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SUMMARY

The work presented in this thesis is concerned with the development of a linear

three-dimensional hydrodynamic numerical model for wind induced flow in sta-

bly stratified flat-bottomed lakes or seas. The perturbed motion is assumed small

and deepening of the interfaces under wind action is ignored. The vertical de-

pendence of horizontal currents is determined using Galerkin methods, whereas

a finite difference method is used for the integration in time and the horizontal

spatial coordinates. Two types of basis functions are taken into consideration:

B-spline functions (Galerkin-finite element method) and numerically determined

eigenfunctions (Galerkin-spectral method).

The proposed Galerkin models can accommodate an arbitrary variation in the

vertical eddy viscosity within each layer. Across the interface the eddy viscosity

profile can be chosen to be either continuous or discontinuous.

Two types of interfacial conditions are examined. The first is that the horizontal

velocities and shear stresses are continuous across the interface and the second is

that of zero-stress (used by Heaps, 1966, Phil. Trans. Roy. Soc., Ser. A, 259,

391-416). The condition of continuous horizontal velocities and shear stresses

requires only one set of basis functions, whereas the stress-free condition effectively

decouples the system into two parts, and hence requires two independent sets of

basis functions.

The model performances are demonstrated for the Ekman problems with strat-

ification. Steady state and time dependent responses of an unbounded sea, subject

to the impulsive onset of wind stress, are computed using a point model. For

the study of inertial motion subject to the local wind stress, a two-layer model

composed of the surface layer and the pycnocline is proposed.

The methods are also applied to investigate the transient response of an ide-



alised narrow lake of uniform depth subject to the impulsive onset of wind. Time-

dependent behaviour of internal vertical displacements and their convergence rates

are compared for the one and two domain systems.
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CHAPTER 1

INTRODUCTION

1.1 A survey of previous work

Over the past fifteen years the development of three-dimensional hydrody-

namic numerical models for coastal and shelf environments has greatly acceler-

ated. With the rapid growth of computing power it has become computationally

realistic to solve the full set of governing hydrodynamic equations with respect to

time and the three spatial coordinates. Typically, there have been two approaches

used for integrating the governing equations over the horizontal space domain,

namely finite difference and finite element methods.

The three-dimensional models diversify according to the way in which the

vertical dependence of the hydrodynamic variables are represented. It is becom-

ing increasingly evident that the numerical models cannot be classified by simple

guide-lines. Nevertheless, it seems appropriate, for the purposes of this thesis,

to classify the models into four groups: the Ekman-type model, the multilayered

model, the finite difference grid model and the Galerkin-function model. No at-

tempt will be made to discuss the first three models in detail. However, since the

model to be described in this thesis is a mixture of the multilayered and Galerkin-

function models, we do include a few comments outlining the salient features of

each of these models, along with a few representative examples. The Ekman-type

model is basicaily an extension of the work of \Melander (1957). Many researchers

have favoured this analytical approach for the purpose of obtaining physical insight

into the dynamic characteristics of the system in three dimensions. For detailed



accounts of these approaches, see Cheng et al. (7976) and Simons (1930)

In the multilayered models the vertical fluid space is represented by a stack of

immiscible discrete layers, within each layer the density being taken as constant.

Each layer acts as a stream tube and only exchange of momentum can take place

between the layers via interfacial stresses. Essentially, these models are analogous

to a super-position of layer-averaged two-dimensional models. Some of the papers

on layered models include: O'Brien and Hulbuú (L972), McNider and O'Brien

(1973), Abbott et aI. (1975), Wang and Connor (1975), D'Alessio ef ø1. (1983)

and Preller (1986),

\Mhile numerical investigations in three-dimensions continue to use multilay-

ered models, a great deal of effort has also been directed towards the development

of numerical models based on finite difference approximations. In these finite

difference grid models the vertical space is partitioned into a set of vertical grid

, boxes. Consequently the hydrodynamic equations are represented in finite differ-

ence form using the variables defined at the vertical grid-points. In contrast to

the layered model the fluid is allowed to move through the vertical grid boxes. In

order to represent turbulent mixing of physical properties, most models use the

familiar eddy diffusion hypothesis. More recently, three-dimensional models have

used high level turbulence closure schemes to dynamically calculate the turbulence

intensity; in the majority of studies made thus far, finite difference grid models

have been employed. Work on these models has been done by: Leendertse eú ø1.

(7973, 7977), Simon (1973), Bennett (1977), Blumberg and Mellor (1980), Noye

et aI. (7981), Sheng (1982), Davies (1985c) and Noye and Stevens (1986). These

finite difference grid models can be grouped in various r¡/ays. Such considerations,

however, are beyond the scope of the present discussion. For a detailed account of

the fixed grid box and ø-transformed grid box models, see Davies and Stephens

(1es3).
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Alternatives to the above numerical approaches include the Galerkin-function

models which have increasingly attracted interest as valuable tools for investiga-

tion of coastal and shelf dynamics. In these methods the structure of horizontal

components of the current in the vertical are represented by horizontally and time

varying undetermined coefficients together with depth varying functions (basis

functions). Application of the well-knorryn Galerkin procedure (Fletcher, 1984)

to the hydrodynamic equations yields a system of coupled equations for the ex-

pansion coefficients. These equations coupled with the continuity equation and

appropriate lateral boundary conditions can be solved using any standard numer-

ical method, for which finite difference methods have been overwhelmingly chosen

up to now. Having determined the expansion coefficients, the continuous pro-

files of horizontal currents can be reproduced. The Galerkin-function models are

mainly characterised by the nature of their basis functions, that is, according to

whether the basis functions are defined either locally or globally and whether the

basis functions are eigenfunctions of the vertical diffusivity operator or not. In

the following review of Galerkin-function models our attention is directed to the

choice of basis functions.

Heaps (1972) was the among the first to develop a mixed approach by combin-

ing the spectral expansion in the vertical direction and a standard hydrodynamic

finite difference model in the horizontal plane. fn essence, the method uses eigen-

functions of the vertical diffusivity operator as the basis functions. The spectral

basis is sought by the requirement that each eigenfunction satisfies the homoge-

neous Neumann condition at the sea surface and the bottom boundary condition

term by term. Consequently a linear friction law is required and eigenvalues and

eigenfunctions become dependent upon the eddy viscosity and the bottom friction

coefficient. Clarke (1974) has shown that such restrictions can be relaxed by incor-

porating the bottom boundary condition as a natural boundary condition which

permits one to use nonlinear quadratic friction. Heaps' approach differs from the

a,
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usual finite-dimensional approximations in that a technique known as completion

of the eæpansion to the infinity is applied to ensure the exact satisfaction of the

surface boundary condition. In theory, Heaps' formulation does not restrict the

form of the vertical eddy viscosity. However, since the eigenvalue problem is solved

analytically, the eddy viscosity profile takes a simple functional form. In a series of

works Heaps has refined the spectral model for applications to tides, wind-induced

flows and density currents in Irish seas (Heaps, 1973, 7974; Heaps and Jones,,7975,,

7e77).

In the context of the Ekman-type model, that is, with the use of a constant

eddy viscosity profile and a no-slip bottom boundary condition, two earlier con-

tributions have been noted which resemble in spirit the Galerkin-function models.

Yampol'skii (1966) used a Fourier cosine expansion to represent the vertical de-

pendence of wind drift currents in a horizontally unbounded homogeneous sea. For

wind induced flows in a bounded homogeneous basin of uniform depth, Liggett

(1969) developed an Ekman-type three-dimensional model using Fourier cosine

transforms in the vertical direction. The rigid-lid approximation imposed at the

sea surface naturally leads to a second-order elliptic equation for pressure distri-

bution which is solved at each time step by a finite difference method to estimate

pressure gradients at the horizontal grid-points.

Studies have since been focused on the development of Galerkin-function mod-

els which are capable of handling arbitrary variation of the eddy viscosity with a

more general set of basis functions as well as nonlinear effects. Cosine functions

have been a popular choice even in the presence of external stresses at the sea sur-

face. Cooper and Pearce (1977) and Pearce and Cooper (1981) used a mixed basis

set which is composed of a set of cosine series and prescribed auxiliary functions.

The auxiliary function was taken to be a linear combination of cubic polynomials

and logarithmic functions. This was used in order to improve the convergence of
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cosine series solutions near the sea surface, particularly with the use of an eddy

viscosity profile which decreases near the sea surface. The bottom boundary con-

dition was incorporated in a way similar to Heaps' approach. Koutitas (1978) has

developed a three-dimensional tidal model which involves nonlinear advection and

horizontal turbulent diffusion terms. Nonlinear effects associated with the free sea

surface elevation are, however, neglected. Davies (1980ø) has presented a Galerkin

formulation which incorporates the surface and bottom stress conditions as natural

boundary conditions. The advantage of this formulation is that each term in the

expansion of continuous functions is not constrained to satisfy the stress boundary

conditions, and subsequently the bottom boundary condition can take a non-linear

form. Using a quadratic bottom friction the models have been applied to investi-

gate tide and wind induced circulation in the North Sea and North-V/est European

Shelf (Davies, 1980c, 1981ó; Davies and Furnes, 1980; Davies and James, 1983).

The extension of the Galerkin models to nonlinear hydrodynamic equations involv-

ing advective terms and a nonlinear free surface variation has been given by Davies

(1980å). Wolf (1983) has developed a fully nonlinear three-dimensional model in-

volving advective and horizontal diffusion terms. In an attempt to improve the

efficiency of the model, particularly when high spatial resolution is required, the

fast-moving gravity tvave terms are treated by the Alternating Direction implicit

scheme and the other terms, including friction, advection and diffusion, are treated

explicitly. The investigations conducted by Davies and James (1983) and Proc-

tor (1987) are also based on nonlinear Galerkin models with a basis set of cosine

functions.

Developments of the Galerkin-function model with basis sets of Chebyshev

and Legendre polynomials have been pursued as important alternatives to the use

of cosine series (Davies and Owen, 7979; Owen, 1980; Gordon, 1gs2). Investiga-

tions conducted by Davies and Owen (1979) in idealised basins have shown that

Chebyshev and Legendre polynomials, which are in fact eigenfunctions of singu-
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lar Sturm-Liouville boundary value problems (Higgins, L977), rapidly converge

throughout the water column and are particularly suited to wind-induced flows

in homogeneous seas. For the no-slip bottom boundary condition, odd Cheby-

shev and Legendre polynomials are chosen to exactly satisfy the essential con-

straint. Owen (1980) chose Legendre polynomials as a basis set in developing a

three-dimensional non-linear hydrodynamic model which takes into account the

continuous stratification through a Richardson number-dependent eddy viscosity

and a slip condition at the sea bed. Gordon (1982) used a time-splitting algorithm

in which the internal modes associated with baroclinic flow are integrated with a

significantly longer time step than the external mode associated with barotropic

flow. By reformulating the hydrodynamic equations at the outset into barotropic

and baroclinic sets, Davies (1982c) has shown that a splitting algorithm can be

applied with an arbitrary set of basis functions. An alternative to these approaches

is using a basis set of eigenfunctions.

Although numerous applications of these classical polynomials can be found

in various disciplines and their properties are well known, use of such a general

basis set is disadvantageous in that physical insight into the vertical structure of

a particular system cannot be readily inferred a general basis set. For that, the

eigenfunction method is best suited, particularly when the vertical structure of the

eddy viscosity profile is fixed. Using a spectral expansion of the horizontal currents

through the vertical, Nihoul (7977) developed a transformation technique of ex-

tracting current profiles from a two-dimensional model. Legendre polynomials of

even order are taken as a basis set of eigenfunctions with the choice of a parabolic

eddy viscosity profile. In continuing his earlier analytical approach, Heaps (1981)

developed a two-layered spectral method to improve the representation of the bot-

tom frictional layer in tidal flows. The local forms of the eigenfunctions within each

layer are derived first and are then matched at the interface by the requirement

that the eigenfunctions and their derivatives must be continuous. This method
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has been extended further to a three-layered stratified system in which the eigen-

functions are defined continuously throughout the depth but, due to the jump in

the values of density and eddy viscosity at the interfaces, their derivatives are dis-

continuous (Heaps, 1983). Subsequently, the spectral models based on the mod,e

matching technique have been applied to investigate the dynamic response to wind

pulse forcings of idealised shelf seas with uniform and cross-shelf depth variation

(Heaps and Jones, 1983; 1985). For continuously stratified seas of non-uniform

depth, van Foreest and Brundit (1982) have developed a Galerkin-based mixed

approach using the normal mode expansion over the vertical space and a finite

difference approximation in time and over the horizontal plane. \Mind stress has

been incorporated as a body force acting over the mixed surface layer. Heaps

(1984) has presented a full account of normal mode solutions for continuously

stratified flat-bottomed seas in which the vertical eddy viscosity is assumed to

be inversely proportional to the static stability and the linear bottom friction is

related to the velocity at the sea bed. The modal model developed by Furnes and

Mork (1987) employs a two-layered representation of the density profile. These

models all include the variation of the free sea surface, whereas the modal ocean

models (for example, McCreary, 1981) usually assume the rigid-lid approximation

at the sea surface.

An extension of the analytical eigenfunction approaches for handling arbitrary

variation of the vertical eddy viscosity in homogeneous seas has been established

by Davies (1983c) and Furnes (1983) in different ways. In solving an eigenvalue

problem numerically, Davies (1983c) has used a Galerkin method with a basis set

of the fourth-order B-spline functions. In the Furnes' approach the eigensystem

has been solved using the Runge-Kutta-Merson method. Although the essence

of the method is mainly numerical, the analytic feature has been endowed by

means of a mode matching technique. Local forms of eigenfunctions have been

taken as Bessel functions by approximating the arbitrary eddy viscosity profile as

7



a sequence of composite-linear piecewise profrles. Comparison between the two

approaches has shown that from the point of view of accuracy, the Runge-Kutta-

Merson method has an advantage over the Galerkin method in that errors arising

in the solution procedure can be monitored (Davies and Furnes, 1986). It should

be mentioned that Davies' approach is based on a direct matrix operation, whereas

Furnes' approach is based on iteration. To improve the slow convergence of the

eigenfunction expansion at the sea surface, lhe stressing of. boundary constraints

has been introduced by Furnes (1983) and Davies (1983b), which results in a

coupled system of equations for the expansion coefficients,

In parallel with the development of such global approaches as the above, con-

siderable efforts have also been made to enable the employment of a local basis

set. In a series of studies conducted by Davies (7977a,b,c, L978a,b, 7982b,1983ø,

1985ø) fourth-order B-spline functions are exclusively used. The advantage of

using high-order B-spline functions is demonstrated by solving Burger's equation

and by reproducing the propagation of gravity waves with various combinations

of boundary conditions (Davies, 1978a,,b). In earlier models Davies (1977ô,c) has

used the Galerkin-collocation method so that each term in the expansion of B-

spline functions satisfies the boundary constraints exactly and hence integrating

by parts is not necessary. The Galerkin method has been applied to continu-

ously stratified seas with a basis set of B-spline functions (Davies, I982b,1983ø).

The arbitrary continuous variation of density and eddy viscosity is allowed and,

neglecting diffusion of density, the internal displacement is introduced as a new

prime variable. Two basis sets are additionally required to expand the continuous

variation of internal displacement and density in the vertical direction.

Attempts to represent the vertical space in terms of a piecewise linear basis

set have also been made (Koutitas and O'Connor, 1980a,ó; Lynch and \Merner,

1987). Koutitas and O'Connor (1980ø) represent a horizontal space using the fi-
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nite difference approximation in a way similar to Davies and incorporate nonlinear

advective terms in the equations of motion. The models developed by Koutitas and

O'Connor (1980ó) and Lynch and \Merner (1987) employ triangular finite elements

for the horizontal plane. The solutions in all spatial dimensions are then obtained

using a finite element model, but these models may still be regarded as mixed

models in that the vertical space is represented in a layered fashion, that is, using

locally one-dimensional finite elements. Koutitas and O'Connor (1980ó) employed

a fractional time stepping method in which diffusion and advection-propagation

processes are evaluated at different time levels, while Lynch and Werner (1987)

separate the time dependence from the spatial dependence of the motion, assum-

ing that the solutions are periodic in time, and solve the Helmholtz-type equation

for the surface elevation. Laible (1980) developed a mixed model in which the

horizontal space is represented in terms of nine-node quadrilateral isoparametric

finite elements and the vertical space is represenied by continuous cubic polyno-

mials with two undetermined coefficients. In a subsequent study the model was

extended to a two-layer version (Laible, 1982).

It is known that the choice of a basis set is crucial to the success of Galerkin

models (Gottlieb and Orszag, L977). For wind-induced flows, the use of a Cheby-

shev and Legendre polynomial basis set was found to be very accurate and was

obviously more efficient than using cosine functions and local basis sets (Davies

and Owen, 1979). Davies and Stephens (1983) have shown that the eigenfunction

method is more efficient than the finite-difference method, provided that the verti-

cai structure of eddy viscosity is fixed. In comparing two finite difference methods

with Galerkin methods using cosine functions and Legendre and Chebyshev poly-

nomials in tidal channels of constant depth, Jung ef al. (7987) have noted that the

accuracy of the eigenfunction expansion is comparable to that of finite difference

methods with optimised vertical grid distribution. However, for the general spec-

tral basis finite difference methods are more accurate than Galerkin methods for

I



a wide range of model parameters. It is known that using spectral methods with

a general basis set requires more computational effort per degree of freedom than

finite difference or finite elements methods (Fletcher, 1984). Strict comparison be-

tween the numerical methods is very difficult and results may be characteristic to

the problem. It appears that a suitable basis set must be chosen on a case by case

consideration, depending upon the nature of the system to be modelled, the eddy

viscosity profiles and their time-dependence, conditions of bottom topography and

stratification and the tolerance limit of numerical errors. It is worth noting the

strategy chosen by Davies (1985ó) in which the B-spline basis set of order four

has been used for reproducing quantitative values accurately, whereas for a phys-

ical interpretation the eigenfunction method has been used in a complementary

manner.

Apart from the accuracy and computational efficiency of Galerkin-function

methods, their use is very appealing in that there is a certain correspondence be-

tween the solution approach and the dynamics of long-wave motions in shelf seas

which are shallou in nature. Use of a basis set of eigenfunctions is particularly

attractive because the horizontal and vertical dependence of hydrodynamic vari-

ables can be separated. There is an important distinction between Galerkin and

finite difference representations which should be pointed out. For finite difference

methods the numerical scheme has to be modified locally near the boundaries

(and also around the interfaces in conditions of layered stratification), while for

Galerkin approximations, such a modification is not needed but the problem of

choosing a basis set appropriate to specific situations remains a difficult task.

L.2 Introductory remarks on present work

Davies' numerical method (1983c) permits one to determine eigenfunctions

numerically for the continuous arbitrary eddy viscosity profile. Heaps (1983) has

10



developed a mode matching technique which deals with conditions of layered strati-

fi.cation. Since his model is analytic in nature the eddy viscosity profile is restricted

to specific functional forms, and in practice the eddy viscosity is taken as being

constant within each layer. In this thesis, the two contributions are combined to

introduce a set of new Galerkin-based linear three-dimensional multilayered hy-

drodynamic models which are flexible in that the vertical eddy viscosity profile can

be prescribed arbitrarily within each layer. The detailed methodology is described

for basis sets of fourth-order B-splines and eigenfunctions, respectively.

\Mith the formulation of Galerkin solutions, the presence of discontinuities in

the prescribed eddy viscosity profile is assumed at the outset. Physically this

makes sense since such an assumption is consistent with the fundamental proper-

ties of the multilayered model in that the fluid system is modelled as a stack of

homogeneous layers. Variational approaches have been used previously in other

disciplines to handle strong discontinuities in the coefficient of the second-order

diffusivity operator. By using linear basis functions Javandel and Witherspoon

(1969) have developed a variational model for fluid flow in anisotropic multilayered

aquifers, and Desai and Johnson (1973) solved the one-dimensional consolidation

equation with piecewise varying coefficients. A key feature of these variational

approaches is that the weak formulation of the system involves the summation of

functionals defined over each layer. Thermal interactions between the soil and the

atmosphere were investigated by Garder and Raymond (1,974) in a similar manner.

The extension of the present method to these problems is straightforward.

When approximating the vertical variation of horizontal current in stably strat-

ified seas, numerical models designed for continuous stratification have certain ad-

vantages over layered models in their application. The layered model is restricted

by the requirement that the interface is not allowed to intersect the surface; hence

the model cannot simulate the observed frontal structure during upwelling. Never-

11



theless, in the presence of a distinct thermocline the application of a layered model

provides a great deal of physical insight into the dynamics of stratified flows. Also

the approach is conceptually simpler than that for continuous stratification.

Throughout this thesis it is assumed that the vertical structure of the eddy vis-

cosity profile is fixed and, neglecting erosion or deepening of the surface layer, the

well formed layered structure is undisturbed by any turbulent mechanisms. Still,

the lack of observational data may be a hindrance to the applicability of three-

dimensional hydrodynamic numerical models. Furthermore, the three-dimensional

modelling of stratified flows on a realistic scale is a very expensive exercise. There-

fore, prior to extensive numerical investigation of the real system, particularly

keeping Bass Strait in mind, the numerical experiment in this thesis is focused

on the sensitivity of the model response in idealised situations, and in that course

the model can also be verified. Emphasis is on the role of the pycnocline in deter-

mining the vertical structure of wind-induced flows and the time evolution of the

surface current. In most computations the eddy viscosity has been prescribed in a

piecewise-constant form, since the ability to deal with discontinuous variation of

eddy viscosity can be best shown in this manner. In recent years there has been

increasing interest in the development of turbulence models (Blumberg and Mel-

lor, 1980; Johns, 7979; Koutitas and O'Connor, 1980ø; Leendertse and Liu, 1977)

which aim to determine the eddy viscosity directly as part of dynamic solutions,

but it appears that these models remain at an early stage of development and

their applicability as a prediction tool has not been verified.

The present numerical investigation is characterised by interface conditions in-

troduced at a thermocline level. Two types of interfacial conditions are examined.

The first is that the horizontal velocities and shear stresses are continuous across

the interface and the second is that of zero-stress at the interface. The condition

that across the interface horizontal velocities and shear stresses be continuous leads

72



to a one il,omain system which requires only one set of basis functions, whereas

the stress-free condition effectively uncouples the system into two parts, and hence

yields a two domain system which requires two independent sets of basis functions.

Such a stress-free assumption at the interfaces is not new; in fact it underlies many

analytical studies using layered models (Veronis and Stommel, 1956; Heaps, 1966;

Csanady, 1968). We focus our attention in this thesis on comparison of the wind

induced motion between the one and two domain systems through various numer-

ical experiments. Chapter 2 describes the notation for the multilayered system to

be modelled and the Galerkin soiutions in terms of basis sets of B-spline functions

and eigenfunctions. The boundary constraints for basis functions will be called

Iimit cond,itions (Lattès, 1969) in order to distinguish these from the usual bound-

ary conditions such as wind stress and bottom friction. The solution procedure

used by Heaps and Davies will be closely followed, and is self-contained except for

the theoretical details about B-spline functions. The presence of discontinuities in

the distribution of density and the vertical eddy viscosity requires a defi.nition of

a weighted scalar product for each domain. Once the solution space is equipped

with a set of weighted scalar products, the solution procedure follows the stan-

dard Galerkin method. Use of the continuity condition for velocity and stress at

all interface levels yields a one domain system equipped with one scalar product,

whereas the imposition of a zero-stress condition at an interface level yields a two

domain system with two independent definitions of scalar products.

Chapter 3 is concerned with the description of the methodology of determin-

ing the spectral basis numerically from a multilayered Sturm-Liouville boundary

value problem. Following Davies (1983ö) and Furnes (1983), the limit conditions

are introduced in a generalised separable form. The eigenfunctions in the basis set

are given various names: modal functions, uertical modes, modes, uertical struc-

tural functions, and so on. The term uertical mode is used in this thesis. In a

manner similar to Davies (1983ø), the transformation relation which projects the

13



coefficients of the B-spline basis set or the known values of currents onto those of

the eigenfunctions is also developed for the multilayered system. This permits an

estimate of modal composition in current profiles for a given eddy viscosity profile.

Chapters 4 and 5 are concerned with applications of the models in idealised

stratified systems. More specifically, two and three-layer structures are considered

for one and two domain systems. Following Davies (1985ó) the B-spline basis

set of order four has been used to reproduce the surface current and current

profiles accurately, whereas for a physical interpretation an eigenfunction method

has been used in a complementary manner. Since stratification reduces the vertical

penetration scale of wind energy, we exclude the bottom frictional boundary layer

from consideration.

Steady state and time dependent Ekman-type problems are considered in

Chapter 4 using point models in horizontally unbounded seas. The surface and

internal displacements are suppressed and the horizontal extent of the layered

structure is assumed uniform throughout the domain. For time dependent mo-

tion, wind stresses in the form of a step-function and a constant pulse with finite

duration, are considered. A two-layer version of the Pollard-Millard (1970) stab

model, which is composed of a surface mixed layer and the pycnocline, is proposed

for the study of local inertial motions. Instead of a bulk decay parameter, the py-

cnocline structure, eddy viscosity and thickness of the pycnocline control the rate

at which wind shear diffuses downward out of the mixed layer.

In Chapter 5 a series of numerical experiments are conducted to investigate

the transient response of the water subject to a step function wind stress in a

narrow stratified lake of constant depth. The effects of eddy viscosity profiles on

the vertical variation of currents and on the time-dependent behaviour of internal

vertical displacements are investigated, with special attention being paid to com-
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parison of the initial decay between the one and two domain systems. Effects of

density distribution, eddy viscosity within the pycnocline and eddy viscosity at

the bottom layer are also investigated.

Concluding remarks are made in Chapter 6 and suggestions are made for

further research in this area. Appendix I describes some basic properties of the

multilayered eigenvalue system; Appendix II summarises the form of the first

few vertical modes and their modal characteristics computed numerically using

various eddy viscosity profiles; Appendix III presents an eigenequation derived

analytically for a three-layered piecewise constant profile; Appendix IV includes a

transient solution for wind-induced flows in a two-layered horizontally unbounded

sea derived using Laplace transforms with a linear slip condition imposed at the

base of the pycnocline.
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CHAPTER 2

LINEAR F{YDRODYNAMIC EQUATIONS
FOR MULTILAYERED SEAS AND

THEIR NUMERICAL SOLUTIONS USING
GALERI{IN.FINITE DIFFERENCE METHOD S

2.1 Linear hydrodynamic equations

The model assumes an incompressible fluid and that thermodynamic effects

are negligible. The flow is predominantly horizontal so that any vertical accelera-

tion is neglected and hence the pressure distribution is hydrostatic in the vertical

direction. Also, horizontal shears and nonlinear terms involving the squares of

the velocity components are ignored. The resulting hydrodynamic equations in

Cartesian coordinates are

AU AP ôT,,
) +X, (2.1.1)"'lat

av
ðt

flT zu

0z
+Y, (2.1.2)

(2.1.3)

,:-l(
u:-!(p\-lt

0r

AP

0z

0a )

au av awt-
^r^^)Or OA dz

7 t õP¡.
- p\u ): s'

Tzx: pNy, Tza p*T,
16
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The notation used is as follows:

ú time

r,U Cartesian coordinates measured in the horizontal plane of the

undisturbed sea surface

z vertical coordinate, positive upward and with origin at the undisturbed

sea surface

h depth of the sea floor below the undisturbed surface level

P pressure

¡/ coefficient of vertical eddy viscosity

p density of sea water

^f geostrophic coefficient (: 2a"s\n$")

u)e angular speed of the Earth's rotation

ó. latitude, positive in the Northern Hemisphere and negative in the

Southern Hemisphere

g acceleration due to gravity

UrV components of horizontal current in the r and y directions respectively

W vertical comporlent of current

T"rrT"y components of the vertical shears in the ¿ and y directions respectively

X,Y components of direct tide-generating forces in the r and gr directions,

respectively.

Equation (2.1.4) may be integrated to give

P(z):Po*g P dr,

where P" is the atmospheric pressure at the free sea surface. In the homogeneous

case equation (2.1.6) reduces to

P(z): P"+ gp(C - z). (2.1.7)

As a result of formula(2.7.7), the pressure variable will not appear explicitly in the

equations of motion and, since the density change arises in a discrete manner in
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the present hydrodynamic system, the effects of density variation will be coupled

with the gradients of the free and internal surfaces (Hutter, 1984).

2.2 The multilayered formulation

To proceed in the formulation of the equations of motion in a multilayered

system, it is necessary to introduce some definitions and the basic notation. In

this study two situations are considered in relation to the interfacial conditions;

these involve the concepts of one d,omai,n and two dnmain systems. Each domain

consists of an arbitrary number of layers. Throughout the depth of a one domain

system, continuity of the horizontal components of current and shear stress is

enforced, whereas in the two domain system, a stress-free condition is introduced

at an undisturbed level of the interface in the system, which effectively blocks

the transmission of vertical shears across the boundary and splits the system into

upper and lower domains. The boundary between the two domains is called the

interior domain boundary. In theory it is possible to introduce multiple stress-free

conditions over the vertical space domain. However, in practice we employ this

condition only once, at the base of the pycnocline. For the two layer system the

condition is applied at the interface between the upper and lower layers.

Figure 2.1 illustrates the multilayered system of constant depth in which the

real system, having continuously varying density, is represented by a stack of hor-

izontal layers. Between these layers, there are impermeable but moving interfaces

and the density within each layer is constant. For the one domain system the

whole water column is denoted by f)0, and the jth layer is denoted by Í)0,j, while

for the two domain system the upper and lower domains are denoted by 01 and

Íì2, respectively, and the jth layers in these domains are denoted by ,01,¡ and Í)2,¡,

respectively. For physical reasons, the o-transformation described in Section 2.3

is introduced to normalise the depth of each domain, not each layer. All the basic
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Figure 2.1 The multilayered one and two domain systems
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parameters such as density, verticai eddy viscosity, pressure, the coordinates of

the undisturbed levels of the interfaces and their displacements, and lhe U , V and

IzZ velocities, are labeiled using double subscripts. For example, P,;,¡ is the density

at the jth layer of domain i. Symbols defined for the one domain system are

identifi.ed by the subscript i : 0. In Section 2.5 where the Galerkin solutions are

described for the one and two domain systems, the notations used for B-splines

are similarly introduced. In addition, some quantities which are uniquely defined

for each domain regardless of the number of layers within each, are denoted by

a single index. For example, H¿ is the thickness of domain i. To facilitate the

formulation, we denote, for example, the density p aL the bottom (¿ th) layer of

the domain i by P;,".For stability of the fluid, the density increases downwards

from the top layer, that is P ¿,j 1 P ¡,j+t, for all i and j within each domain, and

Pt," < pr,r. Also' rwe assume that Pi,o:0ri:0, 1, and P2,o: Pr,".

The pressure P at a depth z i¡ lhe top layers within each domain O¿ is given

by

PiJ : Po I g P¿,t(e¿,o - z),

J1

PiJ : P.l sl Pt,r(nr,, * 1*t¡-t - (r,r)
l:l

*gPz,t(Cz,o-z),

(i : 0, t), (2.2.1)

(i :2), (2.2.2)

and at a depth z in each d'l¿,j, j - 2,..., J¡,by

Pi,i : Po * g\ Pr,n h¿,t.1 (r,t-t - en,t)

j-L

t:!
(

+

P,+

gp C¿,j-t - , )
Jt

l:l
j-r

(i : 0,7),(2.2.3)

P¿,j gl. Pt,¿ (nr,r*et.,-t- (t,,l)

+ t\, P",t (0r,, * (2,¿-t - er,n) i o Pz,¡(ez,j-r - z), (i :2), (2.2.4)
l=l
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where (,,¡ is the displacement of the lower interface of the jth layer in domain f)¿.

For pressure to be continuous at all interior interfaces, it must satisfy

P¿,j -- P¿,j+t at , : -hi,j * C¿,j,

where i :0rLr2, i - 1,. .. ,J¿ - 1, and

Pr,":P2J at z:-h1,"*(r,r.

(2.2.5)

(2.2.6)

Substituting (2.2.1) ro (2.2.a) into (2.1.1) and (2.7.2), and using (2.1.5), (2.2.5)

and (2.2.6), gives

ôU¿,i

0t l=l (2.2.7)

.0U¿,itJ 0z

- jV¿,j : _ Dg

-r++x+ *(*,P¿,jd* (

+ t -yrr ¡,i : - 
þ__,' 

P;#-) 9H=

-:++v+ fiQv,,iP t,¡oa ( )

) oC¿,¿-t

0n

where i : }rL, j : 7r... r"/¿, and

ôV¿,i

0z

(2.2.8)

(2.2.e)

(2.2.70)

+--vvz,j:-t,e;#-)+#
ir'P5#'=)

- oP-" +x+L(*"Pz,ior oz \

oÇ2,¿-t

0r
õU" t

,i A,

oez,¿-t
0y

0V, '. - rJ
tJ 0z

)

+t7u2,¡__ lt ( Pr¿ - Pr¡-r
P",i

Pz,¿ - Pz,t.-t-Dg (
Pr,i )

J1

t=l
J

l:l

(N2



where i:tr"'rJz.

The body forcings involving the gradients of atmospheric pressure and direct

tide-generating forces are hereafter denoted as

(2.2.77)

Integrating (2.1.3) with respecl to z over the interval " - -h;,i to z -- -h¿,j-r,
and noting that for small motion the vertical component of velocity is given by

wi,j: oe¿,i at z: -hi,i, (2.2.72)

- oP-o .-x:rt,,. - ô1" IP,;,¡or (i'i' -ffi +Y :Y¿'i'

- #ï * * I_^',: ,' 
' rr¡,¡ d,z. h l_oo,' ,' 

' v,¡ d,z :0, (2.2.rs)

0t
we obtain

ôe¿,i_t
Ôt

where i : 0,7,2, i - 1,' '' ,, J¿. Note that the condition at the sea bed requires

that ô(¿,s lðt :0 in equation (2.2.La).

