 and

2.10, contour plots of the first six straight and curved duct, even and odd l/-mode

eigenfunctions are shown when ø : 0.8, ó : 0.5, c : 2.0 and .I : J : 12. In these

figures, the straight duct mode contours appear in the left column, and the curved duct

mode contours appear in the right column. Each mode contour is plotted on the duct
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I,J u2

t2

6

8

4

10

o.224588+3

o.225118+3

0.22511E+3

o.22511E+3

0.22511E+3

0.11588E+3

0.118588+3

o.118608+3

0.118608+3

0.118608+3

0.60555E+2

o.646448+2

o.646848+2

0.64684E+2

o.646a48+2

-o.295778+L

0.856348+1

0.87833E+1

0.878458+1

0.87846E+1

-o.327928+2

-0.302488+2

-0.30206E+2

-0.302o6E+2

-o.30206E+2

-0.13161E+3

-0.837928+2

-o.72998Ð+2

-0.72898E+2

-o.728988+2

Table 2.2: Conuergence ol the curueil d,uct, euen N -mode eigenaalues when ¿ : 0.8,

ó : 0.5 and c:2.0.

I,J 2u

72

4

6

8

10

0.11858E+3

0.118638+3

o.11863E+3

o.11863E+3

o.118638+3

o.5os27È+2

o.51168E+2

0.51180E+2

0.511808+2

0.511808+2

-o.2or45E+2

-0.108738+2

-0.106928+2

-0.106918+2

-0.10691E+2

-0.14017E+3

-o.924268+2

-0.88881E+2

-0.888308+2

-0.8883OE+2

-o.22456E+3

-o.19565E+3

-o.18726E+3

-o.18660E+3

-o.18658E+3

-0.37185E+3

-0.223788+3

-o.223728+3

-oj237t8+3

-o.223718+3

Table 2.3: Conuergence of the curued duct, odd N -moiJe eigenaalues when ø : 0.8,

ó : 0.5 and c:2.0.
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þ" =39.48 't¡'=225.1

É =34.03 u' = 118.6

¡t'--2L.67 u" = 64.68

It'=2.994 u'= 8.785

It" = -7.967 t¡" = -3O.2t

It' = -21.5I t¡2 = -'72.90

Figure 2.9: Even N-mode eigenfunction contours in straight and cuNed eil¡pt¡c ducts;

a:0.8,b=0.5,C=2.0.
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lt" =26.59 u2 = 118.6

V'= 14-48 u2 = 51.18

þ'=-2990 u'= -10.69

It'=15.99 u'¿= -88.83

It'= -54.48 r¡'z= -186.6

þ" = -61.6t t¡2 =-223.7

Figure 2.10: Odd N-mode eigenfunction contours in straight and cuved elliptic ducts;

ã=0.8,b=0.5,C=2.0-
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cross-section, which is viewed from the same standpoint taken in Figure 2.7 (hence,

the axis of rotation of the curved duct is to the left of the plot). The dashed contour

lines represent a zero value of the eigenfunction, and below each plot is an estimate of

the accompanying eigenvalue. An examination of the contour plots shows clearly how

the eigenfunctions are biased in a radial sense when the longitudinal axis of the duct is

curved. In agreement with the observations made in subsection 2.3.1, this bias is towards

the outer wall of the duct when u2 > 0 and towards the inner wall of the duct when

u2 < 0. The bias is minimal when u2 x 0,, and is greater for modes further from cut-off.

Looking at the contour plot of the 5úä odd eigenfunction in Figure 2.10, one can see that

it has a more oscillatory profile than the other eigenfunctions. It is therefore natural to

expect that, for a given number of terms in the series approximations, it would not be

as accurately represented as the others. The effects of this inaccuracy are illustrated in

Table 2.3, where the eigenvalue estimates associated with this eigenfunction are seen to

converge at a slightly slower rate than those associated with the other eigenfunctions.

Figures 2.7I-2.76 show contour plots of various other straight and curved duct, -l/

and D-mode eigenfunctions, where the biasing of the curved duct eigenfunctions can

again be observed. Figures 2.73-2.16 are interesting as they show how the eigen-

functions are often more dramatically biased when the duct's cross-sectional dimensions

are such that b > o. Finally, the contour plots in Figures 2.17 and 2.18 give a good

illustration of how the radial bias of a particular curved duct eigenfunction varies with

¡ (and therefore the value of. u), and c (and therefore the curvature of the duct). The

centreline radius of curvature of the duct is c :2.0 in Figure 2.77 arJ c: 4.0 in Figure

2.18, with the values of X being the same in both figures. The plots in these figures

exhibit the same typical biasing characteristics as those previously observed in Figures

2.9 - 2.16, and show clearly how the degree of bias is minimal when u N 0 - where

the contours closely resemble those of the corresponding straight duct eigenfunction

(top-left plot in Figure 2.L2). A comparison between plots with the same ¡ value in
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It'=2349 u'= 98.43

It'=7.914 u2 = 28.56

It'= -14.36 t¡'=49.82

It'=43.49 u2 = -151.5

þ'=-63.44 t¡2 = -230.1

lt' = -79.46 t¡2 = -277 .6

Figure 2.11: Even D-mode eigenfunctìon contours in straight and curued eil¡ptic ducts;

â=0.8,b=0.5,C=2.0.

38

0

o



tÍ =-9.904 t¡2 =-37.28

32.69 tt2 = -ll7 .4

F'= -61.30 t¡2 =116.9

þ'=-95.93 u'= -337.8

It'=-136.7 t2 = -480.2

It'=-136.7 t¡'=486.7

Figure 2.12: Odd D-mode eigenfunction contours in straight and curued elliptic ducts;

â=0.8,b=0.5,C=2.0.
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¡_
I

I

I

u'= 179.5 t¡'=-11.79

u2 = 102.0 t¡' = -30.62

'ts2 =78.14 't¡'= -82.79

Figure 213: Even N-mode eigenfunction contours in a curued elliptic duct;

â=0.5,b=0.8,C=2.0.
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¡¡'='].,43.7 o'= -96.08

t¡2 :54.33 t¡2 : -lI7 .7

u'z= 11.14 u'= -19?.0

Figure 2.14: Odd N-mode eigenfunction contours in a curued elliptic duct;

â=0.5,b=0.8,C=2.0.
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t
,
t

u'= 94.08 o2 =-228.0

tl' = -37 .36 t¿'=-245.9

u2 =-56.21 t¡2 = -312.1

Figure 2.15: Even D-mode eigenfunction contours in a curued elliptic duct;

A=0.5,b=0.8,C=2.0.
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u'= 31.49 u2 = -346.1

t¡2 = -123.9 t¿'=-3''18.4

t¡" = -170.7 t¡2 =479-3

Figure 2.16: Odd D-mode eigenfunct¡on contours in a curued elliptic duct;

A=0.5,b=0.8,C=2.0.
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X=0.7,r¡"= 120.5 X = 0.9, t¿' = -2.199

?(: 8.0, t¿2 = 4'7.27 ?ú = 1.0, t¡'= -37.36

)ú = 0.89, u'= 1.993 X=2.0,'t¡2 = -149.']-.

Figure 2.17: Contours of the second, curued duct, even D-mode eigenfunction

when a = 0.5, b = 0.8, c = 2.0 andX = 0.7, 0.8, 0.89, 0.9, 1.0, 2.0.
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X=0.7,t¡2=494.2 X=0.9,'t¡2 = -9.920

I = 0.8, o'= 194.8 X = 1.0, t¡" = -L56.2

)ú = 0.89, u" = 7.488 X=2.0,t¡2 = -622.9

Figure 2.18'. Contours of the second, curued duct, even D-mode eigenfunct¡on

when a = 0.5, b = 0.8, c = 4.0 andX = 0.7, 0.8, 0.89, 0.9, 1.0, 2.0.
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both figures shows that the degree of bias becomes less when the curvature of the duct

is reduced.

2.4 SUMMARY

In this chapter, the general solutions to equations (1.1)-(1.3) within straight and uni-

formly curved ducts have been studied. It was shown that the respective solutions are

obtained by solving a two-dimensional eigenvalue problem over the duct's cross-section

and then representing the acoustic potential as a modal series. The eigenfunctions were

shown to be orthogonal, and alternative variational statements of the eigenvalue prob-

lems were given. The transmission of energy within these ducts was also considered.

Analytic expressions for the acoustic potential within rectangular cross-sectioned

ducts \^/ere presented. It was found from these expressions that the curved duct modes

could be considered to be radially biased versions of the straight duct modes. AIso,

except when near cut-off, if a straight duct mode was a propagating mode, then so was

the corresponding curved duct mode. The degree of bias was enhanced by increasing the

curvature of the duct, and the bias was shown to be towards the outer wall of the duct

for propagating modes and towards the inner wall of the duct for evanescent modes.

Due to the difficulty in applying analytical techniques to the straight and curved

duct eigenvalue problems when the duct's cross-section is non-rectangular, a general

procedure for numericaily solving these problems $/as presented. The procedure utilised

the alternative variational statements of the modal eigenvalue problems presented in

subsection 2.7.5, and was based upon the Rayleigh-Ritz method. The procedure was

applied to the case of an elliptic cross-sectioned duct, and the results of calculations were

presented. The modes within the straight and curved elliptic ducts were found to display

the same general characteristics as those previously observed in the rectangular duct
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modes. In particular, from the observations of radial biasing of the curved duct modes,

the following general conclusions are drawn. Namely, that within uniformly curved

ducts, a sound source will more readily excite the dominant (and therefore propagating)

modes when it is located near the duct's outer wall. Also, the modal structure of the

resulting sound field will be more faithfully preserved under these conditions. These

effects will become more pronounced if the curvature of the duct is increased, and if the

acoustic frequency is increased so that many modes are above cut-off.
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CHAPTER 3

o

MODAL SCATTERING WITHIN MULTI-BEND

DUCTING SYSTEMS

3.1 INTRODUCTION

In Chapter 2, general solutions to equations (1.1)-(1.3) within straight and uniformly

curved ducts v/ere presented. These solutions took the form of a superposition of forward

and backward travelling wave modes, with particular solutions being determined by an

appropriate choice of the coefficients in the modal series. Therefore, once the modes

were calculated, an arbitrary acoustic field within a straight or uniformly curved duct

could be completely specified by a discrete set of numerical quantities; namely, the

values of the modal coefficients.

Theoretically, an infinite number of modal coefficients are required to exactly specify

an arbitrary acoustic field. However, practically, sufficient accuracy can be obtained by

only considering finite numbers of these coefficients. To be specific, only the coefficients

of the dominant modes (i.e. modes whose associated eigenvalues þ2, u2 are largest) need

be considered. There are two reasons for this. Firstly, the eigenfunctions which define

the modes form a complete set of functions on the cross-sectional domain of the duct.

The modal series is therefore a convergent series, and in general, the coefficients of the

dominant modes will have the greatest magnitude. Secondly, the modes whose associ-

ated eigenvalues are negative do not propagate along the duct, but are exponentially

attenuated, with the attenuation being greater when the eigenvalues are more negative.
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As the dominant modes will either propagate or be the least attenuated modes, they

will be the most significant contributors to the acoustic field wiihin the duct. Hence,

one can legitimately truncate the modal series. As a result, it follows that the acous-

tic field within a ducting system which contains several straight and uniformly curved

sections can be adequately determined if one knows the values of the dominant modal

coeffi.cients within each section. Of course, the more modes that are considered to be

"dominant", the more accurately the acoustic field will be specifi.ed. In its broadest

sense, the purpose of this chapter is to develop methods for determining the values of

given modal coefficients when considering a variety of multi-bend duct configerations.

In this chapter, when developing the methods used to determine the modal coef-

ficients within the curved and straight sections of a multi-bend ducting system, each

section is interpreted as being an individual scatterer of straight duct modes. This

interpretation is based upon the fact that the acoustic fi,eld at the ends of any duct

section can be legitimately expressed as a superposition of straight duct modes. The

coefficients of the scattered modes are related to the coefficients of the modes within the

duct section in such a way that the acoustic potential and its gradient are continuous.

Equations (1.4) and (1.5) show that this ensures that the acoustic pressure and fluid

particle velocity are continuous. It follows from the intrinsic linear characteristics of

the acoustic field that the coefficients of the scattered modes at both ends of a duct

section are related to each other (and to the coefficients of the modes within the duct

section) by sets of linear algebraic equations. Thus, a modal scattering matrix for each

duct section can be introduced. The acoustic characteristics of the ducting system can

then be obtained by considering the system to be a cascade of modal scatterers. There

are a number of advantages to be gained by using this scattering matrix approach. For

example, the approach enables each duct section to be individually analysed, with the

continuity requirements for the acoustic potential being automatically satisfied when

performing calculations. From a computational viewpoint, the scattering matrix formu-
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Iation is well suited for the analysis of ducting systems which contain large numbers of

curved and straight sections. Also, the scattering matrix itself provides useful informa-

tion about the acoustic performance of a section of duct.

The relevant theory for performing a scattering matrix analysis of a multi-bend

ducting system is now presented. The presentation begins in the next section, where

a general method for numerically determining the modal transmission and reflection

matrices of a single duct bend is described. These matrices directly specify the modal

scattering matrix for the bend, and are therefore of fundamental importance in the

ensuing formulation.

3.2 MODAL SCATTERING FROM A SINGLE DUCT BEND

The problem of describing the propagation of acoustic r,I/aves through the simple, single

bend ducting system shown in Figure 3.1 is considered. In Figure 3.1, X1 and E3

represent two infinitely long sections of straight duct, and X2 represents a section of

uniformly curved, joining duct. General solutions to equations (1.1)-(1.3) within 11,

X2 and X3 are most conveniently obtained if they are associated with the coordinates

(*,A,"), (r,0,2) and (r', y',2) respectively. Here the z-axis is normal to the (r, y)-plane

and points out of the page, the polar coordinates (r, d) are as defined in subsection

2.I.2, and the (*',A') axes are obtained by rotating the (r,A) axes through an angle

of 0 : O,no,, where 0^o, is the angular extent of X2. Following the theory presented

in subsections 2.1.1 arrd2.7.2, suitable truncated expressions for the acoustic potential

within Dt, Ð" and X3 are

(Þr(r, A, z) : lo*n"or^ 
o + prnn.-¿,--ol ó**(*, "¡,

(3.1)

lon"n"i"^"e i þrrne-i'*"t) rÞ 
^^(r, "¡

KKD'
m=ln=l

KKtt
m=ln=l

@r(r,0,, z) :
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a

n
D3

0*o*

Figure 3.L: Top uiew of a simple, si,ngle benil d'ucting systeT-tu.

andKK

(Þr(r', y' , z) : D t T^neip^nu' 6,,"n(x' , z) (3.3)
m=ln=l

respectively. In equations (3.1)-(3.3)1 o,nn, Pmn aîd r.rnn a;re the coefficients of modes

incident upon, refl.ected from and transmitted through X2i and amn arrd þ^n arc the

coefficients of modes associated with a standing wave field within Xz. The simplifying

assumption that modes are only incident upon X2 from X1 is made in light of the

principle of superposition which applies to modes throughout the ducting system.

Physically , D2 can be thought of as a two-port junction [34], which linearly scatters an

incident modal coeffrcient distribution into modal coefficient distributions transmitted

through and reflected from it. The nature of this scattering process is governed by the

a'

-

n

sr¿)l
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fact that the acoustic pressure and fluid particle velocity must be continuous throughout

the ducting system. In terms of the potential function formulation, these conditions are

satisfi.ed if iÞ and the axial component of VÕ are continuous when crossing the junctions

between the straight and curved duct sections. Hence, as a first step towards deriving

expressions for the transmission and reflection matrices, the following four continuity

equations are proposed. They are:

and

ensuring continuity of Õ; and

[or],=,,r=o : [Qz]p=o

lQ"f ,,-,,r,-o: lQ"f o=o^",,

(3.4)

(3.6)

and

lao,l _1fao,'l
I ar' I t,:r,,!t,=o- ; I oo I o:o^o,

ensuring continuity of the axial component of VÕ

At ihis point it is convenient to represent the expressions for (Þ1, (Þ2 and iÞ3 given in

equations (3.1)-(3.3) using matrix notation, with the modes appearing in the approxi-

mate form obtained from the numerical solution procedure presented in section 2.3. We

therefore write

(Þr(", u,z) : l]@,2;,L [n1y; o +r.-L(fip), (3.s)

er(r,,0,2): ll?,2)n fr(e)o +r.-t|p)Pl ft.ol

and

ó"(*' ,y' , z) : ll @' , z)ÃE(y)r, (3.10)

where fot mrn :7r. .. K

E(v) : diag le¿'*"of

lao,l _ 1 laÕrl
aãf )s=,q=o-;l ae lr_"

(3.5)

(3.7)
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and

F(d) : dias f.i"*"ol . (3.12)

Also, for i: !,...1and j - 1,..../ suchthat,I/ ) K', f @,") and /(r, z) are column

vectors containing the set of basis functions {.û¡} .pp"aring in equations (2.64) and

(2.65). A and B are (IJ x.I(2) matrices whose columns are the dominant eigenvectors

of equations (2.72) and (2.73) respectively; and a, þ, o, p and I are column vectors

containing the corresponding modal coefficients. The þmn a;r'd u*n in equations (3.11)

and (3.12) are the square roots of the dominant eigenvalues of equations (2.72) and

(2.73) respectively.

