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Abstract

Feedforward active control of harmonic vibratory power transmission in simple structures
is investigated theoretically and experimentally. The structures investigated are a beam, a
plate and a cylinder. Primary excitation is used to represent unwanted noise or vibration.
Secondary excitation is introduced using control sources which are adjusted to minimize
acceleration or power transmission in the structures. The primary and secondary excitation
is produced by either electromagnetic force actuators (shakers) or piezoelectric ceramics.

The theoretical predictions are compared to the experimental test results. In addition,
vibratory intensity distributions before and after control are investigated.

Both the theoretical and experimental results demonstrate that it is possible to minimize
vibratory power transmission in the test simple structures using a maximum of three control
sources in the test frequency range. The study also indicates that, in most cases, the
harmonic vibratory power transmission in simple structures can be measured by using a

maximum of two accelerometers in the test frequency range.
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Chapter 1

Overview

1.1 Introduction

In this thesis, the feed-forward active control of power transmission in simple structures (a
beam, plate and cylinder) is studied both experimentally and theoretically. Prior work has
included a direct comparison of theoretical results and experimental data for active control
of power transmission in a beam; however, to the author’s knowledge, there has been little
consideration of the active control of power transmission in a plate or a cylinder. Also
very little previous work has been carried out on the measurement of vibratory intensity in
simple structures. This earlier work was limited to a beam and plate, and required complex
measurement methods. For example, two (in the far field of a source) or four (in the near
field of a source) accelerometers were required for measuring vibratory intensity in a beam,
and four (in the far field of a source) or eight (in the near field of a source) accelerometers
were required for a plate. The earlier work did not extend to measurement of vibratory
intensity in a cylinder.

The primary purpose of the work in this thesis is to evaluate the constraints associated
with actively reducing power transmission in simple structures. A secondary purpose is
to develop a practical means for the measurement of intensity in simple structures. The
evaluation includes investigation of the use of single or multiple control sources with two
alternative cost functions: vibration acceleration amplitude at the error sensor or power

transmission passing the error sensor. Methods for the measurement of vibratory intensity in



a beam, plate and cylinder are also investigated. This includes assessment of the possibility
of simplifying the measurement of intensity by using a maximum of two accelerometers for
simple structures. As the simple structures may be very large, the results of this work could

be applied to suppressing hull vibration of ships and submarines.

1.2 Literature review

1.2.1 Analysis of vibration in simple structures

The equation of motion for a thin beam is used by many authors, such as Cremer et al.
(1973), Graff (1975) and Fahy (1985). A general solution for the equation of motion given
by the above authors, consists of incident and reflected wave terms for both near and far
fields. As this solution can be applied easily for active vibration control in a thin beam with
a wide array of geometries and boundary conditions, this solution is used in this thesis.

The basics of free vibration in a plate were discussed by Leissa (1969), Graff (1975),
Fahy (1985) and others. Leissa (1969) prepared comprehensive summaries of the analysis of
free vibration to that time. Leissa’s work presents results for the free vibration frequencies
and mode shapes with a wide array of geometries and boundary conditions. Therefore,
the solutions to the equation of motion shown by Leissa (1969) are developed for active
vibration control predictions in this thesis.

Fliigge (1973) described the three dimensional equations of motion for the vibration
of a cylindrical shell. Leissa (1973) carried out a numerical analysis which showed that
similar results were obtained by the use of Fligge's equations, and the equations of various
authors including Forsberg (1964, 1966). Subsequently Fliigge has been recognized as the
pre-eminent author in this field. However, little experimental work has been carried out to
test the validity of Fliigge's equations in practical active vibration control applications. In
particular, it should be noted that Fligge's model includes a simplifying assumption which
does not take into account the linear inertia of the cylinder, and the assumption can cause
inaccurate results. Thus, Fliigge's model could not be used directly for the active control
applications addressed in this thesis. It was necessary to develop a more fundamental

approach to the model, taking account of cylinder linear inertia. The extension of Fligge's



equations with the linear inertia terms included, is considered in this current thesis.

1.2.2 Active control
Feedback control methods

Most early active control theory considered modal feedback control of large structures.
Meirovitch et al. (1983 and 1986) and Venkatraman et al. (1990) reviewed various modal
feedback control techniques for large flexible systems and demonstrated the advantage of
independent modal space control (IMSC) where a coordinate transformation is used to
decouple a complicated system into a set of independent second order systems in terms of
modal coordinates. However, the IMSC has a disadvantage which requires one controller
for each mode. The IMSC may result in undesirable modes called control spillover when
the number of control sources is less than the number of modes. Baz and Poh (1987)
developed a modification of the IMSC termed MIMSC which minimizes control spillover.

In 1986 von Flotow presented another feedback control solution based on a wave control
concept, in which structural vibration is described in terms of waves traveling in various
directions. In this case vibration attenuation required control of the propagation of these
waves by minimizing the wave amplitude. In this present thesis, the traveling wave concept
is used for the numerical analysis in simple structures, however feed-forward rather than
feed-back control is used.

Feedback control methods like those discussed above are suited to the control of vi-
bration in very large structures with many structural members and in situations where it is
difficult to obtain a suitable reference signal (Young, 1995). In feedback systems, design
of the control system is dependent on the physical systém (control source and error sensor
configuration). In feed-forward control systems, the design of the physical system may
be separated from the design of the electronic controller. In recent years, much research
has been concerned with feed-forward control. The subject of this thesis is the physical
system design needed for the feed-forward active control of harmonic power transmission in
simple structures. When the excitation is harmonic, it is usually feasible to obtain a useful
reference signal which makes feed-forward control the preferred option. It should be noted

that the results relating to the performance of the control actuators are also relevant to



feedback control systems.

Actuators for active control

Noiseux (1970) used electro-magnetic shakers as actuators in the his experimental work on
active control. Although electro-magnetic shakers are useful tools in experimental work,
their usefulness in practical applications is limited by their size and mass.

Alternative actuators are piezoelectric actuators which can be small and light. Crawley
and de Luis (1987) presented an analytical and experimental investigation of piezoelectric
actuators as vibration sources. Clark et al. (1991) made tests on a beam excited by pairs
of piezoelectric actuators bonded to each of two opposite surfaces. They modeled the
actuator pair as a pair of counteracting moments.

Dimitriadis et al. (1991) made a two-dimensional extension of Crawley and de Luis’
work, applying pairs of laminated piezoelectric actuators to a plate. They demonstrated that
the location and shape of the actuator pairs dramatically affected the vibration response
of the plate. However, Kim and Jones (1991) indicated that Dimitriadis et al. (1991)
made a simplifying assumption for zero bonding layer thickness (i.e. perfect bonding). Kim
and Jones (1991) then developed expressions relating the applied moment to piezoelectric
driving voltage in a plate including bonding layer thickness. They concluded that, in some
cases, comparisons between their study and the investigation of Dimitriadis et al. (1991)
showed noticeable discrepancies. Therefore, it is suggested to take into account the bonding
layer thickness.

Lester and Lefebvre (1993) demonstrated a three-dimensional extension of the work
of Dimitriadis et al. (1991). They performed two models: firstly a pair of piezoelectric
actuators acted on the cylinder through line moments along the each edge of the actuator,
secondly a pair of piezoelectric actuators acted on the cylinder through in-plane forces along
each edge of the actuator.

Many other authors (Fansen and Chen, 1986; Baz and Poh, 1988, 1990) have used
piezoelectric actuators in active vibration control experiments. Clearly there is a need for
a vibration actuator that can be used in practical situations, where the large reaction mass
of an electro-magnetic shaker is unsuitable (Rivory, 1992). The laminated piezoelectric

actuator pair has become the popular alternative, but this type of actuator pair is fragile



and is not capable of generating great amounts of force (Young, 1995). Also it is difficult
to ensure that each element in each actuator pair produces the same force. To the author’s
knowledge, no research has been performed considering the conditions under which the
piezoelectric actuator pair can be considered as a point force. However, this is investigated

in this thesis (Chapter 6).

Error sensors for active control

Young (1995) investigated active control of flexural vibration in a beam using a control
source which consisted of a piezoceramic actuator placed between a stiffener flange and
the beam surface. Young (1995) concluded that for a beam the use of a second error sensor
gave no overall improvement in acceleration attenuation. In particular, it was claimed that,
with the use of a second error sensor, it may not be possible to improve the relatively poor
attenuation when the first error sensor was located at a standing wave node. However, it
should be noted that Young (1995) considered only the minimization of the sum of the
displacement at each error sensor. However, minimization of the sum of the mean squared
displacement at each error sensor is the preferred method and it is the normal method in
noise control applications. In the current thesis, the preferred minimization method is used

to evaluate the maximum achievable attenuation for introducing a second error sensor in a

beam (Chapter 3).

Feed-forward active control of acceleration and power transmission in a

beam

Mace (1987) demonstrated theoretically the active control of harmonic flexural vibration in
a beam by using the modulus squared of acceleration as the cost function. He discussed
the excitation and control of vibration from two types of actuators: point force and point
moment. Mace treated the point force and point moment as discontinuities in the shear
force and bending moment in the beam, with resulting discontinuities in the displacement
solution for the beam equation, at the point of application of the force or moment. This
method is followed in the current thesis for the control of vibration in a beam (Chapter 2).

In Mace's work, there is no mention of the effect of various parameters, including control



source location, error sensor location, beam termination type and frequency, on the level of
attenuation of vibration. However, these parameters are discussed in this thesis (Chapter 2
and 3).

Gonidou (1988), Fuller and Gonidou (1988), and Fuller et al. (1990) investigated feed-
forward active control of harmonic flexural power transmission in a beam resulting from a
point force input. They demonstrated that power transmission can be attenuated with a
small number of control sources. In all three cases, the cost function used was the flexural
power transmission at the error sensor. The results presented by Fuller and Gonidou (1988)
demonstrated that when the error sensor measuring power transmission is located in the far
field, the bending near field contributions are negligible. However, no detailed discussion of
near field effects was included and there was no comparison of power transmission control
and acceleration control.

Pan and Hansen (1990) gave an expression for the power transmission resulting from an
arbitrarily distributed point excitation force and an arbitrarily distributed point control force,
which was chosen to minimize the power transmission in a beam. They demonstrated that
when controlling power transmission, it does not matter whether the power transmission
sensor is located in the near field or in the far field of the primary or control sources, but
they made no mention of acceleration as a cost function and they made no comparison of
power transmission control and acceleration control.

On reviewing previous work on the active control of beam vibration, it is apparent that
both beam acceleration (Mace, 1987) and power transmission (Fuller et al. 1988, 1990;
Pan and Hansen, 1990) have been used by other authors as cost functions for control. Use
of either cost function has advantages and disadvantages in terms of transducer design and
power transmission observability which have not been discussed elsewhere but which are

addressed in the current thesis (Chapter 2).

Feed-forward active control of acceleration and power transmission in a

plate

Dimitriadis et al. (1991) solved the two dimensional plate displacement equation in their
study of control of harmonic flexural vibration in a plate. They showed that the location of

the control actuators and the excitation frequency are important factors in the effectiveness



of the control achieved. They did not investigate in any depth the dependency of control
effectiveness on control actuator location, error sensor location and frequency. In the current
thesis, the dependency of reduction of power transmission on control actuator location, error
sensor location and frequency are investigated in detail (Chapter 4).

Fuller (1990) and Metcalf et al. (1992) made an experimental and theoretical investiga-
tion of active feed-forward active control of sound transmission and radiation from a plate
using point control sources. Although active noise control and active vibration control have
much in common, the purpose of this thesis is to investigate control of power transmission,
not control of radiated sound.

To this author's knowledge, examining the control of power transmission along a large
plate has not been studied by earlier authors. In this thesis, this topic is investigated in
detail (Chapter 4 and 6). This approach is one step along the path towards the development

of active systems to control vibration transmission in large structures.

Feed-forward active control of acceleration and power transmission in a

cylinder

Recently, attention has been given to the feed-forward active control of noise in a cylinder
which represents an aircraft fuselage. However, the research is mainly directed at reducing
the noise radiated from a cylindrical shell or transmitted through it rather than reducing
vibratory power transmission along it. In 1987 Fuller and Jones presented an experimental
investigation on the control of interior noise in a cylinder using a single point vibration
control source to reduce noise transmission. Jones and Fuller (1989) extended this work
to include more control sources. They showed that significant reduction can be achieved
for harmonic excitation. Elliott et al. (1989) demonstrated successful experiments on the
control of the noise field in a cabin of an aircraft, by using acoustic rather than vibration
control sources.

Young (1995) investigated feed-forward active control of acceleration in a cylinder using
piezoelectric stack actuators and an angle stiffener at a circumference of the cylinder. He
demonstrated the piezoelectric stack actuators can be used as control sources to significantly
reduce vibration in a cylinder. He discussed the effects of excitation frequency, number of

control sources, control source location and error sensor location on the attenuation of



acceleration. He indicated these effects may be considered to establish trends that can be
significant when taking the next step in practical implementation. Young's work considered
only the control of individual wave (flexural, extensional or torsional) acceleration and did
not consider total power transmission caused by coupling of the three wave types.
Feed-forward active control of power transmission in a pipe t.e. a cylinder with small
diameter, has been the subject of increasing attention in recent years. Fuller and Brevart
(1995) demonstrated the active control of vibratory power transmission in a pipe by using
point control sources to minimize the acceleration of the shell around its circumference
at several axial locations. However, they considered mainly the low frequency range (well
below the ring frequency) where, based on earlier work by Pinnington and Briscoe (1994),
the pipe behaves as a beam. Their method may be difficult to apply to a cylinder with a
large diameter and over a wide frequency range. To this author’s knowledge, there has been
little consideration of active control of power transmission in a cylinder with a relatively
large diameter to thickness ratio. Hence in the present thesis, feed-forward active control
of power transmission in a cylinder including a wide range of diameters and a wide range
of applied frequencies is considered (Chapter 7 and 8). This cylinder represents a very

approximate model of either a large aircraft or a submarine.

1.2.3 Measurement of vibratory intensity in simple structures

Measurement of vibratory intensity (vibratory power transmission per unit width of cross
section) has attracted more and more attention in recent years. Noiseux (1970) carried out
the first definitive work on intensity measurement in a beam and a plate.

A landmark paper on intensity in a beam and a plate was written by Pavic (1976). He
discussed methods for the measurement of intensity by using accelerometers and showed
that by using finite difference approximations, all derivatives relating to intensity can be
calculated. He used two (in the far field of a source) or four (in the near field of a source)
accelerometers to measure intensity in a beam, and eight accelerometers (in both far and
near fields of a source) to measure intensity in a plate. However in a large plate, it Is very
complicated in practice to use eight accelerometers per measurement point. Pavic’s work

did not extend to the measurement of intensity in a cylinder.



Much of the recent work on structural intensity (Pavic 1986, Carniel et al. 1985,
Rasmussen 1985 and Williams 1988) has been based on Pavic's 1976 paper. Hirata et
al. (1990) have developed Pavic's technique and presented the method of measurement
of plate intensity by using four accelerometers in the far field of a source. However, eight
accelerometers were still required in the near field of a source. Wagstaff et al. (1995)
suggested that it would be possible to use only two accelerometers to measure intensity in
a finite plate. Some experimental work was carried out, however no numerical analysis was
completed and, hence his results were not verified. The current thesis has carried out the
numerical analysis and experimental work for simplifying the measurement of intensity by
using a maximum of two accelerometers for simple structures (a beam, plate and cylinder).

Work has also been carried out by Taylor (1990a) to quantify the errors associated
with intensity measurement discussed in earlier studies. He concluded that, for most cases,
the limitation of intensity measurement in the near field of a vibration source is the phase
tolerance of accelerometer pairs. The work by Taylor (1990a) and others indicates that
obtaining reliable structural intensity measurement is very difficult in the near field, and
still somewhat difficult in the far field. In many practical cases, a knowledge of power
transmission in the far field is more important.

Structural intensity may be considered in terms of a vector. The directions of the vectors
(at many measurement points) may vary over the surface of a structure and in some cases
may indicate energy circulation. The existence of intensity vortices on a simply supported
plate was first reported by Tanaka et al. (1993). They found that the path of power
transmission is a combination of linear transmission and rotation, the latter being induced
by the interference of two modes producing a "vortex generating block”. A qualitative
formula for predicting the number of power transmission vortices, as well as the geometric
arrangement, was put forward. It was concluded that it is straightforward to produce a
power transmission vortex on a vibrating simply supported plate, and this could have a
practical application to control the path of power transmission in large systems. However,
there is no discussion in other work of power transmission vortices in a semi-infinite plate,

and this is addressed in this thesis (Chapter 5).
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i;3 New work

The following work is presented in this thesis:

1. Study of the active control of vibratory power transmission in simple structures (a
beam, plate and cylinder). This demonstrated that significant power transmission

reduction can be obtained by using single or/and multiple control sources.

2. Investigation of the effect of error sensor location and cost function type in actively
controlled simple structures. This demonstrated that it is possible to use far field
acceleration as the cost function to achieve satisfactory control of power transmission

to a remote measurement location.

3. Demonstration that for simple structures, in most cases, vibratory intensity can be

measured by using a maximum of two accelerometers.

4. Discussion of the effect of end conditions on the active control of beam vibration. This
demonstrated that the end conditions of finite and infinite beams can be described
in terms of impedances, and that the behavior of infinite beams can be simulated by

choosing impedance values which produce no reflections.

5. Confirmation of the existence of intensity vortices on a semi-infinite plate under
primary excitation, and discussion of the relationship between vortices and power
transmission. This demonstrated that the addition of control actuators, driven to

minimize power transmission, largely eliminates the vortices.

6. Investigation of the effect of a piezoelectric actuator pair versus a point force exci-
tation of a beam and a plate. This demonstrated the conditions under which the

piezoelectric actuator pair can be approximated as a point force excitation.



Chapter 2

Minimizing the forced response and
vibratory power transmission in an

infinite beam

2.1 Introduction

This chapter is concerned with a theoretical analysis of the physical system for the control
of power transmission in an infinite thin beam using a single control force and a single error
sensor. Physical system conditions which may be varied include error sensor type, as defined
below, error sensor location and control force location. The simplest error sensor type uses
a single accelerometer, in which case acceleration amplitude is used as the error sensor cost
function. An alternative error sensor type uses two accelerometers (Pavic, 1976) in which
case power transmission is used as the error sensor cost function. Among other things, the
analysis in this chapter determines, for minimization of power transmission passing the error
sensor, under what conditions it is acceptable to use a simple measurement of acceleration

amplitude, rather than power transmission at the error sensor.

11



2.2 Theory

2.2.1 Minimizing acceleration

The coordinate system for an infinitely long (i.e. without reflective boundaries) aluminum
thin beam of width 50 mm and depth 25 mm is shown in Figure 2.1. The point forces are
always in the z, y plane and act in the z direction. A primary point force of magnitude
F, and zero relative phase acts on the z =0 plane. At any particular frequency, using the
control force required to minimize a flexural wave displacement amplitude is equivalent to
minimize acceleration. The results of the following analysis are non-dimensional and apply

to a thin beam with any cross-section.

o Fe
, A
A
&
) 0 P X { )
Xo Xe Xe

Figure 2.1: Beam model.

The displacement amplitude of an infinite beam (in the z direction) at location z is

defined by Junger (1972) and Pan and Hansen (1990), as

w(z) = W(Fpﬂp + I.8.), (2.1)

where the factors 3, and 3. are defined as
B = —(jerbemmnel 4 e bilemndl), 22)

of which the first term is a propagating wave component and the second term is a non-

propagating (or near field which will be defined in Section 2.3.1) component. [, is the

primary force located at z,, [%. is a control force located at z..
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The control force which minimizes the displacement at z. is obtained from equa-

tion (2.1) by requiring w(z.) to be zero: i.e.

p
F, = ~F,,Bf. (2.3)
The ratio of controlled to uncontrolled displacement amplitude downstream of the con-
trol force is
(Fp8, + F.B.) ‘ F.f:(z)
= [P T =l 4+ —+=|- 2.4
‘ 150y FypBy() (24)
By substituting equation (2.3) into this, one obtains
ﬂp(l‘e)ﬂc(x)
R=|1 —-———————7%|. 2.5
B(z.)B () (2:5)

The B, and f. factors can then be replaced by their definitions and the limit as z approaches

infinity is taken so that the expression for the reduction in far field residual vibration is

|1 — e~krlzes)(1-3)|

Ji, B = ket ¢ 1)

(2.6)

From the equation it is clear that the reduction in far field acceleration level depends on
the separation between the control force and the primary force as well as the separation
between control force and the error sensor (at which acceleration is minimized). If the
distance between the primary and control force is large compared with a wavelength, that
is, if k;(z. — x,) > 1, the numerator of equation (2.6) approaches unity. If, in addition
the distance between the error sensor and the control force is large compared with a wave-
length, thatis, if ks(z. — zc) > 1, the final expression for the downstream residual vibration
becomes

lim R~ e Fs(@em=e), (2.7)

r—00

2.2.2 Minimizing power transmission

Power transmission associated with flexural vibration can be thought of as having two
components. The first is associated with the product of the internal shear force and trans-
verse velocity, and the second is associated with the product of the bending moment about
the neutral axis and rotational velocity. This instantaneous harmonic power transmission

P(z,t) can be written as

P(z,t) = —Re[Q(z,t)|Re[w(z, t)] — Re[M(z,1)] Re[0(z,1)]. - - (2.8)
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To simplify future notation we will set w = w(z,t) and w = wW(z), and we will use similar
equivalents for Q, M and 0. By adopting the approach of Skudrzyk (1965) and Fahy (1989),

the active (or time averaged) harmonic power transmission becomes

P, = -—%Re[@‘[b + M+9), (2.9)

and the amplitude of the harmonic reactive power is
1 — 5 o
P.(z) = ——z—lm[Q*w + M0}, (2.10)

where each variable on the right-hand side of equations (2.9) and (2.10) is a complex
amplitude, constant in time for any given location z. Conservation of energy requires that
the active power transmission is independent of location x along the beam, but the reactive
power remains a function of x. To simplify future expressions, we use the terms “power
transmission” for active harmonic power transmission and “reactive power fluctuation” for
reactive harmonic power in most cases.

For simple harmonic excitation, the flexural displacement w(z, ) in the right-hand far

field of the control force is proportional to ed(@Wi=ks7)  This gives w = jww, and = —ng—:.
Simplifying equation (2.9), by using Graff's approach,
— *w — *w
Q = —Elyy%— and M = _EIny—m_?_’ (211)
produces
P, = El kjw|w|*. (2.12)

By replacing w with R in equation (2.12) and substituting equation (2.7) into (2.12), it can
be shown that the power transmission reduction is proportional to %kf(me —z.) dB.
The expression for power transmission in the left-hand far field of the primary force is the
same except that the sign (i.e. direction of power transmission) is changed. This propor-
tionality of power transmission and displacement magnitude squared implies that controlling
power transmission produces the same result as obtained by controlling acceleration. How-
ever, in the near field, the expression for the displacement contains a near field term and, so
power transmission cannot be represented as I, |w|?. Thus, if the error sensor is placed
in a force near field, controlling acceleration produces different results from those obtained

by controlling power transmission. This will be discussed in more detail (Section 2.3.2).
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Pan and Hansen (1990) have shown that the complex power, defined in a similar way
to the complex intensity defined by Fahy (1989) and resulting from a single generalized

primary excitation force and single generalized control force acting on an infinite beam is
P(z) = P, + jP.(z) = [F}aplF. + bl pF. + Fb2p + cg], (2.13)

where ag, blg, b2p and cg are complex numbers depending on the location of the primary
and control forces. The value of the control force required to minimize the active power
transmission for both near field (defined below in Section 2.3.1) and for far field conditions

is (Pan and Hansen, 1990)

1
(b1 + B25). .
Fo= =5 por (bl + 025) (2.14)

Substituting expressions for ag, blg and b2 (Pan and Hansen, 1990) into equation (2.14)

gives the following simple result for the control force:
F. = —F e ik1(@e==s), (2.15)

This shows that the control force has the same amplitude as the primary force and has
a relative phase which depends only on the separation between the primary and control
force. In equation (2.13), assuming F. = 0, the uncontrolled power transmission (cp) can
be simplified as
w
Pp=F——nuwr—.
P16ET, k3

The ratio of controlled to uncontrolled power transmission on the left side of the primary

(2.16)

force (z < z,) under optimally controlled conditions is

PaL

P = 2(cos(2ks(z. — zp)) — 1); (2.17)
the corresponding power transmission ratio between the primary and control force (z, <
T < z)lis

P
P“R = 2sin(ks(z, — a:p))e_kf(zc_r”); (2.18)

the power transmission ratio is zero to the right of the control force (z. < z).

In the ideal case where equations (2.17) and (2.18) are zero,

A
mc—mp:nlzn—f. (2.19)

kg 2
Therefore, power transmission upstream of the control force is zero if the distance between

control and primary forces is an integer multiple of half of the flexural wavelength.



16

2.3 Numerical results

For the results presented in this chapter, the applied frequency is at 1000 Hz and the flexural
wave length is Ay = 0.4823 m. The primary force is z, = 0 m. These values are adhered
to unless otherwise stated. The dB reference level in the following figures of this chapter
is the far field uncontrolled acceleration (or power transmission, as appropriate) produced

by the primary force.

2.3.1 Comparison of acceleration and power transmission con-

trol
Definition of the near field

The near field of an isolated vibration force is the region near the force in which the amplitude
of the reactive power fluctuation is not negligible. As shown in Figure 2.2, the boundary
between near and far fields is arbitrarily taken to be the point at which the amplitude of the
reactive power fluctuation is 20 dB less than the corresponding active power transmission.
The dB reference level in this and subsequent figures is the far field uncontrolled acceleration
(or power transmission, as appropriate) produced by the primary force. The radius of the
near field is then z/); = 0.73; that is, points further than 0.73 from the primary force are
considered to be in the far field. It should be noted that the transition from near to far

field is gradual and a definite location is chosen only for convenience.

Comparison of control forces

From equation (2.15) the control force which minimizes power transmission is clearly differ-
ent from the control force required to minimize acceleration (equation (2.3)). However, the
numerical example in Figure 2.3 shows that if the error sensor is placed in the far field of
the primary and control excitation forces, the control force I, required to minimize power
transmission is the same as that required to minimize acceleration. The resulting distribu-
tion of power transmission and acceleration along the beam are also the same. However,
if the error sensor is in the near field of the control force, the two control forces required

in each case are different. In the case of acceleration control, the magnitude of the control
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Figure 2.2: Amplitude of the reactive power. At the primary force the active power
transmission is equal to the amplitude of the reactive field. The near field is considered
to end where the amplitude of the reactive power amplitude is 20 dB less than the
active power. (a) Active power transmission at the primary force; (b) Amplitude of

the reactive power fluctuation at the primary force.

force has a maximum value of about 1.014 at (z. — z.)/A; = 0.64 and then decreases
rapidly to approximately 1/+/2 as the control force approaches the error sensor. When the
error sensor is in the near field of the control force, the vibration level it measures is a result
of both the active power transmission and reactive power fluctuation, and minimization of
acceleration level minimizes the sum of the two instead of just the active power transmis-
sion. For control of power transmission, the magnitude of the optimum control force is
the same as the primary force magnitude and the optimum relative phase is proportional

to the separation between the control and primary forces, as may be deduced by inspection

of equation (2.15).
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Figure 2.3: Comparison of control forces required to minimize power transmission
and to minimize acceleration, for z./Ay = 4.0. (a) Amplitude of control force; (b)
Phase between the control force and the primary force. #—s¢—s¢—¢minimized power

transmission; o—+ —c—-— minimized acceleration.

2.3.2 Effect of error sensor and control force location
Power transmission

An example of power transmission distribution along a beam for optimally controlled power
transmission and also for optimally controlled acceleration is shown in Figure 2.4. As re-
quired by simple conservation of energy, the active power transmission is piecewise constant
with discontinuities at the two vibration forces.