2.3 Surface, bottom and interfacial boundary conditions

In order to solve the system of equations (2.2.7) lo (2.2.70), ar'd (2.2.13) for the

dependent variables C;,¡, U;,¡ and V¿,¡, boundary conditions have to be specified

at the sea surface and the sea bed, along with appropriate interfacial conditions,

and initial and lateral boundary conditions along the coastal and open boundaries.

The initial and lateral boundary conditions used are given in Chapters 4 and 5,

along with the application of the present model to wind induced currents in a

horizontally unbounded open sea region and in a na rov/ lake. In this section the

interfacial conditions and the boundary conditions at the sea surface and at the

sea bed are described.

Evaluating the boundary conditions at the undisturbed levels gives the surface
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boundary conditions at z:0, i:0,1, as

Pr,r(Nn,r+) : rsx¡ Pn,r(Nn,r9!:l : r,s,, (2.3.1)

where 1", and T * are components of external wind stress imposed at the sea

surface. At the sea bed z : -hi,J, - -hi," with i :0r2, we have either a no-slip

boundary condition:

Ui," :0, V," :0, (2.3.2)

where 16, and T6, are components of bottom frictional stress. The brackets in

(2.3.1) and (2.3.3) are used to indicate that the quantity inside of them may vary

within the layer.

Relating the bottom stresses, through a linear friction law, to the bottom

current one has

Tb" : kuP ¡,"U¿,"(-h), Tbu : l*aP ¿,"V,"(-h), (2.3.4)

where i : 0r2 and k6 is the coeffi.cient of linear bottom friction. Alternatively,

bottom stresses may be represented by means of a quadratic friction law (for

example, Davies, 1982ó) or by a linear friction law based on velocities averaged

over the bottom layer (Heaps, 1966).

or a slip boundary condition:

pn,"(Nn,"9#l : rbt, pi,"(*,, 9Pl : rbs, (2.8.8)

At the undisturbed levels of the interior interfaces of each domain z : -hi,i,
the conditions to be satisfied are those of the continuity of the horizontal velocity

and of the stress components. That is,

Ui,j : U¿¡+t, V,j : Vi¡+tr (2.3.5)

Pn,¡(Nn,¡å:¡ : Pi,¡t(*,r*, Y¡, (2.8.6)

P,,¡(Nn,¡9#l : Pn,j*r(*,r*, 93y1, (2'r'T)
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where 'i : 0,112, i - 1,"'rJ¿ - 1, and the conditions at the interior domain

boundary z : -h1," : -hzp ã¡e

0Ut,"
1.'B ----;-'OzP t,u ¡rI( p) N,r+) :0,

"rr(
(2.3.8)

Pr,"(Nr,"LY¡: Pr,r(Nr,r#):o (2.s.e)

In these matching conditions we assume that there exist one-sided derivatives

(from the above and below) of horizontal currents at all internal interfaces. In a

rigorous sense, all physical quantities appearing in this thesis do in fact need to

have one-sided limits at the interfaces because the system is discrete in nature.

For simplicity, we ignore such rigour throughout the thesis.

Physically, conditions (2.3.8) and (2.3.9) state that the internal friction at the

interface is zero, that is, the water bodies of the two domains slide freely relative

to each other without frictional interaction. Heaps (1966) employed this condition

as an approximate interface condition at the thermocline level in an analytical

study of the dynamic response of a two-layer narrow lake to a suddenly applied

constant wind. In an investigation of local inertial motions conducted by Gonella

(1971ó) such a stress-free condition was imposed at the base of the surface layer.

2.4 Thansformed equations and boundary conditions

2.4.L TYansforrnation to the o coordinate system

Before developing the solution of equations (2.2.7) fo (2.2.70) and (2.2.13)

using Galerkin expansions over the vertical space domain, these equations are

transformed into ø-coordinates originally proposed by Phillips (1957) for numer-

ical weather predictions. Using the o-transformations

o¿ : -z / H¿, i : 0, 1, (2.4.1)

o¡: -(z I Ht)lHr, i :2, (2.4.2)
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where Hs - h0," : h,, Ht : ht,B and H2 : h2,p - h - If1, each of the domains

is normalised by the ø-transformations such that the interval -hi," 1 z 1 -hip
is transformed onto 0 ( ø¿ ( 1. The coordinates of the undisturbed levels of

interfaces h¿,¡ a;te accordingly transformed by

Ë",i : h¿,i lH¿, (i : 0, I, j : 7,. . . ,, J¿), (2.4.3)

(¿,j : (h¿,¡ - Ht)lHr,, (i :2, i - 0,' " , J¿). (2.4.4)

Alternatively, each layer may be transformed to the interval [0,1], or f,)1 and

f)2 ma¡, be transformed to the intervals [-1,0] and [0,1], respectively. The trans-

formations (2.4.1) and (2.4.2) have been chosen in this study mainly for physical

reasons

In layered models the interfacial surfaces are often assumed to be parallel to

the undisturbed horizontal sea surface. It should be noted that in the presence of

an uneven bottom the interfaces will be distorted through the o-transformation

(except for the upper domain of the two domain system).

2.4.2 Tlansformed equations

The transformed equations of motion for f)¡,¡, 'i :0r 1, are

#î-.yv,i:-Én( P ¿,¿ - P;,t.-t
P¿,iI:l

+ rt¿,j + uftr(N,,i )

+*^r(r¿,i:-Ð,P=#-)gf
iÍn,¡+ffi(N,,i )

ôU¿,i

oo¿
(2.4.5)

(2,4.6)
8V;,i
oo¿

where.i:I,..',J¿
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The transformed equations of motion for f)2,¡ are

0U,
at

J1

- 1Vz,j : - Dn
Pt,t. - Pr¡-r

Pr,i

Pz,t - Pz¡-r

(

(g

l:l
jt

L:t Pt,i
ôUz,i
0oz

(2.4.7)

(2.4.8)

(2.4.r7)

trtz,i-Bh(*,, )

+ * ^ttrz,i : - 
þ__,' 

(%-) +;=

Ð'(ryÆï
iÍ,,¡.Bh(*,,H),

where i:7r"'rJz.

The transformed equation of continuity for f)¿,¡ is

where i:0,112, i - 1,.'.,..I¿ and 0(¿,"f 0t:0

2.4.3 Transformed boundary conditions

The transformed surface boundary conditions at o¿ :0, i: 0, 1 are

%i;-+*',{ A $'¡
a* Je,,, -,

(J¿,¡ d,o¿l- h Ir','ot ,n,, 
aor\ : o, (2.4.s)

-+(*,,,H):',,, -+(*,r#) :'",. (2.410)

The transformedno-slip and slip boundary conditions al o¿:7,i:0,2 are

Ui," :0, V," :0,

and

26



P i,"
H¿

: Tbr¡
P i,"
H¿

*r,"H) (*," 9Hl : rbu,, e.4.r2)(

where 'i :0r2

The transformed conditions of continuity of velocity and stress within each domain

a¿: (¿,¡ a;te

P t,"
H1

P t,"
Ht

ðUt,"
ôot

ôVt,"
ôot

_ Pz,t
H2

)Ur ''

0oz

)Vz,t
0oz

-0,

:Q

(2.4.13)

(2.4.74)

(2.4.15)

(2.4.76)

(2.4.77)

ui,i : u¿,i+t,

Pn,¡(Nn,¡#l

Pn,¡(Nn,¡#¡

vn,i : V,i*t

: P¿l+t(*,r*, #:),
: Pnl*r(*,r*, W),

where i : 0,712, i - 1,. .. rJ¿ - I.

The stress-free conditions at the interior domain boundary or : (r,r : 1, or

equivalently o, : tz,o: 0, are

(Iy'r,, ) Nz,t )(

Nr," ):H(*,'

2.5 Solutions via the use of a Galerkin method apptied over the vertical space

domain: a basis set of B-splines

For approximating solutions of differential equations, the Galerkin method is

the most favoured of the various weighted residual methods. The first step in con-

structing the Galerkin solutions is to expand lhe U¿ and V¿ velocities through the

vertical in terms of depth-dependent basis functions (test functions) , þ n,o(o ¿), and

the corresponding time and horizontally varying coefficients, A¿(n,g,t), B¿(r,U,t),,

k :7,...)rrùi) respectively. Let the U¿ equation of motion be taken in operator
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form as Ly(U¿,V) : O. The finite-dimensional representation of solutions pro-

duces a non-zero residual, ¿("), given by

Rk) : rr(u{'),vn@)), (2.5.1)

where t/t) und 4(-) d"note the finite-dimensional approximation to U¿ and,V.

The next step is to set the integral of weighted residuals over the domain f)¿ to

zero by choosing the weighting function to be the same as the basis function used

for the expansion of Ul*) ur.d, Vn(*) , namely

(ó ¿,x Lr(uÍ*) ,vn@)) ) : o, Ie : !,. . . ¡ffiit (2.5.2)

where ( , ) denotes a scalar product. The same procedure is applied to the V¿ equa-

tion of motion. Consequently, a system of equations for the unknown coefficients

are derived which can be solved by any standard numerical methods available for

depth-integrated dynamics. For detailed accounts on the principle of the Galerkin

method see Prenter (1975) and Fletcher (1934). In the literature there have been

some applications of the least squares method (for example, Stevens, 1976). How-

ever, this has not received much attention principally due to the sizable amount

of computation required.

2.6.1 B-splines functions

Most realisations of the Galerkin procedure, with a basis set of continuous

functions, implicitly assume that the solution is relatively smooth. The global

dependence of continuous functions on localised changes usually limits the repro-

duction of the localised rapid variations in solutions (De Boor, 1978), although

such a disadvantage can be avoided in certain circumstances by using a basis set

of eigenfunctions (Davies, 1983c). In this respect the B-splines of order no which

have restricted support and continuous derivatives up Lo no - 2 rnay be advan-

tageous from a numerical point of view over other local basis sets, such as other
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splines or piecewise sinusoidal functions. Details on the practical use of B-splines

can be found in Cox (7972,1975) and Davies (1977o).

Figure 2.2 illustrates the basis sets of the fourth order B-splines defined in the

two-layer, one and two domain systems. The intervals [0,1] are subdivided into

units of length Ll,, i,, : (l/ i,r+t - U ¿,r), by the partition

(2.5.3)

where i : 0r 1, 2 and ñ, : rmi - no * 1. Points denoted by l/ ¿,, are called knots and

their separation can be arbitrary. For convenience, the distribution of knots shown

in Figure 2.2 is uniform for each domain. The r th B-spline of order four has non-

zero positive values over the knot interval I,t¿,r-4 1 a¿ 1U¿,y, with its values and

derivatives vanishing al l/¿,r-a and l,/¿,r. For the one domain system a set of B-

splines spanning the entire depth from the surface to the sea bed is defined, while

for the two domain system two independent sets of B-splines spanning the upper

and lower domains are defined. Two sets of three supporting knots are defined to

complete the basis set at the outside of each domain, that is t/o,-s to us,-1, and

t/s,1 to l/s,s, for f)6, and l/i,-s to l,/¿,-1, and tl¿,1 to L/¿,s, fot dl¿, i :1,2. Use of

the fourth-order B-splines results in a hepta-diagonal mass matrix.

For the one domain system there is no difference in the arrangement of knots

between the homogeneous and layered systems except that for the latter, the

positions of the knots are constrained to coincide with the undisturbed interface

Ievels to avoid any undesirable oscillations in numerical results (Axelsson and

Barker, 1984). For the two domain system two sets of knots are defined as shown

in Figure 2.2 and, in this example, knots l/1,5 and l,/2,s ãtÊ positioned on the

domain boundaries. The two sets of three supporting knots around the domain

boundary may overlap each other, but in any case their contribution to each

domain is independent.
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Figure 2.2 Confr,guration of the fourth-order B-spline functions in the
one and two domain systems.

30



The Galerkin procedures for the one and two domain systems are described

separately. The two horizontal components of current are expanded in terms of

the fourth-order B-splines M¿,,(o¿),, i:0,,1,2, with the introduction of a set of

weighted scalar products.

2.5.2 One dornain solutions

Galerkin solutions in Í)s,¡ are sought with respect to the scalar product

(ó,,þ): 
å H Ir': ,óo,,.,þo,i 

d,oo , (2.5.4)

where ó o,¡, ,Þ o,¡ is a pair of square integrable functions in a Lebesque sense. \ /ith

this, the conventional Galerkin method can readily be applied.

For simplicity, it is assumed that the vertical variation of eddy viscosity has a

fixed structure over the domain, that is,

¡tr : No,¡(t,,U,ao,t): ao(r,y,t)po,¡(øo) for (0,¡-r 1os 1(s,¡, (2.5.5)

where i:Ir"'rJo.

The two components of horizontal current, Uo and Vs, at a depth os, ãna

expanded using rns basis functions of B-splines, so that

[Jo(*,a,oo,r):Ë Ao,,(*,y,t) Mo,,(oo), (2.5.6)

Vo(r, U, a o,¿) : D Bo,r(*, y,t) Ms,,(o s), (2.5.7)

r:l
lÍ¿O

r:l

Jo

l:l

* Xo,r Qo,o,k I fo,k,
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where the coefficients ,4¡,, and Bs," are to be determined.

Taking the scalar product (2.5.4) of Q.a.5) with Ms,¡ gives

0(U o,n)

at -l(Vo,*l:- Ð g
( Po,¿- Po,¿-t\ _ô(o,r-t ^
\ P* )-- a; ao't-!'k

(2.5.8)



where

(U n,rl : \[J¿, M¿,x): t P ¿,i

P t,t lr',' ot ,(J¿,i 
M¿,t' oo')

j:l

Ii,k :

withi:0,k-1,'..)rrti

Integrating (2.5.L2) by parts yields

J¡

( (2.5.e)

(2.5.10)

(2.5.11)

(2.5.12)

(2.5.74)

and

(V n,rl : (V,M¿,t): i ( þ" f''t \: 
,L--r\p" Jr,,,-,v¿'i 

M¿'* ooo 
)

û¡€¡1
ai,¿,k: Ë [,'''t M¡,¡ d,o¿ : I M¡,¡ d,o¿,

¡7t+tJë;'i-' Jc''n

P ¿,i

P t,t
(r,,,H)*n* ao;\,frÐ{

ro,k: -#"å {"",, 
(o,¡) Ms,¡ç€0,¡) - r,,(to,i-t) ¡¿0,*((0,¡-r)}

g # ( øo [*'' orJo'i dMYt-¿oo\.- 4 k\Ñ Juo,,-'tto'¡ oå-dos
(2.5.13)

Using the interfacial condition (2.4.14) and substituting the sea surface and bottom

boundary conditions (2.4.10) and (2.4.12) gives

ro,r, : - 
"fuMo,n(r) 

+ ffiuo,r{o)

- #ÐW f ,',' o', 
t"'¡H #*')

This integration by parts facilitates the inclusion of the boundary conditions, and

it permits the use of linear basis functions.

Substituting the expansions (2.5.6) and (2.5.7) into (2.5.8), then using (2.5.9),
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(2.5.10) and (2.5.14), yields

î+(M0,,, Mo,x) - ,î'o,,(Mo,,, Mo,x)
r:l r:1

: _ + ^(e!_4: 
Po,r-t\ ô(0,¿-, .: - ?__,s\ p,, )- a- aot-L'*

- 
"fuM,,*(L) 

* ffi*''t(o) + ft,,'ao,o,k

l*'r".rt ,uo''ffi#0"')'
Qs ,rtw'¡mo

Iro
r:lH

Js

l:l

c
0

Ms Mo,xl

k 1 , TTù9.

(2.5.15)

(2.5.18)

Similarly,

î+(Mo,,, Mo,n) t t
r:L

mO

Doo.
r:t

( r

:-rg (Po,¿ - Po,¿-t\ ô(0,¿-t ^t, p )- ay cro,t-t,t

k : \r. .. ,frtg.

(2.5.16)

Substituting (2.5.6) and (2.5.7) into the equation of continuity (2.4.9) and

rearranging the set of resultant equations yields,

*t+ i H,(Yo, ôBo '\ot 7:, \ ;- * Ë )ao'i'' 
: o' (2'5'17)

where i:0r"'rJ¿-1.

Writing (2.5.15), (2.5.16) and (2.5.17) in matrix form gives

: - ;fuMo,t 
(r) + ;fuM',r(o) + Ío,, ao,o,k

- # ä",,Ð__,W, I u',' n', 
u o,,ffi # o" 

"),

c¿Ai : .,c¿B¿ 
Ð' P;#-)uräî' ty,

+ ;*Et - ffiEl + ft¿,tuÍÐ - ftnono,
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C¿ is a mass matrix of order rni x rni with (r, k) th element

f.+ f',' M¿,,M¿,¡, d,o¿;
/-1 Pt,t Je'',¡-'

D¿ is a diffusion matrix of order rn ¿ x nt,¿ with (r, k) th element

i(y f" Fi,¡Mi,,M¿,¡, ao¿\;
/:1\Pt¡ J ë,,,¡-, /

E¿ is a matrix of order rni x rni with (r, k) th element

ft
I M¿'¡' do¡;

J Ê¡''-t

nlt),, ¿ - I,..., Ji,is a column vector of length rn¿ with kth element

¡l

I M¿,¡ d,o ¿;
J Ë¿,¿-,

Ef and Ef are column vectors of length rn¿ with k th element

and

zi -t H¿p¿(ll * B!) : s,

where i :0. In these equations

M¿,x(0) and M¿,r(7), respectively;

A¿ and B¿ are column vectors of length rn¿ with k th element

Ai,k and B¿,¡, respectively;

Ai and Bi are column vectors of length rzl¿ with k th element

0A¿,*

c¿ B i : - 1 c ¿/t' - 
þ__,' 

(tt=?-) uräî' r9

+ ffiø: - ffiE!+Í;,nlÐ - ftoonn'

0B¿.*

É, resPectlvelY;
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(2.5.1e)

(2.5.20)

(2.5.21)

(2.5.22)

(2.5.23)

(2.5.24)

(2.5.25)

(2.5.26)

at
and (2.5.27)



Zi is a column vector of length ræ¿ with k th element

0C¿,n-t
(2.5.28)

0t

and Al and B! are column vectors of length rn¿ with k th element

and
0B¿,x

0y , respectively. (2.5.2e)

The definitions of matrices (2.5.21) to (2.5.29) will also be used for the solutions

of the two domain system which will be described in Section 2.ó.2.

Following the usual strategy used in finite element methods, it is possible to in-

corporate the boundary conditions, thus modifying the basis sets and subsequently

all of the integrals given in this formulation. In earlier studies Davies (1977b,c)

has done this on the basis of the Galerkin-Collocation method. Therefore the

integration by parts do not appear in the solution procedure.

In this study the surface stress conditions have been incorporated as natural

boundary conditions in the course of integraiing (2.5.12) bV parts. Subsequently,

when the slip-boundary conditions are enforced at the sea bed, all of the boundary

constraints are natural conditions needing no special modifications. However, for

the case in which a no-slip condition (an essential boundary condition) is enforced

at the sea bed ai: I, i:0, it is required that the basis sets be modified. This is

achieved by either specifying knots having the no-1 multiplicity at o¿: 1 (Davies,

7977a,1978ó) or by linearly combining the B-splines which do not vanish at a ¿ : t

(Davies, 1977b,c,1980ø). It has been revealed in preliminary computations that

both approaches yield almost the same results. The latter approach is used in

this study. Thus, for the total contribution of the B-spline basis set to vanish at

o¿ :7 we need 
rni

D On,,*n,'(l) : 0 at o¿ :7. (2.5.30)
r:1

óo



Since, for the B-splines of the fourth order, M¿,r(o¿) is non-zero at o¿: 1 for

each r - TrLi - no I 2 to m¿, equation (2.5.30) reduces to

ÀÀMi,*r-z(l)^Mz,-,-r(1)âi,m; : -!Li,rní-, M*JÐ - Ai,rni-]- 
Mr*JÐ

(2.5.31)

Thus, by replacing the (*n - 1) th and (*n - 2) th B-splines by

and

.t:7

where m" is not necessarily equal to ms.

we form a basis set, each element of which satisfies the essential constraint at

a i, : 1 exactly. With these modifications the order and length of matrices in

(2.5.21) to (2.5.29) are reduced by one.

Once the coeffi.cients of B-spline expansions are computed from (2.5.18), (2.5.19)

and (2.5.20), along with the appropriate initial conditions and lateral boundary

conditions, the two components of horizontal current at a depth os are obtained

from (2.5.6) and (2.5.7).

For the general situation when the eddy viscosity profiles of the form (2.5.5)

are not permitted, the problem of reformulating the resultant diffusion matrix

at every time step might occur. In such circumstances, as described by Davies

(1980c), it might be expedient to expand the eddy viscosity in terms of suitably

chosen interpolation functionsVs,¿ with coefficients Eo,j,¿(x,y,ú) so that

ffù e

No,j(*,A,ao,¿) : t Eo,j,t(*,,y,t)úo,j,¿(øo), j :7,,...,Jo, (2.5.34)
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Integrating these expansions over each layer and dividing by the thickness of

the layer, we obtain for Í-)¡,¡, i :0,

. rr¿ì

IJ n,i(*,a,a i,t) : #; D A¿,,(x,y,t)
qS?rJ 

r:1

ÐB¿,,(x,y,t)
r:1

(2.5.35)

(2.5.36)

(2.5.37)

(2.5.3s)

rn¿

V ¿,j(*,a,a ¿,t)

U ¿(*,U, o i,¿) : I A¡,,(r,g,t)

1

a€¿,¡

where L€¿,j : (¿,j - t¡,j-t, j : L,..',J¿

Integrating these expansions over the domain Or, i:0, we obtain

rni

M¡,, do¿,
r:7
rn¿

r:L t,
1

V ¿(*,a, o i,¿) : D B¡,,(x,y,,t) M¿,, do¿,

withj-1,...,J¿.

2.6.3 Two domain solutions

Introducing a stress-free condition at an interface level leads to the representa-

tion of the vertical dependence in terms of two independent sets of basis functions.

Use of a single set of basis functions forms a system of partial differential equations

with overspecified boundary conditions. Approximate solutions to the system of

equations (2.4.5) to (2.4.8) are sought with respect to the scalar products

J;

(ó¿,,þn) : D P ¿,i

P t,t I*','ot ,ór,¡' 'Þr,¡ 
o"') for Í-l¿, (2.5.39)

j:t

where i : Ir2

Expanding the two components of horizontal current in f)¿ in terms of B-spline

basis functions M¿,r(o¿) together with time and horizontally varying coeffi,cients,

JI



grves

where

U;(*,a, o i.,ú) : t A¡,,(*,y,t) M¿,,(o ¿),

mi

r:T
n'¿ i

r:1

0et,¿-t
0n

0et,t-t
0r

Ql,l-l,lt

cL 2,0 ,k

(2.5.40)

(2.5.43)

(2.5.44)

V¿(*, y, o ¿,t) : t B¿,,(r,, y,t) M¿,,(o ¿), (2.5.47)

where the coefficients.4¿,, ar,.d B¿,rri:Lr2 are to be determined. Note that the

number of B-spline functions and the order of the B-splines may also differ for

each domain.

The variation in the vertical eddy viscosity is assumed to be of the form

¡'¡: l/,;,¡(r,U,oi,t): a¿(*,y,t) l-L;,¡(o;) for Qn,j, (2.5.42)

where 'i : !r2. For a more general form of time varying eddy viscosity, it is possible

to expand the vertical eddy viscosity in terms of a set of interpolation functions

similar to those described by equation (2.5.3a).

Taking the scalar product (2.5.39) of equations (2.4.5) and (2.4.7), with Mi,k,

i -- 712, respectively, gives

o(ur,r)
0t - l(Vt,xl: - t

J1

T,:I
J2

.(:L
t

g

g

g

l:l

* Ír,, (trr,o,k * h,t for Í)r,

\

#t_j(vz,*l:_ t Pt,t - Pt,t-t

I XzJ a2,o,r, I Iz,n

Pz,t

Pz,t. - Pz,t-t
Pz,t

(u,,r): (rJ¡,M¿,n): 
å e I',',, ,(J¿,i 

M¿,t ao,) ,
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and

(v ¿,*r : \v,M¿,r,r: å (H 
lr','o' ,v¿,j 

M¿,t 0",)

J¿ ¡E¿ 1

ei,¿,rr: i ["'t M¿,t d,o¿ : I M¿,¡ d,o¿,

¡7¿+t J Ë;'i -' J ë¡,¿

Ii't' : ft F-{H l,',,',L^(''''#) u,x ao t\

(2.5.10)

(2.5.11)

(2.ó.12)

with i : 0, lc- 1,. .. ¡TrLi.

Integrating(2.5.72) by parts and substituting the boundary conditions (2.4.10)

and (2.4.12) and the interfacial conditions (2.4.14) and (2.4.16), gives

It,k:

where k:1r...,?zÙ1 and

ifu ,,,k (0) - ft F__W l,',',', 
,,,¡T# # 0",), {r.u.nu)

Tb, -ffi-ræ, l,': ,r,,,æ#oo"Iz,k Mz,n(I) , (2.5.46)
PzJHz

where k, : Lr... )rrì,2,

Substituting the expansions (2.5.40) and (2.5.41) into (2.5.43) and (2.5.44),

and using (2.5.9), (2.5.10), (2.5.45) and (2.5.46), gives

î+(Mr,,, Mt,t) - ,îlt,,\Mt,,,, Mt,x)
r:l - r:L

: -+ n(Pt,¿-Pt,¿-t)ôCrr¿-ro. , r", , -: - ànl-tVr,, / dr r,¿-t,k + ffiMlr(O) f 
xtr&r,o,t

- ftþ--o"tffi l,',',',u'''ffi #0")' k : 7'' ¡Trù'!'
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and

î+(Mr,,, Mz,x) - ,i,Bz,,(M2,,, Mz,x)
r:l - r:t

ls Pt,¿ - Pt -1
)

Jz

a2,o,k- It( )W a2't-t'k
J1

!=l P z,t l:L
(

oCt,¿-t
0r

Pz¡ - Pz,t-r
Pz,t

Ie:tr.,.,¡TTù2.

(2.5.48)

The equations for Vt, Vz can be derived in a similar manner, but the details are

omitted for simplicity.

Substituting (2.5.40) and (2.5.47) into (2.4.9), we obtain the equations of con-

tinuity for the upper and lower domains

- 'o' M,,r1) * Í",, &r,o,r,
P r,r,Hz¿'-z"c\- 

''l

- ffi þ--,o,, Ð(#, l,',,,', u,,,ffi # o"),

(+.T)a,,i,.
(#.T)c12,0,,:0, i :0,"',Jt- 1, (2'5.4s)

++î,,e#.T)r:l

For the upper domain, f)1, the U and V equations can be written in matrix

form as

clAì : TcrBr + ;fuuí + Í,,,EÍ') - fto'n,,

Ð^'(u+ï¡aeä:'nl¿t 
(2551)

c,Bi : - 7c14, + ;fuEi * ñ,rEÍ') - fto,n'

Ð,(u5#-¡ao'i-'løl'It 
Q552)

a2,i,r:0, i:0r"'rJz-7. (2.5.50)
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Similarly for the lower domain f)2, one obtains

c2ui : .YczBz - ffiEo, + Í",rF]tt, - #rl,ro"

¿'f"=#-¡a(ä:-'¡ø\'t

þ,f"+y)uerå-',s:,

czBi : - 1c2A." - ;fueå + Ír,rEL') - fiorn"
Et')

r,9,

(2.5.53)

(2.5.54)

(2.5.55)

J1t
l=l
J2t

2:l

g (

(

Pt,t. - Pt,t.-t
P z,t

Pz¡ - Pz,!.-t

0et,¿-t
0y)

g
0ez,¿-t

P z,t 0y

The continuity equations can be written in matrix form,

zi:-tH¿r,¿(ni +ei),
2

i:l

z;: -HzE,z(nå+s!) (2.5.56)

The definition of the matrices appearing in (2.5.51) to (2.5.56) are found from

(2.5.21) to (2.5.29) by setting i :7,2.

Note that for the Galerkin solutions of the domain f)1, the boundary conditions

imposed at the top and bottom of the domain are all natural conditions and

therefore no corrections to the matrix integrals are needed. The bottom boundary

conditions for the domain f,)2 are treated in a way similar to the one domain system.

For the case of the no-slip bottom boundary condition the modified (m2 - 1)th

al:d (m2 - 2) th basis functions are obtained from (2.5.32) and (2.5.33) by setting

i :2. The layer-averaged and domain-averaged horizontal components of current

are obtained in (2.5.35) to (2.5.38) by setting i :7,2.
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2.6 Solutions via the use of a Galerkin method applied over the vertical space

domain: a basis set of eigenfunctions

This section describes Galerkin solutions in terms of a basis set of eigenfunc-

tions which satisfy a Sturm-Liouville eigenvalue problem resulting from the spec-

tral decomposition of the second-order vertical diffusivity operator. The solution

procedure is similar to that described in Section 2.5 although the final set of

equations for the coefficients of the eigenfunction expansion is quite different from

those of the B-spline expansion. In this section it is assumed that the eigenfunc-

tions have been found by either numerical or analytical means. The details of the

construction of these eigenfunctions are described in Chapter 3.

As seen in Section 2.4, it is necessary to introduce a set of weighted scalar

products which depend upon the domain structure of the system. For a one

domain system, a set of eigenvalues and eigenfunctions spanning the entire depth

is defined to represent the solutions of the system, whereas for the two domain

system two independent sets of eigenvalues and eigenfunctions spanning upper and

lower domains are defined. In contrast to the B-splines, the eigenfunctions belong

to a global basis set and their structure is determined by the variation in density

and eddy viscosity through the vertical. The formulation of spectral solutions is

facilitated by representing the local form of the eigenfunction of the j th layer as

f n@n) : f 4¡(o;), for tr,¡-r 1 o¿ 1 (¿,i, (2.6.1)

and the local form of r th eigenfunction of the j th layer as

fn,r(on) : ft,¡,r(at), for t¿,j-t 1 o¿ 1 (¿,¡ r :!,2,... rrn¿, (2.6.2)

where i :0,7,2, i - 1,"',,J¿. The local forms of eigenfunctions of each layer

(often called piecewise eigenfunctions) will be used for clarity of the solution pro-

cedure.
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Galerkin solutions are sought with respect to the scalar product (2.ó.4) for Q¡,

and with respect to (2.5.39) for f)¿, i :7,2. The vertical variation of eddy viscosity

over each domain is assumed to be given by (2.5.5) and (2.5.42), respectively.

2.6.1 One dornain solutions

The two components of horizontal current, [/o and Vs, are expanded using rn¡

depth varying continuous functions, so that

tLo(*,U,, o o,ú) : t Ao,,(*,A,t) f o,(oo),
rmo

r=t
rno

r:T

g

(2.6.3)

(2.6.4)

(2.6.7)

Vo(*, U, o o,¿) : t Bo,,(x, y,t) f 0,,(o o),

where the coefficients ,4.6," and Bs,, are to be determined. Using local forms of

the continuous functions, the expressions (2.6.3) and (2.6.4) may be represented

as follows:

flo,j(*,A,oo,ú) : t Ao,,(x,A,t) f o,¡,,(øo) , €o,j-r l os 1(s,¡, (2.6.5)
Íno

r:l

vo,j(*,u,oo,Ð:äI,0,,(t,a,t) f o,¡',(oo) , (o,j-' ( øs ( (e,¡' (2'6'6)

wherei:lr"'rJ¿.

Taking the scalar product (2.5.4) of equation Q.a.5) with /0,¡,¿ gives

ô(Uo,n)

ðt - l(vo,nl: - t ( Po,¿- Po,rt\ _ô(o,n-t ^
\ p* )--a; 

uo'¿-t'k
Js

t:t

* Xo,r ao,o,r, * Io,n,

where

(uo,rl: \rJ¿,rn,¡,*): å W Ir'',' ,r}¿,j 
r¿,j,x oo,)
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(v ¿,t) : (v¿, f ;,¡,r,1: t P ¿,i

P t,r lr',',0 'v'i 
r¿'i't' o"')

û

&i,l,k: tj:l+t

j:L

rË;,¡

I f n,¡,r do n

J Ë;,; -,

J¿ : [' r¿,* do¿,
J Ê¿,t

{y, lu',,',h(''''

(2.6.10)

(2.6.e)

(2.6.11)

and
(1.;Ii,k: 
H7 D ) I n,,,r oon,\

J¿
AU¿,i

0o¿j:t

with i : 0, k - 1,. .. ¡Trt,¿.

Integrating (2.6.11) by parts twice yields

Js

Is ,k:

Js

t r,,(to,i) f o,i,n(to,i) - T"'((o,i-t) f o,i,*(€0,¡-t)
J:

P o,t

P o,i

P o,t

df o,¡,x

doo

(0,-i

€o,i - r

1

Q,s tH3
J:

a P o,"

Itr o,i Uo,j( )
1

+ # åtHI,'"" ,ro,,h(r,,,i#r¡oo,\
(2.6.72)

Substituting the sea surface and bottom boundary conditions (2.4.10) and (2.4.72),

and using the interfacial conditions (2.4.13) and (2.4.t4), gives

ro,r, : - 
"t"^-f0,,,r(1) 

+ ;,r!, ro,r,*(o)

0 (H3
u 0," (r) -(F 0,, Hl. I/o,r (o)

h(r,,,j#rlooo\,

b

Joa
H+ 0 t

j:l
(2.6.13)

2
0

where Ic:7,'-.,TrLs and the suffixes s and ó in the second row of (2.6.13) denote

evaluation at os: 0 and 1, respectively.