Substitute expressions (3.8)-(3.10) into the continuity equations (3.4)-(3.7). Then

pre-multiplying through each equation by l(r,"), and integrating over the duct cross-

section yields the following set of coupled matrix equations for the modal coefficient

vectors:

a [ø+ p] : B ln+ P), (3.13)

.þtr: t ["*+F-'4] , (3.14)

M(")AU l"- pl: 1v1(c)s1r l"- p) (3.15)

and

M(")AU' :1y1(")91¡ l"r- F-tÉ] ;

where fot mrn : \r... I{

U : diag lp^*1,

y : diag lr,nnl,,

E : d,iag lei,^.0*",1

and M(") and M(") are as defined in equations (2.69) and (2.71).

The vectors a and B can be eliminated from equations (3.13)-(3.16) to yield

Co IDP: F-lCr
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and

Da*Cp:FDr, (3.21)

where

C : B"M(")¡. + V-IBTM(")¡,U (3.22)

and

D : B"M(")A - V-IBrM(")AU (3.23)

Here it should be noted that equation (2.75) has been used, where it is assumed that

the eigenvectors are M-normalised. That is

gr¡4(")g : I (3.24)

where I is the (IJ x /.I) identity matrix. From equations (3.20) and (3.21), the vectors

p and I can each be eliminated in turn to yield

r:To , (3.25)

and

o:Rot- (3.26)

respectively, where

-1fTr _l- C _ FDC_IFD F C - DC-ID (3.27)

and

n: [c - FDC-'FD]-' [roc-'rc - D] . (8.28)

T and R are recognised as being transmission and reflection matrices which specify how

the incident straight duct modal coefficients will be scattered from the section of curved

duct.
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3.2.L A duct of elliptic cross-section

As the form of equations (3.1)-(3.3) does not depend upon the choice of coordinates

used to specify the duct's cross-section, the approximate eigenfunctions calculated in

subsection 2.3.L carr be used in their ({, ry) dependent form to evaluate the modal trans-

mission and reflection matrices for sections of curved elliptic duct. The orthogonality

relations for þ,**((,r7) and 1þ^^(t,r¡) arc obtained by using equations (2.77) and (2.78)

(or (2.81) and (2.82)) to transform equations (2.13) and (2.14) from the (r, z)-plane to

the ((, 17)-plane. This yields

(3.2e)

and

['*"' ['*"' !rþ**rþrog2 d'€d,r¡ : 6,,o6n0, (3'30)
J Ê-O J r7=r7^¿n T

where g'((,rù and r({, r7) are as defined in equations (2.88) and (2.77) (or (2.81)) re-

spectively, and appropriate normalisations are assumed to have been applied. The set

of coupled matrix equations (3.13)-(3.16) are therefore obtained by pre-multiplying the

continuity equations through lry g'(Ë,n)íG,4), and integrating them over the limits

(.[0,6-",] and. r¡elr¡*¿n,77*o,1. It foilows that the matrices M(") and M(") whose elements

are defined by equations (2.90) and (2.92) can be used in equations (3.22), (3.23), (3.27)

and (3.28) to yield approximate expressions for T and R.

In the following numerical example, T and R matrices have been calculated for the

modal coefficients associated with the straight duct eigenfunctions plotted in Figures

2.9 and 2.10 when 12 has an angular extent of 0*o*: T12. Tables 3.1-3.4 show the

absolute values of the elements of these T and R matrices as the number of terms in

the Rayleigh-Riiz modal approximations are increased. In the required calculations,

K : 6 was used (i.e. 36 modes r,¡/ere assumed to be dominant). Only elements in the

top-left (6 x 6) submatrices of the transmission and reflection matrices are presented in

rt^o, lrlmaa

I I ó^nóong2 d€ dn : 6*p6ns
J€=O Jn=n^in
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0.88523E+0
0.88479E+0
0.884798+0
0.884798+0

0.244848+0
0.24585E+0
0.245858+0
0.245858+0

0.31697E+0
0.31763E+0
0.3i763E+0
0.317638+0

0.655138-1
0.653278-1
0.65325E-1
0.65324E-1

0.18320E-2
0.182628-2
0.t82628-2
0.18265E-2

0.502978-2
0.50331E-2
0.501558-2
0.501478-2

0.263708+0
0.264788+0
0.26478E+0
0.264798+0

0.696388+0
0.695308+0
0.69530E+0
0.69530E+0

0.56391E+0
0.56510E+0
0.565118+0
0.56511E+0

0.12219E+0
0.t22t28+0
0.722t28+0
0.12272E+0

0.364978-2
0.3629L8-2
0.36289E-2
0.36288E-2

0.12385E-1
0.118678-1
0.11807E-1
0.118078-1

0.427968+0
0.42876E+0
0.428768+0
0.42876E+0

0.70692E+0
0.708268+0
0.708268+0
0.70826E+0

0.628668+0
0.63028E+0
0.630298+0
0.63030E+0

0.15449E+0
0.15050E+0
0.15047E+0
0.150478+0

0.594728-2
0.588878-2
0.58886E-2
0.588908-2

0.15682E-1
0.16448E-1
0.163978-1
0.16395E-1

0.24045E+0
0.237238+0
0.2372tF+0
0.237208+0

0.41639E+0
0.41174E+0
0.411728+0
0.411718+0

0.419968+0
0.404868+0
0.40478E+0
0.404788+0

0.927478+0
0.930268+0
0.93028E+0
0.93028E+0

0.59114E-2
0.590078-2
0.59005E-2
0.590098-2

0.88530E-1
0.89249E-1
0.890338-1
0.890298-1

0.407218-2
0.40651E-2
0.406528-2
0.406678-2

0.753208-2
0.750058-2
0.750028-2
0.749948-2

0.97808E-2
0.97111E-2
0.971.078-2
0.971048-2

0.358008-2
0.36L748-2
0.361738-2
0.36L748-2

0.240888-3
0.241078-3
0.241078-3
0.241068-3

0.35712E-3
0.36522E-3
0.36454E-3
0.364538-3

0.58967E-2
0.67813E-2
0.679408-2
0.679528-2

0.13481E-1
0.14851E-1
0.14850E-1
0.14850tr-1

0.13617E-1
0.164208-1
0.16455E-1
0J64528-l

0.282798-7
0.33121E- 1

0.33213E-1
0.33211B-1

0.18836E-3
022Lr2Ð-3
0.22183E-3
0.22t848-3

0.26820E.-2
0.3t7718-2
0.317868-2
0.3t7828-2

Table 3.1: Absolute ualues of euen N -moile T matrir elements for a uniform bend in

an elliptic ductwhenX:1.0, ¿:0.8, ó:0'5, c:2.0,0*o':nf2, K:6

and, I: J:6,8,10,12.
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0.24L628-2
0.237098-2
0.237758-2
0.237298-2

0.777958-2
0.764598-2
0.764678-2
0.764898-2

0.44274E=2
0.425368-2
0.42540E_2
0.425678-2

0.908478-2
0.879558-2
0.879368-2
0.879278-2

0.122728-2
0.722338-2
0.t22328-2
0.122298-2

0.960908-3
0.999188-3
0.999788-3
0.998568-3

0.837888-2
0.823788-2
0.82363E-2
0.823548-2

0.12307E-1
0.t22548-l
0.r2253Ð-l
0.t22528-r

0.140968-1
0.13661E-1
0.13656E-1
0.13654E-1

0.r22548-r
0.r20448-I
0.12043E-1
0.12043E-1

0.648678-2
0.646338-2
0.646338-2
0.646388-2

0.53631E-2
0.534278-2
0.53008E-2
0.529908-2

0.597768-2
0.574258-2
0.574268-2
0.57434Ð-2

0.i76718-1
0.17115tr- 1

0.17115E-1
0.17116E- 1

0.16888E-1
0.16256E-1
0.L62548-l
0.162558-1

0.43111tr-1
0.425258-I
0.425218-l
0.42520Ð-r

0.13540E-2
0.134228-2
0.13419E-2
0.13416E-2

0.674388-2
0.742738-2
0.743868-2
0.743758-2

0.33343E-1
0.31938E-1
0.31931E- 1

0.31933E-1

0.41760E-1
0.40611E-1
0.40603E-1
0.406038-1

0.11719E+0
0.114408+0
0.114388+0
0.114388+0

0.49307E-1
0.476L78-l
0.476028-L
0.476018-1

0.602338-2
0.594078-2
0.59401E-2
0.59405E-2

0.89104E-1
0.897138-1
0.894798-1
0.89475E-1

0.272788-2
0.272298-2
0.272298-2
0.272328-2

0.13387E- 1

0.13359E-1
0.133598-1
0.133588-1

0.222918-2
0.227328-2
0.22t308-2
0.22t278-2

0.364778-2
0.364L78-2
0.36415E-2
0.36419E-2

0.25559E-3
0.190178-3
0.18939E-3
0.18895E-3

0.L4L278-3
0.769458-4
0.759778-4
0.76186E-4

0.t12658-2
0.134328-2
0.135438-2
0.13554E-2

0.583798-2
0.668388-2
0.66669E-2
0.666658-2

0.58558E-2
0.740758-2
0.746488-2
0.746538-2

0.284628-L
0.33294E-1
0.333808- 1

0.333788-1

0.745128-4
0.467678-4
0.462238-4
0.46097E-4

0.306988-2
0.36348E-2
0.374t48-2
0.374148-2

Table 3.2: Absolute ualues of euen N-mod,eR rno,trir elements for a uniform benil, in

an elliptic d,uct when X:7.0, ¿ : 0.8, ó : 0.5, c:2.0, 0^o,: rf 2, K :6

and I: J:6,8,10,12.
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0.989188+0
0.98911E+0
0.9891lE+0
0.989118+0

0.12568E+0
0.12608E+0
0.12608E+0
0.12608E+0

0.99104E-2
0.99045E-2
0.990458-2
0.990458-2

0.492878-2
0.480758-2
0.480578-2
0.48057E-2

0.597128-3
0.2t2378-3
0.210578-3
0.21032E-3

0.224368-3
0.594708-3
0.59458E-3
0.594828-3

0.17029E+0
0.17083E+0
0.170838+0
0.170838+0

0.98915E+0
0.98908E+0
0.98908E+0
0.989088+0

0.581568-1
0.58005E-1
0.580048-1
0.580048-1

0.866218-2
0.82000E-2
0.819368-2
0.819368-2

0.404338-2
0.322448-2
0.321298-2
0.321258-2

0.245078-2
0.401688-2
0.401668-2
0.401618-2

0.291668- I
0.29533E- 1

0.29534E-1
0.29536E-1

0.126328+0
0.12765E+0
0.127668+0
0.127668+0

0.119948-1
0.r22328-r
0.t2234Ð-l
0.122348-l

0.22t098-2
0.219658-2
0.21958E-2
0.219588-2

0.526848-3
0.798778-3
0.7972t8-3
0.797088-3

0.633278-3
0.52953E-3
0.529548-3
0.529488-3

0.496208-2
0.4862L8-2
0.48607E-2
0.486038-2

0.64361E-2
0.6r2L78-2
0.611488-2
0.61184E-2

0.75633E-3
0.745028-3
0.744788-3
0.744788-3

0.169548-3
0.165268-3
0.16520E-3
0.165178-3

0.278298-4
0.583618-4
0.581878-4
0.581868-4

0.50431E-4
0.264048-4
0.26374E=4
0.263868-4

0.39209E-3
0.14867E-3
0.14555E-3
0.14903E-3

0.195958-2
0.16553E-2
0.16538E-2
0.16578E-2

0.117558-3
0.18624E-3
0.18658E-3
0.18682E-3

0.1815lE-4
0.40116E-4
0.40L528-4
0.402058-4

0.80483E-5
0.86073E-5
0.865058-5
0.865028-5

0.484198-5
0.67199E-5
0.67132E-5
0.672958-5

0.141878-3
0.390738-3
0.390468-3
0.391168-3

0.tr4378-2
0.t94768-2
0.19469E-2
0.794828-2

0.13606E-3
0.11667E-3
0.11663E-3
0.11671E-3

0.31675E-4
0.r71498-4
0.L7t298-4
0.t71458-4

0.46625E-5
0.63465E-5
0.632208-5
0.632538-5

0.49030E-5
0.794728-5
0.79439E-5
0.794848-5

Table 3.3: Absolute ualues of odd N-modeT matrix elements for a uniform bend, ín

øn elliptic iluct when X : 1.0, ¿ : 0.8, ó : 0.5, c : 2.0, 0*o, : r f 2, K : 6

and I: J:6,8,10,12
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0.270028-2
0.209998-2
0.21000E-2
0.20999E-2

0.942328-2
0.94095E-2
0.940948-2
0.94096E-2

0.654708-2
0.653618-2
0.65361E-2
0.653608-2

0.412258-2
0.404818-2
0.4047L8-2
0.404708-2

0.22138E-3
0.52850E-3
0.524848-3
0.52498E-3

0.514398-3
0.2L9428-3
0.21931E-3
0.21956E-3

0.127688-1
0.127498-l
0.t27498-1
0.t2749Ð-7

0.768t48-2
0.772418-2
0.772438-2
0.772478-2

0.58701E-1
0.585558-1
0.58554E-1
0.585548-1

0.929508-2
0.881578-2
0.880898-2
0.880908-2

0.41081E-2
0.317938-2
0.316808-2
0.31675E-2

0.240068-2
0.408778-2
0.408158-2
0.40810E-2

0.192678-1
0.194898-1
0.194908-1
0.19490E-1

0.127508+0
0.128868+0
0.12887E+0
0.128878+0

0.163298-1
0.172668-1
0.t72748-l
0.772758-r

0.948948-2
0.641968-2
0.637408-2
0.637378-2

0.16791E-3
0.17917E-3
0.17571E-3
0.1760lE-3

0.180158-2
0.16662E-3
0.16598E-3
0.167378-3

0.41503E-2
0.40941E-2
0.409358-2
0.409298-2

0.69064E-2
0.65812E-2
0.657438-2
0.657768-2

0.324628-2
0.27779E.-2
0.216108-2
0.21618E-2

0.727t88-2
0.2597lE-3
0.227828-3
0.227708-3

0.32039E-3
0.354478-2
0.33514E-2
0.335168-2

0.726038-2
0.30019E-3
0.29871E-3
0.300418-3

0.145378-3
0.36691E-3
0.366828-3
0.366228-3

0.19909E-2
0.163248-2
0.163058-2
0.163498-2

0.374658-4
0.41970E-4
0.413638-4
0.41085E-4

0.208978-3
0.243618-2
0.231298-2
0.23106E-2

0.129988-4
0.687368-3
0.84978tr-3
0.849228-3

0.39763E-4
0.31041E-4
0.323738-4
0.29829E-4

0.325268-3
0.t44258-3
0.143878-3
0.14507E-3

0.Lt2038-2
0.19791E-2
0.t97848-2
0.797978-2

0.38706E-3
0.367088-4
0.365568-4
0.36834E-4

0.456008-2
0.194728-3
0.19449E-3
0.194378-3

0.38290E-4
0.30100E-4
0.295768-4
0.30159tr-4

0.597408-3
0.249248-4
0.25tr78-4
0.256018-4

Table 3.4: Absolute ualues of odd N -mode R matrin elements for a uniform bend in

an elli,ptic duct whenX:7.0, ø:0.8, ó:0.5, c:2.0,0^o,:rf2, K:6

and I: J:6,8,10,12.
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Tables 3.1-3.4. Looking down a given block of 4 numbers in these tables, one can see

the convergence of an element's absolute value as.[ and J are increased in the manner

I : J : 6,8, 10,12. A point of interest is the accuracy of T and R with respect to

energy conservation. Theoretically (subsect. 2.t.4),, due to the idealised wall conditions,

acoustic energy will be conserved within the ducting system. Hence, the net acoustic

energy flux through the ends of Xz will be zero. A consequence of this condition is that

(see reference [35]) the elements of T and R satisfy the reciprocity relations given in

references [35-37], namely

¡-r,.;7,;¡: p,¡T¡; (3.31)

and

þ¿R¿¡ - ¡t¡R¡;, (3.32)

where ¡;¿ is the propagation constant associated with llne ith dominant straight duct

mode. Therefore, an indication of the accuracy of T and R with respect to energy

conservation is given by the magnitudes of the relative errors

K¿i lffi-'l (333)

and

e,,:\ffi-'l (334)

In practice, it is found llnal rc¿¡ and (¿¡ are always zero (io within the precision used

on the computer). Hence, numerically, energy is conserved in the calculations, even

though the solution is not exact. This result is due to the fact that the eigenfunctions

determined by the Rayleigh-Ritz method are orthogonal.

3.3 MODAL SCATTERING FROM TWO OR MORE DUCT BENDS

Consider a ducting system which has been subdivided into a series of straight and uni-

formiy curved segments, as shown in Figure 3.2. Supposing that there are I[ segments,
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the ducting system can be equivalently interpreted as being the cascade of modal scatter-

ers shown in Figure 3.3. \Maves traversing ihe junctions between neighbouring segments

are represented by a superposition of. M straight duct modes, whose coefficients are

contained in the (M x 1) column vectors 4," and þ^ (" - 0, . . . ¡f). The intrinsic linear

characteristics of the system enable the modal coefficient vectors of waves incident upon

the nth segment, to be related to those of waves scattered from it via the introduction

of a (2M x 2M) partitioned matrix 5('), such that

l^ l:f 'ril 'fll li,_, 1 (385)

L ¿"-, I L tll' stî) I L ¿" I

S(') is referred to as the modal scattering matrix of the n¿h segment.