Figure 2.5 shows the active power transmission at three distinct observation points on
the beam as a function of the separation z. between the control and primary forces. The
observation points are in the left far field of the primary force, half way between the forces,
and on the right of the error sensor and data for both acceleration and power transmis-
sion control are included. Acceleration control and power transmission control produce
different power transmissions upstream of the primary force only if the error sensor is in
the near field of the control force ((z. —z.)/A; < 0.73) . For (z.— z,)/A; < 2.0 or
(ve —xc)/Af > 2.0, the active power transmission between the primary and control forces

is essentially independent of whether the cost function determined by the error sensor is
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Figure 2.4: The distribution of (a) active power transmission and (b) reactive power
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power transmission at the error sensor; o—- —o—- —o minimized acceleration at the error
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power transmission or acceleration level. For (z.— z,)/A; > 2.0 or (z, —z.)/As < 2.0
power transmission control continues to reduce power transmission as (z. — 1) increases
according to equation (2.18), but for acceleration control, the effect of error sensor prox-
imity is to reverse the trend and so increase the power transmission as (z, — z,) increases
and exceeds (z, — z.). The residual power transmission downstream of the control force
is shown for acceleration control as a solid line. This is clearly an exponentially increasing
function of the form Ke(*—=<). However, if the error sensor is not in the near field of the
control force (i.e. (z. — z.)/A; < 0.73), more than 40 dB of attenuation is achieved. The
downstream residual power produced by optimal power transmission control is zero and, so
is not shown in the figure. It is shown in Figure 2.5 that proximity of the control force to
the error sensor affects the acceleration control case but not the power transmission control
case. For a sensor located in the near field of the control force, acceleration amplitude
level is a much poorer choice of cost function than power transmission for achieving power
transmission control on the downstream side of the control force and, also for reducing
power transmission between the control force and primary force. As has been indicated

in Section 2.3.1, minimization of acceleration level does not minimize the active power
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Figure 2.5: Active power transmission at three points on the beam as a function of
distance between the error sensor and the control force (z. — z.)/ Ay, with z. /Ay = 4.0.
e = — upstream of the primary force and == = == = between the primary and
control forces with active power transmission as the control cost function; =eesscesscess
upstream of the primary force, ==« ===« between the primary and control forces and
e dOWTIStream of error sensor, with acceleration amplitude as the control cost

function.
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It can also be seen from Figure 2.5 that there are preferred spacings between the primary
and control forces which minimize power transmission on the primary force side of the
control force. These spacings are at half wavelength intervals as shown in equation (2.19).
The extreme sensitivity of these minima to control force location implies that it would not
be possible in practice to locate a control force with sufficient precision to achieve the level

of control shown.

Acceleration

The acceleration distribution along the beam may be calculated from equation (2.1) for
both the controlled condition where the control force is given by equation (2.3) and the
uncontrolled condition. In the example shown in Figure 2.6(a), the error sensor is placed in
the far field of the control force and the control force is also in the far field of the primary
force. Clearly the (constant) residual acceleration level on the right of the error sensor (z.)

is very much smaller than the uncontrolled level.

For this particular case, the reduction in vibration level is about 110 dB. It is not greater
than this due to a very slight near field effect. This is similar to the results shown by Young
(1995). It would not be feasible to achieve this reduction with a practical control system in
which the control amount is dependent on a controller. Nevertheless, the calculation does
indicate the possible maximum theoretical reduction. Between the control force location
and the error sensor, the vibration level decreases exponentially from the uncontrolled level
to the residual level. As required in the analysis, the vibration amplitude at the error sensor
(ze/A; =4.0) is zero (—oo dB). When the control force is placed in the near field of the
primary force, the resulting reduction in vibration level downstream of the error sensor s
slightly greater, as expected by inspection of equation (2.6).

In the example shown in Figure 2.6(b), the error sensor is in near field of the control
force ((z. — z.)/A; = 0.1). The residual acceleration level on the right of the error sensor
is only 9 dB lower than the uncontrolled level. This is much larger than that shown in
Figure 2.6(a) and indicates the importance of placing a vibration error sensor in the far field
of the control force if the acceleration downstream of the error sensor is to be controlled

adequately.
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Between the primary and control forces there is a standing wave pattern in both figures.
As the applied forces represent structural discontinuities with finite rather than infinite
or zero impedance, the primary and control forces appear at neither the nodes nor the
anti-nodes of these standing wave patterns.

Acceleration distributions along the beam for optimally controlled acceleration and for
optimally controlled power transmission are shown in Figure 2.7. Figure 2.7(a) shows the
case for the control force located in the near field of the primary force, with the error
sensor in the far field of the control force. Clearly, there is no difference in using power
transmission control and acceleration control for this case. Figure 2.7(b) shows the case for
the control force in the far field of the primary force and the error sensor in the far field of
the control force. Note the standing wave set-up between the control force and the primary
force. However, the attenuation downstream of the control force is identical to that shown
in Figure 2.7(b). Figure 2.7(c) shows the case in which the error sensor is on the border
of the control force near field: it is indicated that the near field is beginning to affect the
performance of acceleration control case, as shown by the increase in acceleration level
downstream of the error sensor. In Figure 2.7(d), where the error sensor is clearly in the
near field of the control force, this effect is even more pronounced, with the performance

of acceleration control being very poor indeed.

As expected, the beam accelerations resulting from power transmission control and ac-
celeration control are the same when the error sensor is in the far field of the control force.
In the far field, upstream of the primary force and downstream of the error sensor, accel-
eration level is constant. Both types of cost function result in poor control of acceleration
level between the primary force and control force. In-fact, acceleration levels generally
increase in this region for all control force locations. Between the control force and error
sensor locations, the acceleration level decreases exponentially from the uncontrolled level
to the residual level. Figure 2.8 shows the acceleration level in the far field, upstream of
the primary force and far downstream of the error sensor. The figure includes data for
both acceleration and power transmission control. Acceleration control and power trans-
mission control produce different acceleration levels upstream of the primary force only if
the error sensor is in the near field of the control force; thus the two curves overlap, except

at high values of z./);. Acceleration upstream of the primary force is zero if the control
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and primary force separation is an integer multiple of the half flexural wavelength. A nu-
merical analysis shows that the minima occur at control and primary force separations of
(d 4 nX;/2) where d is a constant dependent on frequency and termination type and n is
an integer (Young, 1995). The residual acceleration downstream of the control force (solid
line) is clearly an exponentially increasing function of the form Kel#e=ze) . The residual
acceleration for power transmission control is not shown because it is zero. For a sensor
located in the near field of the control force, acceleration amplitude level is also a poorer
cost function than power transmission for achieving acceleration control on the downstream
side of the control force, as power transmission control is unaffected by the proximity of

the control force and error sensor.

2.4 Comparison of theory with experiment

The results from experiment and from the analysis of Section 2.2.1 in which acceleration
level was minimized at the error sensor location, are compared in Figure 2.9. The excitation
frequency was 980 Hz and the beam cross-section dimensions were 50 x 25(mm)? in both
cases, giving a flexural wavelength A; = 0.4872 m. In Figure 2.9(a), the error sensor is in
the far field of the control force. It is clear from the standing wave shown in the measured
data that the anechoic termination used for the experimental work was imperfect and
produced a weak standing wave. If this is ignored (as in the theory an anechoic termination
is assumed), then the figure shows good agreement between theory and experiment. Of
course, the minimum calculated acceleration level is a little lower than that which could be
measured, due to the difficulty involved in adjusting the control force phase and magnitude
with sufficient accuracy and because of the background noise level. The result of placing
the error sensor in the near field of the control force is shown in Figure 2.9(b). The primary
and control force locations and forcing frequency are the same as for Figure 2.9(a). In this
case, the agreement between the theory and experiment is very good and better than when
the error sensor is in the far field. This is due to limitations in the controller capability.
Better control is achieved with the error sensor in the far field of the control force than

in its near field, because acceleration rather than power transmission was used as the cost
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function.

2.5 Summary

It has been shown that when active control is used to minimize power transmission along
an infinite beam, minimization of acceleration and minimization of power transmission give
identical results provided the point of minimization, i.e. the error sensor, is in the far field of
the primary and control forces. However, when the point of minimization is in the near field
of the primary and control forces, a control method which minimizes acceleration produces
very poor results, whereas a control method which minimize power transmission is not
degraded by near field effects. This is because near field reactive power fluctuations affect
the ability of an acceleration error sensor to properly observe the propagating part of power
transmission. Minimization of the acceleration does not minimize the power transmission.
This must be taken into consideration in the design of an active control system.

The relative proximity of the control force to the primary force is not important when
considering the reduction of power transmission downstream from the control force. How-
ever, the reduction of power transmission upstream of the control force is affected signifi-
cantly by the relative locations of the two forces, with a separation of an integer multiple

of half of a flexural wavelength corresponding to a total reduction in power transmission.



Chapter 3

Minimizing the forced response of a

finite beam

3.1 Introduction

In practice, most beams are of finite length and are associated with various boundary
conditions. This chapter describes a theoretical investigation of the effect of the boundary
conditions on the controllability of the beam acceleration amplitude using a single control
force and a single error sensor. The primary purpose of the analysis is to compare the
controllability of a finite beam having various boundary conditions, with the controllability
of semi-infinite and infinite beams.

The distribution of the beam acceleration amplitude can be explained in terms of propa-
gating flexural waves. The nature of waves in a beam is determined by its geometry, material
properties and boundary conditions. For an infinite beam (as described in Chapter 2), the
acceleration amplitude distribution may be modeled by considering a single wave traveling
in one direction and having no reflection from the boundaries. However, for a finite beam,
the acceleration amplitude distribution may be modeled by considering two waves traveling
in opposite directions with reflection from the boundaries. [n this chapter, the boundary
conditions of the beams are arbitrary and described in terms of a force impedance and a
moment impedance. The boundary impedance concept is introduced in Appendix A where

all the possible boundary conditions have been described in terms of a coupled force and
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moment impedance matrix.

3.2 Theory

3.2.1 Minimizing acceleration

In the following analysis, a primary point force, a control point force and an error sensor
are shown in Figure 3.1(b). The cost function to be minimized is acceleration amplitude at
the location of the error sensor. The total beam response may be considered as the sum
of the responses due to the primary and control forces, each of which may be calculated

separately.

The boundary condition equation for the primary force is (Appendix B)

[ap][Xp] = [Fp) (3.1)
[Xp] = [ap]—l[FpL (3.2)

where the primary force vector [F;] = [0,0,0,0,0,0,0, E%]T Qs = EIL k% and [ap] is the
matrix of boundary condition coefficients for the primary force. The boundary condition

equation for the control force is (Appendix B)
[ac][Xc] - [Fc] (33)

or

X.] = (e *[Fel, (3.4)

where the control force vector [F.] = [0,0,0,0,0,0,0, %]T and [a¢] is the matrix of bound-
ary condition coefficients for the control force.

At the error sensor z,, the displacement due to the primary force is

T
= [X,]" [E] (3.5)
and the displacement due to the control force is

we = (X [E] (3.6)
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Figure 3.1: Finite beam model: (a) with point force excitation; (b) with a point force

excitation and an applied point controlled force; (¢) bending moment and shear force

sign conventions.
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By adding equations (3.5) and (3.6), the total displacement is
w = W, + w

= [X,]"[E] + [X][E], (3.8)
and by substituting equations (3.2) and (3.4) into equation (3.8) one obtains

(lorp] ™ Fp])T[E] + ([oxe] ' [Fe])[E]
- & a7 )T 5 a™HT
= Gollepl™)IRIE] + 52 (lod )i [EL (39)

The optimal control force F, for the primary force F, may be found by setting w = 0

&
Il

in equation (3.9). By writing the transpose of the eighth column of the inverse of [ap)]
as [P] = ([ap]™")%;, and the transpose of the eighth column of the inverse of [a.] as

[C] = ([ac]_l)zs, the optimal control force can be written as

_ _[P][E]
Fo= o™ (3.10)

for an error sensor in either the near field or the far field of the control force. If the infinite
beam impedances from equations (A.18) and (A.19) in Appendix A are substituted into
equation (3.10), the numerical result is the same as equation (2.3) obtained for an infinite
beam. In equation (2.3), the factors 3, and f3. (equation(2.2)) are functions of the distances
between the excitation forces (primary and control) and the error sensor. Equation (3.10)
is clearly more complicated than equation (2.3) because it takes into account not only the
boundary conditions (boundary impedances), but also the relative locations of the primary

and control forces, and the error sensor in relation to the ends of the beam.
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If a second error sensor is introduced at some location z/, downstream from the first
error sensor z., and a single control force driven in a way so as to optimally reduce vibration
at both locations, the optimal control force can be obtained by minimizing the sum of mean
squares of displacement at two locations. This is achieved by setting the partial derivatives
of the sum with respect to each of the real and imaginary components of the control force

equal to zero. The optimal control force can be written as

. 1{IPIE, [PIE)
fe= 2([01[E1+[c1[E'1>FP S

where [E] is obtained by replacing z. with z/, on the right hand side of equation (3.7).

3.3 Numerical results

In this chapter, the cross section of the beam is the same as shown in Figure 2.1. Harmonic
excitation is at 1000 Hz which does not correspond to a beam resonance. The flexural
wavelength is A = 0.4824 m. Acceleration level is minimized at the error sensor (ze —
z,)/ A = 4.48, with z,/A; = 0 and (z. — z,)/A; = 2.24. The beam extends from
(r —z,)/A = —10 to (z — z,)/A; = 10. These values are adhered to unless otherwise
stated. For the dB ordinate scale in the following figures of this chapter, the reference level

is the far field uncontrolled infinite beam acceleration produced by the primary force.

3.3.1 Effect of boundary impedance

Acceleration distributions along the beam for both optimally controlled and uncontrolled
cases for a range of boundary impedances are shown in Figures 3.2 and 3.3. By optimally
controlled, it means that the single control force has been driven in such a way as to obtain
the maximum achievable acceleration reduction at the error sensor. As the error sensor is
not near the point of application of a force or a discontinuity, near field effects on the beam
response at the error sensor are expected to be numerically negligible.

For convenience, we start with a number of simple boundary conditions. The results
are shown in Figure 3.2. In each case of Figure 3.2, the calculated reduction in acceleration
amplitude downstream of the error sensor is over 100 dB. From these figures, it can be seen

that the free-free beam has the same acceleration distribution and potential for acceleration
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Figure 3.3: Effect of varying the boundary impedance. Boundary impedances are
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reduction as the fixed-fixed beam except within approximately half a wavelength of the
ends of the beam, which are at (z — z,)/A; = F10.32 respectively. For the free-free
beam, the increase in acceleration level near the end of the beam is the result of a near
field effect caused by reflection from the boundary. For the fixed-fixed beam, the decreased
acceleration level near each end of the beam is caused by the fixed nature of the boundary.
The pinned-pinned beam has a different acceleration distribution from those of the free-
free and fixed-fixed beam. In particular, between each end and the adjacent force, the
acceleration level is about 15 dB lower. Also, the acceleration level of the controlled beam
between the primary and control forces is about 5 dB lower than on the left of the primary
force. These differences occur because the harmonic excitation is “off-resonance” for the
pinned-pinned beam, and near a resonance frequency for the free-free and fixed-fixed beam.
It is obvious that the extent of the reductions shown in the figures will not be realized in
practice. However, it is necessary to present them to gain insight into the effect of the
termination impedances on the beam controllability.

Acceleration amplitude distributions for various left and right boundary impedances
which are a (real scalar) multiple & of the left and right infinite beam impedances ((ZL ing]
and [Zp,ns]) are presented in Figure 3.3. The purpose of this is to examine the effect
on controllability of the boundary impedance approaching the infinite beam impedance.
The use of the factor k to change the boundary impedances is somewhat arbitrary, but it
overcomes the difficulty of selecting a best "direction of approach” to the infinite beam
impedance values. The characteristic standing wave distribution of acceleration shown in
Figures 3.3(a), (b) and (d) is due to reflections from the boundaries. This variation in
acceleration amplitude along the beam decreases as the boundary impedances approach
the infinite beam impedance. For k <1 the increase in acceleration levels at each end
of the beam are the result of a near field effect caused by reflections from the boundary.
For k> 1 the decreased acceleration level in the boundary near fields is caused by larger
dissipation by the boundary impedances. The result for boundary impedances equal to the
infinite beam impedances is shown in Figure 3.3(c).

From Figure 3.3 it can be observed that on the error sensor side of the control force, the
acceleration level of the controlled beam (solid line) decreases as the boundary impedances

approach the infinite beam impedances. From the control force location to the error sensor
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location, the acceleration level decays exponentially to zero at the error sensor, with an
average reduction of about 120 dB to the right of the error sensor. Except in the near
field of the boundary, the controlled acceleration level at the anti-nodes on the right-hand
side of the error sensor is essentially constant and only weakly dependent upon the beam
termination impedance. It may be concluded that acceleration amplitude of a beam excited
harmonically off-resonance and terminated by arbitrary impedances can be controlled by

using only one control force and one error sensor.

3.3.2 Effect of control force location

Figure 3.4(a), (c) and (e) show the mean attenuation of acceleration level in the far field
upstream of the primary force for free-free, pinned-pinned and infinite-infinite beams, re-
spectively. Control of the fixed-fixed beam produces attenuation similar to that of the
free-free beam, so the results for the fixed-fixed beam are not shown here. In these exam-
ples, the mean attenuation of acceleration is shown as a function of the distance between
the primary and control forces (z.—z,). From these figures, it can be seen that acceleration
upstream of the primary force is maximally reduced if the separation between the primary
and control forces is an integer multiple of half a wavelength. The attenuation minima oc-
cur due to the difficulty in controlling the flexural vibration when the control force location
is at a node of the the standing wave caused by reflection from the termination.

Figure 3.4(b), (d) and (f) show the corresponding maximum achievable mean atten-
uation downstream of the error sensor, for an ideal feed-forward controller. For the free
and pinned beams, the maxima occur if the separation between the primary and control
forces is an integer multiple of half a wavelength. The minima (every second minima for
the pinned beam) occur at control and primary force separations of (d + nA;/2), where
d is a constant dependent on frequency and termination type (Young, 1995). The infinite
beam (Figure 3.4(f)) produces a constant maximum achievable mean attenuation of about
110 dB. The reduction does not depend on the control force and primary force separation
location in this case. However, the attenuation should depend on z, — z. as there will be
a small near field effect which decreases as x, — x, increases. This will be discussed in

more detail in Section 3.3.3. In the case of the infinite beam (or, alternatively a long, well
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Figure 3.4: Effect of cortrol force location z./A; on the mean attenuation of accelera-
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the primary force (free-ree); (b) mean attenuation of acceleration downstream of the
error sensor (free-free): {c) mean attenuation of acceleration upstream of the primary
force (pinned-pinned); d) mean attenuation of acceleration downstream of the error
sensor (pinned-pinned): (e) mean attenuation of acceleration upstream of the primary
force (infinite-infinite): (f) mean attenuation of acceleration downstream of the error

sensor (infinite-infinite .
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damped beam), this independence from control force location ensures that good control is
possible. In contrast, the extreme sensitivity of the finite beams to control force location
indicates that it would be far more difficult to achieve satisfactory control if the primary
force location or excitation frequency are not fixed. This implies that good control of a
broadband signal would only occur over narrow bands, separated by very narrow bands
where control is poor.

The level of the peaks in Figures 3.4(a), (c) and (e) and troughs in Figures 3.4(a) to
(d) vary within a particular figure because the plotted points may not occur at the actual
maximum or minimum value. If the plotted points were closer together it is more likely
that the maximum and minimum values would be similar in any particular figure.

According to earlier work, a second control force can be used to overcome the difficulty
in controlling acceleration when the first control force is located at a standing wave node
(Young, 1995). Therefore, by the introduction of the second control force the depth of the
troughs in Figures 3.4 would be reduced. Alternatively, it is suggested that the minima in

the curves in Figures 3.4 can be higher if significant damping were added to the system.

3.3.3 Effect of error sensor location

Figure 3.5(a) shows the mean attenuation of acceleration level of the free-free beam in
the far field upstream of the primary force as a function of both control force and error
sensor locations. Each curve in the figure indicates the attenuation for a fixed but different
value of control force location. This figure shows that the attenuation depends on z. — z,
but not on the error sensor position, provided that the error sensor is in the far field of
the control and primary forces. The corresponding maximum achievable mean attenuation
downstream of the error sensor is shown in Figure 3.5(b). The average reduction in dB is
clearly a linearly increasing function of (z.—z.)/ s because of the corresponding decreasing
effect of the near field.

Figures 3.5(c), (e) and (g) show the mean attenuation of acceleration level on the
left-hand side of the primary force for free-free, pinned-pinned and infinite-infinite beams.
These figures show that the mean attenuation is different for each of the different boundary

conditions, because the control force is located at a different position on a standing wave
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for each boundary condition. As in Figure 3.5(a), the attenuation upstream of primary
force in all three beams does not depend on the error sensor position if the error sensor
is in the far field of the control and primary forces. The corresponding mean attenuation
downstream of the error sensor is shown in Figures 3.5(d), (f) and (h). The minima in the
curves, for free and simply supported beams, correspond to separations in the error sensor
and control force location of (d + nA;/2), where d is a constant dependent on frequency
and termination type as previously defined (Section 3.3.2). In the control force far field of
the the infinite beam (Figure 3.5(h)), the attenuation is simply (in dB) proportional to the
distance between the error sensor and the control force.

The troughs in the curves in Figures 3.5(b), (d) and (f) are represented correctly, and

finer frequency resolution would not cause them to be much lower.
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Figure 3.5: Effect of error sensor location (z. — z.)/As on the mean attenuation of
acceleration for various separations between the primary and control forces. (a) Mean
attenuation of acceleration upstream of the primary force with varying (z. — z,)/A;
(free-free); (b) mean attenuation of acceleration downstream of the error sensor with
varying (z. — z,)/As (free-free); (c) mean attenuation of acceleration upstream of the
primary force (free-free), in (c) to (h) (zc — z,)/Af = 0.96 ; (d) mean attenuation

of acceleration downstream of the error sensor (free-free); (e) mean attenuation of

7

acceleration upstream of the primary force (pinned-pinned); (f) mean attenuation of

)i (
acceleration downstream of the error sensor (pinned-pinned); (g) mean attenuation of
)i (

acceleration upstream of the primary force (infinite-infinite); (h) mean attenuation of

bl

acceleration downstream of the error sensor (infinite-infinite).



42

continued

Figure 3.5

T T T 1™ T T T 7 bl
5 ] :
L i 4o
L da [
= l._l .|.1.
FETEPEPE SR P B e P PRI ISt Sl Sr S B e e b s it e st = [
02 0e1 001 0s 0 0oz o0&t 001 0S 0 002 0ST 00T 08 0 -
(2p) *¥ 30 SHY °US3IY WEGH (gp) °X 30 SHY °US33Y UESH (Gp) *X 30 SHY ‘U8IIV UEBH
T T T T - T T T T h T T T T a.”
- 9 - (4]
o S ki
= - ~ L ©
] -_m - - - I..JNA\
= I-2 - l-2 - Ia2
..n |.1 — - = |..1
Lﬂ 1 .lH y V ]
AL BT B e s I Irara e | Ry = L (T IPCPR o2 PR IIPIVUN TP o ies ST er s poy
0t 0c 0T 0 0T- 0 02 0T 0 01- o€ 9¢ 0T 0 0T-

(gp) % 30 SHT °"ue33V UEAK

(gp) °x 3o SHT °us3IY UESH

(gp) X 30 SHT 'U2IIY UESH



3.3.4 Effect of forcing frequency

The acceleration distribution along the controlled and the uncontrolled beam (free-free
beam) near a resonance frequency at 76.9 Hz is shown in Figure 3.6(a). From this figure, it
can be seen that optimal control (solid line) decreases the acceleration level both upstream
of the primary force and downstream of the error sensor but by a much smaller amount than
shown in Figure 3.2 for 1000 Hz excitation because the error sensor is now in the near field
of the control force. The acceleration level to the right of the error sensor is about 50 dB
lower than that from the uncontrolled level. The forced response at a lower “off-resonance”
frequency of 68.7 Hz is shown in Figure 3.6(b). This figure shows the upstream controlled
acceleration is the same as the uncontrolled acceleration, and the downstream level is 30 dB
lower. Clearly, better control is achieved at a resonance forcing frequency than at an “off-
resonance” forcing frequency. This can be explained by considering the forced response of
the controlled beam to be a weighted sum of modal components. Controlling the beam at
a resonance frequency means controlling just one mode. As explained by the advocates of
IMSC, this is easily achieved with one control force and one error sensor. However, at the
“off-resonance” forcing frequency two modes are present in approximately equal strength
and, so control at this frequency means simultaneous control of more than one mode by
a single control force. Venkatraman and Narayanan (1990) reported that this is likely to
induce spillover. However, the maximum achievable acceleration reduction in the beam is
still large in both cases, although it is better at resonance than off-resonance.

For the controlled case, the level of the peaks and troughs vary within a particular
figure, because the control force is located at a different position on a standing wave
for each forcing frequency. For example, the control force is located at an anti-node in
Figure 3.6(a) and at a node in Figure 3.6(b). The distance between two peaks or troughs
in Figure 3.6 is half a wavelength, except for the range near the control force as this force
created a discontinuity to produce a near field effect.

Figure 3.7(a) shows the mean attenuation of acceleration level in the far field upstream
of the primary force as a function of the forcing frequency for the free-free beam. The
corresponding maximum achievable mean attenuation downstream of the error sensor is

shown in Figure 3.7(b). In both cases, acceleration is reduced maximally at frequencies for
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Figure 3.6: Effect of forcing frequency on the beam acceleration distribution for free-

free beam. (a) Excitation near a beam resonance frequency at 76.9H z, with force and

error sensor locations of %"— = 0.62, %‘1 = 1.24; (b) excitation “off-resonance”
at 68.7Hz, with %‘1 = 0.58, 55/\_—;”2 = 1.17. ————— controlled; +++vvevveer
uncontrolled.

which the separation between the primary and control forces is an integer multiple of half
of a wavelength. In Figure 3.7(b), the average attenuation clearly increases with increasing
frequency. The performance is poor at low frequencies because the error sensor is in the
near field of the control force.

The maximum achievable mean attenuation of acceleration in an infinite beam is shown
as a function of frequency in Figures 3.7(c) and (d). There are six sharp peaks in Fig-
ure 3.7(c). At each of these peaks, the distance between control and primary forces is an
integer multiple of the half wavelength. The number of peaks is limited to six because there
are no reflections from boundaries (i.e. no resonances). In Figure 3.7(d), the attenuation

is proportional to the square root of frequency because the attenuation is proportional to

(re —zc)/Af and Ay %
The peaks and troughs in the curves are represented correctly in Figure 3.7(a) to
(c). Finer frequency resolution would not cause them to be significantly higher or lower.

These peaks and some of the troughs are caused by the reasons described in Section 3.3.2

and 3.3.3. In Figure 3.7(b), some of the troughs are also considered likely to occur when
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the error sensor is at a standing wave node where it cannot work effectively.

The introduction of a second error sensor would be expected to result in improved
attenuation in the situation where the first error sensor is located at a node. Figure 3.8
shows after adding a second error sensor, the mean attenuation of acceleration in the free-
free beam is a function of forcing frequency. The second error sensor is located 0.1 m
downstream from the first. The mean attenuation for a single error sensor is also shown in
Figure 3.8 for comparison. From Figure 3.8(a), it can be seen that there is no improvement
in attenuation upstream of the primary force by adding a second error sensor. This was
expected because the attenuation upstream of the primary force depends on the separation
between the primary and control force, but not on the error sensor location when the error
sensor is in the far field of a control force (Section 3.3.3). However in Figure 3.8(b), it can
be seen that there is an overall improvement in attenuation resulting from the introduction
of the second error sensor. Particularly, the original minima in attenuation using one error

sensor are generally higher or even eliminated by the introduction of the second error sensor.