Substituting the expansions (2.6.5) and (2.6.6) into (2.6.7), using (2.6.3),

44



(2.6.9) and (2.6.13), yields

î+(ro,0,,, ro,o,*)
r:7

uor(fo,t,,, fo,r,r)^l

mot
r:l

)+ao'¿-7't'

ffi t r,r,r(o) t fo,t a o,o,k

(t, o,"Hl "fo,,,.(1)- (& o,'

(2.6.74)

Q,g-4
TIL O

r:l
Doo' I Po,"

lp*
dfo,r,*

doo ) "fo,t,.(o)

.ffiä,.'å{ P o,i

P o,t

/ot¡*tl((0,¡)

df o7*rl
doo )

0

doo

j:7r"',Jo-r

r0

d
,i'' ¿OO

where Ic:7r,,, ¡Trùo

Up to this point the procedure is essentially the same as that of the basis set of

B-spline functions except that the integration by parts is applied twice. Following

Heaps (1983), a spectral basis is determined by finding solutions to

doo olrl' J 1 . rJi, (2.6.15)

(Fo,rH), Éo,r "fo¡r1(0), (2.6.16)

(11 o'B doo

df o¡u1

) (2.6.77)

and interfacial conditions

d

subject to separable limit conditions

(r,,,+#):-Ào-r

,, f o¡"1(L),0oI

./or¡l(€0,, )

(,o,,!H)r,,, - 
Po,i+t

P o,i
(þo,i*t'
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Equations (2.6.15) to (2.6.18) constitute a multilayered eigenvalue problem, giving

a sequence of real-valued eigenvalues and eigenfunctions which have the orthogo-

nality property

lf o,¡,r,, f o,¡,t): fl (luÌ ['"'t \
= 
k(t* Jro,,-,ro'¡''ro'¡'k 

doo ) 
:0 for ' + k' (2'6'19)

Details on the limit conditions of the eigenfunctions will be described in Chapter 3

in conjunction with their numerical determination.

Let À¿,t and f ¿,¡, i :0, le : I, ...) rni,) be a set of eigenvalues and eigen-

functions satisfying the Sturm-Liouville type boundary problem represented by

equations (2.6.15) to (2.6.18). Then, (2.6.74) becomes

ry : .yBi,k 
Ð , (r;#-) g# 

ctri,¿-,,t ei,,,

+ f ¿,t ai,o,k(Þi,¡, - 
ft^n,uOn,x 

* (Jf,r I Ki,t)Q¡,x,

rr,* : ffir n,r(o) - ffir n,r{Ð,

(2.6.20)

(2.6.21)

(2.6.23)

where

rni

r=l

andi:0, lc -1,...)rmi.

Similarly,

t P ¿,i

P ¿,t lr', nt ,rl,i,k 
doi)-t

K! Q¿

H? DAn', þ¿,tf ¿,x(0).f¿,.(0) - P¿,tP¡"1þ¿,,f ¿,n(7)f ¿,,(7) (2.6.22)k

o¿,n :(Í ¿,¡,n, f r,¡,t)-t : (
J¡

j:l

where
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and i :0, lc - 1,. ..rrni.

Substituting (2.6.5) and (2.6.6) into (2.4.9) gives the continuity equation of

the form

t,u : ffir,,ft(o) - ffiftr{r¡,
Kl,t' : fr Ð" n'' 

{P 
n'' I ¿,x(0) r ¿,'(0) - P ;," P ¡l 0 t'' r ¿,*(L) r ¿,'(' ) }'

W*H,î{W

(2.6.25)

(2.6.26)

(2.6.2e)

+ Ai,,j,, :0, (2.6.27)

where i : 0, i : 0,,... rJ¿ - L.

The vertical modes in equations (2.6.20) and (2.6.24) are coupled through the

terms for the bottom friction

rni

Tb,: Pt," lcaDAn,rf n,r(l), (2.6.28)

Tby : P¿," kaD Bn,,r n,,(7),

r:1
Ínì

r:l

and the stressing terms KT,r,, Kl,x which involve B¡,1 and 0o,2. Inthis case, a matrix

inversion is required to solve for the coefficients of the eigenfunction expansion.

\Miih 1o,t :0 and 00," : oo or 0o,z : Iea : 0, the system of equations becomes

uncoupled.

Consider the alternative expansion of the U¿,¡ and %,¡ velocities used in a

series of works by Heaps, namely,

[J¿,j(r,U,ai,¿) : t Ãn,,(*,U,,t)Q¿,, f t,¡,,(o;) for t¡,j-t 1o¿ 1(¿,¡, (2.6.30)
rn¿

r:l

ní

V¿,j(*,A,oi,¿) : Ð Êr,,(r,U,t)Q¿,, f ;,¡,,(où for (t,¡-r 1o¿ 1(¿,¡. (2.6.31)
=1
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\Mith the use of the relations

Ai,r - Âo,rLo,r, Bi,, -+ Q i,,,

oe¿,¿-t
ai/-L,k

(2.6.32)

(2.6.33)

(2.6.34)

Ê ri,

(2.6.20) and (2.6.24) reduce to

ôÃn,r
'rÊ¿,* - t

l:l

û
g

0t 0r

* ft¿J a ¿,o

oÊn.* î
At 

:-^fL¿'k

l7t¡ a, t,o,

,r - ft Xn,*Ão,o * (Ji,x * Kî,x),

þ--,'e5#")wai,¿-,,k
u - ffiln,rÊn,* 

* (4,n t Kl,),

where

ri,k ffirn,r(o)-ffir,,*{r¡,
rî,t : 

ffiln,r(o) - ffirn,r1), (2'6'36)

Kî,t : # äÃ',on,,{þ¿,rf 
¿,*(0)fn,'(o) - P¿,"P¿,1þu,rf ¿,n(l)/n,"(1)} , Qr'37)

Tb, : P ¿,"leaD Ãn,rQ u,, I ¿,r(L),

(2.6.35)

(2.6.3e)

(2.6.40)

d¿

ETKT,*: ÐÊn,,Qn,, { þ ¿,, I ¿,*(0)"f ¿,"(0) - P ¿," P ¿ ì þ ¿,, f ¿,t (r) f ¿,,(7) , (2.6.38)
rn¿

r=1
rna

r:l
rni

T bo : P ¿,"lctD Ê n,rø 0,, f ¿,.(I),
r:l

and i : 0,, k - 1,. .. )rn,i.

The continuity equation takes the form

W*HoÐ{W.
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where i : 0,, i : 0,..., J¿ - I.

In applying the basis set of eigenfunctions in Chapters 4 and 5 we will employ

Heaps'formulation. Hence we write (2.6.33) and (2.6.34) here in matrix form as

Â; : qÈ¿- ft'r,î,
. #(\trc" - P¿,"Prl\n,rcu)î,+(ffiø

Ð'(ry)%#'lÐ +Ín''øl')'

Ê;: -ryÃ¿-ftn,Ê,

,-ffi,t)

+
Q,¿-r7;

J¿

lo
l:l

(gn,rc" - p ¿," p ¡,1 Pn,rco)Ê,* (å,rur: - #,"i)
(ryÏ) *'Í'+i'''Pl')'

(2.6.42)

(2.6.43)

(2.6.44)

(2.6.45)

(2.6.46)

and (2.6.4L) becomes

zi * H¿Ei (L" * B!) : s,

where i : 0. In these equations:

Â¿ *nd Ê¿ .r" column vectors of length m¿ with k th element

Ân,u and -Ê0,*, ,"rpectively;

Â; ""d Ê; .r" column vectors of. m¿ with kth element

0A¿,* ôB¿.x
- A-,, respectlvely;and

ôt

Zi is a column vector of length rn¿ with ,kth element

oÇ¿,n

0t
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A! and Bl are column vectors of length rn¿ with k th element

0B¿,x

0y , respectively;

C" is a matrix of order rrr¿ x rm¡ with (r, k) th element

Cå is a matrix of order rmi x rmi with (r, å) th element

Q¿,,f ¿,,(1)f ¡,*(7);

Ef is a matrix of order rrri x rmi with (r, k) th element

oÃn.r
-- ^L anct

dT

Ì\i,,,t :
\i,t,

0

(2.6.48)

(2.6.4e)

(2.6.50)

(2.6.51)

(2.6.52)

(2.6.53)

(2.6.54)

iÞ¿,'.f ¿,.(0) f ¿,*(0);

l,',
(Þi,& I ¡,* do¿;

r-L

nlt) , ¿ - 1, . . . , Jò, is a column vector of length ræ¿ with /c th element

lr', ,-,r ¿'t' do ;;

Ef and Ef are column vectors of length ræ¿ with k th element

and f¿,r(l), respectively;

and z\ is a matrix of eigenvalues, that is, with (r, k) th element

"f¿,¿(o)

Once the coefficients of the eigenfunction expansions are computed from equa-

tions (2.6.42), (2.6.43) and (2.6.44), along with the appropriate initial conditions

and lateral boundary conditions, the two components of horizontal current at

depth a6 are obtained from (2.6.30) and (2.6.31), respectively.

50



The layer-averaged velocities over each layer f)¿,¡, with a¿,¡,, : 0, are derived

AS

and the domain-averaged velocities for f)¿ are derived as

,fLi

tl ¿(*,a,a i,,¿) : t Ãn,,(r,U,t) Q¿,, Qi,o,,,

. fníI 

-¡U¿,i : L(rJàOn,,(r,y,t)Q¿'(ai,i-t,r - ai,i,,), (2.6.55)

. tr?i
I 

-^Vi,j : 
"r_ LBo,r(*,y,t)Q¿,r(ai,j-t,r - ai,j,r), (2.6.56)
aS?rJ r=l

r:l
rní

(2.6.57)

(2.6.5e)

Vn(*,U,o i,¿) : D Ên,(*,U,t) Q¿,, Qi,o,,, (2.6.58)
r:1

with i : 0 and j : 1,,...,J¡

2.6.2 Two domain solutions

Expanding the two components of horizontal current in terms of the coefficients

A¿,r(n,y,ú) and B¿,r(r,y,t) and eigenfunctions /¿,r(ø.) gives

fI¿(*,U,oi,¿): t A¿,,(n,,y,t) f ¿,,(o¿),,

,na

r:l
rna

r:l
V¿(*,y,oi,t): t B¿,,(x,y,t) f ¿,,(o¿), (2.6.60)

where the coefficients A¿,," and B¿,r, i : Lr2, are to be determined. The expressions

for U¡,¡ andV¿,¡,, using the local forms of eigenfunctions, are

(J¿,j(*,A,oi,ú) : t A¿,,(n,y,t) f ¿,¡,r(o¿), (¿,j-t I o¿ 1 (¿,¡, (2.6.61)
rni

r=1

frai

V¡(r,A,oi,¿): t B¿,,(x,art) f .i,¡,r(où, Ë¿,j-t 1o¿ 1(¿,¡. (2.6.62)
r:1
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\Mithout going into the details of the derivation, we will work out the final sets

of spectral equations. By determining the eigenvalues and eigenfunctions from

i :7r2, i :7r...,,Ji, (2.6.63)

with limit conditions

h(r,,,+#) : -\¿t¿ut,

and interfacial conditions

f ¿t¡l(€¿,¡)

'i :7,2, (2.6.64)

i:1r2, i:tr...rJ¿-1,

(2.6.65)

(2.6.67)

I nr¡+tl(€n,¡)

dr n,t*,
do¿

P ¿,i+t
þ ¿,i+t )

(rt,%#), : gi,r/;¡,¡(o),

(t, n,"#l : g;,2r i¡"1(r),

,r,rH) €¡,¡ P ¿,j
(

È.

we then arrive at the equations of the form

+ : .yBt,t - (ar lH?)^L,kAr,r, * (Jf ,r + I{T,k)er,k

- S ^( Pt,¿- Pt,¿-t\ ô(r,r-, n- ^ -. ¿ñ. -

A "\ p* / # aL/-r,t'or,t * ft'Ja',0,t'Õ1,¿' (2'6'66)

ry :.yBz,t, - (azlHl)\z,nAz¡, -f (Ji,n I KT,t)ezJ,

e5#-) + a z'o'k Óz't' t Í2'1 Q 2's'¡ Q2'k

e5#-) +? cr 2,t-,,t e 2,k,

g

g

J1t
l=7

J2t
l:l

where

TT T", TJr,* : ffiÍt,r{o),
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T/r Q1l\7rk: 
H? \e ,,,(0r,,f ,,r(O).fr,,(0) - pr,"Pr,!þr,,f ,,t (7)/r,"(1)), (2.6.69)

rnL

r:t

rml

r=l

J:

KT,*:

k : -ffi,''t'(7)' (2.6.70)

' , Jt - 7, (2.6.72)

. , Jz - 7. (2.6.73)

Q,¿

4 Do,,, (0rlf 
",r(0).f,,,(0) - Pz,"Pl,\þr,,f r,t(L)f ,,,Q)), (2'6'77)

with k - 1,.-')rr¿i. The terms (Þ1,¡ and Q2,¡ a.re found from (2.6.23) by setting

i : 7,2. It should be mentioned that choosing values of 7t,z : 0z¡ : 0 is

desirable to obtain satisfactory results because stress-free conditions are enforced

at the interior domain boundary. For brevity, the corresponding V¿ equations are

omitted.

Substituting (2.6.61) and (2.6.62) into (2.4.9), we obtain the equations of con-

tinuity for the upper and lower domains

ôet,i
at-

if¿It
r:1
Ín2t
r:7

+*î,,r:l

H1

H2

(+.W)a,,',,

(+.+)a2,o,.:0,

(#.T)&2,o,.:0,

+ j :0,

j :0,

By expanding the U¿,¡ and V¿,¡ velocities in a form

IJ¿,j(*,U,oi,ú) : t Ãr,,(*,a,t)ó¿,, f ;,¡,,(o;) for (¿,j-, 1o¿ 1(¿,¡, (2.6.30)
rni

r:1

rni

r:l
V,j(*,U,,ai,¿) : t Ên,,(*,a,t)Q¿,, ln,¡,(oo) for (r,¡-t 1o¿ 1(¿,¡, (2.6.31)

where i :0r 1,2, we get

ry : ^tÊr,x - (arlH?)^t,kÃr,* I (Jf ,r -f KT,n)
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Pt ¿- Pt L-r
P t,t

(2.6.74)

(2.6.75)

(2.6.76)

+ :7Ê2,* - (a2lH\))r,xÃr,* * (Jî,* r r{î,n)

g

g

\t
I=t
J2t

l:l

e5#-) 4# a2'o'k * r''' a 2'o'k

( Pzl- Pz,¿-t\ â(r,r-t ^
\ p- )--d;cL2'¿-t't"

where lc : 7,,. . . )rrì,i and the terms Jf,r and Kf,r for fl1 and f)2 can be found from

(2.6.63) io (2.6.71) by replacinB Ai,, by Ã.¿,,Q¿,,.

The continuity equations take the form

++Ë ,,(W.T)e,,.e.,o,.
r:l

+Ë r,(+.ry#)e2,7a2,s,y :0, i :0,.
r:1

oez,i
+ D

r:l "(+. +)Q2,va2l,¡ 
: 0, i : 0,"',Jz - 7' (2'6'77)

Âi : LlÈt - ftor^,. ft(Lttc" - pr,"pr,!þr,rcu)Ã, + ffinl

å'e7#-)Y"l')+Í'''BÍ'); (2678)

Êi : - L^yÃt - fttttÊr + 
ft@r,rc" - 

pr,"pr,lco)Ê, * ffinl
Ð'(u5i-)T'Í')+ñ''PÍ'); (267s)

Jt-7

ôt

\Mriting (2.6.74) and (2.6.75) and llne V equation of motion in matrix form

leads to:
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Ã; : rtÊ, - ffitt Ã, + 
ffi(gr,, - Pz,"Pz,\or,rco)î, - ffir\

t' (%#-) T'\') + Í,,,n\')

Ð,(u+-)%rf,, (26s0)

Ê;:- qÃr-ffinrilr+ffi(þ,,,, - p","p1,\or,rcu)Ê, - ffi"L
å 'e;#-)T'LÐ+Í''"øL')j=l

É,e5?¡aezú'nfi (26s1)
j=l

Equations (2.5.76) and (2.5.77) in matrix form become

zi:- t H¿Ei(ai +ni),
2

i=l
(2.6.82)

zi: - HzEi (Ai + Bi). (2.6.83)

The definitions of the matrices are found from (2.6.45) to (2.6.54) by setting i :
7,,2. The layer-averaged and domain-averaged horizontal components of current

can be found by setting i :1,2 ín (2.6.55) to (2.6.58).
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CHAPTER 3

CONSTRUCTION OF EIGENFUNCTIONS

3.1 Introductory remarks

This chapter is primarily concerned with the description of a method of numer-

ically determining a basis set of eigenfunctions from a Sturm-Liouville boundary

value problem which results from the spectral representation of the vertical eddy

viscosity operator. The eigenvalue problem is necessarily multilayered in nature

and the coefficients of the second-order operator are defined in an arbitrary manner

within each layer. The multilayered Sturm-Liouville problem with variable coef-

ficients can be solved by various numerical methods. To remain consistent with

the Galerkin procedure employed in Chapler 2, the eigenfunctions are constructed

in terms of a basis set of fourth-order B-spline functions which are in turn repre-

sented in terms of an expansion of Chebyshev polynomials, and the same weighted

scalar products given in (2.5.a) or (2.5.39) are applied. Therefore, the essence of

the method described here is the same as that of the mixed numerical-analytical

approach developed by Davies (1983c) for homogeneous seas.

The accuracy of the numerical methods is examined with respect to the number

of the knots of B-splines and their distribution. The difference in the structure

of vertical modes between the one and two domain systems is described. An

eigenequation is derived analytically, in order to determine the validity of the

numerical approach, for a three-layered piecewise constant eddy viscosity profile

(see Appendix I). A method of projecting the coefficients of the B-spline basis set

or the known values of current profiles onto those of the eigenfunctions is described.
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3.2 
^ 

multilayered eigenvalue system

For convenience, we rewrite the Sturm-Liouville equations and associated limit

conditions described in Section 2.5 and 2.6. The eigenvalue problem posed in

multilayered systems is

h@,,,#) -- -^¿ril¡), (i: 0,1, 2, i : r,''' , J¿), (8.2.1)

subject to boundary conditions

df 
4r7i,t doi ) : \n,r l r¡r1, at o i : o, 'i : 0,7, (3.2'2)

(1, n,"#¡ : gi,z I n¡"7, at ai : 7,, i : 0,2, (3.2.3)

and interfacial conditions

f ul(€¿,¡) f nt¡*\(€n,¡)

i : 0,7,2, i - 1,. ..,J¡-1.
(,r,r*#) ('n,,*'t#) 

r,,,

( l.t

P ¿,i+t

c¡,¡ P ¿,j
(3.2.4)

Since l]rreU¿ andV¿ currents al o¿:0 are in generalnon-zero, the values of lï¿J,

i:0,7,,2, are finite; when a no-slip condition is imposed at the sea bed, each of

eigenfunctions is required to satisfy the constraint exactly and hence 0o,2, 82,2 --

oo; the homogeneous Neumann conditions at the interior domain boundaries, o1 :

1 and 02 :0, restrict values of þt,z and pz¡ Lo zero. For a linear slip condition

one carì. determine the eigenfunctions such that

t u f r,¡,,: -l(r,,,k) "t ai : r, (s.2.b)

where i :0,2. This leads to

7i,z : -k6 H¿f a¿ i:0 (3.2.6)

This limit condition has been thoroughly discussed by Davies (1987ø)

2
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The eigenvalue problem is completed by requiring that

"f¿,r(o) 
: /¿,r,r(o) : 1, (3.2.7)

where i :0r 1,2 and r : Lr... )rni

Appendix I describes some basic properties of the multilayered eigenvalue sys-

tem. The system of equations (3.2.1) to (3.2.a) and (3.2.7) constitute a self-adjoint

eigenvalue problem, giving the orthogonality condition

J¡

(f ;,¡,,,, rr,¡,o): 
å e lr'' ,' ,f i,¡,,rr,¡,r,)oo,:{ ,tt*

if r:lc.' 13.2.8)
if r*k, \ /

where Orrl is the square of the energy norm and i : 0, 1, 2 and r : 1r. . . ¡Trùi.

The eigenvalues of the system (3.2.1) to (3.2.\ and (3.2.7) can be indexed so

that

À¿,r ( À¿,2 1"'( À¿,¡, <.'., (3.2.9)

and, since the set of eigenvalues has no finite point of accumulation, li,¡. r oo as

k ---+ oo.

Consideration is now given to the expansions such that:

\(A.i,,+LBi,r)f i,r
rT¿ i

r=1
rní

r:L
tní

r:1

(3.2.10)

(3.2.11)

(3.2.12)

'Ø ¿: U¿ltll¡: \(Ãn,, + tÊ ¿,")Q ¿,, f ¿,,

\(Ã'i,,+rÊ¿,,)'i ¡,,

where t: ã and f ¿,, in (3.2.10) is normalisedby (3.2.7); (3.2.11) is Heaps'

spectral expansion given in (2.6.30) and (2.6.31) and f ¿,, i" also normalised by

(3.2.7); ? n,, in (3.2.72) is normalised by requiring lhat (j ¿,¡,,,î n,r,,l : A¿l : 1.
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Parseval's identity is helpful in understanding the physical implications of

these expansions. Multiplying the expansions with their complex conjugates and

integrating through the vertical we have, for the expansion (3.2.10):

for the expansions (3.2.11)

lr' -? d,o¿ - i{o?,, + B?,,) 
Io' 

,?,. d,oi - itol,,, + Bl)aá,1; (8.2.13)

t,

t,

rni

r=l

rni

r:l

t;
rní

r:1
øl do¿ :D(Ã?,, + El)ø?,, f?,,don =\(Ã?,, + Ê?)ai,,; (8,2.14)

1

1

and for the expansions (3.2.12):

ø20 do¿ :\{Ã?Î + Êlì. (3.2.15)

Hence, in the expansions (3.2.10) and (3.2.11) the value of O¿,," is important in

determining the contribution of each vertical mode to the depth-integrated kinetic

energy at a particular point in the horizontal plane, while in the expansion (3.2.15)

the square of each modal coefficient gives the instantaneous contribution. The

modal coefficients Ai,, I tBi,, and (,î¿,, I tÊ¿,,)Q¿," in the expansions (3.2.10)

and (3.2.11) represent the instantaneous contribution of rth vertical mode to

the surface currents. In the expansion of (3.2.12) , (Ãn,, + tÊ¿,,¡j.,,(0) gives the

contribution to the surface current. Following Heaps and Jones (1983, 1985), the

expansion (3.2.11) is used in Chapters 4 and 5.

3.3 Numerical determination of eigenfunctions

Eigenvalues and eigenfunctions can be constructed in analytical ways (as ex-

emplified in Heaps and Jones (1983), Jung and Noye (1988)), but the extension

of this method to more generalised eddy viscosity profiles becomes complicated.

To estimate the set of eigenvalues and eigenfunctions from the resultant transcen-

dental equation such as (^.2.4) may be time-consuming when changes in eddy

viscosity profiles are frequently required.
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To handle arbitrary variation of the vertical eddy viscosity in a flexible manner,

it is therefore necessary to use a numerical method of approximating a set of eigen-

values and corresponding eigenfunctions. The Galerkin method with expansion of

fourth-order B-spline functions is used for consistency with the solutions with a

basis set of B-spline functions (described in Section 2.5), and the scalar products

(2.5.4) and (2.5.39) are naturally used. Alternatively, it may be possible to develop

an iteration method based on the Runge-Kutta-Merson method (Furnes, 1983),

which may be advantageous over the Galerkin method when the accuracy of the

computed eigenvalues and eigenfunctions has to be monitored (Davies and Furnes,

1986). It is apparent that use of the Runge-Kutta-Merson method will be more

effective if initial estimates of eigenvalues are made by the Galerkin method.

Taking the scalar product ((2.5.4) for Oo and (2.5.39) for {L¿, i :1,2, respec-

tively) of the rth eigenfunction equation (3.2.1), and integrating by parts, using

limit conditions (3.2.2) to (3.2.$ and (3.2.7), yields

('n''k !P), 

I,','o' ,(rn,,k¡(#) 0",

-þoJ I þo,zP¿,"p]lf ¿,,(t)f ¿,t(7)* l¿,r (f 0,,,, f n,¡,r),

(3.3.1)

where i : 0r7r2 and lc, : Ir... )rmi.

To compute eigenfunctions efficiently for arbitrary profiles of F ¿J and lJ ¿,2,

the r th eigenfunction is represented in terms of a set of fourth-order B-spline

functions M¿,¿,, L - 1,. ..rñi,, namelg

ni

f r,¡,0(où: t Li,¿,q M¿,¿(o¿),, for €¿,i-t 1o¿ 1(¿,¡, (3.3.2)
l:l

where i : 0,,7,,2, i - 1,"'rJi, Q : Lr"'.rr¿i. In general one must choose n¿
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substantially larger llnan m¿. In theory, an arbitrary set of basis functions can be

chosen from a finite-dimensional subspace belonging to C0[0,1].

Substitution of the B-spline expansion (3.3.2) into equation (3.3.1) yields the

matrix equation 
LîriLá: Ì'¿Lîc¡L¿, (B.g.g)

where i : 0,1,2. In this equation:

L¿ is an n¿ x n¿ matrix with (r, k) th element

Li,r,ki (3.3.4)

Li is its transpose;

Ä is a matrix of eigenvalues, that is, with (r, fr) th element

l\i,r,l, : { ^o'r'(o

t P ¿,i

P t,t l*',,t ,t'n''#ffiaon;

D¿ : D¿ * B¿ and D¿ is añ¿ x ?1¿ matrix with (r, fu) th elements

J¡

(3.3.5)

(3.3.6)

(3.3.7)

(3.3.8)

j:l

ñ¿ is a n¿ x n¿ matrix with (r, k) th elements

0o¡ - þo,zPi,"P¿,1f ¿,,(t)f ¿,x(L);

and C¿ is a n¿ x ñ¿ matrix with (r, k) th element

J¡

t,"
Jt P¿,i

P;,t
Mi,rMi,k do¿ .

j=l

It should be noted that since the solutions of the self-adjoint eigenvalue problem

is approximated on a finite-dimensional space, a finite number of eigenvalues are

determined.

j-t
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The matrices C and ñ are sparse because the B-splines have restricted sup-

port. Once the coefficients Li,r,t are defined from (3.3.3), the eigenfunctions are

correspondingly defined by (3.3.2) and then all the necessary integrals in (2.6.a9)

to (2.6.53) can be evaluated. In practice it is expedient to expand the B-spline

functions in terms of Chebyshev polynomials. Detailed descriptions of represent-

ing B-splines semi-analytically in terms of Chebyshev polynomials can be found

in Cox (7972,1975) and Davies (1977ø).

3.4 A projection method for estimates of modal composition

The use of a basis set of B-splines has certain computational advantages due

mainly to the piecewise nature of the splines, and the existence of high-order

derivatives and various invariant properties, but their use provides little physical

insight into the structure of the flow field being modelled. In this regard, the

basis set of eigenfunctions is very useful, particularly when the vertical structure

of eddy viscosity, þ ¿, is fixed as given in (2.5.5) ot (2.5.42). In a recent study by

Davies (1985å), the B-spline basis has been used for accuracy while the physical

interpretation of the results has been performed in terms of eigenfunctions.

As a way of determining the modal composition of current profiles, Davies

(1983ø) also described a method of projecting the coefficients of the B-spline basis

set onto those of the eigenfunctions in the course of developing a Galerkin model

for wind induced flows in continuously stratified seas. In this section it will be

shown that the transformation relation between the coefficients of B-splines and

eigenfunctions is also applicable to a multilayered system. In fact, this projection

method can also be applied to other polynomial basis sets which have been widely

used in literature.

Let the horizontal component of currenl Ut,i be represented in terms of the
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B-spline basis set in the following way:

Q¡
(J¿,j(*,a.,o i,t¡ = U{! : t A¿,,(*,,y,t) M¿,,(o¿), for €¡,j-t 1o¿ 1(¿,¡,,

(3.4.1)

where i : 011,2, i - L,"',,Ji, and the A¿,, are coefficients of the B-spline

functions at a particular moment in time and position in space computed us-

ing the Galerkin method described in Section 2.5. The equivalent expansion of

U¿,j(*,U,oi,f) in terms of the eigenfunctions (3.4.1) -.y be written as

r=L

Ufi):l Ãn,o@,y,t) Q¿,c l;,0(o;),
rna

q:l

rn;

(3.4.2)

(3.4.4)

(3.4.5)

(3.4.6)

or in local form

U{? :DÃn,o@,,U,,t) Q¿,c f r,¡,0(on), for t¿,j-, 1o¿ 3 t¡,j , (3.4.3)
q=l

where i:0,L,2,, i - 1,. .. ,J¿.

Equating (3.4.1) and (3.4.3) and taking the scalar product (2.5.4) (for the

domain Os) or (2.5.39) (for the domain {ì¿, i : 7,,2), of. the resulting equations,

with f ¿,¡,¡(o¿) yield

kA¡
J¿t P ¿,i

lr','o' ,rt[i) ¡n,,,r ao¡

f ,',',' ,(þ--o'" 
*n'') rt'¡'n do;

In special circumstances, the eigenfunctions may be represented in terms of the

B-spline functions used in the method with a basis set of B-splines. Then, sub-

stituting (3.3.2) into (3.4.5) gives

j:l
J¿

D
j:l

P i,t

P ¿,i

P;,t

Q¡Q¡,:ÐÐt Ai,, Lá/,t 
Ð 

"-, 
Ir','ot ,(*n,, 

ttt¿,¿) ao¿Ai,k

where i :0r7r2, lc : l, ',Q¿'
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Expressing (3.a.6) in matrix form gives

Ai: A'¿ C¿L¿ , (3.4.7)

where Â u,nd A¿ are row matrices with kth elemenl Ã.¿,¡ and. A¿,¡, respectively.

The matrices L¿ and C¿ are given by (3.3.a) and (3.3.8). A similar procedure can

be applied to the V,¡ cornponent of current.

Consequently, once the coefficients L¿,¿,, have been computed by solving (3.3.3)

for a given eddy viscosity profile, the first few coefficients Â¿,, can be readily com-

puted from the known Q¿ values 
"f 

AÍ"ì. The accuracy of the estimated coefficients

for each eigenfunction depends upon the accuracy in the U and V components of

currents reproduced by the basis set of B-splines functions, as well as that of the

numerically determined eigenvalues and eigenfunctions. In general, it is expected

that the knot distribution of B-spline functions used to expand eigenfunctions

will not coincide with that employed in a Galerkin model with a basis set of. B-

spline functions. Furthermore, the current profiles may be provided in terms of

finite-difference methods or by observations rather than by B-spline functions. In

such circumstances, the formula (3.a.a) can be applied by replaci"sU[? with the

computed or observed values. Errors in the estimated values of modal coefficients

depends - regardless of the errors in the given current profiles - upon the ac-

curacy of the numerically determined eigenfunctions and the errors arising in the

course of projecting the observed or computed current profiles onto each of vertical

modes.

The projection method was used in this thesis for the initialisation of the

modal coefficients in calculating a free adjustment of flows in an open sea region

(see Chapter 4). Otherwise the coefficients of the vertical modes are determined

by directly solving the set of modal equations described in Chapter 2.
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3.5 Vertical modes in one and two domain systems

3.5.1 Description of the system to be modelled

Figure 3.1 shows a schematic variation of density and eddy viscosity to be

considered in this study. Although the models described in Chapter 2 allow for

a multilayered system and the arbitrary variation of eddy viscosity within each

layer, the application of models is confined to the two- and three-layered systems.

Figure 3.1(ø) illustrates how the continuous variation of density is approximated

in terms of the three homogeneous layers. In accordance with the three-layered

representation of density, the depth variation of eddy viscosity can be prescribed

in a piecewise-linear manner as sketched in Figure 3.1(ó). In the numerical exper-

iments in Chapters 4 and 5 the eddy viscosity profiles are mostly prescribed in

a two-layered or three-layered piecewise constant form (with or without a linear

decrease near the sea surface) as shown in Figures 3(c) to (/). The two-layer

system consists of the upper surface layer and the lower bottom layer whereas the

three-layer system consists of the surface layer, the transition layer, known as the

pycnocline, and the bottom layer. The zero-stress condition for the two domain

system is imposed at the base of the upper layer for the two-layer system and at

the base of the pycnocline for the three-layer system.

To facilitate comparison between the one and two domain systems we use,

hereafter, simpler notations for the eddy viscosity, density and layer-averaged ve-

locities, namely

for the two-layered system

Po,r, ly'o,t ,,U o,r

Pt¡,Nt,LrUr,r

P0,2, N o,2rU o,z

Pr¡, N2J,U2,7

ë PrrNrrUr,
(3.5.1)

bÐ

ë P"rN"rU";
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Figure 3.1 A schematic variatiou of density aud eddy viscosity through the
vertical.
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and for the three-layered system:

Po,r, ry'o,r ,U o,r

Pt¡.,NL¡,Ur,L

Po,z, N o,zrU o,2

Pt,2, N t,zrU t,z

Pop, N o3,Uo,z

Pz¡, N2¡,U2,7

ë PyNrrUr,

ë PpN',U'', (3.5.2)

ë P "rN "rU ".

Summarising values of density used in the computations, we take for the two-

layered system:

pr:1.0258, pr: L.o27o g cm-!; (3.5.3)

and for the three-layered system:

pr:1.0258, pp:1.0265, P": r.0272 gcrn-\. (3.5.4)

For wind induced motion in an open sea region the three-layered system is

mostly considered. Typical values of the thickness of the surface layer, the pycn-

ocline and the bottom layer used in the computations are:

Ar : H¿t¿l - 25, 60 m,

Ap : H¿(€¿,2 - €¿,r) - 10, 40 m, (3.5.6)

A. * A" * A.a : Ho : Ht i Hz - 250 m.

In the computations of wind induced rnotion in a narrow lake we take for the

two-layered system:

Ar : H¡t¿J:40 nI,

Ar*Aa:Ho-Ht*Hz:100m;
and for the three-layered system:

Ar : H¡(¿t :25 rn,,

A.p : H;((¿,2 - (¡,r) :75 m,

A. *4" *A¿ : Ho : Ht I H2 - 100 m.
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The values of eddy viscosity in the surface and bottom layers have been tenta-

tively chosen. The eddy viscosity at the surface layer, lür, ranges from 150 to 1000

cm2s-r. In calculations with a surface walllayer (Figure 3.1(d) and (e)), where

a law-of-the-wall is applied by analogy with the atmospheric boundary layer and

then the eddy viscosity increases linearly with distance below the free sea surface

(Davies, 1985ø), the value of -fy'., was chosen as one fifth of Nr with A- : L0 m.