Typically, the submatrices of S(") are found by calculating (M x M) modal trans-

mission and reflection matrices for the segment. It follows from the definition of S(') in

equation (3.35), and the symmetrical curvature of each segment that

sÍî):s!i):r (8.86)

and

sfî):s[1):n (3.37)

For a straight segment of length -t,

R:O (3.38)

and

T : d,ias l"o'*"f, (3.39)

where p^ {m - 1, . . . M} is the propagation constant associated with the r¿rå dominant

straight duct mode. One can see that the matrix elements in equation (3.39) simply

specify the appropriate phase shifts which will occur as modes propagate through the

straight segment. For a uniformly curved segment, T and R can be calculated by one

of the specific methods appearing in the papers 116,22,38], or by the general method
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Figure 3.2: A typical ducting system antl í,ts subdiaision into a series of straigh,t and

uniformly curaeil segrnents.

o,,

ht

lLD

h,
5(t) g(z)

dn-7

þ.-t
g(r')

qN,

+
Þr

sr,

þ-

g(ru)

Figure 3.3: Diagran"tm,atic representation of a series of N straight anil uniformly curaeil'

duct segments as a cascaile of moilal rct,tterers.
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presented in section 3.2. Here it should be noted that for uniformly curved segments,

equations (3.36) and (3.37) are only exact if the duct cross-section has a vertical line of

symmetry (e.g. rectangular, elliptic). The matri"". Sfl), S$) and SÍ;), S!î) will not be

the same if the duct cross-section does not have this symmetry. For such cases, these

matrices must be calculated by considering the transmission and reflection of modes

from both ends of the segment.

In the next two subsections, algorithms are derived which combine the modal scat-

tering matrices of the segments to form a modal scattering matrix for the cascade S("o"),

such that

f*l:l'lr"] 'lî"] ll-l (B4o)Løl Ls[î"r st:;ù]L¿^, 
1

3.3.1 Tlansfer matrix algorithm

Consider llne nth segment in the cascade shown in Figure 3.3. From equation (3.35), we

have explicitly

ø,: sl\) ø,-r + sl;)r, (8.41)

and

L,-t: s*)ø,-, + s{rî)þ*. (3.42)

Equations (3.41) and (3.a2) can be combined and reassembled to form the partitioned

matrix equation

l;l:lïl ï;r ll;_: l
(3.43)

where

e9) : (sÍî))-',

etî) : -qÍî)s5î),

eÍi): s$tq@)

(3.44)

(3.45)

(3.46)
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and

eÍî) : sfî) - q[?)s!î). (8.42)

The partitioned matrix q('), is referred to as the modal transfer matrix of the núh

segment as it relates modal coefficient vectors on the right (output) side of the segment

to those on its lefi (input) side. The modal transfer matrix of the entire cascade is

therefore obtained by multiplying the modal transfer matrices of the segments together.

Hence

a.rrr

ö¡¡

Qlî")

Qtî")
(3.48)

where

q(cøs) : q(Ðq(N-l) .. .e(t). (3.49)

Having calculated q("""), the modal scattering matrix of the cascade is obtained by

effectively inverting equations (3.44)-(3.47) to obtain

s!î"r : (Otî"r¡-',

Slî"1 : -S,Pf")q\"""t,

slî") : QÍî")s!ï")

(3.50)

(3.51)

(3.52)

and

s{î") : QÍî") - s[";")q[i"). (3.53)

The transfer matrix algorithm is numerically efficient as only one matrix inversion

and three matrix multiplications are required to calculate each Q(d. However, the

algorithm has shortcomings when it is assumed that evanescent modes are excited at the

junctions between neighbouring segments. This point is best illustrated by considering

the modal transfer matrix of the n¿å segment if it is taken to be straight and of length

-L. Substituting equations (3.36)-(3.39) into equations (3.44)-(3.47) we have

eÍî) : dias leir^Lf ,
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efr) : d,iao le-tu^tl (3.55)

and

efî) : e!î) : o. (3.56)

When þ* is imaginary, positive exponential matrix elements are generated. These

elements will predictably cause numerical instability and overflow problems when im-

plementing the algorithm on a computer.

3.3.2 fterative scattering matrix algorithm

Firstly, consider a two segment cascade. Setting n: 7,2 in equation (3.35) yields

o, : s[1r)ø + sÍtJör, (3.57)

Þo : s!1)ø + s5'r)o', (3.5s)

ø, : s\'l ø, + sl")þ, (3.59)

and

hr: sL'r)s, + sL?h". (3.60)

Eliminating the modal coeffi,cient vectors q1 and ó1 from equations (3.57)-(3.60), and

reassembling the resulting pair of equations yields the partitioned matrix equation

I n,f I s[î") s[î") I I 
"" 

I

L;l:1,'r"''i;ul L;l' (361)

where

SÍï"1 : Sf'rleSfll,

sÍï") : sÍ?) + s[?)sÍ',)r,s!?r,

Stî") : St'r) + s['r) s!?lnsÍ?,

s!î"r : s!irrs!',r,

(3.63)

(3.62)

(3.64)

bÐ

(3.65)



n : (r - sll)sl'J)-' (3'66)

and

F : (r - st|s1;r¡-t (3.62)

where I is the (M xM) identity matrix. Of course, 5(cas) ¡r the modal scattering matrix

of the two segment cascade. If a third segment is now added to the cascade, the modal

scattering matrix for this neÌvr¡ cascad,e can be found by setting 5(r) : the old S(coe) .tt¿

5(z) - 5(a) ¡tr equations (3.62)-(3.67). This iterative process can be continued until all

of the segments in an Iy' segment cascade have been considered.

The iterative scattering matrix algorithm requires two matrix inversions and twelve

matrix multiplications per iteration, and is therefore not as efficient as the transfer

matrix algorithm. However, it does have the advantage that any number of evanescent

modes can be included in the calculations. For example, consider a cascade consisting

of two straight segments of lengths LI and L2. Substituting equations (3.36)-(3.39)

into equations (3.62)-(3.67) yields

S{ï") : Stî") : d¡as letu*U,t+r,z)f (8.63)

and

sÍï") : s!î") : o. (3.69)

Therefore, when þ* is imaginary, only negative exponential matrix elements are gen-

erated. Not only does this ensure that the algorithm is numerically stable, but also

it localises the effects of fringing caused by the generation of evanescent modes at the

junctions between neighbouring segments.

3.3.3 Calculating <Þ within a duct segrnent

General expressions for the coefficients of the modes within each segment can be de-

termined while the scattering matrices are being combined. One means of performing
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these calculations is as follows.

¡"¡ 5(it:rz) be the modal scattering matrix obtained after the nth iteration (n -
0,1,. . .) of the iterative scattering matrix algorithm. Then

l 
^*,,1 : sro,,,r f "o I (s.zo)

L o l:"'' 'lu'*,J'

If the modal transfer matrix q(it:rz) is calculated from 5(it:n') in the manner prescribed

by equations (3.a4)-(3.47), then

| "**,1 :qr,,,,r l*-l. (8.71)

Lu*, I L¿. 1

Now, from equation (3.40) we have

l*l_f r o ll*lL;l:1"î"'s'î")lL;l {szzr

where I and O are fhe (M x M) identity and zero matrices respectively. Therefore,

combining equations (3.71) and (3.72) yields

f"'*,.1 -n,,,,,,f 
t o ll*l

lö,,+, 1 "''"'1rt",""'stî")lL;l (3'73)

If the ducting system is anechoically terminated, åN : 0, and equation (3.73) yields

explicitlv 
Ø,,+t:lqÍï'', * not'')g!f")] øo e.T4)

and

þ,*+t : [q5,;'"1 * not'")s!"¡")] øo (3.75)

In equation (3.73), the modal coefficient vectors of waves traversing the junction

between the (n + 1)'h and (n + 2)'n segments are expressed in terms of the modal

coefficient vectors of waves incident upon the cascade. If the (n -l 2)th segment is
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straight, then 4,"a1 and þ,ra1 directly specify the coefficients of the modes which define

Õ throughout that segment. If the (n * 2)th segment is curved, then as ø,,ar and ö,,1r

specify (Þ at one end of this segment, enforcing the requirement that Q and its gradient

be continuous at that end enables general expressions for the coefficients of the curved

duct modes within that segment to be determined. To give a specifi.c illustration of this

matching technique, it is applied to the formulation presented in section 3.2. In that

formulation, the straight duct modal coeffi.cient vectors ø and p play equivalent roles to

@rza1 and ö,+r. Applying the appropriate continuity conditions for Q and its gradient at

the junction (9 : 0) yields equations (3.13) and (3.15). These equations can be solved

for the curved duct modal coefficient vectors a and B to yield

1

2

d.

p

C

D :llî:',) (3.76)

Here, the matrices C and D are as defined in equations (3.22) and (3.23). Hence, using

equation (3.76) in conjunction with equation (3.73), a general expression for Õ within

the curved segment is obtained.

3.3.4 Out-of-plane and serpentine bends

\Mhen calculating the modal scattering matrix of each bend in a curved ducting system,

it is convenient to do so using a coordinate system in which the bend assumes a standard

orientation (e.g. the "left-handed" orientation assumed in section 3.2). If the ducting

system is planar and contains bends which are all actually orientated in this way, then

the algorithms presented in subsections 3.3.1-3.3.3 can be used directly on the resulting

scattering matrix cascade without problem. However, if the ducting system contains

a bend (or bends) which has a different plane or direction of curvature to the bend

preceding it, then an extra "acoustic potential reorientation" scattering matrix must

be introduced into the cascade. This S("p') matrix is located in the cascade directly
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before the modal scattering matrix of the bend, and operates on the straight duct

modal coefficient vectors at this point. It transforms these vectors so that the acoustic

potential is reorientated in such a way that it allows the bend to be considered as if it

had the standard orientation.

A mathematical derivation of the 5("r') matrix for an out-of-plane bend is now given

with the aid of Figure 3.4, which shows a view of the entrance to the bend, as seen from

the preceding duct segment. Here, the r'-axis lies in the plane of curvature of the bend's

centreline, the c-axis lies in the plane of curvature of the previous bend's centreline and

the y-axis points into the page, with y : 0 specifying the entrance to the bend. The

v

z'

Direction of curvature
of bend.ì

\ \ \ \
7 t

Direction of curvature
of previous bend.

r

t'

Figure 3.4: Cross-sectional uiew of the entrance to an out-of-plane beniJ sh,owing th,e

direction of curuature of the bend inclined at an angle 7 to the direction of curuature of

the preuious bend.

---k-- \

69



(*,,") coordinates are related to the (r', z') coordinates via the equation

l,l: I ;; ïi]1,: 
1

Assuming that the standard bend orientation is left-handed, 'y : 0 implies that the

bend has the same left-hand orientation as the previous bend, 'y : ¡r implies that the

bend has a right-hand orientatioî,',1 : r f 2 implies that the bend is orientated so that

it curves vertically upward, and so on.

Now, let f) and Íì' define the duct's cross-sectional domain on the (r, z) and (r',2')

coordinate planes respectively. Also, let ¡.t.n (n : 7,. . . M) be the propagation constant

associated with the nth dominant straight duct mode, with /, and $'n being the corre-

sponding aòoustic eigenfunctions on f) and Í-l/ respectively. The acoustic potential on f)

is given by

r: lË lon"o,.o *bne-iu.ulo-t*,ò) (3.Ts)
Lr¿=1 ' ' ,r=o

Similarly, the acoustic potential on O' is given by

t, : lË lo'n"or-o r b'ne-iunul ó'*{*' ,, )) (3.2g)
L"=r' ' ,r=o

For Q and (Þ' to specify the same acoustic pressure and particle velocity fields, we must

have

lÞ(*,,A,"))o=o: [O'(r', y,z')fn=o (3.S0)

and

(3.77)

aa

l#o',r,')f o=o

(*,y, 
")

(3.81)
0a

a=O

where it is assumed that equation (3.77) is satisfied by the (*, 
") 

and (r', z') coordinates.

Substituting equations (3.78) and (3.79) into equations (3.80) and (3.81) yields

MM

_=D_1"" 
-f b.l ó*(r, z) : 

P^lr" 
+ b'n] ü'nçn', z'¡ (3.82)

and
M

Ð p"lo* - b^l $,(r, z) :
M

Ð p*l;" - b'*] 6'*ç*', r'¡.
n=ln=l
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Multiplying through equations (3.82) and (3.83) by ó'*(*', r') (* - 1, . . . M), integrating

the resulting equations over fl', and using the orthogonality of the modes yields the pair

of matrix equations

H (ø + b) -- d + h' (3.84)

and

HU(¿ - å): u(¿ -h'), (3.s5)

where

ó'^(*' , "')ó*(*, 
z) d.r' d,z',*-: I I

Q'

(3.86)

and

u*n : diag lp^1. (3.s7)

Rearranging equations (3.34) and (3.S5), the partitioned transfer matrix q(or') is defined

such that

l¿l lelî")ql",:ùllrl
I n I 

: 
l- oli") q!:{') I L u l'

(3.88)

where

eÍio,) : qLT,) : 
å [r, + u-lHu] (3.8e)

and

qlï'): etî") : H - U_IHU (3.e0)

Note that if there is a p,n: 0, then equations (3.89) and (3.90) are not valid. \Mhen

this occurs, the rows of q("r') which specify a'^ and b'^ are obtained by setting b'*: b^

and using equation (3.34) to yield o'^ : H*n(on + b,) - b^, where the repeated indices

indicate a summation. Finally, the 5(or') matrix is obtained from q(on') in an analogous

manner to that prescribed by equations (3.50)-(3.53). Hence, one can see that the

introduction of .rl' 5("r') matrix into a scattering matrix cascade will have the effect of

implicitly ensuring that the acoustic potentiai is reorientated in the required manner at

that point.

1

2
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Practically, there are some important points to be considered when using ¡þs $(arr)

matrices. Firstly, it is important to observe that one may no longer have the freedom

to assume that Õ is comprised only of modes with special symmetries (e.g. odd, even),

as these symmetries may not apply to Q within an out-of-plane bend. Also, if one

wishes to determine Õ within an out-of-plane or oppositely curved bend, the transformed

modal coefficient vectors should be the ones used to specify Õ at the bend's entrance.

The acoustic field obtained within the bend will therefore be the one experienced by

an observer who sees the bend orientated in its standard sense. Finally, if the duct

cross-section has no rotational symmetry, then the straight duct eigenmodes will be

unambiguously defined such that ó,(*,2) : ó'n(*',"'). Under these circumstances,

equations (3.36), (3.89) and (3.90) show that S("p') will reduce to the (2M x 2M)

identity matrix.

3.4 SUMMARY

In this chapter, methods were developed for the study of acoustic lvave propagation

within ducting systems which contain one or more bends of constant curvature. Initially,

propagation within a simple, single bend ducting system was considered. A general

method, which utilised the numerical solution procedure of Chapter 2, was presented

for calculating modal transmission and reflection matrices for the bend. In an example,

a 900 bend in a duct of elliptic cross-section rv\¡as considered, and the accuracy of the

transmission and reflection matrices was shown to improve as the numerical solution

procedure was refined. Also, it was noted that the transmission and reflection matrices

satisfied reciprocity relations, thereby showing that the calculations were consistent with

energy conservation principles.

After completing the analysis of the simple, single bend ducting system, it was pro-

posed that complicated multi-bend ducting systems should be analysed by subdividing
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them into a series of purely curved and straight sections. By calculating modal transmis-

sion and reflection matrices (and therefore a modal scattering matrix) for each section, a

sytem was analysed by considering it to be a cascade of modal scatterers. A transfer ma-

trix algorithm and an iterative scattering matrix algorithm were presented which both

enabled the modal scattering matrix of a cascade of modal scatterers to be calculated.

It was noted that the iterative scattering matrix algorithm had the advantage that it

enabled evanescent modes to be readily included in the calculations. A method for

determining the acoustic potential within any element of a cascade was then presented,

and finally, out-of-plane and serpentine duct bends rvvere considered.

Hence, the necessary methods were developed to enable one to successfully determine

the acoustic characteristics of a wide variety of uniformly curved, multi-bend ducting

systems. The scattering cascade approach to this problem has a number of favourable

characteristics. Firstly, it allows the acoustic characteristics of a ducting system to be

determined from the independent analyses of each of its constituent components. Thus

a single, large, complicated problem is broken down into a series of smaller, less com-

plicated problems - namely, the determination of each component's modal scattering

matrix. As these matrices provide a compact and complete description of the acoustic

characteristics of each component, an analysis can be implemented which only makes

modest demands on computer memory. Also, the effects of adding extra components

onto a previously analysed ducting system can be determined without the performance

of major recalculations. Finally, if the same component occurs more than once within a

ducting system, it need only be analysed once. A good example of how these principles

can be used to simplify the solution of a curved duct problem is as follows. Suppose

one wishes to investigate how the modal scattering matrix S, of a section of uniformly

curved duct varies with the length of the duct's centreline axis. Ordinarily, one would

need to repeatedly calculate S from its definition for a series of centreline lengths. How-

ever, the problem is more efficiently solved by calculating AS, where AS is the modal
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scattering matrix of a small section of the duct, and using AS repeatedly in the iterative

scattering matrix algorithm - outputting S(""') after each iteration. This type of "duct

segment)' approach will be used to great advantage in the next chapter, where the idea

of representing a non-uniformly curved duct bend by a series of uniformly curved duct

segments will be presented.
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CHAPTER 4

o

ACOUSTIC WAVE PROPAGATION \MITHIN

NON-UNIFORMLY CURVED DUCTS

4.1 INTRODUCTION

It was seen in Chapter 2 that the task of determining solutions to equations (1.1)-

(1.3) within uniformly curved ducts rü/as complicated by the fact that in general, only

the longitudinal d-coordinate variations of Q could be expressed via a separable factor.

This meant that a two-dimensional analysis was required to determine the transverse

coordinate variations of Õ within the duct. Hence, if the uniformly curved duct problem

is compared with a problem in which Õ takes a fully separable form, this complication

can be considered to roughly square the amount of effort (numerical or analytical)

required to obtain a solution. Needless to say, the fact that the coordinate variations

of Õ generally remain completely coupled within non-uniformly curved ducts adds a

greater degree of difficulty to the problems considered in this chapter.