3.3.5 Comparison with control of semi-infinite beam

The behavior of the semi-infinite beam shown in Figure 3.9 can be investigated by making
the boundary impedance of the right end equal to the infinite beam impedance (so that no
reflections are produced). A variety of impedances can be selected for the left-hand bound-
ary. The following examples are for the use of one error sensor only. In Figures 3.10(a)—(c)
the uncontrolled and optimally controlled responses of these “semi-infinite” beams for the
same simple left-hand boundary conditions as in Figure 3.2 are shown.

In Figures 3.10(d)—(g) the uncontrolled and optimally controlled responses of semi-
infinite beams with the same left boundary impedances as in Figure 3.3 are shown. In each
of these four cases, reflections from the left boundary produce standing wave patterns on
the left of the primary force. This acceleration amplitude along the beam decreases as
the boundary impedances approach the infinite beam impedance. On the right side of the
primary force there is no evidence of far field reflections and the beam behaves as if it were

of infinite length.
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Figure 3.9: Semi-infinite beam model.

By comparing Figures 3.2 and 3.3 with Figure 3.10, it can be seen that acceleration

downstream of the error sensor for the finite beams are similar to the semi-infinite beam.
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3.4 Summary

Acceleration amplitude for both a finite and an infinite beam can be calculated using a
propagating wave model with the supports treated as boundary impedances. If the boundary
impedances of a finite beam are changed to values which represent no reflections from the
ends, the characteristic standing wave distribution of acceleration amplitude flattens. This
confirms that infinite beam behavior is accurately modeled. For the range of boundary
impedances, representing both finite and infinite beams, the extent of control which is
theoretically achievable with a feed-forward controller is found to be strongly dependent

upon control force location, error sensor location and excitation frequency.

1. The maximum acceleration attenuation, upstream of the primary force and down-
stream of the error sensor, is achieved if the separation between the primary and
control forces is an integer multiple of the half flexural wavelength. The minima oc-
cur as the control force is located at a node of the standing wave. These are true with
the exception that the acceleration attenuation downstream of the error sensor is a
constant for the infinite and semi-infinite beams. Increasing the separation between

the primary and control forces does not improve the attenuation.

2. For error sensor locations outside the control force near field, the attenuation of accel-
eration upstream of the primary force does not depend on error sensor location. The
attenuation of acceleration downstream of the error sensor increases with increasing
separation between the error sensor and control force because of the existence of a

small remaining near field effect.

3. Good harmonic acceleration control can be achieved over a relative large range of
frequencies with a single control force and a single error sensor provided that the error

sensor is in the far field of the control force.

4. The use of the second error sensor generally eases and in some cases even eliminates
the minima in attenuation that occur when the first error sensor is located at a

standing wave node.



Chapter 4

Minimizing acceleration and power

transmission in a semi-infinite plate

4.1 Introduction

An extension of the work done on the minimization of power transmission in an infinite beam
(Chapter 2) and acceleration amplitude in a finite beam (Chapter 3), is the minimization
of acceleration and power transmission in a plate. This chapter is concerned with the
theoretical analysis of the control of power transmission in a semi-infinite plate using a row
of control forces and a row of error sensors. The work outlined here examines the extent
of control which is achievable for a realistic control force configuration.

The model considered here is a semi-infinite plate, free at one end, anechoically ter-
minated at the other end and simply supported along the other two sides. The analysis
describes the vibration in terms of flexural waves propagating from the free end to the
anechoically terminated end. The geometry of the semi-infinite plate and the alignment
of the coordinate system are shown in Figure 4.1. The plate is assumed to be excited by
either a single point primary force or an array of point primary forces arranged in a line
across the plate parallel to the y-axis. Two alternative configurations of the control forces
are considered. One configuration includes either a single point control force or a line of
in-phase point control forces, and the other configuration includes a line of three indepen-

dently controlled point forces. In each case, the line of control forces is arranged parallel to
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Figure 4.1: Semi-infinite plate model.

the line of primary forces. Optimal control forces required to minimize average acceleration
across the plate at a specified axial location, the error sensor location, are compared to
those required to minimize total power transmission along the plate for the two alternative
control force configurations. As it is difficult to measure power transmission in practice, it
is of interest to examine theoretically the effectiveness of minimizing acceleration at error
sensors in reducing power transmission along the plate. This is done for various axial loca-

tions and numbers of error sensors.

4.2 Theory

4.2.1 Minimization of acceleration with a line of in-phase con-

trol forces

If the plate is excited by a line of in-phase primary point forces of complex amplitude

I, located at z = z,, the plate response w(z,y) at any location (z,y) is found using



equations (C.25) and (C.27) in Appendix C and is

x® 2 & amy., _ . nry
wle ) = By (o) = B 3 53 sin S8 fog ) lBulsin Y (41)
n=1 h =1 y y

where m,, is the number of primary forces, and [ay] is similar to [a] with /g replaced by
F, and z, replaced by z,. Similarly, if a line of control forces of complex amplitude f7 is

placed at = = z,, the plate response due to these acting alone is

nmw

w(z,y) = Fowe—g(z,y) = i 7 Dh Zsm (lee) )6 [En] sinfg (4.2)

=1 v

where m, is the number of control forces. The total plate response due to primary and

control forces acting together is then
w=w, +w, = Fpw,_y + Fowe_y. (4.3)

The optimal control force F, for minimizing the acceleration along the width of the plate
at a constant z may be found by integrating (across the plate) the mean square of the
displacement defined in equation (4.3), and setting the partial derivatives of the integration
with respect to the real and imaginary components of the control force equal to zero. The

result is ;
fuw tl'.’p_fw;_j dy

F. = —F,%
Jo¥ lwe—y|?dy

(4.4)

4.2.2 Minimization of acceleration with a line of three inde-

pendently driven control forces

If the plate is driven by an array of in-phase primary point forces in a line at z = z, and
three independent control point forces in a line at z = z., the total plate response may be

written as
w = W, + We = prp—f + Fclwc_fl + Fc2wc—f2 + ch’u)c_fa. (45)

The quantities w._s;, w._y; and w._g3 are each calculated in a similar way to w._; in
Section 4.2.1.
The optimal control forces for minimizing acceleration may be found by integrating

(across the plate) the mean square of the displacement defined in equation (4.5) and setting
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the partial derivatives of the integration with respect to each of the real and imaginary
components of the control forces equal to zero. The result is an optimal set of control

forces as follows

~1

L Ly 4 Ly .

i Jo” lwc—fl|2dy Jo” wc—fle—f2dy Jo” wc-—flwc—_f:}dy
L . 92 L

Fo |=—1 /" wc—flwc_f2dy Jo” [wc—f2|2dy Jo” wc—f2wc—f3dy
L - L X b7

Fes Jo” wc—flwc—f?,dy Jo® wc_fgwc_dey Jo” |wc_f3|2dy

L *

fO ! wP—fwc—fldy
L *

* wp_fwc_fzdy Fy. (4.6)
L *

fO ! wP—fwc—dey

The procedure can be extended to any number of independently controlled forces.

4.2.3 Power transmission

The expression given by Romano (1990) for the z component of vibration intensity (or

power transmission per unit width) in a plate is

: ou O : :
Pu(t) = [0, — 8—1:Mr - a—?sz + €Ny + 6Ny, (4.7)

where £, N, and nyry are associated with longitudinal and shear wave propagation. Each
force in equation (4.7) is “per unit width” and for this study, the contribution of longitudinal
and shear waves is assumed to be zero. The total instantaneous flexural wave power

transmission through a section at constant z is then given by

Ly . a ' ) :t
Pz(t) - _/O [w(xay7t)Qz(xayat) - %Mr(l‘)y)t)_
ow(zx,y,t
P b 00)] (4.8
or, for a single frequency
iy :
P.(t) = —/ [jww(:c,y,t)@z(xﬂ 1) —jwai(;j‘y—’t)Mr(m,y,t) —

0 T

Jw@%ﬂf\/fﬂ(m,y,t)} dy. (4.9)

Adopting the approach of Skudrzyk (1965), the real (or active) part of power transmission

along the plate is calculated as the product of real part of the force term with the real part
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of the velocity term for each pair of terms in equation (4.9) and the result is time averaged.

Thus the active power transmission is given by

Ly *
P = = [ Re{lionte ) Quto) - |25 b o)
0 T
{ij] Mry(w,y)}dy (4.10)
Y
where, according to Leissa (1969)
0*w 0w
M:::: _Dh(ﬁ-l_l/ahw), (411)
O*w
Moy = =Di(l = v) 5 (4.12)
and
Pw APw
Qr = —Dh(—am3 + ——axayz). (4.13)

For one line of primary forces and a second line of control forces parallel to the y-axis,
the resulting total power transmission can be expressed in terms of the primary and con-
trol forces, using superposition. Thus power transmission corresponding to equation (4.4)
(representing optimal control of acceleration) is obtained by substituting equation (4.4)
into (4.3) and the result into equations (4.10) to (4.13). The power transmission corre-
sponding to equation (4.6) can be obtained in a similar way.

It is assumed for convenience here that it is possible in practice to actually measure the

total power transmission through a particular plate cross section.

4.2.4 Minimization of power transmission with a line of in-

phase point control forces

The total power transmission resulting from a line of in-phase point primary forces and a line
of in-phase point control forces acting together can be found by substituting equations (4.1)
and (4.2) into (4.3) and the result into equations (4.10) to (4.13). Carrying out the
indicated substitutions in equations (4.11) to (4.13) gives the following expressions for the

bending moment, twisting moment and shear force respectively.

0*w,_ 0%w._ 0w, _ 0w, _
A{T =D ] Ia p—f n c—f I p—J ; c—f )
, N R o e 1/( "5y + I, i - (4.14)
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0*w,_ w._;
A’[ry = —Dh(l — l/) (Fp 8,1:83/ —+ FCW (415)
and
oM. oM. Y 0w —~f FPw —f FPw —f Fw —f
L= z Ty _ F p F. c F p o c ‘
@ Oz dy Dn ( P 9x3 + oz T Oz dy? + Oz y?

These and equation (4.3) can be substituted into the expression for the power transmission

through any plate cross section at axial location z (equation (4.10)) to produce,

Ly
1%:%4 Re[F.F>A+ F.BF; + F:CF, + F,F:D]dy (4.17)
where
Pwe_p  Pwey\
4= ]‘”Dh[ ( e 6x8y2)w°_f+
0 We—f ach_f 8wc_f 0 We—f 8wc_f
( 022 a7 ) ox TG0 Ty 0 (1Y)
ach_f Bswc_f -
= ]“’Dh[ ( oz® axay2>wp—f+
8 We— f 82wc_f (9 Wyp—§ 8 We—§ Bwp_f
( 0z? Jy? oz +(1- )axay oy |’ (4.19)
Pwp—y  Pwyg) |
€ = J“Dh{ ( 93 920y W s+
*wp— g Pwy_y\ 0%we; O w,_p OW;_;
( dz? dy? Ox +{ )8183/ dy (4.20)
and

5 Pw,_y  Pw,_p\ .
D = jwl)h [”" ( 81?’ + axay2 wp—f+

D*w, ¢ % /BQw,,_f T D*w,_y Owy_;
Ox? dy*? Oz dzdy  Qy

Numerically, the coefficients B and C are equal if the error sensors are in the far field of the

+(1—v) (4.21)

primary and control forces. The optimal control force corresponding to minimum power
transmission is obtained by determining derivatives of equation (4.17) with respect to the
real and imaginary components of the control force and setting the derivatives equal to
zero. Then the optimal control force is

_Jo? Brdy + fg Cdy
2 [y RelAldy .

opl __
Fortiss

(4.22)
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4.2.5 Minimization of power transmission with a line of three

independently driven point control forces

For this case, the plate response given by equation (4.5) can be substituted into equa-

tions (4.10) to (4.13) to give an expression for the total power transmitted past a line

across the plate at an axial location z, which can be written in matrix form as:

1Ly
Poa=3 / Re[F¥ AF]dy
0

where
F = [F,, Fyy, Fu, Fus)”
and
[ A(1,1) A(L,2) A(1L,3) A(L,4) |
AL | ARD AR2) A@23) A(24)
A(3,1) A(3,2) A(3,3) A(3,4)
| A(4,1) A(4,2) A(4,3) A(4,

The coefficients A(7,7) (z =

4) |

1,4,7 = 1,4) of matrix A result from the product of terms

(4.23)

(4.24)

(4.25)

in equation (4.10) which each contain contributions from the four different force elements

of equation (4.24). Thus A(z,7) is the product of the contribution to the first part of each

term in equation (4.10) due to the ith element of F with the contribution to the second

part of each term due to the jth element of F. For example

83wp—f & Wp—s

A1) = jubs ["( 525+ Geoyr et T T

0*wp_s Owy_;
(1-v) oxdy Oy

A1) = oDy |~

dz3 Oz dy? JWe-sa + 0z?

FPwyy | O'wy_y 0wy
Oy*? ) dz +
(4.26)
0wy 52wp—f)aw§—f1
Oy*? Jz
(4.27)
D*wp—; 0*w,_; ) Ow;_ ;s 1
dy*? Oz
(4.28)



An optimum set of control forces corresponding to minimum power transmission is obtained
by determining derivatives of equation (4.23) with respect to the real and imaginary com-
ponents of each control force and setting the derivatives equal to zero. An optimum set of
control forces corresponding to a minimum power transmission due to three independently

driven control forces is

Fy 7 (A7(2,2) + A2,2))dy [o(A*(3,2) + A(2,3))dy

Fo | == [ (4%2,3) + A(3,2))dy [ *(A*(3,3) + A(3,3))dy

Fis JP(AT(2,4) + A(4,2))dy fo ' (A™(3,4) + A(4,3))dy
D2+ A0y | ([ aw2a | [ e
Lv(A*(4,3) + A(3,4))dy S ar,3)dy |+ | fAB Ddy || Fe (4:29)
JEv(A*(4,4) + A(4,4))dy Ly A%(1,4)dy L A(4,1)dy

The procedure can be extended for any number of independently controlled forces. By
comparing equations (4.17) with (4.23) and (4.22) with (4.29), it can be seen that the
single force changes to a force vector when in-phase force control changes to independent
force control. The expression for power transmission given by equation (4.23) not only
includes each force term, but also includes coupling force terms, which makes independent
force control much more complex than in-phase force control to analyze.

The matrix which must be inverted in equation (4.29) is ill-conditioned for the case
where only one or two modes are propagating and three independent control forces are
used. This is because the control system is under determined and thus ill-conditioned
(Nelson and Elliott, 1993). In this case, the use of one or two control forces respectively

would be expected to achieve good performance.

4.3 Numerical results

The numerical results presented here have been calculated for a steel plate with Young's
modulus F = 207 GPa, density p = 7700kg/m?>, Poisson's ratio v = 0.3, length 1.4 m,
thickness h = 0.003 m and width L, = 0.5 m. One end of the plate was terminated
anechoically. The sides adjacent to the anechoically terminated end were simply supported

and the remaining edge was free. In the following figures except Figure 4.9 in this chapter,
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the z location of the primary force is at x, = 0.025 m and the error sensor is at z, =
0.565 m. When a row of control forces appear, these forces are equally spaced in a row
across the plate, parallel to the y-axis, so that the distance between any two control forces
is twice the distance from the outermost control force to the edge of the plate. When an
equal number (3, 6, 12 or 24) of primary and control forces appear, each primary force
shares an identical Y-coordinate location with one control force. The locations of primary
forces, control forces and error sensors are adhered to unless otherwise stated. Theoretical

cut-on frequencies for the first five modes are listed in Table 4.1.

Table 4.1: Calculated cut-on frequencies for the first five modes

Plate mode | Cut-on frequency (Hz)
First mode 30
Second mode 118

Third mode 266
Fourth mode 473

Fifth mode 739

In many of the calculations for the plate, rounding errors became a problem when the
calculated attenuation due to active control exceeded 120 dB and values shown higher than
this can be quite inaccurate. However this is not considered to be a serious problem as,
in practice active control systems will be limited to achieve a maximum of about 50 dB

attenuation.

4.3.1 One primary and one control force

In this section it is assumed that an ideal feed-forward controller is available and that it
Is possible to obtain a measure of power transmission along the plate to be used as the
controller error input.

Figure 4.2(a) is a contour map, calculated using the theory of Section 4.2.4, of the

maximum achievable reduction (in dB) in active power transmitted along the plate to the
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anechoic end as a function of the location (z.,y.) of a single control force. The frequency
of 210 Hz (A; = 0.3752m) was chosen to begin with as it is well above the cut-on
frequency of the second propagating mode and well below the cut-on frequency of the third
propagating mode. The control force locations corresponding to local power transmission
minima listed in Table 4.2 were found by using optimization software to process the data
used for generating the contour plot and are also shown in the figure as asterisks ().
The optimal control force and resulting power transmission for the contro! force in this
location were then calculated using the analysis of the previous sections and the results are
recorded in Table 4.2. Figure 4.2(a) demonstrates the important result that for any control
force location there is always a control force amplitude which does not increase the power
transmission downstream of the control force, including the degenerate case of F, = 0. The
map clearly has several local minima, a fact which makes the search for the optimal control

force location very time consuming.
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Location of control force y./A;

Location of control force (z, — Tp)/Af

Figure 4.2: (a) Maximum achievable reduction of power transmission (dB) due to
one primary force and one control force as a function of control force location. The
primary force is located at (z,,y,)/A; = (0.07,0.80), the error sensor is located at
(z, — z,)/A; = 1.43 and the forcing frequency is 210 Hz (A; = 0.3752m). (b) Optimal
control force amplitude relative to the primary force to achieve the maximum power

transmission reduction of (a).
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Table 4.2: Control force locations for power transmission minima at 210 Hz

(ze — 2p)/As | /s | |51 | 6 — &, radians | P.T.reduction(dB)
0.00 0.80 | 1.00 — oo
0.05 0.77 | 1.70 — 25
0.17 0.53 |3.15 0 30
0.32 1.15 | 2.24 0 45
0.38 0.95 | 1.12 0 40
043 | 0.86 | 1.08 0 36
0.72 0.57 | 1.66 — 43
0.80 0.45 | 1.11 — 26
0.86 0.33 | 1.25 r 50
1.07 0.94 |1.94 x 28
1.23 0.60 | 2.39 0 40

From Figure 4.2(a), it can be seen that there are two relatively large regions in which
a single control force can be located to achieve a power transmission attenuation of
more than 15 dB. These regions extend from the top mid-left of the contour map (at
(z. —2p,y.)/As = (0.30,1.3) to the bottom mid-right (at (z. — z,,y.)/A; = (0.95,0.0)).
As these regions are so large, there appears to be a reasonable prospect of achieving a useful
experimental result with this plate and force arrangement. Figure 4.2(b) shows the optimal
control force amplitude required to produce the attenuation given in Figure 4.2(a) (for unit
amplitude primary force). In regions where good attenuation is obtained, the required opti-
mal control force varies considerably, with minimum values of about 1.1 times the primary
force amplitude or greater. If both the maximum achievable attenuation value and the desire
to minimize the control force amplitude are taken into consideration, the optimal control
force location seems to be (z. — z,,y.)/As = (0.32,1.15) with 45 dB maximum achiev-
able power transmission reduction or (z. — z,,y.)/As = (0.86,0.33) with 50 dB maximum
achievable power transmission reduction.

Figure 4.3 shows the result of repeating the calculation displayed in Figure 4.2, but for
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a higher frequency of 510 Hz (A = 0.2408m). As before, the local power transmission
minima () are listed in Table 4.3. In practice, the best result would probably be achieved
by placing a control force of amplitude 1.0 at (2. — xp,y.)/As = (1.85,1.88) to produce a
maximum power transmission reduction of 15 dB. The peak in Figure 4.3(a) is relatively
flat and occupies a relatively large region and, so the result is not very sensitive to variations
in control force location.

Both Figures 4.2(a) and Figure 4.3(a) show that the maximum achievable reduction
in power transmission depends strongly on the location of control forces. If the control
force location is not chosen correctly, it is quite likely that the maximum achievable power
transmission reduction will be negligible. It is also noted that a single control force location
will be ineffective over a range of frequencies. Figure 4.3(a) indicates that there are several
regions near the edge of the plate where a theoretical attenuation of more than 6 dB can be
produced, but in practice it may not be possible to generate the large control forces which
would be required. Note that Figures 4.2 and 4.3 do not extend to the plate boundaries as
it is clear that optimal control forces on the boundaries would tend to infinity and power
transmission reduction would tend to zero.

Results which are not shown here to conserve space and which are similar to those of
Figure 4.2 and 4.3 have been produced for the frequencies 310 Hz, 410 Hz and 610 Hz. The
number of frequencies examined was limited by the computation time (approximately 90
hours for the UNIX machine SUN/4) required to produce each map. From these examples,
it can be observed that optimum control force location and power transmission attenuation
are strong functions of the excitation frequency. One trend with increasing excitation
frequency is that the number of local minima increases because the complexity of the

vibration pattern increases.
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Figure 4.3: (a) Maximum achievable reduction of power transmission (dB) due to
one primary force and one control force as a function of control force location. The
primary force is located at (z,,y,)/A; = (0.10,1.25), the error sensor is located at
(z,—z,)/A; = 2.24 and the forcing frequency is 510 Hz (A; = 0.2408m). (b) Optimal
control force amplitude relative to the primary force to achieve the maximum power

transmission reduction of (a).



66

Table 4.3: Control force locations for power transmission minima at 510 Hz

(zc— )/ Af | ye/ s % ¢. — ¢, radians | P.T.reduction(dB)
0.00 1.24 | 1.00 -7 00
0.08 0.60 | 2.40 0 14
0.13 1.75 | 1.32 0 14
0.14 1.97 | 2.10 0 10
0.25 0.02 | 11.85 -7 7
086 | 1.95 | 3.18 _r 6
1.06 0.87 | 1.40 s 4
1.12 0.02 | 9.50 0 11
1.26 1.43 | 1.39 0 9
1.59 0.92 | 1.49 -7 10
1.71 0.64 | 1.35 T 11
1.85 1.88 | 1.07 - 15
2.18 1.21 1.31 0 )

The maximum practical achievable reductions of real power transmission corresponding
to the optimal control force location at each of the frequencies analyzed are presented in
Table 4.4, which shows that increasing the excitation frequency generally decreases the
maximum achievable power transmission reduction. It is also of interest to note that
the number of complex modal wavenumbers k;, (equation (C.8)) shown in Appendix C)
increases as the excitation frequency is increased — for example, there are 2 at 210 Hz,
4 at 510 Hz and 5 at 1000 Hz. Thus, as waves represented by imaginary exponents in
equation (C.4) in Appendix C (where ks, and k4, are imaginary if using the condition of
equation (C.10)) represent propagation of power along the plate, there will be more modes

propagating at high frequencies, making active control with a single control force more

difficult.
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Table 4.4: Effect of forcing frequency on the maximum achievable power transmis-

sion reduction for a single primary force and a single control force (at best practical

locations)
Freq | (ze — 2,)/As | ye/As | E | 6 — ¢y radians | P.T.
(Hz) reduction
(dB)
210 0.32 1.15 | 2.24 0 45
210 O‘.86 0.33 | 1.25 s 50
310 0.90 1.22 | 1.04 T 30
410 0.83 1.37 | 0.89 T 16
510 1.85 1.88 | 1.07 -7 15
610 0.72 1.96 | 1.02 —T 20

4.3.2 A row of in-phase, uniform amplitude control forces and

a single primary force

In this case, the single primary force is driven with unit amplitude near the free end of
the plate at z, = 0.025 and y, = 0.25, which is at the same y-coordinate location as the
central control force. At an excitation frequency of 210 Hz (Figure 4.4(a)), more than
50 dB reduction is obtained over a large area of control force location. At frequencies of
410 Hz (Figure 4.4(b)), 510 Hz (Figure 4.4(c)) and 610 Hz (Figure 4.4(d)), 2 maximum
achievable power transmission reduction greater than 20 dB is observed for a few control
force locations. However, the areas of these locations are so small that it is unlikely that

this level of control could be realized in practice.
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Figure 4.4: Power transmission reduction for a line of in-phase, uniform amplitude
control forces and a single primary force. (a) “central” primary force (in (a) to (d),
yp = 0.25) located at (z,,y,)/As = (0.07,0.67), error sensor located at (z. — z,)/Af =
1.43 and excitation frequency 210 Hz; (b) (z,,y,)/Af = (0.09,0.93), (z.—z,)/A s = 2.01
and excitation frequency 410 Hz; (c) (z,,vp)/Af = (0.10,1.04), (z. — z,)/ A = 2.24
and excitation frequency 510 Hz; (d) (z,,y,)/A; = (0.11,1.14), (z. — z,)/A; = 2.45
and excitation frequency 610 Hz; (e) off-center primary force (in (e) to (h), y, = 0.3)
located at (z,,y,)/A; = (0.07,0.80), (ze — z,)/A; = 1.43 and excitation frequency
210 Hz; (f) (zp,y5)/A; = (0.09,1.12), (z. — z,)/Ay = 2.01 and excitation frequency
410 Hz; (g) (zp,y,)/As = (0.10,1.25), (x. — z,)/A; = 2.24 and excitation frequency
510 Hz; (h) (zp,y,)/ s = (0.11,1.36), (zc — z,)/A; = 2.45 and excitation frequency
610 Hz. = 1 primary force and 3 control forces; «+=eereeee-. 1 primary force
and 6 control forces; — — — 1 primary force and 12 control forces; ==——==—1

primary force and 24 control forces.
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Figures 4.4(e) to 4.4(h) show the results of repeating the calculation displayed in Fig-
ures 4.4(a) to 4.4(d), but with the primary force located off the mid point of the plate y-axis,
as for Section 4.3.1. At an excitation frequency of 210 Hz (Figure 4.4(e), the maximum
achievable power transmission reduction is approximately 4 dB for 3, 6, 12 or 24 control
forces over a wide range of locations of the row of control forces. The performance of the
row of control forces for the off-center primary force (Figure 4.4(e)) is much poorer than
when the primary force is located centrally (Figure 4.4(a)) for a frequency of 210 Hz, which
shows that the symmetric control force distribution will not control the anti-symmetric
component of primary vibration. At a frequency of 410 Hz (Figure 4.4(f)), the maximum
achievable power transmission reduction of 6 dB for the off-center primary force can be ob-
tained by choosing appropriate control force locations. However for excitation frequencies
of 510 Hz (Figure 4.4(g)) and 610 Hz (Figure 4.4(h)), the maximum achievable reduction
is only 1dB. In all of the cases shown in Figure 4.4, increasing the number of control forces

above three does not increase the maximum achievable power transmission reduction.

4.3.3 A row of in-phase, uniform amplitude control forces and

a row of in-phase, uniform amplitude primary forces

Figure 4.5 shows power transmission reduction corresponding to an equal number (3, 6, 12,
24) of primary and control forces. The results shown in Figure 4.5(a) to 4.5(d) are similar
to the results shown in corresponding Figures 4.4(a) to 4.4(d). This is probably because
the symmetric control forces control symmetric components of primary vibration in these
two cases. At a frequency of 210 Hz, and an equal number of primary and control forces
(Figure 4.5(a)), the maximum achievable power transmission reduction is slightly less than
that achievable for a row of control forces and a single central primary force (Figure 4.4(a)).
At excitation frequencies of 410 Hz, 510 Hz and 610 Hz, it can be seen that the achievable
reduction in power transmission is critically dependent upon the axial location of the row

of control forces with this optimal location being frequency dependent as well.



30

o
3 I i i :131'_ I i I
(a) 2k (b)

ol i

- m-

mnS -

A ;
o

£ = ‘

o

D

3 2 .