Under conditions of strong stratification, turbulent motion is suppressed within

the pycnocline (Mortimer, 1952). Such a condition of stable stratification has

been incorporated by prescribing low values of -lÍ" (Davies, L982b,1983ø; Heaps

and Jones, 1983, 1935). In a recent study by Maas and van Haren (1987) a value

of -ðü" : 6 cm2 s-1 was chosen within the pycnocline in their three-layered Ek-

man model. Stratified conditions with lüp : !0 cm2s-1 and A.p : 40 rn seem

to be unrealistic. Such an extreme condition has been chosen in the interest of

demonstrating the influence of the pycnocline upon the vertical structures of the

flow field in the one and two domain systems. The eddy viscosity in the bottom

layer is assumed uniform throughout the depth and, taking account of the effects

of the background turbulence level, two values, Nr : 100 and 1000 cm2 s-1, il€

considered.

3.6.2 Vertical modes

The accuracy of nularterically determined eígenfunctíons

In order to examine the accuracy of numerically determined eigenfunctions cal-

culations are performed for a three-layered eddy viscosity profile with Nr - 300,

l[p:10, ¡/B:100 cm2s-7, Lr:25, Ap - 15, A.a:60rn andvarious distri-

butions of knots. The distributions .If 1 and .Il3 are composed of 33 and 50 quasi-

uniform interior knots through the vertical, respectively, and the distributions -K2,

K4 alad K5 are composed of 33, 50 and 67 non-uniform interior knot spacings with

concentration of knots near the interfaces and within the pycnocline (the number
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of interior knot spacings is given by m¿ - rmi - no * 1). The exact values of À6,¡

and (Þs,¡ were computed iteratively from the transcendental equation presented in

Appendix II. It is apparent from Table 3.1 that increasing the number of B-spline

functions gives an improved accuracy in numerically determined eigenvalues and

eigenfunctions. It has been revealed in a series of preliminary computations that

for a given number of B-spline functions, a high concentration of knots within

the pycnocline, particularly at the proxirnity of the upper surface of the pycno-

cline, is important in determining eigenfunctions and the associated eigenvalues

accurately. \Mhen knot spacings are not compressed near the interfaces, wiggles

appear in the numerically computed eigenfunctions particularly near the bottom

of the surface layer. If an insufficient number of B-splines are used along with

a uniform distribution of knots, regions of high shear (near the upper and lower

surfaces of the pycnocline) are srnoothed out. If the knots of B-spline functions

are excessively concentrated within certain regions without increasing the total

number of knots involved in the calculation, the accuracy of higher eigenvalues

and eigenfunctions is rapidly decreased.

In order to accurately compute up to thirty eigenfunctions, distribution.I(5 has

been required. In this study about 67 interior knot spacings, with a distribution

similar to .I(5 have been generally used for the three-layered one domain system

but whenever necessary the total nurnber of knots and their distribution have been

adjusted. For the upper domain of the three-layered two domain system about 67

interior knot spacings have been used with high concentration of knots within the

pycnocline, while for the lower domain 24 knot spacings (since 10 eigenfunctions

are involved in the expansion of the current profile in the bottom layer) are used.

For the upper domain of the three-layered two domain system the value of. L," f Hy

is very high and hence it is necessary to concentrate considerably more B-spline

functions within the pycnocline.
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Table 3.1 Eigenvalues computed using a three-layered eddy viscosity distri-
bution shown in Figure 3.1(d) with A' - 25, A.p : 15, AE :60m,,
Nr :300, ¡/p :10 and Iür : \00 cm2s-1, with a no-slip condi-
tion for a range of knot distributions

Distribution ExactK5
67

K4

50

r(3

50

R2

33

K1

33rmi

r -l
_l

2

3

4

5

10

15

20

25

30

35

40

1.076

6.639

34.1 16

57.r20

LT7.TI7

478.733

1407.633

297r.537

5r74.325

8012.397

1.011

6.356

30.041

51.649

109.123

4r5.227

1180.577

2283.083

7386.768

30799.402

1.052

6.523

32.613

64.447

114.605

429.679

1138.278

2189.600

3612.439

6044.786

9220.318

13465.446

1.008

6.349

29.893

5t.542
108.737

4t2.568
1079.181

1819.659

3045.295

4350.1 15

6478.395

11119.358

1.008

6.349

29.892

5t.54t
108.734

4I2.563
1078.798

1817.356

3013.736

4247.103

5700.169

7907.935

1.008

6.345

29.819

51.482

108.538

412.389

1.076.924

1816.038

3003.123

4228.482

5699.498

7645,858

Figures 3.2 and 3.3 display the first five vertical modes in one and two domain

systems evaluated numerically with Tn¿ : 67, i, :0,1, and ñ2 - 24, and with a

no-slip bottom boundary condition, þi,, : oo, i : 0,2, and two linear slip bottom

boundary conditions witln B¿,2 :0, þi,z - -hH¿lq¿, i :0r2, for a range of

eddy viscosity profiles. The forms of vertical modes are primarily affected by the

vertical dependence of the coefficient of the second-order viscosity operator and by

the limit conditions used. Note that the domain-averaged value of eddy viscosity,

o¿, is not involved in determining the structure of vertical modes. With the use

of condition (3.2.5) the value of. a¿ is taken into account by the value of þ¿,t The

role of density on the determination of vertical modes is negligibly small because

Lp I p : O(10-s). With a very low value of .l[" the eigenfunctions show regions

of rapid shear at the upper and lower surfaces of the pycnocline. This is due

to the requiremeît Pt,¡F;,r0f n,rl0oi : Pi,j+tþ¿,j+r)f ¿,¡+tlôo¿ at each of the
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interfaces within the domain

As a property of eigenfunctions, the r th vertical mode has r - 1 zeros in the

open interval (0,1) for both the slip and no-slip boundary conditions. The zeros

of the r th eigenfunction are placed between two consecutive zeros of the (r - 1) th

eigenfunction. In regions in which values of eddy viscosity are markedly reduced,

zetos are concentrated with respect to the rest of the water column. This leads

to a rapid change of the modal structure within the pycnocline. An important

feature is that, as a consequence of the homogeneous limit conditions, the first

eigenvalue is À¿,1 : 0 and the corresponding eigenfunction is ln,r(on):1. It

should be noted that local variations of eddy viscosity and density jump have no

influence on the first mode. With any other combination of limit conditions at the

domain boundaries, for example when a no-slip or stressing condition is enforced

at the sea bed, the first vertical mode is no longer independent of vertical eddy

viscosity and density.

As a consequence of introducing the zero-stress condition at an interface the

water column is divided into two independent domains, f)r and f,)2. Hence the

modal structures of one and two domain systems become dramatically dissimilar

to each other. Note that for the two domain system, the region occupied by

the pycnocline is represented as significantly increased fractions of the domain

compared with that of the one domain system. Hence, the modal structure of the

two domain system is very sensitive to local changes in the eddy viscosity profile.

Introducing a surface wall layer affects the values of 11,, and (Þ1,, significantly.

Changes in the values of )s,¡ and (Þs,¡ \4/ere marginal. Under conditions of strong

stratification (.1üp a< .¡[r) the vertical modes in O1,2 possess significantly more

zeros within the pycnocline compared to those in Í-l¡,2. In the one domain system,

the ratios of eddy viscosity and layer thickness between the three layers determine

the modal structures. The modal structures in the dornain f)1 are determined by
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(a) One domain system (i=0)

f ,,,
-4 .O -2.O 0 .0 2 .0 4.0

(b) One domaìn system(i=0)

t,,,
-6.0 -4.0 -2.0 0,0 2.o 4,0 6,0

I
,
,

(c) One domain system (i=0)

l¡,,
-4.0 -2.O 0.0 2.0 4.0

(d) One domain system (i=0)

l¡,,
-4.0 -2.0 0.0 2.O 4.O

I
I

r=I
r=2
r=3
r=4
r=5

Figure 3.2 The first five vertical modes of the one domain system, obtained
using the profile in Figure 3.1(d), computed with: Ar:25, Ae=15r

As=60 rni Nr:300: NB :lOO c¡n2s-Li pr=1025,8r 1026.5, 1027,2 gcm-l;

þoJ=Oi and (o) Np :50 .rn2"-r with Be,2-ooi (ö) Ne :10 crn2s-1 with
þo,z:æi (") Np :5o cm2s-r witlÌ Bo,2:0; (¿) Np:50, o9-142.5 ctn2s-r

with o O0o,z :-lctHo:-O.2 
"1¡n2 "-r.
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(a) Two doma¡n Ðstem (i=1,2)

f ,,,
(b) Two domain syslem(i=1,2)

r,,,
-6. 0 -4 .O -2.O 0 .0 2.O 4.0 6 .0-4 .O -2.0 0 .0 2.O 4.0

I
I
I

I

(c) Two donøin system (i=1, 2)

.f ¡,,

(d) Two domain system (i=1,2)

Í¡,,
-4.O -2.O 0.0 2.O 4.0-4 .O -2.0 0 .0 2.O 4.O

r=1
r=2
r=3
r=4
r=5

Figure 3.3 The first five vertical modes of the one domain system, obtained
using the profile in Figure 3.1(d), computed with! A?:251 A¡,-75e

As:60 mi Nr =300: N¿ =l0o cmzs-L1 pr-1o25.8, 1026.5, Lo27.2 gcm-si

þtJ:Oi and (ø) Np =50 .m2"-r with B1,2-6si (ó) N.p :10 crnzs-1 with
þt2=æl (") Np =50 ctn2s-r with P2,2=0; (d) Np =50r o 2:loo .rn2"-r
with a zþz,z :- I¡tH2:-O.L2 .rn2"-r.
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the ratio of .fl, to .ly'p, and the ratio of Ar to 4", and the modal structures in

the domain l)2 correspond to those with a constant eddy viscosity. For a thorough

discussion on the structure of two-layered and three-layered profiles in connection

with wind drift current in open sea regions, see Davies (1986).

Table 3.2 and Figure 3.4 show how sensitive the modal structure is to changes

in the value of .lfr and their functional form within the pycnocline. It is evident

that as -ðy'" is increased, while keeping -ly'r and -fy'" constant, the region of high

shear within the pycnocline is significantly reduced. Particularly, for the two-

layered eddy viscosity profile (with N" ) Iüs) the first five vertical modes show

no shear in the transitional layer and their derivatives in the vertical no longer

change sign there (Figure 3.4(d)). When the values of piecewise eddy viscosity are

joined in a piecewise-linear manner in the vicinity of interface levels, the higher

vertical modes tend to show a smootlì variation at the interface (Figure 3.a(c)).

Comparing Figure 3.4(a) and (c), it is evident that with a small correction to the

eddy viscosity profile across the upper surface of the pycnocline (4, : As : 2.5

rn) the modal structure was not significantly different from that of a step-like

variation of eddy viscosity, although there is some evidence that higher modes

r)3areaffected.

The vertical variation of the first five vertical modes, evaluated numerically

with tn¿ - 67, i :0r 1, and ñ.2 :24, f.or various ranges of eddy viscosity profiles,

are displayed in Figures 4.3(ø) to 4.3(g) in Appendix III (see caption). The

modal characteristics of the first five eigenfunctions (involving Qi,r, \i,r, eiÀi,r,

ai,j,, and /¿(1)) computed for the eddy viscosity profiles which will be frequently

employed in Chapters 4 and 5 are summarised in Tables 4.3(a) to (e) in Appendix

III.
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(a) One domain sysrem (i=0)

1,.,
-8.O -6.0 -4.O -2.0 0.0 2.O 4.0 6.0 8.0

(b) Otu donain system (i=0)

1,,,
-4.0 -2.0 0.0 2.o 4.0

(c) Orc donain system (i=0)

l¡,,
(d) One domøin system (i=0)

Í¡,,
-4.0 -2.0 0.0 2.o 4.0-8.0 -8.0 -4.0 -2.0 0,0 2.o 4.0 8.0 8.0

I
I I

r=l
r=2
r=3
r=4
r=5

Figure 3.4 The first five vertical modes of the one domain system, obtained
using the profile in Figure 3,1-(d), computed with: p?:1025.8, 1026.5,

tO27.2 g crn-si BsJ:86,2=0; and (a) Ar=25> Ap:15, As:60 rni N1:1QQQ,

Np=10r NB:100 .m2"-71 (b) A,y:25¡ A¡"-15¡ As:60rn; Nr=1000,
Np:50, N-s:100 cm2s-L1þ) At-22,5¡ Lz:2.5¡ AB=2.5r A4:10: L5:2.5,
A6:60rni Na:tQQQ, Nb : Nc:100r jVd=10, N" : N¡=LOO cm2s-ti QI)

Ar:25, Ap:15r AB=60rni Nr:1000¡ Ns:lQQ cn72"-L, and a linear
decrease within the pycnocline with Nö: Nc: Nr, Ne: N¿.
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Table 3.2 Values of À¡,¡ and (Þ6,¡ for the first seven vertical modes
computed for the three-layered eddy viscosity distribu-
tions (a), (ó), (") and (d) in Figure 3.4

(") (ô) (") (d)

Ài,, Oi,r )i,r (Þi,r Ài,r (Þi,, )i,r (Þi,t

1

2

3

4

5

6

7

r 0.000

0.953

7.810

L6.747

34.747

56.795

81.167

0.000

t.204
9.019

23.678

40.611

77.038

100.843

0.000

3.141

15.945

40.366

75.584

118.311

163.117

0.999

2.233

0.207

0.294

0.049

0,123

0.032

0.000

1.169

9.011

22.468

40.016

74.497

96.846

0.999

2.159

0.162

0.276

0.058

0.097

0.075

0,999

2.139

0.153

0.260

0.063

0.075

0.110

0.999

1.049

0.450

0.343

0,453

0.889

1.388
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CHAPTBR 4

WIND INDUCED FLOWS
IN HORIZONTALLY UNBOUNDED SEAS

4.1 Introductory remarks

This chapter describes, as one of the applications of the models formulated

in Chapter 2, tlne steady state and time-dependent responses of a horizontally

unbounded sea subjected to local wind forcing. Steady state calculations are

performed by reformulating the system of U and V equations in complex form,

whereas the time-dependent calculations are performed on a staggered finite differ-

ence grid using the two sets of [/ and V equations. The sea surface and interfacial

gradients are briefly considered in the computations of the steady state current

profiles.

There have been extensive numerical experiments conducted by Davies (1985ó,c)

and Davies and Furnes (1986) which have led to a description of the overall fea-

tures of wind induced motion in both homogeneous and stratified open sea regions.

Our application is centred, along with the comparison of the one and two domain

systems, on the sensitivity of the layered models to changes in the values of the

vertical eddy viscosity, particularly within the pycnocline and to changes in the

pycnocline thickness. This can serve as a basis for realistic applications in the

future. The eigenfunction method is used in a complementary manner to acquire

a better understanding of the structure of the flow field.

Although the formulation described in Chapter 2 is based on the multilayered

sea, we consider here three-layered one and two domain systems. In the inter-
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est of demonstrating the accuracy of the models, the eddy viscosity profiles are

prescribed mostly in piecewise constant form. The Coriolis parameter is taken as

T: -0.9178 x 10-a s-l, representative of Bass Strait at latitude 39" ,S.

4.2 Steady state solutions

Stratifi.ed flows rarely remain stationary, since the time scale of the meteoro-

logical events is in general short compared to the time scales necessary to reach

a steady state. Nevertheless, to obtain basic ideas on the vertical structure of

stratified flows and to verify the models, we start with this simple steady state

problem.

Steady flow in an open sea region is composed of the wind, ilrift current which

is driven by external wind forcing imposed at the sea surface and lhe grøilient

current which is driven by the combination of the gradients of the sea surface

and the interfaces. We note that the hydrodynamic system is linear with multiple

components of input functions. Hence, the magnitudes of the U and I/ components

of the pure drift currents are scaled up according to the magnitude of the wind

stress. The gradient current is also scaled up according to the combined value of

the gravitational forcings.

Using the complex velocity, @ t : [J¿ltV¿, t : G7, the steady state equations

of motion in an open sea region can be combined to give

Q¿A
)L''l@i,i:

H? (u n,,0o
a@ i,i
0o¿

(4.2.1,)

where i : 0 and j : 7r2r3 for the three-layered one domain system, and i : !r2

and j : 7,2,3 for the three-layered two domain system. The boundary condi-

tions (2.4.10) to (2.4.12) and the interface conditions (2.4.13) to Q.a.77) can be

combined in a similar way.
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After combining (2.5.18) with (2.5.19), (2.5.51) with (2.5.52) and (2.5.53) with

(2.5.54) in complex form, the Galerkin equations for (4.2.7) in terms of a basis set

of B-splines take the form

(ryco+ 
ftoùw¿ 

: F¿ * s¿ (4.2.2)

where

'W¿ :A;*¿B¿ i :0r7r2, (4.2.3)

Fo : (po,rilo)-tl(r",a rr"r)Ef - (ru,f r.r6r)El]

Fr : (pr,rír)-t(, ", * n"n)Ei

Fz : -(pr,rilr)-t(ro" ¡ 'll6r)E!,

(4.2.4)

(4.2.5)

So:

S -D'( )et,t-t
0n

å'(,;#-) (qF *,W)err,
(¿)
1)(1

t
l:l

Sz:

2

l:I
2

Pr¡ - Pr,r.-r

P t,t

'(u#ï)(+*'V)'!"
- n (o'.to;,{' ") (t# *'W)Et'),

Tur l ,7b, : Po,zka I(Ao,' | ßs,r)Ms,r(I) for f)0, (4.2.6)
rno

r:l
rn2

r=1
Tu, * ,Tb, : Pz;lra Ð(1",, ! t82,,)M2,,(!) for dlz, (4.2.7)

The matrices A¿, Bi, Ci, Ei, El .ttd Ef¿) are given l>y (2.5.27) to (2.5'25)

Similarl¡ the spectral equations for (4.2.7), using limit conditions (3.2.2) and

(3.2.3) wilh p¿,2 :0, i: 0,1,2 and 0z¡ :0, take the form

(q + fro,l*o: ft\4c"fr¿ * F¿ * s¿, (4.2.8)
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where

Ta, * ¡Tbu : Po,zleu D(Â,'f a-Ê6,')(Þs,'.f0,,(1) for f)0,

'W¿:A¿*¿B¿ i :0rL,2,
tno

r=1
Ín2

r:t

(4.2.e)

(4.2.10)

(4.2.12)

for k)2, (4.2.13)

Ta,l tTbu : PzJka D(Ãt," ¡ tÊ2')Qz,,f z,,(!) for {'Lz, (4.2'11,)

The matrices F¿ and S¿, i : 0r1,2, take the same form as those given in' @.2.a)

to (4.2.5). The matri"." Â¿, Ên, Cn, Ei, El Efl) u,ttd z\¿ are given by (2.6.45),

(2.6.4e) and (2.6.51) to (2.6.5a).

The vertical modes in equation (a.2.8) are coupled through the terms for bot-

tom friction and stressing at the sea surface. If the bottom friction term is ne-

glected in equations (4.2.10) and (4.2.77) and the homogeneous Neumann limit

conditions (þn,t : 0, i : 0,1) are used, it is possible to write down the spectral

solutions of steady drift current as

A¿ tB+1

Ã¿,x +,Êi,t : (Ã¿,, + rÊn,r)

tF¿
.r )

''l

t - ,ft^n,r
-1

where i : 0,1-. Note that the value of the first modal coefficient is independent of

the density variation and the eddy viscosity profile (although the contribution of

Â,r and Ê¿¡ to current profiles may be slightly altered by the density variation

because of the factor Õ¿,1) and, if the wind stress is prescribed in the [/-direction,

the first vertical mode contributes only to motion in the V-direction. Once the

coefficient of the first vertical mode is determined, the coefficients of the higher

modes can be successively determined by (4.2.13). The spectral solutions of steady

gradient current can be readily written in explicit form.

Figure 4.1 illustrates how body forcings including sea surface and interfacial

gradients act in the one and two domain systems. Since the gradients are pre-
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One domain system (i=O)

V ¡ (cms-t¡

-2- O.O 2. -2

Two domain system (i:1,2)

V i (cmst)
. o.o 2_

Ço,o

Ço.,

Ç,2

Çt,o

Çt,t

Ç",o

(1) (3 (1) (3)

---m;: 5

-m.:IO

'tr

Figure 4.1 Steady velocity profiles, obtained using the profile in Figure 3.1-(d),

in three-layered one and two domain systems computed using a basis

set of eigenfunctions, with: Ar:25, A1: O¡ As:185rn; Nr=150: Np:10r
JV.a :1000 

"rn2 "- 
| i p T:1o25.8,¡ p p=7o26.5 ¡ p a:Lo27 .2 I cn- a ¡ k¡=o.2 crn s-7 i

ô(¡,s / ôv:Q(;¡ f ôs:ð(;,, / ða:ol and (1) ôçp / ða : 1.0 x10-7; (2) ôeiJ / ar
:-1.0 xlo-4; (3) aC;,2/tu =-2.ox1o-4.

scribed only in the r-direction, the dominant part of the current is the I/ compo-

nent developed by rotational effects. The magnitude of the gradients have been

chosen arbitrarily while the gradient of the free sea surface has been chosen as

O(10-s) of that of the interfacial gradients, to take into account the proportion-

ate density excess Á.Pn,¡lPo,r. It is apparent from Figure4.7 that, since free sea

surface and interfacial gradients act as body forces, the current profile is formed

throughout the water column in the one domain system. However, in the two do-

main system there is no mechanism which enables one to determine the velocity in

the upper domain using the gradients (1,2. In a bounded region, since the external
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and internal gradients will be constrained by the continuity equation (2.4.9), the

upper and lower domains will interact with each other and the current velocity will

be formed in the upper domain. The current profiles in the two domain system

are almost noise-free compared with those of the one domain system and that the

convergence of the eigenfunction expansion is very fast. In this study the current

profiles in the bottom layer are computed using 10 eigenfunctions.

It can be seen that the presence of the pycnocline little affects the current

profiles induced by (0,t, which means the gradient of the free sea surface is as-

sociated with barotropic flow. The bottom layer is predominantly composed of

a geostrophic core, showing nearly constant current profiles except for the near-

bottom layer. For the two domain system the depth variations of. Uz and V2 are

allowed only in the presence of bottom friction or when using a no-slip bottom

boundary condition. The current profile of the two domain system is in general

discontinuous at the interior domain boundary.

We now consider the influence of the pycnocline upon the vertical profile of

wind drift current. It is evident from Figurc 4.2 that the current profiles in strat-

ified conditions are characterised by the presence of high shears within the pycn-

ocline particularly in the proximity of the surface layer and, as -l/" is reduced a

rapid reversal of the vertical velocity gradient occurs within the pycnocline. As in

the case of the vertical modes, the continuity requirements of the shear stresses

force the velocity to change abruptly at z : -H¿t¿,j, the degree of the velocity

change depending upon the ratio Pt,¡Fn,jl(Pn,j+rþn,j*r). The shear within the

surface layer is sustained predominantly in the [/ component of the current which

is parallel with the direction of the wind stress at the sea surface.

\Mhen the value of .l/" is decreased and the thickness of the pycnocline is

increased, the current profiles of the one and two domain systems agree quali-

tatively. This is to be expected because the presence of such stratified condi-
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(a) Ottc d.omaín system (í=O)

U ¡ (cm s')
-2.O O. O 2.O

(b) Two domainsystem (i=1,2)

U¡ (cmst)

-2.O O. O 2.O

(a) On¿ domainsystem (ì=O)

V ¡ (cm sr)

-2.O O.O 2-O

(b) Two domain system (i=l 2 )
Vt þmsr)

-2.O O.O 2.O

4.O

4-O

6.0

6.O

No = 156 "^z "-tNp = SO cm2 s-l
Np = IO cm2 s-¿

Np=1 cm2 s-l

Figure 4.2 Steady velocity profiles of the U and. V components of wind drift cur-
rent, obtained using the profile in Figure 3.1(d), in one and two do-
main systems computed using a basis set of B-splines, with: A¡:25rn;
gr=!o25.8¡ p r:1026.5 9 cÍ¡t-a¡ and for Qo¡ p n:1o27.2 gcnr-3, ka=o,2 crr"s-r;
and (a) Ae:40¡ A¡:185 rni Nr -1000, N¡:100 .rn2"-11 (b) Ap:4gn'¿;
N2. :1000 c^2s-r; (c) Ap: O, A¡:185rn; N?-150: N¡=100 cm2s-L; (d,)

Ap=10: As:215 rn; N?-1000, À/p=lQQ cm2s-r'
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(c) One domain systern (í=O)

U¡ (cmst)

-2 -O O. O 2.O

(d) One domain slstem ( i=O)

U¡ (cmst)
-2.O O. O 2.O

(c) One damain slstem (í=o)

V¡ (cmd)
6.0 -2.O O.O 2.O

(d) Two dotnaìn system ( i=l ,2)

V ¡ (cmsr)
-2.O O.O 2.O

4.O 4.O 6.0

4.O 6.O

No: 156 *z 
"-tNp = 5o cm2 s-¿

Np = lo cm2 s-l
Np= I cm2 s-¿

Figure 4,2 Cont'd..
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tions significantly affects the depth of frictional influence. The downward flux

of the wind shear vanishes effectively below a depth õ" (õ' - DEf2 wherc

Dp : r(2Ñ l\Dtl' is the Ekman depth and -l/ is a suitably averaged value of the

vertical eddy viscosity over the depth (\Meber, 1931)). When õ' ir larger than

Ar, one would expect that the vertical structure of the current in the two domain

system would be considerably different from that in the one domain system. In

determining the Ekman depth, it is important to take into account the eddy vis-

cosity within the pycnocline and the pycnocline thickness, particularly when the

mixed layer depth is smaller than the depth of frictional influence computed using

-l/, (Davies, 1986). An obvious consequence of imposing the stress-free conditions

at the base of the pycnocline is that the maximum penetration scale of the wind

momentum is limited to Ht. We may choose the base of the surface layer as a

lower limit for the steady wind drift currents. In that case, as indicated in Figure

4.2,lhe presence of a high shear within the pycnocline has to be somehow reflected

in the dynamic balance in order to realistically represent the current within the

surface layer.

Figure 4.3 shows the angles of the surface wind drift current in the one and

two domain systems computed using a basis set of B-spline functions, with various

stratification conditions (see Figure caption). The angle measured counterclock-

wise from the positive u-axis is given by

d: arctan(V¡(0)/U,(0)) (4.2.14)

It has been shown by Davies (1986) that, under conditions of strong stratification

and a shallow mixed layer depth, the magnitude of the surface current and the

angle are primarily determined by the values of Ar and 4". It is then to be

expected that when -ôy'p is low and A" is high, the difference in the angles of

the surface current between the one and two domain systems will be insignificant.

The angle of the surface current in the two domain system gradually deviates
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Figure 4.3 Angle á of steady statewind drift surface currents, obta,ined using the
profile in Figure 3.1(d), in three-layered one and two domain systems

computed using a basis set of B-spline functions, with: pr:ro26.Bt
pp:1o26.5 gcm-s¡ and, for Qo,t pp:I027.2 gcrn-s, N.a:100 .^'"-u, Hs:
25O rn, È¿:0.0 cm s-r:' and (ø) A.p:10 mi Nr:1000 and iv',:10 r 5O crn2s-71

(ö) A":19 rni Nr :150 and Ne:10r 50 crn2s-I1(c) Ap:40 mj Nr :1000

and Np-10, 50, 150, l00o crn2s-L; (d) A.:¿o mi Nr =150 and Np:10, 50,

150 cmz s-r .

m
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from that in the one domain system as the surface layer depth is reduced and the

eddy viscosity within the pycnocline is increased. When a stress-free condition is

enforced at the base of the surface layer and the surface layer depth is very shallow,

the surface current will tend to deflect 90o to the left of the wind direction. It

is evident that as the value of Ar is increased, the surface current approaches

the value computed using the classical Ekman theory (45" to ihe left of the wind

direction in the Southern Hemisphere). If a no-slip condition is imposed at the

base of the shallow surface layer, the surface current tends to be aligned with the

wind direction.

Convergence of the eigenfunctíon expansÍon

We now consider the depth variation of steady current profiles computed us-

ing a basis set of eigenfunctions. It is evident from Figure 4.4 t},at the Gibbs

overshoots arise below the point where the high shear occurs. A large number of

eigenfunctions have to be used in order to remove the oscillations (particularly in

the current profile for the r-direction which is parallel to the wind stress) and to

improve the convergence of the surface velocity. It has been revealed in a series

of computations that prescribing the eddy viscosity smoothly across the interface

is not much help in suppressing the oscillations unless the eddy viscosity profile

is substantially smoothed out across the interface. However, there is a certain

physical situation in which these oscillations can be significantly suppressed with-

out increasing the number of eigenfunctions and without smoothing the form of

eigenfunctions locally. In regions where strong tidal currents are present, it is nec-

essary to increase the value of the eddy viscosity at the bottom layer to the value

comparable with that at the surface layer. In this case, as shown in Figure 4.4(b),

the Gibbs overshoots are signifi.cantly reduced except within the pycnocline.

When a finite number of continuous functions are used, nonphysical oscilla-
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(a) One domain system (i=O)

U¡ (cmsa)

-2.O O.O 2.O

One domain system (i:O)
U¡ (cnsr)

-2.O O.O 2.O

(a) Ore domaìn system (¡=O)

V ¡ (cmsJ)
4.O -2.O O.O 2.O 4.O 6.O

-' m¡= 5
m¡ =lo
m¡=2o

4.O 6.O

-4.O

(b) (b) Onc domaín systern (i=O)

-4.O 4 .O -2.O
V ¡ (cms-t¡
o.o 2.o

n¡= 5
m¿ =1o
m¡=2o

Figure 4.4 Steady velocity profiles of the U and V components of wind drift
current, obtained using the profile in Figure 3.1(d), in one domain

systems computed using a basis set of eigenfunctions, with: 42.:25,
Ae:4O, A¡:185 ml Nr =150: À/p:lO crn2s-ri kt:O.2 

"rn "-t1 pr:1O25.8¡

p p:1o26.5> p a:Lo27.2 g crn-3; go,l :90,2:o; and (a) jVr:5¡ cm2s-L1 (b)

N¡:1000 t*2 
"-L '
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tions are produced with overshoots whenever a discontinuous change in solutions

arises and in such cases the Galerkin solution behaves like the solution found by

using a low-order finite difference method (Canuto, 1987). It is known that Cheby-

shev polynomials are also susceptible to the Gibbs phenomenon in the presence of

internal discontinuities (Gottlieb and Orszag, 7977). We note that the discontinu-

ity of the eigenfunctions itself is not a source of the Gibbs overshoots. It has been

found that with a small number of eigenfunctions the compatibility between the

form of the first few eigenfunctions and the current profiles within the pycnocline

is an important factor determining whether the nonphysical oscillations arise or

not.

\Me now briefly examine the influence of using a nor¡.-zero stress limit condition

at the sea surface on the convergence of the surface current and [/, V current

profiles. It is evident from Figure 4.5 that the value of þ¿J significantly affects the

convergence of the surface current. For a negative value of þ¡J the form of the

eigenfunctions is such that the derivative of each eigenfunction with respect to the

depth coordinates (namely, -df¿ldo;) at the sea surface is a positive constant.

Consequently both of the U ard V surface currents are overestimated and, since

the external stress is applied only in the U-direction, lhe V surface current shows

a lack of convergence, producing a kink in the profile near the sea surface. There

is some evidence that nonphysical oscillations arise in the V current profile, while

the U current profile is almost free of oscillations. \Mhen a positive value of þ¿,t

is used, T,he U and V components of current near the sea surface reveal a reversal

in the vertical velocity gradient. In this case the form of the eigenfunctions is

such that the derivative of each eigenfunction with respect to depth coordinates

at the sea surface is a negative constant, whereas the gradient of lhe U current

near the sea surface are non-negative. By using this expansion, the U and V

surface currents are significantly underestimated. There is also some evidence

that nonphysical oscillations appear in the U current profile. As the value of
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B¿,1 approaches an optimum value and as the number of eigenfunctions used is

increased, the oscillation is suppressed. Davies and Owen (1979) have shown that

the surface current can be reproduced accurately by using Chebyshev and Legendre

polynomials particularly in wind induced currents. It should be noted that by

using the limit condition (3.2.2) at the sea surface all of the eigenfunctions have

the same value for the vertical gradient at the sea surface, whereas the components

in both the Chebyshev or Legendre polynomial expansions have in general different

vertical gradients at the sea surface.

(a) One domainsystem(i=0)

U i þms))
-2.0 0.0 2.0 4.0 6.0

(b) One domaìn system (î=0)

Ui þmsr)
-2.O 0.0 2.0 4.0

(a) One domain system(i=0)

V ¡ (cms'')

-2.O 0.0 2.O 4.0 6.0

(b) One domain system(i=0)

V i kms't¡
-2.O 0.0 2.0 4.0

-------- mi
--------------- m.