In sections 4.2 and 4.3, two different numerical methods for solving equations (1.1)-

(1.3) within non-uniformly curved ducts will be presented. Rectangular cross-sectioned

ducts are considered when presenting these methods because they enable the dimen-

sionality of the problem to be reduced without altering the basic principles behind the

methods. Also, when developing these methods, an emphasis is placed upon their ability

to determine a modal scattering matrix for the bend. This is d.one so that the methods

can be readily assimilated into the multi-bend analysis procedure of Chapter 3. In the
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first method, a generalised coordinate transformation is used to map the longitudinal

axis of the duct onto a straight line. This has the effect of simplifying the duct wall

conditions to be satisfied by lÞ. The Galerkin method is then used to determine a func-

tional series representation for lÞ within the duct. In an example, the method is used

to analyse a section of spirally curved duct. The second method uses the fact that the

curvature of any non-uniformly curved duct remains essentially constant within small

intervals along its length. The duct can therefore be geometrically approximated by

a series of uniformly curved duct segments, joined end to end. Hence, by using the

theory of Chapters 2 and 3, the acoustic characteristics of this "multi-bend ducting

system" can be determined. The same section of spirally curved duct considered earlier

is analysed in an example, and comparisons are made.

In section 4.4, the second method is extended so that ducts of arbitrary cross-

section can be studied. The power of the method is demonstrated by using it to study

the propagation of acoustic v¡aves within sections of parabolically curved, elliptic and

circular duct.

4.2 RECTANGULAR CROSS-SECTIONED DUCTS - A NUMERICAL

SOLUTION WHICH USES A GENERALISED COORDINATE TRANS-

FORMATION AND THE GALERKIN METHOD

Here, in a formulation which is similar in context to the one presented in section 3.2,

a study is made of the propagation of acoustic waves through a single, non-uniformly

curved duct bend. The duct is assumed to have a rectangular cross-section, with height

H in the z-axis direction (assumed to point out of the page), and lying on the (*,V)-

plane in the manner shown in Figure 4.1. The inner wall of the bend is taken to follow

the curve defined by the polar equation , : R(0), where 0 < 0 1 0^o, and ,R is a

continuous, monotonic function of 9. If. n(0) is a unit vector, normal to this curve, and
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n(0\
+

r: R(0)

r

Figure 4.L: Top uiew of a non-uniformly curued duct bend.

points away from its centre of curvature, then the outer wall will be a distanceW from

the inner wall (as measured along 
"(0)), 

and will also be normal to n(0).

The required solutions to equations (1.1)-(1.3) are most conveniently obtained by

subdividing the duct into the regions X1, X2 and X3; as shown in Figure 4.2. Figure

4.2 also shows the definition of (*',A') and (r", y") coordinate axes. It follows from the

theory presented in subsections 2.L.1 arrd 2.2.7 that with respect to these coordinates,

acceptable general solutions to equations (1.1)-(1.3) within X1 and X3 are

M
er(*',a') : D fo^"or^o' + p*e-iu^u') ó,,(r') (4.1)

m=l

0

t
t

I
,
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a" X3

n

frl
t
,

I
,
,

X1
t

I
I
I

and

respectively where

Figure 4.2: Subd,iaision of the simple, single bend ilucting system.

M
(Þ.(t", y") : D ,^"or^n" ó^(*")

,rn=l
(4.2)

(4.3)

(4.4)

ó^(*): | -'[@#-] ror -ðy'-modes

L 't lry] for D-modes,

¡z - f@-J\")z for -Ay'-modes

¡' - lW]' fo, D-modes,
p',-

and À2 is as defined by equation (2.33). Note that for convenience, the z-coordinate

dependence of the solutions has been suppressed, as it can be adequately specified

through the choice of À2. The coefficients omt p^ and r^ are complex constants which
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specify the phase and amplitude of modes incident upon, reflected from and transmitted

through E2.

The simple form of the solutions Õ1 and 03 results from the fact that they are

expressed with respect to coordinates whose axes are aligned with the boundaries of

regions X1 and 13. In the following subsection, these principles are used to define a

coordinate system which will simplify the task of determining a solution within X2.

4.2.L Natural coordinates for the duct bend

Referring back to Figure 4.1, one can see that point. ("o, go) on the inner wall of the

duct bend can be represented parametrically by the vector equation

f 
,. 

l:R(d)|-""'(d) l. (4.b)

L v. I I sin(d) 
.l

Further, points within the duct bend can be reached by firstly choosing an appropriate

point on the bend's inner wall, and then moving from that point a given distance ( in

the direction of the local normal vector n(d). Hence, any point (*,y) within X2 can be

specified by making an appropriate choice of the parameters ( and d (where 0 < € < W

and 0 < e < 0*o,), and using the vector equation

l"l l"o"ld)lI t-E(d)l \/ l+gz(B). (4.6)

Lrl -"'"'Lsin(d)l

Now, it follows from equation (4.5) that

n(0): 1

R2 + R'2

where the primes signify differentiation with respect to d. Hence, equation (4.6) yields

explicitly

| .Bcos(d) + .,R'sin(d) I

I or,'1r¡ -.R'"or(d) I '
(4.7)

Ê

(4.8)
R2 + R'2

r : Rcos(d) *
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R(0)

0

r
0:0 ,

,

Figure 4.3: Details of natural coordinates Íor the duct benil

and

U: Rsin(d) *
,[^, * *n

[rf sin(á) - ,R'cos(d)] . (4.e)

Equations (a.S) and (4.9) define a coordinate transformation (*,A) - ((, d) which maps

the walls of 12 onto the lines (( :0,W) and (d :0,0*o,) in the ((, á)-plane, as shown

in Figure 4.3.

È

and

It can be shown (see Appendix A), that with respect to the ({, d) coordinates,

vo:-ao 1ao
æ**; a0* (4'10)

V20:i&('ä) **(;#)] (4.11)
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R2 + R'2. (4.72)

Hence, a solution Õ2 to equations (1.1)-(1.3) which is valid within the curved region X2

on the (r, y)-plane, must equivalently satisfy the equation

å('ä) *#(;#) rÀ2s(Þ:o (4 18)

within the rectangular region defined by the inequalitiet (0 < ( < W) and (0 < 0 <

0,no,) on the ((, d)-plane, subject to the boundary conditions

where

or

sc,q:€þ -#+#1.

ôo
a - 0 for -ll-modes

Ê=o,W

[Q]€=o,w :0 for D-modes

(4.14)

4.2.2 Continuity of the solution

Suppose that a general expression for Õ2((, d) has been found by solving equations

(4.13)-(4.15). Then, similarly to the procedure adopted in section 3.2, a potential

function which is valid throughout the duct is obtained by requiring that the general

solutions (Þt, Or and Og satisfy continuity conditions at the boundaries between the

regions Ðt, X, and X3. These conditions are that O and the normal component of VÕ

should be continuous at the boundaries. Hence, the following four continuity equations

must be satisfied. They are:

[Õr]r,=¿,u,-o : [Õr]r=o (4'16)

and

fÞ"]r,,=q,n,,=o: lÞrl,,=omaai Ø.17)

ensuring continuity of Õ; and

(4.15)

(4.18)
ôÕr

a rt=Ê,at=o
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and
lao.1 l1ôÕr'lt_t 

- 
t_-t

lay" lr,'=Ê.,y,,=o- Lg ae f ,=r^o,'
(4.1e)

ensuring continuity of the normal component of VtÞ.

4.2.3 The numerical solution

In this subsection, a general expression for 02((, d) is sought in the form of a finite func-

tional series expansion. By then using this expression in conjunction with the continuity

equations (4.16)-(4.19), the acoustic potential throughout the duct is approximately de-

termined. Therefore, we start by letting

or((,d) æ Õ((, e) :ff oo¡fo¡G,o). (4.20)
i=t j=l

The basis functions f¿¡((,0) arc chosen to be linearly independent, and to satisfy either

of the boundary conditions (4.I4) or (4.15) according to the type of mode solution

required. Equations for determining the series coefficients d¿j aÍe now derived by means

of a formulation similar to that employed by Astley and Eversman [39], whereby the

basic postulate of the Galerkin method is invoked. That is, the residual error produced

by approximating the solution of equation (4.13) by iÞ(€, d) is made orthogonal to each

of the basis functions. This process yields the set of equations

I:-"1,':* ,,'lln('ä) * &(;#) + À'eo] d(d,:0, (42r)

where i:1,...-I and j :I,...J. Integrating each of these equations by parts, the

following weak formulation of the problem is obtained, namely:

l,: Ï:"" 1'æ# .',W# - ¡" n rn'a) d€ do

: l,!"lt',;#]:,^=": d(+ l,::'1",'#]*,=oo' (422)
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The continuity equations (4.18) and (4.19) can be substituted into the integrand of the

first integral appearing on the right hand side of equations (4.22). Also, as the basis

functions satisfy the boundary conditions (4.14) or (4.15), the second integral appearing

on the right hand side of equations (4.22) will be zero. Finally, the explicit series form for

O(€, d) given by equation (a.20) can be substituted into the left hand side of equations

(4.22) to yield

ilii'* l,:"1,::,* l'æW.;WW - \'sr¿¡rn']oto'

M

D ip^r^ [* f,,G,e^"')ó^(€) d'e
J Ê_Om=L

M

I,
w

Ð ¿p,"lo* - p^] fo¡(€,0)ó, (€) d(
m=l =O

(4.23)

As the continuity equations (4.16) and (a.17) have not been included in the derivation

of equations (4.23), they must be considered separately. Substituting equations (4.1),

(a.2) and (4.20) into equations (4.1.6) and (4.L7) yields

IJM

D D a¿¡f¿¡(€,O) : t lo* + p^l ó,"(€) (4.24)
i=L j-l m=I

andrJM

Dt a¿¡f¿¡((,,0,no,): D r^ó^((). (4.25)
'i,-l j=\ m=l

Now, assuming that the M incident modal coefficients o.rn are known, equations

(4.23)-(4.25) specify (IJ + 2) equations from which the (// +2M) complex constants

aij,t prn and r- can be determined. So ihat these constants can be determined by

algebraic means, we require that equations (4.24) and (4.25) be satisfied in a weighted

average sense by multiplying through both of them bV d"(() (n : 7,. .. M), and then

integrating the resulting equations with respect to { over the interval l},Wl. Hence,

the following coupied matrix equations are obtained from equations (4.23)-(4.25). They

are

Aa:DBr-CBl"- ol ,
L-l
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CTa:F.lo+ol
[- !-l (4.27)

and

DTrr:F..r. (4.28)

Here the ? superscript signifies the matrix operation of transposei er o, p and Z are

column vectors containing the series and modal coefficients; and the matrix elements

are

Aç¡¡1*t¡ l,:"Ï:- l'æW.',WW - \'sr¿¡rk')oe o', (4.2e)

B(^)(*)

l,:"

T:"

T:,

Cç;¡¡1"¡ fn¡(€,0)d"(() d('

where

e :2[cnn-'ct + DnE-'D" - a]-'cn.

Substituting equation (a.3a) back into equations (4.27) and (4.28) then yields

P:Rq

and

T:To,

iltn if.m:n

0 if.mfn,

(4.31)

(4.30)

(4.35)

D(o¡)(") f¿¡(€,0^"')ó"(() de, (4.32)

E(*)(n) ó*(0ó"(() d(; (4.33)

where i,le : I,...1; j,l:1,...J and m,n :7,...M. It should be noted that in

equations (4.29)-(4.33), the indices in the fi.rst and second brackets indicate the row

and column location of the matrix elements respectively.

Using equations (4.27) and (4.28) to eliminate p and r from equation (4.26) we have

a: Qo, (4.34)

(4.36)

(4.37)
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where

R:E-lcte-r (4.38)

and

T: E-IDTQ (4.3e)

where I is the (M x M) identity matrix.

Once the matrices Q, R and T are calculated, the vectors e¡ p and r can be specified

for a given incident modal coefficient vector o by using equations (4.34), (a.36) and

(4.37). Hence, an approximate expression for the acoustic potential throughout the duct

has been found. The (M x M) matrices R and T are recognised as being reflection and

transmission matrices which specify how the incident straight duct modal coefficients

will be scattered from the duct bend.

4.2.4 A spirally curved duct bend

Referring back to Figure 4.1, the preceding theory is applied to the analysis of a duct

bend whose inner wall has the polar equation r : R(0),, where

R(0):a0+b. (4.40)

Differentiating equation (4.40) yields R' : a and R/' : 0. Therefore, according to the

theory presentedin subsection4.2.7,, a solution to equations (4.13) and (4.14) or (4.15)

must be found when

I a2.

The basis functions for the numerical solution are chosen to be

fo¡(t,0) : Ón(€)S¡(0)

sc,q:r[t.#]. (4.4r)
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Here, the d¿({) are as defi.ned in equation (a.3) and S¡(É) is the jtä cubic B-spline ([40],

sect. 4.2), defined on the interval 10,0^.,] as follows:

si(o):

Ke - Éj-2)lhl3

1 + 3[(d - 0¡-)lh]+ 3[(d - 0¡-)Ih]' - ïl(p - 0i-òIhls

1 + 3[(dj+1 - o)lh]+ 3[(dj+1 - 0)lh]'- 3[(d¡*, - o)lh]"

l(o¡*, - qlhl"

0

if. 0el0¡-2,,0¡-rl,

if 0el0¡-t,0Å,

if 0el0¡,0¡+tl,

if 0el0¡¡1,0j+rl,

otherwise,

(4.43)

where h : 0*o,/(/ - 3) and d¡ : (j - 2)h

As an example, results are presented which are relevant to the propagation of Iü-

modes through a 90o bend whose inner wall spirals from r : 7 to r : 5. Here, all lengths

are expressed as multiples of the wavelength ¡. The values of the physical parameters

used, in the calculations aîet cI : 8lr, b : I, 0*o, : rf 2, W : 2 and 12 : 3212. Note

that the value chosen for 12 can be used to describe acoustic waves in the duct when

H : ! and n :2 in equation (2.33). Equation (4.4) shows that only four modes will

propagate within a straight section of the duct under these conditions. l/[ - 6 is taken

when calculating the matrices T and R so that two evanescent modes are considered.

Tables 4.L and 4.2 show absolute values of the elements of T and R when I : !2 and

J :30,50,70,80. Looking down each block of numbers in these tables, the convergence

of the matrix elements to constant values can be seen as the number of terms in the

series approximation for fÞ2 increase.

As the duct's cross-section has a vertical line of symmetry, T and R matrices rele-

vant to modes being incident upon the opposite end of the bend can be calculated by

considering a bend whose inner wall spirals from r : 5 to r : 1. Redefining ø : -81¡r,

b : 5 and repeating the above calculations yields the absolute values of the elements

of T and R shown in Tables 4.3 and 4.4. Comparing the results presented in Tables
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0.84117E+0
0.873798+0
0.874238+o
0.87426E+0

0.218528+0
0.192678+0
0.19234E+0
0.19232E+0

0.271808+0
0.24670E+0
0.24630E+0
0.24627E+0

0.53795E-1
0.496398-1
0.49570E-1
0.49566E-1

0.41350E-2
0.36340E-2
0.362598-2
0.36255E-2

0.38088E-2
0.36385E-2
0.36354E-2
0.363528-2

0.44348E+0
0.31220E+0
0.31008E+0
0.309958+0

0.85068E+0
0.85677E+0
0.85678E+0
0.856788+o

0.38454E+0
0.42t238+0
0.42181E+0
0.421858+0

0.67555E-1
0.764628-l
0.76615E-1
0.766248-l

0.69456E-2
0.67615E-2
0.67579F.-2
0.675778-2

0.207298-2
0.27098Ð-2
0.272038-2
0.272t0E=2

0.69471E+0
0.679718+0
0.679448+0
0.67942E+0

0.443088+0
0.45914E+0
0.45947E+0
0.459498+0

0.752748+0
0.749908+0
0.74982E+0
0.749828+0

0.20532E+0
0.205788+0
0.20579E+0
0.20579E+0

0.10423E-1
0,10889E-1
0.10897E-1
0.10898E-1

0.770548-2
0.766448-2
0.76633E-2
0.76633E-2

0.68069E-1
0.69465E-1
0.695138-1
0.69516E-1

0.131858+0
0.128388+0
0.12831E+0
0.12830E+0

0.35892E+0
0.362278+0
0.362338+0
0.362348+0

0.954318+0
0.95375E+0
0.95374E+0
0.953748+0

0.648688-1
0.64900E-1
0.649018-1
0.64901E-1

0.15417E-1
0.754248-l
0.1.54248-r
0.t54248-r

0.7290LÐ-2
0.620268-2
0.618608-2
0.61851E-2

0.104288-1
0.10657E-1
0.10660E-1
0.10660E-1

0.664678-2
0.65642E=2
0.656408-2
0.656408-2

0.234338-1
0.234728-L
0234728-l
0.234728-L

0.t567I8-2
0.t57708-2
0.t577L8-2
0.t577t8-2

0.38316E-3
0.37905E-3
0.37899E-3
0.37898E-3

0.454L78-2
0.451948-2
0.451868-2
0.451868-2

0.I43L78-2
0.L44998-2
0.L457L8-2
0.1.45728-2

0.252708-2
0.252638-2
0.252608-2
0.252608-2

0.45899E-3
0.478218-3
0.47863E-3
0.47865E-3

0.631568-4
0.61551E-4
0.61533E-4
0.61532E-4

0.50615E-4
0.507158-4
0.507r28-4
0.507t28-4

Table 4.7: Absolute ualues of the T matrir elements for the r : 1 ---+ 5 spirally curued"

d,uct benil when M :6, I :1.2 anil J - 30,50,70,80.
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0.841178+0
0.873798+0
0.87423E+0
0.874268+0

