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SUMMARY

The work presented in this thesis is concerned with the development of a linear
three-dimensional hydrodynamic numerical model for wind induced flow in sta-
bly stratified flat-bottomed lakes or seas. The perturbed motion is assumed small
and deepening of the interfaces under wind action is ignored. The vertical de-
pendence of horizontal currents is determined using Galerkin methods, whereas
a finite difference method is used for the integration in time and the horizontal
spatial coordinates. Two types of basis functions are taken into consideration:
B-spline functions (Galerkin-finite element method) and numerically determined
eigenfunctions (Galerkin-spectral method).

The proposed Galerkin models can accommodate an arbitrary variation in the
vertical eddy viscosity within each layer. Across the interface the eddy viscosity
profile can be chosen to be either continuous or discontinuous.

Two types of interfacial conditions are examined. The first is that the horizontal
velocities and shear stresses are continuous across the interface and the second is
that of zero-stress (used by Heaps, 1966, Phil. Trans. Roy. Soc., Ser. A, 259,
391-416). The condition of continuous horizontal velocities and shear stresses
requires only one set of basis functions, whereas the stress-free condition effectively
decouples the system into two parts, and hence requires two independent sets of
basis functions.

The model performances are demonstrated for the Ekman problems with strat-
ification. Steady state and time dependent responses of an unbounded sea, subject
to the impulsive onset of wind stress, are computed using a point model. For
the study of inertial motion subject to the local wind stress, a two-layer model

composed of the surface layer and the pycnocline is proposed.

The methods are also applied to investigate the transient response of an ide-



alised narrow lake of uniform depth subject to the impulsive onset of wind. Time-
dependent behaviour of internal vertical displacements and their convergence rates

are compared for the one and two domain systems.
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CHAPTER 1

INTRODUCTION

1.1 A survey of previous work

Over the past fifteen years the development of three-dimensional hydrody-
namic numerical models for coastal and shelf environments has greatly acceler-
ated. With the rapid growth of computing power it has become computationally
realistic to solve the full set of governing hydrodynamic equations with respect to
time and the three spatial coordinates. Typically, there have been two approaches
used for integrating the governing equations over the horizontal space domain,

namely finite difference and finite element methods.

The three-dimensional models diversify according to the way in which the
vertical dependence of the hydrodynamic variables are represented. It is becom-
ing increasingly evident that the numerical models cannot be classified by simple
guide-lines. Nevertheless, it seems appropriate, for the purposes of this thesis,
to classify the models into four groups: the Ekman-type model, the multilayered
model, the finite difference grid model and the Galerkin-function model. No at-
tempt will be made to discuss the first three models in detail. However, since the
model to be described in this thesis is a mixture of the multilayered and Galerkin-
function models, we do include a few comments outlining the salient features of
each of these models, along with a few representative examples. The Ekman-type
model is basically an extension of the work of Welander (1957). Many researchers
have favoured this analytical approach for the purpose of obtaining physical insight

into the dynamic characteristics of the system in three dimensions. For detailed
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accounts of these approaches, see Cheng et al. (1976) and Simons (1980).

In the multilayered models the vertical fluid space is represented by a stack of
immiscible discrete layers, within each layer the density being taken as constant.
Each layer acts as a stream tube and only exchange of momentum can take place
between the layers via interfacial stresses. Essentially, these models are analogous
to a super-position of layer-averaged two-dimensional models. Some of the papers
on layered models include: O’Brien and Hulburt (1972), McNider and O’Brien
(1973), Abbott et al. (1975), Wang and Connor (1975), D’Alessio et al. (1983)
and Preller (1986),

While numerical investigations in three-dimensions continue to use multilay-
ered models, a great deal of effort has also been directed towards the development
of numerical models based on finite difference approximations. In these finite
difference grid models the vertical space is partitioned into a set of vertical grid
. boxes. Consequently the hydrodynamic equations are represented in finite differ-
ence form using the variables defined at the vertical grid-points. In contrast to
the layered model the fluid is allowed to move through the vertical grid boxes. In
order to represent turbulent mixing of physical properties, most models use the
familiar eddy diffusion hypothesis. More recently, three-dimensional models have
used high level turbulence closure schemes to dynamically calculate the turbulence
intensity; in the majority of studies made thus far, finite difference grid models
have been employed. Work on these models has been done by: Leendertse et al.
(1973, 1977), Simon (1973), Bennett (1977), Blumberg and Mellor (1980), Noye
et al. (1981), Sheng (1982), Davies (1985¢) and Noye and Stevens (1986). These
finite difference grid models can be grouped in various ways. Such considerations,
however, are beyond the scope of the present discussion. For a detailed account of

the fixed grid box and o-transformed grid box models, see Davies and Stephens

(1983).



Alternatives to the above numerical approaches include the Galerkin-function
models which have increasingly attracted interest as valuable tools for investiga-
tion of coastal and shelf dynamics. In these methods the structure of horizontal
components of the current in the vertical are represented by horizontally and time
varying undetermined coefficients together with depth varying functions (basis
functions). Application of the well-known Galerkin procedure (Fletcher, 1984)
to the hydrodynamic equations yields a system of coupled equations for the ex-
pansion coefficients. These equations coupled with the continuity equation and
appropriate lateral boundary conditions can be solved using any standard numer-
ical method, for which finite difference methods have been overwhelmingly chosen
up to now. Having determined the expansion coefficients, the continuous pro-
files of horizontal currents can be reproduced. The Galerkin-function models are
mainly characterised by the nature of their basis functions, that is, according to
whether the basis functions are defined either locally or globally and whether the
basis functions are eigenfunctions of the vertical diffusivity operator or not. In
the following review of Galerkin-function models our attention is directed to the

choice of basis functions.

Heaps (1972) was the among the first to develop a mixed approach by combin-
ing the spectral expansion in the vertical direction and a standard hydrodynamic
finite difference model in the horizontal plane. In essence, the method uses eigen-
functions of the vertical diffusivity operator as the basis functions. The spectral
basis is sought by the requirement that each eigenfunction satisfies the homoge-
neous Neumann condition at the sea surface and the bottom boundary condition
term by term. Consequently a linear friction law is required and eigenvalues and
eigenfunctions become dependent upon the eddy viscosity and the bottom friction
coefficient. Clarke (1974) has shown that such restrictions can be relaxed by incor-
porating the bottom boundary condition as a natural boundary condition which

permits one to use nonlinear quadratic friction. Heaps’ approach differs from the
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usual finite-dimensional approximations in that a technique known as completion
of the expansion to the infinity is applied to ensure the exact satisfaction of the
surface boundary condition. In theory, Heaps’ formulation does not restrict the
form of the vertical eddy viscosity. However, since the eigenvalue problem is solved
analytically, the eddy viscosity profile takes a simple functional form. In a series of
works Heaps has refined the spectral model for applications to tides, wind-induced
flows and density currents in Irish seas (Heaps, 1973, 1974; Heaps and Jones, 1975,
1977).

In the context of the Ekman-type model, that is, with the use of a constant
eddy viscosity profile and a no-slip bottom boundary condition, two earlier con-
tributions have been noted which resemble in spirit the Galerkin-function models.
Yampol’skii (1966) used a Fourier cosine expansion to represent the vertical de-
pendence of wind drift currents in a horizontally unbounded homogeneous sea. For
wind induced flows in a bounded homogeneous basin of uniform depth, Liggett
(1969) developed an Ekman-type three-dimensional model using Fourier cosine
transforms in the vertical direction. The rigid-lid approximation imposed at the
sea surface naturally leads to a second-order elliptic equation for pressure distri-
bution which is solved at each time step by a finite difference method to estimate

pressure gradients at the horizontal grid-points.

Studies have since been focused on the development of Galerkin-function mod-
els which are capable of handling arbitrary variation of the eddy viscosity with a
more general set of basis functions as well as nonlinear effects. Cosine functions
have been a popular choice even in the presence of external stresses at the sea sur-
face. Cooper and Pearce (1977) and Pearce and Cooper (1981) used a mixed basis
set which is composed of a set of cosine series and prescribed auxiliary functions.
The auxiliary function was taken to be a linear combination of cubic polynomials

and logarithmic functions. This was used in order to improve the convergence of
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cosine series solutions near the sea surface, particularly with the use of an eddy
viscosity profile which decreases near the sea surface. The bottom boundary con-
dition was incorporated in a way similar to Heaps’ approach. Koutitas (1978) has
developed a three-dimensional tidal model which involves nonlinear advection and
horizontal turbulent diffusion terms. Nonlinear effects associated with the free sea
surface elevation are, however, neglected. Davies (1980a) has presented a Galerkin
formulation which incorporates the surface and bottom stress conditions as natural
boundary conditions. The advantage of this formulation is that each term in the
expansion of continuous functions is not constrained to satisfy the stress boundary
conditions, and subsequently the bottom boundary condition can take a non-linear
form. Using a quadratic bottom friction the models have been applied to investi-
gate tide and wind induced circulation in the North Sea and North-West European
Shelf (Davies, 1980¢, 1981b; Davies and Furnes, 1980; Davies and James, 1983).
The extension of the Galerkin models to nonlinear hydrodynamic equations involv-
ing advective terms and a nonlinear free surface variation has been given by Davies
(1980b). Wolf (1983) has developed a fully nonlinear three-dimensional model in-
volving advective and horizontal diffusion terms. In an attempt to improve the
efficiency of the model, particularly when high spatial resolution is required, the
fast-moving gravity wave terms are treated by the Alternating Direction implicit
scheme and the other terms, including friction, advection and diffusion, are treated
explicitly. The investigations conducted by Davies and James (1983) and Proc-
tor (1987) are also based on nonlinear Galerkin models with a basis set of cosine

functions.

Developments of the Galerkin-function model with basis sets of Chebyshev
and Legendre polynomials have been pursued as important alternatives to the use
of cosine series (Davies and Owen, 1979; Owen, 1980; Gordon, 1982). Investiga-
tions conducted by Davies and Owen (1979) in idealised basins have shown that

Chebyshev and Legendre polynomials, which are in fact eigenfunctions of singu-
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lar Sturm-Liouville boundary value problems (Higgins, 1977), rapidly converge
throughout the water column and are particularly suited to wind-induced flows
in homogeneous seas. For the no-slip bottom boundary condition, odd Cheby-
shev and Legendre polynomials are chosen to exactly satisfy the essential con-
straint. Owen (1980) chose Legendre polynomials as a basis set in developing a
three-dimensional non-linear hydrodynamic model which takes into account the
continuous stratification through a Richardson number-dependent eddy viscosity
and a slip condition at the sea bed. Gordon (1982) used a time-splitting algorithm
in which the internal modes associated with baroclinic flow are integrated with a
significantly longer time step than the external mode associated with barotropic
flow. By reformulating the hydrodynamic equations at the outset into barotropic
and baroclinic sets, Davies (1982a) has shown that a splitting algorithm can be
applied with an arbitrary set of basis functions. An alternative to these approaches

is using a basis set of eigenfunctions.

Although numerous applications of these classical polynomials can be found
in various disciplines and their properties are well known, use of such a general
basis set is disadvantageous in that physical insight into the vertical structure of
a particular system cannot be readily inferred a general basis set. For that, the
eigenfunction method is best suited, particularly when the vertical structure of the
eddy viscosity profile is fixed. Using a spectral expansion of the horizontal currents
through the vertical, Nihoul (1977) developed a transformation technique of ex-
tracting current profiles from a two-dimensional model. Legendre polynomials of
even order are taken as a basis set of eigenfunctions with the choice of a parabolic
eddy viscosity profile. In continuing his earlier analytical approach, Heaps (1981)
developed a two-layered spectral method to improve the representation of the bot-
tom frictional layer in tidal flows. The local forms of the eigenfunctions within each
layer are derived first and are then matched at the interface by the requirement

that the eigenfunctions and their derivatives must be continuous. This method
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has been extended further to a three-layered stratified system in which the eigen-
functions are defined continuously throughout the depth but, due to the jump in
the values of density and eddy viscosity at the interfaces, their derivatives are dis-
continuous (Heaps, 1983). Subsequently, the spectral models based on the mode
matching technique have been applied to investigate the dynamic response to wind
pulse forcings of idealised shelf seas with uniform and cross-shelf depth variation
(Heaps and Jones, 1983; 1985). For continuously stratified seas of non-uniform
depth, van Foreest and Brundit (1982) have developed a Galerkin-based mixed
approach using the normal mode expansion over the vertical space and a finite
difference approximation in time and over the horizontal plane. Wind stress has
been incorporated as a body force acting over the mixed surface layer. Heaps
(1984) has presented a full account of normal mode solutions for continuously
stratified flat-bottomed seas in which the vertical eddy viscosity is assumed to
be inversely proportional to the static stability and the linear bottom friction is
related to the velocity at the sea bed. The modal model developed by Furnes and
Mork (1987) employs a two-layered representation of the density profile. These
models all include the variation of the free sea surface, whereas the modal ocean

models (for example, McCreary, 1981) usually assume the rigid-lid approximation

at the sea surface.

An extension of the analytical eigenfunction approaches for handling arbitrary
variation of the vertical eddy viscosity in homogeneous seas has been established
by Davies (1983c) and Furnes (1983) in different ways. In solving an eigenvalue
problem numerically, Davies (1983c) has used a Galerkin method with a basis set
of the fourth-order B-spline functions. In the Furnes’ approach the eigensystem
has been solved using the Runge-Kutta-Merson method. Although the essence
of the method is mainly numerical, the analytic feature has been endowed by
means of a mode matching technique. Local forms of eigenfunctions have been

taken as Bessel functions by approximating the arbitrary eddy viscosity profile as
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a sequence of composite-linear piecewise profiles. Comparison between the two
approaches has shown that from the point of view of accuracy, the Runge-Kutta-
Merson method has an advantage over the Galerkin method in that errors arising
in the solution procedure can be monitored (Davies and Furnes, 1986). It should
be mentioned that Davies’ approach is based on a direct matrix operation, whereas
Furnes’ approach is based on iteration. To improve the slow convergence of the
eigenfunction expansion at the sea surface, the stressing of boundary constraints
has been introduced by Furnes (1983) and Davies (1983b), which results in a

coupled system of equations for the expansion coeflicients.

In parallel with the development of such global approaches as the above, con-
siderable efforts have also been made to enable the employment of a local basis
set. In a series of studies conducted by Davies (1977a,b,c, 1978a,b, 1982b, 1983a,
1985a) fourth-order B-spline functions are exclusively used. The advantage of
using high-order B-spline functions is demonstrated by solving Burger’s equation
and by reproducing the propagation of gravity waves with various combinations
of boundary conditions (Davies, 1978a,b). In earlier models Davies (1977b,c) has
used the Galerkin-collocation method so that each term in the expansion of B-
spline functions satisfies the boundary constraints exactly and hence integrating
by parts is not necessary. The Galerkin method has been applied to continu-
ously stratified seas with a basis set of B-spline functions (Davies, 1982b, 1983a).
The arbitrary continuous variation of density and eddy viscosity is allowed and,
neglecting diffusion of density, the internal displacement is introduced as a new
prime variable. Two basis sets are additionally required to expand the continuous

variation of internal displacement and density in the vertical direction.

Attempts to represent the vertical space in terms of a piecewise linear basis
set have also been made (Koutitas and O’Connor, 1980a,b; Lynch and Werner,

1987). Koutitas and O’Connor (1980a) represent a horizontal space using the fi-

8



nite difference approximation in a way similar to Davies and incorporate nonlinear
advective terms in the equations of motion. The models developed by Koutitas and
O’Connor (1980b) and Lynch and Werner (1987) employ triangular finite elements
for the horizontal plane. The solutions in all spatial dimensions are then obtained
using a finite element model, but these models may still be regarded as mixed
models in that the vertical space is represented in a layered fashion, that is, using
locally one-dimensional finite elements. Koutitas and O’Connor (1980b) employed
a fractional time stepping method in which diffusion and advection-propagation
processes are evaluated at different time levels, while Lynch and Werner (1987)
separate the time dependence from the spatial dependence of the motion, assum-
ing that the solutions are periodic in time, and solve the Helmholtz-type equation
for the surface elevation. Laible (1980) developed a mixed model in which the
horizontal space is represented in terms of nine-node quadrilateral isoparametric
finite elements and the vertical space is represented by continuous cubic polyno-
mials with two undetermined coefficients. In a subsequent study the model was

extended to a two-layer version (Laible, 1982).

It is known that the choice of a basis set is crucial to the success of Galerkin
models (Gottlieb and Orszag, 1977). For wind-induced flows, the use of a Cheby-
shev and Legendre polynomial basis set was found to be very accurate and was
obviously more efficient than using cosine functions and local basis sets (Davies
and Owen, 1979). Davies and Stephens (1983) have shown that the eigenfunction
method is more efficient than the finite-difference method, provided that the verti-
cal structure of eddy viscosity is fixed. In comparing two finite difference methods
with Galerkin methods using cosine functions and Legendre and Chebyshev poly-
nomials in tidal channels of constant depth, Jung et al. (1987) have noted that the
accuracy of the eigenfunction expansion is comparable to that of finite difference
methods with optimised vertical grid distribution. However, for the general spec-

tral basis finite difference methods are more accurate than Galerkin methods for
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a wide range of model parameters. It is known that using spectral methods with
a general basis set requires more computational effort per degree of freedom than
finite difference or finite elements methods (Fletcher, 1984). Strict comparison be-
tween the numerical methods is very difficult and results may be characteristic to
the problem. It appears that a suitable basis set must be chosen on a case by case
consideration, depending upon the nature of the system to be modelled, the eddy
viscosity profiles and their time-dependence, conditions of bottom topography and
stratification and the tolerance limit of numerical errors. It is worth noting the
strategy chosen by Davies (1985b) in which the B-spline basis set of order four
has been used for reproducing quantitative values accurately, whereas for a phys-
ical interpretation the eigenfunction method has been used in a complementary

Inanner.

Apart from the accuracy and computational efficiency of Galerkin-function
methods, their use is very appealing in that there is a certain correspondence be-
tween the solution approach and the dynamics of long-wave motions in shelf seas
which are shallow in nature. Use of a basis set of eigenfunctions is particularly
attractive because the horizontal and vertical dependence of hydrodynamic vari-
ables can be separated. There is an important distinction between Galerkin and
finite difference representations which should be pointed out. For finite difference
methods the numerical scheme has to be modified locally near the boundaries
(and also around the interfaces in conditions of layered stratification), while for
Galerkin approximations, such a modification is not needed but the problem of

choosing a basis set appropriate to specific situations remains a difficult task.

1.2 Introductory remarks on present work

Davies’ numerical method (1983c¢) permits one to determine eigenfunctions

numerically for the continuous arbitrary eddy viscosity profile. Heaps (1983) has
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developed a mode matching technique which deals with conditions of layered strati-
fication. Since his model is analytic in nature the eddy viscosity profile is restricted
to specific functional forms, and in practice the eddy viscosity is taken as being
constant within each layer. In this thesis, the two contributions are combined to
introduce a set of new Galerkin-based linear three-dimensional multilayered hy-
drodynamic models which are flexible in that the vertical eddy viscosity profile can
be prescribed arbitrarily within each layer. The detailed methodology is described

for basis sets of fourth-order B-splines and eigenfunctions, respectively.

With the formulation of Galerkin solutions, the presence of discontinuities in
the prescribed eddy viscosity profile is assumed at the outset. Physically this
makes sense since such an assumption is consistent with the fundamental proper-
ties of the multilayered model in that the fluid system is modelled as a stack of
homogeneous layers. Variational approaches have been used previously in other
disciplines to handle strong discontinuities in the coefficient of the second-order
diffusivity operator. By using linear basis functions Javandel and Witherspoon
(1969) have developed a variational model for fluid flow in anisotropic multilayered
aquifers, and Desai and Johnson (1973) solved the one-dimensional consolidation
equation with piecewise varying coefficients. A key feature of these variational
approaches is that the weak formulation of the system involves the summation of
functionals defined over each layer. Thermal interactions between the soil and the
atmosphere were investigated by Garder and Raymond (1974) in a similar manner.

The extension of the present method to these problems is straightforward.

When approximating the vertical variation of horizontal current in stably strat-
ified seas, numerical models designed for continuous stratification have certain ad-
vantages over layered models in their application. The layered model is restricted
by the requirement that the interface is not allowed to intersect the surface; hence

the model cannot simulate the observed frontal structure during upwelling. Never-
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theless, in the presence of a distinct thermocline the application of a layered model
provides a great deal of physical insight into the dynamics of stratified flows. Also

the approach is conceptually simpler than that for continuous stratification.

Throughout this thesis it is assumed that the vertical structure of the eddy vis-
cosity profile is fixed and, neglecting erosion or deepening of the surface layer, the
well formed layered structure is undisturbed by any turbulent mechanisms. Still,
the lack of observational data may be a hindrance to the applicability of three-
dimensional hydrodynamic numerical models. Furthermore, the three-dimensional
modelling of stratified flows on a realistic scale is a very expensive exercise. There-
fore, prior to extensive numerical investigation of the real system, particularly
keeping Bass Strait in mind, the numerical experiment in this thesis is focused
on the sensitivity of the model response in idealised situations, and in that course
the model can also be verified. Emphasis is on the role of the pycnocline in deter-
mining the vertical structure of wind-induced flows and the time evolution of the
surface current. In most computations the eddy viscosity has been prescribed in a
piecewise-constant form, since the ability to deal with discontinuous variation of
eddy viscosity can be best shown in this manner. In recent years there has been
increasing interest in the development of turbulence models (Blumberg and Mel-
lor, 1980; Johns, 1979; Koutitas and O’Connor, 1980a; Leendertse and Liu, 1977)
which aim to determine the eddy viscosity directly as part of dynamic solutions,
but it appears that these models remain at an early stage of development and

their applicability as a prediction tool has not been verified.

The present numerical investigation is characterised by interface conditions in-
troduced at a thermocline level. Two types of interfacial conditions are examined.
The first is that the horizontal velocities and shear stresses are continuous across
the interface and the second is that of zero-stress at the interface. The condition

that across the interface horizontal velocities and shear stresses be continuous leads

12



to a one domain system which requires only one set of basis functions, whereas
the stress-free condition effectively uncouples the system into two parts, and hence
yields a two domain system which requires two independent sets of basis functions.
Such a stress-free assumption at the interfaces is not new; in fact it underlies many
analytical studies using layered models (Veronis and Stommel, 1956; Heaps, 1966;
Csanady, 1968). We focus our attention in this thesis on comparison of the wind
induced motion between the one and two domain systems through various numer-
ical experiments. Chapter 2 describes the notation for the multilayered system to
be modelled and the Galerkin solutions in terms of basis sets of B-spline functions
and eigenfunctions. The boundary constraints for basis functions will be called
limit conditions (Lattés, 1969) in order to distinguish these from the usual bound-
ary conditions such as wind stress and bottom friction. The solution procedure
used by Heaps and Davies will be closely followed, and is self-contained except for
the theoretical details about B-spline functions. The presence of discontinuities in
the distribution of density and the vertical eddy viscosity requires a definition of
a weighted scalar product for each domain. Once the solution space is equipped
with a set of weighted scalar products, the solution procedure follows the stan-
dard Galerkin method. Use of the continuity condition for velocity and stress at
all interface levels yields a one domain system equipped with one scalar product,
whereas the imposition of a zero-stress condition at an interface level yields a two

domain system with two independent definitions of scalar products.

Chapter 3 is concerned with the description of the methodology of determin-
ing the spectral basis numerically from a multilayered Sturm-Liouville boundary
value problem. Following Davies (1983b) and Furnes (1983), the limit conditions
are introduced in a generalised separable form. The eigenfunctions in the basis set
are given various names: modal functions, vertical modes, modes, vertical struc-
tural functions, and so on. The term vertical mode is used in this thesis. In a

manner similar to Davies (1983a), the transformation relation which projects the
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coefficients of the B-spline basis set or the known values of currents onto those of
the eigenfunctions is also developed for the multilayered system. This permits an

estimate of modal composition in current profiles for a given eddy viscosity profile.

Chapters 4 and 5 are concerned with applications of the models in idealised
stratified systems. More specifically, two and three-layer structures are considered
for one and two domain systems. Following Davies (1985b) the B-spline basis
set of order four has been used to reproduce the surface current and current
profiles accurately, whereas for a physical interpretation an eigenfunction method
has been used in a complementary manner. Since stratification reduces the vertical
penetration scale of wind energy, we exclude the bottom frictional boundary layer

from consideration.

Steady state and time dependent Ekman-type problems are considered in
Chapter 4 using point models in horizontally unbounded seas. The surface and
internal displacements are suppressed and the horizontal extent of the layered
structure is assumed uniform throughout the domain. For time dependent mo-
tion, wind stresses in the form of a step-function and a constant pulse with finite
duration, are considered. A two-layer version of the Pollard-Millard (1970) slab
model, which is composed of a surface mixed layer and the pycnocline, is proposed
for the study of local inertial motions. Instead of a bulk decay parameter, the py-
cnocline structure, eddy viscosity and thickness of the pycnocline control the rate

at which wind shear diffuses downward out of the mixed layer.