¡--------- m,

- 

mt,
I

-5
10
20
30

m.= 5
m',=10
m'.=20
mt.=30t

Figure 4.5 Steady velocity profiles of the U and V components of wind drift cur-
rent, obtained using the profile in Figure 3.1(c), in the one domain
system computed using a basis set of eigenfunctions, with an increas-
ing number of rn¡. A no-slip condition (þo,z:æ) is used at the sea bed
with: Ar:40, As=6! ¡ni Nr :300r N¿:100: o0:180 cm2s-t1 pr:1O25.8t
lO27.O g crn-s; and (a) a080,1:-0 .L25 crn2 s-r; (ä) oOÉO,f :0.125 

"*2 "-L.
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4.3 Time-dependent wind induced motion

4.3.L Description of the model

This section is concerned with the application of the Galerkin models to wind

drift currents in two and three-layered horizontally unbounded seas following the

onset of a suddenly applied spatially homogeneous wind stress. The layered struc-

tures and the vertical eddy viscosity are assumed to be independent of the hori-

zontal coordinates. Surface and interfacial displacements are all suppressed. The

thickness of each layer is kept constant with respect to time, although in practice

the wind action causes the pycnocline to become diffused as the mixed-iayer depth

is reduced. Under these conditions, the pertinent equations of motion for the time

dependent wind drift currents in open sea regions may be written as follows:

oU¿,i _ ^,rT.
æ 

IvxtJ Hl ôo¿

A,¿ A
(4.3.1)

+*^tv,¡
A,¿ A

- Hl ôo¿
(4.3.2)

where i:0,i :7r2r}for the three-layeredone domain system, and i - 1,i :7,2

for the upper domain of the three-layered two domain system. Since the wind

shear is not transmitted downwards across the interior domain boundary, the

Iower domain Oz will remain at rest. Hence the two domain system here can be

viewed as an open sea region of depth f/1 which is composed of the surface layer

and the pycnocline. The velocity shear at the base level of the upper domain may

be introduced as a driving force for the lower domain- this will be described later.

The numerical solutions of (4.3.1) and (4.3.2) are generated from a quiescent

state of motion described by a zero initial velocity field, namely,

U¡:l/¿:g at ú:0. (4.3.3)

Calculations of a transient free motion subjected to a non-zero initial velocity field

will be described at the end of this chapter.
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Figure 4.6 A staggered finite difference grid for the rectangular r-y plane
showing the locations of tJ¿,0 and V¿,0 and neighboring grid points;
. : a U¿-point (also A¿ and â¿); o : a V¿-point (also B¿ and â¿);
?¿ represents the number of computational grid points in a row;
calculations are preformed using Q:5 and n : 3.

The surface \Mind stress is suddenly applied at ú : 0 in the following form:

H(t) r",

(fr(f) -H(t-Tt))r""

for a step-function wind stress, (4.3.4)

for a constant wind pulse with a duration 
"1, 

(4.3.5)

where ff(f) is the Heavyside function and Tsr:7 dyne crn-2.

The model developed is designed to use the staggered finite difference grid

system, shown in Figure 4.6, in anticipation of its application to a realistic system.

Hence, in numerical computations, the two variables U¿ anð.V¿ a;re used rather than

the single variable W¿ - U¿ * tV.

Modal interpretations of the wind drift currents are performed using complex

notation.
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4.3.2Integration with respect to tirne

A basis set of B-splïne functÍons

The solutions of time-dependent wind drift current in the one and two domain

systems are derived from (2.5.18) and (2.5.19), and (2.5.51) and (2.5.52), respec-

tively, by omitting the gradients of the free sea surface and the interfaces, the

atmospheric pressure and the direct tide-generating forces. Their finite difference

representation can be written in the form

cnt l,ll*o' : c- A¿li+ ltTnnlf + ntrn,'lf , (4.3.6)

cnt e,lÏ"' : c- B¿ ll - ¡rz,l' nl'o + l.'tr,,nl'o , (4.3.7)

wherei:0r1,2and

Tb,: po,zka DAo,,

(4.3.8)

(4.3.e)

f)0, (4.3.10)

d'Lz, (4.3.11)

cjt : c, + 
L;fron 

,

c¿ : c,-+fton,

Tbr: PzJku ÐOr,,

ÍfLg

r:l
rn2

r=l

Mo,r(L),

Mz,r(7),

t

q

t

(I

for

for

The matrices A;, B¿, C¿, D¿, Eí and E! are given by (2.5.27) to (2.5.26), and the

matrices F¿,, and F¿,, are the real and imaginary parts of F; in (4.2.6), respec-

tively.

Integration on the staggered grid system leads to the introduction of periodic

boundary conditions. Calculations are performed at the gth point where the

conditions
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An',

Brt"q

: Anl'o-, : Arl'o-r*-: Anl'o*.,

: Bnl'o*r: Bnl'o*r-,: Brl'o-n

(4.3.72)

(4.3.13)

(4.3.16)

are satisfi,ed for all ú

The size of the time steps Aú can be chosen in a flexible manner since the

propagation of the fast-moving surface lvr¡aves is suppressed. The CFL condition is

no longer a restriction. However, to ensure high accuracy of soiutions a time step

of 9 seconds has been chosen. \Mhen the water depth is taken as being constant,

the inversion of the matrices on the left-hand sides in (4.3.6) and (4.3.7) is required

only once before marching on in time.

A basis set of eígenfunctíons

All solutions, computed hereafter using a basis set of eigenfunctions, are based

on Heaps' formulation. \Me can write down the finite difference representation of

(2.6.42), (2.6.43), (2.6.78) to (2.6.81) witln B¿,2 : 0, i: 0,1,2, and 0t,z : 0zJ :0,

omitting the gradients of the free sea surface, the interfaces, the atmospheric

pressure and the direct tide-generating forces, as follows:

cI Ân ll*o' : c, Âo li + lt7Ê rlto + ttru,,lto , (4.3.14)

cI Ênll*o': cn Ênl'o- n 1Ã;l'o+ tttn,ul'o , (4.3.15)

with

CJF:I+ Lt a¿

2H?
Lto-¿
2H¡"

Lta ¿

2H?

r\¿ - ?i¡c" ,

c¿ :r- + ,?%nn*
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where i :0 and 1 for the one and two domain systems, respectively, I is the unit

matrix and

ûto

Tur:Po,zkt t Õ0,."f0,,^(1), for f)0,Ao,,
t

q

t

q

(4.3.1e)

(4.3.20)

(4.3.21)

(4.3.22)

Tbr:P2,rk, ÐÃr,, Q r,, f ,,,(7) , for dlz,

r:l
rn2

t:l

The matrices F¿, i : 0,7,2, take the same form as those given in @.2.6) fo (a.2.7).

The matri"", Â,, Ên, Cn, E;, El, E[l) u,td rt¿ are given by (2.6.a5), (2.6.49) and

(2.6.51) fo (2.6.5\. The periodic boundary conditions are given by replaciîE Ai,

and B¿,, with Â," and. Ê¿,, in (4.3.12) and (4.3.13), respectively.

If the basis set is constructed with /i,r:0, i:0,1, Cl and Cn in equations

(4.3.16) and (4.3.17) become diagonal matrices. The equations of the modal co-

effi.cients are then uncoupled except through the bottom frictional term allowing

the finite difference representation of (4.3.16) and (4.3.17) to be simplifi.ed to

(t * I ft >,,,r) Ão,rl'o* 
o' : (r - î ç ^,,r) 

Ão,rl'o* 
o'

*LfiE¿,¡lto + Ltf i,k(7)(Po,riln)-'(r", - ra,) ,

(t * I ft x,,*) Ên,rl'f,o' : (r - î #^,l) ^ân,* lf*"'

- /rt1 Ã-¿,¡l'o + L, ¡',u(7) ( P r,, H n)-t (r ", - r a s)

where i : 0 and 1 for the one and two domain systems, respectively

Before considering the solution of the wind induced motion, we briefly examine

the rate of convergence of the surface current computed using the eigenfunction

expansion. It is apparent from Figurc 4.7 that the V component of the surface

current (denoted bV %) converges rapidly and that use of ten vertical modes

produce excellent accuracy. However, the rate of convergence of the [/ component

of the surface current (denoted bV %) is unsatisfactorily slow. This is because the
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Figure 4.7 Tirne variations of the wind drift surface currents, obtained using the
profile in Figure 3.1(d), computed using a basis set of eigenfunctions,
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stress tsr computed with a finite number of eigenfunctions cannot be the same as

the value applied externally (Davies and Owen, 1979).

By using an optimum value of 0¡J we can improve the convergence of the V

component of the horizontal current near the surface. This point was discussed in

Section 4.1. However, since a system of coupled equations has to be solved with

respect to time (as a consequence of introducing the B¿¡ tenn), the computational

effort is rapidly increased as the number of vertical modes is increased. Further-

more, llne B¿¡ term effectively acts as a damping term and hence is not suited to

the reproduction of temporally quasi-periodic motion (Figure +.7(c)).

It is evident from Figures 4.8(ø) and (ä) that, as a consequence of the Gibbs

phenomenon, nonphysical oscillations appear in the [/ component of the current

profile in which wind stress is applied. \Mhen ly'" is increased from 100 to 1000

cm2 s-r, as noted in the calculation of the steady state profile, the oscillations are

significantly reduced except within the pycnocline. Increasing m¿ frorn 10 to 20 is

not helpful in suppressing the oscillations. A large number of eigenfunctions have

to be used to smooth out the oscillations unless a cosmetic filter is applied. In

regions where strong tidal currents are omnipresent, it is necessary to increase the

vertical variation of the eddy viscosity at the bottom layer to a value comparable

to that at the surface layer. Heaps and Jones (i985) have chosen values ly'r :
300 cm2 s-1 and ly', : 7000 cm2 s-1 in applying a three-layered spectral model to

a shelf with a depth ranging in the cross-shelf direction from 50 to 300 rn. Although

it was not explicitly mentioned in their paper, it is conceivable that the reason

behind this choice of eddy viscosity was to take into account the tidally-induced

background turbulence and at the same time to suppress the Gibbs overshoots.

In a series of preliminary computations it has been found that, despite the slow

convergence near the sea surface and the Gibbs overshoots particularly within the

pycnocline, the layer-mean values of current were computed accurately, even with
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Figure 4.8 Velocity profiles of u and V components of wind drift current, obtained
using the profile in Figure 3.1(d), a,t various time steps computed using

a basis set of eigenfunctions, with: Ar=25¡ Ae:40, A¡=185 rni Nr:1000r
Np:10 crn2s-|1 pr=L025.8¡ pe=7026.5¡ Pa:I027.2 gcrn-Bj ka:o.2 crns-r;

BI,1:90,2:o; and (o),(á) N.a:100 cm2s-r with ¡n¡-10; (c) Nr:1¡oo crn2s-|

with rni:10; (d) N":IOOO crn2s-r lrvith rn¡:20'
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only five vertical modes. From this point forward, in calculations with a basis

set of eigenfunctions, 20 vertical modes along with homogeneous Neumann limit

conditions will be used.

4.3.3 Results

To examine the time variation of surface currents in the one and two domain

systems and their sensitivity in particular to changes in .ly'p, wind drift surface

currents induced by the step-function wind stress are computed for 720 hrs using

a basis set of B-spline functions. Three values of the eddy viscosity l{p are

considered, these being -l/" - 10, 50 and 750 crn2 s-r . Figure 4.9 shows the

sensitivity of the [/ component of the surface current to changes in .ly'" in the

one domain (Figures 4.9(ø), (ó) and (c)) and two domain systems (Figures 4.9(d)

and (d)). It is evident that wind drift surface currents are characterised by an

oscillation of inertial period T":2nll - !8.2 hrs. The inertial oscillations are

in fact formed throughout the water column and the [/ and V components of the

oscillations are 90" out of phase with each other. It is apparent from Figures a.9@)

to (c) that in the one domain system the values of .ly', and A. are important in

determining the rate of damping of the inertial oscillations in the surface currents.

When .ð/p is increased and Ar is decreased the wind momentum can more rapidly

penetrate to the bottom layer. This leads to an enhanced initial damping of the

surface current. Also the rate of damping of the surface current is substantially

influenced by the surface mixed layer depth. It is evident that with Ar : 25m lhe

surface current aI t: T.f 4 hrs is already affected by the eddy viscosity within

the pycnocline. When A. is increased to 60 rn, lhe presence of the pycnocline

has little effect on the surface current at t : T.f 4 hrs. After the initial stage of

development the amplitude of the inertial motion decays gradually as the wind

momentum diffuses downward out of the surface layer. Over the 720 hrs, lhe U

and V surface components of the surface current continue to decay. Consequently,
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Figure 4.9 Time variation of the U component of wind drift surface current, ob-
tained using the profile in Figure 3.1(d), computed using a basis set
of B-spline functions, with: pr=to25.8¡ pe=t026.5 9cm-g¡ and for eo,
p a:1o27.2 9 cm-B ¡ N¿l:100 
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the [/ and V components of the current in the bottom layer increase

over the first few inertial periods. The initial decay of the surface

last until the system reaches a steady state. It is apparent that, as the value of

.ly'p is increased from 10 to 150 cm2s-r, the damping of the surface current is

significantly enhanced. For details on the wind induced inertial oscillation of the

one domain system, see Davies (1985ä, c).

Comparing Figure 4.9(d) with Figures 4.9(ø) to (c), it can be seen that with

A' : 25 and A' : 10 rn the quasi-steady inertial oscillations appear almost

immediately after the wind stress is suddenly applied at Í : 0. In the two do-

main system the maximum penetration depth of wind's energy is constrained to

ff1. Consequently, a quasi-steady state is reached rapidly and, in the absence of

frictional damping at the base of the domain boundary, the surface currents will

exhibit almost pure inertial oscillations. When the value of A" is increased from 10

to 40 rn Lhe initial decay of the inertial motion is apparently shown with I/" : 19

cm2 s-L and the time variation of the surface current in the two domain system

becomes comparable with that of the one domain system (Figure 4.9(d)). This is

because the wind energy of the surface layer diffuses downwards very slowly and,

in such circumstances, imposing a stress-free condition at the base of the two do-

main boundary has little influence on the surface current over a couple of inertial

periods.

The most interesting fact, as indicated in Figure 4.9(d), is that the inertial

motion of the two domain system is undamped and the amplitude of the inertial

oscillation is not affected by ihe depth variation of the eddy viscosity. The pres-

ence of this undamped mode has been previously noted by Nomitsu (1933) and

Gonella (l97la), and recently its physical nature has been discussed by Davies

(1985ó, 1986). Later we will analyse this undamped mode in deriving a transient

solution with expansion of. characteristic modes of the system. To illustrate the
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non-dissipative behaviour of the inertial motion in the two domain system, calcu-

lations are performed in both one and two domain systems using a constant wind

pulse of duration 7r. The time variation of lhe U and V components of the surface

current are displayed as hodographs in Figure 4.10. It is apparent that the inertial

motion of the one domain system corrverges gradually to a steady state value (in

the presence of a non-zero bottom friction), which is zero for the wind stress of

finite duration, whereas the inertial motion of the two domain system oscillates

around zero with a quasi-steady amplitude.

To gain a better understanding of the non-dissipative component of inertial

motion, we have derived a transient solution for the wind induced motion in a two-

layered open sea subjected to a step-function wind stress. Appendix IV describes

the details of the derivation with linear slip and stress-free bottom boundary con-

ditions. Here we write down the non-dissipative part of the transient solutions

derived using the stress-free conditions at the base of the domain boundary. The

solution is given by

ør(o) : (lÍ") + ,vÍù : e-L'rt #,lrr, - (pr,rl pr,r)(€r,, - t)] , @.g.2g)

where Tt:T"*/pr,r. Since Pt,z/Pt,r ! 1, the above reduces to

ø r(") - e-L^tt !L. @.g.24)"Hfl

Note that this non-dissipative inertial motion is barotropic in nature and hence

can be explained in terms of the time behaviour of the first vertical mode deter-

mined using homogeneous Neumann limit conditions. An interpretation in terms

of vertical modes will be given later. As f/1 r oor the value of ø1") at each

level goes to zero. However, as noted by Gonella (1971a), the inertial oscillation

of the domain-integrated transport Ht(Ut * tV1) will persist indefinitely. It is

common practice to find a steady state numerical solution using an asymptotic

time marching method. It is evident that for the case of finite depth, the [/ and
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I/ components of current in the two domain system computed using the marching

method will never reach a steady state value.

The mixed layer depth A, is of importance in determining the initial devel-

opment of the inertial motion. It is apparent from Figure 4.11 that as the surface

mixed layer depth is reduced, the surface current is signifi.cantly enhanced. This

is to be expected since in stratified conditions the wind's energy in the surface

layer is effectively capped by the pycnocline underneath. Furthermore, the deep-

ening of the mixed layer depth is not reflected in the model and, consequently,

the magnitude of the surface current is overestimated. This point has been shown

by Davies (1985c) using a three-dimensional finite difference model. Under con-

ditions of strong stratification (I[" : 70 cm2s-l) and the deep mixed layer depth

(4. : 60m) lhe U and V components of the surface current of the two domain

system are in good agreement with those of the one domain system, whereas under

conditions of weak stratification and shallow mixed layer depth (Ar : 10 rn), the

surface currents of the two systems start to deviate from each other from about

t : T.l4 onwards.

\Me observefrom Figure a.72(a) that with A-p : 40m an.d ly'.p : 70 cm2s-L

the penetration of the wind's energy to the bottom layer is apparently retarded.

In this case a high shear region is maintained at the top of the pycnocline. Under

conditions of weaker stratification (.1{" :50 crn2s-l) with pycnocline thickness

Ap : I0 m, the high shear region is significantly reduced and, on a time scale of

about half of the inertial period, a considerable amount of wind energy is trans-

mitted to the bottom layer (Figure a.t2(b)). For the one domain system a reversal

of the velocity gradient can take place within the pycnocline under conditions of

strong stratification (l/r : I0 cm2 s-1) and with pycnocline thickness A.p : 40 m,

whereas the gradient of the profile in the two domain system undergoes no such

reversal. Decreasing l[r to 150 cm2 s-r significantly enhances the shear within
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the surface layer and, in this example, a reversal of the velocity gradient occurs at

the upper surface of the pycnocline.

The present approach enables one to introduce a surface wall layer in a dis-

continuous manner. Although results are not explicitly presented in this thesis,

it was noted that the surface currents intensified greatly when a step-like surface

wall boundary layer was introduced in the eddy viscosity profile.

\Me now consider the time variation of the horizontal components of current

induced by a constant wind pulse of finite duration. The duration of the winds and

the changes in wind direction play crucial roles in determining whether inertial

oscillations will be enhanced or suppressed (Veronis and Stommel, 1956; Pollard,

1970). Let the horizontal velocities al o¿ computed with the step-function wind

stress and the general time-varying wind stress be denotedby ø@) and qØ),

respectively. The principle of superposition in the linear input-output system

(Heaps, 1966; Forristall et a\.,, 1977; Forristall, 1980) then gives:

-@)(o,i,r): I: ,",î)#(t - r,o¿) dr. (4.3.25)

(4.3.26)

(4.3.27)

For a constant wind pulse of duration 7r , (4.3.25) reduces to

-Ío) :ø|")çt,,o¿¡,, o <ú 1Tt,

-ln) : -1")Q,on) - -Í")Q - Tt,o¿), t ) Tt

We note in (4.3.26) and (4.3.27) that current induced by the constant wind pulse

is composed of the two step-function responses. The first part is the time response

following the onset of the step-function wind stress T ", at ú : 0 and the second part

is the time response following the onset of the step-function -T", at t:71 hrs.

Consequently, the energy contained in the inertial motion is critically dependent

upon the phase difference between the two time responses.
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Figure 4.13 illustrates the influence of the duration of the wind forcing on the

time variation of U¿. \Me can see from Figures 4.13(a) and (ó) that the inertial

oscillations intensify with ?r : T"l2 å.rs, whereas a large proportion of the inertial

energy in the U component of the current is removed at all depths with ?t : 1i

h.rs. The frequency of the wind pulses can also enhance and suppress the inertial

response. When the first wind pulse is followed by the second wind pulse with

time lag T"f 2 hrs, the inertial oscillation intensifies and the value of the second

peak is larger than that of the first one (Figure a.13(c)). In these computations,

since the wind's energy is supplied for a finite period, the steady state solution is

zero, hence the current oscillates inertially around zero afíer the wind stops.

Figure 4.14 depicts the vertical velocity profiles computed with a constant wind

pulse of duration T.f 4 h,rs. Comparing the profrle at t : T"f 4 hrs with those at

following time steps, it is apparent that after the wind action stops, the inertial

energy within the surface layer diffuses downwards and consequently, the shear

within the pycnocline is significantly reduced as time progresses. In the absence of

external stresses the shear cannot be maintained within the surface mixed layer.

The variation of the velocity profile through the pycnocline is almost linear. The

wind's energy diffuses from the surface layer to the bottom layer over a couple

of inertial periods until the rotational forcing and the internal friction limit the

penetration. It is evident that when .ly'' is increased from 100 to 1000 crn2 s-t, !,he

wind momentum penetrates to greater depths. It is also noticeable from Figure

4.74(d) that after the first two inertial periods the current profiles become almost

uniform throughout the domain. This is due to the fact that once the wind stress

is removed, the contribution of the higher modes to the current profiles decays

exponentially with respect to time but the first vertical mode, which is barotropic

in nature, is undamped. This point will be discussed more thoroughly later.

The numerical results given by Mellor and Durbin (1975) should be noted
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Figure 4.I4 The U velocity profiles (obtained using the profile in Figure 3.1(a)) at

t:t/47"¡ sf 4?") gf 4?; a,nd. 77/4?" lzrs, induced by a wind pulse of dura-

tion T1:tf2T¿ hrs. Computed using a, basis set of B-spline functions,
with: 42"-25) A¡'-1-O "rn2"-r1 pr:1O25.8¡ pe:1O26.5 9cm-g¡ and for Oo,

Ap:21õ m¡ p n:1027.2 g crn-s , let:0.2 crn s-L; a,nd (¿) Np-10, N¡:100
c¡rt2 s-r; (ö) Nr:10¡ N¡=IQQQ cm2 s-r; (c) N":50, NB-100 cm2 s-Li (d)

N-P:10 
"'n2 "-r '

t- 114 Tc

¡ = 5/4 7:¿
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at this stage. Their model, based on the second level turbulence closure scheme,

predicted that when the wind stops no further deepening of the mixed layer occurs.

Given a wind of finite duration, their results support the layered model which

assumes the existence of the well-formed time-invariant layered structure a priori,.

The tírne varíation of rnodal coefficíents

In what follows, we describe a modal solution for the transient wind drift

current in an open sea region induced by a suddenly applied wind stress at ú : 0.

Although our concern is centred on the excitation of the undamped free motion in

the two domain system, solutions are derived for a more general system. The two-

layered one domain system with non-zero linear bottom friction is considered with

a norr-zero arbitrary initial velocity field and wilh B¿¡ : /i,z: 0 being used to

construct a basis set of eigenfunctions. The two domain system may be recovered

by setting i : 7 and k6 - 0. To analyse the input-output relation of the linear

system, rv\¡e use complex notation.

Defining the complex velocity @¿,j(t,o,¿) : U¿,j(t,o¿) + tV¿,¡(t,o¿), we write

equations (4.3.1) and (4.3.2) in complex form:

%i t rY@¿,i: fth@,,,W) ror tt,¡-t 1o¿ 1(¿,¡' (4'3'28)

where i :0 and 7 :1r2.

We seek a solution in a truncated series of the form
rni

@i,j :Dão Õt,,f .i,¡,,(o;,) for €¿,j-t 1o¡ 1(¿,¡, (4.3.2s)

subject to the b"::;rry conditions

Q,¿

-Ht

Q,¿_H,

P ¿,t

: leu,Ø ¿

T", at o¿ 0 (4.3.30)

1
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and the non-zero initial condition

CÐi,j:@¿,¡(0), (4.3.32)

wherei:0and j:7,2.

After taking the scalar product (2.5.4) of (4.3.28) witln f ¡,¡,¡ we apply inte-

gration by parts twice. Then, using (3.2.2) and (3.2.3) with 0i; : þú," :0, and

(4.3.30) and (4.3.31), the resulting equation takes the form

ei t t@¿,i, fn,¡,u) - (- n,,, fth@,,,H))
- T 

",(p ¿,iln)-t f ¿,t (0) I (p ¿,zku)(p ¿,r[¿)-t ø n,"(7)"f¿,r(1) : 0, (4.3.33)

where i:0 and k - 1,...,,rrls

Let f n,r, i:0, r : Ir..- )rni) be a basis set of eigenfunctions (with a local

forun f i,j,r) determined from the equation

(3.2.1)

subject to the limit conditions (3.2.2) and (3.2.3) with 0i¡ : |t,z : 0. Substi-

tuting (4.3.32) into (4.3.33), and using the orthogonality condition (3.2.8) of the

eigenfunctions

h(r,,,#l : - \¿ril¡l

Ð(æ I,',',', r o,¡,' t n,i,n)
kT-1

we obtain

do irk if
if , 1k,,

(3.2.8)

(4.3.34)

oâU'w i-k /

# : - (tl I À¿,na ¿f H?)ã n,u * T 
",(P ¿,tan)-t.f¿,r(0)

- (P ¿,"ku)(P n,fln)-t (Dã u,,ør,, I n,,(7)) f ¿,x(l),

rni

r:l
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where ãr,*: Ã¿,n + rÊ¿,t,Ie :1r"')nri. Note that all the vertical modes are

coupled through the bottom friction term.

Writing (4.3.34) in matrix form we have

fri:Iû¿fF",¿, (4.3.35)

where:

fii ir a column vector of length rn¿ with k th element

dã ¿,* (4.3.36)
dt

fr; is a column vector of length rn¿ with k th element

ã¿,x; (4.3.37)

F¿," is a column vector of length rn¿ with k th element

r 
",(p ¿JH¿)-I"f¿,r(O) : T ",(p ¡,rHn)-' : Fni (4.3.38)

f.,k : -(tl + ),¡,¡a¿f H!)6,t, - (pr,rko)(p¿,rH¡)-t l¿,,(I)f ¿,t(1)Þ¿,r; (a.3.39)

and 6"¡ is the Kronecker symbol.

Equation (4.3.35) is often encountered in the analysis of standard input-output

systems and techniques for obtaining its solution are extensively discussed in many

text books (for example, Zadeh and Desoer, 1963). For completeness, we write

down the essential steps of the solution procedure. Let e, be the r th normalised

eigenvector (often called the state vector) satisfying

I er: erer,
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in which e, is the associated r th eigenvalue. If I has rz¿¿ distinct eigenvalues,

(4.3.35) admits a representation of the form

rni

to : ! c,"(t) e,. (4.3.41)
r:L

Substituting (4.3.40) and (4.3.47) into (4.3.35), we get

î#"":r lË.'".] *F¿,"
r=L r:I

rni
: t crereriF¿,r.

r:I

Let the j th component of e" be denoted by e ,,j. Taking a complex scalar product

of e" and e¿ such that

(4.3.42)

(4.3.43)

(4.3.44)

(4.3.45)

{ êrt€¡ ): D"r,, €l,j : 6rt ,

rní

j:l

we obtain

where

# -- "xrt + FÍ'),

FÍ') :a Fi,r,€¡ ): Drt .l,j , (4.3.46)
j:L

and k - 1,. .. ¡TrLi.

Projecting the initial velocity field (4.3.32) onto each mode defines a column

vector û¿(0) of length rn¿ with kth element

: ,^\ é pn, rË¡'¡
ã¿,x(0): 

ì ffi Jr,,,_,-o,t(o) r4¡,x do;' (4'3'47)

Expanding t;(0) in terms of e., r : L,...)rni) and taking a complex scalar

product with e¿, w have

j=l

rni

rt4



By the convolution theorem, the solution of (4.3.45) subject to the initial condition

(4.3.48), is given by

c¡,(t):exp{e¿r} l"r(o) + lr' 
exp{-e¡r¡r[ùçr¡ar), (4.3.4e)

where lc : L,. .. )rrùi. Hence, from (4.3.41), we get

rni.ft
fi¿(¿) : texp{e,ú} e,"lc,"(o) * 

J" 
exp{-e.r}FÍùQ)ar) (4.s.b0)

r:I

With a zero-stress conditioî, lcb :0, or with a no-slip bottom condition (by

the requirement f ¿,0(7) : 0 for all k), lhe m¿ X mi square matrix I has zero values

for all off-diagonal elements; its eigenvectors e, have all zero components except

for the r th, which is unity. It follows then that

c¡(t) : ã¿,n(t): exp{ãrr} 
f"u(o) * lr' 

exp{-ã¿r}FÍodr), (4.3.51)

where

ëk:lr,r: -(q ¡ ),¿,¡,a¡f Hl,¡), (4.3.52)

PÍ") : Fn :7",(P¿,rH¿)-t, (4.3.53)

and r - 1, . . . ¡TrLi. Note that the number of vertical modes determines the number

of components of eigenvectors and in the absence of bottom friction each charac-

teristic mode carries the information on each vertical mode. In this solution the

wind stress can vary arbitrarily with respect to time. For an idealised form of

wind stress, for example a sinusoidal or step-function wind stress, (4.3.51) can be

integrated analytically. Davies (1987b) derived solutions similar to (4.3.51) with

c¡(0) : 0 and using a no-slip condition at the sea bed.

Figures a.Ií(a) to (d) illustrate the time variation of the vertical modes in one

and two domain systems induced by a step-function wind stress. All the char-

acteristic modes are excited by the step-function wind stress and each ercitation
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116



4.O

3.O

2.O

r:2 1.O

o.o

-1 .O

-2.O Ãr,, ¡"^ "-, 
)

Br,, ¡"^ "-r )(e) 3.O

2.O

r=3 1 .o

o.o

-1 .O

2.O

r=4 1 .O

o.o

o 20 40 6() ao '| oo 120
Tírne (hours)

), ¡"^"-r)
Br,, ¡cm 

"'1 
)

1.O

r=2 o.o

-1 .O

ff)

'I .O

r:3 o .o

-1 .O

1.O

r:4 o.o

-1 . O

o 20 40 60 ao 100 '120

Time (ltours)

Figure 4.15 Time variation of the va,rious vertical modes, obtained using the pro-

file in Figure 3.1(d), induced by a step-function wind stress. A stress-

free condition (Ic¿:o.o "rr"s-') is imposed at the base of the domain
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can be d.efined ¡V FÍ") : T",(P¿,tnù-'in (4.3.53). Physically, the excitation of

higher modes is necessary to represent the localised variation of the wind drift

current at the initial stage (Davies, 1985b). In the absence of bottom friction, the

rates of decay of the modal coefficients in both systems are entirely determined

by the real part of. é¡,, that is, c-¿\¿,¡f H! in (4.3.52). It should be stressed that

the depth of the one domain system (Ho : 250 m) is sufÊciently large and hence

the influence of the bottom friction upon the decay of the inertial oscillations is

in fact insignificant. Since the eigenvalues À¿,. are an increasing sequence of real

numbers, the initial damping of the higher modes will be faster than that of the

lower modes (see Figures 4.15(d) to (e)). Consequently, for the wind stress of

finite duration the barotropic mode will dominate in the current profiles as time

progresses (see Figure 4.14). The difference in the initial damping of the higher

vertical modes between the one and two domain systems is in part attributable to

the difference in the values of. a¿.

It is apparent from Figures 4.15(a) to (c) that the first mode is undamped in

the absence of bottom friction. If the water initially at rest is subjected to the

step-function wind stress att:0, then from (4.3.51) to (4.3.53), and noting that

)i,1 :0, we have

ct : Ãir + ,Ê;r : -#(r - "-,",). Ø.8.54)

Note that the first part of (4.3.54) is the steady state solution which is identical

to (4.2.72) and the second is the nondissipative oscillatory solution. The first

vertical mode plays an important role with regards to the net transport. Noting

that Q¿,1 - l and that a i,o,r : Ii fn'¿o,- 0 for all r ) 2, we have

,n [t (u¿ -f tV) d,o¿ = H¡(Ã.¿,1+ rì¿,r): -+(t - "-'t'¡. (4.8.55)
Jo 'Y

Thus the first vertical mode will serve to give rise to a net transport irrespective

of the depih variation of the eddy viscosity. As H¿ - oo, the first vertical modes

Â,r and .â¿,r will go to zero. However, the transport will persist indefrnitely.

118



The non-zero value of f'j") implies that all characteristic modes will be ex-

cited independently of each other, and since the eigenvalues e¡, Ic:1,''', rni) are

distinct and their real parts are negative, the modes will converge to steady state

values at different rates. One would expect that the time behaviour of the ver-

tical modes would be significantly different from that of those for the zero-stress

condition as the values of (k6lH¿)f o,*(7)f 0,,(1)Qo,* in (4.3.39) were increased,

thereby reducing the diagonal dominance in I. The effect of bottom friction on

the vertical modes will be referred to in the next section.

Effects of íntroducíng fríctíonal dissÍpation for the two dornaín systern

The simple linear slab model developed by Pollard and Millard (fOZO) fras

been successfully used on many occasions to reproduce major features of inertial

oscillations observed in the surface mixed layer (for example, see Kundu, 7976;

Daddio et al., 1978). A linear two-layered model for the local generation of in-

ertial motion, extending the linear slab model, is described here which allows for

the diffusion of the wind's energy downwards through the pycnocline and in the

horizontal directions.

To remain consistent with the representation of the bottom friction, we assume

that the downward flux of the wind's energy to the bottom layer is a linear function

of the velocity at the base of the pycnocline; that is, r,¡¡e pose

-Qt 
(,, ôI4,1 \ - 

Td,

f/, \*t't ðo, ) - pr,r'

Td, : Pr,zlcaUt,a,

Tda_ 
P,,,,

T dy P r,z lraV;,a, (4.3.57)

(4.3.56)

where k¿ is the linear frictional coefficient, and U¿,¿ and V¿,¿ are the velocities

at 01 - 1. The system is then composed of the surface mixed layer and the

pycnocline, with bottom friction imposed at the base of the domain boundary.
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Essentially, we consider a two-layered one domain system of depth Il1 with a

linear slip bottom boundary condition.

The horizontal diffusion of the inertial energy can be represented in a way

similar to the Pollard-Millard linear slab model whi is written as

OU,-T -'yVr -- Fr - lr*Ur,, (4.3.58)

Y:- * ^r(J, : G, - le,nvr, (4.3.59)
æl

where

ñ T", r\ TsaFr: pã, Gr: ,;tr (4'3'60)

The parameler le ^ represents the damping of the inertial oscillations in the surface

mixed layer.