0.212308+0
0.149458+0
0.14844E+0
0.148388+0

0.28361E+0
0.277498+0
0.277388+0
0277378+0

0.17017E-1
0.173668-1
0.17378E-1
0.173798-1

0.2L0458-2
0.179058-2
0.178588-2
0.17855E-2

0.236368-2
0.235208-2
0.235768-2
0.235158-2

0.456488+0
0.402478+0
0.401788+0
0.401748+0

0.85068E+0
0.85677E+0
0.856788+0
0.856788+0

0.377868+0
0.391558+0
0.391848+0
0.391868+0

0.68858E-1
0.670428-r
0.67007E-1
0.670058-1

0.62884Ð-2
0.642678-2
0.64283E-2
0.642848-2

0.15564E-2
0.r57628-2
0.15776E-2
0.t57768-2

0.665788+0
0.60429E+0
0.603308+0
0.60325E+0

0.450918+0
0.493948+0
0.49462Ð+0
0.494668+0

0.75274E+0
0.74990E+0
0.74982E+0
0.749828+0

0.219808+0
0.227848+0
0.22188E+0
0.22188E+0

0.46999tr-2
0.464168-2
0.464t48-2
0.464148-2

0.322738-2
0.322048-2
0.322018-2
0.322008-2

0.215188+0
0.198558+0
0.19828E+0
0.19826E+0

0.129368+0
0.14641E+0
0.14671E+0
0.t4672E+0

0.335288+0
0.33604E+0
0.336058+0
0.33605E+0

0.954318+o
0.953758+0
0.953748+0
0.953748+0

0.27059E-1
0.271038-1
0.27L048-L
0.27t048-l

0.955468-3
0.995488-3
0.996348-3
0.99639E-3

0.L43248-L
0.125898-1
0.12561E-1
0.125598-1

0.11518E- 1

0.11213E-1
0.11207E- 1

0.11206E-1

0.t474t8-]-
0.153998-1
0.154118-1
0.15412E-1

0.56177E- I
0.56205E- 1

0.56206E-1
0.56206E-1

0.15671E-2
0.r57708-2
0.L577L8-2
0.t577r8-2

0.113868-3
0.110968-3
0.110938-3
0.11093E-3

0.73188E-2
0.69915E-2
0.69856E-2
0.698528-2

0.19068E-2
0.249278-2
0.250248-2
0250298-2

0.604468-2
0.60125E-2
0.601168-2
0.60116E-2

0.740638-2
0.740968-2
0.740978-2
0.740978-2

0.2t2548-3
0.210268-3
0.210228-3
02L0228-3

0.50615E-4
0.507158-4
0.507t28-4
0.507128-4

Table 4.3: Absolute aalues of the T matrir elements for the r :5 + 1 spirally curued,

duct bend when M :6, I : L2 anil, J : 30,50,70,80.

89



0.993328-2
0.r7t708-2
0.173938-2
0.17390E-2

0.38056E-2
0.130568-2
0.130258-2
0.13021E-2

0.t75208-2
0.tt5798-2
0.tr5678-2
0.11566E-2

0.163918-2
0.7423t8-2
0.142708-2
0.t42098-2

0.33408E-3
0.35355E-3
0.353728-3
0.353738-3

0.14889E-2
0.14828E-2
0.t48288-2
0.14828E-2

0.794978-2
0.272738-2
0.272098-2
0.272008-2

0.55967E-2
0.185348-2
0.18346E-2
0.183438-2

0.10862E-2
0.31932E-2
0.31925E-2
0.319268-2

0.156558-2
0.242428-2
0.243398-2
0.243458-2

0.506328-2
0.507258-2
0.507228-2
0.507228-2

0.375438-3
0.38492E-3
0.384908-3
0.384908-3

0.429t48-2
0.28363E-2
0.283348-2
0.28330E-2

0.r27378-2
0.374438-2
0.374368-2
0.374378-2

0.345788-2
0.396728-2
0.39669E-2
0.39672Ð-2

0.688348-2
0.705158-2
0.705138-2
0.70513E-2

0.15540E-2
0.757148-2
0.r57t48-2
0.L57t48-2

0.433228-2
0.432508-2
0.432508-2
0.432508-2

0.655648-2
0.569258-2
0.56840E-2
0.56835E-2

0.299788-2
0.464218-2
0.46605E-2
0.466168-2

0.11241E-1
0.11515E- 1

0.115158-1
0.115158-1

0.86107E-2
0.85859E-2
0.858648-2
0.858658-2

0.285328-1
0.285248-l
0.285248-r
0.285248-r

0.225tL8-2
0.225438-2
0.225438-2
0.225428-2

0.tt5738-2
0.L22478-2
0.t22538-2
0.122548-2

0.839638-2
0.841188-2
0.84113E-2
0.841138-2

0.219778-2
0.222228-2
0.22223E-2
0.222248-2

0.247098-I
0.247028-l
0.247028-l
0.247028-L

0.986068-3
0.970138-3
0.96950E-3
0.96945E-3

0.10139E-2
0.93240E-3
0.92898E-3
0.92870E-3

0.286108-2
0284938-2
0.28493tr-2
0.284938-2

0.34534E-3
0.354078-3
0.354058-3
0.354058-3

0.339858-2
0.33928E-2
0.33928E-2
0.33928E-2

0.10814E-2
0.108298-2
0.108298-2
0.10829E-2

0.562418-3
0.517208-3
0.515318-3
0.515158-3

0.579988-3
0.30351E-4
0.216038-4
0.278758-4

Table 4.4: Absolute ualues of the R matrír elements for the r : 5 ---+ 1 spiro,lly curaed,

duct bend when M :6, I : 72 anil J - 30,50,70,80
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4.1 and 4.3, it is interesting to note that the diagonal elements in these tables are the

same. This result is a verification of the reciprocity principle in duct acoustics [37], and

implies that for a given incident mode, the proportion of energy transmitted through

the bend to that same mode is independent of the direction of approach to the bend.

4.3 RECTANGULAR CROSS.SECTIONED DUCTS - A NUMERICAL

SOLUTION WHICH USES A UNIFORMLY CURVED DUCT SEGMENT

APPROXIMATION

Consider again the non-uniformly curved duct bend shown in Figure 4.1. By choosing

I/+L values for 0, (0o :0r0t,. . .0N-t,0N : 0^o'), such that the vectorsn(01),. . .a(d¡r-t)

subdivide the angle between the vectors r¿(96) and n(d¡¡) into .l/ equal parts, a series of

-ôy' duct segments can be defined. Figure 4.4 gives a geometrical description of the nth

segment. If the angle e is defined by

I
ru(O")

e

L(0"-t)

r

a-ou-vn

0:|n_r

I
I
I
I
I

Figure 4.4: Top uiew of nth duct segment, (n:7,. .. ¡/).
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1r: 
Farccoslz(Po) 

on(d7y)] , (4.44)

then 9,o is the root of the equation

arccos l"@o) o n(0")l : rze. (4.45)

Also, using the fact that the radius of curvature of the curve r : R(0) is given by

R2 + R'2
3/2

c(0):
R2 + 2Rt _ RRI"

(4.46)

one can approximately determine the mean radius of curvature of the nth segment's

inner wall from the expression

vun : -rlc(0"-r) + cçe"¡1. (4.47)

A modal scattering matrix for the nrh segment can therefore be approximately calculated

by taking the segment to have a constant inner wall radius of. C n, and an angular extent

of e. In this manner, a scattering matrix cascade for the duct bend can be formed. The

acoustic characteristics of the duct bend are then determined from this cascade with

the aid of the algorithms presented in section 3.3.

4.3.L A spirally curved duct bend

As in subsection 4.2.4, the propagation of l/-modes through a spirally curved duct bend

whose inner wall has the polar equation r : a0l ä is considered. The following values of

the physical parameters used in the calculations are again assumed. They a;re. cr : 8lr,
b : L, W : 2 a¡d \2 : 3tr2. After subdividing the spiral duct bend into a series of

uniformly curved segments, the submatrices of each S(") matrix are calculated using a

25-term approximation in the method presented by Tamll6l. M : 12 modes are then

considered when using the iterative scattering matrix algorithm to calculatr" 5("""), the

modal scattering matrix of the duct bend.
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Tables 4.5-4.8 show the absolute values of elements in the top-left (6 x 6) submatrices

of Sf"r'"), StîÐ, Sl"r'") ana s["f") .r the number of uniformly curved segments used in

the approximation are increased in the manner .ly' : 20,40,60,100. Looking down a

given block of numbers in these tables, one can see the convergence of the corresponding

matrix element to its limiting value.

From the definition of 5(""") ¡tr equation (3.40), it follows that the submatrices of this

matrix are related to the transmission and reflection matrices presented in Tables 4.1-

4.4 of. subsection 4.2.4in the mann"tt S["f") : T(rl - 1 ---+ 5), Stî') : R(r : 1 - 5),

Stî"): T(r:5 ---+ 1), SÍî"): R(r:5 -- 1). Makingacomparisonbetween

the results presented in Tables 4.1-4.4 and 4.5-4.8, one can see that there is a good

agreement between the limiting values of corresponding matrix elements in these tables

(at least a 3 significant figure agreement in most cases). This serves as a verification

that the acoustic characteristics of a non-uniformly curved duct bend can be accurately

determined from the uniformly curved segment approximation.

An indication of the influence that evanescent modes have upon the accuracy of

the uniformly curved duct segment approximation can be obtained by examining the

absolute values of the elements o¡ 5(""") shown in Table 4.9. Here the spiral bend was

subdivided into I[ : 100 segments, but only propagating modes were considered in the

calculations (therefore M : 4). As one can see, the larger matrix elements are still

determined with a reasonable accuracy. However, it is clear that if the values of the

smaller elements are to be accurately determined, evanescent modes must be included in

the calculations. In general, the accuracy of S(""") can be checked by increasing M (and

l/) until a further increase does not signifi.cantly alter the required matrix elements.

While doing this, one should ensure that the submatrices of each S(') matrix are also

being determined with sufficient accuracy.
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0.87446E+0
0.874338+0
0.87430E+0
0.874298+0

0.19213E+0
0.19226E+0
0.192288+0
0.19230E+0

0.246t48+0
0.246238+0
0.246248+0
0.246258+0

0.494448-l
0.495328-1
0.49547E-1
0.495558-1

0.36054E-2
0.36203E-2
0.36230E-2
0.362448-2

0.362038-2
0.363148-2
0.36334E-2
0.36344D-2

0.30892E+0
0.30963E+0
0.30976E+0
0.309838+0

0.85680E+0
0.856798+0
0.856788+0
0.856788+0

0.422L38+0
0.421938+0
0.42190E+0
0.42188E+0

0.765658-1
0.76603E-1
0.76610E-1
0.76613E-1

0.674758-2
0.675628-2
0.675748-2
0.675788-2

0.272tt8-2
0.272298-2
0.272348-2
0.272378-2

0.679348+0
0.679398+0
0.67939E+0
0.679398+0

0.45966E+0
0.45953E+0
0.45951E+0
0.45950E+0

0.74967tr+0
0.74978E+0
0.74980E+o
0.74982E+0

0.20599E+0
0.205858+0
0.20582E+0
0.20581E+0

0.10916E-1
0.10904E-1
0.10902E-1
0.10901E-1

0.763388-2
0.765528-2
0.76581E-2
0.76589E-2

0.693128-1
0.694708-1
0.69499E-L
0.695128-1

0.128088+0
0.128278+0
0.12830E+0
0.128318+0

0.362588+0
0.36240E+0
0.36236E+0
0.362348+0

0.953708+0
0.953738+0
0.953748+0
0.953748+0

0.64729E-l
0.64857E-1
0.648808-1
0.648908-1

0.15355E-1
0.154058-1
0.15413E-1
0.15415E-1

0.62tr28-2
0.618838-2
0.61858E-2
0.61845E-2

0.107708-1
0.106848-1
0.10671E- 1

0.106648- 1

0.661438-2
0.65786E-2
0.65705E-2
0.656608-2

0.236498-L
0.235r48-L
0.23491E-1
0.234798-L

0.158538-2
0.15791E-2
0.157798-2
0.757748-2

0.380088-3
0.37917E-3
0.378978-3
0.378838-3

0.457848-2
0.453378-2
0A52528-2
0.452098-2

0.147088-2
0.145638-2
0.1.45378-2
0.7452L8-2

0.255798-2
0.253418-2
0.252958-2
0.2527r8-2

0.48626E-3
0.480978-3
0.479678-3
0.478918-3

0.622688-4
0.617268-4
0.61609E-4
0.615388-4

0.511768-4
0.50828E-4
0.507548-4
0.507108-4

Table 4.6: Absolute ualues of elements in the top-teft (6 x 6) submatrir o/S[i") for the

spirally curued duct bend when M : 12 anil N - 20,40,60, 100.
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0.L37258-2
0.11148E-2
0.11139E-2
0.11134E-2

0.14039E-2
0.L42058-2
0.141398-2
0.141108-2

0.17140E-3
0.12546E-3
0.12554E-3
0.125628-3

0.188288-2
0.18396E-2
0.183388-2
0.18312E-2

0.198298-2
0.19805E-2
0.198048-2
0.198028-2

0.36976E-2
0.370728-2
0.37089E-2
0.370958-2

0.293278-2
0.296748-2
0.295358-2
0.294758-2

0.10498E-2
0.729608-3
0.722888-3
0.71969E-3

0.364848-2
0.366288-2
0.365738-2
0.36551E-2

0.759688-3
0.774798-3
0.776678-3
0.777728-3

0.114108-1
0.114358-1
0.114398-1
0.114408-1

0.2t4798-2
0.214668-2
0.214658-2
0.214578-2

0.41985E-3
0.30732E-3
0.307518-3
0.307718-3

0.4278L8-2
0.429508-2
0.42885E-2
0.428598-2

0.722948-3
0.13468E-3
0.147558-3
0.153828-3

0.892648-2
0.884138-2
0.88330E-2
0.88293E-2

0.726458-2
0.727428-2
0.727608-2
0.727658-2

0.112398-1
0.tt27rB-l
0.tr2778-l
0.tt2798-l

0.753t38-2
0.735828-2
0.73350E-2
0.732468-2

0.14547Ð-2
0.14836E-2
0.148728-2
0.148928-2

0.L45778-7
0.144388-1
0.1.44248-L
0.14418E-1

0.270058-2
0.28309E-2
0.2845t8-2
0.285218-2

0.648338-1
0.649608-1
0.64981E-1
0.649928-1

0.116838-1
0.11718E- 1

0.1I7248-l
0.7t7258-r

0.686898-2
0.68606E-2
0.68604E-2
0.68597E-2

0.18922E-1
0.189638-1
0.18969E-1
0.189728-1

0.t02748-r
0.10287E-1
0.10290E-1
0.102918-1

0.56147E-1
0.56257E-1
0.562768-1
0.56285E-1

0.496468-2
0.498248-2
0.498548-2
0.498678-2

0.L76288-2
0.17699E-2
0.L77L68-2
0.777288-2

0.710518-2
0.7t2368-2
0.7L2678-2
0.712798-2

0.L97028-2
0.797468-2
0.197458-2
0.19738E-2

0.881688-2
0.88420E-2
0.88461E-2
0.88478E-2

0.56123E-2
0.562928-2
0.563188-2
0.56326E-2

0.977818-3
0.98176E-3
0.982728-3
0.98336E-3

0.19567E-3
0.196718-3
0.196798-3
0.19673E-3

Table 4.6: Absolute ualues of elements in the top-Ieft (6 x 6) submatrix "l S!;:ù for th,e

spirally curued, d,uct beniL when M : !2 and, N - 20140,60, 100.
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0.874468+0
0.874338+0
0.874308+0
0.874298+0

0.14789E+0
0.148228+0
0.148298+0
0.14832E+0

0.277348+0
0.277368+0
0.277368+0
0.277368+0

0.173288-1
0.17367E-1
0.173758-1
0.17378E-1

0.17930E-2
0.178648-2
0.17857E-2
0.17853E-2

0.238268-2
0.235948-2
0.235508-2
0.235278-2

0.40136E+0
0.401628+0
0.401678+0
0.401698+0

0.85680E+0
0.856798+0
0.856788+0
0.856788+0

0.392008+0
0.391898+0
0.391878+0
0.391868+0

0.66888E-1
0.66985E-1
0.67002E-1
0.670098-1

0.649448-2
0.644278-2
0.643488-2
0.64309E-2

0.15989E-2
0.15832E-2
0.158038-2
0.1.57878-2

0.602928+0
0.603138+0
0.603168+0
0.60318E+0

0.494998+0
0.49476E+0
0.494728+0
0.494708+0

0.749678+0
0.749788+0
0.749808+0
0.749828+0

0.222038+0
0.221928+0
0.22190E+0
0.22189E+0

0.467708-2
0.46518E-2
0.464608-2
0.464298-2

0.326078-2
0.32304E=2
0.322448-2
0.322L48-2

0.19778E+0
0.19813E+0
0.19819E+0
0.19822E+0

0.14661E+0
0.14668E+0
0.14670E+0
0.146708+0

0.33638E+0
0.33615E+0
0.336118+0
0.33608E+o

0.95370E+0
0.95373E+0
0.95374E+0
0.95374E+0

0.273078-l
0.27t528-L
0.27t258-r
0.27t7t8-r

0.101228-2
0.100128-2
0.99852E-3
0.99693E-3

0.124898-1
0.125418-1
0.12550E-1
0.12555E-1

0.111898- 1

0.112048-1
0.11206E-1
0.11207E-1

0.15438E-1
0.154218-1
0.15418E-1
0.15417E-1

0.56057E-1
0.561688-1
0.561888-1
0.56197E-1

0.158538-2
0.15791E-2
0.t57798-2
0.t57748-2

0.tt2268-3
0.11128E-3
0.11107E-3
0.110948-3

0.695658-2
0.697808-2
0.698178-2
0.69836E-2

0.2503t8-2
0.250478-2
0.250578-2
0.25055E-2

0.59885E-2
0.600528-2
0.600758-2
0.600818-2

0.737638-2
0.74003E-2
0.740408-2
0.740528-2

0.21083E-3
0.210338-3
0.2t0228-3
0.210148-3

0.51176E-4
0.508288-4
0.507548-4
0.50710E-4

Table 4.7: Absolute ualues of elements in the top-Ieft (6 x 6) submatrir oÍStîÐ for th,e

spirally curued duct bend when M : L2 and, N - 20,40,60,100.
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0.2051_38-2
0.L74048-2
0.t74t08-2
0.t74t28-2