In Chapter 5 a series of numerical experiments are conducted to investigate
the transient response of the water subject to a step function wind stress in a
narrow stratified lake of constant depth. The effects of eddy viscosity profiles on
the vertical variation of currents and on the time-dependent behaviour of internal

vertical displacements are investigated, with special attention being paid to com-
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parison of the initial decay between the one and two domain systems. Effects of
density distribution, eddy viscosity within the pycnocline and eddy viscosity at

the bottom layer are also investigated.

Concluding remarks are made in Chapter 6 and suggestions are made for
further research in this area. Appendix I describes some basic properties of the
multilayered eigenvalue system; Appendix II summarises the form of the first
few vertical modes and their modal characteristics computed numerically using
various eddy viscosity profiles; Appendix III presents an eigenequation derived
analytically for a three-layered piecewise constant profile; Appendix IV includes a
transient solution for wind-induced flows in a two-layered horizontally unbounded

sea derived using Laplace transforms with a linear slip condition imposed at the

base of the pycnocline.
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CHAPTER 2

LINEAR HYDRODYNAMIC EQUATIONS

FOR MULTILAYERED SEAS AND

THEIR NUMERICAL SOLUTIONS USING
GALERKIN-FINITE DIFFERENCE METHODS

2.1 Linear hydrodynamic equations

The model assumes an incompressible fluid and that thermodynamic effects

are negligible. The flow is predominantly horizontal so that any vertical accelera-

tion is neglected and hence the pressure distribution is hydrostatic in the vertical

direction. Also, horizontal shears and nonlinear terms involving the squares of

the velocity components are ignored. The resulting hydrodynamic equations in

Cartesian coordinates are

ou 1 /0P 0T
FA —;(37— 5) + X,
v 1 /0P 0T,
o 7Y —;(@‘ )+,
ou v _ ow
Oz Oy 0z’
1 /0P
5 (5) =9
where

ou ov

sz—pNE, sz— Na_za

(2.1.1)

(2.1.2)

(2.1.3)

(2.1.4)

(2.1.5)



The notation used is as follows:

t

T,y

2 D 2 N o>

Pe

uv

T2z sz

X,V

time

Cartesian coordinates measured in the horizontal plane of the
undisturbed sea surface

vertical coordinate, positive upward and with origin at the undisturbed
sea surface

depth of the sea floor below the undisturbed surface level

pressure

coefficient of vertical eddy viscosity

density of sea water

geostrophic coefficient (= 2w, sin ¢,)

angular speed of the Earth’s rotation

latitude, positive in the Northern Hemisphere and negative in the
Southern Hemisphere

acceleration due to gravity

components of horizontal current in the z and y directions respectively
vertical component of current

components of the vertical shears in the 2 and y directions respectively
components of direct tide-generating forces in the z and y directions,

respectively.

Equation (2.1.4) may be integrated to give

¢
P(z) =P, + g[ p dz, (2.1.6)

where P, is the atmospheric pressure at the free sea surface. In the homogeneous

case equation (2.1.6) reduces to

P(z) = P, + gp(¢ — 2). (2.1.7)

As a result of formula (2.1.7), the pressure variable will not appear explicitly in the

equations of motion and, since the density change arises in a discrete manner in
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the present hydrodynamic system, the effects of density variation will be coupled

with the gradients of the free and internal surfaces (Hutter, 1984).

2.2 The multilayered formulation

To proceed in the formulation of the equations of motion in a multilayered
system, it is necessary to introduce some definitions and the basic notation. In
this study two situations are considered in relation to the interfacial conditions;
these involve the concepts of one domain and two domain systems. Each domain
consists of an arbitrary number of layers. Throughout the depth of a one domain
system, continuity of the horizontal components of current and shear stress is
enforced, whereas in the two domain system, a stress-free condition is introduced
at an undisturbed level of the interface in the system, which effectively blocks
the transmission of vertical shears across the boundary and splits the system into
upper and lower domains. The boundary between the two domains is called the
intertor domain boundary. In theory it is possible to introduce multiple stress-free
conditions over the vertical space domain. However, in practice we employ this
condition only once, at the base of the pycnocline. For the two layer system the

condition is applied at the interface between the upper and lower layers.

Figure 2.1 illustrates the multilayered system of constant depth in which the
real system, having continuously varying density, is represented by a stack of hor-
izontal layers. Between these layers, there are impermeable but moving interfaces
and the density within each layer is constant. For the one domain system the
whole water column is denoted by €y, and the jth layer is denoted by Qg ;, while
for the two domain system the upper and lower domains are denoted by €; and
{3, respectively, and the jth layers in these domains are denoted by Q4 ; and Q5 ;,
respectively. For physical reasons, the o-transformation described in Section 2.3

is introduced to normalise the depth of each domain, not each layer. All the basic
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(a) One domain system
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(b) Two domain system

Figure 2.1 The multilayered one and two domain systems.
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parameters such as density, vertical eddy viscosity, pressure, the coordinates of
the undisturbed levels of the interfaces and their displacements, and the U, V and
W velocities, are labelled using double subscripts. For example, p, ; is the density
at the jth layer of domain :. Symbols defined for the one domain system are
identified by the subscript ¢ = 0. In Section 2.5 where the Galerkin solutions are
described for the one and two domain systems, the notations used for B-splines
are similarly introduced. In addition, some quantities which are uniquely defined
for each domain regardless of the number of layers within each, are denoted by
a single index. For example, H; is the thickness of domain ¢. To facilitate the
formulation, we denote, for example, the density p at the bottom (J; th) layer of
the domain ¢ by p; ,. For stability of the fluid, the density increases downwards
from the top layer, that is p, ; < p; ;1,, for all 2 and j within each domain, and

P1p < Po- Also, we assume that p; o =0,i=0,1,and p, , = P, ,.

The pressure P at a depth z in the top layers within each domain Q; is given

by
Py =Pat+gp;1(Cio — 2), (i =0,1), (2.2.1)

J1
P,y=P,+g Z pl,g(hl,l + (1,6-1 — C1,£)
=1

+9p4,1(C2,0 — 2), (i=2), (222)

and at a depth z in each Q;;,j =2,---, J;, by

[
iR ==ith {ag Z P1,e (hz‘,e + Cije—1 — Ci,z)
=1
+9pi; (Gig1 = 2)5 (i =0,1),(2.2.3)

J1
P,i=P,+g¢g Z Pie (hl,e + C1e-1 — C1,e)

=1

fil
+yg E P2 (hz,l + (2,6-1 — Cz,e) + 9P i(C2,5-1 —2), (1=2), (2.2.4)
=1
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where (; ; is the displacement of the lower interface of the jth layer in domain Q;.

For pressure to be continuous at all interior interfaces, it must satisfy

Pij =Pijy1 at z=—hij+G,
where 1 =0,1,2, j=1,---,J; — 1, and
Pl,B =P2’1 at Z=—'hl,B+<l,B-

(2.2.5)

(2.2.6)

Substituting (2.2.1) to (2.2.4) into (2.1.1) and (2.1.2), and using (2.1.5), (2.2.5)

and (2.2.6), gives

Ui YVij=— EJ: g (pi,e = Pie-1 ) 0Ci e—1

ot Pt Pi; Ox
oP, 8/ 8Ui,
pz,gaw tX+3; 8z (Nm 0z )’
oV ; o L Pis— Piea e
oP, o [ Vi
POy e b_z(N” 0z )’

where 1 = 0,1, 7 =1,---,J;, and

Uy, ; o L Pie— Pre-1\ IC1e—1
at 7‘/2,.7 - ;g( p2’j ) aw

—z];g(p” Pae— 1) 6532:;[_1

9P, 9
mﬁx+X+a(M4

),

A4 N 9C1,e—1
) U 3 L 1
a +’Y 2,] ;g( p2,j ) aq

_ EJ: g(Pu - p2,l—1) 0¢2,0—1
=1 p2’j ay
oP, o
POy O (Nz’J

Td),
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where y =1,---, Jo.

The body forcings involving the gradients of atmospheric pressure and direct

tide-generating forces are hereafter denoted as

- P,
- aPa +X = Xi,j’ - 6
pi 9z Pi 0y

+Y =Y, (2.2.11)

Integrating (2.1.3) with respect to z over the interval z = —h; j to z = —h; j_1,

and noting that for small motion the vertical component of velocity is given by

‘%J=%%j at z=—h;;, (2.2.12)
we obtain
i1 _ 0ij O [7hi 0 /"“"'-1
=t Fhi | 9 U dz + — Vijdz=0, (2213
ot ot " 0x ), T ay)., MY (2:2.13)

where 1 = 0,1,2, j = 1,--+,J;. Note that the condition at the sea bed requires
that 0¢; 5 /0t = 0 in equation (2.2.14).

2.3 Surface, bottom and interfacial boundary conditions

In order to solve the system of equations (2.2.7) to (2.2.10), and (2.2.13) for the
dependent variables (; j, U; ; and V; ;, boundary conditions have to be specified
at the sea surface and the sea bed, along with appropriate interfacial conditions,
and initial and lateral boundary conditions along the coastal and open boundaries.
The initial and lateral boundary conditions used are given in Chapters 4 and 5,
along with the application of the present model to wind induced currents in a
horizontally unbounded open sea region and in a narrow lake. In this section the
interfacial conditions and the boundary conditions at the sea surface and at the

sea bed are described.

Evaluating the boundary conditions at the undisturbed levels gives the surface
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boundary conditions at z =0, =0,1, as

Pia (Ni,l ag:’l) = Tox, Pia (Ni,l ag;’l) = Ty, (2.3.1)

where T,, and T, are components of external wind stress imposed at the sea
surface. At the sea bed z = —h; 5, = —h; » with ¢+ = 0,2, we have either a no-slp
boundary condition:

Uis =0, Vis =0, (2.3.2)

or a slip boundary condition:

Pin (Ni,B ag:B) = Tz, Pis (Nz‘,B %) = Thby, (2.3.3)

where Ty, and T, are components of bottom frictional stress. The brackets in
(2.3.1) and (2.3.3) are used to indicate that the quantity inside of them may vary

within the layer.

Relating the bottom stresses, through a linear friction law, to the bottom

current one has

Tos = kyP; p Uis(=h),  Toy =ksp; 5 Vis(—h), (2.3.4)
where ¢ = 0,2 and kp is the coefficient of linear bottom friction. Alternatively,
bottom stresses may be represented by means of a quadratic friction law (for

example, Davies, 1982b) or by a linear friction law based on velocities averaged

over the bottom layer (Heaps, 1966).

At the undisturbed levels of the interior interfaces of each domain z = —h; j,
the conditions to be satisfied are those of the continuity of the horizontal velocity

and of the stress components. That is,

Uij = Ui j+1, Vi = Vij+1, (2.3.5)
BU,-,- an"
Pi,;j (Ni,i 3/) = Pij+1 (Ni,j+1—6TJ+1), (2.3.6)
aVi,’ avz‘, 41
Pi; (N,-,,- 323) - pi,j+1(Ni,j+1—éZJ—), (2.3.7)
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where = = 0,1,2, 7 = 1,---,J; — 1, and the conditions at the interior domain

boundary z = —hy, s = —ha o are
oUq, U, 1
pl,B (Nl,B aZB) = p2,1 (N2,1 02 ) = 0, (2.3.8)
vy, Va1
P18 (NI,B azB) = P2 (N2,1 Bz ) = 0. (2.3.9)

In these matching conditions we assume that there exist one-sided derivatives
(from the above and below) of horizontal currents at all internal interfaces. In a
rigorous sense, all physical quantities appearing in this thesis do in fact need to
have one-sided limits at the interfaces because the system is discrete in nature.

For simplicity, we ignore such rigour throughout the thesis.

Physically, conditions (2.3.8) and (2.3.9) state that the internal friction at the
interface is zero, that is, the water bodies of the two domains slide freely relative
to each other without frictional interaction. Heaps (1966) employed this condition
as an approximate interface condition at the thermocline level in an analytical
study of the dynamic response of a two-layer narrow lake to a suddenly applied
constant wind. In an investigation of local inertial motions conducted by Gonella

(1971b) such a stress-free condition was imposed at the base of the surface layer.

2.4 Transformed equations and boundary conditions
2.4.1 Transformation to the 0 coordinate system

Before developing the solution of equations (2.2.7) to (2.2.10) and (2.2.13)
using Galerkin expansions over the vertical space domain, these equations are
transformed into o-coordinates originally proposed by Phillips (1957) for numer-

ical weather predictions. Using the o-transformations
g; = —Z/Hi, 1 =0,1, (2.4.1)
0','=—(Z+H1)/H2, 122, (242)
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where Hy = ho,g = h, Hy = h1,p and Hy = hy p = h — Hy, each of the domains
is normalised by the o-transformations such that the interval —h; 5 < 2 < —h;
is transformed onto 0 < o; < 1. The coordinates of the undisturbed levels of

interfaces h; j are accordingly transformed by

§ij = hi,j/Hi, (i=0,1, j=1,---,Ji), (2.4.3)

§ij = (hi,j — H1)/Ha, (G=2,7=0,---,J). (2.4.4)

Alternatively, each layer may be transformed to the interval [0,1], or ; and
), may be transformed to the intervals [—1, 0] and [0, 1], respectively. The trans-
formations (2.4.1) and (2.4.2) have been chosen in this study mainly for physical

reasons.

In layered models the interfacial surfaces are often assumed to be parallel to
the undisturbed horizontal sea surface. It should be noted that in the presence of
an uneven bottom the interfaces will be distorted through the o-transformation

(except for the upper domain of the two domain system).

2.4.2 Transformed equations

The transformed equations of motion for €2; ;, ¢ = 0,1, are

Ui _ VVii=— z]:g(/’i,e — pi,l—l) i, e—1

at —1 pl,_] 8.1,
= ) U ;
oV, ; B ! Pig— Pis—1\ OCie—1
ot + 'YUz,J = ; g( pi,j ) 8y
o 9 Vi,
+ YZ’J = HfaU, <Ni’j oo ; )’ (2'4'6)

where y = 1,---, J;.
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The transformed equations of motion for 5 ; are

J1

U, ; P1e— P1e—1\ 9C1,e-1
oo ,)/Vz’ L= g 3 ) 3
ot ! ;:; ( P2 ) oz

J —
B Z p Pae= P21 ) 5?}2,}:—1 (2.4.7)

=1 pz,j *
~ 0 U, ;

+X2’] + H2230'2 (Nz,] 80'2 )’

J;
6V2,] ~ (P12~ P1e—1\ 0,1

=1 2,5

iop £~ Pae_1\ 9C2e1 2.4.8
_29(2 2, ) 5 (2.4.8)

(Nw S,

0
H2280'2

+Y2,j+

where 3 =1,---,J,.

The transformed equation of continuity for Q, ; is

OGij-1 i fo /Ei" 9 /E""' W
o o HH gy | Uidoit g [ Vigdoip=0, (249

where 1 =0,1,2, 5 =1,.--,J; and 0¢; /0t = 0.
2.4.3 Transformed boundary conditions

The transformed surface boundary conditions at ; =0, 1 = 0,1 are

_Pia (Ni,l 3Uz',1) Pia (Ni,l 3Vi,1)

= %) = 20, = o (2.4.10)

- TSZ) - H—
T

The transformed no-slip and slip boundary conditions at 0; = 1,7 = 0,2 are
Uz’,B :0, V;:,B = 0, (2.4.11)

and
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—pﬁf (Mo %) =, —Da2(n, ‘Wf’é) — Ty, (2412)

where 2 = 0, 2.

The transformed conditions of continuity of velocity and stress within each domain

o; =& ; are

Uij = Uij+1, Vii = Vij+1, (2.4.13)
an,' aUz‘,‘+1

pi,j(Ni,J' 30,]) = Pij41 (Ni,j+1T‘].>, (2.4.14)
Vi, Vi j+1

,Oi’j(Ni,j 30;) = Pij+1 Ni,j+1T‘]i), (2.4.15)

wheret =0,1,2, y=1,---,J; — 1.

The stress-free conditions at the interior domain boundary 0y = &5 =1, or

equivalently 09 = £20 = 0, are

P18 OUy s\ _ P2 oUz,1\
H—I(NI,B o ) =4 (Nz,1 e )_0, (2.4.16)
P1,p OVip\ _ P2 Va1\
F(Nl,g — ) =5 (Nz,1 — ) =0. (2.4.17)

2.5 Solutions via the use of a Galerkin method applied over the vertical space

domain: a basis set of B-splines

For approximating solutions of differential equations, the Galerkin method is
the most favoured of the various weighted residual methods. The first step in con-
structing the Galerkin solutions is to expand the U; and V; velocities through the
vertical in terms of depth-dependent basis functions (test functions), ¢, (o), and
the corresponding time and horizontally varying coefficients, 4;(z,y,t), Bi(z,y,t),

k=1,--.,m;, respectively. Let the U; equation of motion be taken in operator
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form as £4(U;,V;) = 0. The finite-dimensional representation of solutions pro-

duces a non-zero residual, R(¢), given by
R = £,(U™, vy, (2.5.1)

where Ui(M) and Vz-(M) denote the finite-dimensional approximation to U; and V.
The next step is to set the integral of weighted residuals over the domain ; to
zero by choosing the weighting function to be the same as the basis function used

for the expansion of UZ-(M) and Vi(M), namely
(Gip LU VEN ) =0,  k=1,--,m, (2.5.2)

where ( , ) denotes a scalar product. The same procedure is applied to the V; equa-
tion of motion. Consequently, a system of equations for the unknown coefficients
are derived which can be solved by any standard numerical methods available for
depth-integrated dynamics. For detailed accounts on the principle of the Galerkin
method see Prenter (1975) and Fletcher (1984). In the literature there have been
some applications of the least squares method (for example, Stevens, 1976). How-
ever, this has not received much attention principally due to the sizable amount

of computation required.

2.5.1 B-splines functions

Most realisations of the Galerkin procedure, with a basis set of continuous
functions, implicitly assume that the solution is relatively smooth. The global
dependence of continuous functions on localised changes usually limits the repro-
duction of the localised rapid variations in solutions (De Boor, 1978), although
such a disadvantage can be avoided in certain circumstances by using a basis set
of eigenfunctions (Davies, 1983c). In this respect the B-splines of order n, which
have restricted support and continuous derivatives up to n, — 2 may be advan-

tageous from a numerical point of view over other local basis sets, such as other
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splines or piecewise sinusoidal functions. Details on the practical use of B-splines

can be found in Cox (1972, 1975) and Davies (1977a).

Figure 2.2 illustrates the basis sets of the fourth order B-splines defined in the
two-layer, one and two domain systems. The intervals [0, 1] are subdivided into

units of length Av; » = (Vi r41 — Vi), by the partition
0=Vip< < Vir<- - <Vim=1, (2.5.3)

where ¢ = 0,1,2 and ™ = m; —n, + 1. Points denoted by v; , are called knots and
their separation can be arbitrary. For convenience, the distribution of knots shown
in Figure 2.2 is uniform for each domain. The r th B-spline of order four has non-
zero positive values over the knot interval v; ,_4 < 0; < V; ., with its values and
derivatives vanishing at V/; ,—4 and V;,. For the one domain system a set of B-
splines spanning the entire depth from the surface to the sea bed is defined, while
for the two domain system two independent sets of B-splines spanning the upper
and lower domains are defined. Two sets of three supporting knots are defined to
complete the basis set at the outside of each domain, that is ¢,_3 to v,_1, and
Vo, to Vo3, for Qo, and V; _3 to V; 1, and V1 to V; 3, for Q;, 1 = 1,2. Use of

the fourth-order B-splines results in a hepta-diagonal mass matrix.

For the one domain system there is no difference in the arrangement of knots
between the homogeneous and layered systems except that for the latter, the
positions of the knots are constrained to coincide with the undisturbed interface
levels to avoid any undesirable oscillations in numerical results (Axelsson and
Barker, 1984). For the two domain system two sets of knots are defined as shown
in Figure 2.2 and, in this example, knots V15 and V2 are positioned on the
domain boundaries. The two sets of three supporting knots around the domain
boundary may overlap each other, but in any case their contribution to each

domain is independent.
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Vo3 Vo2 Vo1 Yo,0 Vo,1 Yo,z Vo3 Vo,a Vo5 Vo,s Vo, Vo8 Vo0 Vo,10 Vo,11 Vo,12 Vo, 13

G, l= 0 Q G, =1
Sea surface Sea bed
M, ,(5,) Two domain system
1.0
Upper domain of
the two domain
Oy system
Vl,—zvl,-zvl,—nvl,o Vit Vi Vi,s Ve Vs V16 V1,7 V8
c, =0 o, =1
M, . (c;)
1.0

Lower domain of
the two domain o
system Y]

Vars Voo Vo Vo0 Vo1 Vo2 Vo3 Vo4 Vo Vo5 Vo1 Vo

o, =0 G, =1
I Q Q;

Sea surface Sea bed

Figure 2.2 Configuration of the fourth-order B-spline functions in the

one and two domain systems.
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The Galerkin procedures for the one and two domain systems are described
separately. The two horizontal components of current are expanded in terms of
the fourth-order B-splines M; (0;), 1 = 0,1,2, with the introduction of a set of

weighted scalar products.

2.5.2 One domain solutions

Galerkin solutions in §2g j are sought with respect to the scalar product

(¢ w pO,J/ '.wO,j dUo, (254)
pOl €0,5-1

where @ ;, P, ; is a pair of square integrable functions in a Lebesque sense. With

this, the conventional Galerkin method can readily be applied.

For simplicity, it is assumed that the vertical variation of eddy viscosity has a

fixed structure over the domain, that is,

N = NO,j(w7 yvaO)t) . aO(way,t):U/O,j(o-O) for £O,j—1 <0¢ < 60,]'7 (255)

where j =1,---, Jo.

The two components of horizontal current, Uy and Vp, at a depth 0y, are

expanded using m¢ basis functions of B-splines, so that

mg

Uo(SL',y,O'o,t) = ZAO,T(.T,y,t) MO,T(O'()) y (256)
r=1
Vo(z,9,00,t) = > Bor(z,y,t) Mo+(00), (2.5.7)

where the coefficients Ay, and By, are to be determined.

Taking the scalar product (2.5.4) of (2.4.5) with Mj ; gives

U 1) &L (po,e - pO,l—l) 0¢o,e—1
)

8t’ —7(V0,k) =4 Z g Oz Ao,e—1,k

e (2.5.8)

+ Xo,1Q0,0,x + Lok,
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where

Ji . i
(U ) = Ui, Mi k) = Z(@/ Ui M; dOi) : (2.5.9)
j=1 p'i,l &ij—1

Ji IR
(Vi) = Vi, Mi3) = Z(h/ Vii Mk dUi) : (2.5.10)

’ pz 1 JEi -1
ij 1
Aok = Z / Mz g do; = Mz',k dU,', (2511)
j=0+1 €ij-1 E-‘,Z

and

J P
Pij [* 2 Uii\ s - ar.
Z{P” ./5U , 00; ('“M o0, )M,,k do; ¢, (2.5.12)

withe=0,k=1,---,m

Integrating (2.5.12) by parts yields

Jo

Lig= — 1H Z {sz(fo,j) Mo, k(€0,5) — T22(6o,j-1) Mo,k(fo,j—1)}

Jo E
Qy Po,j / 0 OUy,; dMy i
A U0, G0k g
¢ =1 (/001 50,1_1/10’] 00y doyg 9o

(2.5.13)

Using the interfacial condition (2.4.14) and substituting the sea surface and bottom
boundary conditions (2.4.10) and (2.4.12) gives

Tox sz
Iog = — Mo (1) +
0,k Po sHo 0,4(1) Po1Ho

0,5 :
Po,j /E” 9Uo,; dMo,k
Hz Z(ﬂo 1 JEo,5-1 Mo’j 60’0 dUO dUo '

This integration by parts facilitates the inclusion of the boundary conditions, and

Mo,x(0)
(2.5.14)

it permits the use of linear basis functions.