On introducing horizontal diffusion terms (related to the U¿ andV¿ components

of the current at each level) into equations (4.3.1) and (4.3.2), we have

0U¿,i
^fV,j : -knU¿,j I

Q.¿ A
Hl 0o¿

0U¿,¡
i'i aoi

(4.3.61)p
ôt

(4.3.62)

where i : 7, i : 7,2. This formulation is motivated in part by the analytical

model given by Hopkins (1974) in which the diffusion terms IcnU¿ and le¡V¿ arc

introduced primarily to control the indefinite growth of the alongshore component

of the geostrophic velocities induced by a steady wind. These equations can be

used either with a zero-stress condition or with the frictional condition (4.3.56).

It is obvious that the removal of inertial energy from the surface mixed layer can

be calibrated through the adjustment of the frictional parameters Ic¿ andf or Ic¡.

\Me can expect from previous results that the influence of the changes in k¿

upon the decay of the inertial oscillations in the surface layer is closely related
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to the conditions of stratification. For convenience, v/e present the time variation

of. (Jr and U" computed with k¿ : 0.1 cms-t for the values of I[" : 10, 50

and 150 cm2s-r and A" : 10 and 40m (Figure 4.16). Comparing Figure 4.16

with Figures 4.9(a) to (c), v/e can see that the time variation resembles those of

the one domain system. The major difference is that in the one domain system

the damping of the inertial oscillations within the surface layer is affected by the

eddy viscosity at the bottom layer along with the parameters.ly'r, A. and Ap,

while in this two-layered model the time behaviour of the inertial oscillations in

the surface layer are independent of the conditions in the bottom layer. In the one

domain system the surface current is infl.uenced by the mean value of the eddy

viscosity through the water column, and its depth variation (Davies, 1985c). The

present model provides as an improvement to the Pollard-Millard model detailed

information on the vertical structure of the inertial oscillations. \Me note that with

A.: 40 m,Iy'.p: 10 cmzs-L, the layer-meanvelocity U" increases progressively

over the 120 hrs while the damping of [/a continues. Figure 4.17 displays as time

hodograms the sensitivity of the damping of the surface current to the value of. k¿.

We now consider the time variation of the modal coeff.cients in the presence

of frictional dissipation at the base of the two domain system. Figures 4.18(ø) and

a.18(c) depict the time dependence of the first four modal coefficients computed

using lc¿ : 0.L cm s-r, for A" : 10 and 40 m. For the purpose of comparison, the

time variation of the third and fourth vertical modes computed using a stress-free

condition with Ae : 40m is also plotted in Figure 4.18(b). It is evident from these

figures that the frictional dissipation damps the first vertical mode. The decay rate

of the first vertical mode computed with A" : 40 m is significantly slower than

that computed with Ap : 70 m. This is expected because the downward flux of

inertial energy is represented by the U and l/ components of current at the base

of the pycnocline.
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The interesting fact is that when the value of. lc¿ is zeto) the coefficients of the

higher vertical modes attain a steady state more rapidly than when the value of

k¿ is non-zero. This point has been discussed in detail by Davies (1985ó) for a

homogeneous sea. Initially, ali the vertical modes are excited by the step-function

wind stress. When a zero-stress condition is enforced at the base of the domain,

the coeffi.cients of the vertical modes are damped exponentially by the internal

friction term o¿À i,kf H?fri,k. Consequently the higher modes converge to the

steady state value faster than the lower modes. Since the modal equations are

uncoupled, no interaction arise between the vertical modes (see (4.3.51)). When

the stress at the base of the domain is non-zero, the initial decay of each vertical

mode is determined by the frictional dissipation imposed at the base of the domain

boundary and by the internal friction. Note that in this case the modal equations

725



are coupled. Since the friction term at the base of the pycnocline is given by

Td, : Pt,zk¿Ui,d: Pt,zka Ãr,rQr,rrr,"(1),

(4.3.63)

Tda -- Pt,zk¿Vi,d: Pt,zk¿ Bt,rQ t,, fl,r( 1),

where (Þ1,. is strictly positive and /r,r(1) changes sign as r increases, the inertial

oscillations locked in the first few modal coefficients (in these examples, mainly

the first and second modes) will give rise to periodic changes in the bottom stress,

through the interaction between the vertical modes, thus producing time depen-

dent fluctuations of the higher vertical mod.es. The oscillations it Â,, .rd Â1,a

shown in Figures 4.18(a) and (c) are due to such interaction. It is apparent that

the time dependent fluctuations of the higher vertical modes become pronounced

when the off-diagonal terms of I in (4.3.39) are substantially increased. Note

that the characteristic modes determined by the linear summation of the vertical

modes do not interact each other (see (4.3.49)). In the case of .ly'p :70 cmzs-L

and A" - 40m, the rate of penetration of the wind's momentum slows within the

pycnocline, causing the contribution of the bottom friction to increase gradually.

Consequently, the contribution of the time dependent fluctuation of the bottom

stress to the coefficients of the higher vertical modes is noticeable after a couple

of inertial periods (Figure a.18(ø)).

The influence of fu¿ upon the rate of damping of the inertial oscillations within

the surface layer and the pycnocline is depicted in Figure 4.19. It is apparent that

the horizontal dissipation term damps the first vertical mode. In contrast to the

case of lc¿, the presence of the horizontal dissipation term does not complicate

the time response of the individual vertical modes. This is because no interaction

between the vertical modes arises through the horizontal dissipation term.
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Figure 4.19 Time variation of Ur and Ue and the first three vertical modes in

domain f)1, obtained using the profile in Figure 3.L(d), computed with
horizontal dissipation. A step-function wind stress was used with:
rt¡=1.0x10-6,0.5x10-6 and t.ox10-5 s-ri Ay-25¡ Ae: om; pr:1025.8¡
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We may write equations (4.3.61) and (4.3.62) in complex form as follows:

d1 A

Hl 0o¿

0@; ;

Ë * r{@¡,j: -lcn@¿,j I (þ ¿,i
6ø;,i

oo¿
(4.3.64)

By replacirrgL'ylo't\t,xlff12 with ry*kni-c.t\t,*lHl in (4.3.52), one can obtain

solutions of (4.3.64) subject to the initial condition (4.3.32) and the boundary

conditions (4.3.56) and (4.3.57). For convenience, we list the solutions in the

absence of the frictional dissipation at the base of the pycnocline:

c¡(t):ã¿,n(t): exp{ãrr} 
f"u(o) * lr' 

exp{-ã¿r}FÍodrf, (4.3.51)

where

ëk : -(q + Ie n I ),¿,*a nl H?,r), (4.3.65)

FÍ') : Ft : T"r(P¿,rH¿)-t, (4.3.53)

andi:7,r-1,...¡rrli.\/iththeintroductionofthehorizontaldissipationterm

the real part of the characteristic modes is changed. This leads to an enhanced

damping of the inertial oscillations.

In realistic applications, due to the uncertainty of the values of k6 and k¡, the

present model has to be calibrated to fit the observed inertial motions. There are

certain advantages of using the present model over the Pollard-Millard model in

which the single factor lc,n is used to represent the decay of the inertial motion

in the surface layer. It would be expected that the time response of the Pollard-

Millard model might be sensitive to the value of. lcrr. In the present two-layer

model, the pycnocline acts as an energy absorber to control the downward flux of

the wind shear. Consequently, the dependence of the time response to the value

k¿ will be lessened, particularly in conditions of strong stratification and deep

pycnocline depth. An important point is that since an arbitrary eddy viscosity

profile is allowed within each layerr âny local information on the conditions of

stratification can be incorporated in a flexible manner. If the horizontal extent of

128



(c) Two domin system(í:1,2,)
U¡ (cm s't ¡

-2.O O. O 2.O 4.O 6.O

(b) Two domaìn system(ì:l 2)
U¡ (cms't¡

-2.O O.O 2.O 4.O 6.O

(a) Two domin system(î--1 2)
U¡ (cm s-t¡

-2.O O. O 2,O 4.O 6

t= 1147. hrs
t- 5147. hrs
t:1314 T. hrs
t:2I14T. hrs

Figure 4.2O The U velocity profiles at t:t/ Te¡ t:5/47"¡ 13/4?" a'rld.2l/4Tc hrs, ob-
tained using the profile in Figure 3.1(d), computed with a constant wind
pulse of duration T"f 4 hrs. The stress components given by equation
(4.3.57) are introduced at the base of the pycnocline which are in turn
used as forcings for the bottom layer. A basis set of B-spline functions
are used with: A7:251 Ã7,-101 AB--2l5mi Nr -1000, Np :50, N.a :100

.rn2 t-L 1 p r:1o25.8 ¡ p p:1o26.5 ¡ P a :1o27 .2 g crn- 3 
1 and (a) lc d,:o.oot .* "- 

L 
1

(b) k¿:o.or cm s-t 1 (c) k¿:g.1 
"rn "-' .

the wind field is known, the horizontal dissipation of the wind's momentum can

be calibrated reasonably well by changin1 lcn. Furthermore, continuous profiles

of the horizontal components of current over the domain can be obtained in the

present model at the expense of slightly increased computational effort (compared

with the Pollard-Millard model).
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\Me refer to Figure 4.20. When a uniform wind forcing is applied in a horizon-

tally unbounded open sea region, no motion can arise in the bottom layer of the

two domain system. Under the assumptions that the bottom layer is sufficiently

deep and that the magnitudes of the horizontal components of the current there

are small, the frictional dissipation computed with the velocity at the base of the

upper domain can be used as a driving force for the bottom layer in a v¡ay similar

to that in the two-layered steady state model of Welander (1968). However, it

should be noted that in this case no feed-back mechanism from the lower domain

to the upper domain is taken into account. Figure 4.20 illustrates the current

profiles in the bottom layer driven by the interfacial shear T¿, * lr¿, and their

sensitivity to the value of. le ¿.

A fuansíent free rnotion wíth a non-zero ínítíal condítion

To conclude this chapter, we consider the transient free motion of an open

sea started by the given initial velocity field. All external stresses are removed

throughout the computation. This system has been considered by Gonella (1971ø)

in a homogeneous sea with a constant eddy viscosity. Using the present numerical

approach we can prescribe arbitrary variations of the initial velocity and eddy

viscosity profiles.

For simplicity we consider the initial velocity field as follows

u¿(o¿,0): 10 cms-r 01o¿ ( €;,r,

U¿(o¿,O) : O for €¿,r ( o¿ 11,

V(on,0) :0 throughout the domain

(4.3.66)

(4.3.67)

(4.3.68)

where i : 0,1. For the non-zero initial value problem it is necessary to initialise

the expansion coefficients. In finite difference methods such an initialisation is

straightforward.
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Calculations are performed using a basis set of eigenfunctions. Projecting the

initial velocity field onto the the vertical modes gives

A¿ k(0) U¿,i(o), f ¿,i,t B¿,¡(o) : o( )
(4.3.6e)

where i : 0r1 and k : 1r... )Tmi. For an arbitrary form of the initial velocity

fr,eld,, Ã.¿,¡, in (a.3.69) can be evaluated using numerical quadrature. Substituting

conditions (4.3.66) to (a.3.68) into (4.3.69) gives

€¡, r

Ã¿; (o) : t, L f ;,¡,r do;: 1o (0¿,0,t - &i,r,k), (4'3'70)

where i : 0,1 and lc : I,. . . ¡Trti. If the initial velocity field is computed by recon-

stituting the estimated coefficients of the vertical modes, nonphysical oscillations

arise below the surface layer because of the presence of the discontinuity in the

initial velocity field. However, immediately after the start, the current profiles

become free of the oscillations.

For convenience, we list again the transient solution (a.3.51) for this initial

value problem without the wind stress terms, namely

ck(t) : ã ¿,x(t) : exp{ãrú} 
"r(0),

(4.3.71)

where
tní

< fr¿(o),€¡ ): Dãr,¡(o) "i,,¡: cr(o), (4.3.48)
j:t

ë¡, : lr,, : -(tl ¡ À¡,¡a ¿f Hl,¡r), (4.3.52)

and i : 0,1, lc : Lr...¡rrtri. Note that each characteristic mode will be excited

selectively depending upon the initial condition.

Figure 4.27 depicts the time variation of the first four vertical modes in the

one domain system computed with -ð/" : 70 cm2 s-l and the two second vertical

modes in the two domain system computed with.lü" : 10 and 150 cm2s-r. Il
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is apparent from these figures that the inertial oscillations will dominate the time

response of the surface currents and layer-mean velocities of the free motion. The

velocity at each level approaches zero as ú --+ oo, either in the presence of bottom

friction or in an infinitely deep sea. With the initial conditions (4.3.66) to (a.3.68)

all the vertical mod.es are excited, and., since f n,r(o n): 1, the magnitude of ,î¿,1 is

given by 70A,r l H¡ cm s-r. In the absence of bottom friction the first vertical mode

is undamped whereas the higher modes decay at different rates due to the presence

of internal friction. Note that the inertial oscillations of the second vertical mode

in the one domain system decay very slowly. In the two domain system the internal

friction is increased significantly because of the reduced depth . Furthermore, since

the region occupied by the pycnocline is a significant fraction of the domain, the

value of 41,1 plays an important role in determining the rate of damping of the

second vertical mode.
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Figure 4.27 Tirne variation of various modal coefficients computed with the initial
conditions (4.3.66) to (4.3.68). Stress-free conditions are imposed
at the upper and lower domain boundaries with: Ar:25t Ae: orn;
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133



CHAPTER 5

WIND INDUCED MOTION
IN NARRO\M FLAT.BOTTOMED LAKES

5.1 Introductory Remarks

This chapter is concerned with the application of the layered models described

in Chapter 2 to wind induced motion in elongated two and three-layered lakes of

finite length and uniform depth. It is assumed that the longitudinal axis of the lake

is parallel to the r-axis and that mean values of the layer thickness are independent

of time and the ø-coordinate. Since the system is bounded, the gradients of the

free surface and the interfaces participate in the dynamic balance but the Coriolis

parameter, which played a central role in determining the wind induced inertial

motion in an open sea region, is omitted. The direct tide-generating forces and the

effect of the atmospheric pressure gradient are also neglected. Thus, the system

of governing equations can be written as follows:

l0U¿,i

at lt
+

P;,,t - P;,t-t
P ¿,i

0U¿,i

oo¿

(

H! 0o¿
( Itr ¿,i i :0,i : \,2,3; i - 7,i :7,2, (5.1.1)

l:l
Q¿A

Q¿A
Hl 0o¿

)

)

3i:-L'eiy)Y-'ei#) 0C¿,i-.'
0n

+ þ ¿,i
0U¿,i

0o¿
( i:2ri:I, (5.1.2)

(5.1.3)

(5.1.4)

+ - # + Ht*(luj'," tr;,¡ dot) : o, i:0 1

0

21J

')+=+H,*(l*|'," U¿,¡ do
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Our primary concerns in this chapter will be with calculating the time response

of interfacial displacements in the two and three-layered systems, extending Heaps'

two-layer two domain model numerically, and investigating the sensitivity of the

interfacial displacements to the eddy viscosity (particularly to .À/") and to the

density distribution. The dimension of the idealised r-z rnodel is chosen to be the

same as that considered by Davies (19834).

Calculations are in the main performed using a basis set of B-splines over

60 hrs, with a step-function wind stress of.7 dynecrn-2 which is instantaneously

applied at f : 0 uniformly over the horizontal domain. The assumption that the

wind stress is constant over the basin is reasonable for a small lake, because the

characteristic length scales of the meteorological events are much larger than those

of the lake.

When we examine the sensitivity of the interfacial displacements to changes

in the density of the layers, P¿J(: pr) and P¡,r(: p") will be varied for the two

and three-layered systems, respectively.

5.2 Finite difference form of the Galerkin equations

The staggered finite difference grid in the r-direction is shown in Figure 5.1.

The displacements of the free surface and the interfaces (;,¡ are evaluated at points

indicated by a "o" symbol. Each of the coefficients of the B-splines and of the

eigenfunctions for the current velocity A¿,r, is evaluated at the points marked by

a c'+1) symbol. The left and right land boundaries are located at r : 0 and tr,

respectively. The points for (¿,¡ are numbered from left to right, assuming that

there is one extra point just outside each end of the model region. Such a labelling

is implemented keeping in mind the incorporation of horizontal diffusion and non-

linear advection terms in future applications. The depth of water, the thickness of

the layers, and the wind stress are defined at the points for (¿,¡ although their spa-
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Figure 5.1 A staggered finite difference grid fol the r-direction in which o
indicates a U¿-point (also A¿," or A¿,r, T : Lr"'rm¿) and I
indicates a (¿,¡-point.

tial variation is not considered in these computations. The coarse grid system has

a grid spacing of Ar : 475rn. The finer grid system, which has a spacing of one

third of the coarse grid, is used to illustrate the improved accuracy in reproducing

the internai displacements for the two domain system.

A basís set of B-splínes

Along a horizontal closed boundary of general form in l}.,e x-y plane, the

normal component of the current vanishes for all ú ) 0, thus

A¿,rcostþ+ B,;,,sinty':6, i:0,712, r - 1,'" )TrLi) (5.2.1)

where T/ is the inclination of the normal to the r-axis. For the narrow lake con-

sidered here, ty' : 0, so the boundary conditions imposed at the closed ends r : 0

andr:Late

A¿,r(*,f):0 for ú)0, i:0,I,2,r -1,"',rrli.
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The simulation starts with the body of water at rest, that is, the velocity field,

the free surface and the internal displacements at Í : 0 are all assumed to be zero.

Thus,
'i :0r\r2, r - 1,. .. ¡ffii¡

'i:0,L,2, i -1,'",Ji,
(5.2.3)

C;,¡(n,o) : o,

for all r.

Under the narrow lake approximation, the matrix equations (2.5.18), (2.5.20),

(2.5.51), (2.5.53), (2.5.55) and (2.5.56) simplify to one-dimensional form and are

approximated using central differencing for the spatial derivatives and a forward

approximation for the time derivative on the grid shown in Figure 5.1. The

Galerkin solutions of (5.1.1) and (5.1.2) are expressed, neglecting the effects of

the atmospheric pressure gradients and the direct tide-generating forces, in the

form

clt loll*ot : ct Rnlf + ltrn,, + (/'tl/'*)s¿,, , i:0,L,2, (5.2.4)

where

0l,r(ø, 0)A

c

cl

Fo," :

Ft,, :

F"- :

So," :

S

Sc-:

: c¿ * î#",
_c¿_îfr* i :0r1r2, (5.2.5)

(5.2.6)

(5.2.7)

(p o,ío)-l (T",Efi - r a"E,E)

(Pr,rHr)-tî",Eï

-(P r,rHr)-t ru,EL

å'e#) [en''-'l;lî' - e¡'¿-tll*"'] ntor

Ðt e5#-) [e0,,-' l,lî' - e¿,t-t li*"'] nt'r

f;' P5#=) le',,-, l,lî' - et,t-tll*"'] n5'r

-' (1, 
"?) 

[e,,. l;lî' - (,,0 lf*"'] n!')

t
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Tbr: Po,zka As ,r Mo,,(l), for f)0,

Tb, -- pzJku 42,, Mz,,(!), for dlz, (5.2.e)

rnot
r=l
if¿2t
r:l

t

,q

t

q

(5.2.8)

The continuity equation is expressed in the form

z,l'r* - z,l', - Hi (l'tlar)E¿ l"rll - o'll_,] , (5.2.10)

where i : 0,,1,2. The matrix Z¿ is a column vector of length /,; (3 for Í-)s; 2 for

flr; l for C)2) with k th element C¿,n-t The other matrices are given by (2.5.21)

ro (2.5.26).

The coefficients of the B-splines for the horizontal current Aí,r,, r - 1,. .. ,¡ffii¡

and the displacements (¿,¡ involving the free surface and the internal interfaces

are then calculated as time progresses. The explicit marching scheme given in

equations (5.2.4) and (5.2.10) is basically equivalent to that described by Davies

(1980ø) except that in the two domain system the procedures are applied to both

the upper and lower domains. The CFL condition Ln I 1fiF,, restricts the time

step to Af : 9 sec and 3 sec for the coarse and fine grids, respectively. It would be

necessary to employ a time and/or space-splitting technique for internal modes in

a manner similar to that described by Heaps and Jones (1983), in order to reduce

the computational effort required when the method is applied to a horizontally

two-dimensional fine grid system.

,4 basís set of eígenfunctions

Heaps' expansion given by (2.6.30) is employed with the homogeneous limit

conditions, þoJ : 0o,z :0.

Boundary and initial conditions are obtained by replacing A¿,, in (5.2.2) and

(5.2.3) with Ã.¿,,. At the closed ends we have
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A¿,,(0,t) -0
-0

i :0,712, r - 1,' .. ¡ffii, (5.2.11)
Ã.¡,,(L,t)

for all ú ) 0, with the initial conditions for the displacements and velocities being

Ãn,r(*,0):0, i:0,L,2., r - 1,"')rn,ô)
(5.2.72)

e;,¡(r,O) : 0, i :0',I,2, i - 1,' ",Ji,

for all r

The spectral solution of (5.L.1) and (5.1.2) is expressed in the form

wherei:0,1,2and

Fo,, : (p o,Ho)-t (, ", - f;,x(I)r6,¡

Ft,r: (pr,Fr)-tr",
F2,, : - fz,r,(t)çp r,rH r)-' T t,

Lt a¿-T41 \i,t

I LtF¿,s + (LtlLx)Sn,",

for f,)0,

f'* î fts,,r)Ãn,n
r+a

,lrÃ.n
II q

(5.2.13)

(5.2.14)

(5.2.15)

(5.2.16)

s0," : >te+!-) leo,,-,1;lî' - co,¿-tl;."'] &0,¿-,,k
l=l

s,,, : >t(U+!-) [e,,,-,1;lî'- et,¿-tl;."'] att-L,k
l:l

s2,, : f,te+!-) le,,o-,1;lî' - .t,¿-tl;*"'] e2,0,k
.(:L

, (r;?) 1e,,, l;Ìî' - (,,0 li+"'] a2,o,r"

ÍÍ¿ O

Tbr:Po,2ko DÂ0'
r:L
rn2t
r:l

Qo,',fo,r(1),

fz,r(1),

t

.I

t

q
o r2Ttr:PzJkb 42,,
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The continuity equation is expressed in the form:

,nl'o*" - z,li - Hi (l'tla,r) Ef l",ll - onll_,] , (5.2.18)

where i:0,1,2. The matrices in (5.2.18) are given by (2.6.45) and (2.6.51)

5.3 Results

Figures 5.2 and 5.3 depict the time variation of the interfacial displacements in

the two and three-layered systems computed with various combinations of the eddy

viscosity and the coefficients of the linear bottom friction. Referring to the two-

layered system (Figure 5.2), calculations have been performed on the coarse grid

system for the one domain system and on both the coarse and fine grid systems for

the two domain system, using a basis set of B-spline functions. The eddy viscosity

in the upper layer was fixed at .ly'r : 300 crn2 s-r while values of. Ie6 :0.0, 0.1 and

\.0 cms-1 were applied with I/, :100 cm2s-r. For comparisonpurposes, the

time variations of the interfacial displacements computed with k¡ : 1.0 crn s-1 and

Iy'¡ : L000 cm2s-l are plotted together. The internal motion induced by a step-

function wind stress exhibits oscillations which are associated with the internal

seiche period of the basin (Heaps, 1966; Davies, 1983a) and which have a period

of about 72 hrs. The interface at the right half of the basin is displaced downwards

under the wind action, while the free surface is displaced upwards. \Me exclude

from our consideration the time variation of the free surface which is associated

with the short-period surface seiche motion. It is apparent from Figures 5.2(a)

and (ô) that the damping of the internal seiche motion is increased as values of k6

and ll" are increased. Although the results are not explicitly presented, the plot

of the interface displacements computed using a no-slip condition with N, : 100

crn2 s-L was not significantly different from that computed with ly'a : 100 cm2 s-r

and ka : 1.0 crr¿ s-1. The most striking fact is that there is significant difference

in the rate of damping of the internal seiche motion between the one and two
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Figure 5.2 Time variation of interfacial displacements (at corner point B in
Figure 5.1) in two-layered one and two domain systems, obtained
using the profile in Figure 3.1(c), computed using a basis set of B-
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Figure 5.3 Time variation of interfacial displacements (at corner point B in
Figure 5.1) in a three-layered one and two domain systems, obtained
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domain systems. The internal seiche motion in the two domain system is damped

much more slowly than in the one domain system. The time variation of the

one domain system computed using ¡fB : L00 cm2s-1 and k¿:0.0 crns-l is in

fact comparable with that of the two domain system computed with llp : 1000

cm2s-r and k¡ : 1.0 cms-r. Preliminary computations have revealed that with

ny'.B : !00 cm2s-1 and ko:0.2 cms-r theinterface Cr,r oscillates even at ú:300

hrs with an amplitude of about 5.0 cm, whereas the interface (o,r remains at a

quasi-steady value after about t : 80 hrs. \Me can note that with .l/" : 1000

cr¡r,2s-r and k6:1.0 cms-r, the one domain system is heavily damped, almost

preventing the development of the internal seiche motion. Using a two-layered

two domain model, Heaps (1966) has predicted a critical value of the coefficient of

linear bottom friction (related to the mean-velocity at the bottom layer) beyond

which the development of an internal seiche motion is prevented. It is evident that

the critical value of the bottom frictional coefficient of the one domain system will

be significantly lower than that of the two domain system. \Me also note that in

a highly dissipative situation with.l[" :1000 cm2s-r and k6:1.0 cms-r the

mean value of (o,r is significantly lowered, whereas the mean value of (r,r remains

unaffected. In the absence of the interfacial stress the steady state velocities in

the bottom layer (apart from the possible presence of the undamped mode) are

all zero and the gradients of the free surface and the interface are given by Heaps

(1984), namely

oe¿,o T",
or PrgL,'

)e¿,t __ P, )C¡,o

0x P"-P,0x

(5.3.1)

7 T",: ---P"- PrgLr'
(5.3.2)

Integrating (5.3.1) and (5.3.2), satisfying the constraints of continuity of volume,

that is, ïo" i5r,o do, :[f (¡r,o dor: 0 gives

(r,o : lprg Lr]-t (2* - L)T ",, (5.3.3)
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Cz,o: -l@" - p)sL,f-rr""(2r - L) (5.3.4)

Thus, in the two domain system the eddy viscosity in the bottom layer and the

coefficient of bottom friction do not influence the mean displacement of (¿,1.

The presence of spatial truncation errors is apparent in the solutions for the

two domain system computed on a coarse grid system (Figure 5.2(ó)). The effect

of numerical truncation is not noticeable in the one domain system because of

the strong damping. Increasing the spatial resolution by one third reproduces the

saw-tooth behaviour of (¿,r accurately.

In the case of the three-layered system, calculations have been performed on

the coarse grid system for both one and two domain systems using the eddy

viscosity profile shown in Figure 3.1(d). As in calculations for the two-layered

system, a basis set of B-spline functions was again used. Figure 5.3 shows the time

variations of the two interfacial displacements at corner point B (shown in Figure

5.1) computed with.f/, fixed at 300 cm2s-1, I[, at 700 cm2s-1 and l/, taking a

range of values, namely N.p : 10, 50 and 150 cm2s-r. For comparison purposes

the time variations of the two interfacial displacements computed with I/a : 300,

ny'p:150, ¡fB :1000 cm2s-r and k6:1.0 cms-r are also shown. It is evident

on comparing Figure 5.3 with Figure 5.2 that the time variation of the internal

seiche motion in the three-layered system is complicated compared with that of

the two-layered system. A scenario on the time-dependent circulation pattern has

been described in detail by Davies (1983ø). fn contrast to the two-layered system,

the time behaviour of the interfacial displacements in the one domain system is

very similar to that of the two domain system although a difference in the rate

of decay of the internal seiche motion is apparent. For the three-layered system,

the internal seiche motions in both the one and two domain systems are damped

in the absence of bottom friction. This point will be discussed in more detail

Iater. It is apparent that the mean displacement of the interfaces is sensitive to
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change in the value of .f{" and, as the value of N" is decreased from 150 to 10

cm2 s-L, the downward displacement of (¿,1 and the upward displacement of e¿,2

are both enhanced. We note that in contrast to the two-layered system the mean

displacements in both one and two domain systems computed with N, : 1000

cm2s-r and ka:1.0 cms-r are comparable with each other.

To understand why the internal seiche motions of the one and two domain

systems decay at considerably different rates each other in two-layered conditions

(when ny'" is high), a series of calculations have been performed on a coarse grid

using a basis set of eigenfunctions, with an increasing number of. m¿. It is ap-

parent from Figure 5.4 that in the one domain system the contribution to the

internal seiche motion comes from the second. mode îs,2, whereas in the two do-

main system the contribution to the internal seiche motion comes from .î1,1 and

Âr,r. The contribution of the higher modes is mainly associated with the mean

displacement of the interfaces. In the one domain system the largest contribution

to the mean displacement of the interfaces comes from Âs,3, which is concurrently

responsible for the return-flow within the pycnocline and for the smooth variation

of the current at the bottom layer (Davies, 1983ø). Under conditions of strong

stratification (.1/r : t0 cm2s-l), the modes up to r :4 contribute significantly.

With I[.p : 150 cm2 s-l, the fifth mode also significantly contributes to the mean

displacement. In the two domain system the mean displacement of interfaces

is attributable to the second. mode .Î1,2. Highly dissipative conditions such as

ll¿ : L000 cm2s-1 and ka : 1.0 cms-L, the internal seiche motion does not

develop. In this case the vertical modes Ã.s,2 and. Â,r directly contribute to the

mean displacements of e¿J, i: 0,1.

From these results it is evident that the damping of the internal seiche motion

in the one domain system is predominantly determined by the rate at which Â,2
decays. In the two domain system the time behaviour of the internal seiche motion
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Figure 5.4 Time va,riation of (at corner point B in Figure 5.1) of three-layered sys-
tems, obtained using the profile in Figure 3.1(d), computed with an in-
creasing number of rni. A coarse grid with At : t425m was used with:
Lr:25, Ap:15r Apt:6Om; Pr:1o25.8¡ pp:1o26.5t 1027.2 gcrn-s; Nr:300
"rn2"-tl and (ø) Nr:10 "ro2"-L, k¿:0.0 .rn"-r, the thick solid line denoting
calculation u¡ith NB:l00O crn2s-r: fr¿:1.0 cm"-r and rn6=4; (ö) as in (a)
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is representedby the first vertical modes î1,1 and,îr,r. Thit explains why even

though each vertical mode experiences signifrcantly greater internal damping in

the two domain system (due to the reduced depth), the internal seiche motion

decays more rapidly in the one domain system. In the absence of bottom friction

the difference in the rates of damping of the internal seiche motions between the

one and two domain systems is determined by the factor o'o^o,zf H3 (because the

eigenvalue of the two first vertical modes of the two domain system are both zero).

It is evident from Table 5.1 that for given values of the depth and layer thicknesses,

decreasing the value of -l[" significantly reduces the damping of the second mode.

Consequently, the internal seiche motion of the three-layered one domain system

decays signifi.cantly more slowly than in the two-layered one domain system. Note

that the internal seiche motion of the three-layered one domain system computed

with -lú, : 70 cm2s-1 (shown in Figure 5.3(ø)) is comparable with that of the

three-layered two domain system computed with .f[r : 50 cm2 s-r (shown in

Figure 5.3(ó)).

Table 5.1 Values of o-¿\¿,2/H! cornputed for various combinations
of -ô[r, .ð{s and Il¿ with Ar :25, Lp:Lírn

lVr:
Np-

300 c¡n2s-1

l0 crn2 s-r
300 crn2 s- 1

50 c¡n2 s-L

300 cn¿2 s-r
I50 cro2"-r

300 crn2s-1

300 crn2s-1

N.a: 100 crn2s-r
Ho:250m
llo:1 00rn

1V¿:1000 
"rn2 "-r

Ho:250rn
Ho:t00rn

N.a: 30 cm2 s-r
Ho:250rn
IIo:100rn

0.126 x 10-5
0.294x 10-5

0.155 x 10-5
0.846x 10-5

0.159 x 10-5
1.120x 10-5

0.160 x 10-5
1.203 x 10-5

0.24Ix1.0-5
0.333 x 10-5

0.888x 10-5
1.500 x 10-5

1.349 x 10-5
3.543 x 10-5

1.475x10-5
5.274x1.0-5

0.045x 10

0.212xL0
0.048 x 10

0.347x 10

0.048 x 10

0.377x 10

0.048 x 10-5
0.384x 10-5

-Ð
-5

-l)

Spigel and Imberger (1980) have shown how to estimate an e-folding decay
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time for the internal seiche motion in a two-layered system on the assumption

that the energy of the internal seiche motion is dissipated by the bottom friction.

\Me note that such arÌ assumption is invalid for the one domain system whenever

the internal seiche motion is damped predominantly by the internal friction. It

appears that their semi-theoretical argument is suitable for explaining the decay

of the internal seiche motion in the two-layered two domain system in the presence

of bottom friction.

From Figure 5.5, it is apparent that the time variation of the layer-mean

velocities also exhibits oscillations of the internal seiche period particularly at the

surface and bottom layers, and that the influence of the change in I/, upon the

decay of the oscillations is similar to that of the interfacial displacements. In the

one domain system the damping of the oscillations in the surface and bottom layers

is significantly increased as the value of -l/" is increased, while in the two domain

system the damping of the oscillations is increased marginally. \Me note that the

oscillations at the surface layer and at the pycnocline each show a phase difference

of 180" with the oscillation at the bottom layer and with ll" : L0 cmz s-1, the

time variation similar to that for a square-\Mave appears within the pycnocline.