0.73t778-2
0.131168-2
0.130678-2
0.130468-2

0.109118-2
0.11573E-2
0.115768-2
0.11578E-2

0.142538-2
0.142348-2
0.1.42238-2
0.742188-2

0.358868-3
0.354868-3
0.354228-3
0.353858-3

0.15041E-2
0.14880E-2
0.14850E-2
0.148368-2

0.275268-2
0.273988-2
0.272978-2
0.272538-2

0.155858-2
0.183038-2
0.182998-2
0.18298E-2

0.330648-2
0.32t998-2
0.327028-2
0.32058E-2

0247268-2
0.243958-2
0.243928-2
0.243928-2

0.512428-2
0.508228-2
0.50765E-2
0.50738E-2

0.392248-3
0.386698-3
0.385898-3
0.38533E-3

0.267268-2
0.283478-2
0.283568-2
0.283608-2

0.387718-2
0.377578-2
0.376438-2
0.37591E-2

0.405078-2
0.39603E-2
0.39581E-2
0.39573E-2

0.714568-2
0.705468-2
0.704278-2
0.703748-2

0.L592L8-2
0.15755E-2
0.15731E--2
0.157188-2

0.438t28-2
0.43396E-2
0.433t48-2
0.432728-2

0.57013E-2
0.56938E-2
0.56891E-2
0.568728-2

0.473478-2
0.467t38-2
0.467088-2
0.467078-2

0.11669E-1
0.115208-1
0.1150lE- 1

0.11492E-1

0.85144E-2
0.85313E-2
0.85340E-2
0.85359E-2

0.287398-1
0.28574E=7
0.28545E-1
0.28530E-1

0.228538-2
0.226208-2
0.225778-2
0.225528-2

0.L243t8-2
0.L22938-2
0.t22708-2
0.722588-2

0.84975E-2
0.842798-2
0.841848-2
0.84139E-2

0.225158-2
0.2228t8-2
0.222468-2
0.222288-2

0.248898-1
0.247468-r
0.24721î,-t
0.24708E-1

0.98214E-3
0.972478-3
0.97060E-3
0.96960E-3

0.94164E-3
0.932898-3
0.93074E-3
0.92956E-3

0.28901E-2
0.285938-2
0.28536E-2
0.28508E-2

0.360818-3
0.355708-3
0.354978-3
0.35445E-3

0.343698-2
0.340438-2
0.33978E-2
0.33946E-2

0.109788-2
0.108668-2
0.10846E-2
0.10834E-2

0.52233E-3
0.577478-3
0.51628E-3
0.51563E-3

0.230618-4
0.226098-4
0.225318-4
0.225108-4

Table 4.8: Absolute ualues of elements in the top-teft (6 x 6) subma,trir of slîÐ for tlte

spirøIly curaed d"uct bend when M : t2 anil N -- 20,40,60,100
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0.8748+0

0.3138+0

0.6788+0

0.730E-1

0.1938+0

0.857E+0

0.4588+0

0.132E+0

0.2468+0

0.4208+0

0.751E+0

0.3628+0

0.5008-1

0.7778-r

0.206E+0

0.953E+0

0.t768-2

0.2778-2

0.2798-2

0.5888-2

0.1338-2

0.t92E,-2

0.3678-2

0.4548-2

0.tt4Ð-2

0.313E-2

0.385E-2

0.112E-1

0.1478-2

0.2378-2

0.686E-2

0.114E-1

0.rt4Ð-2

0.300E-2

0.4418-3

0.7708-2

0.t448-2

0.5128-3

0.4448-2

0.2128-2

0.1808-3

0.3798-2

0.4278-3

0.1518-1

0.1938-2

0.1118-2

0.9248-2

0.4828-2

0.874E+0

0.4028+0

0.6038+0

0.2008+0

0.1508+0

0.8578+0

0.4938+0

0.1498+0

0.2778+0

0.3918+0

0.751E+0

0.336E+0

0.1828-1

0.6898-1

0.222E,+0

0.953E+0

Table 4.9: Absolute aalues of the elements o/5("o"¡ for the spi,rally curued, d,uct bend, whicl¿

were calculated, usi,ng propagating modes only (therefore M - 4). .ô/ : 100 segrnents

were used, in the approrimation.

4.4 DIJCTS OF ARBITRARY CROSS-SECTION

Clearly, the method presented in section 4.3 can be readily applied to the analysis of

non-uniformly curved bends in ducts of arbitrary cross-section. This is shown in the

following subsection, where analyses of parabolic bends in elliptic and circular ducts are

presented.

4.4.L Parabolic bends in elliptic and circular cross-sectioned ducts

Consider the two parabolically curved duct bends shown in Figure 4.5. The centreline

of bend I is defined by the equation

-rmat{x, 1r*o,a a12
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Figure 4.5: Top uiews of two parabolically curaeil il,uct benils

The centreline of bend II is defined by the equation

I o*', -rrnøo(r(ov: | (4.4s)
l-o*', o(ø 1t^o,.

It can be seen from the symmetries involved that one only needs to subdivide bend I

from B to C in order to obtain all of the S(') matrices required. So, considering this

section of duct in particular, a unit outward normal vector to the centreline is

B

n(r): (4.50)

and its radius of curvature is

c(r):G++9112)"/'. (4.51)

\
\
\
\

\
\
\
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Proceeding in an analogous manner to that described in section 4.3, one can choose

¡/ + 1 values for n, ("0 : 0,Ír,... try-1r tN : r^or), such that the duct section is

subdivided into .lü equi-angular segments. The modal scattering matrix of each segment

is approximately calculated by taking the segment to have a constant centreline radius

of.e n, and an angular extent of e. Here, Cn ar'd e satisfy equations of the same form

as equations (4.44), (4.45) and (a.a7), with ú,n being replaced by *n.

In the following calculations, the duct is assumed to have an elliptic cross-section,

with width W in the plane of the duct centreline, height If in a direction normal

to the plane of the duct centreline, and where W and. H are the major and minor

axis dimensions of the ellipse. The submatrices of each S(') matrix can therefore be

calculated in the manner shown in subsection 3.2.1. Expressing all lengths as multiples

of the free-space wavelength ¡, let W : \.6,, H : 1.0, a : 0.2 ar'd t^o, - 5.0,

with the analysis being restricted to -lü-modes which are even about the plane of the

duct centreline. Only 4 modes will propagate within a straight section of the duct

under these conditions. Tables 4.I0=4.L3 show the absolute values of elements of Sf"r""),

Stï"), Slî") .na S{"r") for the section of bend I from B-C as the number of segments

used in the analysis are increased in the manner ¡/ - 20140,60,80. Here, a 744-

term (.[ : J : 12) double series approximation and K2 : 36 modes were used to

calculate each S(") matrix. M : 72 modes were then considered when using the iterative

scattering matrix algorithm to determine S("""). Looking down a given block of numbers

in these tables, one can see the convergence of the corresponding matrix element to its

Iimiting value.

Now let W : 7.2502, H :1.2500, a:0.2 arrd r*o,: 6.0. These values for 17 and

ff define a duct which has essentially a circular cross-section. Again, the analysis is

restricted to .l/-modes which are even about the plane of the duct centreline, and only 4

modes will propagate within a straight section of the duct under these conditions. After
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0.76839E+0
0.769908+0
0.77019E+0
0.770298+0

0.577098+0
0.574968+0
0.574558+0
0.574418+0

0.19045E+0
0.190968+0
0.191058+0
0.19108E+0

0.223608-l
0.226318-r
0.227708-r
0.227358-7

0.208758-2
0.207848-2
0.207658-2
0.207598-2

0.38990E-2
0.38650E-2
0.38638E-2
0.38637E-2

0.539448+0
0.53734E+0
0.536968+0
0.53682E+0

0.52608E+0
0.530748+0
0.531598+0
0.53189E+0

0.593068+0
0.59121E+0
0.59087E+0
0.59075E+0

0.59545E-1
0.59320E-1
0.59278E-1
0.592638-1

0.266528-2
0.269478-2
0.26999E-2
0.270L78-2

0.226038-2
0.224638-2
0.224528-2
0.224508-2

0.431318+0
0.431008+0
0.43094E+0
0.430918+0

0.671698+0
0.66986E+0
0.66953E+0
0.66941E+0

0.67408E+0
0.676388+0
0.67679E+o
0.676938+0

0.13208E+0
0.13060E+0
0.130408+0
0.13034E+0

0.46051E-2
0.45881E-2
0.458528-2
0.458418-2

0.92011E-2
0.911548-2
0.9t0428-2
0.91003E-2

0.742378-r
0.727708-1
0.72535E-1
0.724538-L

0.122578+0
0.118058+0
0.117408+0
0.11719E+0

0.382478+0
0.379958+0
0.379678+0
0.37956E+0

0.96838E+0
0.968908+0
0.968988+0
0.96900E+0

0.39657E-2
0.40015E-2
0.40076E-2
0.40098E-2

0.72578E-1
0.726948-r
0.727ttÐ-l
0.727L68-r

0.57250E-3
0.527L68-3
0.509488-3
0.50509E-3

0.562928-3
0.52715E-3
0.50993E-3
0.505758-3

0.562308-3
0.50925E-3
0.487168-3
0.48081E-3

0.332028-3
0.31741E-3
0.31437E-3
0.313538-3

0.200748-5
0.196568-5
0.19365E-5
0.19391E-5

0.246t48-4
0.23tI28-4
0.227378-4
0.226028-4

0.243298-3
0.23348E-3
0.22668E-3
0.224668-3

0.26867E-3
0.28498E-3
0.283698-3
0.284238-3

0.15108E-2
0.140298-2
0.136938-2
0.135618-2

0.2700L8-2
0.253358-2
0.248738-2
0.2469t8-2

0.108168-4
0.997088-5
0.97483E-5
0.965578-5

0.20657E-3
0.19420E-3
0.19067E-3
0.18928E-3

Table 4.70: Absolute ualues of elements in the top-teft (6 x 6) subrnatrir of Sl"f') ¡o,

bend I from B-C when W :7.6, H :1.0, a:0.2, trnat:5.0, M : 12 and

N :20,40,60,80
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0.39956E-3
0.484658-3
0.712668-3
0.691798-3

0.243658-2
0.299048-2
0.30713E-2
0.306908-2

0.132798-2
0.147898-2
0.148708-2
0.14811tr-2

0.405528-2
0.458708-2
0.455978-2
0.45556tr-2

0.75933E-3
0.761188-3
0.761428-3
0.761518-3

0.56762E-3
0.52955E-3
0.53216E-3
0.53220E-3

0.262408-2
0.322038-2
0.330738-2
0.330478-2

0.82881E-3
0.11281E-2
0.110908-2
0.tt4738-2

0.68449E-2
0.68760E-2
0.68815E-2
0.68518E-2

0.367828-2
0.382868-2
0.368098-2
0.365018-2

0.501718-2
0.50274E=2
0.502268-2
0.502338-2

0.567748-2
0.564488-2
0.56436E-2
0.564458-2

0.t79268-2
0.19965E-2
0.200748-2
0.199948-2

0.857948-2
0.861908-2
0.862628-2
0.8589lE-2

0.69691E-2
0.742708-2
0.705258-2
0.707678-2

0.224358-l
0.23090E-1
0.230448-1
0.230228-l

0.870658-3
0.87042E-3
0.870228-3
0.870198-3

0.39979E-2
0.4023t8-2
0.40t978-2
0.40198E-2

0.I47248-I
0.16655E-1
0.165568-1
0.165408-1

0.12400E-1
0.12907E-1
0.124098-1
0.123058-1

0.60350E-1
0.621108-1
0.619858-1
0.619258-1

0.866198-2
0.82148E-2
0.828338-2
0.830488-2

0.472988-2
0.472058-2
0.472438-2
0.472558-2

0.726628-1
0.727588-r
0.727648-1
0.727668-r

0.169038-2
0.t6944E=2
0.16950E-2
0.t69528-2

0.10369E-1
0.103788-1
0.10381E-1
0.103828-1

0.14358E-2
0.14355E-2
0.743528-2
0.143518-2

0.28996E-2
0.28939E-2
0.289628-2
0.289698-2

0.11648E-3
0.116838-3
0.11692E-3
0.11696E-3

0.599798-4
0.59503E-4
0.594928-4
0.59487E-4

0.768278-3
0.71655E-3
0.720028-3
0.720038-3

0.713988-2
0.709798-2
0.709608-2
0.70969E-2

0.407t78-2
0.403678-2
0.403328-2
0.403328-2

0.271078-r
0.27t428-l
0.271448-1
0.271448-I

0.36499E-4
0.36211E-4
0.362058-4
0.362028-4

0.2337L8-2
0.233508-2
0.233468-2
0.233428-2

Table 4.L!: Absolute ualues of elements in the top-Ieft (6 x 6) submatrix o¡ SrPi") ¡or

bend I from B-C wh,en W :7.6, H :1.0, a :0.2, tntar :5.0, M :72 and

N :20,40,60,80.
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0.768398+0
0.76990E+0
0.770188+o
0.770288+0

0.50086E+o
0.49891E+0
0.49855E+0
0.498438+0

0.319538+0
0.31929E+0
0.319258+0
0.31923E+0

0.204448-l
0.20040E-1
0.19975E-1
0.199528-1

0.257188-3
0.2368lE-3
0.22887E-3
0.226908-3

0.17960E-3
0.17236E-3
0.16734E-3
0.165848-3

0.62154E+0
0.61925E+0
0.618828+0
0.618678+0

0.52608E+0
0.53074E+0
0.53159E+0
0.53189E+0

0.53593E+0
0.534488+0
0.53421E+0
0.53411E+o

0.36355E-1
0.350158-1
0.348228-l
0.34758E-1

0.272368-3
0.25505E-3
0.246728-3
0.244708-3

0.213618-3
0.22658E-3
0.22555E-3
0.22598E-3

0.25708E+0
0.257768+0
0.257898+0
0.25793E+0

0.74329E+0
0.740978+0
0.74054E+0
0.740398+0

0.67408E+0
0.676388+0
0.67679E+0
0.676938+0

0.14218E+0
0.t4r248+0
0.14114E+0
0.14110E+0

0.340978-3
0.308818-3
0.295418-3
0.29156E-3

0.150548-2
0.13979E-2
0.13644Ð-2
0.t35L28-2

0.81194E-1
0.821798-1
0.824648-l
0.82558E-1

0.20075E+0
0.199998+0
0.19985E+0
0.199808+0

0.355308+0
0.351338+0
0.35080E+0
0.350628+0

0.96838E+o
0.968908+0
0.96898E+0
0.96900E+0

0.54160E-3
0.5L7778-3
0.512818-3
0.51143E-3

0.723748-2
0.67911E-2
0.666718-2
0.661848-2

0.464688-2
0.462658-2
0.46224Ð-2
0.462098-2

0.550848-2
0.556948-2
0.55802E-2
0.55839E-2

0.759428-2
0.75662E-2
0.756L48-2
0.755978-2

0.243L28-2
0.2453L8-2
0.245698-2
0.245828-2

0.20075E-5
0.19657E-5
0.193668-5
0.193928-5

0.t77738-4
0.16384E-4
0.16019E-4
0.15867E-4

0.20655E-3
0.194198-3
0.19065E-3
0.189268-3

0.528128-2
0.523448-2
0.523248-2
0.5232t8-2

0.284778-2
0.282348-2
0.282168-2
0.282Lr8-2

0.923428-2
0.91481E-2
0.91369E-2
0.91330E-2

0.270758-7
0.271188-1
0.27L248-l
0.271268-l

0.t49788-4
0.14063E-4
0.138358-4
0.137538-4

Table 4.I2: Absolute ualues of elements in the top-left (6 x 6) submatrix o¡ S\f") ¡or

bend I from B-C when W : I.6, H : 7.0, a : 0.2, rrnar : 5.0, M : !2 and,

I[ : 20,40,60,80.
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0.361298-2
0.393238-2
0.38921E-2
0.38894E-2

0.39317E-2
0.371748-2
0.38819E-2
0.38411E-2

0.292708-2
0.277368-2
0.275708-2
0.275298-2

0.46301E-2
0.485858-2
0.48951E-2
0.49087D-2

0.853938-5
0.587198-5
0.532528-5
0.51597E-5

0.2975t8-4
0.285748-4
0.279508-4
0.276658-4

0.423468-2
0.400378-2
0.41808E-2
0.41369E-2

0.453478-2
0.431368-2
0.43916E-2
0.438478-2

0.374258-2
0.397538-2
0.4209L8-2
0.418918-2

0.83435E-2
0.851828-2
0.851378-2
0.85t278-2

0.494278-3
0.45878E-3
0.443308-3
0.43947E-3

0.68573E-3
0.645088-3
0.626248-3
0.619258-3

0.395158-2
0.374488-2
0.377468-2
0.37t738-2

0.46910E-2
0.498328-2
0.527648-2
0.525158-2

0.389048-2
0.420298-2
0.421888-2
0.422858-2

0.177618-1
0.186728-1
0.18509E-1
0.184728-1

0.58658E-5
0.878478-5
0.93927E-5
0.959348-5

0.821658-4
0.836148-4
0.8t7248-4
0.811558-4

0.16812E-1
0.176408-1
0.777738-L
0.t78228-t

0.281298-1
0.287178-1
0.28701E-1
0.28698E-1

0.477768-l
0.502258-1
0.49785E-1
0.496868-1

0.267508-1
0.266388- 1

0.266278-r
0.26625E=L

0.50576E-3
0.48008E-3
0.474658-3
0.472788-3

0.777978-2
0.73065E-2
0.717268-2
0.712008-2

0.190098-4
0.13071E-4
0.11855E-4
0.11486E-4

0.10216E-2
0.94821E-3
0.91622E-3
0.90831E-3

0.967258-5
0.14485E-4
0.15488E-4
0.15819E-4

0.31005E-3
0.294318-3
0.290988-3
0.28983E-3

0.724848-5
0.11168E-5
0.106338-5
0.10452E-5

0.68319E-6
0.63814E-6
0.60536E-6
0.59433E-6

0.403018-4
0.387048-4
0.378588-4
0.374708-4

0.86249E-3
0.81136E-3
0.787678-3
0.77887E-3

0.82451E-4
0.839048-4
0.82006E-4
0.814358-4

0.290238-2
0.272588-2
0.267598-2
0.265638-2

0.415768-6
0.38834E-6
0.36839E-6
0.36168E-6

0.25881E-4
0.228308-4
0.220128-4
02t692E=4

Table 4.73: Absolute ualues of elements in the top-Ieft (6 x 6) submatrir of Sl'f') ¡or

bend I from B-C when W :7.6, H :7.0, a:0.2, trnao :5.0, M :72 and,

N :20,,40,60,80.
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subdividing the section of bend I from B to C into I/ : 80 segments, each S(') matrix

was calculated using a 144-term (I : J : t2) double series approximation and I( :36
modes. These S(") matrices \l/ere then appropriately ordered in cascades so that bends

I and II were each modelled by 160 uniformly curved segments. When modelling bend

II, an 5('n')(zr') matrix (subsect. 3.3.4) was also inserted at two points in the cascad.e.