Substituting the expansions (2.5.6) and (2.5.7) into (2.5.8), then using (2.5.9),
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(2.5.10) and (2.5.14), yields

mo aA . mo
S 2 (Mo, Mox) = v Bor(Mo,r, M)

r=1 ot r=1
7
_ 20: (Po,e - Po,z—1> 0Co,6-1 a .
g Do O 0,6—1,
=1 ;
Thz Tsz 4
— My (1) + My x(0) + Xo,1 Qo,0,k
Po,sHo O Po1Ho
mo Jo E
Qo Poe [0t dMy,, dMpy
—— AO,T <__’/ ,Utog : : dao 5 k=1,"',m0.
1 200 2\ pos oy, Ho s o
(2.5.15)
Similarly,
mo BBO ., my
(Mo r, M, Ao,r(Mo,r, M,
> 5 (Mo, Mok) + ¥ Aor(Mo,r, Mok)
r=1 r=1
_ Poe = Poe—1\ 00,61
== Z ( Por ) oy LotLk
Tby ~
. Mo k(1) + Mo x(0) + Yo,1 Go,0,%
pO,BHO pO,lHO
Po,e So.8 dMo,r dMok
BOr ( / H — ’ dao), k=1,---,m0.
Z Z Po Jey o, 0t do, doy
(2.5.16)

Substituting (2.5.6) and (2.5.7) into the equation of continuity (2.4.9) and

rearranging the set of resultant equations yields,

ey 84o, OBy,
—+ZH0( 5o T "oy )ao,j,r=0, (2.5.17)

r=

where j =0,---,J; — 1.

Writing (2.5.15), (2.5.16) and (2.5.17) in matrix form gives

CiA = +CiB; z (Pzz Pie— 1)3Cgi—1Ege)

(2.5.18)

Tsz s Thz b (1) 7
{— Bl + X1 E
P Hi piH H?

+ D;A;,
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Pie— Pzz 1Y 0Gi e—1 . (0)
C;B} = —vC;A,; — —E;
7 Z ( ) Oy
Tsy 1 Tby b (1 @i
-——————IEi-— ]3 -+-)ﬂ, ID D;B;,
piH pPiH H}?

]

+

and

Z; + H; E;(A} + B;) =0,

where i = 0. In these equations:

C; is a mass matrix of order m; x m; with (r, k) th element
i Pii i
E — / M; . M; do;
j=1 Piy Jei,;
D; is a diffusion matrix of order m; X m; with (r, k) th element
S (Piy [5
(_’_/ o M; » M; d0'i>;
]=1 pl 1 EIJ 1

E; is a matrix of order m; X m; with (r, k) th element

1
/ M,',k dO'i;
ir—1

EEZ), £=1,---,J;,1is a column vector of length m; with k th element

1
/ M; y dog;
f-’,l—l

E? and E! are column vectors of length m; with & th element
M; (0) and M, (1), respectively;
A; and B; are column vectors of length m; with kth element

Ak and B, respectively;

)

A? and B; are column vectors of length m; with kth element

0dix ., OB

ot ot

k )
, respectively;
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(2.5.19)

(2.5.20)

(2.5.21)

(2.5.22)

(2.5.23)

(2.5.24)

(2.5.25)

(2.5.26)

(2.5.27)



Z? is a column vector of length m; with kth element

Aik—1
— 2.5.2
ot (2.5.28)
and A} and B} are column vectors of length m; with kth element
Aix B; .
68; and 88y,k , respectively. (2.5.29)

The definitions of matrices (2.5.21) to (2.5.29) will also be used for the solutions

of the two domain system which will be described in Section 2.5.2.

Following the usual strategy used in finite element methods, it is possible to in-
corporate the boundary conditions, thus modifying the basis sets and subsequently
all of the integrals given in this formulation. In earlier studies Davies (1977b,c)
has done this on the basis of the Galerkin-Collocation method. Therefore the

integration by parts do not appear in the solution procedure.

In this study the surface stress conditions have been incorporated as natural
boundary conditions in the course of integrating (2.5.12) by parts. Subsequently,
when the slip-boundary conditions are enforced at the sea bed, all of the boundary
constraints are natural conditions needing no special modifications. However, for
the case in which a no-slip condition (an essential boundary condition) is enforced
at the sea bed 0; = 1, 7 = 0, it is required that the basis sets be modified. This is
achieved by either specifying knots having the n,—1 multiplicity at ; = 1 (Davies,
1977a, 1978b) or by linearly combining the B-splines which do not vanish at ; = 1
(Davies, 1977b,c, 1980a). It has been revealed in preliminary computations that
both approaches yield almost the same results. The latter approach is used in
this study. Thus, for the total contribution of the B-spline basis set to vanish at

0; =1 we need

Y A Mi(1)=0 at o;=1. (2.5.30)

r=1
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Since, for the B-splines of the fourth order, M, .(0;) is non-zero at ¢; = 1 for

each r = m; — n, + 2 to m;, equation (2.5.30) reduces to

Mi,m.-—2(1) M2,mi—1(1)

Aim;, = —Aim;— — A - ; 2.5.31
m = A ) A Yy 25
Thus, by replacing the (m; — 1)th and (m; — 2) th B-splines by
M‘m-_l(O'i)ZMim._l(O',‘)— MM,m(U,) (2.5.32)
T,y gLLLE) Mz,m'(l) PXLLd) ?
and
v Mz m-—2(1)
imi—2(03) = My m;—2(0;) — ———5M; m,(0;), 2.5.
M g ity 2(0 ) s TTbe 2(0- ) Mz,m,(l) ’ l(o- ) ( 5 33)

we form a basis set, each element of which satisfies the essential constraint at

0; = 1 exactly. With these modifications the order and length of matrices in

(2.5.21) to (2.5.29) are reduced by one.

Once the coeflicients of B-spline expansions are computed from (2.5.18), (2.5.19)
and (2.5.20), along with the appropriate initial conditions and lateral boundary
conditions, the two components of horizontal current at a depth 0y are obtained

from (2.5.6) and (2.5.7).

For the general situation when the eddy viscosity profiles of the form (2.5.5)
are not permitted, the problem of reformulating the resultant diffusion matrix
at every time step might occur. In such circumstances, as described by Davies
(1980c), it might be expedient to expand the eddy viscosity in terms of suitably

chosen interpolation functions Wy ¢ with coefficients Ey ; ¢(,y,t) so that
Mme
Noj(z,y,00,t) = Y Boje(z,y,t) Yo3e(00),  j=1,---,Jo, (2.5.34)
=1
where m. is not necessarily equal to my.
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Integrating these expansions over each layer and dividing by the thickness of

the layer, we obtain for ; ;, ¢ =0,

Tii(e,008) = 5 ZA, (2, 9,1) / Mi, doi,  (2.5.35)
z,]

il &iij
ZB,‘ ~(z,y,1) M; . do;, (2.5.36)

vi;i(m’yaaiat) = )
Ai,; —1 &i,j—1

where A ; = &ij — &ij—1,3=1,---,J;.

Integrating these expansions over the domain ;, ¢ = 0, we obtain

m; 1

Ui(z,y,0:,t) = ZAz‘,r(w,y,t)/ M;,r doi, (2.5.37)
= 0

o m; 1

Vi@, 00t) =Y Bin(e,u,1) / M;, do, (2.5.38)
r=1 0

with y =1,---,J;.
2.5.3 Two domain solutions

Introducing a stress-free condition at an interface level leads to the representa-
tion of the vertical dependence in terms of two independent sets of basis functions.
Use of a single set of basis functions forms a system of partial differential equations
with overspecified boundary conditions. Approximate solutions to the system of

equations (2.4.5) to (2.4.8) are sought with respect to the scalar products

.. pEi
(. 1.) Z(pz,]/ bii Vi dm) for Q; (2.5.39)

j=1 pzl fi,j—1
where 1 =1, 2.

Expanding the two components of horizontal current in §2; in terms of B-spline

basis functions M; ,(0;) together with time and horizontally varying coefficients,
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gives

Ui(z,y,0i,t) = Y Ain(z,y,t) Mir(04), (2.5.40)
r=1

Vi(z,y,06,t) = Y Bir(z,y,t) Mi(00), (2.5.41)
r=1

where the coefficients A; ; and B; », ¢ = 1,2 are to be determined. Note that the
number of B-spline functions and the order of the B-splines may also differ for

each domain.

The variation in the vertical eddy viscosity is assumed to be of the form
N = N;,j(z,y,04,t) = ai(z,y,t) [, ;(0:) for £, (2.5.42)

where 7 = 1,2. For a more general form of time varying eddy viscosity, it is possible
to expand the vertical eddy viscosity in terms of a set of interpolation functions

similar to those described by equation (2.5.34).

Taking the scalar product (2.5.39) of equations (2.4.5) and (2.4.7), with M; i,

1 = 1,2, respectively, gives

O(Un,k) <L Pie— Pire—1\ OCie—1
oe Wk == 2 g( P14 9o MM

=1 (2.5.43)
+ )?1,1 Aiok+ Ik for Qq,

O(Usz k) i g<P1,e - p1,z—1> 0C1,0-1

— Vo 1) = —
ot v(Va,k) Pas Oz a2.0,k

_ i g(pz,e_p2,e—1) 92,01 (2.5.44)

Ay p—1,k
P2, Iz o

=1

=1
+ Xon1 Qoo+ Iok for g,

where

J=1

Ji . i
(U; ) = (Ui, Mix) = Z(Q/ Uij M x dUz') ) (2.5.9)

pi,l &ij—1
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Ji .. i
(Vir) = (Vi, Mi ) = Z(_Zu/s Viji Mk dUi) , (2.5.10)
= 3,1 v&ij—1
(2.5.11)

5'_’
Aier = Z/ M; . do; —/ M; . do,
I

j=t41 Y81

and
Ji

Pi; K Ui\, . |

Z{pz 1 /El',j—l 80’, (’Ll/z’J ao'z )Mz)k do-'t 3 (2512)

m;.

withi=0,k=1,---,
Integrating (2.5.12) by parts and substituting the boundary conditions (2.4.10)

and (2.4.12) and the interfacial conditions (2.4.14) and (2.4.16), gives

Tsz pl & J 8U1 7 dMl k
Iy = My (0 )— ( "/ py it ——"do, |, (2.5.45
pl,lHl pl 1 El,j—l 1 60-1 d0'1 ( )
where k =1,---,m; and

OU%,; %daz), (2.5.46)

Ths Qs ([ Pay [
Ly=— My k(1) — — ,J / ,
& P21 H2 24(1) Z(ﬂz 1 €51 Hai 00y do,

where £k =1,---,ma.

Substituting the expansions (2.5.40) and (2.5.41) into (2.5.43) and (2.5.44),

and using (2.5.9), (2.5.10), (2.5.45) and (2.5.46), gives

m1 6A1’.r m1
> g (Mip, Muik) = 7Y Bip(Mr, Mig)
r=1

r=1
Tsz el
Mix(0)+ X11Q1,0,k

J1
P1e— P1e—1\0C, -1
e g 2 : . al,[—l,k‘ +
; ( P11 ) Oz P1,1H:
mq J]_ E
(%} P1ep [0 dMy » dMi
- 79 Al,r ( - / H ’ : d0'1>, k:]-a"'ama
H12 Tz_:l ; P11 & ooy 1.6 doy do, 1
(2.5.47)
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and

mao aAz,,r ma
2,79 2,k — 2,r 2,79 2,k
o 2L My, Mys) = 7Y Bar(Mar, Mak)

= =1
J2
B P p1 -1\ 9C1,e—1 Pae— Pae—1\0C20-1
o Z ( ) Oz @2,0,k ;g( P21 ) Oz ChfgF
M, k(1)+X216120k
P 1H
Qg 2 = p, 0[St dMs , dM i
_QrNT g ( / w, r G0k g5\ k=1, ma.
H} ; ) Z P21 Je, 0y > do,  do, :

(2.5.48)
The equations for Vi, V2 can be derived in a similar manner, but the details are

omitted for simplicity.

Substituting (2.5.40) and (2.5.41) into (2.4.9), we obtain the equations of con-

tinuity for the upper and lower domains

acm Z Hl(aAu aBl,r)al,m

Oz Oy
ma aA2,r aBz,T .
+;H2< am + ay >a2)0,r_ 07 -7 - 07.'."]-1 - 1, (2.5.4:9)
6C2,] 8A2,r 632,1- o -
at + Z H2( 6$ + 6y )az)]:r . 07 J = 07 Tt J2 - 1- (2-5-50)

For the upper domain, §2;, the U and V equations can be written in matrix

form as
o~ (84
*= ~C;B E°+ X, ,EV - =L
ClA.l Y1 Dg + pl’:lI{1 1 + 1,1E1 H% D1A17
B Z (pl £~ P1e— 1>3C1,z—1 E® (2.5.51)
P11 Or !
CiB} = —vC1A; + E: + ¥1,E - 21D, B,
P, 1H1 Hi
2.5.52
P, P1 -1 9C1,0—1 £® ( )
- Z dy 1
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Similarly for the lower domain 2,, one obtains

Tha = Q
CoAl = ~C,B, — ; H2E3+X2,1E§1) H§D2A2
2,1
Pu P1e-1\0C -1
N Z ( ) Oz Eg)
J.
< g(Pz,e = Pz,e—1) 3%,;—1 EO.

t P21

C2B; = — ’)/CzAz —_ Eg + i;2 1E(1) 2 D2B2

Paq1H2 e H
i (Pu P1,e— 1)3C11 1 ()
Oy 2
=1
B < g(/’z,z—Pz,e—1)5C2,e—1E(z)
=3 P21 oy 7

The continuity equations can be written in matrix form,

2
ZI = —EHZE,(A; + B;),

=1

Z; = — H:E;(A} + BY).

(2.5.53)

(2.5.54)

(2.5.55)

(2.5.56)

The definition of the matrices appearing in (2.5.51) to (2.5.56) are found from

(2.5.21) to (2.5.29) by setting ¢ = 1,2.

Note that for the Galerkin solutions of the domain €21, the boundary conditions

imposed at the top and bottom of the domain are all natural conditions and

therefore no corrections to the matrix integrals are needed. The bottom boundary

conditions for the domain 2, are treated in a way similar to the one domain system.

For the case of the no-slip bottom boundary condition the modified (mo — 1)th

and (mg — 2) th basis functions are obtained from (2.5.32) and (2.5.33) by setting

¢ = 2. The layer-averaged and domain-averaged horizontal components of current

are obtained in (2.5.35) to (2.5.38) by setting 1 = 1, 2.
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2.6 Solutions via the use of a Galerkin method applied over the vertical space

domain: a basis set of eigenfunctions

This section describes Galerkin solutions in terms of a basis set of eigenfunc-
tions which satisfy a Sturm-Liouville eigenvalue problem resulting from the spec-
tral decomposition of the second-order vertical diffusivity operator. The solution
procedure is similar to that described in Section 2.5 although the final set of
equations for the coeflicients of the eigenfunction expansion is quite different from
those of the B-spline expansion. In this section it is assumed that the eigenfunc-
tions have been found by either numerical or analytical means. The details of the

construction of these eigenfunctions are described in Chapter 3.

As seen in Section 2.4, it is necessary to introduce a set of weighted scalar
products which depend upon the domain structure of the system. For a one
domain system, a set of eigenvalues and eigenfunctions spanning the entire depth
is defined to represent the solutions of the system, whereas for the two domain
system two independent sets of eigenvalues and eigenfunctions spanning upper and
lower domains are defined. In contrast to the B-splines, the eigenfunctions belong
to a global basis set and their structure is determined by the variation in density
and eddy viscosity through the vertical. The formulation of spectral solutions is

facilitated by representing the local form of the eigenfunction of the j th layer as

filoi) = fi[j](ai), for & ;-1 <03 <&, (2.6.1)
and the local form of r th eigenfunction of the j th layer as

fi,r(ai) - fi,j,r(ai)v for & -1 <0 <& j r=1,2,--.,m;, (2.6.2)

where ¢ = 0,1,2, j = 1,---,J;. The local forms of eigenfunctions of each layer
(often called piecewise eigenfunctions) will be used for clarity of the solution pro-

cedure.
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Galerkin solutions are sought with respect to the scalar product (2.5.4) for Q,
and with respect to (2.5.39) for Q;, ¢ = 1,2. The vertical variation of eddy viscosity

over each domain is assumed to be given by (2.5.5) and (2.5.42), respectively.

2.6.1 One domain solutions

The two components of horizontal current, Uy and V;, are expanded using myg

depth varying continuous functions, so that

mo
Uo(z,y,00,t) = EAO,T(x,y,t) fo,r(00) , (2.6.3)

r=1

mo
Vo(z,y,00,t) = Y Bo,r(,y,1) fo,(00), (2.6.4)

r=1
where the coefficients Ay, and By, are to be determined. Using local forms of
the continuous functions, the expressions (2.6.3) and (2.6.4) may be represented

as follows:

mo
Uo,j(2,9,00,t) = > _ Aor(2,4,%) fo;,(T0),  bo,j—1 <00 <&y, (2.6.5)
r=1

mo

Vo,i(2,9,00,t) = Y Bor(2,9,t) fo;r(00), &o,j-1 <00 =< 6oy, (2.6.6)
’]1

r=1

where 3y =1,---, J;.

Taking the scalar product (2.5.4) of equation (2.4.5) with f, ; ; gives

(U, S Pos—Por1 o
—<a:’k> =7 (Vo) =— Z g( L on 1) Cao:; = Qo,e—1,k

=1 pO,l
+ Xo,1G0,0,x + Iox,

where

T .
* pi . EC,J
<Uz',k) = (Ui,fi,j,k) = Sj(—d/5 Us,; f,-,j,k dUi) , (2.6.8)

j=1 Pig Jei;o
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Eim

J.

~(Pi;
V. - ‘/i’ 2,7 = 0. .
(Vir) = Fisi) ;(pi,l/f

Viii fi ik da,-) ; (2.6.9)

f,i-1

i i
ai’fyk = Z / 1,J,k dO-’L — / fl k do_z, (2610)

j=t+1 £:¢

Ji £
oo i Pij [+ O U |
e H; j=1{pi,1 /E.-,j-1 oo (,uw 90 ; )fi’f’k dos, (2.6.11)

with:=0,k=1,---,m;.

and

Integrating (2.6.11) by parts twice yields

Jo

Io,k = = i Z {Tzz(fo,j) fo,j,k(€0,j) - sz(EO,j—l) fo,j,k(gO,j—l)}

€o,j

Qg Po,; dfo,ix .
- m ; [Pzi(“w T )U‘“}

£o0,j-1

Jo €o,j
0 S5 (P [ g ()]
T om T Uo,j —— D2 Vdo
Hg 1 {p0,1 €051 o dog (’u %5 do, >

.

(2.6.12)

Substituting the sea surface and bottom boundary conditions (2.4.10) and (2.4.12),
and using the interfacial conditions (2.4.13) and (2.4.14), gives

Tz
pO,B}YO Y P ,

58 {2 (1o ) ot (s ) a0}

Po,j -/50'5 d dfo ik }
' Uo,j —— o ;—22=)d00 ¢, 2.6.13
Z {ﬂ(} 1 J&o0,j-1 03 do ('UIO’] doyg ) 0 ( )

where k = 1,---,mo and the suffixes s and b in the second row of (2.6.13) denote

Iow=—

b

evaluation at 0y = 0 and 1, respectively.

Substituting the expansions (2.6.5) and (2.6.6) into (2.6.7), using (2.6.8),
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(2.6.9) and (2.6.13), yields

i 3A0r<fozm fozk> - 7§Bo’r<f°’e”"’ fo’f’k>
r=1

r=1

_ Z (pu &~ Po,e- 1) 3%,;—1 Qo ook

Thz Tsz
+
/)0 o H fn k(1) PoH

. ;Aow{’;‘;’f: (10 552) T (0 3555) fo0.00)

Po, 0,5 d dfo,;x
E OTZ{ 0]/ ,]',TE(JU'O,;,F d;.:’\)dO-O}s

5031

fo1 #(0) + Xo,1 @0,k (2.6.14)

where £k =1,---,myg.

Up to this point the procedure is essentially the same as that of the basis set of
B-spline functions except that the integration by parts is applied twice. Following

Heaps (1983), a spectral basis is determined by finding solutions to

d dfops ,
d70<“°’f do ) ==X foy,  J=10000 05 (2.6.15)

subject to separable limit conditions

df
(:uo 1 d;[l] )0 = Bo,1fo1)(0), (2.6.16)
d B

and interfacial conditions

fo[j](fO,j) = fo[j+1](§0,j)
(N .dfo[j]> _ Pojt (,u ‘ dfo[j+1]) J=Leesdo—1
%9 doy to.j Po,; O doy g

(2.6.18)
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Equations (2.6.15) to (2.6.18) constitute a multilayered eigenvalue problem, giving
a sequence of real-valued eigenvalues and eigenfunctions which have the orthogo-
nality property
NG
(Foir Fojr) = Z( J / Foiwrfoik dO'O) =0 for r#k. (2.6.19)
j=1 Po,a Jeo;-1

Details on the limit conditions of the eigenfunctions will be described in Chapter 3

in conjunction with their numerical determination.

Let Ajx and f, 4, i =0, k =1, .-+, m;, be a set of eigenvalues and eigen-
functions satisfying the Sturm-Liouville type boundary problem represented by

equations (2.6.15) to (2.6.18). Then, (2.6.14) becomes

J.
aA,- - pz —pi — 0 1,0—
ko Bip— 2 g( Y, Y, 1) Ca; vy 5 o

ot yar Pia
Ly 27 z z
+ Xi1QiorPik — ﬁ)\i,kAi,k + (I + K ) @ik, (2.6.20)
where
Tsx Thr
Ik = fix(0) - fix(1), 2.6.21
k pi,lﬂ‘i k ) pz‘,lﬂi ,k( ( )

a .

Ky = ng ZAi,r{ﬁi,lfi,k(O)fi,r(O)_pi,Bpi_,lﬁiﬂfi,k(l)fi,r(l)}’ (2.6.22)
=1

-1 T p. o [E e
D,k =<fi,j,ka fi,j,k> =<Z—zi/ Fli dUz’) ; (2.6.23)

j=]_ pzll E‘.j—l

and:=0,k=1,---,m;.

Similarly,
O0B; i L Pie— Pie—1\ 01
7 Py : ’ — @ 0—1,k P;
ot YAk ; g( Pis By A—1,k Pik
~ o
+ Yii1ai0kPik— Eﬁ)\i,kBi,k + (e + Kiy,k)@,-,k, (2.6.24)

where
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Th
Jy 1 - Y
Bk pzl fk() pzl

S B BusFop 0, O~ piaptBiaf DS, ), 2626)

Z,,._

fz k(1), (2.6.25)

andi=0,k=1,---,m;.

Substituting (2.6.5) and (2.6.6) into (2.4.9) gives the continuity equation of

the form

aCz, Bar
I+ H; E { By }a,-,j,r =0, (2.6.27)
where1=0,3=0,---,J; — 1.

The vertical modes in equations (2.6.20) and (2.6.24) are coupled through the

terms for the bottom friction

Toe = Pip kb ) Airfi (1), (2.6.28)
Toy = Pip ks D Birfi (1), (2.6.29)
r=1

and the stressing terms K7, Kiy’k which involve By 1 and By 2. In this case, a matrix
inversion is required to solve for the coefficients of the eigenfunction expansion.
With By = 0 and Bp2 = o0 or fo,2 = ky = 0, the system of equations becomes

uncoupled.

Consider the alternative expansion of the U; ; and V;; velocities used in a

series of works by Heaps, namely,

Uij(z,y,0,t) = Zﬁi,r(w,y,t) ®; . fi,j,r(ai) for & ;-1 <0; <&, (2.6.30)

r=1

V,-,j(:c,y, O'i,t) e Z gi,r(:c,y,t) Cbi,r fi,j,r(ai) for fi,j—l <o; < fi’j. (2.6.31)

r=1
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With the use of the relations

(2.6.20) and (2.6.24) reduce to

where

Ik

L3
Yy
Ji,k

T
Ky

Kf’,k

Toz

o~ J.
O0A; ~ - Pit— Pie-1\ OC r-1
ot vBir — ; g( P ) o Qie—1,k

e iy 72 z z
+ Xip Qo — gz ik dis + (Ji + Kig),

0B; i -~ : (Pie—Pu—l) 0Ci,e—1
= =—7Air — g\ — ’ —— i1,k
; Pia 9y

~ a. —~
+Yi1 a0,k — _H; AikBixk + (I + Kb,
(3

y

Tsz Tz
fz' 0)— fz' 1 )
piHi +0) PiHi 1)

Tsy Toy
fz' 0)— fi 1 )
Pt O~ oo g

2 2 Ao B Fob OF 1, 0) = Pow PR (DF 1y 1)
r=1

£

(8]

25 Y Busir { Bua FopOF,0) = poapTBiaf sV, 1)
tor=1

= p'i,B kb Z A\i""@ivrfi,"'(l)’
r=1

Ty = pi,B ky Z Ei,rq)i,rfi,r(l)’

r=1

andi=0,k=1,---,m;.

The continuity equation takes the form

0¢o.; ™ (9Ao, OBo, -
ot +H0r2=;{ o + ay }<I>0,ra0,1,r—0,
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(2.6.32)

(2.6.33)

(2.6.34)

(2.6.35)

(2.6.36)

, (2.6.37)

, (2.6.38)

(2.6.39)

(2.6.40)

(2.6.41)



wheret=0,3=0,---,J; — 1.