=

S

88. Q.lllI\IMill

o 0 0.51.01.52.0

o

-

v

"f"g T T T gp T T T

g | :

G2k () 4 <f (d)

H o -

i8]

N

o

=

o

[a T

20

10

Figure 4.5: Power transmission reduction for the same number of in-phase, uniform-
amplitude primary and control forces. (a) excitation frequency 210Hz; (b) excita-
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4.3.4 Effect of forcing frequency on performance with in-phase

control forces

In practice, the location of each control force is fixed and it is of interest to observe
the frequency range over which control can be achieved for a control force configuration
optimized for a particular frequency. Figure 4.6(a) shows the maximum power transmission
reduction which can be obtained with a fixed control force location as a function of frequency
for a single off-center primary force as for Figure 4.2 and a single control force located at the
optimum position for an excitation frequency of 210 Hz ((z. — 7, 4.)/A; = (0.38,0.91)).
It can be seen from the figure that power transmission reduction at frequencies higher than

the cut-on frequency (266 Hz) of the third mode is either very small or zero.
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Figure 4.6: Power transmission reduction as a function of frequency with the control
forces located at the optimum location for 210 Hz. (a) a single off-center primary and

control forces; (b) equal numbers of primary and control forces with the control forces

driven in phase. ———— a single primary force with a single control force in (a)
and 3 primary forces with 3 control forces in (b); -reoreeeeees 6 primary forces and
6 control forces; =—=—=— 12 primary forces and 12 control forces; ——=-— 24

primary forces and 24 control forces.

Figure 4.6(b) shows the performance for an equal number of primary and control forces,



72

with the row of control forces at the optimum location of (z. — 2,)/A; = 0.30 for 210 Hz
(shown in Figure 4.5(a)). From this figure, it can be seen that power transmission reduction
decreases as the frequency increases from 200 Hz to 266 Hz (the cut-on frequency of the
third mode). At 266 Hz the reduction is zero. At the cut-on frequencies of the fourth and
fifth modes (473 Hz and 739 Hz), significant levels of power transmission reduction are also
obtained. Increasing the number of primary and control forces equally above three does
not significantly affect the maximum achievable power transmission reduction. In general,
the control performance for an equal number of primary and control forces is better than
that for a single off-center primary force and a number of control forces. This is probably
because the symmetric control force arrangement effectively controls the symmetric but
not the anti-symmetric components of vibration generated by the primary forces.

[t seems from these results that the maximum reduction in power transmission is
achieved when only one or two modes are propagating, which is as expected. However,
the reason for the increase in performance close to the cut-on frequencies of the fourth and
fifth modes is that at resonance the system response is dominated by one mode thus one

control force can achieve good performance.

4.3.5 A row of three in-phase primary forces and a row of

three independently driven control forces

For this case, at an excitation frequency of 210 Hz (Figure 4.7(a)) with both independent
and in-phase control forces, more than 50 dB of reduction is obtained at all but a few dis-
crete control force locations. Power transmission reduction with three independent control
forces is not presented in Figure 4.7(a). This is because at 210 Hz there are only two waves
cut-on and there are three independent control forces so the control system is under deter-
mined (Nelson and Elliott, 1993), thus the matrix in equation (4.29) is too ill-conditioned
to be inverted to obtain a valid solution. Reducing the number of control forces to two
would fix this problem. At frequencies of 410 Hz, 510 Hz and 610 Hz (Figures 4.7(b), (c)
and (d) respectively), power transmission reductions achieved with independently driven
control forces are more than 50 dB greater than with in-phase control forces. Thus, for

these cases there is a considerable advantage in using independently driven control forces.
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The continuous line in Figure 4.8 shows the effect of changing the excitation frequency
on power transmission reduction when the three control forces are driven independently,
with the row of control forces at the optimal location of (z. — z,)/A; = 0.30 for 210 Hz.
The result with three independent control forces for frequencies less than 266 Hz is omit-
ted because of numerical difficulties associated with the ill-conditioning of the matrix in
equation (4.29). As for Figure 4.6, the control forces are optimally located for a 210 Hz
primary excitation. For comparison, the result for three in-phase forces (from Figure 4.6(b))
is shown as a dotted line. In Figure 4.8, it can be seen that the theoretically achievable
power transmission reduction achieved by driving the control forces independently is more
than 50 dB for all frequencies lower than the cut-on frequency of the fifth mode (that is,
739 Hz), and well in excess of the reduction achieved by driving the forces in-phase. It is
interesting to note that at the cut-on frequency of the fourth mode (473 Hz), the three
independent optimal control force amplitudes and phases are the same as the three in-phase
optimal control forces, and similar maximum power transmission reductions are achieved
for both in-phase control and independent control cases. The difference in the calculated
reductions between the two cases is a result of rounding errors in the calculations. As
the frequency is further increased to 816 Hz, the maximum achievable reduction decreases
rapidly to zero (dB). Between 816 Hz and 1000 Hz, the reduction increases slowly again
to about 4 dB, but in this region use of independent rather than in-phase control forces

produces no significant advantage.

Figure 4.7 demonstrates the important result that, in contrast with a row of in-phase
control forces, it is possible to achieve a large reduction in power transmission by driving
the control forces independently. Such results can be obtained by placing the row of control
forces at any except a few discrete distances downstream of the primary forces. Figure 4.8
shows that with three independently driven control forces, good control can be achieved
over the frequency range for which only the first five modes are propagating.

The results given so far, indicate that there are some control force locations where
significantly less attenuation in power transmission can be obtained. However, a second
line of control forces may be used to overcome the difficulty in controlling power transmission
when the first line of control forces is located at a nodal line in a standing wave (see the

examples for vibration control, Young, 1995).
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4.3.6 Effect of error sensor type and location

In the examples discussed so far, the cost function which has been minimized is intensity
integrated across the width of the plate at some axial location z.. This quantity, referred to
as power transmission, is not easily measured in practice. Thus the purpose of this section
is to examine an alternative cost function which could be used to supply the error input to
a feed-forward controller on the total power transmission reduction.

First of all, the effect on power transmission reduction of using flexural acceleration
amplitude averaged over the width of the plate is examined. Two axial locations are assumed
for the error sensor location, one in the near field of the control force (at (z.—z.)/A; = 0.1)
and one in the far field of the control force (at (z. — z.)/Ay = 2.0), with control forces
located at the optimal location of (z, — z,)/A; = 0.30 for 210 Hz. Maximum achievable
power transmission reductions for three in-phase primary forces and three in-phase control
forces are listed in Table 4.5 for both types of error signal measured at locations in both the
near and far field of the forces, for a range of excitation frequencies. As three control forces
are driven symmetrically, the first and the third force are the same. Only the first and second
control forces are shown in Table 4.5 and 4.6. Except at 210 Hz where the wavelength
is relatively large, results for maximum power transmission reduction are independent of
whether or not the power transmission error sensor is in the near or far field of the control
force. On the other hand, the influence of the near field on the maximum achievable
power transmission reduction is very significant when acceleration amplitude is used as
the cost function. However, if the acceleration sensor is in the far field of the control
force, the results obtained are similar to those obtained using a power transmission sensor.
Similar conclusions may be drawn for the case where the three control forces are driven
independently, the results for which are shown in Table 4.6. The unexpected effect of the
near field on the results corresponding to the use of power transmission as the cost function
is because the near field reactive power fluctuations affect the ability of the error sensors

properly to observe the power transmission.



Table 4.5: Error sensor type and location for three in-phase control forces
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Freq | (ze — z)/Af | Acc. | ¢e— &y P.T. P.T. | ¢.— ¢, P.T.
(Hz) control | radian | reduction | control | radian | reduction
|| (dB) | Fe| (dB)
210 0.1 0.78 0.31 9 1.02 0 73
2.0 1.02 0 129 1.02 0 123
310 0.1 0.17 0.57 0.44 0.56 0 1
2.0 0.22 0 0.71 0.56 0 1
410 0.1 0.79 0.10 9 1.02 0 11
2.0 1.09 0 11 1.02 0 11
510 0.1 0.69 0 9 1.03 0 17
2.0 1.01 0 17 1.03 0 17
610 0.1 0.27 0 2 0.94 0 )
2.0 0.91 0 d 0.94 0 )

Note: “Freq” refers to frequency, “Acc.

cost function, and “P.T. control” refers to use power transmission cost function.

control” refers to use acceleration amplitude



Table 4.6: Error sensor type and location for three independent control forces
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Freq | (z. —z.)/A; | Acc. | ¢ — &, P.T. PT. | ¢.— ¢, P.T.
(Hz) control | radian | reduction | control | radian | reduction
| Fe| (dB) |Fel (dB)
210 0.1 0.39 0.46 11 16.50 -1.54 32
1.45 0.24 16.51 1.47
2.0 0.49 0 121 0.49 -0.16 122
1.56 0 1.57 0
310 0.1 0.55 3.02 13 0.62 s 54
1.83 0 2.26 0
2.0 0.62 s 122 0.62 —7 180
2.26 0 2.26 0
410 0.1 1.00 0.13 12 1.13 0 63
0.21 -0.18 0.61 0
2.0 1.13 0 119 1.13 0 147
0.61 0 0.61 0
510 0.1 0.65 0 8 1.12 0 62
0.44 -0.18 1.33 0
2.0 1.12 0 114 1.12 0 118
1.33 0 1.33 0
610 0.1 0.19 -0.17 3 2.91 0 44
0.37 -0.27 5.01 0
2.0 2.91 0 64 2.92 0 83
5.02 0 5.03 0
Note: “Freq” refers to frequency, “Acc. control” refers to use acceleration amplitude

cost function, and “P.T. control” refers to use power transmission cost function.
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In practice, it is not possible to integrate intensity over the width of the plate experi-
mentally, although it is possible to integrate flexural acceleration which is proportional to
surface strain measured by using a PVDF film sensor (Gibbs and Fuller, 1990). However
in some instances, even acceleration will be measured by a number of accelerometers at
discrete points so it is of interest to examine the effect on the maximum achievable reduc-
tion in power transmission of deriving the cost function by averaging over a fixed number
of sensors rather than integrating over the full width of the plate.

Figure 4.9 demonstrates the effect of changing the number of numerical integration
subinterval for error sensors located in the far field of the control forces. This is done to
simulate the effect of changing the number of error sensors (accelerometers for acceleration
and accelerometer pairs for power transmission (Appendix H)) spaced uniformly in a line
across the plate. Figures 4.9(a) and (b) show the results for three in-phase control forces,
with acceleration and power transmission as cost functions respectively. In the same way
Figures 4.9(c) and (d) present the results for three independent control forces. For power
transmission reduction values of 180 dB in the figures, the calculation actually produced
minimum power transmissions slightly less than zero. In Figure 4.9, the reduction sometimes
gets worse with increasing number of error sensors. This is because the reduction exceeds
120 dB. As indicated in the beginning of Section 4.3, rounding errors become significant
when the calculated attenuation due to active control exceeded 120 dB. Generally, the
performance is seen to improve as the number of error sensors is increased, but significant
improvements are not evident once the number of sensors exceeds seven. The propagating
waves in the plate below 800 Hz are carried by the first five modal components. The
selection of seven sensors with spacing less than half of the wavelength of the highest mode
will ensure the satisfaction of the spatial Nyquist criterion for resolving the 5th modal
component and sufficient number of equations (see Eq. (D.3)) for the determination of the
modal components in the propagating waves.

The figure shows that to obtain the best results with a minimum number of error Sensors,
the control forces should be driven independently. In such cases, the power transmission

reduction is almost always larger than 40 dB, even if only three error sensors are used.
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4.4 Summary

Power transmission in a semi-infinite plate can be significantly reduced by using an array
of independently driven control forces placed in a row across the plate. For three or more
control forces it is possible to achieve levels of power transmission reduction in excess of
50 dB over a frequency range (0-750 Hz), provided that power transmission is used as the
error sensor cost function to be minimized. Use of acceleration as the error sensor cost
function in power transmission reduction can be equally effective, provided that the error
sensors are in the far field of the control forces. For the plate tested here a minimum of
seven acceleration or power transmission error sensors spaced evenly in a line across the
plate were found to be necessary if the error sensors are in the far field of the control forces
for the frequency range; however, results improve slightly if the number of error sensors is
increased further.

Compared with independently driven control forces, a row of control forces driven with
uniform amplitude and in-phase, is less effective in power transmission reduction, except
at plate resonance frequencies. However, even at plate resonance frequencies, there is an
optimum axial location of the control force array, and performance falls off rapidly as the
control force location varies from the optimum location.

For a single point control force, a reduction in power transmission in excess of 15 dB is
possible over the frequency range if the control force is located optimally. However, once
again the optimal control force location is strongly frequency dependent, and the reduction
falls off rapidly as the control force location varies from the optimum location. It should
be noted that with increasing frequency more waves cut-on and thus (more likely) more

control forces and error sensors are required.



Chapter 5

An experimental study of active
control of power transmission
characteristics in a semi-infinite

plate

5.1 Introduction

Controlling vibratory power transmission and intensity distribution in large plate-like struc-
tures is one way of minimizing the transmission of vibrational energy between two items
of equipment mounted on the same structure. To evaluate the effectiveness of a control
system built for this purpose, it is useful to measure residual structural intensity distribution
in the plate structure.

In Chapter 4, power transmission in a semi-infinite plate was analyzed theoretically. This
chapter is concerned with an experimental investigation of power transmission and intensity
distribution in a semi-infinite plate excited by a pair of piezoelectric ceramic actuators. The
two crystals are attached at the same location but on opposite surfaces of the plate. The
intensity, modal amplitude and reflection coefficient measurements are used to evaluate the
effectiveness of an active control system driving three control actuator pairs. The control

system is designed to reduce power transmission using a cost function consisting of the sum



83

of the squared outputs of eight accelerometers arranged in a single row across the width of the
plate in the far field of the control and primary sources (actuators).

In this chapter, the experimental results are compared to theoretical predictions and in addition
intensity distributions before and after control are investigated. These distributions and the
associated intensity vortices are of considerable interest as will become apparent in the following

discussion.

5.2 Experimental arrangement

One end of a steel test plate (Figure 5.1) with a working length of 1.4 m, thickness of 0.003 m
and width of 0.5 m was mounted in a sand filled triangular box (1 m in length) in an attempt
to provide a semi-anechoic termination. The sides normal to the anechoically terminated end
were simply supported using thin steel strips. One edge of each strip was attached to the plate
by epoxy and small set screws while the other edge was bolted to the heavy steel frame. The

remaining edge of the plate, opposite the anechoically terminated end was free.

The power transmission was investigated experimentally on the test plate which was excited
near the free end using a pair of piezoelectric ceramic actuators (one primary source) driven out of
phase and with the same amplitude, with the idea of introducing pure bending excitation. Active
control was implemented using a second row of three piezoceramic actuator pairs (three control
sources) bonded on each of two opposite surfaces of the plate nearer to the anechoic end with
each piezoelectric ceramic pair driven independently. Eight accelerometers mounted in single row
across the plate between the control sources and the anechoic end acted as error sensors. The
source signal from an HP spectrum analyzer was passed through a power amplifier into a primary
transformer and then into the primary piezoceramic actuator pair. Error signals from the eight
accelerometers and the source signal (as a reference) were passed by way of amplifiers and filters
to the feed-forward controller which generated the driving signal for the control sources. Using
a T800 transputer as the central processor, the primary controller includes a FIR (finite impulse
response) filter, a filtered-x LMS algorithm for the cancellation of plate vibration at the error
sensors and a LMS algorithm for the identification of the secondary path. Up to three control
signals were used to drive up to three independent control sources. The arrangement is shown in

Figure 5.2(a) and a block diagram is shown in Figure 5.2(b).
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Figure 5.1: Experimental semi-infinite plate model.

5.3 Test procedure

Modal amplitudes were obtained by measuring acceleration across the plate at fifteen points
in a row parallel to the free end and, then by using the analysis described in Appendix D.
Using the theoretical analysis, it was found that a minimum of fifteen measurement points
were necessary to provide a reasonable degree of accuracy. Displacement amplitude re-
flection coefficients were determined by measuring, in the far field of the control sources,
acceleration at five points in each of two rows parallel to the free end and, by using the
analysis described in Appendix E.

Intensity (in one direction) was measured as described in Appendix H where the intensity
is proportional to the product of the outputs of two closely spaced accelerometers. The
accelerometers were mounted in a hard plastic template and attached to the plate with

small permanent magnets, so that the distance between the two accelerometers was always
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Figure 5.2: Experimental arrangement: (a) general set up; (b) block diagram
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Figure 5.3: A structural intensity measuring set.

25 mm (Figure 5.3). The x (axial) component of the intensity was measured by setting
the line joining the accelerometer centers parallel to the x-axis and the y component of
the intensity measured by turning the template by 90°. Acceleration amplitudes were
determined by multiplying the auto spectrum of each signal by an appropriate factor (see
Appendix H), and the phase difference was obtained by taking the transfer function between
the two signals. Acceleration values so obtained were then used to calculate the intensity

as shown in Appendix H.

5.4 Numerical and experimental results

The results presented in this chapter are for the locations of sources, error sensors and
intensity measurements illustrated in Figure 5.4. These locations are adhered to unless

otherwise stated.



87

1.4m

1.1t01.4m
0.7m -

¥

Y

A A A
\ 4

0.3 m
0.025 SIMPLY | SUPPORTED

o]0

o]o]
(o]0
00
00

00 ]

Error ooResidual
Sensors OO0 Accele-

(8) OO ration

OO0 (2X15)

(o]o]

oo

(o]o]

00
\ 2R 00

Y SIMPLY SUPPORTED
L X

Figure 5.4: Block diagram of the vibration control system

|

'I

Primary

Source
Control

O Sources
(3)

05m
FREE

0.417 m
ANECHOIC

O O 0O 00 O OO

There was some difficulty in experimentally simulating the analytical semi-infinite model.
Slightly different boundary conditions between the experimental and analytical models re-
sulted in different resonance frequencies, a problem which was compensated for by slightly
changing the thickness of the the plate to 2.9 mm (from 3 mm) in the analytical model.
The measured (using random noise) and adjusted theoretical frequency responses are shown

in Figure 5.5.

As can be seen from the figure, the two frequency responses are very different at
all frequencies except in the 260 Hz region. This is due to the inability of the plate
termination to simulate an infinite plate by preventing waves from being reflected. To
evaluate the effectiveness of the termination, displacement amplitude reflection coefficients
were determined as a function of frequency for each mode propagating along the plate.
Figure 5.6 shows the measured reflection coefficients from the anechoically terminated end
of the semi-infinite plate for the first three modes in the frequency range of 200-400 Hz,

determined as described in Appendix E.

Figure 5.6(a) shows the reflection coefficient determined using 5 pairs of measurement

points in two rows parallel to the y-axis. Each pair of measurement points were equally
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spaced at a distance of 0.05 m apart. From Figure 5.6(a), it can be seen that experimental
reflection coefficients of more than 0.2 are obtained for the first three modes at some fre-
quencies, indicating large reflections from the anechoically terminated end, thus explaining
the discrepancies between theoretical and experimental frequency responses. The measured
reflection coefficient for the third mode (dotted line) at frequencies of less than 259 Hz
(third modal cut-on frequency) is zero which indicates that there is no third mode excita-
tion in this region. At 259 Hz, minimum reflection coefficients are achieved for the first
three modes and, thus at this frequency the experimental model best approximates the
theoretical model.

Figure 5.6(b) shows the result for the same configuration as represented in IEigure 5.6(a),
except for the different location of the second row of measurement points. It can be seen
that the general shapes of the reflection coefficient curves for each mode are similar in
both Figures 5.6(a) and (b), although it can be seen that at some frequencies (but not at
259 Hz) large differences exist, indicating that in general more measurement points should
be used, because the results should be independent of small changes in accelerometer
spacing. Figure 5.6(c) shows the result for the same configuration as represented in Fig-
ure 5.6(a), except only the first three pairs of measurement points were used. Comparing
Figures 5.6(a) and (c), it can be seen that the general shapes of the reflection coefficient

curves are similar for corresponding modes but at some frequencies (not 259 Hz) large dis-
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crepancies exist which clearly indicate that at these frequencies more measurement points
should be used. Table 5.1 lists the reflection coefficients measured for the first three modes
at 259 Hz as shown in Figure 5.6. From the table it can be seen that at this frequency 5

pairs of measurement points appear adequate for determining the reflection coefficient.

Table 5.1: Measured amplitude reflection coefficients at the third mode cut-on fre-

quency of 259 Hz

First mode | Second mode | Third mode

5 pairs of
measurement points 0.2178 0.2656 0

T, = 1.2m,z, = 1.23m

5 pairs of
measurement points 0.2795 0.2013 0

Ty = 1.2m,z, = 1.25m

3 pairs of
measurement points 0.2069 0.1378 0

Ty =12m,z, =1.23m

From the above analysis, it can be seen that the experimental plate was not anechoically
terminated at the sand box and, as a result there were waves traveling in two directions
(the incident wave along the plate to the termination and the reflected wave back along the
plate to the free end). However, the numerical simulation demonstrates that the reduction
in both power transmission and intensity distribution is independent of the reflection coeffi-
cient. This means that experimentally determined values of power reduction are valid even
if there is large reflection from the anechoic termination. For the experiment conducted,
a determination was made of the net total energy produced by the incident and reflected
waves by using two rows of accelerometers. It was not necessary to determine the separate

intensities of the incident and reflected waves in the experiment.
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5.4.1 Active control of power transmission

To investigate the potential for actively controlling power transmission, the plate was excited
at the third modal “cut-on"” frequency (259 Hz for experiment and 257 Hz for theory).
An estimate of power transmission was obtained by using the procedure outlined in
Appendix H which included averaging the intensity measured by each of 15 accelerometer
pairs arranged in two rows across the plate parallel to the free edge and in the far field
of the control sources. The measured and theoretical power transmission reductions are
shown in Table 5.2. The measured power transmission reductions were determined from
intensity measurements at z = 1.20 m. An acceleration amplitude cost function was used
for both theory and experiment. The results presented in this table show that significant
power transmission reductions for either measured or theoretical cases cannot be achieved
with only one control source. However, significant power transmission reductions can be
obtained (68 dB theoretical and 14 dB measured) by using three independent control
sources. The difference between theoretical and measured reductions for the latter case
can be attributed to the difficulty in obtaining identical output force amplitudes from each
element of the piezoceramic control actuators and the limitations in the controller capability.
The measured reduction would be expected to increase when a new type of controller, such
as EZ-ANC controller, is used (see the examples for the measurement of power transmission
in a cylinder (Section 8.4)). Table 5.2 also shows that in practice, the achievable power
transmission reduction generally increases as the separation between the error sensors and
control sources increases. However, the theoretical power transmission reduction is virtually
independent of the error sensor location when (z, —z.)/A; > 1.0. Although the measured
power transmission reduction was not as great as that predicted theoretically, a value of
14 dB does show that the approach described here could be a feasible way of controlling

vibration transmission in large structures.
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Table 5.2: Measured and theoretical power transmission reductions with acceleration

amplitude as the cost function

Measured Measured Theoretical Theoretical
(ze —z.)/As | P.T. redu.(dB) | P.T. redu.(dB) | P.T. redu.(dB) | P.T. redu.(dB)
with one F, with three F, with one F, with three F,
1.36 -1 il 0 68
1.51 -1 f 0 68
1.66 0 [ 0 68
1.82 -2 3 0 68
1.97 -2 1 0 68
2.12 -2 4 0 68
2.27 -1 6 0 68
2.45 3 11 0 68
2.54 s 11 0 68
2.63 2 10 0 68
2.73 2 11 0 68
2.82 0 10 0 68
2.91 0 11 0 k 68
3.00 0 11 0 68
3.09 0 12 0 68
3.18 1 13 0 68
3.27 0 14 0 68

Note: “one F.” represents one control source (sharing the same y-location as the pri-

mary source) and “three F,.” represents three independent control sources.
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5.4.2 Intensity vortices

An interesting aspect to the results for the reduction in power transmission obtained from
active control is the observation of intensity vortices. The presence of such vortices had been
reported previously by Tanaka et al. (1993) for a harmonically excited simply supported
plate. These authors demonstrated that for vortices to appear, at least two excitation
sources were needed or if only a single source was used, then at least two modes had to
be excited at a similar amplitude and, at a frequency close to their resonance frequencies.
This means that the resonance frequencies of the two modes have to be close together if
a vortex is to be obtained with a single harmonic excitation source.

It is interesting to note that when one side of the plate is approximately anechoically
terminated (as for the case considered here) such that the traveling wave field dominates
the standing wave field, strictly speaking no resonant modes exist; rather, the vibration field
is made up of “cut-on” traveling modes, in much the same way as occurs in an anechoically
terminated duct. Thus at any frequency above the second modal cut-on frequency there
will usually be two or more modes propagating and in most cases there will be sufficient
energy in at least two modes for intensity vortices to be generated.

For intensity results presented here, the applied frequencies are the same as for Sec-
tion 5.4.1. Measured and theoretical intensity vectors were determined as a function of
location on the plate as described in Appendix H. Figure 5.7(a) shows the distribution of
the measured uncontrolled intensity and Figure 5.8(a) shows the corresponding theoretical
result. Figures 5.7(a) and 5.8(a) essentially indicate one major vortex. This'is due to the
fact that the path of power transmission in the plate is a combination of transmission and
rotation, the latter being induced by the interference of two modes that produces a “vortex
generating block”. The theoretical and experimental results are slightly different because
the experimental model was characterized by some reflection from the “infinite end” of the
experimental plate as shown in the beginning of Section 5.4 where the reflection coefficients
were about 0.2 for the first and second modes at the test cut-on frequency of 259 Hz. Also,
the method of measuring intensity as described in Appendix H assumes the absence of near
field effects and thus gives only approximate results. On the other hand, the theoretical

model makes no such assumption. Nevertheless, it is encouraging to see that the vortex
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trends are similar for the theoretical and experimental models,
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Figure 5.7(b) shows a measured intensity distribution with one primary source and one
control source, and Figure 5.7(c) shows a measured intensity distribution with one primary
source and three control sources driven independently. Figures 5.8(b) and (c) present
corresponding theoretical results. Comparing Figures 5.7(b) and (c) with Figures 5.8(b)
and (c), it can be seen that the theoretical intensity vectors are orientated almost entirely in
one direction, whereas the measured intensity vectors include some vortices. This difference
is probably due to the difficulty in ensuring that each element in each actuator pair produces
the same force. Any differences in the properties of the two piezoelectric ceramics, such
as differences in their sizes, their locations or their bonding layer thicknesses would cause
differences in their force output.

In an attempt to explain the presence of observed intensity vortices, a modal decom-
position of the plate response was undertaken to determine the relative amplitudes of the
contributing modes ( “cut-on” traveling modes as described earlier in this section). The
modal decomposition technique is explained in Appendix D and results are given in Fig-
ures 5.9 (measured) and 5.10 (theoretical) for the amplitudes of the first three modes.
For the uncontrolled case, the measured modal amplitude (black columns in Figure 5.9)
increases as the modal number increases, with the third mode being the dominant mode.
The theoretical modal amplitude (black columns in Figure 5.10) follows the same tendency
as the measured modal amplitude. Experimentally, the third with first mode produces a
major vortex, while the third with second mode produces a minor vortex. In contrast, the-
oretically, the third with the other two modes produces two minor vortices included in a
major vortex. However in both cases, the intensity pattern is dominated by a single major
vortex corresponding to the dominant third mode.