The square wave-like variation of U * is due to the presence of a modulation,

with a period about three times larger than that of the internal seiche motion,

superimposed on the periodic internal seiche motion. Comparing Figure 5.5 with

Figures 5.3 and 5.4, we note that the period of the modulation is roughly the

same time that the interface takes to reach the equilibrium level. The decay of

the modulation is signifi.cantly slower in the two domain system compared with

that in the one domain system. The layer-mean velocities tend to converge to

zero as time goes by, which indicates the formation of a steady cell-like circulation

within each layer. In a steady state the flow field is composed of the wind driven

clockwise circulation in the surface layer, the anticlockwise circulation within the

pycnocline and the clockwise circulation in the bottom layer (Davies, 1983a).
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Figure 5.5 Time variation of Ur,, Up and Up (at center point A in tr'igure 5.1) of
three-layered one and two domain systems, obtained using the profile
in Figure 3.1(d), computed using a basis set of B-splines. A coarse grid
with Af : 1425 rn was used with: Ar:25¡ Ap:15: A¡:60 mi pr=l}2'.Bt
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\Mithout presenting detailed results, we briefly comment on the sensitivity of

the interfacial displacements and of the layer-mean velocity within the pycnociine

to changes in the value of -lüt in the three-layered systems. Calculations (com-

puted using ly'-p : 1-0 cm2 s-7 with the layer thickness and depth variation of the

density used in Figure 5.5) showed that increasing Nt from 150 to 1000 crn2s-l

reduced the mean values of the downward displacement of (¡,1 and the upward

displacement of (o,z by approximately 50 cm in both one and two domain sys-

tems. The effect of changing Nr upon the decay of the internal seiche motion is

relatively small unless the ratio of the surface layer thickness to total depth is sub-

stantially increased or the value of .l[t is extremely large. Decreasing N, initially

enhances the layer-mean velocity within the pycnocline. However, calculations

with.l/", : 150 cm2s-r showed that after the interface reaches its equilibrium

level the effect of changing Nr upon the layer-mean velocities becomes insignifi-

cant.

Figure 5.6 shows the current profiles computed using a basis set of B-spline

functions al, t :2.8218.28 and 19.56 hrs. At t :2.82 hrs t}i'e mean current velocity

at the surface layer is at its maximum in the direction of the wind stress. At

ú : 8.28 års the mean current velocities at the pycnocline intensify to a maximum

in the direction opposite to the wind stress and this maximum occurs at t :19.56

hrs for the mean current velocity at the surface layer (see Figure 5.5). It is

noticeable that at the pycnocline of the one domain system, a conspicuous return

flow of jet-like nature appears at t :8.28 hrs. In the two domain system the return

flow does not show a jet-like behaviour because it is not frictionally retarded at

the base of the pycnocline. It has been revealed in a series of computations that

the layer-mean velocities within the pycnocline are comparatively insensitive to

the value of .lfr, although current profiles show much more sensitivity to changes

in the value of -lúa (compare Figure 5.6(c) and (d)).
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Figure 5.6 Vertical profiles at t:2.82) 8.28 and 19.56 l¿rs (at centre point A in Figure
5.1) of three-layered one and two domain systems, obtained using the
profile in Figure 3.1(d), computed using a basis set of B-splines. A
coarse grid with Ar : 1425rn, is used with Ar:25, Ap-15, Aa=60rn;
pr:!o25.8; pp:1026.5¡ p p:!027.2 g cm-ï; and (a) Nr:300: Np:50r N¡:100
.rn2"-r with rno-18; (ä), Nr:300r Np=50: N¿:100 c7t2s-r with rnr=15
a,nd m2=61 (c) JV2.:150, Np:10, N.a:100 "r"2"-L with rne:l8f (d) N2.=10g¡,

N.p:10, N.a:100 .rn2 "-t , with rno-18.

The current profiles shown in Figure 5.7 are computed using a basis set of

eigenfunctions with Tn¿:5 and 20. It is evident that nonphysical oscillations

appear in the two domain system when a small number of eigenfunctions is used.

fn contrast to the two domain system, solutions of the one domain system do not

exhibit oscillations even with rno : 5. With a small number of eigenfunctions, the

compatibility between the form of the first few eigenfunctions and the current pro-

files within the pycnocline, rather than the discontinuity of the eigenfunctions, is

critical in determining whether Gibbs phenomena arise. \Mith a value of B¿¡ :0,
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Figure 5.7 Vertical profiles at t:2.82,8.28 and 19.56 l¿rs (at centre point A in Figure
5.1-) of three-layered one and two domain systems, obtained using the
profile in Figure 3.1(d), computed using a basis set of eigenfunctions.
A coarse grid with Ar : 1425rn, is used with: Aa-25, A7,=lg, An:6om.t
pr:1025.8¡ p e:1026.5; p a:7027.2 g crn-3; N.a:100 ctn2s-r i k¿:0.0 .rr,"-r
and (a) Nr:300r N.p:10 crn2"-r with r¿o-5; (ó) Nt:300, N.¡":5Q crn2"-r
with n¿1:5 a,nd. rn2:t1 (c) as in (ø) but with rno:20; (d) as in (ö) but with
mt:20'

as noted in Chapter 4, the surface current is significantly underestimated. How-

ever, a set of preliminary calculations have revealed that the layer-mean velocities

were reproduced accurately. Furthermore, the presence of Gibbs overshoots was

not a serious probiem as far as the accuracy of the layer-mean velocities is con-

cerned. In the current profile computed using a basis set of B-spline functions

(Figure 5.6), there r¡/as no evidence of spurious oscillations unless the number of

B-splines is dramatically reduced and the knots of B-spline functions are poorly-
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distributed.

We now consider the time variations of the first few vertical modes at the

centre point B shown in Figure 5.1. A series of calculations were performed on a

coarse grid system with ka : 0.0 and 1.0 crn s-r. The eddy viscosity at the surface

layer -ly', was fixed at 300 cm2s-r, and -lü, at 1-00 cm2s-1, while Iú, took two

values, namely 150 and L0 cm2s-L. It is evident that reducing -l[" complicates

the time variations of the first few vertical modes particularly in the two domain

system. Preliminary computations showed that the time variation of the modal

coefficients in the two-layered one domain system (Nr :300, ¡/, :100 cmzs-r

with A' - 40, Aa : 60 rn) was not much different from Figure 5.8(ø). The time

behaviour of the modal coefficients in the two-layered two domain system rvvas very

similar to that in open sea regions described in Chapter 4.

From Figure 5.8 we note that decreasing the value of l/" greatly increases the

contribution of the vertical modes Âo,r, Ão,n in the one d.omain system, und, Ã.1,2,

Â,, it the two domain system, which are associated with the growth of the return

flow (compare these figures with Figure 5.5). This point has also been noted by

Davies (1983ø). It is again evident that the internal seiche motion with a period of

approximately t2 hrs is primarily associated with Â,2 in the one domain system

and with -11,1 and Ã.zJ in the two domain system. One would imagine that the

time behaviour of the first two vertical modes in the two domain system (Â,, .nd

Âr,r) is similar, as a whole, to that of the second mode in the one domain system.

Furthermore, the time variations of Ã.1,2 and,11,3 resemble those of Â,s ard .1¡,a,

respectively. We note that Â,s and â6,6 are significantly affected by the bottom

friction. For the two domain system the effect of the bottom friction is gradually

reduced as the mode number is increased. Although results are not plotted here,

the first vertical modes Â.2¡ anð. Â1,1 were 180o out of phase with each other and

the magnitude of .12,1 was approximately equal to -(ff1 lHùÃr,r,. In the bottom
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Figure 5.8 Time variations of the various vertical modes (at centre point A in
Figure 5.1-) induced by a step-function wind stress. A coarse grid
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layer of the two domain system the imposition of zero bottom friction excites the

first vertical mode onl¡ producing the uniform profile throughout the domain (see

Figure 5.7). In the upper domain all vertical modes are excited, thereby producing

the depth variation of the current.

In the following, the excitation of the free modes is analysed for a two-layer

two domain system. Assuming that the water, initially at rest, is subjected to a

wind stress of the form

Tsx: H(t)r"sin )(
wft

(5.3.5)

(5.3.6)

(5.3.7)

(5.3.8)

(5.3.e)

(5.3.10)

(5.3.11)

L

then the corresponding expressions for the free surface, the interface and the [/

component of the current satisfying the lateral boundary condition (5.2.3), may

be written as

(t,o : Z1,g cos (ry),
fJ\J : Ûr,, sin(ff),,

Cz,o : Z2,g cos (T¡,
(J2,1: û2,1sin (Y#)

A linear slip condition of the following form is enforced at 02 :12

_tr!",r ry+ : frü ",Hz 0oz

where the coefficient k6 is in general different from k6.

Substituting (5.3.5) to (5.3.7) into (5.1.1) to (r.t.+) yields

)UtJ _ nTg
0tL

nrHl
L

17 , Qtþr,r 0'Ûr,,
zt,o -r -HT-ATT'

lo'û'''oo'*+
dZz,o

dt
0,

+ : ryfrr,,o + ry Q - #) zz,o t -#ïW,
tP lo't'''oo'+ff:o'
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Expandin g Û¿,, in terms of the coefficient s Ã¿,t(ú) and the eigenfunctions

/n,,.(ø¿) gives

Ûr(o n,¿) : t Ã.¿,,(t)Q ¿,, f u,,(o n),

rni

r=1
(5.3.13)

(5.3.14)

(5.3.15)

(5.3.16)

(5.3.17)

where the coefficients r4.¿,r, i : 712, are to be determined. \Mith the use of homo-

geneous limit conditions the spectral formulation of (5.3.9) to (5.3.12) becomes

dAt,* _ nrg
Zt,o &L,o,t - ;fu- lr,k

H?
Q,1

AL,k,

-utT -orT
o -urT
00

?nHt ¡ , dZt,o dZz,o 
^L Àt; * ¿, -ã- : u,

where k -- 7r... ,Trù1, and

+--\z'k#Ã''u- iuÃ'''

- ry(H)zt,o az,o,k + ry G - H) 
z2,o az,o,k,

n,rV, ^ d,Z" "-l=A''tt-#:o'

dt L

0

where lc : 7r. . . ¡rrtr2. The presence of internal friction ensures the damping of the

higher vertical modes in both the upper and lower domains, hence we consider

the first vertical mode only. The linear system described by equations (5.3.14) to

(5.3.17) admits the matrix representation

fr':tfr+F, (5.3.18)

where

0

0

0

0
T: sT (5.3.1e)

n('-H)ry^PtJ nrvPzJL

L57

0 -k¡



dz t,o
dt

dzz,o-a;
dÃt,t--F
d,A,,--il-

', 
:'*ls@, * Hr)l-'/' ,

Ht*Hr)r'+s2H1H2h-eru\ Pz,t

F-

Pz¡ - Pr¡ HtHz

Pz¡ Ht * Hz

Zl,O 0

0

\M a \M
Z2,O

2L
12: 

-n

(5.3.20)

, (5.3.23)

1A

A

1

2rL

Tn(P tJHt,t)-t

0

As seen in Chapter 4, the excitation of the undamped free modes will depend

upon the nature of the eigenvalues of L If the real parts of eigenvalues are all

positive, then all of the excited modes will converge to steady state values.

The eigenvalues e are found from the characteristic equation, det(Î- eI) : g.

Considering the 
"u,r" 

ñ6 : 0; the characteristic equation is

det(Î- .I)

:e4 I gn2n2

L2

: (r2 + rcl)(e2 * nl) : g (5.3.21)

where

(5.3.22)

The presence of the undamped motion is then obvious. Note that these solutions

are equivalent to simple poles when the Laplace transform is applied (Heaps, 1966,

p.51). Since (I- pr,rlP",r) is very small, it follows that, to a first approximation,

k?

k3 ) 
: 

å ff)' n{{r' * nù+ [(fr, * H,)' - 4r,tr,zo - fflfn\

g
-1/2

which are the periods of the surface and internal seiches, respectively, driven by

r,, (Heaps, 1966). The eigenvalues of the characteristic modes for a non-zero value

of.ie6 can be found from Heaps (1966).
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The one domain system can be analysed in a similar way. For simplicity,

consider the homogeneous system with ñ¿ : 0. Again spectral solutions of the

system admits the matrix representatio

fr':1fr+F, (5.3.24)

where

-ooT0f:
sry

(5.3.25)

(5.3.26)

and

0

F-

n7f

:(\M. \M
0

Tn(PoJHo,t)-r

Since the characteristic values are purely imaginary, namely

eo : J.t(gHo)t/'( )L
(5.3.27)

the first vertical mode is undamped.

The analysis of the three-layer system is much more complicated and is not

described here. However, \ry'e note that the presence of the undamped mode de-

pends upon whether or not the first vertical mode is coupled with the higher modes

through the equation of continuity. If they are coupled, then the internal friction

for the higher modes damps the first vertical mode. In general, the contribution

of the higher vertical modes in the equation of continuity is comparatively small,

that is, lar,o,'l ((141,6,11 for all r ) 1. Therefore the first two vertical modes

(Â,, .td Ãr,r) exhibit weakly-decaying oscillations. For similar reasons the first

vertical mode of the three-layered one domain system is damped in the absence of

bottom friction.

To conclude this chapter and, at the same time, to present the results of a final

set of numerical experiments in this thesis, the influence of the changes in density
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upon the interfacial displacements in the three-layered system is considered. In

layered models the continuous depth variation of the density freld is represented

by a stack of discrete homogeneous layers. It is well-known that such an approx-

imation can produce considerable errors in determining interfacial displacements

(up to L0 Yo according to Davies (1982ó)) unless a large number of layers is used.

Due to this shortcoming, Iayered models have to be calibrated in real applications,

by modifying the density and/or the thickness of the layers.

Figure 5.9 shows how sensitive the damping of the interfacial displacements

is to the variation in density. In the calculations of the two-layered systems, po,,

is taken as 1025.8, 1026.1 and 1026.3 gcm-3, and pn,, is fixed at L027.0 9cffi-\,
whereas in the calculations for the three-layered systems, P¿,2 is taken as 1026.3,

1026.5 and 1026.7 gcm-!, while p¿,, arrd pi,t are fixed at 1025.8 and 7027.2

g cm-T, respectively. It is evident that the phase and amplitude of the internal

seiche motion are significantly affected by the changes in density. Given the two-

layered system (Figures 5.9(ø) and (b)), we note that increasing p;,zfrorn 1025.8

to 1026.3 g crn-! (and so reducing the difference in density between the upper

and lower layers) gives rise to an increase in the wavelength and the amplitude of

the internal seiche motion. The mean values of the interfacial displacements are

also affected in both systems but in different ways: for the one domain system

the peaks of the maxima and minima are displaced downwards, whereas for the

two domain system the peaks of the minima are displaced downwards while the

peaks of the maxima remain almost at the same level. Calculations using the

three-layered system also exhibit changes in the wavelength and amplitude of

the internal seiche motion. \Mith the changeof. pn,, in the three-layered system,

changes in the mean value of (¿,r were particularly significant. The principle effect

of decreasing P ¿,2 from 1.0267 to 1.0263 g crn-s (and hence reducing the difference

in the density between the surface layer and the pycnocline) is the increase of the

downward displacement of the mean value of (¿,r. With ly'.p : 70 cmz s-t , the
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Figure 5.9 Time variation of interfacial displacements (at corner point B in Figure
5.1) of three-layered one and two domain systems computed using a
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lower surface of the pycnocline was significantly less affected in both one and

two domain systems. However, as the value of N" is increased to 150 cm2 s-7

the effect of the density variations upon the mean displacement of (z,o becomes

apparent (Figure 5.9(d)). The effects of density variations upon the interfacial

displacements of the three-layered two domain system are quite similar to those

of the one domain system but as the value of Pt,z is reduced, a modulation seems

to appear in the time variation of (r,r (Figure 5.9(d)).

In calculations using a Galerkin model accounting for a continuously stratified

sea, Davies (1982ó) showed that the jei-like return flow within the pycnocline

is developed primarily due to the reduction of the eddy viscosity there. The

sensitivity of the layered model to the depth variation of the density leads to a

slightly different interpretation. Figure 5.10 indicates that in layered models the

intensity of the return flow can be significantly enhanced by ihe density variation

particularly when the value of -l[' is low (Figure 5.10(ø)). As the value of l/" is

increased from 10 to 150 cm2 s-r, the intensity of the return flow is substantially

reduced (Figure 5.10(ó)). Although results are not plotted here, the use of a stress-

free condition at the base of the pycnocline further enhances the transport through

the return flow. However, as seen in Figure 5.6 the return flow in the two domain

system does not take a jet-like form. Calculations also show that as the return

flow within the pycnocline intensifies the oscillations of the current at the surface

layer are enhanced, whilst the magnitude of the layer-mean velocity in the bottom

layer is not affected much by the change in P r.
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CHAPTER 6

CONCLUSION

A series of calculations for idealised situations involving wind induced flows

in stably stratified waters has been performed to obtain an understanding of the

vertical structures of these flows. The models used were layered and included a

Galerkin-finite element model with a basis set of B-spline functions and a Galerkin-

spectral model with a basis set of numerically determined eigenfunctions. It was

found that the Galerkin-finite element model accurately portrays the vertical struc-

ture of wind-induced motion in stably stratified flows, while the Galerkin-spectral

model efficiently portrays the physics of the motion. Interactive use of these two

methods will be of great use in improving insight into stratified flows when a well-

formed layered system can be assumed and the vertical structure of eddy viscosity

is time-invariant.

The models can cope with arbitrary variation of the vertical eddy viscosity

within each layer and, in theory, the vertical eddy viscosity profile with any form

of discontinuities can be prescribed al, any level of the water column. Obviously,

increased flexibilty of the model in incorporating local variation of eddy viscos-

ity has advantages over analytical approaches such as in Heaps and Jones (1983,

1985). The model can allow for the effects of a wall boundary layer near the sea

surface, smooth variation of eddy viscosity across the interfaces and the bound-

ary layer near the sea bed. Furthermore, a calibration of the numerical model,

which involves changing the eddy viscosity and thickness of the surface layer and

the pycnocline, can be done in a flexible manner. Such calibration is inevitable
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in practice, due to the uncertainty in choosing input parameters and dividing a

hydrodynamic system into a finite number of homogeneous layers.

Attention was directed at comparing two interfacial conditions, the first be-

ing the continuity of horizontal current and shear stresses, and the second being

the stress-free condition imposed tentatively at the base of the pycnocline which

retards the downward penetration of wind energy. The assumption of a stress-

free condition at the base of the pycnocline diversifies the dynamic response of

wind-induced flows and through a series of experiments their use \ryas found to be

very encouraging in strongly stratified cases. The upper domain is driven by wind

shear and body forces and the lower domain is essentially driven by body forces,

although in a bounded region the two domains are coupled through the kinematic

constraint of the velocity field. For realisation of the full potential of the stress-free

interface condition, a set of numerical experiments is needed in two-dimensional

basins in which the water body experiences rotational effects and lateral bound-

ary constraints. In an open sea region a nondissipative free mode is excited in the

absence of the bottom friction. In a stratified lake of finite length the excitation

of a nondissipative free mode depends upon whether the nondissipative mode is

coupled with the higher modes or not. The imposition of a stress-free bottom

boundary condition in a two-layered two domain system excites the free mode.

With the basis set of eigenfunctions, we have identified that contribution to the

internal seiche motion in a stratified channel predominantly comes from the sec-

ond vertical mode. In the two domain system the two first vertical modes act as

a whole like the second mode of the one domain system.

The rate of convergence of the spectral method depends upon whether non-

physical oscillations arise as a consequence of the Gibbs phenomenon. It is known

that classical continuous functions such as trigonometric functions, Chebyshev and

Legendre polynomials, are all susceptible to internal discontinuity (Gottlieb and
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Orszag, 1977). However, the cause of nonphysical oscillations is slightly differ-

ent here because the eigenfunctions are discontinuously defined through a modal

matching technique. We note that the presence of high-level background turbu-

lence activity of tidal origin at the bottom layer is helpful in suppressing the Gibbs

phenomenon. The compatibility of external boundary conditions and limit condi-

tions for basis functions is also of importance in determining whether oscillations

will be produced. The basis set of B-spline functions \¡¡as accurate in reproducing

surface currents and the high shear of the current within the pycnocline. By con-

centrating knots across the interfaces and high shear regions the rapid variation

of the current profiles was accurately reproduced without any spurious numerical

oscillations.

A two-layered model has been proposed for the study of the local generation

of inertial motion driven by a local wind stress. As a major feature, the model

incorporates the downward flux of wind energy through the base of the pycnocline

and horizontal dissipation. The inertial motion in the surface layer can be modelled

and calibrated in a realistic manner, taking into account local information available

on stratification. The pycnocline acts as an energy absorber in controlling the

damping of inertial motion along with the coefficients of horizontal dissipation

and bottom friction. Results obtained in the study, such as the sensitivity of wind

induced motion to changing the values of eddy viscosit¡ particularly within the

pycnocline, the pycnocline thickness and the coefficients of interfacial friction, will

serve as a valuable basis for realistic applications in the future..

Follow-up research will include modeling wind induced flows in two-dimensional

horizontal or vertical planes in the presence of lateral boundaries and/or with

non-uniform bottom topography. To solve fully three-dimensional equations a

time-splitting and/or space-splitting technique (Heaps and Jones, 1983) may be

required to reduce computational effort. Application to Bass Strait, as an ex-
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tension of the previous studies based on depth-integrated homogeneous models

(Fandr¡ 1982) and a thrçe-dimensional finite difierence model (Arnold and Noye,

1986), is particularly envisaged for the study of wind circulation during the pe-

riod of summer stratification. Finally, the methodology used in this thesis can be

applied to a wide range of problems including thermal exchanges between the soil

and atmosphere and groundwater flows.
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APPENDIX I

Some basic properties of the multilayered self-adjoint eigenvalue problem given

in Chapter 3 are presented. Let )¿,, and )¿,¡ be two distinct eigenvalues deter-

mined from (3.2.1) to (3.2.a) and let f ,i,¡,, und l.;,¡,xb" the corresponding solutions

in f)¿,¡. \Mithout loss of generalityr'i :0 is assumed. Thus, for f,)s,¡

fi(r,,,#l * \o,,ro,¡,,:0, (,n.1.1)

*(r,,,#l* ro,r"fo, i,k:01 Ø.r.2)

where j :7,... ¡rrto. Taking the scalar products defined by (2.6.\ of (4.1.1) and

(,{.1.2) with /0,¡,¡, f o,¡,r, respectively, and subtracting the two resultant equations

gives

Jo

(lo,' - Ào,t) I
j:l

to

| *'),', I o,¡,, r o,¡,r, doo
Po,i

P o,t

: 
å H{1,'""n' ,ro,¡,nh(r,,,#l - to,,,,ft(ro,,#¡\ oo,

(A.1.3)

Substituting conditions (3.2.2) and (3.2.3) into the right-hand side of (4.1.3) yields

Js
P o,i

P o,tj:l T,"
f o,¡,, f o,¡,xdoo

: - þo,r(lo,r,,(O).fo,r,*(0) - .fo,r,u(0).f0,r,,(0))

* þo,z(f 0,",,(L)f o,",*(1) - f o,",t (1)fo,r,'(1)) : 0. (A.1.4)

Since Ào,, * Às,¡, it follows that the eigenfunctions are orthogonal with respect

Js

oj
(10," - lo,r) I

D lr'"',, ,Io'i'' Io'¡'*d'os: g'P o,i

Po,t

j-r

j:l
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It can be readily shown that all eigenvalues are real. Suppose the eigenvalue is

complex, say I - ¡(n) f aX'), where Xf) + 0. Then, for C)6,¡,

Js

fr(r,,,#l+ )[")/[î]," - ÀÍ') ft')¡,,:0, (.4.1.6)

*(r,,,#l+ r[")r[1]," + À[')/[i],' : o, (A'r'7)

where j :r,.-.tlrtro.Taking the scalar product (2.5.4), wittr /['].,,. in (4.1.6) and

witfr /['],," in (4.1.7), and then subtracting the two resultant equations yields

ÀÍ') t H l-': , frr[:/,'l' 
+ çrf,',),''¡')aoo

t P o,i

P o,t l,'," o' ,þt:ì,h(r',#l - rs')¡,.h(r,,,#))

j:l

Js

j:l

Integrating by parts, and using:

(ro,,#l: ,,o,,rt,*1,,,

@,,,*) : go,,tl',I,.,

(ro,,#l: go,,t'l),,,

('o,,#):u' ¡(¡)
,2 J o,B,r , at ao:I,

at oo :0,

at oo :0,

at oo :7,

doo.

(A.1.8)

(A.1.e)

(A.1.10)

(A.1.11)

(A.r.72)

we have

ul,X)' + (r8',)¡,,)' dos - 0. (A.1.13)

However, this is impossible and, so it follows tfrat ,l[t) : 0 and the eigenvalues are

À[')
Jst

j:L

real.
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For Bs,1 ) 0 and Bs,2 ( 0 the system has only non-negative eigenvalues

Taking the scalar product (2.5.4) of (3.2.1) with /0,¡,,, yields

r?,¡,, dor,

(A.7.14)

wherer:1r...,,TTt,g

By integrating the left hand side of (4.1.14) by parts and by using the limit

conditions in (3.2.2) and (3.2.3), we have

ÐH Iu',,' ,ro,¡,,h(rro,,kld,os:-^,É H l,'""0' ,

Jst
j:l

Po,i

P o,t, l*'"" ot ,ro,¡,'h('0,,
df o,¡,,

doo
doo

: -(go,r.f|,r,,"(o) - þo,rf3,",,(1)) - Éj=t

Then, it follows with Bs,1 ) 0, þo,, ( 0 that

P o,i

P o,t lr'"" ot ,",,(!!#)
2

doo.

(A.1.15)

0 (,4.1.16)

(A.1.77)

D f;-,ro,,,.h(,r,rk)
Jo

j:1

P o,i

P o,t
do0

and hence from (4.L.14)

Js

-l't
j:l

P o,i

P o,t Ir'"" ot ,r"0,¡,, 
dos 1 o'

which implies that )e ) 0
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APPENDIX II

An eigenequation in a three-layered one domain system is presented for the

piecewise constant eddy viscosity profile given as

lf,o;: F*

Itro,z : F p,

Itro,s: ltrb,

0(ø6(€0,r,

(o,r ( oo 1€o,2,,

to,z 1os (-7.

(A.2.1)

(A.2.2)

(A.2.3)

(A.2.5)

(A.2.6)

(A.2.7)

(A.2.8)

(A.2.e)

(A.2.10)

With þoJ :0, 0o,z: 6, the eigenequation takes the form

cos{ø(s,1} cos{o1ø(€o,r - €o,r)} cos{o2u(7 - €o,z)}

+Er t sin{ø{s,1} sin{o1u.r(€0,, - €o,z)} sin{o2ar(1 - €o,z)}

+R;'cos{ar(¡,1} sin{o1ø((o,r - {o,z)} sin{o2cu(1 - (o,z)}

-(RtR )-r sin{ø(s,1} cos{o1ar(€o,r - €o,z)} sin{o2c.r(l - {o,z)} : ¡, (A.2.4)

where

or: (lt,/ltì'/',

@2 : (tt,l tt a)t/' ,

Rr : (p "lp)0-t,llt,)ot 
: (p,lp,)oit,

Rz : (p 
"lp ")0.t "ltt,)(orlor) 

: @ "lp)@z/ot)-r,
Pr: Po¡', P, : Po,z, P" : Po,s'

The eigenvalues are given by

\o : u2 þr.
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APPENDIX III

Figures 4.3(a) - (g) Vertical variations the first five vertical modes

computed numerically using various eddy vis-

cosity profiles

Tables A.S(a) - (e) Values of a¿,¡,r, I ¿,r(L), Q i, \i,, and (Þ¿,, com-

puted using various eddy viscosity profiles
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One domain system (i=0)

f ¡,,
-4.O -2.O 0.0 2.O 4.0

(a)

One domsin system (i=0)

f ¡,,
-8.0-6.0-4.0-2.0 0.0 2.0 4.o

One damain system (i=0)

li,,
-2.O 0 .0 2.O

(b)

O¡rc domøin system (i=0)

Íi,
-2.O 0.O 2.O

)t

(c)

One domain slstem (i=0)

,r ¡,,

-4 .O -2.O 0 .0 2.O 4 .O

I
I
I

r=l
r=2
r=3
r=4
r=5

(d)

Figure n.S(a) Vertical variations of the first five vertical modes of the one domain
system, obtained using the profile in Figure 3.1(d), with: A.:25) Ap-ro)
Aa=215 ni pr:1025.8, p":1926.5) p B-1o27.2 g crn-31 þoJ: go,2:o; and
(o) Nr =1000r Np:10, jV¡:100 

"m2"-t:, (b) Nr =1000r N.p:50, Na=100;
(") ìVr -1000r Np:150, N.a:100 .^2"-11 @) Nr:1000: N¡:10, N,:1000

"rn2"-7; (e) Nr :150r Nr":10, NB-1000 cm2s-r.

(e)
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One domqin system (i=0)

-4 .0 -2.0 2.0 4.0

(a)

One domain system (i=0)

I ¡,,
-6.0 -4.O -2.0 0.O 2.O 4.0

One domain system (i=0)

f i,,
-2.O 0 .0 2.O

One domain slstem (i=0)

f ¡,,
-2.O 0.0 20

f i,,
0.0

I

(b) (c)

One domain system (i=0)

f i,,
-4.O -2.O O.0 2.O 4.O6.0

r=7
r=2
r=3
r=4
r=5

(d) (e)

Figure 4.3(ó) Vertical variations of the first five vertical modes of the one domain
system, obtained using the profile in Figure 3.1(d), with: Ar-25) Ap-40)
A¿:185 mi pr:L025.8, pr=1926.5) p 8-1027.2 g cnr-3i Êo¡: 90,2:o1 and.

(") ÀIr:1000: Np:10: N.a:100 crn2s-L1 (ä) jVr -1000, ]V.p:50: jVs:100;

(") Nr -1000, À/p:150: N¡=100 .*2"-'1(d) Nr :1000: JVe=10: Ns:1000
.*2"-r i (") Nr :150r À/p:10, N¡:lQQ0 ctn2s-L,

I
I

I
I
I
I
I
I
I

I
I
I
I
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One dornain system (i=0)

f ¡,,
-10 -8.O -6.0 -4.0 -2.O 0.0 2.O 4.0 6.0 8.0 10

(a)

Onc domain system (i=0) One domaín slstem (i=0)

.f¡,, ft,,
-4.O -2.O 0.0 2.O 4.O -8.0 -6.0 -4.0 -2.0 0.0 2.o 4.0 6.0 8.0

(b) (c)

Figure ,t.S(c) Vertical variations of the first five vertical modes of the one domain
system, obtained using the profile in Figure 3.1(d), with: Ar:6om;
pr=1o25.8¡ pp:1o26,5t pB:lo2z.2 gcrn-gi go¡:9o,2:0; Np-10, N¿:100
cn¿2s-r; and (a) Ap:10: A¡=180 nti Nr:1000 crn2s-1; (b) Ap=10: A¿:180rn;
Nr :150 .rn2"-t1(c) Ap-nO, A¡:150 rni Nr:1000 ctt2"-L.

r=7
r=2
r=3
r=4
r=5

\

l
I
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Two domain system (i=l ,2)
f ¡,,

-6.0 -4.O -2.O 0.0 2.O 4.0 6.0

Two domain system (i=1,2)

4.0

r=l
r=2
r=3
r=4
r=5

(ø)

Two domain system (i=l ,2) Two domsin Ðstem (i=1 ,2)
f ¡,,

-6.0 -4.0 -2.0 2.O -10 -8.O-6.0-4.0-2.0 0.0 2.O 4.O 6.0 8.0 10

(c) (d)

Figure ,A'.3(d) Vertical va,riations of the first five vertical modes of the two domain
system, obtained using the profile in Figure 3.1(d), with: pr:to25.8¡
p p:1o26.5, p p:1o27.2 g crro-s; 91,7: 92,2=o; Np:10, N.s=100 crn2s-L;

and (o) Ar:25¡ Ap:10, AB=2l5mj Nr:1000 cm2s-t1 Þ:r¡: þZ,Z:æ; (b)

Ar:25¡ A.e:10, An:2!írni Nr :150 .rn2"-ri Þl,l: 02,2:o; (c) Ar:66,
Ap:10, A.a:180 mi Nr :1000 .*2"-r; Þl¡= 92,2:*; (d) Ar:Og, Ap:40,
A¿:150 mi Nr =1000 cm2s-t; 9t¡: Ê2,2:0.