In applying the basis set of eigenfunctions in Chapters 4 and 5 we will employ

Heaps’ formulation. Hence we write (2.6.33) and (2.6.34) here in matrix form as

szl (/Bz 1C° —p, szilﬂz 2C ) z_}_(p;rls;LE: _

B Z g (Pi,e ; Pie— ) 3(3;—1 EY + X, EW,

=1 1,1

B: = — L’YA,‘ —_ ?Asz

i

2
Hzl

Js
=1

piHi

B0 + .5,

g(Pzz /zzz 1) 6%2—1

and (2.6.41) becomes
Z; + H;E] (A} +B}) =0,

where ¢ = 0. In these equations:

111- and ]§, are column vectors of length m; with kth element

~

A\i,k and  B;, respectively;

A7 and ﬁl' are column vectors of m; with kth element

aﬁi,k and 0./3\1',)9
ot ot

, respectively;

Z? is a column vector of length m; with kth element

OGik .
ot ’
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(ﬂll szpzllﬂl2C) ,+( Tay ES —

_Tbz b
piq Hi E,)
(2.6.42)
Thy b
pi,lﬂ'Ez)
(2.6.43)
(2.6.44)
(2.6.45)
(2.6.46)
(2.6.47)



A’ and B! are column vectors of length m; with k th element

DA dB;,
Oz Oy

k , respectively;

C? is a matrix of order m; X m; with (r, k)th element

@i f:-(0)f; (0);

C? is a matrix of order m; x m; with (r, k)th element

@i fir(DF k(1)

E¥ is a matrix of order m; X m; with (r, k) th element

1
‘I)i,k/ fi,k do;;
€

6r—1

Egz), £=1,---,J;,1s a column vector of length m; with k th element

1
/ fox do;
Ei,€—1

E$ and E! are column vectors of length m; with k th element

fix(0) and  f; (1), respectively;

and A is a matrix of eigenvalues, that is, with (r, k) th element

Ai ks
A = { =
0

(2.6.48)

(2.6.49)

(2.6.50)

(2.6.51)

(2.6.52)

(2.6.53)

(2.6.54)

Once the coefficients of the eigenfunction expansions are computed from equa-

tions (2.6.42), (2.6.43) and (2.6.44), along with the appropriate initial conditions

and lateral boundary conditions, the two components of horizontal current at

depth 0 are obtained from (2.6.30) and (2.6.31), respectively.
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The layer-averaged velocities over each layer Q; ;, with a;o,» = 0, are derived

as

mi

- 1 ~

Ui,j = Az . Ai,r(wa yat) q>i,r(ai,‘]'—--l,-r . ai,j,r), (2655)
A{i,j r=1

— 1 &

V‘iaJ = Bi,"‘(xv y7t) Qi,'r(ai,j—l,r - ai,j,r), (2656)
Asi’j r=1

and the domain-averaged velocities for ; are derived as

mg
ﬁi(m’ Y,0i,t) = Z Ai,r(xa y,t) @i aio0,r, (2.6.57)

r=1

V’i(w, Y,04, t) . Z -/B\i,r(xa Y, t) q)i,r ai,0,ry (2658)

r=1

with¢=0and y=1,---,J;.

2.6.2 Two domain solutions

Expanding the two components of horizontal current in terms of the coeflicients

Air(z,y,t) and B, (z,y,t) and eigenfunctions f; ,.(0;) gives

Ui(z,y,0:,t) = Y Air(2,y,t) f; (04, (2.6.59)
r=1

Vi(z,y,00,t) = Y _ Bi(z,y,t) f; ,(04), (2.6.60)
r=1

where the coefficients A;  and B; r, 1 = 1,2, are to be determined. The expressions

for U; ; and V; ;, using the local forms of eigenfunctions, are
Uij(z,y,0i,t) = Z Air(z,y,t) fi,j,r(Ui), £ij—1 <0 <&, (2.6.61)
r=1

mg
Vii(@,y,05,t) =Y Bio(z,y,t) f;;,(0:), &ijo1 <0< & (26.62)
r=1
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Without going into the details of the derivation, we will work out the final sets

of spectral equations. By determining the eigenvalues and eigenfunctions from

d 4f i | |
E(”i,j do; ) =—)\zf,[]], 1 =1,2, 3 :1""7']1', (2663)

with limit conditions

(,u, lij—'lﬂ)o = Bi1 fi(0),
(,uz ijfﬂﬂ)l = Bi2fis (1),

and interfacial conditions

Fans) = Fien(is)
afy _ Pijt df; 1
('u”ﬂ do; ) e;  Pij ('u’:’j“ do; )E.-,j

we then arrive at the equations of the form

i=1,2, (2.6.64)

i:1727 j:]-a"'aJ'i_la

0A
01’,6' =Bk — (01 /HY) A kAre + (T + K )1k
Pie—Pre-1\ 0C e X
B Z ( 1,¢ 1,8 1) C(;;f 1 al,l—l,k¢1,k+X1:1 a1,0,kq>1,k, (2666)
P11
0A
8;”“ =Bk — (2/H3) Aok Az k + (J5  + K3 ) @2,k
a _ ~
- Z g(p” s 1> %’z 1 Q2,0,k P2,k + X211 G20,k Dok
2,1 X
P2~ Pae-1\ 0Cs e~
3 Z g( 2,6~ Pay 1) %,z L g1k ®a, (2.6.67)
o P21 T
where
5= T i (2.6.68
DT py Hy R oo
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Kix= g7 > A (B11 1,40 F1,4(0) = P12 PTI 2 f1 (1)1 (1)) (2:6.69)

Toz
P2 1

I5k f2 k(1) (2.6.70)

o
Ky =

Az,r (ﬁz,lfz,k(o)fz,r(o) P2 Bp2 152 2f2 k(l)fz r(l)) (2-6-71)

with £ = 1,---,m;. The terms @, 3 and ®, ; are found from (2.6.23) by setting
¢ = 1,2. It should be mentioned that choosing values of 812 = f21 = 0 is
desirable to obtain satisfactory results because stress-free conditions are enforced
at the interior domain boundary. For brevity, the corresponding V; equations are

omitted.

Substituting (2.6.61) and (2.6.62) into (2.4.9), we obtain the equations of con-

tinuity for the upper and lower domains

6(1,] + Zﬂl (GA; ,r a.g;,r>a1’0,r

Z H2 (814.; T a-g;ﬂ")a%(),r = 0, j = (), e Jl _ 1’ (2672)

9 0Asr , 0By _
CZ,] sz( ; a;’ )a2,0,7‘ —] 0, ‘7 et 0’ e J2 e 1' (2_6.73)

By expanding the U; ; and V; ; velocities in a form

U,-,j(x,y,O',-,t) = Zgi"(m’y’t) Qi,r fi,j,r(ai) for fi,j—l <0; < f,',j, (2.6.30)

r=1
mi

Vij(@,9,008) = Y Biy(@,y,8) ®ir f;5,(03) for &ij1 <0i <& , (26.31)
r=1

where 1 = 0,1, 2, we get

521,1:

ik vBik — (1 /HD)M kA + (T + KT k)
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F) N =
B Z (Plz Pi,e— 1) 1, 1a1’2_1’k + X110y 0k, (2.6.74)

1,1 Oz
dA ~ "
o =1B2k ~ (2/HY Ao Ao + (T3 + K5 )
0 . ~
= Z g<p1 £~ Pue 1) Cal’e 1a2,0,k +X2,102,0,k
P21 .
Par_ 0Co 0
_ Z (p2 N 2’12,£ 1) %{,; 1a2,£—1,k, (2.6.75)
where k = 1,---,m; and the terms J ’"“k and Kz i for 4 and 2 can be found from

(2.6.68) to (2.6.71) by replacing A; » by A,-,,.<I>,-,r.

The continuity equations take the form

8(, a1411‘ agl,r
altj—l_;ﬂl( o + By )(I)l,ral,o,r

d BA; aﬁ i ,
C2,] 2H2< :12; 6;’ )@2,,.042’0’1. = 0, 7= 0, RN J2 —1. (2677)

Writing (2.6.74) and (2.6.75) and the V equation of motion in matrix form

leads to:
KI = L’Yﬁl Hz A1A1 + (,81 1C° —p,y 8P, 1'61 2C )Al + p H =
i, 1
J
1 - 1\ 0
—Zg(pl’e P, 1) C1,e— 1E(f)_|_X E(l) (2.6.78)
Pt P11 Oz
~. NI T 1
B! :_VYAI_H—%AlBl-}-H—%(ﬂl,lC — P Bp1}C )B1+p1 1H1E
Ji
P16~ P1e—1)\01,e-1 (0 OF
_ g , } s E +}/‘1 1E 2.679
; ( P1a ) Oy ( |

o4



- 5 Q- o« - A L
A; = vyBs — _H_zAzAz g H_g(ﬂl’1 - pZ,Bpi’:iﬂzJCb)Az p sz Bz
2 2 2,1

J1
Pie—P1-1\0C10-1 (1) , & (D)
-3 g (B ’ LR | % LB
=lg( Ps1 ) Oz 2+ 2,10

Pae— Pae-1)92,e-1 (o)
- g ’ ! —E;; 2.6.80
; ( ,02,1 ) aw 2 ( )

o ~ o N - T
H—zAzBZ + ‘H_i(ﬁl,l - pz,szjﬂg’sz)B2 - &
2 2

ﬁ; =— L’)/Kz - . H;
2,1

E;

J1
P1e= P1e-1\01,-1 (1) , & (1)
— E ! ! = —E,’ +Y,0,E
j:l g( p2,1 ) ay ? L

Jo
Pae— P2e-1\0C2e-1(0)
— E 2 ! ! E;”. 2.6.81
=1 g( p2,1 ) ay 2 ( )

Equations (2.5.76) and (2.5.77) in matrix form become
2
Zi=- ) HEY(A}+B)), (2.6.82)

=1

Z; = — HE} (A} + Bj). (2.6.83)

The definitions of the matrices are found from (2.6.45) to (2.6.54) by setting ¢ =
1,2. The layer-averaged and domain-averaged horizontal components of current

can be found by setting : = 1,2 in (2.6.55) to (2.6.58).

55



CHAPTER 3

CONSTRUCTION OF EIGENFUNCTIONS

3.1 Introductory remarks

This chapter is primarily concerned with the description of a method of numer-
ically determining a basis set of eigenfunctions from a Sturm-Liouville boundary
value problem which results from the spectral representation of the vertical eddy
viscosity operator. The eigenvalue problem is necessarily multilayered in nature
and the coefficients of the second-order operator are defined in an arbitrary manner
within each layer. The multilayered Sturm-Liouville problem with variable coef-
ficients can be solved by various numerical methods. To remain consistent with
the Galerkin procedure employed in Chapter 2, the eigenfunctions are constructed
in terms of a basis set of fourth-order B-spline functions which are in turn repre-
sented in terms of an expansion of Chebyshev polynomials, and the same weighted
scalar products given in (2.5.4) or (2.5.39) are applied. Therefore, the essence of
the method described here is the same as that of the mixed numerical-analytical

approach developed by Davies (1983¢) for homogeneous seas.

The accuracy of the numerical methods is examined with respect to the number
of the knots of B-splines and their distribution. The difference in the structure
of vertical modes between the one and two domain systems is described. An
eigenequation is derived analytically, in order to determine the validity of the
numerical approach, for a three-layered piecewise constant eddy viscosity profile
(see Appendix I). A method of projecting the coefficients of the B-spline basis set

or the known values of current profiles onto those of the eigenfunctions is described.
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3.2 A multilayered eigenvalue system

For convenience, we rewrite the Sturm-Liouville equations and associated limit
conditions described in Section 2.5 and 2.6. The eigenvalue problem posed in

multilayered systems is

d df ;) | ,
do; (“w‘ 40, ) = —Xifaq, (i=0,1,2, j=1,---,J;), (3.2.1)

subject to boundary conditions

dfip .
(:ui,l TC,) =Biifinp, b o =0, 1 =0,1, (3.2.2)

df ifs] ,
(,Ui,a 707) =Bi2fisp  at o; =1, i=0,2, (3.23)

and interfacial conditions

fi[j](fi,j) = fi[j+1](fi,j)

7::0,1,2, :.1- Ji_l-
(H- gM) _ Pij (,u. . dfi[j+1]) J=1
2,7 do’l E.',J' pz’J 1;]+1 do.l E"j

Since the U; and V; currents at 0; = 0 are in general non-zero, the values of 3; 1,

(3.2.4)

¢ = 0,1,2, are finite; when a no-slip condition is imposed at the sea bed, each of
eigenfunctions is required to satisfy the constraint exactly and hence fy 2, 822 —
00; the homogeneous Neumann conditions at the interior domain boundaries, 0; =
1 and 02 = 0, restrict values of #; 2 and B2 to zero. For a linear slip condition

one can determine the eigenfunctions such that

o df,‘, v
ks fijr= —E(;u’i,jT‘.Ji) at 0;=1, (3.2.5)

where ¢ = 0,2. This leads to
Biz = —ky Hy/ov; i=0,2. (3.2.6)

This limit condition has been thoroughly discussed by Davies (1987a).
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The eigenvalue problem is completed by requiring that

fir(0)=f;1,(00)=1, (3.2.7)
where 1 =0,1,2and r =1,---,m,.

Appendix I describes some basic properties of the multilayered eigenvalue sys-

tem. The system of equations (3.2.1) to (3.2.4) and (3.2.7) constitute a self-adjoint

eigenvalue problem, giving the orthogonality condition

&7 if r=k,

(P /5"’ ) ,
m e =3 (2 o Fii Vdos = 3.2.8
Viir i) j=1(pi,1 Eij—1 TisirF i 0 if r#k, ( )

where <I>;r1 is the square of the energy norm and i =0,1,2 and r =1,--+,m;.

The eigenvalues of the system (3.2.1) to (3.2.4) and (3.2.7) can be indexed so
that

)\,',1 < )\i,z <0 L )\i,k < vy, (3.2.9)

and, since the set of eigenvalues has no finite point of accumulation, A; x — oo as

k — oo.

Consideration is now given to the expansions such that:

> (Aip+iBir)fi, (3.2.10)
r=1

w; =Ui+.V; = ¢ Z(A\i,r‘}'bﬁi,r)cbi,rfi,r (3.2.11)
r=1

(Zz',rﬂﬁi,r)?,-,,« (3.2.12)
\ r=1

where ¢ = /=1 and f, ;. in (3.2.10) is normalised by (3.2.7); (3.2.11) is Heaps’
spectral expansion given in (2.6.30) and (2.6.31) and f; ;. is also normalised by
(3.2.7); ?i’r in (3.2.12) is normalised by requiring that (?i,j,r,?i)j,r) = @;j =1.
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Parseval’s identity is helpful in understanding the physical implications of
these expansions. Multiplying the expansions with their complex conjugates and

integrating through the vertical we have, for the expansion (3.2.10):

1 mg 1 Ll
/ w?do; =) (A}, +Bi,) / fi,dos~Y (A7, +B2)®};  (32.13)
g r=1 B r=1
for the expansions (3.2.11):
1 mi R 1 mi R
0 r=1 0 r=1
and for the expansions (3.2.12):

1 mg
/ w? do; =Y (A2, + BZ,). (3.2.15)
0 r=1

Hence, in the expansions (3.2.10) and (3.2.11) the value of ®; , is important in
determining the contribution of each vertical mode to the depth-integrated kinetic
energy at a particular point in the horizontal plane, while in the expansion (3.2.15)
the square of each modal coeflicient gives the instantaneous contribution. The
modal coeflicients A; . + ¢B; , and (A\i,r + Lﬁi,r)q)i,.,- in the expansions (3.2.10)
and (3.2.11) represent the instantaneous contribution of rth vertical mode to
the surface currents. In the expansion of (3.2.12), (A\,-,r + Lﬁi,r)/f\i’T(O) gives the
contribution to the surface current. Following Heaps and Jones (1983, 1985), the

expansion (3.2.11) is used in Chapters 4 and 5.

3.3 Numerical determination of eigenfunctions

Eigenvalues and eigenfunctions can be constructed in analytical ways (as ex-
emplified in Heaps and Jones (1983), Jung and Noye (1988)), but the extension
of this method to more generalised eddy viscosity profiles becomes complicated.
To estimate the set of eigenvalues and eigenfunctions from the resultant transcen-
dental equation such as (A.2.4) may be time-consuming when changes in eddy

viscosity profiles are frequently required.
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To handle arbitrary variation of the vertical eddy viscosity in a flexible manner,
it is therefore necessary to use a numerical method of approximating a set of eigen-
values and corresponding eigenfunctions. The Galerkin method with expansion of
fourth-order B-spline functions is used for consistency with the solutions with a
basis set of B-spline functions (described in Section 2.5), and the scalar products
(2.5.4) and (2.5.39) are naturally used. Alternatively, it may be possible to develop
an iteration method based on the Runge-Kutta-Merson method (Furnes, 1983),
which may be advantageous over the Galerkin method when the accuracy of the
computed eigenvalues and eigenfunctions has to be monitored (Davies and Furnes,
1986). It is apparent that use of the Runge-Kutta-Merson method will be more

effective if initial estimates of eigenvalues are made by the Galerkin method.

Taking the scalar product ((2.5.4) for Q¢ and (2.5.39) for Q;, ¢ = 1,2, respec-
tively) of the rth eigenfunction equation (3.2.1), and integrating by parts, using
limit conditions (3.2.2) to (3.2.4) and (3.2.7), yields

< dfijr d.fi,j,k>

2 dO'i ’ dO','
i [5 dfiiry (9Fi;,
/p)z’i ‘/flj 1 ’j do’:’l )( dajzk) do-i

= o + Bo2Pip Pt Fir W Fin () 4 Ak (Fiyr Fii):

(3.3.1)
wheret =0,1,2and k =1,---,m;.

To compute eigenfunctions efficiently for arbitrary profiles of p,; and p, ,,
the rth eigenfunction is represented in terms of a set of fourth-order B-spline

functions M; ¢, £ =1,---,7;, namely,

fi,j,q(oi) = Z Lieq M;(03), for & -1 <0;<¢&;, (3.3.2)

where ¢ = 0,1,2, y = 1,---,J;, ¢ = 1,---,m;. In general one must choose 7;
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substantially larger than m;. In theory, an arbitrary set of basis functions can be

chosen from a finite-dimensional subspace belonging to C°[0, 1].

Substitution of the B-spline expansion (3.3.2) into equation (3.3.1) yields the

matrix equation
L7D,L; = A;L7C;L;,
where 7 = 0,1, 2. In this equation:
L; is an 7; X 7; matrix with (r, k) th element
Li,r,k;
L7 is its transpose;

(3

A is a matrix of eigenvalues, that is, with (r, k) th element

Ai ks
Ak = {
0

f),- =D; + ﬁi and D; is a 71; X W; matrix with (r, k) th elements

pm /E.; _dM,:,,- dM; i —
f-J 1 ,] do-l do-z K

—~

B; is a i; X W; matrix with (r, k) th elements
Bo,1 — ,30,2/0,-,3/),'—,11 i r(UF i £ (1);

and C; is a m; X ; matrix with (r, k) th element

Pij &g
Z M;  M; do; .
pz 1 JEii-1

(3.3.3)

(3.3.4)

(3.3.5)

(3.3.6)

(3.3.7)

(3.3.8)

It should be noted that since the solutions of the self-adjoint eigenvalue problem

is approximated on a finite-dimensional space, a finite number of eigenvalues are

determined.
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The matrices C and D are sparse because the B-splines have restricted sup-
port. Once the coefficients L; , x are defined from (3.3.3), the eigenfunctions are
correspondingly defined by (3.3.2) and then all the necessary integrals in (2.6.49)
to (2.6.53) can be evaluated. In practice it is expedient to expand the B-spline
functions in terms of Chebyshev polynomials. Detailed descriptions of represent-

ing B-splines semi-analytically in terms of Chebyshev polynomials can be found

in Cox (1972, 1975) and Davies (1977a).

3.4 A projection method for estimates of modal composition

The use of a basis set of B-splines has certain computational advantages due
mainly to the piecewise nature of the splines, and the existence of high-order
derivatives and various invariant properties, but their use provides little physical
insight into the structure of the flow field being modelled. In this regard, the
basis set of eigenfunctions is very useful, particularly when the vertical structure
of eddy viscosity, {t;, is fixed as given in (2.5.5) or (2.5.42). In a recent study by
Davies (1985b), the B-spline basis has been used for accuracy while the physical

interpretation of the results has been performed in terms of eigenfunctions.

As a way of determining the modal composition of current profiles, Davies
(1983a) also described a method of projecting the coefficients of the B-spline basis
set onto those of the eigenfunctions in the course of developing a Galerkin model
for wind induced flows in continuously stratified seas. In this section it will be
shown that the transformation relation between the coefficients of B-splines and
eigenfunctions is also applicable to a multilayered system. In fact, this projection
method can also be applied to other polynomial basis sets which have been widely

used in literature.

Let the horizontal component of current U; ; be represented in terms of the
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B-spline basis set in the following way:

Qi
Ui,j(z,y,0i,t) ~ U,-(,I;-) = ZAi,r(w,y,t) M. (0:), for & -1 <0 <&,

) (3.4.1)
where ¢ = 0,1,2, y = 1,---,J;, and the A;, are coeflicients of the B-spline
functions at a particular moment in time and position in space computed us-
ing the Galerkin method described in Section 2.5. The equivalent expansion of

Ui j(z,y,0i,t) in terms of the eigenfunctions (3.4.1) may be written as

Ul = ZA,q(x,y,t) @i fi,(00), (3.4.2)

or in local form

U =3 Aig(a,,t) Big fijg(00), for &jo<0i<tiy, (34.3)
where: =0,1,2, y=1,---,J;.

Equating (3.4.1) and (3.4.3) and taking the scalar product (2.5.4) (for the
domain ) or (2.5.39) (for the domain Q;, 7 = 1,2), of the resulting equations,

Ji

oy pz S
Al,k - Z ’] / (,1;) fz,],k dO'z (3.4.4)

=1 z,l -
(Z Air M; r) ik 40 (3.4.5)

i /5, y
E "‘_

y—1 t,j—1

.

.

In special circumstances, the eigenfunctions may be represented in terms of the
B-spline functions used in the method with a basis set of B-splines. Then, sub-

stituting (3.3.2) into (3.4.5) gives

zk—zz{AerzlkZp:’]/E

r=1 £¢=1

Mz - M, ,,) do; } (3.4.6)

f,5—1
where ¢ =0,1,2, k=1,---,0Q;.
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Expressing (3.4.6) in matrix form gives
Ai=A;C; L;, (3.4.7)

where A and A; are row matrices with kth element Z,-,k and A; ;, respectively.

The matrices L; and C; are given by (3.3.4) and (3.3.8). A similar procedure can

be applied to the V; ; component of current.

Consequently, once the coefficients L; 4 » have been computed by solving (3.3.3)
for a given eddy viscosity profile, the first few coefficients A\,;,r can be readily com-
puted from the known @; values of Agﬁc). The accuracy of the estimated coefficients
for each eigenfunction depends upon the accuracy in the U and V components of
currents reproduced by the basis set of B-splines functions, as well as that of the
numerically determined eigenvalues and eigenfunctions. In general, it is expected
that the knot distribution of B-spline functions used to expand eigenfunctions
will not coincide with that employed in a Galerkin model with a basis set of B-
spline functions. Furthermore, the current profiles may be provided in terms of
finite-difference methods or by observations rather than by B-spline functions. In
such circumstances, the formula (3.4.4) can be applied by replacing Ui(,?) with the
computed or observed values. Errors in the estimated values of modal coefficients
depends — regardless of the errors in the given current profiles — upon the ac-
curacy of the numerically determined eigenfunctions and the errors arising in the
course of projecting the observed or computed current profiles onto each of vertical

modes.

The projection method was used in this thesis for the initialisation of the
modal coeflicients in calculating a free adjustment of flows in an open sea region
(see Chapter 4). Otherwise the coefficients of the vertical modes are determined

by directly solving the set of modal equations described in Chapter 2.
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3.5 Vertical modes in one and two domain systems
3.5.1 Description of the system to be modelled

Figure 3.1 shows a schematic variation of density and eddy viscosity to be
considered in this study. Although the models described in Chapter 2 allow for
a multilayered system and the arbitrary variation of eddy viscosity within each
layer, the application of models is confined to the two- and three-layered systems.
Figure 3.1(a) illustrates how the continuous variation of density is approximated
in terms of the three homogeneous layers. In accordance with the three-layered
representation of density, the depth variation of eddy viscosity can be prescribed
in a piecewise-linear manner as sketched in Figure 3.1(5). In the numerical exper-
iments in Chapters 4 and 5 the eddy viscosity profiles are mostly prescribed in
a two-layered or three-layered piecewise constant form (with or without a linear
decrease near the sea surface) as shown in Figures 3(¢) to (f). The two-layer
system consists of the upper surface layer and the lower bottom layer whereas the
three-layer system consists of the surface layer, the transition layer, known as the
pycnocline, and the bottom layer. The zero-stress condition for the two domain
system is imposed at the base of the upper layer for the two-layer system and at

the base of the pycnocline for the three-layer system:.