For the experimentally controlled cases, with one control source (grey columns in Fig-
ure 5.9) the modal amplitudes are not significantly altered. However, with three indepen-
dently driven control sources (hatched columns in Figure 5.9) the third modal amplitude
is significantly decreased although the first modal amplitude is increased. In contrast, us-
ing one control source (grey columns in Figure 5.10) in the theoretical calculation reduces
the third modal amplitude and using three independently driven control sources (hatched
columns in Figure 5.10) decreases the first three modal amplitudes, resulting in a significant

reduction in overall vibration levels. The numerical results shown in Figure 5.10 indicate
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that the second mode is the dominant mode for the two controlled cases. Therefore the
distribution of the theoretical intensity vector is orientated almost entirely in one direction
(Figures 5.8(b) and (c)) as the response is dominated by the second mode, whereas the
distribution of the measured intensity vector includes some vortices (Figures 5.7(b) and (c))
due to the interaction of the first three modes. From the above analysis it can be seen that

relative modal amplitudes significantly affect the intensity distribution.

5.5 Discussion and summary

In practice, power transmission in a semi-infinite plate can be significantly reduced by driving
an array of independent control sources, placed in a row, across the plate. With three
controlled piezoceramic actuator pairs it is possible to achieve experimentally maximum
levels of power transmission reduction of 14 dB at the “cut-on” frequency of the third
mode. Acceleration amplitude only may be used as the error sensor cost function to be
minimized, provided that the error sensors are in the far field of the control sources. For
the test plate, a minimum of eight acceleration error sensors spaced evenly in a line across
the plate are necessary; however, it is expected that results would improve further if the
number of error sensors were increased.

Measurements of intensity on the semi-infinite plate, under primary excitation only,
frequently show a vortex pattern which changes as the number and location of the primary
sources change. It was found that the addition of control sources driven to mjnimize power
transmission, also largely eliminates the vortex pattern. In future studies, it may be possible
to drive control sources to create intensity vortices around points where sensitive items of
equipment are attached to effectively isolate these from the plate vibration.

The theoretical results presented in this chapter, show that the experimental results are
broadly true for power transmission and intensity distribution, except that the theoretically
predicted reduction in power transmission is higher than that which could be measured. This
is due to the difficulty in obtaining identical output force amplitudes from each element
of each pair of piezoceramic control actuators and limitations in the controller capability.
Also, highly reflective or reverberant fields may make measurement of intensity difficult

and inaccurate. Thus improving the termination is likely to vastly improve the agreement



between theory and experiment.
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Chapter 6

Piezoelectric actuator vs point force

excitation of a beam and a plate

6.1 Introduction

In calculating the optimal control force for feed-forward active control of a vibrating struc-
ture, it is simplest to model the control force as point force (Chapters 2 to 4). When the
control force is applied by a shaker attached to the structure by way of a thin rod then
the point force model is adequate. However, when the structure is excited by piezoelectric
actuators (Chapter 5), the point force model may no longer be sufficiently accurate. In
many applications, piezoelectric actuator pairs are placed on parts of the structure in con-
figurations which induce pure bending only. For a rectangular section beam or a thin plate
this is achieved by placing one actuator on each of two opposite surfaces. For modeling,
one alternative is to consider the actuator pair, in the case of beams (Clark et al. 1991)
as point moments (Figure 6.1) and, in the cases of plates (Dimitriadis et al. 1991) as line
moments acting along the edge of each actuator (Figure 6.2). A second alternative is to
explore the conditions under which the actuator pair can be considered as a point force
applied to one surface of the structure in the center of the actuator. The purpose of this
chapter is to undertake this latter task for a beam and a semi-infinite plate excited by a
piezoelectric actuator pair, as a result of application of active vibration control. Thus in

the following analysis, expressions for the point force equivalent of a pair of applied mo-
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Figure 6.1: Infinite beam with a pair of piezo actuators bonded to it: (a) physical

system; (b) equivalent dynamic system showing applied bending moments.

ments (for a beam) and two pairs of line moments (for a plate) are derived. The effect
of piezoelectric actuator size, location and excitation frequency are also investigated. The
derivation of expressions relating the applied moment to piezoelectric driving voltage has

been considered elsewhere (Kim and Jones, 1991) and will not be considered further here.

6.2 Response of infinite beam excited by a pair of

piezoelectric actuators

.

The flexural wave response of an infinite beam, to an applied normal force F,, and an applied
moment M, as shown in Figure 6.3 (with displacement w(z) in the Z direction), is given

by Pan and Hansen (1990) as

1 1
== M. .
wie) = g1, Pt g e P (6.1)

The subscripts f and m refer to the applied forces and applied moments respectively, and

the factors 3; and f3,, are defined as

/3)'(55,330) - _(je—jkj|z‘-—1:o| + e—kflr——ro|) (62)
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Figure 6.2: Semi-infinite plate with a pair of piezo actuators bonded to it: (a) coordi-

nate system; (b) equivalent dynamic system showing applied bending moments.

3 N

Figure 6.3: Infinite beam model.
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and
o —

B(z,20) = (e7okslz=mol . g=hsle=soly (6.3)

2 — o]
where zo is an excitation location,

If only an excitation force is applied at z = z,,

IR

If only a pair of counteracting moments of equal amplitude M, are located at z = z; and

r = z, (Figure 6.1(b))

ll

4Elyyk2M Bz, T1) — Bm(z, 22)). (6.5)

wm(z) =

The ratio of amplitudes of the applied moment and force which is required to produce
equal vibration amplitudes at some location downstream of the source can be obtained by
writing

()] = lwm ()] (6.6)

From this equation, the moment/force amplitude “equivalence ratio” at any location z is

lMP| — |ﬂf($axp)|
|FP| l[ﬂM(xaml)_ﬂm(xv‘T?)]kf'.

As defined in Chapter 2, the near field extends up to a distance of approximately 0.73 wave-

(6.7)

lengths from the source. At this distance, the “equivalence ratio” has converged to within
2% of its final far field value. An example for an aluminum infinite beam, 50mm x25mm in
cross section is shown in Figure 6.4 for two actuator sizes and two excitation frequencies.
The actuator width has no effect on the results. Similar results of independence of location
z are obtained for a range of actuator sizes, locations and excitation frequencies. Thus in

the far field, equation (6.7) is independent of location z but not independent of excitation
frequency and actuator size.

As shown in Chapter 2, the power transmission is proportional to the displacement
magnitude square in an infinite beam. This ratio is the same as the power transmission

equivalence ratio in the infinite beam.
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6.3 Response of semi-infinite plate driven by a pair

of piezoelectric actuators

Theory

In this section, the concept of moment/force “equivalence ratio” for an infinite beam is
extended to the vibration of a semi-infinite plate.

The equation of motion for a plate given by Graff (1975) is
phid(z,y,t) + DaViw(z,y) = q(z,y), (6.8)

where V4 = V2V? is the square of the Laplacian operator, and ¢ = Fyé(z — x0)6(y — yo)
is the force per unit area, where Fy is the point force applied at (zq,yo) perpendicular to
the plate. If the edges of the plate at (y = 0, y = L) are simply supported, the following

harmonic series solution in y can be assumed for the vibrational displacement (Appendix C)

> . nmy
wy(z,y) = D wyn(z) sin —. (6.9)
n=1 Ly
Each force eigenfunction wy,(z) can be expressed in terms of modal wavenumbers k;,, as
follows

wfn(z) = Afnekl“r -+ Bfnekz"I + Cfneka"x + Dfn€k4"$. (610)

If the excitation applied to the plate is a pair of counteracting line moments acting
about a line parallel to the y-axis from (z1,4;) to (z1,y2) and from (z,,y1) to (x2,y2). the
applied force term g(z,y) in equation (6.8) becomes M, /0x, where the applied moment

per unit area, M, is given by Dimitriadis et al. (1991)

where h(e) is the unit step function. Equation (6.8) becomes

oM,
oz’

phio(z,y) + DpViw(z,y) = (6.12)

and the displacement (replacing the applied force with the applied moment in Appendix C)
13

nwy

W (2,y) = Z Winn () sin 7
n=1

(6.13)

Y
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with a corresponding moment eigenfunction
Wrn(2) = A€ + B, eFn® 4 O eFn® 4 D ekinT, (6.14)

For the case where the excitation consists of a pair of counteracting line moments act-
ing about a line parallel to the x-axis applied from (z1,y1) to (z2,y1) and from (z;,y2) to

(z4,y2), the applied force term ¢(z,y) in equation (6.8) becomes OM,/Jy, where (Dimi-
triadis et al. 1991)

My = Myy[8(y —y1) — 6(y — y2)l[A(z — 21) — h(z — z2)]. (6.15)

To be compatible with the use of primary point forces in the analysis, it is necessary to
replace the step function [h(z — z1) — h(z — z2)] with a sequence of adjacent § functions,
so that

My = Mpy[6(y — yl) — 5(y _ y2)] i=1 6(]:‘ . -'131')

That is, the line moments are transformed into sequences of point moments, and & is the

(ack—ml). (6.16)

number of point moments. Equation (6.8) then becomes

oM,
phi(z,y,t) + Dy Viw(z,y) = ayy' (6.17)

To allow for different actuator sensitivities in the x and y directions to an applied
electric field, we define M,, = M, and M,, = oM, in the following analysis. The total
plate response at any location (z,y) due to a pair of counteracting line moments M, and a
pair of counteracting line moments M, modeled as a series of point moments (Figure 6.2)
is

k k
wm(xa y) = Wizl + Wiz + E Wmi = Alp(w:cl — Wg + az wi), (618)

1=1 i=1

where w,,z1 and wy,,; are the responses due to each of the two line moments M,; and
Mo, wei (2 =1,2...k) is the response due to a pair of counteracting point moments at
(zi,y1) and (z4,92). wer, We, wi(t = 1,2... k) are the plate responses to the respective
unit applied moments (obtained by replacing the applied force with the applied moment in
Appendix C).

The moment/force “equivalence ratio” for the plate can be obtained by equating the

spatially averaged vibration amplitude produced by a point force actuator and spatially
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averaged vibration amplitude produced by a pair of piezoelectric actuators, which can be
obtained by writing
2, ) s, k )
/0 |prf—p(zvy)| dy = /0 |Mp[wrl($ay) - wr?(xvy) + azwi(z,y)” dy, (6'19)
i=1
where w;_, is the unit primary force response. Note that the spatially averaged values
are calculated along a transverse plate section (from y = 0 to y = L,). Thus, the

moment/force amplitude “equivalence ratio” at any location z is

M| _ VI8 [wyp(z,9)dy
ol 18 war (2, y) — waa (@) + @ They wil,y) Py

An alternative method of analysis utilizing separation of variables which was employed by

(6.20)

Dimitriadis et al. (1991) can only be used if the plate is of finite size.

Results

Before presenting detailed results obtained by evaluating equation (6.20), it is necessary
to determine the minimum number k of point moments into which the line moment M,
should be divided. Table 6.1 presents the moment/force “equivalence ratio” (calculated
by applying @ = 1 in equation (6.20)) as a function of the number of point moments &
applied along each actuator edge parallel to the x-axis and as a function of the distance
(z — z,)/ s from the center of the piezoelectric actuators. For the results presented in
this table, the analytical model is a 0.003 m thick and 0.5 m wide semi-infinite steel plate
excited by a piezoelectric actuator pair and simply supported along the infinite length sides
and free at the other side. The center of the square piezoelectric actuators (one on each
side of the plate) is located at (z,y) = (0.06,0.3).

It can be seen from the table that varying the number of point moments k£ produces only
very small changes in the “equivalence ratio”. The loss of accuracy caused by using only
one point moment along each side of the actuator parallel to x-axis is only about 0.04%.
The effect of varying k has been tested for a number of different piezoelectric actuator
sizes, a number of different actuator locations, and a range of excitation frequencies. A
result very similar to that shown in Table 6.1 was obtained in every case. Therefore, each

of the line moments M, and M,, can be replaced by an equivalent point moment applied
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Table 6.1: Moment/force amplitude “equivalence ratio” of a semi-infinite plate for
varying numbers k of point moments used to characterize the line moment. The ac-
tuator size is 40 mm x 40 mm and the excitation frequency is 210 Hz (wavelength

A = 0.3752m ).

(z—z,)/Af | k=1 |k=3|k=8|k=18 k=238 |Fk="T8
0.1 2.30 | 2.30 | 2.30 2.30 2.30 2.30
0.3 2.51 2.50 | 2.50 2.50 2.50 2.50
0.5 295 | 293 | 2.95 2.95 2.95 2.95
0.7 3.15 | 3.15 | 3.15 3.15 3.15 3.15
0.9 3.25 | 3.22 | 3.22 3.22 3.22 3.22
1.1 3.24 | 3.24 | 3.24 3.24 3.24 3.24
1.3 3.25 | 3.25 | 3.25 3.25 3.25 3.25
1.5 3.25 | 3.25 | 3.25 3.25 3.25 3.25
1.7 3.25 | 3.25 | 3.25 3.25 3.25 3.25
1.9 3.25 | 3.25 | 3.25 3.25 3.25 3.25

at the midpoint of the actuator edge. Equation (6.16) can then be simplified to
M, = aM,[6(y — 11) — 6(y — y2)16(z — Z)(zx — 21), (6.21)

where £ = £:42L. The total plate response at any location (z,y) due to a pair of piezo-

electric actuators given by equation (6.18) becomes
wm(ma y) = Mp(w:zl — Wgo + awy), (622)

where w,; and wg, are the unit responses due to M, and M., respectively and w, is the
unit response due to M, applied at z = z. The “equivalence ratio” given by equation (6.20)
can then be written as

M| _ VI fwyop(z, y)[2dy (6.23)
Bl S (w2, y) — weal,y) + aw, (2, )Py |

If the actuator is placed near the free edge of the plate, the response due to A, is very small

and the response due to M, dominates the vibration. As the distance between the free
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edge and the actuator increases, the response due to M, increases and eventually becomes
the dominant source of vibration, and also the “equivalence ratio” changes slightly for the
semi-infinite plate.

Tests have shown that the amplitude of the plate's response to applied moment pairs
M, and M, increases and so the “equivalence ratio” decreases as the size of the actuator
or the excitation frequency increases. These tests have been performed with piezoelectric
actuators up to 100 mm x 100 mm square and with an excitation frequency of up to
5000 Hz.

If the same definition for the extent of a near field is used as in a beam, Figure 6.5
shows that at the boundary of near field (0.73 wavelengths from the source) the “equivalence
ratio” converges to within 2% of the final far field value for a range of actuator sizes and
frequencies. Thus in the far field, equation (6.23) is independent of location z but not

independent of excitation frequency and actuator size.

6.4 Power transmission along a semi-infinite plate
excited by a pair of piezoelectric actuators

A different “equivalence ratio” is obtained if the criterion for selecting the applied moment
is equal power transmission rather than equal displacement amplitude downstream of the
source.

The active power transmission through the plate section at a constant location z, with
only two point forces acting (i.e. a primary force and a control force), has been given in

Chapter 4 as
Ly
Pro=75 | " RelF.F: Ay + F.F; By + F:F,Cs + F, By Dyldy. (6.24)
0

If a pair of piezoelectric actuators is used as a single moment actuator, the total plate
response at any location (z,y) is given by equation (6.22). The corresponding power

transmission is given as

1k
Pre = 5 M, M; /0 Re[Am + By + Crnldy, (6.25)
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------------ actuator size 100mm x 100mm.
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where
. . (93wzl 03U}y 33w12
An = —gebi\Ga togs ~ e T
Pw, Pw Pw, .
52y " “oadyt azayz) (e + oy = wea)’, (6:26)
. 0*wyy 0w,  Pwg
Bm = ]UJDh[ Oz? e 0z2  Ox? +
8271)11 82’Ll)y azw:ﬂ 6u}:l:l 8u)y awz‘2 !
V( y? LS dy?r  Oy? 5z %9z os (6:27)
and

, 0*w,, Pw, 0w,y
O = JwDi(l=v) (83:(9_1; T O oedy T Bzdy
awrl 8Wy 8’(1)1-2 .
(83/ Ty T ay)'

(6.28)

The ratio of applied moment and force amplitudes, which is required to produce equal

active power transmission through a plate cross-section can be obtained by writing
P =15 (6.29)

The result of solving this equation is the “equivalence ratio”

A Jo* RelDydy
1Bl \/JE Re[A,, + B + Coldy

(6.30)

As power transmission is independent of location z, the value obtained for this ratio must
also be independent of z.

The relative importance of M, and M, in determining the overall “equivalence ratio”
for power transmission follows the same trends with changing actuator size, location and

excitation frequency as those described for the displacement “equivalence ratio” in Sec-
tion 6.3.

6.5 Discussion and summary

For an infinite beam or a semi-infinite plate, the point force amplitude which is equivalent to

a pair of piezoelectric actuators has been expressed in terms of a ratio of applied moment to
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applied force which has been called an “equivalence ratio”. This ratio may be calculated on
the basis of equal spatially averaged displacement amplitude or on the basis of equal power
transmission at some location = downstream of the actuators. It has been shown that for
a beam and semi-infinite plate over a large range of actuator sizes, locations and excita-
tion frequencies, the power transmission equivalence ratio is independent of measurement
location for each case. The displacement equivalence ratio however, is only independent
of measurement location provided that the location is in the far field of the source (the
actuators). Calculations have been made for the controlled case where a control source is
used which consists of a pair of secondary piezoelectric control actuators attached to the
beam or semi-infinite plate. In this case, it is shown that for the primary source, a pair
of piezoelectric actuators will result in the same acceleration reduction as an equivalent
point force, provided that the measurement location is in the far field of the primary and
control sources. This result is independent of the actuator sizes, locations and excitation
frequencies. A very similar result is obtained if power transmission rather than acceleration
is measured. Therefore, it is possible to calculate the achievable reduction in the far field
of the primary and control sources produced by a piezoelectric actuator pair, by simulating
the actuators with a single applied point force for an infinite beam and a semi-infinite plate.

Numerical results show that the phenomenon of the displacement “equivalence ratio”
for a finite beam is similar to that for the infinite beam. However, similar analyses, for
plates with all sides simply supported and plates with two opposite sides simply supported
and remaining two sides free, show that an effective displacement ”equivaklence ratio”,
independent of measurement location, only exists if the plates are excited at a resonance

frequency.



Chapter 7

Minimizing acceleration and power
transmission in a semi-infinite

cylinder

7.1 Introduction

An extenston of the minimization of acceleration and power transmission in an infinite beam
(Chapter 2) and in a semi-infinite plate (Chapter 4), is the minimization in a cylinder. This
chapter is concerned with the theoretical analysis of control of power transmission in a semi-
infinite cylinder using a circumferential array of radial control forces and a circumferential
array of radial error sensors. This study examines the extent of control which*is achievable
for a realistic control force configuration.

The work outlined here examines the extent of control of flexural, extensional and
torsional waves which is achievable for a circumferential array of control forces on a semi-
infinite cylinder, simply supported at one end, anechoically terminated at the other end
and excited by an array of in-phase harmonic primary forces arranged in a line around its
circumference. The geometry of the cylinder and coordinates are shown in Figure 7.1(a) and
the sign conventions are shown in Figure 7.1(b). The total power transmission reduction is
calculated for different wave type acceleration and different wave type power transmission

cost functions. In addition, the effect of error sensor type and location, control force

113
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type and location, cylinder thickness, radius and excitation frequency is investigated and

discussed in detail.

7.2 Theory

7.2.1 Minimization of acceleration with a line of in-phase con-

trol forces

If the cylinder is excited by an array of in-phase radial primary forces of complex amplitude
F, located at z = z,, the flexural displacement w(z, ¢) at any location (z, @) is discussed

in Appendix F and is found by using equations (F.48) in Appendix F as follows

w(z, ¢) = Fpwp—g(z, 9). (7.1)

Similarly, if an array of radial control forces of complex amplitude F are placed at z = z.,

the flexural displacement due to this acting alone is

w(z,¢) = Fow._¢(z, ). (7.2)

The total flexural displacement response at location (z,$) due to the primary and control
forces acting together is then
w(z, ) = Fywy—s(z,8) + Fow._(z, ¢). (7.3)

[

The optimal control force F, for minimizing the flexural acceleration (and the flexural
displacement) around the circumference of the cylinder at a constant axial location = may
be found by integrating the sum of the squares of the flexural displacement defined in
equation (7.3) around the circumference of the cylinder, and setting the partial derivatives
of the integration with respect to the real and imaginary components of the control force

equal to zero. The partial derivatives are
0 fo" lwl*dp _ r= . .
S =), (Bt gl + B ey £ 26 alwe P)dg (74)
and
0fy" [wl*dp _ r>

- (=5 Fyy 0y + S B0} gt0emy + 2imglie g )6 (1)
1mg
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Figure 7.1: Semi-infinite cylinder model. (a) Cylinder with excitation F' at location
(zo, #0); (b) Sign conventions for forces and moments (conventions for forces and mo-

ments in the ¢-plane are similar).
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respectively where I, = I, ,; 4+ j[,,,. The result is

o fo27r wp—fw:—jd¢
P leT lweg|2dg

The superscript asterisk * represents the complex conjugate.

F.= (7.6)

The axial and tangential displacement due to the radial primary and radial control forces

are

u(z, ¢) = Fpup—g(z, ¢) + Foue—y(z, ¢) (7.7)
and

v(z,¢) = Fyvp—s(z,8) + Fove—g(z, ¢) (7.8)

respectively.

7.2.2 Minimization of acceleration with a line of three inde-

pendently driven control forces

If the cylinder is driven by an array of in-phase radial primary point forces around one
circumference of the cylinder at = z, and three independent radial control point forces
around the other circumference at = = z., the total radial displacement response may be

written as
W = Wy + W, = prp_f + Fclwc_fl + Fczwc_ﬂ + chwc_fg. (79)

The quantities w._s1, we_y2 and we_ys3 are each calculated in a similar way to w._; in
Appendix F. The optimal control forces for minimizing the flexural acceleratiokn or displace-
ment at any axial location z may be found by integrating the sum of the squares of the
flexural displacement defined in equation (7.9) around the circumference of the cylinder
and setting the partial derivatives of the integration with respect to each of the real and

imaginary components of the control forces equal to zero. The result is an optimal set of

control forces as follows

-1

2 25 . 2 .

Iy " |wc_f1\2d¢ o wc—f1wc—f2d¢ Jo" wc—flwc—deC6
- 2 N 2 27«

FC2 - fOﬂwC—flwc—f2d¢ fO‘,r ]wC—f2|2d¢ Orwc—f2u)5—f3d¢

Fes Bo" wee prwl_psdd Jo" wem ppwi_psd o7 fwe-sa[?ds



117

f027r wp—fw:—jldqS
X1 J Wp— jW;_ 1A ¢ . (7.10)
Jo™ wp- yw?_s5ddp

The procedure can be extended to any number of independently controlled forces.

7.2.3 Power transmission

The vibratory power transmission is a result of three wave motions, and is given by Fuller
(1981), as

P,=P;+ P. + P, (7.11)
where the subscript refers to the shell motion: i.e. either flexure, extension or torsion

respectively. The quantity Py consists of two parts contributed by rotation of the cylindrical

element as well as radial flexure. Thus

1 (T por 00, Oow
Pr=z /0 /0 (M. 52+ Q.5 Irdadt, (7.12)
1 T r2m au
Pe:T/o/o N, 5 rdgat (7.13)
and
2
P, = T// Nwatrdgbdt (7.14)

where T is the period of vibration and 8, is angular rotation of the cylindrical element about
the ¢ axis. Substituting equations (7.12), (7.13) and (7.14) into (7.11), eq:Jation (7.11)

can be written as

o v dv
P, T/ / +QI No% +Nz¢at]rd¢dt (7.15)

Adopting the approach of Skudrzyk (1965), the real (or active) part of the power trans-
mission along the cylinder for harmonic excitation is calculated as the product of the real
part of the force term with the real part of the velocity term for each pair of terms in
equation (7.15) and the result is time averaged. Thus the active power transmission is
given by

w* 3u* ov*

ro[er 80‘
P, = 5/0 Re[M, +Qm s+ Ney 2 dg (7.16)



118

where, according to Fligge (1973), the bending moment about the ¢ axis is as shown in

equation (F.26) (in Appendix F), the axial force is given by

D, K ,
N, = —(u' +vv +vw) — peid (7.17)

r

the tangential shear force is given by

D.1—-v, . Kl—-wv,, .
Noy = —— (u -|-v’)-|-?3 5 (v —w") (7.18)
and the transverse shear force is given by
'[( H I " - Ies 1 . 1 1.
Qs = r_3[(w + v —u — ")+ (1 —v)(w —|—§u ~ v )] (7.19)
where D, = %

For one line of primary actuators around one circumference of the cylinder and a second
line of control actuators around the other, the resulting total power transmission along the
cylinder can be expressed in terms of the primary and control forces, using superposition.
Thus the power transmission corresponding to equation (7.6) (representing optimal control
of flexural acceleration) is obtained by substituting equation (7.6) into (7.3), (7.7) and
(7.8), then into equations (F.26), (7.17) to (7.19), and the results into equation (7.16).

The power transmission corresponding to equation (7.10) can be obtained in a similar way.

7.2.4 Minimization of power transmission with a line of in-

phase point control forces .

The total power transmission resulting from a line of in-phase radial primary forces and
a line of in-phase radial control forces acting together can be found by substituting equa-
tion (7.3), (7.7) and (7.8) into (F.26), (7.17) to (7.19) and the results into equation (7.16).
Carrying out the indicated substitutions in equations (F.26), (7.17) to (7.19) gives the fol-
lowing expressions for the bending moment, axial force, tangential force and transverse
shear force respectively.

4 2 2 2 2
M, = & [(F Pwo-g | 9 wc”) +u (Fpa Wooy o g9 “’C—f>

r2 P Ox?

Oy Oug_ Jv,_ Ov,_
_ (pp Zg’xf o g$f> v <F ee ] +FCL)}, (7.20)
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~ Del—vw Oup—y |y ey 0v,_g Ov,—y
B [(F” 9 THepg )T\ B, TE,

ro 2
K1-v Ovp—s ., Ovey 0*w,_; 0%w,_
=g K "Bz, TOE B Yo oz0s T zag )| (7D

and

K Pw,_ Pw,._ BPw,_ APw
= - F p—f c—f F p—f F c—f
s {[(” L )+”(paza¢2+ * 020F

. (Fp Fupy | Ty ) v (F T0pg | 0 0es )]

Oz? Oxz? P 9xd¢ ¢ 0z0¢
Pw,_¢ Pw,_g 1 0up_ g Puc g
+(1_”)[<F”axa¢2 T regmog ) T2\ ot
1 62vp_f 82Uc_f
. (F,, ot Egat |1 (7.23)

These and equations (7.3), (7.7) and (7.8) can be substituted into the expression for the

power transmission (equation (7.16)) through any cylinder cross section at axial location z

to produce
P.=2 " Re[F.F*A+ F.F?B + F,F2C + F,F:D]d¢ (7.24)
where
4 - _5 <a2wc_f N Vazwc_f B Ouc— g B V@vc_f> 32w:_!
w i [0z 0¢° Ox d¢ dzot +

K [Pw,. Pw._;  Pucg ey
r3 [ Ox3 Y dzd4®  0zr g 0zdd

Pw,_ 10%u,_ 1 0%, ow?_

T -v) <8x5¢§ t3a5 "d 31:8(;;)} 5

+(&auc_f+1/2§-8vc_f+1/&w _I_X’@ch_f) ou;_;

r Oz r 0¢ r 7 3 9a? ot

(Del—z/auc_f D.1—v v,y

ro 2 0¢ r 2 Oz
+£1—z/8vc_f_l_(1—z/82wc_f dv;_;
r 2 Oz r3 2 0Jzd¢ ot

(7.25)

The expressions for B, C and D are very similar to above expression for A. For example:

to obtain B, replace ¢ by p in the conjugate part of each term; to obtain C, replace ¢
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by p in the non-conjugate part of each term; and to obtain D, replace ¢ by p in both the
conjugate and non-conjugate part of each term.