Its location rù¡as such that it would operate on the modal coefficient vectors at points

B and C on the bend - the one at point B being used to simulate the 7 : rr bend,

and the one at point C being used to reorientate Õ to its original sense. In terms of

the formulation presented in subsections 2.3.1- and 3.2.1, the elements of the matrix H

which were used to evaluate this 5("r')(n') matrix are

H*n : 2 ['** [" ó^(Ë,rùó*G,n - ,t)g26,,rù d€ dn, @.52)J ¿=o J n-o

where ó^(e,7) is the rnúä dominant eigenfunction. Having formed the scattering matrix

cascades used to model ducts I and II, M : 12 modes rvr/ere then considered when using

the iterative scattering matrix algorithm to determine S(""") for each cascade.

Due to their symmetrical form, bends I and II will transmit and reflect modes in

an identical manner from either end. Hence, Sfî") - S5î") : 1'("o") and Sl"r"") -
SÍï') - ¡¡(c"s). Tables 4.74-4.77 show the absolute values of elements in the top-left

(6 x 6) submatrices of T("o") and p.(cøc) for bends I and II. Looking at the elements in

Tables 4.L4 and 4.15, one can see that modes incident upon bend I generate virtually

no reflected modes, and remain largely uncoupled after transmission through the duct.

Thus, even though the centreline curvature becomes quite large (C : 2.5 at point

B), because this curvature varies in a smooth manner, bend I has quite good modal

transmission characteristics. In contrast, the elements in Tables 4.16 and 4.17 show that

modes incident upon bend II generate reflected modes of larger amplitude, and become

coupled to a greater extent upon transmission through the bend. For example, one can

see from the elements in the first column of Table 4.16 that if a wave comprised only

of the dominant plane-wave mode is incident upon bend II, then the transmitted wave
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0.996E+00

0.944E-01

0.323E-01

0.368E-03

0.1278-03

0.2698-06

0.8338-01

0.9778+00

0.2278+00

0.9288-02

0.882E-03

0.1848-05

0.203E-01

0,1628+00

0.981E+00

0.198E-01

0.3828-02

0.7738-05

0.7978-04

0.2278-02

0.6818-02

0.100E+01

0.2668-04

0.5378-07

0.487E-04

0.3828-03

0.233E-02

0.470E-04

0.907E-05

0.1848-07

0.2478-06

0.191E-05

0.1138-04

0.228E-06

0.439E-07

0.890E-10

Table 4.14: Absolute ualues of elements in the top-left (6 x 6) submatrir of TG"') for

bend I when W : 1.2502, H : 1.2500, a -- 0.2, tmas : 6.0, M : 72 anil I[ : 160.

0.606E-04

0.72t8-04

0.1068-03

0.316E-03

0.739E-06

0.1248-08

0.6378-04

0.2238-03

0.952E-03

0.5758-02

0.2378-04

0.152E-06

0.6688-04

0.677E-03

0.164E-03

0.5778-03

0.389E-02

0.7898-05

0.6848-04

0.L4tE-02

0.199E-03

0.1688-02

0.5978-06

0.1348-08

0.2838-06

0.103E-04

0.237E=02

0.106E-05

0.196E-04

0.7478-04

0.1148-08

0.1578-06

0.1158-04

0.5668-08

0.179E-03

0.177E-05

Table 4.75: Absolute ua,lues of elements in th,e top-Ieft (6 x 6) submatrir of RG"") for

bend I whenW:7.2502, H:1,.2500, a:0.2, rmaa:6.0, M:12 anil I/:160.
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0.923E-01

0.915E+00

0.609E+00

0.284E+00

0.2358-02

0.4678-05

0.8088+00

0.194E+00

0.5398+00

0.2478+00

0.210E-02

0.428E-05

0.383E+00

0.384E+00

0.745E+00

0.1188+00

0.2918-02

0.593E-05

0.616E-01

0.607E-01

0.408E-01

0.9798+00

0.1588-03

0.313E-06

0.900E-03

0.912E-03

0.t77E-02

0.279E-03

0.692E-05

0.1418-07

0.428E-05

0.445E-05

0.8658-05

0.133E-05

0.3388-07

0.689E-10

Table 4.76: Absolute ualues of elements in the top-left (6 x 6) submo,trir of Tk"") for
bend II uhen W : 7.2502, H : 1.2500, a : 0.2, rrnar : 6.0, M : 72 and, l[ : 162.

0.164E-01

0.102E-01

0.4928-02

0.857E-01

0.1988-04

0.4088-07

0.9028-02

0.4268-02

0.9968-02

0.755E-01

0.595E-04

0.2238-06

0.309E-02

0.7098-02

0.112E-01

0.3828-01

0.390E-02

0.7828-05

0.186E-01

0.185E-01

0.132E-01

0.1288-01

0.5108-04

0.1028-06

0.7588-05

0.258E-04

0.238E-02

0.9018-04

0.195E-04

0.747tr-04

0.3748-07

0.2328-06

0.114E-04

0.4308-06

0.1798-03

0.177E-05

Table 4.I7: Absolute ualues of elements in the top-Ieft (6 x 6) submatrin of RG"") for

bend II whenW:7.2502, H:1.2500, a:0.2, rmac:6.0, M:12 and N:\62.
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will contain only a small component of this mode, and will be comprised predominantly

of the second mode. These effects are due to the "sign change" discontinuity in the

centreline curvature of bend II at point B.

A further description of the mode coupling effects referred to above can be given

with the aid of Figures 4.6 and 4.7. In these figures, the real part of the acoustic

potential Q is plotted as it varies along the centreline of bends I and II. A plane-r4¡ave

was taken to be incident at end A of each bend by setting ú : [10. . .0], and both

bends were anechoically terminated at end C. Õ was determined throughout the bends

in the manner described in subsection 3.3.3. Looking at Figure 4.6, one can see that the

\ ¡ave propagating through bend I maintains its unimodal characteristics. The decrease

in amplitude observed in the vicinity of point B is due to the fact that O is biased

radially outwards in this region of high curvature (as would occur to the dominant

mode if the bend was uniformly curved). The matrix elements in the first column

of Table 4.14 confirm the observation that the wave returns to what is essentially its

original form at end C of bend I. Now looking at Figure 4.7, one can see clearly the

effects of higher order mode generation at junction B in bend II. From A to B, lÞ results

from the superposition of the incident wave and a wave reflected from the junction at

B. The elements in the first column of Table 4.17 suggest that the reflected wave is

comprised mainly of the fourth mode. This observation is consistent with Figure 4.7 as

the straight duct propagation constant associated with that mode has a value of 1.36,

therefore yielding the wavelength of 2117.36:4.62 seen superposed onto the incident

'wave. From B to C, Q results from a forward propagating v/ave which has, according

to the elements in the first column of Table 4.16, a predominantly higher order mode

content. A physical explanation of why these higher order modes are excited can be

given if one considers the radial biasing of modes in the vicinity of junction B. As

noted in Chapter 2, the dominant mode in a uniformly curved bend will be biased away

from the centre of curvature of the bend, with this bias being progressively reversed
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Figure 4.6: PIot of Re{@} along the centreline of bend I from end A to end C. A plane wave is incident

at end A, and the bend is anechoically terminated at end C.
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Figure 4.7: Plot of Re[aJ along the centreline of bend llfrom end A to end C. A plane wave is inc¡dent

at end A, and the bend is anechoically termìnated at end C.
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for the higher order modes. Hence, to the left of junction B, the incident wave (which

will behave like the dominant mode in a uniformly curved bend) will be biased in the

-y direction. To the right of junction B, the dominant mode will be biased in the *y
direction, with only the higher order modes being biased more towards the -y direction.

Hence, as the acoustic field must be continuous when crossing junction B, there will be

a tendancy for higher order modes to be excited as the incident wave is transmitted

through the junction. It is believed that the excitation of higher order modes in this

manner is a general characteristic associated with "S-bends", and forms the basis behind

the design of the ventilation duct attenuation unit presented in Appendix B.

Upon finishing this section, it should be made clear that in general, one may not be

able to interpret acoustic \r¡ave propagation within non-uniformly curved duct bends in

the simple manner just presented. For example, modes that propagate within a straight

duct will not necessarily propagate within each uniformly curved segment when near

cut-off. Hence, a mode which is propagating within a non-uniformly curved duct may

suddenly cease to propagate. Also, one cannot strictly refer to the existence of modes

within non-uniformly curved bends in the classical sense due to the non-separable nature

of equation (1.1). However, it is felt that the descriptions presented above are justified

as they enable one to usefully rationalise the complicated acoustic processes which occur

within these bends

4.5 SUMMARY

The task of determining solutions to equations (1.1)-(1.3) within non-uniformly curved

duct bends was initially undertaken by two different methods in this chapter. To reduce

the complexity of the task when presenting these methods, rectangular cross-sectioned

ducts were considered.
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The first of these methods \¡/as presented in section 4.2. This method combined a

generalised coordinate transformation technique with the Galerkin method to yield an

approximate solution in the form of a finite functional series. The method was applied

to the analysis of a spirally curved duct bend, and the solution was shown to converge

as the Galerkin discretisation was refined.

The second method rvr¡as presented in section 4.3. In this method, the duct bend

u¡as geometrically approximated by a series of uniformly curved duct segments. Modal

scattering matrices for each of these segments were then calculated. Finally, the acous-

tic characteristics of the duct bend were obtained from the resulting scattering matrix

cascade via the algorithms presented in section 3.3. The method was applied to the

analysis of the same spirally curved duct bend considered earlier, and the solution was

shown to converge as the number of uniformly curved segments used in the approxima-

tion was increased. A good agreement was noted between the results produced by this

method and those produced by the method presented in section 4.2.

In section 4.4,lhe adaptation of the method presented in section 4.3 to the analysis of

non-uniformly curved bends in ducts of arbitrary cross-section was illustrated. This was

done by using the method to study the propagation of acoustic waves through parabolic

bends in elliptic and circular cross-sectioned ducts. Here, some interesting results were

presented which showed that acoustic waves within non-uniformly curved bends have

quasi-modal characteristics, with most of the mode coupling effects occurring within

the bends being caused by the presence of centreline curvature discontinuities.

The method used in sections 4.3 and 4.4 is highly recommended for the analysis of

non-uniformly curved duct bends in general. This recommendation is made because the

method possesses a number of characteristics which make it well suited to this type of

problem. These characteristics are:
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7. Simplicity and fl,eribili,ty.

o The task of subdividing a bend into a series of uniformly curved segments is

not a difficult one, and leaves one with considerable freedom to use physical

intuition when deciding how the approximation should be implemented. For

example, in the analyses presented, an equi-angular subdivision was chosen

as this would tend to concentrate more segments in regions of high curvature.

o Computer programs which use the method need only be altered in a super-

ficial way when considering a variety of different bend curvatures. One need

not be concerned with how the alterations will affect the workings of a coor-

dinate transformation, or the suitability of basis functions, etc., whose details

may be deeply embedded in the structure of the program code.

2. Efficiency.

o By subdividing the bend into a series of uniformly curved segments, good

use is made of a natural reduction in the dimensionality of the problem. As

a result, the solution is obtained from a series of two-dimensional analyses.

o As each segment can be analysed individuall¡ and because of the iterative

nature of the algorithms used in the calculations, the method can be imple-

mented without making excessive demands on computer memory.

3. Others

o The nature of the method allows it to be directly incorporated into a general

program (based upon the theory presented in Chapters 2 and 3) for analysing

multi-bend ducting systems which contain both uniformly and non-uniformly

curved bends.

o The method enables one to utilise some of the convenient aspects of classical

modal wave propagation theory within non-uniformly curved bends. For
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example, suppose one wishes to determine how long it would take a given

mode to "propagate" through a non-uniformly curved bend. As the mode has

an angular and temporal coordinate dependence of the form exp[i (u"0 - ut)]

within the nth segment, a propagation time through this segment will be

Tn - enunfu, where e' is the angular extent of the segment. The required

propagation time is therefore obtained by summing the f" {" - 1,... ¡f}.

113



CHAPTER 5

o

CONCLUSION

5.1 REVIE\M OF THESIS

In Chapter 1, the principal aim of this thesis was stated as being "to develop numer-

ical methods for accurately determining the acoustic characteristics of curved ducting

systems in a computationally efficient manner". A literature survey showed that the

major portion of previous research in this area \,\¡as directed towards the analysis of

single bends in rectangular cross-sectioned ducts. In most of these cases, the bends

vrere assumed to have uniform curvature. Analyses of single, uniformly curved bends in

circular cross-sectioned ducts rvvere also cited. However, the few more general analyses of

the single bend problem were characterised by the use of asymptotic and perturbation

methods, which produced solutions under conditions which are too restrictive for many

engineering applications. The only analyses of multi-bend ducting systems cited dealt

with rectangular cross-sectioned ducts which contained bends of uniform curvature.

The characteristics of acoustic waves within straight and uniformly curved ducts

were studied in Chapter 2. Here it was shown that a general expression for the acoustic

potential takes the form of a superposition of exponentially modulated modes. Ana-

lytic expressions for the modes and modulation parameters (in general, the eigenval-

ues and eigenfunctions of equations (2.3)-(2.5) and (2.9)-(2.11)) within rectangular

cross-sectioned ducts 'fi¡ere presented. A numerical solution procedure based upon the

Rayleigh-Ritz method was then proposed so that these modes and modulation param-

114



eters could be determined within ducts of more general cross-section. In a series of

illustrative examples, elliptic cross-sectioned ducts were considered, and the character-

istics of the modes and modulation parameters within these ducts were discussed. These

characteristics were seen to be similar to those in rectangular cross-sectioned ducts. A

general observation which was made was that curved duct modes can be approximately

considered to be radially biased versions of straight duct modes. This bias was noted

to be away from the centre of curvature of the bend for propagating modes, and to-

wards the centre of curvature of the bend for evanescent (non-propagating) modes. The

degree of bias \¡/as seen to be greater the further a mode was from cut-off, and was

enhanced by an increase in duct curvature. From these observations, it was concluded

that sound propagating within curved ducts has an affinity for the outer wall of the

duct - especially at high frequencies and within strongly curved ducts.

The scattering of modes within multi-bend ducting systems was considered in Chap-

ter 3. The chapter began with the presentation of a general method for calculating

modal transmission and reflection matrices for a single, uniformly curved bend. The

method utilised the numerical solution procedure of Chapter 2, and in an example, a

90o bend in an elliptic cross-sectioned duct was considered. In the results presented,

the matrix elements were shown to converge as the discretisation used in the numeri-

cal solution procedure rfi/as refined. Modal scattering matrices for sections of straight

and uniformly curved duct were then defined in terms of the modal transmission and

reflection matrices for these sections. For a straight duct section, the modal scattering

matrix was found to be a diagonal matrix, which applied an appropriate phase shift

to modes propagating through it. For a uniformly curved duct section, the required

modal transmission and reflection matrices could be calculated by the general method

just presented. Having introduced the concept of a modal scattering matrix, it was then

proposed that a multi-bend ducting system should be analysed by subdividing it into a

series of purely straight and uniformly curved sections, calculating a modal scattering
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matrix for each section, and then considering the system to be a cascade of modal scat-

terers. Algorithms for calculating the modal scattering matrix of such a cascade were

presented, together with a method for determining the acoustic potential within any

duct section. Finally, the effects of out-of-plane and serpentine bends upon scattered

modes rvr/ere accounted for. Hence, in Chapter 3, the necessary methods were developed

for analysing a wide variety of uniformly curved, multi-bend ducting systems.