To facilitate comparison between the one and two domain systems we use,
hereafter, simpler notations for the eddy viscosity, density and layer-averaged ve-

locities, namely

for the two-layered system:

Po,1:No,1,Uo, _
— <:>pq~aJ\rT7lea
P11 N1,1,U1 |
e (3.5.1)
Po2:No,2,Uo,2 _
- < Ppy N5, Us;
P21:N2,1,Uz;1 |
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Figure 3.1 A schematic variation of density and eddy viscosity through the
vertical.
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and for the three-layered system:

No, ,UO,I ] —
Ponr 0 "0 | ) N, T,
P11 N1, U1 |
?N0,23U0,2 ] —
A2 | e p,,Np,Us, (3.5.2)
Pr2:N1,2,U12 |
,No3,U03 | =
Po,3:4V0,3 vos . N, Ts.
p2,1’N2,1’U2,1 i

Summarising values of density used in the computations, we take for the two-

layered system:
pr=1.0258,  p,=1.0270 gem™ (3.5.3)

and for the three-layered system:

pr=10258  p,=1.0265  p,=10272gcm™>. (3.5.4)

For wind induced motion in an open sea region the three-layered system is
mostly considered. Typical values of the thickness of the surface layer, the pycn-
ocline and the bottom layer used in the computations are:

Ap = Hi&; 1 =25, 60 m,
Ap =Hi(€i2 — &) =10, 40 m, (3.5.6)
Ar+ Ap+ A = Hy = Hy + Hy =250 m.
In the computations of wind induced motion in a narrow lake we take for the

two-layered system:

Ar = Hii 1 = 40 m,

(3.5.7)
AT+AB =H0 =H1 +H2 = 100 my
and for the three-layered system:
AT = Hlé’l,l = 25 m,
Ap=Hi(€ip2 — &) =15m, (3.5.8)

AT+AP+AB=H0=H1-|-H2=1OO’ITL.
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The values of eddy viscosity in the surface and bottom layers have been tenta-
tively chosen. The eddy viscosity at the surface layer, N, ranges from 150 to 1000
em?s71. In calculations with a surface wall layer (Figure 3.1(d) and (€)), where
a law-of-the-wall is applied by analogy with the atmospheric boundary layer and
then the eddy viscosity increases linearly with distance below the free sea surface
(Davies, 1985a), the value of N, was chosen as one fifth of N with A, = 10 m.
Under conditions of strong stratification, turbulent motion is suppressed within
the pycnocline (Mortimer, 1952). Such a condition of stable stratification has
been incorporated by prescribing low values of N, (Davies, 1982b, 1983a; Heaps
and Jones, 1983, 1985). In a recent study by Maas and van Haren (1987) a value
of Np = 6 em?s™! was chosen within the pycnocline in their three-layered Ek-
man model. Stratified conditions with Np = 10 em?s™! and Ap = 40m seem
to be unrealistic. Such an extreme condition has been chosen in the interest of
demonstrating the influence of the pycnocline upon the vertical structures of the
flow field in the one and two domain systems. The eddy viscosity in the bottom
layer is assumed uniform throughout the depth and, taking account of the effects
of the background turbulence level, two values, N = 100 and 1000 cm?s~}, are

considered.
3.5.2 Vertical modes
The accuracy of numerically determined eigenfunctions

In order to examine the accuracy of numerically determined eigenfunctions cal-
culations are performed for a three-layered eddy viscosity profile with N, = 300,
Np =10, Ny = 100 em?s~1, A, = 25, Ap = 15, Ay = 60m and various distri-
butions of knots. The distributions I{1 and K3 are composed of 33 and 50 quasi-
uniform interior knots through the vertical, respectively, and the distributions K2,
K4 and K5 are composed of 33, 50 and 67 non-uniform interior knot spacings with

concentration of knots near the interfaces and within the pycnocline (the number
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of interior knot spacings is given by ; = m; — n, + 1). The exact values of Ao
and ®¢ ; were computed iteratively from the transcendental equation presented in
Appendix II. It is apparent from Table 3.1 that increasing the number of B-spline
functions gives an improved accuracy in numerically determined eigenvalues and
eigenfunctions. It has been revealed in a series of preliminary computations that
for a given number of B-spline functions, a high concentration of knots within
the pycnocline, particularly at the proximity of the upper surface of the pycno-
cline, is important in determining eigenfunctions and the associated eigenvalues
accurately. When knot spacings are not compressed near the interfaces, wiggles
appear in the numerically computed eigenfunctions particularly near the bottom
of the surface layer. If an insufficient number of B-splines are used along with
a uniform distribution of knots, regions of high shear (near the upper and lower
surfaces of the pycnocline) are smoothed out. If the knots of B-spline functions
are excessively concentrated within certain regions without increasing the total
number of knots involved in the calculation, the accuracy of higher eigenvalues

and eigenfunctions is rapidly decreased.

In order to accurately compute up to thirty eigenfunctions, distribution K5 has
been required. In this study about 67 interior knot spacings, with a distribution
similar to K5 have been generally used for the three-layered one domain system
but whenever necessary the total number of knots and their distribution have been
adjusted. For the upper domain of the three-layered two domain system about 67
interior knot spacings have been used with high concentration of knots within the
pycnocline, while for the lower domain 24 knot spacings (since 10 eigenfunctions
are involved in the expansion of the current profile in the bottom layer) are used.
For the upper domain of the three-layered two domain system the value of Ap/H;
is very high and hence it is necessary to concentrate considerably more B-spline

functions within the pycnocline.
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Table 3.1 Eigenvalues computed using a three-layered eddy viscosity distri-
bution shown in Figure 3.1(d) with Ay = 25, Ap =15, Ay = 60m,
Nz =300, Np, = 10 and Ny = 100 em?s™!, with a no-slip condi-
tion for a range of knot distributions

Distribution K1 K2 K3 K4 K5 Exact
m; = 33 33 50 50 67

r= 1.076 1.011 1.052 1.008 1.008 1.008
2 6.639 6.356 6.523 6.349 6.349 6.345
3 34.116 30.041 32.613 29.893 29.892 29.819
4 57.120 51.649 54.447 51.542 51.541 51.482
5 117.117  109.123 114.605 108.737 108.734 108.538
10 478.733  415.227 429.679 412.568 412.563 412.389
15 1407.633 1180.577 1138.278  1079.181 1078.798 1076.924
20 2071.537 2283.083 2189.600 1819.659 1817.356 1816.038
25 5174.325 7386.768 3612.439 3045.295 3013.736 3003.123
30 8012.397 30799.402 6044.786  4350.115 4247.103 4228.482
35 9220.318 6478.395 5700.169 5699.498
40 13465.445 11119.358 7907.935 7645.858

Figures 3.2 and 3.3 display the first five vertical modes in one and two domain
systems evaluated numerically with m; = 67, ¢ = 0,1, and M2 = 24, and with a
no-slip bottom boundary condition, 8;2 = oo, ¢ = 0, 2, and two linear slip bottom
boundary conditions with f;2 = 0, Bi2 = —ky H;/o;, ¢ = 0,2, for a range of
eddy viscosity profiles. The forms of vertical modes are primarily affected by the
vertical dependence of the coeflicient of the second-order viscosity operator and by
the limit conditions used. Note that the domain-averaged value of eddy viscosity,
«¢;, is not involved in determining the structure of vertical modes. With the use
of condition (3.2.5) the value of «; is taken into account by the value of 3; 1. The
role of density on the determination of vertical modes is negligibly small because
Ap/p = O(1073). With a very low value of N, the eigenfunctions show regions
of rapid shear at the upper and lower surfaces of the pycnocline. This is due

to the requirement p; ;pt; .0f; ;/00; = p; ;11 pb; ;410f; j41/00; at each of the
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interfaces within the domain.

As a property of eigenfunctions, the r th vertical mode has r — 1 zeros in the
open interval (0,1) for both the slip and no-slip boundary conditions. The zeros
of the r th eigenfunction are placed between two consecutive zeros of the (r —1) th
eigenfunction. In regions in which values of eddy viscosity are markedly reduced,
zeros are concentrated with respect to the rest of the water column. This leads
to a rapid change of the modal structure within the pycnocline. An important
feature is that, as a consequence of the homogeneous limit conditions, the first
eigenvalue is A;; = 0 and the corresponding eigenfunction is f; (o) = 1. It
should be noted that local variations of eddy viscosity and density jump have no
influence on the first mode. With any other combination of limit conditions at the
domain boundaries, for example when a no-slip or stressing condition is enforced
at the sea bed, the first vertical mode is no longer independent of vertical eddy

viscosity and density.

As a consequence of introducing the zero-stress condition at an interface the
water column is divided into two independent domains, ; and Q5. Hence the
modal structures of one and two domain systems become dramatically dissimilar
to each other. Note that for the two domain system, the region occupied by
the pycnocline is represented as significantly increased fractions of the domain
compared with that of the one domain system. Hence, the modal structure of the
two domain system is very sensitive to local changes in the eddy viscosity profile.
Introducing a surface wall layer affects the values of A\; , and ®; , significantly.
Changes in the values of Mg x and ®¢ 1 were marginal. Under conditions of strong
stratification (N, << Ngz) the vertical modes in 4 2 possess significantly more
zeros within the pycnocline compared to those in € 2. In the one domain system,
the ratios of eddy viscosity and layer thickness between the three layers determine

the modal structures. The modal structures in the domain §2; are determined by
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Figure 3.2 The first five vertical modes of the one domain system, obtained
using the profile in Figure 3.1(d), computed with: Ap=25, Ap=15,
Ap=60m; Ny =300, Np =100 cm?®s™'; pp=1025.8, 1026.5, 1027.2 gem™3;
Bo,1=0; and (a) Np =50 cm®s~! with B¢,2=00; (b)) Np =10 ecm?s~! with
Bo,2=00; (¢) Np =50 em?s~' with 8o,2=0; (d) Np=50, ag=142.5 cm?s~ !

with agfo,2 =—ke Ho=—0.2 em?s™t,




(a) Two domain system (i=1, 2)
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Figure 3.3 The first five vertical modes of the one domain system, obtained
using the profile in Figure 3.1(d), computed with: Ap=25, Ap=15,
Ap=60m; Np =300, Ngp =100 cm?s~'; p,=1025.8, 1026.5, 1027.2 g cm™2;
B1,1=0; and (&) Np =50 cm?s~! with B s=o00; (b)) Np =10 ecm?s~! with
B1,2=00; (¢) Np =50 em?s~! with 822=0; (d) Np =50, «2=100 cm?s~?!

with Ozgﬂg,g =—ky Hy=—0.12 cm2s"1.
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the ratio of N; to Np, and the ratio of A; to Ap, and the modal structures in
the domain Q5 correspond to those with a constant eddy viscosity. For a thorough
discussion on the structure of two-layered and three-layered profiles in connection

with wind drift current in open sea regions, see Davies (1986).

Table 3.2 and Figure 3.4 show how sensitive the modal structure is to changes
in the value of Np and their functional form within the pycnocline. It is evident
that as Np is increased, while keeping N, and N constant, the region of high
shear within the pycnocline is significantly reduced. Particularly, for the two-
layered eddy viscosity profile (with Np > Np) the first five vertical modes show
no shear in the transitional layer and their derivatives in the vertical no longer
change sign there (Figure 3.4(d)). When the values of piecewise eddy viscosity are
joined in a piecewise-linear manner in the vicinity of interface levels, the higher
vertical modes tend to show a smooth variation at the interface (Figure 3.4(c)).
Comparing Figure 3.4(a) and (c), it is evident that with a small correction to the
eddy viscosity profile across the upper surface of the pycnocline (A, = Az = 2.5
m) the modal structure was not significantly different from that of a step-like
variation of eddy viscosity, although there is some evidence that higher modes

r > 3 are affected.

The vertical variation of the first five vertical modes, evaluated numerically
with m; = 67, 1 = 0,1, and 7, = 24, for various ranges of eddy viscosity profiles,
are displayed in Figures A.3(a) to A.3(¢g) in Appendix III (see caption). The
modal characteristics of the first five eigenfunctions (involving ®; ,, Ai r, O r,
a; jr and f;(1)) computed for the eddy viscosity profiles which will be frequently

employed in Chapters 4 and 5 are summarised in Tables A.3(«a) to (e) in Appendix
I11.
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Figure 3.4 The first five vertical modes of the one domain system, obtained
using the profile in Figure 3.1(d), computed with: p,=1025.8, 1026.5,
1027.2 gcm ™25 Bo,1=P0,2=0; and (a) Ap=25, Ap=15, Ag=60m; Np=1000,
Np=10, Np=100 em?s~!; (b) Ap=25, Ap=15, Ag=60m; Np=1000,
Np=50, Ng=100 cm?s~1; (¢) A1=22.5, Ap=2.5, A3=2.5, Ag=10, A5=2.5,
Ag=60m; Nq=1000, Np = N =100, Ng=10, N¢ = N =100 cm?s~'; (d)
Ap=25, Ap=15, Ag=60m; Np=1000, Ng=100 ecm?s~!, and a linear
decrease within the pycnocline with N, = N, = Ny, N = Np.
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Table 3.2 Values of Ao and @ for the first seven vertical modes

computed for the three-layered eddy viscosity distribu-
tions (a), (b), (¢) and (d) in Figure 3.4

(a) (d) () ()

)\i,r @i,r )\i,'r (bi,r /\i,r ¢i,r )\i,r ¢i,‘r

r =1 0.000 0.999 0.000 0.999 0.000 0.999 0.000  0.999
2 0.953  2.233 1.169  2.159 1.204 2.139 3.141 1.049

3 7.810 0.207 9.011 0.162 9.019 0.153 15.945 0.450

4 16.747 0.294 22.468 0.276 23.678  0.260 40.366 0.343

5 34.747 0.049 40.016  0.058 40.611  0.063 75.584 0.453

6 56.795 0.123 74497  0.097 77.038 0.075 118.311 0.889

7 81.167 0.032 96.846  0.075 100.843  0.110  163.117 1.388

76



CHAPTER 4

WIND INDUCED FLOWS
IN HORIZONTALLY UNBOUNDED SEAS

4.1 Introductory remarks

This chapter describes, as one of the applications of the models formulated
in Chapter 2, the steady state and time-dependent responses of a horizontally
unbounded sea subjected to local wind forcing. Steady state calculations are
performed by reformulating the system of U and V equations in complex form,
whereas the time-dependent calculations are performed on a staggered finite differ-
ence grid using the two sets of U and V equations. The sea surface and interfacial
gradients are briefly considered in the computations of the steady state current

profiles.

There have been extensive numerical experiments conducted by Davies (1985b,c)
and Davies and Furnes (1986) which have led to a description of the overall fea-
tures of wind induced motion in both homogeneous and stratified open sea regions.
Our application is centred, along with the comparison of the one and two domain
systems, on the sensitivity of the layered models to changes in the values of the
vertical eddy viscosity, particularly within the pycnocline and to changes in the
pycnocline thickness. This can serve as a basis for realistic applications in the
future. The eigenfunction method is used in a complementary manner to acquire

a better understanding of the structure of the flow field.

Although the formulation described in Chapter 2 is based on the multilayered

sea, we consider here three-layered one and two domain systems. In the inter-
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est of demonstrating the accuracy of the models, the eddy viscosity profiles are
prescribed mostly in piecewise constant form. The Coriolis parameter is taken as

v = —0.9178 x 10~* 571, representative of Bass Strait at latitude 39° S.

4.2 Steady state solutions

Stratified flows rarely remain stationary, since the time scale of the meteoro-
logical events is in general short compared to the time scales necessary to reach
a steady state. Nevertheless, to obtain basic ideas on the vertical structure of
stratified flows and to verify the models, we start with this simple steady state

problem.

Steady flow in an open sea region is composed of the wind drift current which
is driven by external wind forcing imposed at the sea surface and the gradient
current which is driven by the combination of the gradients of the sea surface
and the interfaces. We note that the hydrodynamic system is linear with multiple
components of input functions. Hence, the magnitudes of the U and V' components
of the pure drift currents are scaled up according to the magnitude of the wind
stress. The gradient current is also scaled up according to the combined value of

the gravitational forcings.

Using the complex velocity, @, = U;+V;, ¢ = v/—1, the steady state equations

of motion in an open sea region can be combined to give

o; O 0w, ;
iy = B2, 0T,

P (T, (4.2.1)

where ¢ = 0 and j = 1,2, 3 for the three-layered one domain system, and z = 1,2
and 7 = 1,2,3 for the three-layered two domain system. The boundary condi-
tions (2.4.10) to (2.4.12) and the interface conditions (2.4.13) to (2.4.17) can be

combined in a similar way.
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After combining (2.5.18) with (2.5.19), (2.5.51) with (2.5.52) and (2.5.53) with
(2.5.54) in complex form, the Galerkin equations for (4.2.1) in terms of a basis set
of B-splines take the form

(I/‘yC + D )W, =F;+85; (4.2.2)

H 72
where

W, =A; +B; i=0,1,2 (4.2.3)

Fo = (po,lHO)—l[(Tsz + ¢Toy )E§ — (Tos + 1Thy)ER]
Fi1 = (01 H)  (Teo +1Tey)E] (4.2.4)
Fy = _(p2,1H2)_1(7bz +1Thy)E}

So = 23:9<p0£ Po,e— 1)(‘%02 1 3(0@; 1)Eg€), I
=1
2
B P1e P1,e—1Y (9C1,0-1 3C1,£_1 (0
si= —> o ) (Zs 2y )L
=1 \ (4.2.5)
2
A 0
S, = _Zg<Pu P1e— 1)( C,:; 1 C;; 1)Egl)
=1
Pai— P12 6C2o 3(20 (1)
( P2 ) ( >E2 ’ 3
oo+ tToy = Pooks D (Ao + tBo,r) Mo, (1) for o, (4.2.6)
r=1
Tho + 1Toy = Pyrks D (A2,r + 1B2,r) Mz (1) for s, (4.2.7)
r=1

The matrices A;, B;, C;, E¢, E? and Ege) are given by (2.5.21) to (2.5.25).

Similarly, the spectral equations for (4.2.1), using limit conditions (3.2.2) and
(3.2.3) with 8;2 =0,¢=0,1,2 and B2,; = 0, take the form

(ev + Hz A )W = Hz i1 C°W, + F; +8;, (4.2.8)
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where

W.=A, +.B; i=0,1,2, (4.2.9)

mo
Too + 1Toy = Pooks Y (Ao,r + ¢Bo,r)@o,r fo (1) for Qo, (4.2.10)

r=1

my
Too + 1Toy = Pyrks Y (Az,r+ By, )2, fy (1) for Qo, (4.2.11)

r=1
The matrices F; and S;, ¢ = 0, 1,2, take the same form as those given in (4.2.4)
to (4.2.5). The matrices K,-, ﬁi, C;, E;, E? EEZ) and A; are given by (2.6.45),
(2.6.49) and (2.6.51) to (2.6.54).

The vertical modes in equation (4.2.8) are coupled through the terms for bot-
tom friction and stressing at the sea surface. If the bottom friction term is ne-
glected in equations (4.2.10) and (4.2.11) and the homogeneous Neumann limit
conditions (B8;1 = 0, 1 = 0,1) are used, it is possible to write down the spectral

solutions of steady drift current as

Ay +.Biy = —07 : (4.2.12)

Aik+ Bix = (Ai1 +¢Biy) [1 —

LY

—1
W)\,-,k] for k>2, (4.2.13)

where 2 = 0,1. Note that the value of the first modal coefficient is independent of
the density variation and the eddy viscosity profile (although the contribution of
2;‘,1 and 1,3\,-,1 to current profiles may be slightly altered by the density variation
because of the factor ®; 1) and, if the wind stress is prescribed in the U-direction,
the first vertical mode contributes only to motion in the V-direction. Once the
coefficient of the first vertical mode is determined, the coefficients of the higher
modes can be successively determined by (4.2.13). The spectral solutions of steady

gradient current can be readily written in explicit form.

Figure 4.1 illustrates how body forcings including sea surface and interfacial

gradients act in the one and two domain systems. Since the gradients are pre-
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Figure 4.1 Steady velocity profiles, obtained using the profile in Figure 3.1(4),
in three-layered one and two domain systems computed using a basis
set of eigenfunctions, with: Ap=25, Ap=40, Ag=185m; N;y=150, Np=10,
Np=1000 cm?s~1; p»=1025.8, p p=1026.5, p 5 =1027.2 gcm ™3, ky=0.2 cm s~ ;
8¢i0/0y=08¢i,1/0y=8¢i,2/8y=0; and (1) 8¢:i0/8z = 1.0x10~7; (2) 8¢i1/8s
=—1.0 x10~%; (3) 8¢ 2/08z =—2.0x107%,

scribed only in the z-direction, the dominant part of the current is the V' compo-
nent developed by rotational effects. The magnitude of the gradients have been
chosen arbitrarily while the gradient of the free sea surface has been chosen as
O(1073) of that of the interfacial gradients, to take into account the proportion-
ate density excess Ap, ; / P;1- 1t is apparent from Figure 4.1 that, since free sea
surface and interfacial gradients act as body forces, the current profile is formed
throughout the water column in the one domain system. However, in the two do-
main system there is no mechanism which enables one to determine the velocity in

the upper domain using the gradients (; 2. In a bounded region, since the external
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and internal gradients will be constrained by the continuity equation (2.4.9), the
upper and lower domains will interact with each other and the current velocity will
be formed in the upper domain. The current profiles in the two domain system
are almost noise-free compared with those of the one domain system and that the
convergence of the eigenfunction expansion is very fast. In this study the current

profiles in the bottom layer are computed using 10 eigenfunctions.

It can be seen that the presence of the pycnocline little affects the current
profiles induced by (o,1, which means the gradient of the free sea surface is as-
sociated with barotropic flow. The bottom layer is predominantly composed of
a geostrophic core, showing nearly constant current profiles except for the near-
bottom layer. For the two domain system the depth variations of Us and V, are
allowed only in the presence of bottom friction or when using a no-slip bottom
boundary condition. The current profile of the two domain system is in general

discontinuous at the interior domain boundary.

We now consider the influence of the pycnocline upon the vertical profile of
wind drift current. It is evident from Figure 4.2 that the current profiles in strat-
ified conditions are characterised by the presence of high shears within the pycn-
ocline particularly in the proximity of the surface layer and, as Ny is reduced a
rapid reversal of the vertical velocity gradient occurs within the pycnocline. As in
the case of the vertical modes, the continuity requirements of the shear stresses
force the velocity to change abruptly at z = —H;¢; j, the degree of the velocity
change depending upon the ratio p; ;f4; ;/(P; j414; j+1)- The shear within the
surface layer is sustained predominantly in the U component of the current which

is parallel with the direction of the wind stress at the sea surface.

When the value of N, is decreased and the thickness of the pycnocline is
increased, the current profiles of the one and two domain systems agree quali-

tatively. This is to be expected because the presence of such stratified condi-
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(a) One domain system (i=0) (a) One domain system (i=0)

U; (ems?) Vi (cmsi)
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(b) Two domain system (i=1,2) (b) Two domain system (i=1,2)
Ui (cms?) Vi (cmsi)
-2.0 0.0 2.0 -2.0 0.0 2.0 4.0 6.0

s======= Np=]150cm? s
. oL e Np =50 cm? s
————+—= Np=10 cm? s
il I} ————— Np=1 ;2 s

Figure 4.2 Steady velocity profiles of the I/ and V components of wind drift cur-
rent, obtained using the profile in Figure 3.1(d), in one and two do-
main systems computed using a basis set of B-splines, with: Ay=25m;
pr=1025.8, p p=1026.5 gcm™?, and for Qq, p p=1027.2 gcm ™2, ky=0.2 cm s™1;
and (a) Ap=40, Ap=185m; Ng =1000, Ny=100 cm?s~!; (b) Ap=40m;
Np =1000 cm?s™Y; (¢) Ap=40, Ap=185m; Np=150, Np=100 cm?s~!; (d)
Ap=10, Ap=215m; Np=1000, Ng=100 cm2s™1,
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(c) One domain systemn (i=0) (¢) One domain system (i=0)

Ui (ems) Vi (cms?)
-2.0 0.0 2.0 4.0 6.0 —2.0 0.0 2.0 4.0 6.
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(d) One domain system (i=0) (d) Two domain system (i=1,2)
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1 £ e Np =50 cm? s
————= Np=10 cm?2 sl
1 1 NP =1 em? s-1

Figure 4.2 Cont’d.
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tions significantly affects the depth of frictional influence. The downward flux
of the wind shear vanishes effectively below a depth Dy, (5E = Dpg/2 where
Dy = n(2N/|y])!/? is the Ekman depth and N is a suitably averaged value of the
vertical eddy viscosity over the depth (Weber, 1981)). When Dy is larger than
Ar, one would expect that the vertical structure of the current in the two domain
system would be considerably different from that in the one domain system. In
determining the Ekman depth, it is important to take into account the eddy vis-
cosity within the pycnocline and the pycnocline thickness, particularly when the
mixed layer depth is smaller than the depth of frictional influence computed using
N (Davies, 1986). An obvious consequence of imposing the stress-free conditions
at the base of the pycnocline is that the maximum penetration scale of the wind
momentum is limited to H;. We may choose the base of the surface layer as a
lower limit for the steady wind drift currents. In that case, as indicated in Figure
4.2, the presence of a high shear within the pycnocline has to be somehow reflected
in the dynamic balance in order to realistically represent the current within the

surface layer.