The optimal control force corresponding to minimum power transmission is obtained by
determining derivatives of equation (7.24) with respect to the real and imaginary compo-
nents of the control force and setting the derivatives equal to zero. The result is

Fopt — 027" B*d(}S + f027" Cd¢
€ 2 7" Re[Ald¢p  ©

(7.26)

7.2.5 Minimization of power transmission with a line of three

independently driven point control forces

For this case, the cylindrical displacements w (obtained from equation (7.3)), u (obtained
by replacing w with u in equation (7.3)) and v (obtained by replacing w with v in equa-
tion (7.3)) can be substituted into equations (F.26), (7.17) to (7.19). The results from
these equations can then be substituted into equation (7.16), to give an expression for the

total power transmission. The total power transmission can be written in matrix form as:

Po=7 /0 Re[FH AF]d¢ (7.27)
where
F = [F,, Fyy, Foy, Fus)" (7.28)
and
[ A(L,1) A(1,2) A(L,3) A(L,4) ] ‘
AL | ARD AR2) AR3) ARY o)
A(3,1) A(3,2) A(3,3) A(3,4)
L A(4,1) A(4,2) A(4,3) A(4,4) |

and the superscript H is the complex conjugate and transpose of a matrix. The coeffi-
cients A(7,7) (¢ = 1,4,7 = 1,4) of matrix A result from the product of terms in equa-
tion (7.16), each of which contains contributions from the four different force elements of
equation (7.28). The expressions for A(i,7) (¢ = 1,4,7 = 1,4) are very similar to the
above expression for A in equation (7.25). There is only one change to the expression

in each case. For example: to obtain A(1,1), replace ¢ by p in both the conjugate and
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non-conjugate parts of each term; to obtain A(2,1), replace p by cl in the non-conjugate
part of each term.

An optimal set of control forces corresponding to minimum power transmission is ob-
tained by determining derivatives of equation (7.27) with respect to the real and imaginary
components of each control force and setting the derivatives equal to zero. An optimum set
of control forces corresponding to a minimum power transmission due to three independent

radial control forces is

Fo TT(A(2,2) + A(2,2))dé [T (AT(3,2) + A(2,3))dé

Fao | == | J&m(A7(2,3) + A(3,2))d¢  [g"(A"(3,3) + A(3,3))d¢

Fs 2T(A%(2,4) + A(4,2))dé [3T(A"(3,4) + A(4,3))dd
3n(4n(,2) + AR, )6 | (| ST A1, 2)de 2 4(2,1)dg
o (A(4,3) + A(3,4))dé o AT(1,3)d¢ | + f A3, 1)dg | | B, (7:30)
2T(A*(4,4) + A(4,4))dé 2 A*(1,4)dé T A(4,1)d¢

By comparing equations (7.26) with (7.30) and (7.24) with (7.27), it can be seen that
the single force changes to a force vector when in-phase force control changes to independent
force control. The expression for the power transmission given by equation (7.27) not only
includes each force term, but also includes coupling force terms, which makes independent
force control much more complex than in-phase force control to analyze.

The procedure can be used for any number of independently controlled forces. For six

control sources, the corresponding (7 x 1) force matrix is:

e
Fcl

Fa

F = Fa |- (7.31)
Fuq
FCS
Fu |

The analysis shown in Section 7.2 is for radial forces. Similar analyses can be applied to
axial and tangential forces, and also to corresponding acceleration amplitude and power

transmission cost functions.
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7.3 Numerical results

The numerical results presented in this section have been calculated for a steel cylinder
with Young's modulus E = 207 GPa, density p = 7700 kg/m?® and Poisson’s ratio v = 0.3.
With the exception of Section 7.3.5, the radius, thickness and excitation frequency are held
constant at 7 = 0.25 m, h = 0.003 m and f = 510 Hz. By way of example, the frequency
of 510 Hz is selected which is well below the ring frequency (3310 Hz). The investigation of
a range of frequencies will be shown in Appendix H.3. One end of the cylinder is assumed
to be terminated anechoically and the other is simply supported. Based on experience with
semi-infinite plates, three independent control forces are expected to give better power
transmission reduction (when three in-phase primary forces are used) than either single
or multiple in-phase control forces and, are therefore used in the following analysis. In

Section 7.3.5, results are given for varying radii, thicknesses and excitation frequencies.

7.3.1 Definition of the near field

The near field of a vibration source in free field is the region near the source in which the
amplitude of the amplitude of reactive power fluctuation is not negligible. The boundary
between near and far fields is defined for convenience to be the point at which the reactive
power fluctuation is 20 dB less than than the corresponding active power. At and below this
level the effects of reactive power fluctuation are considered to be relatively insignificant.
The radius of the near field is then z/X; = 0.73 m (A; = 0.9632 m is the flexural wavelength
calculated from equation (F.24), see Appendix F). That is, points further than 0.73X¢ from
the source are considered to be in the far field of the source. It should be noted that the
transition from near to far fields is gradual, and a fixed location is chosen here only for
convenience.

The definition of the near field can be used to define the near field of the extensional
and torsional waves, because the extensional and torsional wave displacement has similar

far field terms (Appendix F).
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7.3.2 Power transmission reduction

In this section it is assumed that an ideal feed-forward controller is available. It is also
assumed that it is possible to obtain a measure of the vibratory power transmission along
the cylinder, to be used as the controller error input.

The three radial primary actuators are all located at the same distance from the simply
supported end of the cylinder. They are arranged around the circumference of the cylinder
in ¢-coordinate locations of 27 /3, (47/3) x 1.05 and 27. For each primary actuator there
is a corresponding radial control actuator sharing an identical ¢-coordinate location. The
second (primary and control) actuators have been moved slightly from a symmetric position
on the circumference. This is because the matrix which must be inverted in equation (7.30)
is ill-conditioned if symmetric forces are applied. Two axial locations are used as examples
for the radial control force locations, at (z. — z,) = 0 m and at (z. — z,) = 0.05 m.
The effect of the locations of error sensors and control forces will be discussed below. The
primary forces are at z, = 0.025 m, the error sensors are at . = 0.565 m at which the
error sensors are close to the far field of the primary forces and the measurement points are
at Tpeqs = 2.1 m. The cost function is the power transmitted past the error sensors.

Table 7.1 lists the different wave type power transmission reductions for three indepen-
dently driven radial control forces, with the power transmitted by either the combined or
individual wave types used for the cost function. The relative amplitudes and phases of
the three control forces are also shown in the table for each error sensor case. In the first
row of Table 7.1, “three waves" refers to flexural, extensional and torsional.* In the three
rows below, the individual wave types are considered separately. For the power transmission
reduction values of 180 dB in this and following tables, the calculated power transmission
should theoretically be zero. However numerical inaccuracies resulted in values which were
only in the vicinity of zero and not exactly zero, thus limiting the calculated reduction
to 180 dB when in fact it should have been oo dB. Thus a reduction of 180 dB may be

considered to be the calculation “noise floor”.
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Table 7.1: Power transmission reduction for three independently driven radial control

forces and, for either combined or individual wave type power transmission cost function

|Fe

Wave type I, —T A be — ¢p P, P, P.T.reduction

(m) radian (W) (W) (dB)

Three waves 0.00 1.00 - 0.19E-07 | -0.661-23 180
combined 1.00 vis
1.00 s

0.05 |0.74| 3.11 0.19E-7 | 0.20E-10 30
0.55 3.13
0.66 3.12

Flexural wave 0.00 | 1.00 -T 0.57E-09 | -0.31E-24 180
1.00 vis
1.00 v

0.05 |0.75 3.13 0.50E-09 | 0.57E-13 40
0.55 3.13
0.67| 3.13

Extensional wave | 0.00 1.00 - 0.18E-07 | -0.33E-23 180
1.00 ™
1.00 s

0.05 |0.74| 3.11 |0.18E-07| 0.19E-10 | 30
0.55 3.13
0.66 Sl

Torsional wave 0.00 0.99 s 0.71E-10 | 0.15E-24 146
1.00 -
1.00 -

0.05 0.7t | -3.10 | 0.71E-10 | 0.10E-11 18
0.55 3.04
0.64 3.10
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This table shows that a total power transmission reduction of more than 30 dB can be
achieved when the power transmitted by all three wave types is used as the cost function.
It is possible to achieve a flexural wave power transmission reduction of more than 40 dB
when only flexural wave power is used as the cost function, an extensional wave power
transmission reduction of more than 30 dB when only extensional wave power is used as
the cost function and a torsional wave power transmission reduction of more than 18 dB
when only torsional wave power is used as the cost function. It can be seen that the
reduction of the total power transmission is the same as that of the extensional wave
power.

Comparing the uncontrolled power transmission P,, due to different wave types, it is
found that the major contribution to power transmission is from extensional waves. The
power transmission contribution due to flexural waves is small while for torsional waves
it is negligible as the excitation of the cylindrical shell is relatively axisymmetric. This is
because the axial force N, shown in equation (7.17) is relatively large so that extensional
wave power transmission P, is greater than flexural wave power transmission P, even
though the amplitude of the displacement of the extensional waves is smaller than that of

the flexural waves.

7.3.3 Effect of error sensor type, location and number

In the examples discussed so far, the cost function which has been minimized is the vibratory
intensity integrated around the circumference of the cylinder at some axial location x.. This
quantity is referred to as power transmission. Individual intensity measurements are used
to supply the error input to a feed-forward controller. However, vibratory intensity is not
easily measured in practice. Thus the purpose of this section is to examine the effectiveness
of using acceleration, which is more easily measured in practice, as the cost function. A
theoretical comparison will be made of the total power transmission reduction obtained
while using seven alternative cost functions including different wave type acceleration and
different wave type power transmission. The different wave types include the three individual
wave types and, in the case of power transmission, three waves combined.

The primary radial actuator locations are the same as shown above in Section 7.3.2 and
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the control radial actuator locations are at (z, — z,) = 0.05 m. For acceleration control of
individual wave types, the cost function to be minimized is the sum of the squares of the
wave acceleration amplitudes integrated around the circumference of the cylinder. Table 7.2
shows the effect of cost function for either acceleration amplitude or power transmission,
with different wave types either combined or individually. Data for three waves combined
acceleration amplitude cost function has not been obtained, partly because of the complexity
of calculation and partly because of the complexity of measurement in practice. The results
show that, except for torsional wave cases, a similar reduction in total power transmission
is obtained when the cost function uses acceleration amplitude or power transmission for
different wave types. Thus, either flexural or axial acceleration amplitude cost functions
can be considered to be alternatives to the total power transmission cost function. In
practice, flexural acceleration amplitude as the cost function is considered to be more easily
measured. Therefore, the flexural acceleration amplitude cost function can be used as a
suitable alternative to the total power transmission cost function. In the following analysis,
both the flexural wave acceleration cost function and the total power transmission cost

function are included.
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Table 7.2: Effect of different wave type cost functions on total power transmission

reduction
Wave types Acc. | ¢, — ¢, total PT. | ¢.— ¢, | Total
control | radian P.T. control | radian P.T.
£l red.(dB) | 1 red.(dB)
Three waves 0.74 3.11 30
combined 0.55 3.13
0.66 3.12
Flexural wave 0.75 3.10 30 0.75 3.13 31
0.56 8al3 0.55 3.13
0.67 3.11 0.67 3.13
Extensional wave | 0.73 -3.12 29 0.74 3.11 30
0.55 Shl3 0.55 3.13
0.65 -3.13 0.66 3.12
Torsional wave 0.56 3.06 14 0.71 -3.10 23
0.72 3.00 0.55 3.04
0.68 3.06 0.64 3.10

Note: “Acc. control” refers to acceleration amplitude cost function and “P.T. control”

refers to power transmission cost function, corresponding to the wave type shown in

the first column.
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In Table 7.3, four different axial locations are tried for the error sensor locations. The
calculated power transmission reduction corresponding to each axial location of the error
sensors using flexural acceleration amplitude as the cost function, is then compared with
that found using total power transmission as the cost function. The total power transmission
reduction is dependent on the error sensor locations for both cost functions. The reduction
increases when the error sensor/control source axial separation (z.—z.) increases. However,
the reduction does not continue to increase significantly when (z. — z.) > 0.49 m at which
point the error sensors are close to the far field of the primary forces. The reduction is a
constant when (z.—z.) > 0.69 m at which point the error sensors are in the far field of the
control forces. The reduced reduction in total power transmission when the error sensors are
in the near field of the control forces, i.e. when (z. —z.) < 0.69 m, is due to the fact that
the near field reactive power fluctuations affect the ability of the error sensors properly to
observe the power transmission. The results further show that the total reduction resulting
from using the flexural acceleration amplitude cost function is approximately the same as
that obtained by using total power transmission as the cost function. This applies for each

of four error sensor locations.
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Table 7.3: Effect of error sensor type and location on total power transmission reduction

Location | Acc.control | ¢. — ¢, | Total P.T.control | ¢. — ¢, | Total
(ze — zc) {%Il radian P.T. JI%IL radian 2R
(m) red.(dB) red.(dB)
0.29 0.71 3.11 25 0.71 -3.11 25
0.54 3.12 0.54 3.13
0.64 3.12 0.64 -3.13
0.49 0.75 3.10 30 0.74 3.11 30
0.56 3.13 0.55 3.13
0.67 3.11 0.66 3.12
0.69 0.77 3.12 31 0.76 3.11 31
0.56 3.14 0.56 3.14
0.68 3.13 0.68 3.13
0.89 0.77 314 | 31 0.77 313 | 31
0.85 -3.14 0.55 -3.13
0.68 -3.14 0.68 -3.13
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In practice, it is not possible to integrate the vibratory intensity around the circumference
of the cylinder, although it is possible to integrate strain (which is proportional to normal
acceleration) by using a PVDF film sensor. However in some instances, the acceleration will
be measured by a number of accelerometers at discrete points. It is of interest to examine
the effect on the maximum achievable reduction in power transmission of deriving the cost
functions by averaging over a fixed number of sensors rather than integrating around the
full circumference of the cylinder.

Table 7.4 shows results which demonstrate the effect of changing within the range of 3
to 199 the number of error sensors (accelerometers for acceleration and accelerometer pairs
for power transmission, see Appendix F), for locations at (z. — z.) = 0.49 m. The error
sensors are spaced in a line around the circumference of the cylinder. Two important results
are obtained. The power transmission reduction is constant for error sensor numbers in the
range of 9 to 199. Also the power transmission reduction is equal both for the acceleration
amplitude cost function and for the total power transmission cost function in the range of
9 to 199. From this table, it can be seen that only 3 flexural acceleration error sensors are
necessary, because the results are similar to those obtained when using power transmission
cost function with 199 error sensors. Only three accelerometers needed because only the
first three circumferential modes are significant. For three and seven error sensors, the
reduction obtained by using power transmission as the cost function are not presented in
this table. This is because the expression for power transmission given by equation (7.27)
is inaccurate when less than nine power transmission error sensors are used. Use of less
than three error sensors results in an under-determined system which causes one of the
three control forces to be redundant and this is not analyzable. As the computer program
used for calculations is only applicable when there is an odd number of error sensors, the
results for even numbers of error sensors are not presented in this table. Note that the error
sensors should not be spaced evenly, otherwise all of the error sensors might be located at

vibrational nodes for some of the modes.
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Table 7.4: Effect of number of error sensors in a ring at a single axial location on total

power transmission reduction

No. Acc.control | ¢. — ¢, | Total P.T.control | ¢. — ¢, | Total
error Il%pll radian P.T. :?;ll radian P.T.
sensors red.(dB) red.(dB)

3 0.76 3.10 29 0.74 3.10
0.55 3.13 0.56 3.11
0.67 3.11 0.65 3.10
7 0.75 3.11 29 0.75 3.12
0.56 3.14 0.55 -3.13
0.67 3.11 0.66 3.10
9 0.75 3.10 30 0.74 Bl 12 30
0.56 3.13 0.55 3.11
0.67 3.11 0.66 3.12
19 0.75 3.10 30 0.74 3.11 30
0.56 3.13 0.55 3.13
0.67 3.11 0.66 3.12 i
39 0.75 3.10 30 0.74 3.11 30
0.56 3.13 0.55 3.12
0.67 3.11 0.66 3.12
199 0.75 3.10 30 0.74 3.11 30
0.56 3.13 0.55 3.12
0.67 3.11 0.66 3.12
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7.3.4 Effect of control force type and location

In the examples discussed so far, the primary and control force types are all radial forces.
In the example in this section, consideration is given to the following alternative primary
and control force types: application of radial forces only; application of axial forces only or
application of tangential forces only. For each of these cases the primary and control forces
are of the same type, and the cost function to be minimized is the sum of the squares of the
flexural acceleration amplitudes at the error sensors. For each case, three different control
force locations were analyzed, and the primary actuator and error sensor locations were the
same as those used in the earlier analysis outlined in Section 7.3.2. Results are shown in
Table 7.5. It is concluded that the radial force is more effective than the axial force and the
tangential force. The results also show that the reduction of power transmission decreases
when the control actuators are located at some distance downstream from the primary
actuators. Therefore, it can be concluded that for optimal control, the control actuators
should be placed as close as possible to the axial location of the primary excitation force.
Although theoretically, a reduction of 180 dB can be obtained for (z.—x,) = 0 m, in practice
the minimum achievable separation will probably be (z.—x,) > 0.05 m. Theoretical results
from Table 7.5 show that a reduction of 30 dB is achievable for (z. — z,) = 0.05 m when
flexural wave acceleration control and radial forces are used.

Note that some of the results for tangential force |F.|/|F,| are very large in Table 7.5
which shows that the tangential force is not effective in the control of power transmission.

As mentioned above, the results in Table 7.5 refer only to the use of flexural acceler-
ation amplitude as the cost function. Similar analyses for alternative cost functions, using
either flexural, extensional or total power transmission as the cost function, result in similar

conclusions to those presented above. An example is shown in Table 7.2.
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Table 7.5: Effect of control force type and location on total power transmission reduc-

tion for flexural acceleration amplitude as the cost function

Control force type Location Acc.control | ¢, — ¢, | Total P.T.
(ze — zp) (m) f% radians | red. (dB)
radial 0.00 1.00 - 180
1.00 T
1.00 -
0.05 0.75 3.10 30
0.56 3.13
0.67 3.11
0.20 2.87 0.72 27
3.82 1.82
4.41 1.21
axial 0.00 1.00 - 147
1.00 s
1.00 vis
0.05 0.11 0.81E-2 15
0.34E-2 | 0.29E+1
0.19E-1 0.25E-1
0.20 0.28E-1 0.49E-1 13
0.14E-1 -0.19E-1
0.48E-2 0.64E-1
tangential 0.00 1.00 -T 139
1.00 -
1.10E+5 0.61
0.05 0.46 3.12 27
0.46 3.12
0.56E£+413 -0.53
0.2 0.92 0.20E+1 0
0.79 0.19E+1
0.49E4+15 | 0.31E+1
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7.3.5 Effect of thickness, radius and frequency

It is known that measurement of power transmission is easier for flexural waves than for
extensional waves. In Section 7.3.2, it was shown that for the cases considered, extensional
waves produced the major contribution to power transmission. The purpose of this section
is to examine the effect of cylinder thickness, radius and excitation frequency on the relative
importance of flexural waves to the total power.

Table 7.6 shows uncontrolled power transmission as a function of the thickness h. The
locations of the primary actuators and the error sensors are the same as shown in Table 7.4
and the cost function is flexural acceleration amplitude. Radial forces only are used as
the primary forces. The results show that generally the ratio )—IZf, of flexural wave power
transmission P; to the total power transmission P;, increases as h increases. Table 7.7
presents the uncontrolled power transmission as a function of the radius r which shows
a trend of increasing ratio )—}:,f as r increases. lable 7.8 presents the uncontrolled power

transmission as a function of the excitation frequency f and shows a trend of increasing

ratio z- as f increases. More discussion of effect of excitation frequency will be shown in

Appendix H.3.

Table 7.6: Effect of cylinder thickness on the ratio of flexural to total power transmis-

sion
Thickness | Radius | Frequency | Flexural P.T. | Total P.T. -

h(m) | r(m) | f(Hz) Py (W) Py (W)

0.001 0.5 510 0.2192E-9 0.3773E-6 | 0.00058097
0.008 0.5 510 0.5646E-9 0.1821E-7 | 0.03100494
0.010 0.5 510 0.5880E-9 0.1351E-7 | 0.04352331
0.040 0.5 510 0.3263E-9 0.2643E-8 | 0.12345819
0.050 1.0 510 0.77371-8 0.9059E-8 | 0.85406777
0.060 1.0 510 0.6010L-8 0.6949E-8 | 0.86487264

Comparing Table 7.6, 7.7 and 7.8, it can be seen that cylinder thickness has a



Thickness | Radius | Frequency | Flexural P.T. | Total P.T. o
h(m) | r(m) | f(Hz) Py (W) P (W)

0.003 0.1 510 0.8529E-14 | 0.4074E-11 | 0.00209351
0.003 0.3 510 0.1710E-09 | 0.2772E-07 | 0.00616883
0.003 0.5 510 0.1213E-08 | 0.7764E-07 | 0.01562339

mission

Thickness | Radius | Frequency | Flexural P.T. | Total P.T. -
h(m) | r(m) | f(Hz) Py (W) P, (W)

0.003 0.5 110 0.4168E-10 | 0.3856E-7 | 0.00108091
0.003 0.5 210 0.9335E-10 | 0.5924E-7 | 0.00157579
0.003 0.5 430 0.2807E-09 | 0.7732E-7 | 0.00363036
0.003 0.5 510 0.4032E-09 | 0.7764E-7 | 0.00519319
0.003 0.5 610 0.6414E-09 | 0.7525E-7 | 0.00852358
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Table 7.7: Effect of cylinder radius on the ratio of flexural to total power transmission

Table 7.8: Effect of excitation frequency on the ratio of flexural to total power trans-

more significant effect on the ratio I—sz than radius or excitation frequency. However, the
assumption in the analysis is that + > 16, so there is a limit as to how much k can be
increased without increasing r. It is concluded that a very large diameter and very thick
cylinder is necessary to obtain the flexural waves as the dominant waves in producing power
transmission under the assumption of 7 > 16. The extensional waves remain the major
factor in producing power transmission for most cylinders of a practical size. It is also
concluded that in the most cases, the extensional wave power transmission gives a good
approximation of the total power transmission. This conclusion provides an opportunity for
simplification of power transmission measurement methods in experimental work involving
error sensors either in or close to the far field of the control sources as will be discussed

further in Chapter 8 and Appendix H.
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7.4 Summary

Harmonic power transmission in a semi-infinite cylinder can be reduced significantly by us-
ing an array of independently driven control forces around the circumference of the cylinder.
For three or more radial control forces it is theoretically possible to achieve levels of power
transmission reduction in excess of 30 dB for both acceleration amplitude and power trans-
mission cost functions, under certain conditions. To achieve this reduction, it is necessary
that the error sensors are either in or close to the flexural wave far field of the primary
and control forces. It is also necessary that the control sources should be very close to the
primary sources and that the modeling conditions for the point forces can be achieved in
practice. For the test cylinder, only three flexural acceleration error sensors are necessary if
the error sensors are in the far field of the primary and control forces. It is concluded that,
in general, the radial control force is more effective than the axial force or the tangential
force in controlling total power transmission. It is suggested that use of either the flexural
or the axial acceleration cost function can be an alternative to the total power transmission
cost function.

It is interesting to note that only one type of cost function can be effective on its own.
This is because the flexural, extensional and torsional waves in the cylinders are strongly
coupled.

The study has also indicated that in the test frequency range (well below the ring
frequency) the extensional wave power transmission gives a good approximation of the
total power transmission. This finding provides an opportunity for simplification of total
power transmission measurement methods in experimental work. However, for frequencies
from approximately half the ring frequency and up, this conclusion may become increasingly

incorrect.



Chapter 8

An experimental study of active
control of power transmission in a

semi-infinite cylinder

8.1 Introduction

This chapter is concerned with experimental investigation of vibratory power transmission
in a semi-infinite cylinder and its active control. A numerical study of the experimental
method used is included in Appendix H. This study indicates that the measurement of
vibratory intensity at a point on a cylinder requires the use of only two accelerometers for
the test frequencies (well below the ring frequency). This finding is similar to that for plates
which were discussed earlier in Chapter 5. This is not withstanding the greater complexity
in the theoretical analysis of cylinders compared with plates. This chapter will present some
experimental results using the two accelerometer method to compare with the theoretical

results.

8.2 Experimental arrangement

Vibratory power transmission was investigated experimentally by measuring intensity on a

steel test cylinder with a working length of 1 m, thickness of 0.003 m and radius of 0.25 m.
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Figure 8.1: Schematic diagram of the semi-infinite cylinder model

There are three types of wave power transmission: flexural, extensional and torsional,
which couple together to produce the total power transmission along the cylinder. The
total intensity is actually approximated by the extensional wave intensity, an approximation
which is shown to be valid by the analysis in Appendix H.3. A schematic diagram of
the semi-infinite cylinder model is shown in Figure 8.1 and the experimental semi-infinite
cylinder model is shown in Figure 8.2. The cylinder was mounted vertically in a sand filled
box (1 m in height) in an attempt to provide a semi-anechoic termination at one end. The

other end was simply supported using a thick steel ring.

The test cylinder was excited near the simply supported end using an electrodynamic

primary shaker (see Figure 8.3). Control was implemented using three electrodynamic
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Figure 8.2: Experimental semi-infinite cylinder model.
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Figure 8.3: Vibration control system physical layout.

control shakers in locations around a circumference on the surface of the cylinder further
from the simply supported end. Each control shaker was driven independently. Up to five
accelerometers, mounted around the circumference and located between the control shakers
and the semi-anechoic end, acted as error sensors. The control shakers were operated to
minimize power transmission using an acceleration amplitude cost function consisting of
the sum of squared outputs of the error sensors. Up to five error sensors could be used
because the controller (EZ-ANC controller) had five available channels and the theoretical
analysis indicated that this number was sufficient.

A block diagram of the vibration control system is shown in Figure 8.4(a). A source
signal from an HP spectrum analyzer was passed through a power amplifier into the primary
shaker. The source signal (as reference) and error signals from the error sensors were passed
by way of amplifiers to a feed-forward controller. This controller generated three control
signals which were used to drive independently the three control shakers. The experimental

vibration control system is illustrated in Figure 8.4(b).
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Figure 8.4: (a) Block diagram of the vibration control system; (b) experimental equip-

ment.
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8.3 Test procedure

To compare the characteristics of the experimental cylinder and the theoretical model, the
circumferential modal amplitude was determined by undertaking a modal decomposition
of the flexural cylinder displacement with the cylinder excited by electrodynamic shakers.
This is because in the semi-infinite cylinder there is no axial mode, and the circumferential
modes are the only modes available to be considered. The circumferential modal amplitudes
were obtained by measuring the flexural displacement at 19 points around the circumfer-
ence of the cylinder in the locations which will be described later with the residual power
transmission measurements. The modal decomposition method is shown Appendix G.
The residual power transmission was measured on the cylinder downstream of the error
sensors by measuring the intensity at nineteen measurement points, each comprising a pair
of accelerometers located in a line around the circumference of the cylinder (Appendix H).
The results of the numerical analysis indicated that a minimum of 19 measurement points
were necessary to provide a reasonable degree of accuracy (within 0.5% of the power
transmission value compared with the value obtained from 199 measurement points). As
described in Appendix H, the intensity is proportional to the product of the outputs of a
pair of accelerometers. The pair of accelerometers was mounted on a small rectangular
aluminum block as a measuring set (Figure 8.5). One of the accelerometers was directed
perpendicularly to the cylinder and the other was directed in the axial direction along the
cylinder. The surface of the block towards the cylinder was shaped to match the curvature
of the cylinder and was attached to the cylinder with double sided adhesive tape. For the
test frequency of 510 Hz, experiments showed that adhesive tape provided similar results
to wax or glue but was much easier to clear from the surfaces after each test run. Excellent
reproducibility of results was also obtained. The acceleration amplitudes were determined by
multiplying the auto-spectrum (in the spectrum analyzer) of each signal by an appropriate
factor (Appendix H). The phase difference between the two signals was obtained by using
the transfer function in the spectrum analyzer. The acceleration amplitude and phase
difference values so obtained were then used to calculate the intensity in accordance with

the equations shown in Appendix H.
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Figure 8.5: A cylindrical intensity measuring set.
8.4 Numerical and experimental results

To investigate the potential for actively controlling vibratory power transmission, the cylin-
der was excited at a frequency of 510 Hz. The primary shaker was located at 0.025 m in
the x-direction and 27 in the ¢-direction. The co-ordinate system is shown in Figure 8.3.
Three control shakers were mounted around the circumference at 0.11 m in the x-direction,
and spaced at 27/3, 47/3 x 1.05 and 27 in the ¢-direction respectively. Error sensors were
arranged around the circumference at 0.566 m in the x-direction and spaced unequally in
the ¢-direction. The measurement points for circumferential modal amplitude and residual
power transmission were arranged around the circumference at 0.965 m in the x-direction.