In Chapter 4, two methods were initially proposed for the analysis of non-uniformly

curved duct bends. For simplicity, the methods were introduced via analyses of rect-

angular cross-sectioned ducts. In the first method, a classic approach to the problem

was taken. This approach involved the use of a coordinate transformation to map the

interior region of the bend onto that of a straight duct section. The resulting simplifica-

tion of the problem's boundary conditions then enabled a solution to be obtained in the

form of a finite functional series via the Galerkin method. The method was successfully

used to determine modal transmission and reflection matrices for a spirally curved duct

bend. In the second method, the duct bend u/as geometrically approximated by a series

of uniformly curved duct segments. This enabled the bend to be interpreted as being a

"multi-bend ducting system" of the type considered in Chapter 3. Hence, the algorithms

presented in that chapter could be used to determine the acoustic characteristics of the

bend. The method was used to analyse the same spirally curved duct bend considered

earlier, and a good agreement between the results produced by the two methods was

noted. In a final application, the second method was used to study the propagation of

acoustic waves through parabolic bends in elliptic and circular cross-sectioned ducts. By

comparing a bend whose curvature became large, but varied in a smooth manner, with

an "S-bend", whose curvature was the same except for a sign change discontinuity, it

was shown that centreline curvature discontinuities are a major cause of mode coupling

effects within curved ducting systems. The second method was highly recommended for

the analysis of non-uniformly curved bends in general because it possessed a number
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of characteristics which made it well suited for such problems. These characteristics

included the method's simplicity, flexibility and efficiency.

5.2 ,A.CHIE\/EMENTS OF THESIS

The research conducted in this thesis has resulted in the development of a series of

numerical methods which, when combined, enable one to accurately and efficiently de-

termine the acoustic characteristics of any configuration of straight and curved duct

sections likely to be encountered in an engineering situation. A number of the methods

presented in this thesis have not been previously used in the field of curved duct acous-

tics. Also, in many of the illustrative examples, solutions are presented to problems

which have not been previously considered in the literature. The following list presents

the main achievements of this thesis, highlighting the original aspects of the work.

1. A general numerical procedure for determining the acoustic characteristics of uni-

formly curved duct bends lvas presented in Chapters 2 and 3. The procedure is

based upon the Rayleigh-Ritz method, and has not been previously used. In Chap-

ter 2, the procedure enabled the acoustic modes within the straight and uniformly

curved sections of a duct to be expressed as series expansions using a chosen set

of basis functions. Determining the modes in this form then enabled general ex-

pressions for the modal transmission and reflection matrices of a single duct bend

to be derived in Chapter 3. In a series of examples, the procedure was used to

analyse uniformly curved bends in elliptic cross-sectioned ducts. Such bends have

not been previously considered in the literature. From the examination of mode

contour plots, a number of important original observations rvr¡ere made about the

"radial biasing" of modes within curved ducts. The research described here has

been presented in the recent publication [41].
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2. In Chapter 3, a series of numerical algorithms were presented for determining the

acoustic characteristics of multi-bend ducting systems. In the approach adopted,

the multi-bend ducting system was considered to be a cascade of modal scatterers.

A similar approach has been previously used with great success by researchers

for analysing electromagnetic waveguiding systems which contain stepped (and

tapered) filters and horns 142-44]. However, an adaptation of this approach to the

analysis of curved ducting systems has not been previously accomplished. The

significance of this achievement is better appreciated when one considers that

problems such as the determination of Õ throughout the ducting system and the

treatment of out-of-plane and serpentine bends have been successfully dealt with.

The details of the above approach to the analysis of curved ducting systems have

been presented in the recent publication [a5].

3. In section 4.2, an original method was presented for determining the acoustic

characteristics of non-uniformly curved bends in rectangular cross-sectioned ducts.

The principal advantage of the method is that, by means of a generalised coor-

dinate transformation, it can be used to analyse any continuously curved bend.

The acoustic potential within the bend is obtained as a functional series via the

Galerkin method. Hence, the method does not require that the bend be geomet-

rically subdivided. In an example, the method was used to determine the modal

scattering matrix for a spirally curved bend. Such bends have not been previously

considered in the literature. The details of this method have been presented in

the recent publication [46].

4. In sections 4.3 and 4.4, a powerful method for analysing non-uniformly curved

duct bends was presented. The method requires that the bend be geometrically

subdivided into a series of uniformly curved segments. This has the effect of reduc-

ing the difficult non-uniformly curved duct bend problem to a simpler, uniformly

curved, multi-bend problem. The idea of geometrically subdividing non-uniformly
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curved duct bends in this manner is not original. For example, Bahar [24] proposed

a semi-analytic analysis in which the segments were assumed to be of differential

angular extent. However, the idea has not been previously amalgamated with

a theory of the type presented in Chapter 3, and it is suggested that the idea

is best utilised when used in this context. The validity of the method was first

checked by using it to analyse the same spirally curved duct bend considered in

section 4.2, arrd comparing results. The method was then used to determine the

acoustic characteristics of parabolic bends in elliptic and circular cross-sectioned

ducts. It should be noted that there has not been any previous presentation of

numerical results for this class of problem (i.e. a non-uniformly curved bend in a

non-rectangular cross-sectioned duct). The results presented show that acoustic

rvl¡aves within non-uniformly curved duct bends have quasi-modal characteristics,

with higher order mode coupling effects being mainly caused by duct bend cur-

vature discontinuities. The research described above has been presented in the

recent publications [45, 47].

5.3 SUGGESTIONS FOR FUTURE RESEARCH

In the following list, a number of suggestions for future research are made. Some of

these suggestions deal with alternative applications of the methods presented in this

thesis. Other suggestions outline alterations which could be made to these methods

so that they may be used to solve a broader class of problems. In all cases, the basic

principles behind the methods remain as they were presented in this thesis. Hence, the

work presented in this thesis can be considered to form the basis of a quite general

approach to duct acoustics problems.
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1. It was mentioned in item 2 of the list in section 5.2 that the scattering cascade

approach adopted in this thesis has been used in a similar context by researchers

to study the propagation of electromagnetic r¡vaves through sections of tapered

waveguide. Various duct termination problems have also been considered by these

researchers [48, 49]. Hence, by combining the techniques used in those analyses

with the methods presented in this thesis, one would be able to formulate a nu-

merical procedure for determining the acoustic characteristics of ducting systems

which are terminated in a variety of ways, and contain both curved and tapered

sections.

2. As shown in section 4.2, the single duct bend problem can be more readily solved

by conventional techniques if one uses an appropriate coordinate transformation to

map the interior region of the bend onto that of a section of straight duct. However,

although the transformation has the effect of simplifying the problem's boundary

conditions, the form of equation (1.1) will be altered in the process. Physically,

the modified form of equation (1.1) can be interpreted as describing the acoustic

potential within a section of straight duct which is filled with an inhomogeneous

fluid (as effectively done by Heiblum and Harris [50] when studying uniformly

curved, optical waveguide bends). Hence, every homogeneously filled, curved duct

problem can be considered to be equivalent to a corresponding inhomogeneously

filled, straight duct problem. Now, in sections 4.3 and 4.4,, a very good method

for solving the homogeneously fiIled, curved duct problem was presented. As

a result, a procedure which is opposite to that normally practised is proposed.

That is, researchers studying the propagation of acoustic rv\¡aves within certain

inhomogeneously filled ducts should obtain their solutions from an equivalent,

homogeneously filled, curved duct problem. An area of research where this type

of approach may be benefi,cial is in the field of underwater acoustics.
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3. In Chapter 2, a numerical solution procedure \¡v'as presented for determining the

acoustic modes within straight and uniformly curved ducts. The procedure utilised

a variational formulation of the problem, and was based upon the Rayleigh-Ritz

method. When using the procedure to determine the modes within elliptic cross-

sectioned ducts, a coordinate transformation was used to map the duct cross-

section onto a rectangular region. This gave one greater flexibility when choosing

the set of basis functions to be used in the procedure. Such an approach is

important as the choice of basis functions hu,. u, great effect upon the success of the

Rayleigh-Ritz method. For ducts having a complicated cross-sectional geometry

(for which a suitable coordinate transformation mapping does not exist), problems

will be encountered as it is likely that one will not be able to choose a good set

of basis functions. For such cases, it is suggested that the numerical solution

procedure be modified to incorporate the principles of the Finite Element method

[32, 51]. This modification should not be too difficult as the Finite Element

method is a natural extension of the Rayleigh-Ritz method.

4. Another point worth discussing is the possibility of modifying the numerical solu-

tion procedure presented in Chapter 2, so that duct bends whose walls are locally

reacting can be analysed. Theoretically, it is not difficult to make the required

modifications. Assuming that the duct walls have a specific acoustic admittance

(, the required modes will determine the stationary values of the functional

J@þÐ : í.)çç¡ - or I rjþ2 dt,, (b.1)
I

where I@(rþ) is as defined in equation(2.24). Applying the Rayleigh-Ritz method

will yield an algebraic eigenvalue equation, the eigenvalues and eigenvectors no\¡/

being complex in general. The extension seems to be fairly routine, however

there is a drawback, namely a greater difficulty in the choice of suitable basis

functions. One possibility is to map the cross-section of the duct onto a rectangular

region, and then choose basis functions so that the approximate eigenfunctions
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take the form of complex Fourier series. An alternative means of determining the

modes within an acoustically lined bend is via the Boundary Element method [52].

This method is worth investigating as it has the advantages that it reduces the

dimensionality of the problem, and can be readily adapted to complicated duct

wall geometries.

5. A problem which poses a significant challenge to the ingenuity of future researchers

is the development of numerical methods for determining the acoustic character-

istics of curved ducting systems which contain a mean fluid flow. The principal

difficulties associated with this problem are related to the determination and de-

scription of a suitable fluid flow field. Perhaps a simple, one-dimensional flow field

could be assumed within each duct segment? The effects of the fluid flow could

then be incorporated into the existing formulation by modifying each mode's as-

sociated propagation constant (and therefore the segment's modal scattering ma-

trix). Some previous research which is relevant to this problem appears in the

references [53-59].
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APPENDIX A

The following is a derivation of the gradient and Laplacian operators for the natural

coordinates presented in subsection 4.2.L.

Let M(0) : (R' + R'")-i .Then consider the equations

æ : Rcos(9) + eM [Äcos(d) *.,8'sin(á)] (4.1)

and

u : Rsin(d) + €M [Rsin(d) - .R'cos(d)] , (A.2)

which define the coordinate transformation (*,y) -- (t,0). Differentiating equations

(4.1) and (4.2) and grouping terms with a common factor of cos(d) or sin(d) yields

# :A cos(d) -r B sin(e),

æ:-Bcos(á)*Asin(á), (A.3)

where

A : MR, B:MR,,

c : tM,R + (1 + 2tM)R, ,

D : (t+ ËM)R- (M',R', - eMR". (A.4)

Now,theelementsof themetrictensor g4 {i,j:L,,2} canbecalculatedasfollows(see

[60], Chapter 6). Firstly

9tt

B2

#:Ccos(o)-Dsin(e),

# :D cos(d) * c sin(d),

: (*)'.(#)'
: At+

1
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Also

Finally

e,z:ez, : (#) (H). (#) (H)
: AC-BD

: tM IMR,(R + R,) + M,(R, + Ã")]

0.

9zz

{*}'

{, 1,
g"

9zz

2

(A.6)

(A.7)

(A.s)

(A.10)

+

: C'+ D2.

But as ¡z ¡ B2: 1 and AC - BD :0, so

R(R + R")
Rz+R2

Çtt 9zz

The fact that gp : gzt : 0 indicates that the coordinates ({, d) are orthogonal. This

simplifies general expressions for the gradient and Laplacian of a function Q of these

coordinates to

Ve: #,æ".##" (Ae)

and

V2(Þ : 1

&ff'^ä) . #(,[ -+,#)]

0r
a0

0v
ae

+ Rz+R2
n

say

Therefore, as 9rr:1 and gzz: g'(€,0), equations (4.10) and (4.11) are obtained
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APPENDIX B

In this appendix, the numerical methods presented in the thesis are used to determine

the modal transmission characteristics of the "S-bend" in a proposed ventilation duct

attenuation unit. A view showing details of the attenuation unit is given in Figure 8.1,

where the duct is assumed to have a rectangular cross-section, and when unlined, to be

perfectly rigid. Figure 8.1 shows that the attenuation unit is comprised of three basic

Pre-bend

lined attenuator

L\

S-bend

W

Post-bend

lined attenuator

R2

0

0

L2

Figure 8.1: Details of the attenuation unit.

components: a pre-bend lined attenuator, an S-bend, and a post-bend lined attenuator.

A short description of how these components combine to attenuate incident duct noise

can be given as follows. Firstly, the pre-bend lined attenuator ensures that only plane

waves will be incident upon the S-bend. For frequencies such tlnat kW > zr (where k

is the wavenumber and W lhe duct width), the S-bend then acts as a mode converter

and transfers a significant proportion of the energy in the plane rvr¡aves to higher order

R7
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ttcross-modes". Finally, these cross-modes are rapidly attenuated by the post-bend lined

attenuator. Hence, the effectiveness of the attenuation unit is based upon the fact that

cross-modes are more rapidly attenuated by duct liners than plane \Maves. The net result

is a more efficient utilisation of the duct liner.

From the description given, one can see that the attenuation unit is designed to work

most efficiently in the wavenumber range kW > zr. In terms of the acoustic frequency /,
this range is equivalently specified by the inequality / > u IQW). Hence, if.W :250mm

and u :340ms-1, one obtains the frequency range for efficient attenuation: -f > 680H z.

\Mhen considering wider ducts, the units can be mounted in parallel, as shown in Figure

8.2. Note that in Figure B.2, the units are môunted in a manner which does not reduce

the cross-sectional area of the duct.

tl

Bend A

Bend B

Bend C

tL

Figure 8.2: An attenuation unit for wider ducts.

The fact that S-bends actually do act as mode converters is now illustrated by means

of the following numerical calculations. In these calculations, plane v/aves are assumed.

to be incident upon bends A, B and C in FigureB.2. Comparing Figures 8.1 and 8.2,
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one can see that if all lengths are expressed as multiples of the duct width lrtr¡, then

for bend A: lR1 : 3 and R2 : 1; for bend B: ,R1 : R2: 2; and for bend C: RL : 1

and R2 : 3; where 0 : arctan(3f 4) for all bends. Following an analysis similar to

that presented in sections 4.3 and 4.4, the modal scattering matrix of each circularly

curved section in the S-bends is calculated using a 25-term approximation in the method

presented by Tam [16]. .{t¡ 5("r')(zr-) matrix is then located in positions two and four

of the four segment cascade used to model each S-bend. The elements of the matrix H

used to evaluate the S(@er)(zr) matrix are

H^n: "*"* I,::: "o, [(=r#i4Ð]"""1@aul-wf 0,,, (8.1)

where the normalisation constants are

c.flr h m:L

{# m :2,3, '

(8.2)

(8.3)

Hence,

(-1)"*t n'L: Tl,

Hrnn:
0 mfn.

Finally, M : L2 modes are considered when using the iterative scattering matrix algo-

rithm to determine the modal scattering matrix S("o"), of each S-bend. The elements in

the first column of S{"fa give the relative complex amplitudes of the required transmit-

ted modes.

Using a presentation which is similar to that of Shepherd and Cabelli [38], Figures

8.3-8.5 show plots of lsÍî")(-,r)l {- :7,2,3} vs. lcW for bends A-C respectively.

In these plots, lSÍï")(-,1)l is referred to as the Amplitude Transmission Coefficient

(A.T.C.) of the r¿¿ä mode. Also, the vertical dashed lines are at kW : T,2T,3zr; where

IcW : zr specifies the cut-on frequency for the first cross-mode (* : 2), kW : 2r

specifies the cut-on frequency for the second cross-mode (m - 3), and so on. One can

see from the plots that in all three bends, the A.T.C.'s of the cross-modes dominate in

the wavenumber range kW > r.
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Figure 8.3: P/ofs of the A.T.C. lor m = 1,2,3 modes; bend A
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Figure 8.4: Plots of the A.T.C. for m = 1,2,3 tnodes; bend B.
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A further illustration of the mode converting characteristics of bends A-C is obtained

by examining the Energy Transmission Coefficient (E.T.C.) of each transmitted mode.

Following Shepherd and Cabelli ([38], sect. 3.2), the E.T.C. of the rnúh transmitted

mode is defined to be

lptl' m :1

; (ry) ø^l' m :2,J,.. .

where þ,nt is as defined in equation (2.28), and p* is the complex amplitude of the cor-

respondin1pressure mode. It follows from equations (1.5) and (2.21) that the E.T.C. of

a mode specifies the relative proportion of the total mean transmitted power associated

with that mode. Figures 8.6-8.8 show E.T.C. vs. kW plots of transmitted modes for

bends A-C. In these plots, it is assumed that

Pm: sf"f")1rn, t) (8.5)

That is, 5(ca") is interpreted as specifying the scattering of pressure modes from the S-

bend. This interpretation is valid as the acoustic pressure satisfies equations (1.1) and

(1.2). Hence, the data presented in Figures 8.6-8.8 can be directly compared with the

results produced by experimental procedures such as the one presented in reference [88],

where measurements of the pressure modes are made. An examination of the plots in

Figures 8.6-8.8 shows that in the wavenumber range kW > zr, most of the transmitted

porffer is carried by the cross-modes.

(8.4)
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Figure 8.6: P/ofs of the E.T.C. for m = 7,2,3 modes; bend A.
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Figure 8.7: Plots of the E.T-C. for m = 1,2,3 modes; bend B.
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