Figure 4.3 shows the angles of the surface wind drift current in the one and
two domain systems computed using a basis set of B-spline functions, with various
stratification conditions (see Figure caption). The angle measured counterclock-

wise from the positive z-axis is given by
6 = arctan (V;(0)/U;(0)). (4.2.14)

It has been shown by Davies (1986) that, under conditions of strong stratification
and a shallow mixed layer depth, the magnitude of the surface current and the
angle are primarily determined by the values of Ay and Ap. It is then to be
expected that when N, is low and Ay is high, the difference in the angles of
the surface current between the one and two domain systems will be insignificant.

The angle of the surface current in the two domain system gradually deviates
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Figure 4.3 Angle 8 of steady state wind drift surface currents, obtained using the

profile in Figure 3.1(d), in three-layered one and two domain systems

computed using a basis set of B-spline functions, with: p;=1025.38,

pp=1026.5 g em ™3

, and, for Qo, p p=1027.2 gem™?, Ng=100 cm?s~ !, Ho=

250 m, k3=0.0 cm ¢~ '; and (a) Ap=10m; Ny =1000 and Np=10, 50 cm?s™1;

(b) Ap=10m; Ny =150 and Np=10, 50 cm?2s7'; (¢) Ap=40m; Np =1000

and Np=10, 50, 150, 1000 cm?s~1;

150 em2s™ 2.
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from that in the one domain system as the surface layer depth is reduced and the
eddy viscosity within the pycnocline is increased. When a stress-free condition is
enforced at the base of the surface layer and the surface layer depth is very shallow,
the surface current will tend to deflect 90° to the left of the wind direction. It
is evident that as the value of Ay is increased, the surface current approaches
the value computed using the classical Ekman theory (45° to the left of the wind
direction in the Southern Hemisphere). If a no-slip condition is imposed at the
base of the shallow surface layer, the surface current tends to be aligned with the

wind direction.

Convergence of the eigenfunction expansion

We now consider the depth variation of steady current profiles computed us-
ing a basis set of eigenfunctions. It is evident from Figure 4.4 that the Gibbs
overshoots arise below the point where the high shear occurs. A large number of
eigenfunctions have to be used in order to remove the oscillations (particularly in
the current profile for the z-direction which is parallel to the wind stress) and to
improve the convergence of the surface velocity. It has been revealed in a series
of computations that prescribing the eddy viscosity smoothly across the interface
is not much help in suppressing the oscillations unless the eddy viscosity profile
is substantially smoothed out across the interface. However, there is a certain
physical situation in which these oscillations can be significantly suppressed with-
out increasing the number of eigenfunctions and without smoothing the form of
eigenfunctions locally. In regions where strong tidal currents are present, it is nec-
essary to increase the value of the eddy viscosity at the bottom layer to the value
comparable with that at the surface layer. In this case, as shown in Figure 4.4(b),

the Gibbs overshoots are significantly reduced except within the pycnocline.

When a finite number of continuous functions are used, nonphysical oscilla-
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(a) One domain system (i=0) (a)  One domain system (i=0)
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Figure 4.4 Steady velocity profiles of the U and V components of wind drift
current, obtained using the profile in Figure 3.1(d), in one domain
systems computed using a basis set of eigenfunctions, with: Ap=25,
Ap=40, Ag=185m; Np =150, Np=10 cm?s™'; kp=0.2 cm s~ '; pp=1025.8,
p p=1026.5, p p=1027.2 gem™3; Bg 1 =Bg,2=0; and (a) Np=50 ecm?s~'; (b)
Ng=1000 em?a~l,
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tions are produced with overshoots whenever a discontinuous change in solutions
arises and in such cases the Galerkin solution behaves like the solution found by
using a low-order finite difference method (Canuto, 1987). It is known that Cheby-
shev polynomials are also susceptible to the Gibbs phenomenon in the presence of
internal discontinuities (Gottlieb and Orszag, 1977). We note that the discontinu-
ity of the eigenfunctions itself is not a source of the Gibbs overshoots. It has been
found that with a small number of eigenfunctions the compatibility between the
form of the first few eigenfunctions and the current profiles within the pycnocline
is an important factor determining whether the nonphysical oscillations arise or

not.

We now briefly examine the influence of using a non-zero stress limit condition
at the sea surface on the convergence of the surface current and U, V current
profiles. It is evident from Figure 4.5 that the value of 3; ; significantly affects the
convergence of the surface current. For a negative value of ;1 the form of the
eigenfunctions is such that the derivative of each eigenfunction with respect to the
depth coordinates (namely, —df;/do;) at the sea surface is a positive constant.
Consequently both of the U and V surface currents are overestimated and, since
the external stress is applied only in the U-direction, the V' surface current shows
a lack of convergence, producing a kink in the profile near the sea surface. There
is some evidence that nonphysical oscillations arise in the V' current profile, while
the U current profile is almost free of oscillations. When a positive value of f; ;
is used, the U and V' components of current near the sea surface reveal a reversal
in the vertical velocity gradient. In this case the form of the eigenfunctions is
such that the derivative of each eigenfunction with respect to depth coordinates
at the sea surface is a negative constant, whereas the gradient of the U current
near the sea surface are non-negative. By using this expansion, the U and V
surface currents are significantly underestimated. There is also some evidence

that nonphysical oscillations appear in the U current profile. As the value of
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Bi1 approaches an optimum value and as the number of eigenfunctions used is
increased, the oscillation is suppressed. Davies and Owen (1979) have shown that
the surface current can be reproduced accurately by using Chebyshev and Legendre
polynomials particularly in wind induced currents. It should be noted that by
using the limit condition (3.2.2) at the sea surface all of the eigenfunctions have
the same value for the vertical gradient at the sea surface, whereas the components
in both the Chebyshev or Legendre polynomial expansions have in general different

vertical gradients at the sea surface.

(a) One domain system (i=0) (b) One domain system (i=0)
U; (oms) U, (ems?)
-2.0 -2.0 0.0 2.0 4.0
o 2 L T v : 1 i
’f’ »';.—
II{
\
L 1%
.
P\
. 1N .‘s’
(a) One domain system (i=0) (b) One domain system (i=0)
Vi (ems?) Vi (ems?)
7

-2.0 0.0 2.0 4.0 6.0 -2.0 0.0 2.0 4.0

LI
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i

3333

Figure 4.5 Steady velocity profiles of the U and V components of wind drift cur-
rent, obtained using the profile in Figure 3.1(¢), in the one domain
system computed using a basis set of eigenfunctions, with an increas-
ing number of mo. A no-slip condition (8¢,2=0c0) is used at the sea bed
with: Ap=40, Ag=60m; Ny =300, Np=100, o:9=180 em?s™'; p,=1025.8,
1027.0 gcm™2; and (a) agfp,1=-0.125 ecm?s™1; (b) o gfBp,1=0.125 em?s™t,
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4.3 Time-dependent wind induced motion
4.3.1 Description of the model

This section is concerned with the application of the Galerkin models to wind
drift currents in two and three-layered horizontally unbounded seas following the
onset of a suddenly applied spatially homogeneous wind stress. The layered struc-
tures and the vertical eddy viscosity are assumed to be independent of the hori-
zontal coordinates. Surface and interfacial displacements are all suppressed. The
thickness of each layer is kept constant with respect to time, although in practice
the wind action causes the pycnocline to become diffused as the mixed-layer depth
is reduced. Under these conditions, the pertinent equations of motion for the time

dependent wind drift currents in open sea regions may be written as follows:

an,j

(a7 8 BU;,J-
o Vi = ﬁa?( Wi o)’ (4.3.1)
oV ; ooy 0 aV; ;
ot +7VZ’J N Hf 00 ( g 00 ; )’ (4'3'2)

where 1 = 0,5 = 1,2, 3 for the three-layered one domain system, and i = 1,5 = 1,2
for the upper domain of the three-layered two domain system. Since the wind
shear is not transmitted downwards across the interior domain boundary, the
lower domain {}; will remain at rest. Hence the two domain system here can be
viewed as an open sea region of depth H; which is composed of the surface layer
and the pycnocline. The velocity shear at the base level of the upper domain may

be introduced as a driving force for the lower domain— this will be described later.

The numerical solutions of (4.3.1) and (4.3.2) are generated from a quiescent

state of motion described by a zero initial velocity field, namely,

Ui=V;=0 at t=0. (4.3.3)
Calculations of a transient free motion subjected to a non-zero initial velocity field

will be described at the end of this chapter.
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Figure 4.6 A staggered finite difference grid for the rectangular x-y plane
showing the locations of U; 4 and V; 4 and neighboring grid points;
e = a U;-point (also 4; and 4;); 0 = a V;-point (also B; and ﬁ,),
n represents the number of computational grid points in a row;

calculations are preformed using ¢ = 5 and n = 3.

The surface wind stress is suddenly applied at ¢ = 0 in the following form:

H(t) T4, for a step-function wind stress, (4.3.4)

(H(t) — H(t —T1))Ts; for a constant wind pulse with a duration T, (4.3.5)

where H(t) is the Heavyside function and T4, = 1 dyne cm™2.

The model developed is designed to use the staggered finite difference grid
system, shown in Figure 4.6, in anticipation of its application to a realistic system.
Hence, in numerical computations, the two variables U; and V; are used rather than

the single variable W; = U, + (V;.

Modal interpretations of the wind drift currents are performed using complex

notation.

92



4.3.2 Integration with respect to time
A basis set of B-spline functions

The solutions of time-dependent wind drift current in the one and two domain
systems are derived from (2.5.18) and (2.5.19), and (2.5.51) and (2.5.52), respec-
tively, by omitting the gradients of the free sea surface and the interfaces, the
atmospheric pressure and the direct tide-generating forces. Their finite difference

representation can be written in the form

CE}. Ai|;+At = C- A,I: + At’yBii; + AtF,‘,zr; R (4.3.6)
Cf Bi|\"% = C™ B[} — AtyA[! + AR | (4.3.7)
where 1 = 0,1,2 and
At o
Ct =C; + =—==D; 3.
; + 5 HZ P (4.3.8)
At ¢
C‘_Zci___Dia ..
[ 2 le (4 3 9)

mo t
Toe = Posks Ao qMO,T'(l), for Qq, (4.3.10)
r=1

ma t
Tor = p2,1kb ZAZ’T qu,r(l), for \Qz, (4311)
r=1

The matrices A;, B;, C;, D;, Ef and E! are given by (2.5.21) to (2.5.26), and the
matrices F; ; and F; , are the real and imaginary parts of F; in (4.2.6), respec-

tively.

Integration on the staggered grid system leads to the introduction of periodic
boundary conditions. Calculations are performed at the gth point where the

conditions
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3 1
qg—14+n g+n?
t t

g+1—n = B’ I qg—n

A,“Z (= Ai|tq_1 e A,‘I e Ail (4.3.12)

t

Bi|, = B[, = Bil (4.3.13)

are satisfied for all ¢.

The size of the time steps At can be chosen in a flexible manner since the
propagation of the fast-moving surface waves is suppressed. The CFL condition is
no longer a restriction. However, to ensure high accuracy of solutions a time step
of 9 seconds has been chosen. When the water depth is taken as being constant,
the inversion of the matrices on the left-hand sides in (4.3.6) and (4.3.7) is required

only once before marching on in time.
A basis set of eigenfunctions

All solutions, computed hereafter using a basis set of eigenfunctions, are based
on Heaps’ formulation. We can write down the finite difference representation of
(2.6.42), (2.6.43), (2.6.78) to (2.6.81) with 8;2 = 0,7 =0,1,2,and B12 = B2,1 =0,
omitting the gradients of the free sea surface, the interfaces, the atmospheric

pressure and the direct tide-generating forces, as follows:

t+ At — ot =
CHA|"™" =C7 A+ AtyByfg + AtFig|g (4.3.14)
= t+At -5 1t s
CIB;|"" =Ci Bi| — AtyAulg + AtFiy g (4.3.15)
with
At o Ato;
+ — el Ny kbt Iy - ) s
Cz I + 2 sz 1 2Hz2 /Bz,lc 9 (4316)
_ At o Atoy; R
C;=1I- 7H—3A, + 2_H§ﬂ”lc , (4.3.17)
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where i = 0 and 1 for the one and two domain systems, respectively, I is the unit

matrix and

mo N t
Thr =p0’2kb ZAO’T . (I)O,"‘-fo,r(l)’ for Qo, (4319)
r=1

mao - t
Toe =Pa1ks Y Azy qcbz,fz,r(n, for Qg, (4.3.20)
r=1

The matrices F;, 1 = 0, 1,2, take the same form as those given in (4.2.6) to (4.2.7).
The matrices A;, B;, C;, E:, E?, EEZ) and A; are given by (2.6.45), (2.6.49) and
(2.6.51) to (2.6.54). The periodic boundary conditions are given by replacing A; ,
and B; , with zzl\i,r and §,~)r in (4.3.12) and (4.3.13), respectively.

If the basis set is constructed with g;; =0, =0,1, C;F and C; in equations
(4.3.16) and (4.3.17) become diagonal matrices. The equations of the modal co-
efficients are then uncoupled except through the bottom frictional term allowing

the finite difference representation of (4.3.16) and (4.3.17) to be simplified to

(1 N At o )\i’k)gi’klym =<1 - ﬁ o )\,-,k) A\i,k|t+At

T > T ;
A Bisl! + S (P B (Tee = 7o), (4320)
At o 5 t+ar At o ~ t4At
(1 + _Q"I{—g)\i,k)Bz',k'q —(1 - 7H_i2)\i,k) Bi,k|q
~ it _
A Al A (P HY  (Tay = Ty) (43.29)

where i = 0 and 1 for the one and two domain systems, respectively.

Before considering the solution of the wind induced motion, we briefly examine
the rate of convergence of the surface current computed using the eigenfunction
expansion. It is apparent from Figure 4.7 that the V component of the surface
current (denoted by V;) converges rapidly and that use of ten vertical modes
produce excellent accuracy. However, the rate of convergence of the U component

of the surface current (denoted by Uy) is unsatisfactorily slow. This is because the
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Figure 4.7 Time variations of the wind drift surface currents, obtained using the
profile in Figure 3.1(d), computed using a basis set of eigenfunctions,
with: Ap=25, Ap=10m; Np =150, cm?s~1; p1=1025.8, p p=1026.5 gem™3,
and for @y, pp=1027.2 gem™3, Ag=215m, Np=1000 cm?s™!, ky=0.2 cms~!;
and (a), () Np =10 cm®s™'; B 1= fo,2=0.0, with an increasing number of
mo; (¢) Np =50, av1~121.4 cm?s~! with various values of «1f1,1 shown in
the key and with 21 B-spline functions.
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stress Ty, computed with a finite number of eigenfunctions cannot be the same as

the value applied externally (Davies and Owen, 1979).

By using an optimum value of f8;; we can improve the convergence of the V
component of the horizontal current near the surface. This point was discussed in
Section 4.1. However, since a system of coupled equations has to be solved with
respect to time (as a consequence of introducing the ;1 term), the computational
effort is rapidly increased as the number of vertical modes is increased. Further-
more, the §; 1 term effectively acts as a damping term and hence is not suited to

the reproduction of temporally quasi-periodic motion (Figure 4.7(c)).

It is evident from Figures 4.8(a) and (b) that, as a consequence of the Gibbs
phenomenon, nonphysical oscillations appear in the U component of the current
profile in which wind stress is applied. When N is increased from 100 to 1000

2

em? 71

, as noted in the calculation of the steady state profile, the oscillations are
significantly reduced except within the pycnocline. Increasing m; from 10 to 20 is
not helpful in suppressing the oscillations. A large number of eigenfunctions have
to be used to smooth out the oscillations unless a cosmetic filter is applied. In
regions where strong tidal currents are omnipresent, it is necessary to increase the
vertical variation of the eddy viscosity at the bottom layer to a value comparable
to that at the surface layer. Heaps and Jones (1985) have chosen values N, =
300 em? s~ and N = 1000 cm? 57! in applying a three-layered spectral model to
a shelf with a depth ranging in the cross-shelf direction from 50 to 300 m. Although
it was not explicitly mentioned in their paper, it is conceivable that the reason
behind this choice of eddy viscosity was to take into account the tidally-induced

background turbulence and at the same time to suppress the Gibbs overshoots.

In a series of preliminary computations it has been found that, despite the slow
convergence near the sea surface and the Gibbs overshoots particularly within the

pycnocline, the layer-mean values of current were computed accurately, even with
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Figure 4.8 Velocity profiles of U and V components of wind drift current, obtained

using the profile in Figure 3.1(d), at various time steps computed using
a basis set of eigenfunctions, with: Ap=25, Ap=40, Ag=185m; Ny =1000,
Np=10 cm?s~Y; pr=1025.8, p p=1026.5, p y=1027.2 gcm™3; ky=0.2 cms™?;

ﬂo';1=,30’2=0; and (a), () Ng=100 cmm?s~! with m;=10; (¢) Np=1000 cm2s~1
with m;=10; (d) Np=1000 cm2s~! with m;=20.
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only five vertical modes. From this point forward, in calculations with a basis
set of eigenfunctions, 20 vertical modes along with homogeneous Neumann limit

conditions will be used.

4.3.3 Results

To examine the time variation of surface currents in the one and two domain
systems and their sensitivity in particular to changes in Ny, wind drift surface
currents induced by the step-function wind stress are computed for 120 hrs using
a basis set of B-spline functions. Three values of the eddy viscosity N, are
considered, these being N, = 10, 50 and 150 cm?s~!. Figure 4.9 shows the
sensitivity of the U component of the surface current to changes in N in the
one domain (Figures 4.9(a), (b) and (¢)) and two domain systems (Figures 4.9(d)
and (d)). It is evident that wind drift surface currents are characterised by an
oscillation of inertial period T, = 27 /v o~ 18.2 hrs. The inertial oscillations are
in fact formed throughout the water column and the U and V components of the
oscillations are 90° out of phase with each other. It is apparent from Figures 4.9(a)
to (¢) that in the one domain system the values of N, and Ap are important in
determining the rate of damping of the inertial oscillations in the surface currents.
When N is increased and Ap is decreased the wind momentum can more rapidly
penetrate to the bottom layer. This leads to an enhanced initial damping of the
surface current. Also the rate of damping of the surface current is substantially
influenced by the surface mixed layer depth. It is evident that with Ar = 25m the
surface current at t = T./4 hrs is already affected by the eddy viscosity within
the pycnocline. When Az is increased to 60m, the presence of the pycnocline
has little effect on the surface current at ¢t = T,/4 hrs. After the initial stage of
development the amplitude of the inertial motion decays gradually as the wind
momentum diffuses downward out of the surface layer. Over the 120 hrs, the U

and V surface components of the surface current continue to decay. Consequently,
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Figure 4.9 Time variation of the U component of wind drift surface current, ob-
tained using the profile in Figure 3.1(d), computed using a basis set
of B-spline functions, with: p;=1025.8, pp=1026.5 gcm~2, and for 9,
pp=1027.2 gem™3, Np=100 cm?s~!, ky=0.2 cm s~ '; and (a) Ap=25, Ap=10,
Ap=215m; (b) Ap=25, Ap=40, Ap=185m; (c) Ar=60, Ap=40, Ap=150m; (d)
Ap=25, Ap=10m; (d) Ar=25, Ap=40m.
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] :
the U and V' components of the current in the bottom layer increase prog{ﬁs?wely /)
over the first few inertial periods. The initial decay of the surface curreitt- ATk s
last until the system reaches a steady state. It is apparent that, as the value of
N: is increased from 10 to 150 ¢m?2s~1, the damping of the surface current is

significantly enhanced. For details on the wind induced inertial oscillation of the

one domain system, see Davies (1985), c).

Comparing Figure 4.9(d) with Figures 4.9(a) to (c), it can be seen that with
Ar = 25 and Ar = 10m the quasi-steady inertial oscillations appear almost
immediately after the wind stress is suddenly applied at ¢ = 0. In the two do-
main system the maximum penetration depth of wind’s energy is constrained to
H;. Consequently, a quasi-steady state is reached rapidly and, in the absence of
frictional damping at the base of the domain boundary, the surface currents will
exhibit almost pure inertial oscillations. When the value of A is increased from 10
to 40 m the initial decay of the inertial motion is apparently shown with N, = 10
cm?s~! and the time variation of the surface current in the two domain system
becomes comparable with that of the one domain system (Figure 4.9(d)). This is
because the wind energy of the surface layer diffuses downwards very slowly and,
in such circumstances, imposing a stress-free condition at the base of the two do-

main boundary has little influence on the surface current over a couple of inertial

periods.

The most interesting fact, as indicated in Figure 4.9(d), is that the inertial
motion of the two domain system is undamped and the amplitude of the inertial
oscillation is not affected by the depth variation of the eddy viscosity. The pres-
ence of this undamped mode has been previously noted by Nomitsu (1933) and
Gonella (1971a), and recently its physical nature has been discussed by Davies
(1985b, 1986). Later we will analyse this undamped mode in deriving a transient

solution with expansion of characteristic modes of the system. To illustrate the
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non-dissipative behaviour of the inertial motion in the two domain system, calcu-
lations are performed in both one and two domain systems using a constant wind
pulse of duration 77. The time variation of the U and V' components of the surface
current are displayed as hodographs in Figure 4.10. It is apparent that the inertial
motion of the one domain system converges gradually to a steady state value (in
the presence of a non-zero bottom friction), which is zero for the wind stress of
finite duration, whereas the inertial motion of the two domain system oscillates

around zero with a quasi-steady amplitude.

To gain a better understanding of the non-dissipative component of inertial
motion, we have derived a transient solution for the wind induced motion in a two-
layered open sea subjected to a step-function wind stress. Appendix IV describes
the details of the derivation with linear slip and stress-free bottom boundary con-
ditions. Here we write down the non-dissipative part of the transient solutions
derived using the stress-free conditions at the base of the domain boundary. The

solution is given by

a a . R -1
@ @ =U® 4. V¥ = 7tH_117 [51,1 = (P12/P11 )10 — 1)] , (4.3.23)

where T1 = T, /P, ;. Since p; 5/p; ; = 1, the above reduces to

(a) _ _—u~yt LTy
w =e _— 4.3.24
1 i ( )

Note that this non-dissipative inertial motion is barotropic in nature and hence
can be explained in terms of the time behaviour of the first vertical mode deter-
mined using homogeneous Neumann limit conditions. An interpretation in terms
of vertical modes will be given later. As H; — oo, the value of @ ga) at each
level goes to zero. However, as noted by Gonella (1971a), the inertial oscillation
of the domain-integrated transport H;(U; + (V1) will persist indefinitely. It is

common practice to find a steady state numerical solution using an asymptotic

time marching method. It is evident that for the case of finite depth, the U and
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Figure 4.10 Hodographs of Ug and V4 (0 and e denote three-hourly values in one

and two domain systems, respectively) induced by a constant wind pulse
with duration T3=T./4 hrs, computed using a basis set of B-spline func-
tions, obtained with the profile in Figure 3.1(e), with: A,=10, A;x=20,
Ap=10m; p,=1025.8, pp = 1026.5 gem™3; and (a) pg = 1027.2 gcm™3;
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V components of current in the two domain system computed using the marching

method will never reach a steady state value.

The mixed layer depth Ay is of importance in determining the initial devel-
opment of the inertial motion. It is apparent from Figure 4.11 that as the surface
mixed layer depth is reduced, the surface current is significantly enhanced. This
is to be expected since in stratified conditions the wind’s energy in the surface
layer is effectively capped by the pycnocline underneath. Furthermore, the deep-
ening of the mixed layer depth is not reflected in the model and, consequently,
the magnitude of the surface current is overestimated. This point has been shown
by Davies (1985¢) using a three-dimensional finite difference model. Under con-
ditions of strong stratification (N = 10 cm?s™!) and the deep mixed layer depth
(Ar = 60m) the U and V components of the surface current of the two domain
system are in good agreement with those of the one domain system, whereas under
conditions of weak stratification and shallow mixed layer depth (A; = 10m), the
surface currents of the two systems start to deviate from each other from about

t = T,/4 onwards.