Circumferential modal amplitudes were obtained as described in Section 8.3. Numerical
analysis showed that only the first three circumferential modes are significant for producing
acceleration and power transmission. The first three circumferential modal shapes are shown
in Figure 8.6. The circumferential modal amplitudes are presented in Figure 8.7(a) (mea-
surement) and 8.7(b) (theory) for the first three modes. In Figure 8.7(a) (measurement),

the controlled modal amplitude (grey or hatched columns) decreases for each mode. The
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Figure 8.6: The first three circumferential modal shapes taken from Leissa (1973).

controlled modal amplitude trend (grey or hatched columns) is similar to the uncontrolled
modal amplitude trend (black columns) in that the first mode dominates the response. In
Figure 8.7(b) (theory), these phenomena are different to those found in the measurement.
The amount of control is different to that shown in the measurement and the third mode
dominates the response. This is due to the difficulty in ensuring that the locations of the
primary and control shakers in the experiment are the same as the locations of the primary
and control sources in the theory relative to the modal nodes and anti-nodes. The numer-
ical simulation shows that the same modal amplitude trend as shown in Figure 8.7(a) can
be obtained by moving the locations of the primary and control sources in the ¢-direction.
Also, the difference is probably because the experimental model was characterized by some
reflection from the “infinite end” of the experimental cylinder. Figure 8.7 shows that re-
flection affects significantly the circumferential modal amplitudes.

To test the efficiency of the sand filled box which acted as an anechoic termination, a
numerical simulation was carried out. It demonstrated that the reduction of power transmis-
sion is independent of the reflection coefficient. This means that experimentally determined

values for the reduction of power transmission are valid even if there is large reflection from
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Figure 8.7: (a) Measured modal amplitudes; (b) theoretical modal amplitudes.
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the anechoic termination. This finding is similar to that for plates which were discussed in
Chapter 5.

Measured power transmission was obtained by averaging the intensity measured by each
of 19 accelerometer pairs arranged around the circumference of the cylinder. The measured

and theoretical power transmission reductions are shown in Table 8.1 with the range of 1,

3 and 5 error sensors.

Table 8.1: Experimental and theoretical power transmission

No. es. | Expt. Expt. Expt. Theo. Theo. Theo.
Pas(w) | Pro(w) | Proa(dB) | Pun(w) | Pro(w) | Prua(dB)
1 0.68E-8 | 0.66E-8 0.1 0.59E-8 | 0.47E-8 0.9
3 0.68E-8 | 0.12E-8 7.2 0.59E-8 | 0.10E-8 7.4
) 0.68E-8 | 0.15E-8 6.4 0.59E-8 | 0.12E-8 6.8

Note: “No. es.” is the number of the error sensors, “Expt.” refers to the experimental

results, “Theo.” refers to the theoretical results.

Table 8.1 shows that 7 dB power transmission reduction can be achieved by using three
error sensors for the test cylinder in both experiment and theory. The reductions are similar
for both experiment and theory for a particular number of error sensors. This further proves
that the reduction of power transmission is independent of the reflection from the “infinite
end”. The experimental results give approximate agreement with the numerical results
which demonstrates the reliability of the experimental work. Most important is that the
two accelerometer method is valid for the measurement of the intensity in a cylinder.

Table 8.1 also shows that use of one error sensor is insufficient. However, three error
sensors provided a relatively good reduction. For the error sensor locations selected, the use
of five error sensors did not increase the reduction. It is considered that the location of the
error sensors in the ¢-direction is very sensitive for the estimation of power transmission.
The extra two accelerometers (error sensors) might have been either at or close to nodes
where the error sensors cannot work effectively.

The amount of control shown in Table 8.1 is different from the amount shown in

Figure 8.7. This is due to the fact that the intensity is proportional to the product of
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flexural and extensional displacement amplitudes and their phase difference (Appendix H),
but the circumferential modal amplitudes are dependent only on the flexural displacement.

Using a numerical simulation, it was found that the reduction in power transmission
is similar for a range of excitation frequencies and a range of cylinder radii. It has also
been found numerically that a greater reduction in power transmission is obtained when
the cylinder working length is increased and/or when the separation distance between the
primary and control shakers is decreased. It was found that for longer cylinders the im-
provement in power transmission reduction was due to less interference from the near field
effects (from shakers) because of the increase in achievable distance between the control
shakers and the error sensors and the increase in distance between the control shakers and
the residual intensity measurement points. For example, it was found that up to 30 dB
reduction (see Chapter 7) can be achieved for a semi-infinite cylinder with a 2.5 m working
length (compared with 1 m used in the experimental work) and, with a separation distance
between the primary and control shakers of 0.05 m (compared with 0.085 m used in the
experimental work). The use of these physical specifications was not feasible for the current
experimental work due, in part, to the excessive space requirement. For example, the total
cylinder plus sand box length (equal to the working length of the cylinder) would be 5.0 m.
Secondly, as each of the shaker bodies had a diameter of 0.16 m in practice the separation
distance between the primary and control shakers could not be reduced to less than 0.085 m

(see Figure 8.2).

8.5 Summary

Vibratory power transmission in a semi-infinite cylinder can be reduced by using an array of
electrodynamic control shakers. For a semi-infinite cylinder having the physical characteris-
tics described above, using three shakers and three error sensors, it is possible to achieve a
7 dB reduction in power transmission both experimentally and in theory for the test frequen-
cies (well below the ring frequency). Although a 7 dB power reduction was the maximum
which could be obtained for the particular experimental configuration investigated, numer-
ical simulation showed that for a longer cylinder, a reduction of 30 dB could be obtained.

This shows that the approach described here could be a feasible way of controlling vibra-
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tion transmission in large cylindrical structures. Measurement of power transmission in a
cylinder has been demonstrated by using two accelerometers for the test frequency range.
This finding provides an opportunity for simplification of power transmission measurements

in large cylindrical structures.



Chapter 9

Conclusions and recommendations

In this thesis, active control of harmonic vibratory power transmission in simple structures,
including a beam, a plate and a cylinder, has been investigated. The results demonstrate
that for a beam significant power transmission reduction can be obtained by the use of
a single control source. For both the test plate and cylinder it was found that three
independent control sources are required for the test low frequency range. It was found
that for simple structures it is possible, with the use of acceleration amplitude as the cost
function, to achieve satisfactory control of power transmission when the error sensors are
in the far field of the control sources.

Increasing the separation between the error sensors and the control sources increases the
maximum reduction in power transmission in each type of simple structure. Increasing the
separation between the control sources and the primary sources does not significantly lower
the amount of reduction in power transmission for a beam and a plate, but may produce a
significantly lower reduction in the case of a cylinder.

It has been indicated that for the simple structures considered in this thesis, harmonic
vibratory intensity in the far field of the primary and control sources can be measured by
using a very limited number of accelerometers. For the measurement of the intensity, for
a beam only one accelerometer located in the radial direction is required. For a plate two
closely spaced accelerometers located in the radial direction are required for the test low
frequency range. For a cylinder two accelerometers are required with one of the accelerom-

eters directed perpendicularly to the cylinder and the other directed in the axial direction

119
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along the cylinder for the test low frequency range. These findings provide an opportunity
for simplification of harmonic vibratory power transmission measurements in large plate-like
and cylindrical structures.

This study confirmed the existence of vibratory intensity vortices on a semi-infinite plate
under primary excitation. It was also found that when control sources are added and are
driven to minimize power transmission, the vortex pattern is largely eliminated.

The above results which apply to the use of point forces for the primary and control
sources, can be achieved by using shakers. However, for a beam and a plate, it has also
been shown that when piezoelectric actuators are used as an alternative to shakers for the
primary and control sources, similar reductions in both acceleration and power transmission
are obtained.

There are a number areas for further research based on this study. The theoretical
analysis of the effect of boundary conditions on active control of acceleration in a beam
(Chapter 3) can be extended to examine the effect on active control of power transmission
in a plate and a cylinder. The use of piezoelectric actuators as an alternative to shakers (i.e.
point force excitation) in a beam and a plate (Chapter 6) can be extended to a cylinder.

So far, to the author's knowledge, the experimental work has been carried out only on a
single cylinder (Chapter 8). Further experimental studies could be conducted on vibratory
intensity and vibratory power transmission on cylinders with different dimensions, physical
conditions and therefore different boundary conditions. For example, an investigation using
a longer cylinder may confirm the significant power transmission reduction as predicted by
the theory.

Based on this research, analyses considering random vibration excitation, multiple lines
of control sources and error sensors on a plate and multiple rings of control sources and error
sensors on a cylinder can be developed. For example, the introduction of a second line of
control sources/error sensors may overcome the difficulty in controlling power transmission
when the first line of control sources/error sensors are located at a nodal line (see the cases
for a beam in Chapter 3).

Investigations on plates could consider whether the use of a different cost function is
more effective in reducing the intensity vortex pattern (see the examples for one particular

cost function in Chapter 5). One possibility is to drive the control actuators to create in-
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tensity vortices around points where sensitive items of equipment are attached to effectively

isolate these from the plate vibration.



Appendix A

Classification of beam boundary

conditions

The resonance frequencies (eigenvalues) and mode shapes (eigenvectors) of a finite
beam are determined by the physical properties and geometry of the beam and the nature
of the supports. In this study, the supports are only placed at the ends of the beam and
are described in terms of their impedance. Therefore, this appendix is a mathematical

classification of the various types of boundary impedance.

A.1 Beam boundary impedance

The flexural wave displacement amplitude of a finite beam (in the z direction shown in

Figure 3.1(a)) at location x is defined by Fahy (1985), Fuller and Gonidou (1988)
w(z) = Ae¥r® + Be™*1® + Ce?*1® + De~7k1” (A.1)

where A, B, C, D are constants. To describe the effect of boundaries upon beam vibration
behavior in terms of boundary impedances (see Fuller et al. 1990), it is first necessary to find
a suitable definition for such impedances. A correctly defined boundary impedance should
express the internal beam moments and forces at the boundary as functions of the motion
of the beam at the boundary. The motion of the beam can be described mathematically as
a Taylor series containing all time and space derivatives of displacement. Fortunately, the
time derivatives are not actually required in this sum, because the simple harmonic time

dependence ensures that each time derivative simply results in multiplying the displacement
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by jw (The displacement w is assumed to have positive simple harmonic time dependence
e/*t). Also, from the general solution of equation (A.1), it is can be seen that any space
derivative of order greater than 4 can be written in terms of w, w', w” or w" (where ’
indicates partial derivative with respect to z). From this, the bending moment and shear

force at any location in the beam (including the boundaries) are
M = miw + maw' + maw” + maw"’, (A.2)

QR = frw + fow' + faw" + fyw” (A.3)

where m;y......m4 and fi......f4 are all the required Taylor series coefficients. For the bending

moment and shear force sign conventions illustrated in Figure 3.1(c),
M =-EIl,w" (A.4)

and

Q = Elyywm’ (A5)

so that equations (A.2) and (A.3) can be written as a matrix equation

M | ma w —m3 My M
Q h o fa w' ~fs fa Q@ ’

which can be written as

E% 1“@% Q i fa w'

Equation (A.7) can be inverted to give

-1
M _ 1+ E_"}j; _En};y O v ; (A.8)
Q EJ}:y - #‘;y fl f2 wl

M| 2 W N
0| "k (A.9)

where w = jww is velocity, and 0 = —jww' is angular velocity, and

Zmu'; Z g
7] = E " } (A.10)
Zriy Ly

2]
El,,

~~

A.6)
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where Z ., 2

mir Ly and Z; represent the impedance term due to the displacement on the
moment, the rotation on the moment, the displacement on the shear force and the rotation
on the shear force respectively. This 2 x 2 impedance matrix [Z] is sufficiently general to
describe any dependence of boundary forces (i.e. shear force and bending moment) upon
the motion of a beam in simple flexure. This is in accordance with Cremer's (Cremer et. al,
1973) assertion that a 2 x 2 driving point force impedance matrix is required to describe
the effect of a combined point force and moment excitation on the flexural motion of a
beam.

The relationships between standard support types and corresponding left-hand boundary
impedances are shown in Table A.1. For example, viscous damping (Figure A.1(a)) may
be represented by a negative real boundary impedance, the simple spring support shown
in Figure A.1(b) can be represented by a positive imaginary boundary impedance and a
combined spring and dashpot can be represented as a complex impedance (Figure A.1(c)).
Note that for all of these standard support conditions, the cross terms Z,.;, and Z; of

the impedance matrix are zero. Thus only two terms are shown for each end condition in

Table A.1.
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Table A.1: Standard support types and corresponding left-hand boundary impedance

End Condition Boundary Impedance
Type Condition
Pinned A w(—-%,i) =0 Zpy = 00
Fixed T w(*-‘;—',ﬁ) =1 Ly = 00
_@uz o Bulg4) =i 7, =00
Free “ £ %@ =0 Ziy =0
: u‘é‘j—'z g Pulgll _ Z,4=0
Deflected ;f=== I " Fu30 _ Zrg = j0
Spring Y2 o x Elyyil%%ﬁ = —Kpw(—£,1) Z,.;=0
Torsion — ? w(—%,t) =0 Ly = 00
Spring U2 © _x [Clyyézw—a(;ﬁ'—t2 = KTBL(B;—%—'Q Z.i= —j[—ff
Mass & -{M—;;%ﬁ =0 Ly = —jwm
me x Bw(-£.1) ?w(—L 1)
sz o Ll —7" = —-m—7— Z, ;=0
Dashpot P }— y—ug;a-%ﬂ =0 iy = —c
°_\%2—_0“..-x Bl aswa(;f't) . _Caw—gﬁﬁ Zg =10

Note that at this stage the only energy dissipation which has been considered has been

at the ends of the beam. However, there is also hysteresis loss in the beam itself which may

be taken into account in this analysis by replacing Young's modulus E, with the complex

modulus, E(1 + jn).
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hr hr

(a)

(b)

Figure A.1: Physical meaning of boundary impedance: (a) real boundary impedance;

(b) imaginary boundary impedance; (c¢) complex boundary impedances.
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A.2 Equivalent boundary impedance of an infinite
beam

If an infinite beam with a flexural wave traveling toward the right from a sole point force

excitation, the displacement amplitude function can be written as

w(z) = Be™"" 4+ De~ k1=, (A.11)
so that
Ww(z) = jwBe "% 4 jwDe ke (A.12)
and
0(z) = jwksBe ¥1® — wk;De k1" (A.13)

Equations (A.12) and (A.13) can be written in a matrix form

w(z) | e Jjw Be~ks® (A.14)
4(z) Jwks —wky De=iki=
which can be inverted to give
Berbr | | =5 ey || 0e) | (A.15)
Deiksz 12—:}1 ﬁﬁ% 6(x)

Equation (A.11) can be differentiated two more times to give bending moment M and

shear force () and the result can be written in matrix form:

M(z) k? —kff Be Fks=
. =—-FEI, ' (A.16)
Q(z) k3 —jk? De k=

The column vector on the right hand side of equation (A.16) can be replaced with the right
hand side of equation (A.15). Thus,

[M(“’) } = [ZRins] [ () (A.17)
Q(z) 0(z)
where
[ZR,inf] _ E'[yykf‘/w —(1 - ])Elyykf/w :I (A.18)
(1 +])E]yyk:}/w —E]yykﬁ/w
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so that the boundary bending moment and shear force are expressed as the product of the
2 x 2 impedance matrix [Zg ] and a column vector containing the velocity and angular
velocity of the beam. [Zpr /] is the right infinite beam impedance matrix. By a similar
process of considering a flexural wave traveling from a source toward the left in an infinite

beam the left infinite beam impedance matrix is

ELw (1= )ELksfw

(ZLins] = _ , )
—(1 -{—])Elyykf/w —E]yykf/w

(A.19)

Note that [Zrins] # [ZL.ins] and [ZR,ins] # —[ZL,ins]. By using the infinite beam impedance
matrix [Zg,ins] (or [Z1,ins]) as the right (or left) boundary impedance matrix in the finite
beam model, the boundary is effectively removed and the beam becomes semi-infinite. An
infinite beam can be modeled by using both the left and right infinite beam impedance
matrices as boundary impedances at opposite ends of the beam. This use of infinite beam
impedance matrices to model the termination of a finite length beam produces numerical
results identical to those obtained by evaluating the expression derived from the analysis of

an infinite beam.



Appendix B

Response of a finite beam to a

point force

The purpose of this appendix is to determine the response to a simple harmonic point
force excitation applied at £ = z; of a finite beam with left and right boundary conditions
specified as impedance matrices [ZL] and [Zg]. The applied point force produces a dis-
continuity in the shear force function Q(z) and so it is necessary to calculate two sets of

constant coefficients A, B, C and D, one on the left
wi(z) = AreFr® 4 Bre F1® 4+ CLe?*1 4+ DyeiksE (B.1)
and one on the right of the applied force
wa(z) = Age®1® 4 Boe 1% 4 Chel*r® 4 Dye k", . (B.2)
At the common boundary z = zg,
(2) = walao) (B.3)
(z0) = wy(zo) (B.4)
wy(z0) = wy(zo) (B.5)
F
(z0) L (B.6)

From equation (A.9) the left hand boundary condition of the beam at 2 = 7, can be written

'Ll.)l(.'L'L)
i ) B.7
|: Ol(CI:L) } ( )

= wll(zo) +

[ M(zyp) ] B E Zimis Lpmé
Q(zL)

Zrri L

159



160

By using equations (A.4) and (A.5) to replace the bending moment and shear force with a

derivative of the displacement function, the following is obtained

Zimi Zpg } { wy(zr) L EI wy(zr) j| ~0 (B.8)
vy ) ' ‘

Zrgi Dy 0y(op) —wy’(zy,

Similarly, for the right hand boundary of the beam at z = zp,

Dt Ui s } [ wa(zR)
05(zg)

wy (zR)
= 0. B.9)
e <

ZRtv LRy

Equations (B.1) and (B.2) are then differentiated to produce expressions for w, 0, wy, wy,
w)’, wh, wy and wj’ which contain the unknown coefficients A;, By, Ci, Dy, A, Ba, Cy
and D,. These expressions can be substituted into equations (B.3), (B.4), (B.5), (B.6),
(B.8) and (B.9) and the equations can be combined into a single 8 x 8 system of linear

equations, to obtain

[o][X] = [F] (B.10)
where
[X] = [Ay, B1,C1, D1, Az, By, Ca, D3]” (B.11)
F, T
[F] = o,o,o,o,o,o,o,m , (B.12)
and

i mwtk 5 ]
ﬂL(ZLmﬁ, — kuLm(;’ -+ Qz) Zimih éfLme+Q2 ﬂi(ZLmu'; + %LZLmé - Q2)

ZiritksZ, 5+ @ - k .
B(Zrgw —kiZpg5— Q) gL BL(Zryi + F 2145+ 7Q1)

0 0 0
0 0 0
Po 1/Ba 3
o —1/Bo 1B
Bo 1/Bo —B;

—30 1/Bo 35
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Zme——}-Jszé_Q, . .
k L
sz——,LJZL,é—jQI 0 .
L
Z mw k
0 IBR(Zme - kuRmo' + QZ) R + éff{mﬂ"’Q?
ZrpatksZp,5+Q
0 Br(Zrsiw — kiZpg — Q1) = éR’”" -
1/s —ho —1/Bo
—1/,33 —,30 _1/50
0 0 ]
0 0
Z md:"ﬁ'-tz H—
ﬂR(Zme + Q2) gt fgﬁ Rmo—@2
- Zrsa—"LZp9-iQ1
J . _L . f
Bh(Zrsa + L Zpse + Q1) J% Lol (P
-3 ~1/8}
~i83 ilB3
B3 1/83
—j B3 ilB5
where fp = "R, By = 1™, B = ebr7L, ﬂ}J{ = elk1TR, IB(J) = elkszo, ﬁi = eifsor,
Elyy Elyy f

Q1=TL and @), =

The solution vector [X] characterizes the response of a

finite-length beam to a pomt force simple harmonic excitation.



Appendix C

Response of a semi-infinite plate to

a line of point forces driven in phase

The classical equation of motion for a plate given by Graff (1975) is

0? .t
ph——% + DpV*w(z,y,t) = ¢(z,y,1) (C.1)

where p is mass density per unit volume of the plate and V* = V2V? is the square of
the Laplacian operator. Note that the effects of transverse shear and rotary inertia have
been ignored to simplify the analysis. The geometry of the plate and the alignment of
the coordinate system are shown in Figure 4.1. The plate lies in the x-y plane with a free
edge at x = 0 and simply supported edges at y = 0 and y = L,. The external force per
unit area excitation represented by ¢ is an array of m equally spaced point forces spanning
the plate along a line parallel to the y-axis. At this stage, all of these forces at locations
(zo,yi,2 = 1,m), will be assumed to be driven in phase and with the same complex

amplitude Fj so that

m

g=Foy_ 8(z —z0)b(y — ui)- (C.2)

=1

The two sides (y = 0, y = L,) are simply supported and, so the following harmonic series

solution in y can be assumed for the vibratory displacement

(z,y.t) = D wa(z)sin n;yejwt. (C.3)
n=1

Y
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Each eigenfunction w,(z) can be expressed in terms of unknown constants A;, A,, A; and

A4 and modal wavenumbers k;,, as follows
wy(z) = Arefin® 4 A eFon® 4 Ajekon® 4 A ekine (C.4)

To find the modal wavenumbers (i.e. eigenvalues), the homogeneous form of equa-
tion (C.1) is multiplied by sin 7™ - and integrated with respect to y over the width the plate
(i.e. from 0 to L,), to give

d'w,(z) o 2d?w,(x) nm.4  phw?

dz? (Z.) —a2 ((L_y) - Dy

Y

Ywn(z) = 0. (C.5)

Solutions to this ordinary differential equation are assumed to be of the form e*%, and its

characteristic equation is

nr. 4 phw?

k2 — (e Ic2 = :
which has the roots
B | nmw.2 phw?
kln,2n - ﬂ:d (fy‘) + Dh ) (C?)
nr\” phw?
kanan = £ (L_y) “\\' D, (C.8)
Using equations (C.8) it can be shown that if
nm .2 phw?
( Ly) <\I"p, (C.9)

or

w=2rf> (r:r) \/E (C.10)

then the wavenumber in equation (C.8) is imaginary. By substituting the mode number
in n into equation (C.10), the cut-on frequency for mode n can be calculated. Calculated
cut-on frequencies for the first five modes are listed in Table 4.1.

On each side of the applied force, the eigenfunction w,(z) is then a different linear

combination of the terms e*»® (with : = 1, 2, 3, 4). For z < z,

win(z) = A efnT 4 Ayefent 4 Azefn® 4 A ekinT (C.11)
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and for £ > xz,

wgn(.'l,') = B2€k2"$ + B4ek4ﬂx- (012)

Note that in equation (C.12) the coefficients By and B; have been omitted because, for
a semi-infinite plate, there is no boundary to produce reflected waves with a negative
horizontal velocity component. At the junction z = 2, the following boundary conditions

must be satisfied

Win = Wy, (C.13)
85”;" . a;”;", (C.14)
2 2
aa’:;" - 882;’3" (C.15)
and , , -
aat:;n - 381;5:" = "Li%h ;sin nzj' (C.16)

For the free edge at z = 0, the expression
0w 9w
~Dn (T + ”—z)

given by Leissa (1969) (The coordinate system given by Graff (1975) is different from that

=0 (C.17)

r=0

given by Leissa (1969), therefore this chapter cited corresponding equations given by Leissa
(1969) as the coordinate system in this chapter is the same as that given by Leissa (1969).)

can be used to express the bending moment boundary condition
M.(0,y)=0 (C.18)
in terms of displacement, with the following result

> [KEaAr + k2 Ax + k3, Ag + K3, Au—
n=1

2
p(25) (A1+A2+A3+A4)] sin Y = 0, (C.19)
L, Ly

By again multiplying both sides by sin ¥ and integrating from y = 0 to L, the following
Y
is obtained:

nm. 2 nmT. 2
[’ffn - V(L—y) ] A + [kgn = V(L—y) } A+

2
R e e P c.20)
L, L,
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The free edge condition also requires that the net vertical force at z = 0 be zero (Leissa,

1969). Thus,

oM,
Ve=Q:+ £=0 (C.21)
which can be expressed in terms of displacement as
Pw Pw
‘/Z(III, y)|z=0 = —Dy [%{ i (2 - V)Wl - =0 (022)

Thus,

2 2
[ki‘n - 2= )(F) k] A+ [k;‘n - 2= o)1) kzn] At
) Yy
nmw nm,2

[kgn _(2- u)(L—y)ZkSH] As + [kgn - @- )T k4n] A = 0 (C.23)

Equations (C.13) to (C.16), (C.20) and (C.23) can be written as a 6 x 6 matrix equation

as
[ 2 vH 2 vH 2 _ vH 2 _ vH
kln T 2=y k2" Y k3n 2—-v k4n 2—vy
3 3 3 3
B~ Hky kS — Hhyn k3, — Hksn k3, — Hka,
ekino ekano ekanzo ekanzo
klneklnro k2n6k2"I° ksnekanxo k4nek4n$o
2 Jkinz 2 konzo 2 JkanZo 2 _ksnzo
klne e ane " k3ne " k4ne n
3 _kinzo 3 _konzo 3 Jkanzo 3 _kanxo
| ke ky. e k3 et k;, e
0 0 A 0
0 0 A, 0
_gkanTo —ekanzo As 0
= (C.24)
—k2n€k2"m0 ___k.4nek4n1‘0 A4 0
—k%nek“m‘) _k;’-nekmxo B, 0
o 3 kgn:l,'o _ 3 k4n.'L‘0 e 2Fp m = Y.
k;.e ki.e | | Ba | | I,D; 2y sin T |

which can be written as [o][X] = [F]. For each value of n, the solution [X] of the 6 x 6
system of equations is an eigenvector which describes a traveling wave mode shape and
amplitude. The modal wavenumbers ki, kon, k3n and ky, required by equation (C.24) are

calculated from equations (C.7) and (C.8), and the quantity H = (2 — 1/)(’5—")2
Yy
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The plate response at any location (z,y) due to the row of in-phase point forces is
w = Fywo_g (C.25)

where wq_y is the response to unit force excitation which is obtained by solving equa-

tion (C.24) (with Fo = 1) and substituting the results for A;, A2, A3, A4, By and By into

equations (C.11) and (C.3) or equations (C.12) and (C.3), depending upon the location at

which the plate response is to be evaluated. By expressing the solution for the eigenvectors

[X] = [o] ' [F], (C.26)
the response at (z,y) is:
wo-s(e,9) = 32 - (3sin ) ol in (C.27)

where ([a]™!)%; is the sixth column of the inverse of the coefficient matrix [a] from equa-

tion (C.24). For z < zo,

eklnI
ekgn:z:
ekg,-.:::

6/04,13

0
0

and for z > zo,

o o O

[E.] = : (C.29)

ekgn.’r

ekqna:



Appendix D

Modal decomposition method in a

semi-infinite plate

For a simply supported plate, a modal decomposition method was introduced by Fuller
(1991). For the plate with one end terminated anechoically and the sides adjacent to the
anechoically terminated end simply supported, the flexural plate displacement w, for a fixed
frequency in equation (C.3), at a point (z,y) is given by

e nmTy

w(z,y) =Y An(z)sin I, (D.1)

n=1

where n is the modal number in the y direction and A, is the modal amplitude of the plate.
For a single frequency producing a low modal density, summation over a finite number

of modes will achieve a reasonably accurate result,

il nmwy
w(z,y) = Y Au(z)sin I, (D.2)

n=1

In practice, the (complex) plate displacement can be measured at a discrete number of
randomly selected points N. These values are then used in equation (D.2) to form a set of

simultaneous equations, which can be represented as an N X N matrix equation as follows

wy sin % sin Pt .osin T A
c 1 ) N
Wo sin =2 sin 72 ... sin =72 A,
= v v v (DB)
. 1 . .
wy sin —F4& s1n2’£l’—” smN—gy—"i AN
L - L y y v 4L E
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or

[w] = [spatial coef ficients][A]. (D.4)

With the displacement vector and spatial coefficient matrix known, the modal amplitude
vector [A] can be determined.