-4 .O -2.O
f ¡,,

0.0 2 0

I

(b)

Íi,,
0.0

r=l
r=2
r=3
r=4
r=5
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Two domain sYstem (i=1,2)

I ¡,,
-8.0-6.0-4.0-2.0 0.0 2.o 4.0 6.0 8.0

Two domain system (i=l ,2)

li,,
-4.O -2.O 0.0 2.O 4.O

-6.0 -4.0 -2.0 4.0 6.0

(a)

Two domain system (i=1 ,2)

(b)

Two damain system (i=1 ,2)

l¡,,
-4.0 -2.0 0.0 2.o 4.0

Íi,,
0.0 2 0

r=1
r=2
r=3
r=4
r=5

(c) (d)

Figure ,t.e(e) Vertical variations of the first five vertical modes of the two domain
system, obtained using the profile in Figure 3.L(d), with: Ar:25, Ap=4e,
aa:185 mi pr:7025,8,t p e=I026.5¡ p a:1027.2 g cm-g; N.a:100 cm2s-li and
(ø) Nî:lgg0, Np :lo crn2s-l; Þr,t: Þ2,2=oi (D) as in (ø) but with Np
:l5o c¡n2s-1; (c) as in (ø) but with Np :60 ctn2s-r; (d) Nt:150, N¡":tQ
.n 2 

"-r i 
g7¡=0, 92,2=*.
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One domain slstem (i=0)

l¡,,
-4 .O -2.O 0 .0 2.O

(a)

One domain system (i=0)

Í¡,,
-2.O 0.0 2.O

One domain system (i=0)

4.0

r=l
r=2
r=3
r=4
r=5

(b)

Two domainsystem (i=1,2) Two domøinsystem (i=1,2)

f ¡,,
-2.O 0.0 2.O

f ¡,,
-2 0 0.0 2.o

t
t
t
t
t
¡

I
I
I
I
I
,
t
I
,

-4 .O -2.O
Í i,,

0.0 2.O

(c) (d) (e)

Figure 4.3(/) Vertical variations of the first five vertical modes in the two-layered
one and two domain systems, obtained using the profiles in Figure
3.1(c), with: A1:40, AB-60 mi Pr:1025.8, p"-1027.O gcrn-s1 Nr=300,
N.B:100 .rr2"-tl and (a) @0do,r:-0.125 c¡n2s-r, Þo,z=*i (ö) a6B¡,1=¡.125

cn2"-1, þo,z:æ) k) go¡: þo,z--oi @) þtt :þzp=01 (") atþr,r--0.125

"n.2 "-L , 9z,z :*.

t
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One domain system (i=0)

f ¡,,
-6.0 -4.0 -2.0 0.0 2.o 4.0

One domain system (i=0)

f ¡,,
-4 .O -2.O 0 .0 2.O 4 .0

t
I
¡
I
I
,
,
¡

(a) (b)

One domain system (i=0)

l¡,,
-16 .0-14 .0-12 .0-10 . O-8 .0 -6 .0 -4 .O -2 .O 0 .0 2 .O 4 .0 6 .0

r=l
r=2
r=3
r=4
r=5

(c)

Figure A.S(g) Vertical variations of the first five vertical modes in the one domain
system, obtained using the profile in Figure 3.1(d), with: Ar:25, A¡,=!g,
As:60 rni Pr=1O25,8¡ P e:1026,5¡ P p:7027.2 g crn-3; Nr=300: N¡:100

"*2 "-11 and (ø) Np:50 .m2 "-ri c'OþoJ:-1,125 cm2s-' , 9o,r:*1 (b) as in
(ø) but with ogBs,t:o125 .rn2"-11(c) as in (ø) but with N":t0 cnt2s-r.
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Table 4.3(o) Values of a,6,¡,r,.f¿,"(1), o¿ô, 

^i,r 
and (Þ¿," of the first six vertical modes

computed using various eddy viscosity profiles

Ar:25,4' = 10, 
^o=2l5m,ao = 192.0, o¿oltr = 1000, aoþe - 150, a¿oþ"=700 cm2s-L

r Clo,o,r ao¡,, Clo,2,, "f0,"(1) Oo)0,, À0," (Þ0,"

1 1.00000 0.90000 0.86000 1.000 0.000 0.000 0.998
2 0.00016 -0.09967 -0.13887 -1.058 0.099 5.189 1.806
3 0.00016 -0.09916 -0.13592 L.2L5 0.407 2r.2t3 1.406
4 0.00015 -0.09828 -0.13090 -L.432 0.939 48.935 1.037
5 0.00015 -0.09702 -0.12385 1.668 1.708 88.979 0.776
6 0.00014 -0.09538 -0.11492 -1.897 2.7t9 r4t.643 0.606

Ãr : 25,A' = 10, as : 2l5m,ao = 188.0, o¿o þ r = 1000, do þ, : 50, o¿o þ e = 100 cm2 s-L

r ao,o,r CLy,L,, a0,2,, "f0,,(1) Oolo," )0,, (Þ0,"

1 1.00000 0.90000 0.86000 1.000 0.000 0.000 0.998
2 0.00016 -0.09967 -0.1.377r -0.999 0.098 5.224 1.984
3 0.00015 -0.09919 -0.13153 r.027 0.388 20.655 1.855
4 0.00015 -0.09841 -0.r2t64 -r.146 0.867 46.t26 t.497
5 0.00014 -0.09729 -0.10820 1.405 1.549 82.410 1.023
6 0.00012 -0.09582 -0.09139 -1.800 2.459 130.818 0.644

Ar = 25,Ae : 10, as : 2l5m,ao = 186.4, do þ r = 1000, do lt e : 10, ao þ ø - 100 cm2 s-r

"fo,'(1)
1.000

-0.703
0.623

-L.643
3.275

-4.533

n.r:25,4.p = 10r 
^a=2I\m,oo:101.4, 

o¿oþr = 150, o¿oþe=70,asLLr=100 cmzs-r

r Cto,o,r do,t,, Ctr0,2,, "fo,r(l) OoÀ0,, )0,, Oo,"
1 1.00000 0.90000 0.86000 1.000 0.000 0.000 0.998
2 0.00015 -0.09887 -0.12998 -0.684 0.087 8.636 3.474
3 0.00014 -0.09700 -0.11181 0.602 0.258 25.497 3.677
4 0.00011 -0.09330 -0.07914 -1.581 0.603 59.545 0.803
5 0.00008 -0.08677 -0.03192 2.920 L.232 r2r.5r9 0.255
6 0.00004 -0.07803 0.0127r -3.569 2.tt7 208.830 0.t72

Ar=25,4.p = 10, t"=2l5m,do=875.4,a0þr = 150, o¿oþe- l0,asp":1000 cm2s-7

r do,g,r ao,L,r ao,z,, "f0,"(1) OoÀ0,, À0," (Þ0,"

1 1.00000 0.90000 0.86000 1.000 0.000 0.000 0.998
2 0.00014 -0.09738 -0.11540 -0.179 0.223 2.555 8.103
3 0.00007 -0.08549 -0.02409 3.077 1.359 15.525 0.230
4 0.00000 -0.05424 0.05176 -1.221 4.847 55.305 1.023
5 0.00000 -0.04310 0.04278 0.642 6.328 72.298 2.148
6 0.00001 -0.01119 -0.00431 -L.475 11.928 136.266 0.965

r
1

2

3
4
5

6

ctro,o,r

1.00000
0.00015
0.00014
0.00012
0.00009
0.00006

ctro,t,,

0.90000

-0.09969
-0.09941
-0.09886
-0.09785
-0.09643

ctr 0,2,,
0.86000

-0.13168
-0.11609
-0.08752
-0.04267

0.00681

0 o )0,"
0.000
0.088
0.263
0.609
1.238
2.127

)0,"
0.000
4.725

14.119
32.675
66.436

tt4.t45

Qo,"
0.998
3.329
3.461
0.740
0.203
0.107

191



r
1

2

3

4
5

6

Table .A'.3(ö) Values o1 o,¿,¡,r, /¿,"(1), oti, \¿,r and (Þ¿," of the first six vertical modes
computed using various eddy viscosity profiles

Ar =25,Ae = 40,4e = 185rn,ao = 198.0, otoltr, = 1000,4sp, - 150, o¿ol-I e= I00 cm2s-r

"f0," (1)
1.000

-1.123
1.354

-t.477
1.485

-L572

Ar=25,4" = 40,4¡,:185rn,os = 182.0, o¿olj, - 1000, otoltre=50,aoþ"=I00 cm2s-r

r ao,o,r ao¡,, do,2,r "f0,"(1) doÀ0,, À0,, (Þ0,"

1 1.00000 0.90000 0.74000 1.000 0.000 0.000 0.998
2 0.00022 -0.09962 -0.22490 -0.845 0.089 4.937 2.448
3 0.00016 -0.09929 -0.1.4626 0.956 0.320 17.589 1.933
4 0.00008 -0.09864 -0.0324t -1.528 0.764 41.998 0.901
5 0.00002 -0.09756 0.06761 r.723 1.456 80.040 0.693
6 -0.00000 -0.09624 0.10385 -1.596 2.283 125.448 0.7t6

Ar = 25, Le = 40,4, = 185rn, ao = 175.6, oto þ, = 1000, asp, - L0, as p, = 100 cm2 s-t

r Qo,o,, ao¡,, do,z,, "f0,"(1) 0oÀ0," À0,, (Þ0,"

1 1.00000 0.90000 0.74000 1.000 0.000 0.000 0.998
2 0.00019 -0.09973 -0.18500 -0.375 0.040 2.334 4.656
3 0.00007 -0.09962 -0.00603 1.669 0.182 10.364 0.765
4 -0.00000 -0.09922 0.10832 -0.787 0.467 26.617 1.380
5 0.00002 -0.09869 0.05983 2.439 0.77t 43.94t 0.341
6 0.00012 -0.09749 -0.08974 -2.04I r.436 81.817 0.362

Ar=25,Lp:40,a¡, = 185r¿,ao = 90.6, otoþr=160,asp,r=\0,do11 e- 100 cm2s-r

r Ao,o,, Ctro,r,r Ctr 0,2,, "f0,, 
( 1) 0 olo," lo," (Þ0,"

1 1.00000 0.90000 0.74000 1.000 0.000 0.000 0.998
2 0.00019 -0.09935 -0.18348 -0.371 0.040 4.508 4.728
3 0.00006 -0.09792 -0.00420 1.619 0.181 20.033 0.811
4 0.00000 -0.09495 0.10227 -0.730 0.461 50.930 1.566
5 0.00002 -0.09165 0.05160 2.273 0.767 84.725 0.395
6 0.00011 -0.08482 -0.07838 -r.647 L.42t 156.855 0.526

Ar =25tA.p = 40,4s:18512¿, a¿o:756.6,anoþr= l50,asp,.:I0,a.sLI , = L000 cm2s-l

"fo,' 
(1)

1.000

-0.238
0.225

-1.061
2.186

-0.407

do,o,r
1.00000
0.00023
0.00020
0.00015
0.00010
0.00006

T ao,o,r
1 1.00000
2 0.00018
3 -0.000004 0.00011
5 0.00009
6 0.00000

ao¡,,
0.90000

-0.09959
-0.09907
-0.09814
-0.09686
-0.09525

do¡,r
0.90000

-0.09926
-0.09470
-0.08428
-0.07958

0.06529

ú0,2,,
0.74000

-0.24559
-0.20228
-0.13588
-0.06158

0.00628

ú0,2,,
0.74000

-0.16882
0.10205

-0.08149
-0.06309

0.06515

0oÀ0,'
0.000
0.102
0.435
1.020
1.833
2.852

@olo,'
0.000
0.049
0.485
r.475
r.952
3.512

À0,"

0.000
5.169

21.996
51.517
92.611

144.080

À0,"

0.000
0.654
6.4t2

r9.497
25.800
46.4r9

(Þ0,"

0.998
1.659
] 205
1.016
0.974
0.859

Oo,"
0.998
5.328
2.Lt2
0.751
0.353
0.764
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Table 4.3(c) Values of a,¿,¡,,,.f;,"(1), otå, Ài,r and (Þ¿," of the first six vertical modes
computed using various eddy viscosity profiles

Ar:25,A' = 15,as = 60rn, as = 157.5, d-o\tr, =300,asp,* - 150, aoþs = t00 cmzs-r

T ao,o,,
1 1.00000
2 0.00040
3 0.00027
4 0.00013
5 0.00002
6 -0.00001

T Cïo,o,r

1 1.00000
2 0.00038
3 0.00024
4 0.00006
5 -0.000006 0.00001

ao,o,,
1.00000
0.00037
0.00007
0.00000
0.00013
0.00017

T úo,o,r
1 1.00000
2 0.00032
3 0.00001
4 -0.000025 0.00000
6 -0.00002

r ão,o,r
1 1.00000
2 0.00036
3 -0.000004 0.00017
5 0.00004
6 -0.00000

do¡,,
0.75000

-0.23996
-0.2073t

-0.15830
-0.10283
-0.04532

Qo,L,r

0.75000

-0.24229
-0.21934
-0.17305
-0.12084
-0.06971

úo¡,,
0.75000

-0.24705
-0.22929
-0.20766
-0.16587
-0.t247r

do,t,r
0.75000

-0.22003
-0.09690
-0.02344

0.04808
0.04996

ao,L,,
0.75000

-0.24674
-0.21027
-0.12838
-0.07257
-0.03123

do,2,,
0.60000

-0.34914
-0.19910

0.03564
0.06289
0.07408

ctro,z,r

0.60000

-0.32480
-0.L3246

0.08249
0.L2243
0.05109

û0,2,,
0.60000

-0.29924
0.12340
0.20625

-0.03345
-0.12509

cl0,2,,

0.60000

-0.25359
0.06819
0.05628

-0.05376
-0.02013

ü0,2,r
0.60000

-0.28725
0.2tt4L

-0.12770
0.01064
0.03407

"f0,"(1)
1.000

-t.292
1.555

-1.430
r.42t

-1.356

.f0,"(1)
1.000

-0.956
1.789

-2.27I
1.653

- 1.635

"f0,"(1)
1.000

-0.598
3.150

- 1.619
5.338

-1.637

"f0,"(1)
1.000

-0.488
0.479

-0.815
3.808

-0.4t7

0oÀo,t
0.000
0.tt2
0.515
1.195
2.LI'
3.351

0olo,"
0.000
0.084
0.360
0.972
1.781
2.76t

0olo,'
0.000
0.029
0.24t
0.509
I.074
T,7T2

0olo,"
0.000
0.354
2.226
3.952
7.786

11.557

0o)0,"
0.000
0.033
0.481
t.664
2.716
3.725

À0,"

0.000
7.t26

32,73I
75.873

134.288
2r2.777

À0,"

0.000
5.910

25.290
68.246

125.003
193.793

À0,"

0.000
2.153

17.684
37.343
78.685

125.488

lo,"
0.000
5.080

31.916
56.661

111.633
165.700

À0,"

0.000
0.493
7.113

24.6It
40.150
55.075

(Þ0,"

0.999
1.392
1.018
I.t23
1.158
t.299

(Þ0,"

0.999
1.863
0.724
0.47t
0.735
0.841

(Þ0,'

0.999
2.283
0.243
0.387
0.091
0.338

(Þ0,'

0.999
3.061
1.709
3.187
2.924
1.281

Oo,"

0.999
2.385
0.552
0.418
0.178
1.950

Ãr = 25,4, = 15,4', = 60nr, ao = I42.5, o¿oþ, - 300, aoþe =50,aoþ" = 100 crn2s-1

Ar=25,4p = 15,4a = 60rn,oo = 136.5, o¿oFr - 300, doþr=l0,dolj,=I00 cmzs-7

r
1

2

3
4
5

6

¿'r=25,Ae=I\m,àø=60m,ao=697.5,dolJ, - 300, o¿olte = 150, o¿olJe = 1000 cm2s-r

"f0," (1)
1.000

-0.527
r.052

-0.600
0.567

-1.300

Ar = 25,4.p = 15, ae = 60m,ao = 676.5, a¿ o þ, = 300, as p, : I0, d olt, : 1000 cm2 s-r
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Table A'.3(d) Values of o,;,¡,,, Í;,,(I), o¿i, 
^i,r 

and (Þ¿," of the first six vertical modes
computed using various eddy viscosity profiles

Ar : 25, Ãe = l}m,at - 757.1 atþr- 1000, dtþ, = I50,a1¡,t 
" = 100 cm2 s-r

f (tr!,o,r dt,!,, (12,0,, "ft,"(l) O¿t\t,, Àr,"
I 1.00000 0.28571 1.00000 1.000 0.000 0.000
2 0.00031 -0.46478 0.00000 -2.578 0.461 6.097
3 0.00000 -0.00654 0.00000 1.002 1.899 25.087
4 -0.00010 0.t54t2 0.00000 -2.567 4.t55 54.881
5 -0.00000 0.00656 0.00000 1.009 7.597 100.342
6 0.00006 -0.09151 0.00000 -2.545 11.543 752.459

Ar : 25, Ãe = l}m, a1 - 728.5, atIr r - 1000, o¿tlr p = 50, ottþ 
" ='100 cm2 s-r

aL¡,,
0.28571

-0.60814
-0.17707

0.02443
0.15473
0.04771

üL,L,,
0.28571

-0.69049
-0.55710
-0.33855
-0.11332
-0.00000

at,L,r
0.2857t

-0.34153
0.08301
0.06606

-0.08311
-0.00780

42,O,,
1.00000
0.00000
0.00000
0.00000
0.00000
0.00000

ã2,O,,
1.00000
0.00000
0.00000
0.00000
0.00000
0.00000

ctr2,o,r

1.00000
0.00000
0.00000
0.00000
0.00000
0.00000

"ft,"(1)
1.000

-3.7r7
2.857

-r.1,t2
4,300

-1.978

0 r Àr,'
0.000
0.182
1.204
2.074
3.844
6.774

d rÀr,"
0.000
0.038
0.277
0.748
t.427
1.934

d r Àr,'
0.000
0.111
0.374
0.963
1.566
2.665

À r,"
0.000
2.502

16.534
28.470
52.769
92.988

À r,'
0.000
0.540
3.863

r0.443
19.906
26.974

À r,'
0.000
9.161

30.852
79.349

128.984
2t0.425

(Þr,"

0.999
0.764
r.997
0.769
1.989
0.779

(Þ r,"
0.999
0.428
0.656
1.872
0.333
1.090

(Þr,"

0.999
0.320
0.078
0.079
0.324
1.999

(Þr,"

0.999
0.479
1.181
T.42I
0.432
t.974

(Þr,"

0.999
1.338
1.820
t.723
t.415
1.987

r dt,o,r
1 1.00000
2 0.00041
3 0.00012
4 -0.000015 -0.000106 -0.00003

T ãL,o,r
1 1.00000
2 0.00047
3 0.00038
4 0.00023
5 0.00007
6 -0.00000

r dr,o,r
1 1.00000
2 0.00023
3 -0.000054 -0.000045 0.00005
6 0.00000

Ar = 25,Ae : 10rn, o-1- 7I7.I, dtFr = 1000, ottþe- I0,a1¡-t 
": 

L00 cm2s-L

"fr,' (1)
1.000

-4.394
9.282

-9.270
4.369

-1.000

¿^r:25,Ae = I\mtor : 110.0, atþr - 150, ottþ, = l0,ayp," = L00 crn2s-L

r dr,o,r at,!,r Q2,o,r "ft,"(l) drÀr,, Àr,,
1 1.00000 0.28571, 1.00000 1.000 0.000 0.000
2 0.00039 -0.57854 0.00000 -3.477 0.035 3.228
3 0.00007 -0.10975 0.00000 1.850 0.216 19.650
4 -0.00004 0.06560 0.00000 -1.556 0.353 32.104
5 -0.00009 0.13558 0.00000 3.701 0.740 67.327
6 -0.00000 0.00660 0.00000 -t.022 1.139 103.588

Ar :25, Ae = ljm,a1 = 121.4, atþr - 150, dtlj e = 50,a¿tF 
" -- 

L00 cm2s-r

.fr,.(1)
1.000

-1.651
1.159

-t.248
t.562

- 1.010
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Table 4.3(e) Values of o,¿,¡,,, f ¡,r(l), o¿i, \¿,r and (D¡," of the first six vertical modes
computed using various eddy viscosity profiles

Ar :25, Ae = 40m,a.1 - 476.9, o¿tþ, = 1000,a1¡.t, = 150, o¿tþ ø = L00 cmzs-L

r at,o,r CtrtJ,, a2,o,, -ft,"(l) 0 rÀr," Àr," Or,"
1 1.00000 0.61538 1.00000 1.000 0.000 0.000 0.999
2 0.00025 -0.36704 0.00000 -1.553 0.185 3.883 1.068
3 0.00020 -0.30126 0.00000 2.4t5 0.939 19.709 0.502
4 0.00013 -0.19602 0.00000 -2.48t 2.369 49.686 0.478
5 0.00005 -0.08598 0.00000 r.679 4.353 9r.29t 0.942
6 0.00000 -0.00767 0.00000 -1.010 6.419 t34.464 1.973

Ar : 25, Le : 40m, ot 1 - 4I5.3, o¿ t þ r : 1000, a1¡.1, = 50, a¿ t F e = 100 ¿nc2s-1

r
1

2

3

4
5

6

r
1

2

3

4
5

6

Lr = 25, Ae : 40m,o1 = 390.7, o¿tþr- 1000, atþ e = I0,ot1¡,tr u : 100 cm2s-t

"fr,"(1)
1.000

-1.689
3.224

-4.891
6.445

-7.785

Lr : 25,Ae = 40m,o1 - 88.4, atþr- 150, o¿t\tr, = 50,a1¡-t 
" 

: 100 cm2s-7

ctrr,o,r

1.00000
0.00025
0.00024
0.00021
0.00017
0.00012

Ctrt,O,,

1.00000
0.00025
0.00025
0.00025
0.00024
0.00022

T d!,o,r
1 1.00000
2 0.00023
3 0.00015
4 0.00005
5 -0.000016 -0.00005

dL,O,,

1.00000
0.00025
0.00023
0.00019
0.00014
0.00009

arJ,,
0.61538

-0.37839
-0.35412
-0.30975
-0.24977
-0.18091

aI¡,,
0.61544

-0.38315
-0.37809
-0.36839
-0.35416
-0.33570

a!,L,r
0.61538

-0.34813
-0.22772
-0.08089

0.01861
0.07690

Ctr L,!,,
0.61538

-0.37644
-0.34462
-0.28766
-0.21344
-0.13314

ctrz,o,,

1.00000
0.00000
0.00000
0.00000
0.00000
0.00000

d2,O,,

1.00000
0.00000
0.00000
0.00000
0.00000
0.00000

42,O,,
1.00000
0.00000
0.00000
0.00000
0.00000
0.00000

Ct 2,o,,
1.00000
0.00000
0.00000

-0.00000
0.00000
0.00000

"ft," (1)
1.000

-1.649
2.964

-4.033
4.466

-4.146

"fr,"(1)
1.000

-1.397
I.724

-1.258
1.025

-1.532

0 t ìr,"
0.000
0.063
0.326
0.837
1.598
2.605

0rlr,"
0.000
0.012
0.066
0.170
0.326
0.534

d rÀ1,,
0.000
0.059
0.285
0.669
1.105
1.709

0 r Àr,"
0.000
0.012
0.064
0.166
0.316
0.512

)r,'
0.000
r.521
7.867

20.164
38.492
62.7t8

À r,"
0.000
0.326
1.698
4.363
8.351

13.666

À 1,"
0.000
6.672

32.278
75,711

t24.995
t93.202

À r,'
0.000
1,.97r

10.170
26,023
49,554
80.301

(Þr,'

0.999
0.971
0.345
0.192
0.157
0.182

(Þr,"

0.999
0.933
0.294
0.132
0.077
0.053

iÞr,"
0.999
t.259
0.902
L,470
1.938
1.092

(Þr,"

0.999
0.987
0.368
0.224
0.215
0.321

Ar=25,Ãe =40m,41 = 63.8, dtþ, - 150, ottþr='J.0,a1¡.tr:L00 cm2s-7

"ft," (1)
1.000

-r.632
2.863

-3.719
3.801

-3.078

r
1

2

3
4
5

6
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Table .{.3(/) Values of a;,¡,,, f ¿,,(I), o¿i, 
^í,r 

and (Þ¿," of the first six vertical modes
computed using various eddy viscosity profiles

Ar : 25, Ae = l\m, a 1 - 243.7 , at t þ r - 300, at þ e - 150, a t þ e = I50 cm2 s-r

"ft,"(1)
1.000

-1.405
1..02r

-L.344
1.085

-1.245

Ar = 25, Ae = tím,as - 206.2, atF r - 300, atlt, = 50, o¿tlt e = I00 cm2 s-r

r At,o,r Ar,L,, CL2,o,, "ft,"(l) Ott)t,, Àr,"
1 1.00000 0.37500 1.00000 1.000 0.000 0.000
2 0.00033 -0.48901 0.00000 -2.296 0.107 5.200
3 0.00006 -0.09604 0.00000 1.366 0.564 27.376
4 -0.00005 -0.08236 0.00000 -L.467 1.019 49.408
5 -0.00007 -0.10615 0.00000 2.2L2 2.076 100.665
6 0.00000 -0.00480 0,00000 -1.006 3.079 149.292

r Clt,o,r
1 1.00000
2 0.00024
3 -0.000024 -0.000075 0.00002
6 0.00003

T at,o,,
1 1.00000
2 0.00049
3 -0.000094 -0.000025 -0.000126 -0.00001

CLI,L,,

0.37500

-0.35818
0.03924
0.1088 1

-0.03923
-0.05403

úr,L,r
0.14286

-0.72509
-0.13453

0.03021
0.18164
0.01580

a2,o,r
1.00000
0.00000
0.00000
0.00000
0.00000
0.00000

ctr2,o,r

1.00000
0.00000
0.00000
0.00000
0.00000
0,00000

0 r Àr,"
0.000
0.228
0.863
2.048
3.467
5.663

d r Àr,"
0.000
0.131
0.994
r.443
3.026
5.180

À r,"
0.000
9.358

35.442
84.022

t42.239
232.342

Àt,,
0.000
1.532

11.583
16.814
35.252
60.333

(Þr,"

0.999
r.464
1.966
r.534
L.874
t.657

(Þr,"

0.999
0.768
1.508
1.395
0.812
1.990

(Þr,"

0.999
0.487
0.171
0.301
t.772
0.884

Or,"
0.999
0.185
0.564
1.683
0.132
1.693

(Þr,"

0.999
0.484
0.108
0.057
0.049
0.066

Ar : 25, ap : l\m, at - l9I

r QL,g,r út¡,,
1 1.00000 0.37500
2 0.00039 -0.592023 0.00029 -0.429684 0.00013 -0.192485 0.00001 -0.022436 -0.00004 0.06089

Ar : 60, Ae = lÙm, @r - 858

2, attþ, - 300, ottþ e = I0,dtþ 
": 

100 crn2s-l

ctr2,o,r "fr,"(l) o¿tÀt,, Àr,"
1.00000 1.000 0.000 0.000
0.00000 -3.044 0.024 t.275
0.00000 5.429 0.159 8.343
0.00000 -4.002 0.419 27.937
0.00000 1.158 0.706 36.926
0.00000 -2.087 0.934 48.874

6, atþ, = 1000, atþ e = 10, e.1pt, , : r00 cm2 s-r

"ft,'(1)
1.000

-8.335
4.335

-I.52I
9.992

-1.504

Az : 60, Ae = 40m,at = 60.4, atþr = 1000, d.rl-tr, = 10,a1¡-t 
" = 100 cm2s-r

r dt,o,r út,t,r a2,o,, "fr,"(l) drÀr," Àr,,
1 1.00000 0.40000 1.00000 1.000 0.000 0.000
2 0.00037 -0.59153 0.00000 -2.969 0.022 0.373
3 0.00037 -0.54857 0.00000 6.661 0.145 2.410
4 0.00031 -0.46891 0.00000 -9.264 0.389 6.451
5 0.00024 -0.36262 0.00000 9.963 0.754 12.497
6 0.00016 -0.24333 0.00000 -8.579 1.239 20.513
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APPENDIX IV

A transient solution for the wind drift current in a two-layered open sea region

induced by a step-function wind stress (4.3.a) is derived using the Laplace trans-

form. A linear slip condition (4.3.31) is enforced at the lower domain boundary.

Transforming equation (4.3.28) with respect to the Laplace transform, gives

a¿þ¿,j A2u)i,.i

H7 0o?
(A.4.1)

where

l,*w¿,i("): "-"t 'øt,i(t) dt,, ú > 0 and i :0,1, j :7,2. (A.4.2)

Hereafter, i : 1 is used, for convenience.

The boundary and interfacial conditions at the transformed domain take the

form:

s?Di,j I t''(U¿,j :

dtþtJ)lDtJ _ _T",
H1 )ot pt;s

u\J: u)1,2

O?il, , õu-' ,
P t J IL t J -A;ï : P t,z ltr t2-A;ï
a't!r,z uyr,t : _lcblt)t,z

H1 )ot
For convenience, we rewrite equation (4.4.1) as follows

02 ttsr., ,
A"' : K-'LDrJ¡

Ô'lllt." ' e

-ã"' : 't)- K-?'Dt'2¡

where

o2 : (t^t + s)Hl /(atFt,t),

u2 : þr,r/þr,r.

at

at

at

ot :0, (A.4.3)

ar: EtJ, Ø.4.4)

ot :7. (A.4.5)

(A.4.6)

(A.4.7)

(A.4.s)

(A.4.e)
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Solutions of (4.a.6) and (4.4.7) *uy be readily written in the form

'I-DLJ : (tre^o' i be-Ko t,

'tt)!,2:"("o.h un(o1- 1) + E6(un)-r sinhurc(o1 - t))

where a,, b a,nd c are to be determined and

ka: -leaHtl(atþt,).

Using conditions (4.4.3) to (4.4.5), we obtain

(,4.4.10)

(A.4.17)

(A.4.72)

(A.4.73)

(A.4.74)

(A.4.75)

(A.4.16)

(A.4.17)

(A.4.18)

(A.4.7e)

(A.4.20)

(A.4.21)

(A.4.22)

(A.4.23)

y'í1 cosh o(ot - €r) - RtKz sinh rc(ø1 - €r)
snKs(

(

)
cosh u ot-I *k¡ UK -1 sinh un(o1 - t)

snKs

- 
Ttt- P,,

Ifi : cosh uKE e -86(un)-1 sinh uKE e,

K2 : sinh uKE e - k6(urc)-l coshurc6r,

Js : sinh rc{, (cosh uK€ e -86(un)-1 sinh unE r)

*Er cosh rc(, (sinh DKE e -86(urc)-1 cosh un| r),
.Rr : u(p,þ,)(p,lt)-t,
È 

-è 
è 1 èÇr -ç1,1r (.p - r-Ç1,1r

ll , : ltrt,t,, þ" : 
11 1,2,

P, : Pr¡, P, : Pt,z'

where

The solutions in the physical domain can be obtained using the Residue the-

orem. Simple poles are found at the origin and at the zeros of the term .I(3.
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Wíth rzorz-zero fríction (k610):

The solutions in the physical domain are composed of two parts, steady state

and transient solutions, namely

'ø tt(t) : @\",)r. + ø\',)r.

'ø t,z(t) : @1",I + -l',\

(¿),

2rt Jt,,
H1 srJs,r'

(A.4.24)

(A.4.25)

(A.4.26)

(¿),

where

@
TtHt Jt,o(")

1,1 - Atþr noJs,o'
^(t)* lr]- (¿) -_ D'""

oo

r:l

and

(A.4.27)

Jt,o : cosh rc6(o1 - €r)(cosh unol e -86(uns)-1 sinh uno€, e)

-.Rr sinh rco(ot - 4r)(sinh urco€, -86(uns)-1 coshroo€r),

J2,o : cosh urc6(ot - 1) -lE6(uns)-1 sinh uns(o1 - 7),

Js,o : sinh rcs{, ( cosh uno€, _ 86(urcs)-l sinh uoo€, ,)

*Ãr cosh oo€, (sinhurc¡6" -86(uns)-l cosh roo| r),,

Jt,,: cosh rc'(ø1 - €r)(cosh uKr€e -86(urc,)-1 sinh urc,€ r)

--Rr sinh rc,(ot - €r)(sinh uKrEn -86(un,)-1 cosh urc,Er),

J2,, : cosh urc'(ot - 1) *86(urc,)-l sinh urc,(o1 - 7),

(A.4.28)

(A.4.2s)

(,4.4.30)

(A.4.37)

(A.4.32)

JJ,, : (,' cosh rcr{," cosh uKrE e I u€ , sinh rcr{, sinh urc"(.

-*(€r "o"h 
rc'(r sinh uKrt p I uE esinh rc"{, cosh urc"{")

* Rr (€, .inh rc.f , sinh uKrt e * u{. cosh rcr{". coshurc,(")

-Rr!!-(€. .inh rcr(, cosh uKr€ ef u€" cosh rcr(, sinhurc.g")

+3(sinh rc,.{, sinh uKrE e* Ãr cosh rc,.{, cosh un,t r) r ) 1, (A.4.3g)UKI'

-(")* lr2 - 
TtHt Jz,o ,n\r)^rtl: S o",t2Tt J2,,

- artl , .tJtp¡ wt'z\L) - tl-t' Hr 
"JBJ.'
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and

no: Hr(tllatþr)t/',

K, : L!r1 Er : -L^l - yTatprlH?, r ) 1.

(A.4.34)

(A.4.35)

The values of y" follow from the equation

tan(y, {, ) [ cos(uy"{ 
" 

) - E o(uA,) -1 sin(uy,€, )]

a nr Isin(uy,{") * ka(uy,)-l cos(uy.6,)] : 0. (A.4.36)

Wíth a zero-stress condítíon (fra :0)

Substituting rca :0 into (A.4.13) and (4.4.14) gives

tutJ : TtHt coshurc{" coshrc(o1 - €r) - -R1 sinh uKEe sinhrc ("r - €') , (A.4.37)atLIr
TtHt coshurc(o1 - 1-)

ksK¿

tur,,
atLI r srcI{a ) (,4.4.38)

where

K+ : sinh rc{, cosh urc{" * Ãr cosh rc{, sinh uK€ e. Ø.4.39)

By expanding the solution (A.4.37) into partial fractions, and writing the

hyperbolic functions as the pov/er series

sinh{rqr/2}: rqt/'(l + 1/B! ,2q1...), (A.4.40)

cosin{rqtl2} : (1 +rlzlr2q *ra ¡41q2+...), (A.4.4r)

rvr/e can see that s : -L'y is a simple pole. The other poles are all simple and are

found at the origin and at the points where Ka vanishes.

The solutions in the physical domain can be written as

ør,¡(t): -l) + ø\t,),çt¡ + @\")Ø j : r,2, (A.4.42)
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where

?1)
(")
1,1 t (A.4.43)

(A.4.44)

(A.4.45)

(A.4.46)

oo

1

oo

r:l

r:l

Íiì r,l?1) D
,l!çt>: "-','#l{e ", 

* (p,lp)e ,f-',
*\",1 :å##,

(¿)
l12 (¿) Ë"""

2Tt Jz,.
H1 s,Js,r' (A.4.47)

,\?)ftl : -\Ì(Ð. (A.4.48)

Here, fr" and sr are given by equations (4.4.34) and (4.4.35), respectively, and

Jt,r, r ) 0, | : 112,3, can be found from equations (4.4.28) to (A. .3a) by setting

fr¡ :0.

w
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