We observe from Figure 4.12(a) that with Ap = 40m and Np = 10 em?s™!
the penetration of the wind’s energy to the bottom layer is apparently retarded.
In this case a high shear region is maintained at the top of the pycnocline. Under
conditions of weaker stratification (Np = 50 em?s™!) with pycnocline thickness
Ap = 10m, the high shear region is significantly reduced and, on a time scale of
about half of the inertial period, a considerable amount of wind energy is trans-
mitted to the bottom layer (Figure 4.12(b)). For the one domain system a reversal
of the velocity gradient can take place within the pycnocline under conditions of
strong stratification (N p = 10 cm?s™!) and with pycnocline thickness Ap = 40 m,
whereas the gradient of the profile in the two domain system undergoes no such

reversal. Decreasing N, to 150 cm2s™1 significantly enhances the shear within
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Initial development of the surface current, obtained using the pro-
file in Figure 3.1(d), in three-layered one and two domain systems,
computed using a basis set of B-spline functions, with: Ap=10m,
p7r=1025.8, p p=1026.5 gcm™2, and ,for Qq, pp=1027.2 gem ™3, Hpy=250m;
Np=100 cm?s~! and ky=0.0 em s~ !; and (a) Ny =1000, Np=50 cm?s™1; (b)
Nt =150, Np=50 em?s~1; (¢) Ny =1000, Np=10. cm?s~1,
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(c) Two domain system (i=1,2)
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Figure 4.12 Velocity profiles of the U component of wind drift current (obtained us-
ing the profile in Figure 3.1(d)) at t=1/16, 4/16, 8/16 and 12/16 hrs, com-
puted using a basis set of B-spline functions with: Ay=25m; pr=1025.8,
p p=1026.5 gcm™3, and, for Q,, pp=1027.2 gem™23, k=0.2 cms~!; and
(a) Ap=40, Ap=185m; Np =1000, Np=10, Np=100 cm?s~'; (b) Ap=10,
Ap=215m; Ny =1000, Np=50, Np=100 ecm?s~1; (¢) Ap=10, Ag=215m; N
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em?s™t,

106



the surface layer and, in this example, a reversal of the velocity gradient occurs at

the upper surface of the pycnocline.

The present approach enables one to introduce a surface wall layer in a dis-
continuous manner. Although results are not explicitly presented in this thesis,
it was noted that the surface currents intensified greatly when a step-like surface

wall boundary layer was introduced in the eddy viscosity profile.

We now consider the time variation of the horizontal components of current
induced by a constant wind pulse of finite duration. The duration of the winds and
the changes in wind direction play crucial roles in determining whether inertial
oscillations will be enhanced or suppressed (Veronis and Stommel, 1956; Pollard,
1970). Let the horizontal velocities at 0; computed with the step-function wind
stress and the general time-varying wind stress be denoted by w(®) and w®),
respectively. The principle of superposition in the linear input-output system

(Heaps, 1966; Forristall et al., 1977; Forristall, 1980) then gives:

4 (v)
w®(o;,t)= /0 Toz(T) 61; (t—T,0;)dT. (4.3.25)

For a constant wind pulse of duration T}, (4.3.25) reduces to

o = o™, 0)), 0<t<T, (4.3.26)

oF — ooy~ B -Tuo), 15T (@320

We note in (4.3.26) and (4.3.27) that current induced by the constant wind pulse
is composed of the two step-function responses. The first part is the time response
following the onset of the step-function wind stress 7,4, at t = 0 and the second part
is the time response following the onset of the step-function —7,, at t = Ty hrs.
Consequently, the energy contained in the inertial motion is critically dependent

upon the phase difference between the two time responses.
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Figure 4.13 Time variation of Uy, Up and Up (obtained using the profile in Figure

3.1(d)) computed using a basis set of B-spline functions, with: A;=25,
Ap=40m, p;=1025.8, pp=1026.5 gcm~2; and (a),(b) Ap=185m; ky=0.2
em s~y p p=1027.2 gem™3; N7 =1000, Np=50, N5=100 cm?s~! with a wind
pulse of duration T = T./4, T¢/2, and T¢ hrs; (¢) N;p=1000, Np=50

cm?s™?

with a constant wind pulse of duration 77 = T./2 hrs followed
by a second wind pulse of duration T3 = T./2 hrs with intervals

Tq = Tc/4, Tc/2, and T hrs.
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Figure 4.13 illustrates the influence of the duration of the wind forcing on the
time variation of U;. We can see from Figures 4.13(a) and () that the inertial
oscillations intensify with Ty = T,/2 hrs, whereas a large proportion of the inertial
energy in the U component of the current is removed at all depths with T} = T,
hrs. The frequency of the wind pulses can also enhance and suppress the inertial
response. When the first wind pulse is followed by the second wind pulse with
time lag T,./2 hrs, the inertial oscillation intensifies and the value of the second
peak is larger than that of the first one (Figure 4.13(c)). In these computations,
since the wind’s energy is supplied for a finite period, the steady state solution is

zero, hence the current oscillates inertially around zero after the wind stops.

Figure 4.14 depicts the vertical velocity profiles computed with a constant wind
pulse of duration T,/4 hrs. Comparing the profile at ¢ = T,/4 hrs with those at
following time steps, it is apparent that after the wind action stops, the inertial
energy within the surface layer diffuses downwards and consequently, the shear
within the pycnocline is significantly reduced as time progresses. In the absence of
external stresses the shear cannot be maintained within the surface mixed layer.
The variation of the velocity profile through the pycnocline is almost linear. The
wind’s energy diffuses from the surface layer to the bottom layer over a couple
of inertial periods until the rotational forcing and the internal friction limit the
penetration. It is evident that when N is increased from 100 to 1000 cm?s~!, the
wind momentum penetrates to greater depths. It is also noticeable from Figure
4.14(d) that after the first two inertial periods the current profiles become almost
uniform throughout the domain. This is due to the fact that once the wind stress
is removed, the contribution of the higher modes to the current profiles decays
exponentially with respect to time but the first vertical mode, which is barotropic

in nature, is undamped. This point will be discussed more thoroughly later.

The numerical results given by Mellor and Durbin (1975) should be noted
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The U velocity profiles (obtained using the profile in Figure 3.1(d)) at
t=1/4T., 5/4T., 9/4T. and 17/4T. krs, induced by a wind pulse of dura-
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at this stage. Their model, based on the second level turbulence closure scheme,
predicted that when the wind stops no further deepening of the mixed layer occurs.
Given a wind of finite duration, their results support the layered model which

assumes the existence of the well-formed time-invariant layered structure a priors.

The time variation of modal coefficients

In what follows, we describe a modal solution for the transient wind drift
current in an open sea region induced by a suddenly applied wind stress at ¢ = 0.
Although our concern is centred on the excitation of the undamped free motion in
the two domain system, solutions are derived for a more general system. The two-
layered one domain system with non-zero linear bottom friction is considered with
a non-zero arbitrary initial velocity field and with $; 1 = f; 2 = 0 being used to
construct a basis set of eigenfunctions. The two domain system may be recovered
by setting ¢ = 1 and k;, = 0. To analyse the input-output relation of the linear

system, we use complex notation.

Defining the complex velocity @; ;(t,0;) = U; j(t,0;) + (V5 ;(t,0:), we write

equations (4.3.1) and (4.3.2) in complex form:

% o; 0 ( 0w ; ;

e . i1 <L O; < € 3.
at + L7wz:] le ao'l 'Ll/l)] 80-1 ) for fz’] 1= 0-1 — EZ,]) (4 3 28)

where t =0 and 7 = 1,2.

We seek a solution in a truncated series of the form

Wi = Z/w\i Qirfi;r(0:) for &1 <0; <&y, (4.3.29)

r=1

subject to the boundary conditions

o 0w Tsz

—E(‘”’“ 80,;) =5, A oi=0 (4.3.30)
0% Owi

_E(IJ:{,B "Cr}a‘) = kbwz' at g; = ]_, (4331)
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and the non-zero initial condition
w,-,j = w,-,,-(o), (4.3.32)
where : =0 and j = 1,2.

After taking the scalar product (2.5.4) of (4.3.28) with f; ;, we apply inte-
gration by parts twice. Then, using (3.2.2) and (3.2.3) with §;; = 8;2 = 0, and
(4.3.30) and (4.3.31), the resulting equation takes the form

0w, ; a; d dfi ik
< or Wi fi,f»’°> - <w”’ ’ H_?d7n<“i’f do; )>
— Toa(Pi 1 Hi) T fi 1(0) + (pink)(pi 1 Hi) ' 0i2(1)f; p(1) = 0, (4.3.33)

where it =0and k=1,---,my.

Let f
form f

irs 0 =0, =1,---,m;, be a basis set of eigenfunctions (with a local

i jr) determined from the equation

d df i
a0 (i) == Nif (3.2.1)

subject to the limit conditions (3.2.2) and (3.2.3) with 8;1 = Bi2 = 0. Substi-
tuting (4.3.32) into (4.3.33), and using the orthogonality condition (3.2.8) of the

eigenfunctions
Ji . -1 g
(P [ Dk if r=k,
(—'J / FijoFiin ) do; Z{ ) (3.2.8)
j=1 Pi1 Jei;-a 0 if r#k,
we obtain
554 o .
o (7 + Xk H )W ik + Too(py 1 Hi) ™' fi 1(0)

. (4.3.34)
- (Pi,zkb)(l)i,lﬂi)_l ( E Wi, ®ir fi,r(l)) fix(1),
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where ﬁi,k = A\i,k + LE,',]C, k =1,---,m;. Note that all the vertical modes are

coupled through the bottom friction term.

Writing (4.3.34) in matrix form we have

W, =TwW,; +F,,, (4.3.35)
where:

W, is a column vector of length m; with k th element
%; (4.3.36)

W, is a column vector of length m; with kth element
Wi k; (4.3.37)

F; ; is a column vector of length m; with kth element
Too(Pi 1 Hi) 7 i p(0) = Tsu(p; Hi) ™' = Fi; (4.3.38)

I' is a m; X m; square matrix with (r, k) th element

Dok = —(o7 + Xip@i/H )6 ek — (05 2k6) (05 H) T i (D i (@i (4.3.39)
and 6, 1s the Kronecker symbol.

Equation (4.3.35) is often encountered in the analysis of standard input-output
systems and techniques for obtaining its solution are extensively discussed in many
text books (for example, Zadeh and Desoer, 1963). For completeness, we write
down the essential steps of the solution procedure. Let e, be the r th normalised

eigenvector (often called the state vector) satisfying

I'e, =¢re,, (4.3.40)
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in which e, is the associated r th eigenvalue. If T' has m; distinct eigenvalues,

(4.3.35) admits a representation of the form

= i erl(t) ey (4.3.41)

Substituting (4.3.40) and (4.3.41) into (4.3.35), we get

r=1 r=1
= i Cr€r€yr + Fi,z- (4343>
r=1

Let the j th component of e, be denoted by €., ;. Taking a complex scalar product

of e, and ey such that

<erer>=) €n; €} =06, (4.3.44)
i=1
we obtain
d e
ﬂ = Cp€L + FIE ), (4.3.45)
dt
where '
F{ =<Fi,,er>=Y Fjei;, (4.3.46)
=1
and k=1,---,m;.

Projecting the initial velocity field (4.3.32) onto each mode defines a column
vector W;(0) of length m; with kth element

— pl
@ip(0) =Y Dt / @i(0) fiz 4O (4.3.47)
pl 1 1,7—1
Expanding W;(0) in terms of e,, r = 1,---,m;, and taking a complex scalar
product with ey, we have
<W(0),ex >= Y @, ;(0) e} ; = cx(0). (4.3.48)
i=1
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By the convolution theorem, the solution of (4.3.45) subject to the initial condition
(4.3.48), is given by

ck(t) = exp{ext} [ck(O) + /Ot exp{—ekT}F,ge)(T)dT], (4.3.49)

where k = 1,---,m;. Hence, from (4.3.41), we get

mg

Wilt) = > explest) e [e,(0) + /0 exp{—e, T} F (r)d7]. (4.3.50)

r=1

With a zero-stress condition, ky = 0, or with a no-slip bottom condition (by
the requirement f, ;(1) = 0 for all k), the m; x m; square matrix I has zero values
for all off-diagonal elements; its eigenvectors e, have all zero components except

for the rth, which is unity. It follows then that

t
ck(t) = Wi k(t) = exp{&t} [ck(O) + / exp{——%kT}Flge)dT], (4.3.51)
0
where
& =Trr=—(oy+ Aipai/HYy), (4.3.52)
F{9 = Fy = To(p; H) ™Y, (4.3.53)
andr = 1,---,m;. Note that the number of vertical modes determines the number

of components of eigenvectors and in the absence of bottom friction each charac-
teristic mode carries the information on each vertical mode. In this solution the
wind stress can vary arbitrarily with respect to time. For an idealised form of
wind stress, for example a sinusoidal or step-function wind stress, (4.3.51) can be
integrated analytically. Davies (1987b) derived solutions similar to (4.3.51) with

¢ck(0) = 0 and using a no-slip condition at the sea bed.

Figures 4.15(a) to (d) illustrate the time variation of the vertical modes in one
and two domain systems induced by a step-function wind stress. All the char-

acteristic modes are excited by the step-function wind stress and each ezcitation
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Figure 4.15 Time variation of the various vertical modes, obtained using the pro-
file in Figure 3.1(d), induced by a step-function wind stress. A stress-
free condition (k;=0.0 cms~') is imposed at the base of the domain

with: Ap=25m; pr=1025.8, pp=1026.5 gecm~>, and for 9y, pz=1027.2

gem™3; Np=1000, Np=10 cm?s~'; and (a) Ap=10m; (b) Ap=40m; (c)
Ap=10, Ag=215m with Np=100 cm?s~'; (d) as in (a); (e) as in (b); (f) as
in (c¢)-
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can be defined by F,Ee) = Tsz(p;,Hi)™" in (4.3.53). Physically, the excitation of
higher modes is necessary to represent the localised variation of the wind drift
current at the initial stage (Davies, 1985b). In the absence of bottom friction, the
rates of decay of the modal coeflicients in both systems are entirely determined
by the real part of &, that is, &;A; x/H? in (4.3.52). It should be stressed that
the depth of the one domain system (Hy = 250 m) is sufficiently large and hence
the influence of the bottom friction upon the decay of the inertial oscillations is
in fact insignificant. Since the eigenvalues A; , are an increasing sequence of real
numbers, the initial damping of the higher modes will be faster than that of the
lower modes (see Figures 4.15(d) to (e)). Consequently, for the wind stress of
finite duration the barotropic mode will dominate in the current profiles as time
progresses (see Figure 4.14). The difference in the initial damping of the higher
vertical modes between the one and two domain systems is in part attributable to

the difference in the values of «;.

It is apparent from Figures 4.15(a) to (c) that the first mode is undamped in
the absence of bottom friction. If the water initially at rest is subjected to the
step-function wind stress at ¢t = 0, then from (4.3.51) to (4.3.53), and noting that

Ai1 =0, we have

-~ ~ i
c1=Aiy+1Biy=— ;{fy (1-emm). (4.3.54)

Note that the first part of (4.3.54) is the steady state solution which is identical
to (4.2.12) and the second is the nondissipative oscillatory solution. The first
vertical mode plays an important role with regards to the net transport. Noting
that ®;; ~ 1 and that a;0, = fol fi’rdO'i ~ O for all » > 2, we have

1
H,-/ (Ui +.Vy)do; ~ Hi(Aiy +Bi1) = —%(1 —e ). (4.3.55)
0

Thus the first vertical mode will serve to give rise to a net transport irrespective
of the depth variation of the eddy viscosity. As H; — oo, the first vertical modes

A\i’l and 1/3\,-,1 will go to zero. However, the transport will persist indefinitely.
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The non-zero value of F; ,Ee) implies that all characteristic modes will be ex-
cited independently of each other, and since the eigenvalues €, k = 1,---,m;, are
distinct and their real parts are negative, the modes will converge to steady state
values at different rates. One would expect that the time behaviour of the ver-
tical modes would be significantly different from that of those for the zero-stress
condition as the values of (ks/H;)fo x(1)f0 (1)®o,k in (4.3.39) were increased,
thereby reducing the diagonal dominance in I'. The effect of bottom friction on

the vertical modes will be referred to in the next section.

Effects of introducing frictional dissipation for the two domain system

The simple linear slab model developed by Pollard and Millard (1970) has
been successfully used on many occasions to reproduce major features of inertial
oscillations observed in the surface mixed layer (for example, see Kundu, 1976;
Daddio et al., 1978). A linear two-layered model for the local generation of in-
ertial motion, extending the linear slab model, is described here which allows for
the diffusion of the wind’s energy downwards through the pycnocline and in the

horizontal directions.

To remain consistent with the representation of the bottom friction, we assume
that the downward flux of the wind’s energy to the bottom layer is a linear function

of the velocity at the base of the pycnocline; that is, we pose

o/ oU1, Tds vy Vi1 T
—_— P = —_—— " . = 4:. .
H, ( 1,1 a0, ) pl,l’ H, (Hl,l 90 ) ,01,1, ( 3 56)
Tiz = P12 kaUsa, Tay = Py kaVia, (4.3.57)

where kg is the linear frictional coefficient, and U; 4 and V; 4 are the velocities
at 017 = 1. The system is then composed of the surface mixed layer and the

pycnocline, with bottom friction imposed at the base of the domain boundary.
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Essentially, we consider a two-layered one domain system of depth H; with a

linear slip bottom boundary condition.

The horizontal diffusion of the inertial energy can be represented in a way

similar to the Pollard-Millard linear slab model which is written as

oU

at - ’)’VT e FT - kmUITa (4358)
ov — -
atT + ’)/UT == GT — kaT, (4.3-59)
where
T T
Fp=—"2 = Y 4.3.60
! p1,1AT’ ! P11 ( )

The parameter k,, represents the damping of the inertial oscillations in the surface

mixed layer.

On introducing horizontal diffusion terms (related to the U; and V; components

of the current at each level) into equations (4.3.1) and (4.3.2), we have

anj (87 0 8U,- ;
haiTY R o= —kpU; __H_< ,,_’], 3.
oV a; 0 Vi ;
1y z=_k . _2_( .. z’J), 0.
5¢ T Ui nVij+ 77 80, \Mii g, (4.3.62)
where ¢ = 1, 5 = 1,2. This formulation is motivated in part by the analytical

model given by Hopkins (1974) in which the diffusion terms kpU; and k,V; are
introduced primarily to control the indefinite growth of the alongshore component
of the geostrophic velocities induced by a steady wind. These equations can be
used either with a zero-stress condition or with the frictional condition (4.3.56).
It is obvious that the removal of inertial energy from the surface mixed layer can

be calibrated through the adjustment of the frictional parameters kq and/or ky.

We can expect from previous results that the influence of the changes in ky

upon the decay of the inertial oscillations in the surface layer is closely related
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Figure 4.16 Time variation of Uy and Up, obtained using the profile in Figure
3.1(d), computed with frictional dissipation imposed at the base
of the pycnocline. A basis set of B-spline functions was used with:
kg=0.1 cms™'; Ap=25m; p,=1025.8, p p=1026.5 gem™%; Ny =1000, Np
=10 cm?s™!; and (a) Ap=10m; (b) Ap=40m.
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Figure 4.17 Hodographs of Uy and V4 (with @ denoting three-hourly values) induced
by a constant wind pulse with a duration of T1=T./4, computed with
frictional dissipation imposed at the base of the pycnocline. A basis
set of B-spline functions was used (with the profile in Figure 3.1(e))
with: Aw=10, Ar=20, Ap=10m; p;=1025.8, pp = 1026.5 gcm™3; N,,=30,

N7=150, Np=50 cm?s~!; and (a) k4=0.01 cm s~ '; (b) kg=1.0 cm s~ 1.
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to the conditions of stratification. For convenience, we present the time variation
of Uy and Up computed with kg = 0.1 cms~! for the values of Np = 10, 50
and 150 cm?s~! and A, = 10 and 40m (Figure 4.16). Comparing Figure 4.16
with Figures 4.9(a) to (¢), we can see that the time variation resembles those of
the one domain system. The major difference is that in the one domain system
the damping of the inertial oscillations within the surface layer is affected by the
eddy viscosity at the bottom layer along with the parameters Np, Ar and Ap,
while in this two-layered model the time behaviour of the inertial oscillations in
the surface layer are independent of the conditions in the bottom layer. In the one
domain system the surface current is influenced by the mean value of the eddy
viscosity through the water column, and its depth variation (Davies, 1985¢). The
present model provides as an improvement to the Pollard-Millard model detailed
information on the vertical structure of the inertial oscillations. We note that with
Ay =40 m, Np = 10 em?s™!, the layer-mean velocity Ujp increases progressively
over the 120 hrs while the damping of U continues. Figure 4.17 displays as time

hodograms the sensitivity of the damping of the surface current to the value of kq.

We now consider the time variation of the modal coefficients in the presence
of frictional dissipation at the base of the two domain system. Figures 4.18(a) and
4.18(c) depict the time dependence of the first four modal coeflicients computed
using kg = 0.1 em s, for Ap = 10 and 40 m. For the purpose of comparison, the
time variation of the third and fourth vertical modes computed using a stress-free
condition with Ap = 40m is also plotted in Figure 4.18(b). It is evident from these
figures that the frictional dissipation damps the first vertical mode. The decay rate
of the first vertical mode computed with A, = 40 m is significantly slower than
that computed with Ap = 10 m. This is expected because the downward flux of
inertial energy is represented by the U and V components of current at the base

of the pycnocline.
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Figure 4.18 Time variation of the various vertical modes, obtained using the pro-
file in Figure 3.1(d), with frictional dissipation imposed at the base of
the pycnocline. A step-function wind stress was used with: Ap=25m;
pr=1025.8, pp=1026.5 gecm~™>; Np=1000, Np=10 cm’s™'; 8, ;=p; ,=0;
and (a) Ap=40m; kg=0.1 cm s~ 1; (b) for comparison purpose, Ap=40m;

ka=0.0cms~'; (c) Ap=10m, kq=0.1 cm s~ ',
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Figure 4.18 Cont’d.

The interesting fact is that when the value of k4 is zero, the coefficients of the
higher vertical modes attain a steady state more rapidly than when the value of
kq is non-zero. This point has been discussed in detail by Davies (1985b) for a
homogeneous sea. Initially, all the vertical modes are excited by the step-function
wind stress. When a zero-stress condition is enforced at the base of the domain,
the coefficients of the vertical modes are damped exponentially by the internal
friction term ;A i/ Hiz/V[Z:,k. Consequently the higher modes converge to the
steady state value faster than the lower modes. Since the modal equations are
uncoupled, no interaction arise between the vertical modes (see (4.3.51)). When
the stress at the base of the domain is non-zero, the initial decay of each vertical
mode is determined by the frictional dissipation imposed at the base of the domain

boundary and by the internal friction. Note that in this case the modal equations
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are coupled. Since the friction term at the base of the pycnocline is given by

my
Taw = P12 kaUia = Py ka ZAl’T(I)l’Tfl,r(l)’

r=1

miy
Tay = P13 kaVia = Py 2ka Z By, @1, f1,+(1),

r=1

(4.3.63)

where ®;,, is strictly positive and f, ,(1) changes sign as r increases, the inertial
oscillations locked in the first few modal coefficients (in these examples, mainly
the first and second modes) will give rise to periodic changes in the bottom stress,
through the interaction between the vertical modes, thus producing time depen-
dent fluctuations of the higher vertical modes. The oscillations in ;1\1,3 and ;1\1,4
shown in Figures 4.18(a) and (¢) are due to such interaction. It is apparent that
the time dependent fluctuations of the higher vertical modes become pronounced
when the off-diagonal terms of T in (4.3.39) are substantially increased. Note
that the characteristic modes determined by the linear summation of the vertical
modes do not interact each other (see (4.3.49)). In the case of N, = 10 cm?s™!
and Ap = 40 m, the rate of penetration of the wind’s momentum slows within the
pycnocline, causing the contribution of the bottom friction to increase gradually.
Consequently, the contribution of the time dependent fluctuation of the bottom
stress to the coefficients of the higher vertical modes is noticeable after a couple

of inertial periods (Figure 4.18(a)).