Using numerical simulation it was found that the ill-conditioning of the inverse matrix
([spatial coef ficients]™!) significantly affects the accuracy of the measured modal am-
plitudes when only a small number of measurement points is used. To avoid using this
inverse matrix and the associated ill-conditioning problems, the modal amplitude vector

[A] can be expressed as:
[A] = ([SI"[S)~'[SI"[[W] (D-5)

where [S] = [spatial coef ficients] and the matrix ([S]7[S]) is nonsingular and not ill-

conditioned.



Appendix E

Measurement of amplitude
reflection coefficient in a

semi-infinite plate

Reflection coefficients have been measured by Taylor (1990b) for a beam and by Abom
(1989) in a duct. However, the measurement of reflection coefficients in a plate has not
been studied previously.

The measured modal amplitude for the nth mode A, (z) (n =1,....N) shown in equa-
tion (D.5) is a complex number which comprised contributions from the reflected wave and
the incident wave. If the measurement location z is in the far field of excitation sources,

then each A,(z) can be defined as:
An($) - A;efekf(&n)z_I_Ailnekf(4,n)z:’ (El)

where A%/ is the amplitude of the reflected wave for the nth mode, A% is the amplitude of
the incident wave for the nth mode, k;(3,n) is the wave number generated by the reflected
wave and ks(4,n) is the wave number generated by the incident wave at the nth mode.
These wavenumbers are defined in equation (C.8). This analysis is possible because the
wave numbers are only a function of an excitation frequency and the properties of the plate.

Consider A,(z) (n = 1,....N) at two different axial locations (z = z; and z = z,),

each of which has been obtained from equation (D.5). The modal amplitudes A,(z,) and

169
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Au(zy) (n=1,....N) are

An(zy) = AT F1Bmor 1 gineky(din)os (E.2)

and
An(ws) = ATt b1Gmzz 4 gingks(himlez, (E.3)

The matrix form of the system of equations (E.2) and (E.3) is

Aref
" E.4
p (E.4)

ek] (3,n):::1 ekj(‘l,’n).‘cl
eks(Bm)z2 eks(4n)z2

Therefore the amplitude reflection coefficient (|Az¢/|/| Ai*|) for the nth mode at a location

of z = 22571 is obtained by inverting equation (E.4) to obtain the coefficients A7¢/ and

n
A,



Appendix F

Response of a semi-infinite cylinder

to a line of point forces driven in

phase

and

The classical equations of motion for a cylinder given by Fliigge (1973) are

u”—}-l_l/u"-{— 1+Vv"+1/w'

2 2
l—v | " l1—v -~ 282_u = ZFI
1 —
1_;_Vu"-|—v"+——2 v+ w
3(1_1/) 1 3—v " 282U 2F¢
i — v =T g oh
1— 3 —
z/u'+v'+w+§[ 2Vu"'—u’"— 2”//-
0w , Fy

+w 4+ 20" +w 2w+ w] + 72W = —

(F.1)

(F.3)

where the quantities u = u(z, ¢,t), v = v(z, ¢,t) and w = w(z, $,t) are the displace-

ments in the axial, tangential and radial directions respectively, and F,, F; and F, are the

applied forces per unit surface area in each direction. The derivatives with respect to the

T

dimensionless coordinates £ and ¢ will be indicated by primes and dots:
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=y, 5 =0

The geometry of the cylinder and coordinates are shown in Figure 7.1(a) and the sign
conventions are shown in Figure 7.1(b). The cylinder is simply supported at £ = 0 and
infinity on the other end.

As the cylinder is closed, the following harmonic series solutions in ¢ can be assumed

for cylinder vibrational displacement in the axial, tangential and radial directions (Fligge,

1973, Brevart and Fuller, 1993):

u(z, @, t) = i un(z) cos nde’™t, (F.4)
n=1
v(z,¢,t) = i v, (z) sin nge’ (F.5)
n=1
and
w(z,d,t) = Y wy(z) cos neel™. (F.6)
n=1

Each of the eigenfunctions u,(z), v,(z) and w,(z) can be expressed in terms of the modal

wavenumbers k,, as follows (Forsberg, 1964)

8
un(z) = Z Qsn Asneon T (F.7)
s=1
8 z
vo(z) = ZﬂsnAmeks"F (F.8)
s=1
and
8 1
wn(‘r) = Z Asnekm: b (Fg)
s=1

where A;,., a,, and G, are arbitrary constants.
F.1 Determining the wavenumbers and constants «

and g3

For each mode, the homogeneous form of equations (F.1), (F.2) and (F.3) must be
satisfied. To find the modal wavenumbers (i.e. eigenvalues), we take the general term
of equations (F.4), (F.5) and (F.6), put u = u,(z)cosngd, v = v,(z)sinng and w =

wy, () cosng, and introduce this into the homogeneous form of equations (F.1), (F.2)
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and (F.3). All the terms in each equation have a common factor sinn¢ or cosng, which

cancels to give

et nv,, + vw,
1 _ —
=4l 5 nu, + w' + —2—Vn2w:1] +wylu, = 0, (F.10)
i—
_1_;Vnu’n—nzvn+ 5 V’U;:—nwn
3(1 — 3—
re D 2t i, = o (F.11)
and
1— 3 —
vul, + nv, + wy, + €[ 5 Vn2u; —ul - i an::
o’ — 0Pl 4 ntw, — Py ] —wrw, = 0. (F2)

Equations (F.10), (F.11) and (F.12) have constant coefficients and may be solved by ex-
ponential functions:

u, = A, ef"7, v, = Bpe*»t and w, = C,e*r.
After introducing this into equations (F.10), (F.11) and (F.12), we may drop the expo-
nential factor and then have three ordinary linear equations for the constants A,, B, and

C,:

- 1
CEE (14 €) + A + — kB,
1 —
+[vk, — €E(kn + T”kn,ﬁ)]cn = 0, (F.13)
1 - _
Ly [—1 Tk 4 n? - M{k,ﬁ +w?y?B,
2 2 2
3 -
Hn——; ek2nC, = 0 (F.14)
and
1 - ~
[Vk" - é(k?z + Tyknn2)]An § [TL - = 9 kain]Bn

+{1+ €L = 2k2n? + 0t — 207 + 1) —w*y?)C, = 0. (F.15)
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Since these equations are homogeneous, they can have a solution A,, B, and C, differ-
ent from zero only if the determinant formed from their nine coefficients vanishes. This
condition can be used to determine k,. In general, the solution will usually have the form
(Forsberg, 1964)

ki = —a, ks = +a,

k2 = —3b, ke = +7b,

ky =—(c+jd),  kr=4(c+jd),

ks = —(c—jd), ks = +(c—jd)
where a, b, c and d are real quantities. This is different to the form of the solutions given
by Fliigge (1973), because the inertia terms have been included here.

The constants «, and (3, (n = 1,....00) can now be found from any two of equa-
tions (F.13), (F.14) and (F.15). Using the definition of A, = «,C, and B, = §,C,
(n =1,....00), the complex numbers a, and 3, can be determined by assuming C,, = 1
(n =1,....00) in equations (F.13), (F.14) and (F.15).

On each side of an applied force at x = x(, each eigenfunction is a different linear

combination of the terms eF»¥. For z < zo,
8
U]_n(x) - Z asnAlsneksn%7 (F].G)
s=1
8 I
’()171(1;) . Z ﬂsnAlsneksn: (Fl?)
s=1
and
8 I
wln(m) = Z AlsneksnF‘ (F].S)
s=1
For z > zg,
4
u2n(x) = ZasnAanekm%a (Flg)
s=1
4 X
1.)2”(17) = Z ﬁsnA2snekm; (on)
s=1
and

4
Wan(2) = Z Aggnefent. (F.21)
s=1
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Note that in equations (F.19), (F.20) and (F.21), Ajs, to Azg, have been omitted because,
for a semi-infinite cylinder, there is no boundary to produce reflected waves with a negative

horizontal velocity component.

F.2 Determining the flexural wavelength

The flexural wavelength can be obtained from the homogeneous form of equation (F.3).
The flexural wavelength can be obtained by dividing both sides of the homogeneous form

of equation (F.3) by &, and using the definitions of £ and ¥2 (see list of symbols) to obtain

1 1-—- 3 —
E(I/’U,, +v +w)+| 5 Ll — " — = Ly
4

12p(1—v2)rt
Following a similar procedure to that used for the calculation of the flexural wavelength in

a flat plate, the coefficient of the last term in equation (F.22) may be expressed as

w4

— e = ki (F.23)
12p(1-v2)rt
Equation (F.23) can also be written as

w 27
Cf f

_ (| )’ : F.25
W 12p( =)t ) (F-25)

which is the expression for the frequency dependent flexural wave speed in the cylinder.

(F.24)

and

Note that the flexural wave speed is the ratio of the flexural wave speed in a flat plate of

thickness equal to that of the cylinder, to the radius of the cylinder.

F.3 Simply supported end conditions

The four boundary conditions corresponding to a simple support are u =0, v =0, w = 0
and M, = 0 (Leissa, 1973), where M, was given by Fliigge (1973):

M, = I—‘(w“ + vw” —u' — ). (F.26)
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In terms of the displacement unknowns, these boundary conditions for a simply sup-

ported end at z = 0 are

8
Z QsnArsn = 0, (F27)
s=1
8
Z ﬂsnAlsn B 0, (F28)
s=1
8
2 Ain =0 (F.29)
s=1
and
8
E(k:n - I/TL2 - asnksn - I/nﬂsn)Alsn = 0. (F30)
s=1

F.4 Equilibrium conditions at the point of an ap-
plied force

Requiring that the displacement and its gradient in each direction be continuous at any
point in the cylinder wall, the first six equilibrium conditions at z = zy which must be

satisfied are

Uin = Usgn, (F.31)

Uln = Ugp, (F.32)

Vin = Von, (F.33)

Vi, Eivh (F.34)

Wip = Wop (F.35)
and

Wy, = Ws,. (F.36)

The form of the excitation F' will affect the higher order equilibrium conditions at z = =q.

The displacement response of the cylinder to an array of m equally spaced radial point
forces around a circumference of the cylinder at positions ((zq, ¢;),2 = 1,....m) is consid-
ered. The radial force F, in equation (F.3) is assumed to be driven in-phase and with the

same complex amplitude Fy so that

m

Fr=FyY 6(z —20)8(p — ¢i)e’™". (F.37)

=1
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Replacing u, v and w by equations (F.4) to (F.6), dividing by ¢’*, multiplying by cosn¢

and taking integral from -7 to = with respect to ¢, equation (F.3) can be written as

VZ/

nul (z) —u, (z) — “

i) + nv,(z) + wa(z) + €[~
w,” () — 2m*w;(z) + m' wn(x)—szwn($)+w( )]—Vzwzw (z) =
F06 (= _:EO Zcosq& (F.38)

Then taking integral from zo — § to zo + 6 with respect to x in this equation, using the

conditions
To+6
/ : wn(z)dz — 0, (F.39)
.’E0+5
/ S w;, (z)dz — 0 (F.40)

(similarly for u,(z), va(z), ul(z) and v} (z)) and

o6
/ we(z)dz — 0 (F.41)
To—§
as § — 0, we obtain
To+6 2 m zo+6
_ /// d / I z/ _ d 4
/ T+ (z) thf ;COS s 8(z —zo)dz  (F.42)
or
F
w, (20) — U (20) + wha (o) — wiy (@ ” Z cos . (F.43)

Finally, taking integral from zo — & to zo + § with respect to z in equation (F.43), we get

win(T0) = wh, (o). (F.44)

F.5 Determination of the eigenvector

For a semi-infinite cylinder with the end at z = 0 modeled as a simply supported, equa-
tions (F.27) to (F.36), (F.44) and (F.43) can be written as a 12 x 12 matrix equation. We
use the definition of M; = k2 — vn? — a; ki, — vnfi (1 = 1,....8) in equation (F.30).
In terms of displacement unknowns, the coefficients in equation (F.43) can be written as

F: = i, k2 eFino — k3 ekin® (4 =1,....8) and
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F = k?i_s)nek(-'—ﬂ)"“ — a(,-_g)nk%i_s)nek("-ﬂ)"“ (=09,...12). The 12 x 12 matrix equation

can be written as

Xin A2n Q3n Q4n Qsn
ﬂln 13271. /8371 ﬂ4n IBSn
1 1 1 1 1
Ml M2 M3 M4 M5
alneklnro agnek““ aanekanro a4nek4nro asneksnz‘o
CYl'nkln ekl"ro a2nk2n 6k2nzo a3nk3nek3"zo Qyn k4nek4n-’50 8 4:19 kSneksnzo
/Bln eklnzo ﬂ2n ek2nl‘0 ﬂS'neka"IO ;B4nek4nxo ﬂ5n6k5n$o
,Bln klneklnro IBanZn ek2nz0 ﬂSnkSn 6k3n1‘o ﬂ4nk4nek4"ro ﬁSn kSneksnzo
ekinzo ekano ekanzo ekanzo eksnzo
klneklnro k2nek2nro ksnekhro k4nek4n$o ksneksnro
k%n eklnro kgn ekznro k§n6k3n10 kinekmro kgneksnxo
L F1 Fg F3 F4 FS
Qgn (07:2% Ogn 0 0
Ben B Ban 0 0
1 1 1 0 0
MG M7 Mg 0 0
aenek""m" a7nek7nzo asnekanl‘o _alneklnl‘o _a2nek2nl‘o
o ken®n™  ar kr,efn® ag kgaefinte —agkeFinT —ay, kznek“z;
ﬂeneksnxo ﬂ_{,nekmzo /Bsneksnxo _ﬂlneklnxo —ﬂ2n€k2"I°
6671 kﬁneknzo ﬂ7n k,?nek?nl'o ﬁSnkSnekanxo _,Blnklneklnr0 _13271 k'2'n.6k2"1:0
ekenTo eknzo eksnzo —ekinzo — ekanzo
kSnekenxo k7n€k7"z° ksneksnro _klnekxnfo _kznekmro
kgneksnxo k?nek”‘x" kgneksnro _k%neklnzo _k%nekznro
Ey F; Iy Fy Fio
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0 0 [ A 0

0 0 Aqon 0

0 0 Aqan 0

0 0 Aian 0

— Qup eFon — g eftn® Aisn 0

— 3 kan T — kg, gm0 Aten 0

= (F.45)

—BaneFanTo — By eFenTo Airn 0

—Bankane®n®  — By kyyeFenTo Aign 0

— ekanzo —ekanzo Asip 0

'—k3nekanxo _k4nek4“ro A22n 0

_R2 kom0 g2 gk Agan 0
Fi Fio 1L Agtn ] i fzzz 1%y Cos & !

which can be written as [@][X] = [F]. For each value of n, the solution [X] of the 12 x 12
system of equations is an eigenvector which describes three wave type modal shapes and
amplitudes.

The cylinder displacement at any location (z, ¢) due to a line of in-phase radial point

forces is
u = Fouo_f, (F46)
v = Fovo_f (F47)
and i
w = Fowo_f. (F48)

where ug_y, vo_; and wo_; are the displacements to unit radial force excitation which are
obtained by solving equation (F.45) and substituting the results for A;,, (s =1,....8) and
Agsn (s = 1,2,3,4) into equations (F.16) to (F.21) and (F.4) to (F.6). Similarly, the
displacement responses due to unit axial force excitation or tangential force excitation can

be obtained by using equation (F.1) or (F.2) correspondently.



Appendix G

Modal decomposition method in a

semi-infinite cylinder

For a cylinder, the flexural displacement w to a fixed frequency in equation (F.6) at a
point (z, ¢) is given by
w(z,¢) =Y _ An(z) cos ng. (G.1)
n=1
For a single frequency producing a low modal density, summation over a finite number of

modes will achieve a reasonably accurate result,

N
w(z, @) = ;An(x)cos ne. (G.2)

In practice, the (complex) cylinder displacement can be measured at a discrete number of
randomly selected points N. These values are then used in equation (G.2) to form a set of

simultaneous equations, which can be represented as an N x N matrix equation as follows

[ un ] [ coslg; cos2¢; ... cos N¢y 11 Ay ]
wy | _ | cos Ly cos2¢py ... cos N, Aqy (G3)
| wn | | cos 1oy cos2¢y ... cos Noy 1L Apn

As shown in Appendix D, the modal amplitude vector on the right hand side of equa-

tion (G.3) can be determined.
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Appendix H

Measurement of vibratory intensity

in simple structures

H.1 Measurement of vibratory intensity in an infi-

nite beam

Considering only flexural vibration, which is the dominant wave vibration in the beam
configurations investigated in this thesis, the intensity consists of two components. The
first is associated with the product of the internal shear force and transverse velocity, and
the second is associated with the product of the bending moment about the neutral axis
and rotational velocity. By adopting the approach of Fahy (1989), the intensity of flexural
wave is )

I, = —%Re[Q*%—f + M*%] (H.1)
where  and M are calculated from equation (2.11).

The method of determining the intensity in a beam given by Pavic (1976) requires the
use of four accelerometers (two for sinusoidal waves). Also, Fuller et al. (1990) used two
laser vibrometers to measure the intensity in a mass loaded beam. However, for simple
harmonic excitation and for an error sensor in a source far field, equation (H.1) can be
simplified to

I, = Bl kjw|w|®. (H.2)

Equation (H.2) shows that the intensity is proportional to the displacement magnitude
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squared. This demonstrates that one can use one accelerometer to measure the displace-

ment and use the displacement to determine the intensity in the beam.

H.2 Measurement of vibratory intensity in a semi-
infinite plate

For flexural waves which are the dominant wave vibration in the semi-infinite plate consid-
ered in this thesis, the intensity in the axial direction is the quantity which is integrated

across the plate to obtain power transmission (equation (4.10)) and is given by

L = —3Re{livnle)l Qute) - [ 2520 bia,)-
2D g o). (13)

where Q,, M, and M,, defined by equations (4.11)-(4.13). Similarly the intensity in the
y-direction can be determined by interchanging the x for y derivatives and subscripts in
equations (H.3) and (4.11)-(4.13). The total power transmission through a section at
constant x can be obtained by integrating both sides of equation (H.3) over the width of
the plate.

An exact means of determining the intensity in the x direction in a plate requires the
use of eight accelerometers (for both the near and far fields of a source) to evaluate the
derivatives in equation (H.3) and has been described by Pavic (1976). Further, Hirata et
al. (1990) developed Pavic's method to use four accelerometers to measure plate intensity
in the far field. However, it will be shown that at low frequencies in the far field of any
source, it is possible to obtain reasonably accurate results using just two accelerometers.

Beginning with equation (H.3) and substituting equations (4.11) to (4.13) into it, we

obtain for harmonic excitation

1 [ 0w 0w ow* 0w
. _ O 28 g
i, Qthlm{ w (kz 52 + k&, e (1 -v) e 8$8y+
ow=

where k. is the x component of the plate wave number and k, is the y component of the

plate wave number. The following general solution for waves propagating in the plate in
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the far field of any source has been assumed
w = X(z)Y(y) = (A1e77%" + A,e7%7)(Bre Y 4 B,elkw), (H.5)

If it is assumed that k, and k, are small, equation (H.4) can be further simplified to

L. = wDyk:Im {waaw } . (H.6)

T
A similar expression can be written for the intensity in the y-direction by substituting y for
x everywhere in equation (H.6).
If we make the low frequency approximation that
m\ 2
K R (D—h) (H.7)
where m is the mass per unit area of the plate, and use two closely spaced accelerometers
to measure accelerations at z; and z,, the terms in brackets in equation (H.6) can be

approximated as
1 Puw(z,y) | 0Pw(zsy)

w ~ _2w2[ at2 atz ]) (H'8)
8w‘ - 1 82w($lay) 82w($2ay) *
63} ~ _sz[ 8t2 = atz .] 1 (Hg)

where A is the distance between the two closely spaced accelerometers. Equation (H.6)

can then be written as

B (Dpm)z Pw(z1,y) | Pw(zy,y),, 0w (z1,y) _ O%w(zy,y),.
Le = Ao Il AT )]
_(Dym)7 BPw(zy,y), Pw(zs,y), . B
= A2 Tar T Isin(6 — 02) (H.10)

where (0, — 0,) is the phase by which the signal from accelerometer 1 leads that from
accelerometer 2, and intensity transmission is positive from accelerometer 1 to 2.
Equation (H.10) can also be used to determine the intensity vector in the y-direction
by replacing w(zy,y) and w(z,,y) with w(z,y;) and w(z,y,) respectively.
The total power transmission in the x-direction along the plate is then obtained by
averaging the intensity (which is actually power per unit plate width) measured by each
accelerometer pair and multiplying the result by the plate width. Thus,

- 1 2 w(r;, 82 w(zigy s .
B. 2(1{);1?'?2)'1‘ Z{'\;l,S,S |8 8(t2 y)|| {81"'“ Ii:'| Sln(gi - 0i+1)L
“T T Aw? N 4

(H.11)
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where N is the number of measurement points. Numerically, it can be shown that equa-
tions (H.3) (by integrating it along the plate width) and (H.11) give very similar results for
the semi-infinite plate considered here. These are listed in Table H.1 for one primary source,
three independent control sources, nine measurement points and an excitation frequency
of 257 Hz (theoretical cut-on frequency for the third mode). The locations of the primary
source, control sources, error sensors and measurement points are as shown in Figure 5.4.
Thus the two accelerometer method for plate intensity measurement can be considered

valid for the cases considered here.

Table H.1: Estimated and theoretical power transmissions

Estimation Theory

equation (H.11)

equation (H.3)

Uncontrolled power transmission (W) 0.66E-3 0.61E-3
Controlled power transmission (W) 0.10E-9 0.99E-10
Power reduction ratio 6109472 6119250

Power reduction (dB) 67.86 67.86

H.3 Measurement of vibratory intensity in-a semi-

infinite cylinder

Measurement of intensity in a cylinder is more complex than measurement of intensity in a
beam and a plate, intensity in a cylinder is a result of three types of wave motion and, is
expressed as (Fuller, 1981)

L=I+1+1 (H.12)

where the subscript refers to the shell motion: i.e. either flexure, extension or torsion

respectively. For each wave type, the individual wave intensity was defined as (Fuller,
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1981)
0* *
a *
I, = Re[N ] (H.14)
and
I, = "Re[N,, 2 H.15
7 g e Ty (H.15)

where M, was defined in equation (F.26), @, N and N4 were defined in equations (7.17)
to (7.19) respectively. Then the total power transmission can be obtained by integrating
the total intensity (equation (H.12)) around the circumference of the cylinder with respect
to &.

There is little discussion in other research about measuring the intensity in a cylinder,
because it is too difficult to measure the derivatives which are included in the force terms
(Qz, N and N,4). However, it will be shown how it is possible to simplify equation (H.12)
to a form which can be measured in practice.

For wide range of semi-infinite cylinders, the extensional wave intensity gives a good
approximation of the total intensity as shown in Section 7.3.2 for the test low frequency
range. In this case, one can use the extensional wave intensity instead of the total intensity.

Introducing equation (7.17) into (H.14), equation (H.14) can be written as

Ou du™ u D.v @_au* n D.v ou* B Eazw ou*
T 7 TRl e w N TR

I = —Re[D (H.16)

Using numerical simulation it was found that the third term in equation (H.16) dominates
and by itself gives a close approximation of the extensional wave intensity. By omitting the

remaining three terms, equation (H.16) can be written as

D.v
2

I ~

(H.17)

For measurements made with two accelerometers, equation (H.17) can also be written as

D vw D.v 0*w  0%u

le = ———=Imlwu’] = -5 5=l 50

|sin(8,, — 6,) (H.18)

where (8, — 0,) is the phase by which the signal from one accelerometer leads that from

the other accelerometer. Therefore one of the accelerometers can be used to measure

flexural acceleration 222 and the phase 0,, by locating the accelerometer perpendicular to
at p y g perp
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the cylinder. Also one can use the other accelerometer to measure extensional acceleration

au

&% and phase 0, by locating the accelerometer in the x-direction along the cylinder.

Then the total extensional wave power transmission in the x-direction along the cylinder
is obtained by averaging the intensity (which is just power per unit length of circumference)
measured by each of the accelerometer pairs and multiplying the result by the length of
the circumference of the cylinder. Thus an estimation of the extensional wave power

transmission is

D.rvm 0 u;
P, o~ Z| 8t2 3t2 *|sin(0y; — 0.:)/N (H.19)

where N is the number of measurement points (i.e. the number of accelerometer pairs).
Table H.2 lists the reduction of power transmission calculated from equation (H.19)
(estimation) and from equation (H.12)(Fuller's theory) (by integrating it around the cir-
cumference of the cylinder), for three primary sources, three independent control sources,
thirty-nine measurement points and excitation frequency of 510 Hz. The locations of the

primary sources, control sources, error sensors and measurement points are the same as in

Table 7.1.

Table H.2: Estimated and theoretical power transmission for the semi-infinite cylinder

Pin P, P.T .reduction
(W) (W) (dB)
Estimation 0.26E-7 | 0.26E-10 30
equation (H.19)
Fuller’s theory | 0.19E-7 | 0.20E-10 30
equation (H.12)

Table H.2 demonstrates that the reduction of power transmission from estimating in-
tensity using equation (H.19) and Fuller’s theory are very similar. The results are similar for
a range of excitation frequencies and a range of cylinder radii. In Table H.3, the reduction
of estimated and theoretical power transmission is shown as a function of the excitation
frequency. The results show that the estimation is the same as theory for each excita-

tion frequency considered, except for the highest frequency of 610 Hz, where the power
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transmission reduction from the estimation is 1 dB less than that from theory. Hence
equation (H.19) can be considered to be a numerical study of the experimental method for
measuring the total power transmission. Numerical simulation has shown that the expres-
sion for estimated power transmission (equation (H.19)) can be used for both near field
and far field conditions. Therefore, the two accelerometer method for cylindrical intensity

measurement can be considered valid for cases (the test low frequencies) considered here.

Table H.3: Effect of excitation frequency on the estimated and theoretical power trans-

mission
Thickness | Radius | Frequency | Estimation Theory
h (m) r (m) f (Hz) |[P.T.red.(dB) | P.T.red.(dB)
0.003 0.5 110 23 23
0.003 0.5 210 27 27
0.003 0.5 263 28 28
0.003 0.5 310 29 29
0.003 0.5 410 31 31
0.003 0.5 510 32 32
0.003 0.5 610 34 33
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