The influence of kj, upon the rate of damping of the inertial oscillations within
the surface layer and the pycnocline is depicted in Figure 4.19. It is apparent that
the horizontal dissipation term damps the first vertical mode. In contrast to the
case of kg4, the presence of the horizontal dissipation term does not complicate
the time response of the individual vertical modes. This is because no interaction

between the vertical modes arises through the horizontal dissipation term.
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Figure 4.19 Time variation of Ur and Up and the first three vertical modes in
domain €21, obtained using the profile in Figure 3.1(d), computed with
horizontal dissipation. A step-function wind stress was used with:
kr=1.0x10"%, 0.5%10~°% and 1.0x107% s~ '; Ap=25, Ap=40m; pr=1025.8,
p p=1026.5 gecm™3; Ny =1000 and Np =50 cm?s~ 1.
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We may write equations (4.3.61) and (4.3.62) in complex form as follows:

90w .5
g T@ii = kWit

aq 0 ( 6@,',)')-

By replacing ty+ 1Ay g /HE with ¢y+kp+ 11,5/ H? in (4.3.52), one can obtain
solutions of (4.3.64) subject to the initial condition (4.3.32) and the boundary
conditions (4.3.56) and (4.3.57). For convenience, we list the solutions in the

absence of the frictional dissipation at the base of the pycnocline:

t
ck(t) = Tix(t) = exp{ét} [ck(O) + / exp{—&T}F?dr|, (4.3.51)
0
where
& =—(vy+kn+ )\i,kai/Hiz,k)a (4.3.65)
F{O = Fy = Toa(p; Hi) 7, (4.3.53)
and:=1,r=1,-.-,m;. With the introduction of the horizontal dissipation term

the real part of the characteristic modes is changed. This leads to an enhanced

damping of the inertial oscillations.

In realistic applications, due to the uncertainty of the values of k; and kj,, the
present model has to be calibrated to fit the observed inertial motions. There are
certain advantages of using the present model over the Pollard-Millard model in
which the single factor k,, is used to represent the decay of the inertial motion
in the surface layer. It would be expected that the time response of the Pollard-
Millard model might be sensitive to the value of k,. In the present two-layer
model, the pycnocline acts as an energy absorber to control the downward flux of
the wind shear. Consequently, the dependence of the time response to the value
kg will be lessened, particularly in conditions of strong stratification and deep
pycnocline depth. An important point is that since an arbitrary eddy viscosity
profile is allowed within each layer, any local information on the conditions of

stratification can be incorporated in a flexible manner. If the horizontal extent of
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Figure 4.20 The U velocity profiles at t=1/4T., t=5/4T., 13/4T. and 21/4T. hrs, ob-
tained using the profile in Figure 3.1(d), computed with a constant wind
pulse of duration 7./4 hrs. The stress components given by equation
(4.3.57) are introduced at the base of the pycnocline which are in turn
used as forcings for the bottom layer. A basis set of B-spline functions
are used with: Ap=25, Ap=10, Ag=215m; Ny =1000, Np =50, Ng =100
em?s~1y pp=1025.8, p p=1026.5, p 5=1027.2 gcm™%; and (a) kg=0.001 cms~1;
(b) kg=0.01 cms~1; (¢) kg=0.1 cm s™1.

the wind field is known, the horizontal dissipation of the wind’s momentum can
be calibrated reasonably well by changing kj. Furthermore, continuous profiles

of the horizontal components of current over the domain can be obtained in the

present model at the expense of slightly increased computational effort (compared

with the Pollard-Millard model).
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We refer to Figure 4.20. When a uniform wind forcing is applied in a horizon-
tally unbounded open sea region, no motion can arise in the bottom layer of the
two domain system. Under the assumptions that the bottom layer is sufficiently
deep and that the magnitudes of the horizontal components of the current there
are small, the frictional dissipation computed with the velocity at the base of the
upper domain can be used as a driving force for the bottom layer in a way similar
to that in the two-layered steady state model of Welander (1968). However, it
should be noted that in this case no feed-back mechanism from the lower domain
to the upper domain is taken into account. Figure 4.20 illustrates the current
profiles in the bottom layer driven by the interfacial shear T4, + ¢T4y and their

sensitivity to the value of k4.

A transient free motion with a non-zero initial condition

To conclude this chapter, we consider the transient free motion of an open
sea started by the given initial velocity field. All external stresses are removed
throughout the computation. This system has been considered by Gonella (1971a)
in a homogeneous sea with a constant eddy viscosity. Using the present numerical
approach we can prescribe arbitrary variations of the initial velocity and eddy

viscosity profiles.

For simplicity we consider the initial velocity field as follows:

Ui(0i,0)=10ems™ 0<0; <&, (4.3.66)
Ui(0;,0) =0 for i1 <0; <1, (4.3.67)
Vi(0,0) =0 throughout the domain (4.3.68)

where ¢ = 0,1. For the non-zero initial value problem it is necessary to initialise
the expansion coefficients. In finite difference methods such an initialisation is

straightforward.
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Calculations are performed using a basis set of eigenfunctions. Projecting the

initial velocity field onto the the vertical modes gives

Xi,k(0)=<U,-,,-(0), fi,j,,c>, Bix(0) =0 (4.3.69)

where ¢ = 0,1 and k¥ = 1,---,m;. For an arbitrary form of the initial velocity
field, A\i,k in (4.3.69) can be evaluated using numerical quadrature. Substituting

conditions (4.3.66) to (4.3.68) into (4.3.69) gives

= &i1

Aik(0) =10 A fi,j,k do; =10 (@i0,k — Qik), (4.3.70)
where ¢ = 0,1 and k = 1,---,m;. If the initial velocity field is computed by recon-
stituting the estimated coefficients of the vertical modes, nonphysical oscillations
arise below the surface layer because of the presence of the discontinuity in the
initial velocity field. However, immediately after the start, the current profiles

become free of the oscillations.

For convenience, we list again the transient solution (4.3.51) for this initial

value problem without the wind stress terms, namely

ce(t) = Wi r(t) = exp{&t} cx(0), (4.3.71)
where
<Wi(0),ex > = @ ;(0) e} ; = cx(0), (4.3.48)
j=1
& =Drr=—(y+ Xipi/Hy), (4.3.52)
and ¢ = 0,1, ¥k = 1,---,m;. Note that each characteristic mode will be excited

selectively depending upon the initial condition.

Figure 4.21 depicts the time variation of the first four vertical modes in the
one domain system computed with Np = 10 em?s~! and the two second vertical

modes in the two domain system computed with N, = 10 and 150 em?2s~!. It
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is apparent from these figures that the inertial oscillations will dominate the time
response of the surface currents and layer-mean velocities of the free motion. The
velocity at each level approaches zero as t — 00, either in the presence of bottom
friction or in an infinitely deep sea. With the initial conditions (4.3.66) to (4.3.68)
all the vertical modes are excited and, since f; ;(0;) = 1, the magnitude of A\,‘,;l is
given by 10Ar/H; cm s™1. In the absence of bottom friction the first vertical mode
is undamped whereas the higher modes decay at different rates due to the presence
of internal friction. Note that the inertial oscillations of the second vertical mode
in the one domain system decay very slowly. In the two domain system the internal
friction is increased significantly because of the reduced depth . Furthermore, since
the region occupied by the pycnocline is a significant fraction of the domain, the
value of &¢1 ;1 plays an important role in determining the rate of damping of the

second vertical mode.
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Figure 4.21 Time variation of various modal coefficients computed with the initial
conditions (4.3.66) to (4.3.68). Stress-free conditions are imposed
at the upper and lower domain boundaries with: A;=25, Ap=40m;
pp=1025.8, pp=1026.5 gem™3; B, =4, ,=0,i=0,1; and for Qq, p=1027.2
gem™2®, Ap=185m; and (a) Ny =150, Np=10, Ng=1000 cm?s~'; (3) N
=150, Np=10 cm?s~'; (¢) Ny =150, Np=150 cm?s~!.
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CHAPTER 5

WIND INDUCED MOTION
IN NARROW FLAT-BOTTOMED LAKES

5.1 Introductory Remarks

This chapter is concerned with the application of the layered models described
in Chapter 2 to wind induced motion in elongated two and three-layered lakes of
finite length and uniform depth. It is assumed that the longitudinal axis of the lake
is parallel to the z-axis and that mean values of the layer thickness are independent
of time and the z-coordinate. Since the system is bounded, the gradients of the
free surface and the interfaces participate in the dynamic balance but the Coriolis
parameter, which played a central role in determining the wind induced inertial
motion in an open sea region, is omitted. The direct tide-generating forces and the
effect of the atmospheric pressure gradient are also neglected. Thus, the system

of governing equations can be written as follows:

_3_0_-1:_ ! Pie— Pie-1\ 9C e
j ;g( )

6t Pi’j 3:1:
o; 0 3U,‘,j I .
Yo (Piuges) 1=09=128i=1j=12  (511)
i; = (Pie—Pie-1) Oe—1  (Pij—Pig\ 0Cij1
a; 0 oU;,; N

OGij—1  0G; . O /"t"""1 o\ _ F_
5 ~ 5 —I—Hzam . U;; do; ) =0, 1=0,1, y=1,2,

(5.1.3)

ACi j-1 d Si-1 . : . .
—— 4+ H;— U;; do; ) =0, =0,7=3;1=2,7=1. 1.
ot + E (/5 Jj 1=0,7=3; 1 Jj=1. (5.14)

i
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Our primary concerns in this chapter will be with calculating the time response
of interfacial displacements in the two and three-layered systems, extending Heaps’
two-layer two domain model numerically, and investigating the sensitivity of the
interfacial displacements to the eddy viscosity (particularly to Np) and to the
density distribution. The dimension of the idealised z—2z model is chosen to be the

same as that considered by Davies (1983a).

Calculations are in the main performed using a basis set of B-splines over
60 hrs, with a step-function wind stress of 1 dyneem™2 which is instantaneously
applied at £ = 0 uniformly over the horizontal domain. The assumption that the
wind stress is constant over the basin is reasonable for a small lake, because the

characteristic length scales of the meteorological events are much larger than those

of the lake.

When we examine the sensitivity of the interfacial displacements to changes
in the density of the layers, p; (= p,) and p, ,(= p,) will be varied for the two

and three-layered systems, respectively.

5.2 Finite difference form of the Galerkin equations

The staggered finite difference grid in the z-direction is shown in Figure 5.1.
The displacements of the free surface and the interfaces (; ; are evaluated at points
indicated by a “e” symbol. Each of the coefficients of the B-splines and of the
eigenfunctions for the current velocity A; ., is evaluated at the points marked by
a “4” symbol. The left and right land boundaries are located at x = 0 and L,
respectively. The points for (; ; are numbered from left to right, assuming that
there is one extra point just outside each end of the model region. Such a labelling
is implemented keeping in mind the incorporation of horizontal diffusion and non-

linear advection terms in future applications. The depth of water, the thickness of

the layers, and the wind stress are defined at the points for (; ; although their spa-
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Figure 5.1 A staggered finite difference grid for the z-direction in which e
indicates a Uj;-point (also A;, or A;,, r = 1,---,m;) and +
indicates a (; j-point.

tial variation is not considered in these computations. The coarse grid system has
a grid spacing of Az = 475m. The finer grid system, which has a spacing of one
third of the coarse grid, is used to illustrate the improved accuracy in reproducing

the internal displacements for the two domain system.
A basis set of B-splines

Along a horizontal closed boundary of general form in the z—y plane, the

normal component of the current vanishes for all ¢ > 0, thus
Aircostp + B;rsiny =0, 1=0,1,2, r=1,---,m;, (5.2.1)

where ) is the inclination of the normal to the z-axis. For the narrow lake con-
sidered here, 1 = 0, so the boundary conditions imposed at the closed ends ¢ = 0

and z = L are

Ai(z,)=0 for t>0, i=0,1,2,7r=1,---,ms. (5.2.2)
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The simulation starts with the body of water at rest, that is, the velocity field,

the free surface and the internal displacements at ¢ = 0 are all assumed to be zero.

Thus,
A; (z,0) =0,

Ci,5(x,0) =0,

i=0,1,2, r=1,---,m;,
(5.2.3)
i=0,1,2, j=1,---,J;,

for all z.

Under the narrow lake approximation, the matrix equations (2.5.18), (2.5.20),
(2.5.51), (2.5.53), (2.5.55) and (2.5.56) simplify to one-dimensional form and are
approximated using central differencing for the spatial derivatives and a forward
approximation for the time derivative on the grid shown in Figure 5.1. The

Galerkin solutions of (5.1.1) and (5.1.2) are expressed, neglecting the effects of

the atmospheric pressure gradients and the direct tide-generating forces, in the

form
Cf A" = C7 AL+ AtFi, +(At/AD)Si,,  i=0,1,2, (5.2.4)
where
At o
o i=0,1,2, (5.2.5)
Ci = Cz - ?H—fD,
Foo = (P Ho) ™ (TozE§ — TooEY)
Fl,:c = (P1,1H1)_17'st19 (526)
F20 = _(pz,l-HZ)_lszEg
3
P; pz [ A A
So,c = —Zg( = - 1) Ci,£—1|2—:1t Cie— 1|t+ g Eﬁe)
=1 Pin )
2
Pi Pz [ +A A
S1,2 = —EQ( .t = 1)_Ci,e—1|z+1t Gi,e— 1|t+ ‘ EE”)
=! o (5.2.7)
- Pu Pie-1\[ t+At t+At] (1)
Sz, = Zg( ) C1,£—1|q+1 —G1,e- 1| | E3
£=1 2,1 -
P21~ Py t+At t+A] (1)
—Q(T)[C20|q+1 oI ]E
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mo t
Tor = po,gkb ZAO’T qMO’T(l)’ for Qo, (528)
r=1

ma t
Ty = p2,1kb ZAQ,T qu,r(l), for Q,z, (529)
r=1

The continuity equation is expressed in the form

t+At _

Z;
q

Zi|; — H; (At/Az)E; [Az|; - Ai|2_1] , (5.2.10)

where ¢ = 0,1,2. The matrix Z; is a column vector of length J; (3 for Qo; 2 for
Q1; 1 for Q2) with k th element (; x—1. The other matrices are given by (2.5.21)
to (2.5.26).

The coeflicients of the B-splines for the horizontal current A; ., r =1,---,m;,
and the displacements (;; involving the free surface and the internal interfaces
are then calculated as time progresses. The explicit marching scheme given in
equations (5.2.4) and (5.2.10) is basically equivalent to that described by Davies
(1980a) except that in the two domain system the procedures are applied to both
the upper and lower domains. The CFL condition Az/+/2gh, restricts the time
step to At = 9 sec and 3 sec for the coarse and fine grids, respectively. It would be
necessary to employ a time and/or space-splitting technique for internal modes in
a manner similar to that described by Heaps and Jones (1983), in order to reduce
the computational effort required when the method is applied to a horizontally

two-dimensional fine grid system.

A basis set of eigenfunctions

Heaps’ expansion given by (2.6.30) is employed with the homogeneous limit

conditions, Bo,1 = Bo,2 = 0.

Boundary and initial conditions are obtained by replacing A; , in (5.2.2) and

(5.2.3) with A\i,r. At the closed ends we have
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A;(0,t) =0

~ (5.2.11)
A (L,t) =0

} i=0,1,2,r=1,---,m,~,

for all ¢ > 0, with the initial conditions for the displacements and velocities being

A\i,r(:c, 0) =0,

i=01,2 r=1--,m;,
(5.2.12)
Ci;j(x70)=07 i:031727j=1,"'7‘]ia
for all x.
The spectral solution of (5.1.1) and (5.1.2) is expressed in the form
At o ~  |t+At At o ~ 1t
1+ S5 A =[1- Sl &
[ T Hly 2 HF Hy (5.2.13)
+ AtF; o + (At/Ax)S; 5,
where 7 = 0,1,2 and
Foo= (Po Ho) (Tsz — fir(1)Tsa)
Fio= (p11H1) T (5.2.14)
Fop = —fok(1)(py 1 H2) ' The
~ (Pog— P - A At 1
— Poe- t+At t+
So,e = — Zz:g<——“m—”1) _Co,e—1|q_‘_1 == Co,e—1|q t_ Qo,0—1,k
-1 70,1
2
Pie—Pre-1\T t+At +At]
Sle =— Zg(—”—o—“l—“) _C1,£—1|q+1 — Cl,é—llz t_ Q1,0-1,k
Pt P \(5.2.15)
=\ (Pre—Pre i) t+At t+AL]
S2,0 = — g(—’—’) C1,£—1|q+1 — Cl,£—1|q 2,0,k
/=1 I 2'1 - -
P21 P12 t+A¢ t+At
=} (’—’) [Cz,o — (2,0 ]az,o,k
P2 |q+1 |q
mo N t
Toe =Posks Y Aor . @o,rfo (1), for o, (5.2.16)
r=1
ma = t
Toe =Py ks Y Asr| ®arf, (1), for o, (5.2.17)
q
r=1
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The continuity equation is expressed in the form:

t+Aat

Zi|! Zi|, — H; (At/Az) EF [A,-|; — Ay ] : (5.2.18)

q—1

where ¢ = 0,1,2. The matrices in (5.2.18) are given by (2.6.45) and (2.6.51).

5.3 Results

Figures 5.2 and 5.3 depict the time variation of the interfacial displacements in
the two and three-layered systems computed with various combinations of the eddy
viscosity and the coefficients of the linear bottom friction. Referring to the two-
layered system (Figure 5.2), calculations have been performed on the coarse grid
system for the one domain system and on both the coarse and fine grid systems for
the two domain system, using a basis set of B-spline functions. The eddy viscosity
in the upper layer was fixed at N; = 300 cm2s~! while values of k; = 0.0, 0.1 and

1 were applied with Ny = 100 cm?s~!. For comparison purposes, the

1.0 cms™
time variations of the interfacial displacements computed with ky = 1.0 cm s™! and
Ny =1000 cm?s™! are plotted together. The internal motion induced by a step-
function wind stress exhibits oscillations which are associated with the internal
seiche period of the basin (Heaps, 1966; Davies, 1983a) and which have a period
of about 12 hrs. The interface at the right half of the basin is displaced downwards
under the wind action, while the free surface is displaced upwards. We exclude
from our consideration the time variation of the free surface which is associated
with the short-period surface seiche motion. It is apparent from Figures 5.2(a)
and (b) that the damping of the internal seiche motion is increased as values of k;
and Np are increased. Although the results are not explicitly presented, the plot
of the interface displacements computed using a no-slip condition with Nz = 100

2

cm?s™1

was not significantly different from that computed with Nz = 100 ¢m?2s~1
and ky = 1.0 cm s™1. The most striking fact is that there is significant difference

in the rate of damping of the internal seiche motion between the one and two

140



One domain — k, =00 oms!
system 0.0

T
0. 10. 20, 30. 40, 50. 60 .
Time (hrs)

k, =00 cms™ N,
______ k, =01 cms™! N, 100 em? s
............ k, =10 cms? N, = 100 cm?s?!
k, =10 ems? N, = 1000 cm?® s

Two domain

system

(b)

(c) =
oy
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Figure 5.2 Time variation of interfacial displacements (at corner point B in
Figure 5.1) in two-layered one and two domain systems, obtained
using the profile in Figure 3.1(¢), computed using a basis set of B-
splines, with: Ar=40, Ap=60 m; p1=1025.8, p 5=1027.0 gem~3; Ny=300
em?s™1, with various values of k, and Np shown in the key; and (a), (b)

on a coarse grid with Az = 1425 m; (¢) on a finer grid with Az=475m.
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Figure 5.3 Time variation of interfacial displacements (at corner point B in
Figure 5.1) in a three-layered one and two domain systems, obtained
using the profile in Figure 3.1(d), computed using a basis set of B-
splines. A coarse grid with Az = 1425m was used with Np=300
em?s™!, with: Ap=25, Ap=15, Ag=60 m; p;=1025.8, p ,=1026.5, 1027.2
gem™3; Np=300, Ng=100 em?s~', various values of k¥, and Np shown
in the key.
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domain systems. The internal seiche motion in the two domain system is damped
much more slowly than in the one domain system. The time variation of the
one domain system computed using Ny = 100 cm?s™! and ky = 0.0 em s~ is in
fact comparable with that of the two domain system computed with Ny = 1000
em?s™1 and ky = 1.0 em s™!. Preliminary computations have revealed that with
Ny =100 em?s™! and ky = 0.2 cm s~ the interface (1,1 oscillates even at ¢ = 300
hrs with an amplitude of about 5.0 cm, whereas the interface (o1 remains at a
quasi-steady value after about ¢ = 80 hrs. We can note that with Ny = 1000
em?s~1 and ky = 1.0 cm s~1, the one domain system is heavily damped, almost
preventing the development of the internal seiche motion. Using a two-layered
two domain model, Heaps (1966) has predicted a critical value of the coefficient of
linear bottom friction (related to the mean-velocity at the bottom layer) beyond
which the development of an internal seiche motion is prevented. It is evident that
the critical value of the bottom frictional coefficient of the one domain system will
be significantly lower than that of the two domain system. We also note that in
a highly dissipative situation with Nz = 1000 cm?s™! and ky = 1.0 ecm s~ the
mean value of (o ; is significantly lowered, whereas the mean value of (; ; remains
unaffected. In the absence of the interfacial stress the steady state velocities in
the bottom layer (apart from the possible presence of the undamped mode) are

all zero and the gradients of the free surface and the interface are given by Heaps

(1984), namely

8@,0 — Tsz
e (5.3.1)
8<'i,1 - _ PT 8(1',0 —_ 1 Tsz (532)

Ox Pp—Pr Oz pB—pTgAT.
Integrating (5.3.1) and (5.3.2), satisfying the constraints of continuity of volume,

that iS, fOL Cl,O do, ZIOL CQ’O do, =0 gives

(10 = [Pr9A7]7 (22 — L)Tq, (5.3.3)
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CZ’O i [(pB - pT)gAT] _17-.93:(23'3 - L) (534)

Thus, in the two domain system the eddy viscosity in the bottom layer and the

coefficient of bottom friction do not influence the mean displacement of (; ;.

The presence of spatial truncation errors is apparent in the solutions for the
two domain system computed on a coarse grid system (Figure 5.2(b)). The effect
of numerical truncation is not noticeable in the one domain system because of
the strong damping. Increasing the spatial resolution by one third reproduces the

saw-tooth behaviour of (; 1 accurately.

In the case of the three-layered system, calculations have been performed on
the coarse grid system for both one and two domain systems using the eddy
viscosity profile shown in Figure 3.1(d). As in calculations for the two-layered
system, a basis set of B-spline functions was again used. Figure 5.3 shows the time
variations of the two interfacial displacements at corner point B (shown in Figure
5.1) computed with N fixed at 300 em?s™1, N at 100 cm?s~! and N, taking a
range of values, namely N, = 10, 50 and 150 em?s~!. For comparison purposes
the time variations of the two interfacial displacements computed with N, = 300,
Np =150, Ny = 1000 cm?s~! and kp = 1.0 cm s~ ! are also shown. It is evident
on comparing Figure 5.3 with Figure 5.2 that the time variation of the internal
seiche motion in the three-layered system is complicated compared with that of
the two-layered system. A scenario on the time-dependent circulation pattern has
been described in detail by Davies (1983a). In contrast to the two-layered system,
the time behaviour of the interfacial displacements in the one domain system is
very similar to that of the two domain system although a difference in the rate
of decay of the internal seiche motion is apparent. For the three-layered system,
the internal seiche motions in both the one and two domain systems are damped
in the absence of bottom friction. This point will be discussed in more detail

later. It is apparent that the mean displacement of the interfaces is sensitive to
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change in the value of N and, as the value of N, is decreased from 150 to 10
cm?s™!, the downward displacement of (i1 and the upward displacement of Gi,2
are both enhanced. We note that in contrast to the two-layered system the mean
displacements in both one and two domain systems computed with Ny = 1000

2

em?s™! and ky, = 1.0 ems™!

are comparable with each other.

To understand why the internal seiche motions of the one and two domain
systems decay at considerably different rates each other in two-layered conditions
(when Np is high), a series of calculations have been performed on a coarse grid
using a basis set of eigenfunctions, with an increasing number of m;. It is ap-
parent from Figure 5.4 that in the one domain system the contribution to the
internal seiche motion comes from the second mode .;1\0,2, whereas in the two do-
main system the contribution to the internal seiche motion comes from .;1\1,1 and
22,1. The contribution of the higher modes is mainly associated with the mean
displacement of the interfaces. In the one domain system the largest contribution
to the mean displacement of the interfaces comes from 20,3, which is concurrently
responsible for the return-flow within the pycnocline and for the smooth variation
of the current at the bottom layer (Davies, 1983a). Under conditions of strong
stratification (N, = 10 em?s™1), the modes up to r = 4 contribute significantly.
With Np = 150 cm?s™1, the fifth mode also significantly contributes to the mean
displacement. In the two domain system the mean displacement of interfaces
is attributable to the second mode ;1\1,2. Highly dissipative conditions such as
Np = 1000 cm?s™! and ky = 1.0 ems™!, the internal seiche motion does not
develop. In this case the vertical modes A\o,z and 21,1 directly contribute to the

mean displacements of ¢; 1, ¢ =0,1.

From these results it is evident that the damping of the internal seiche motion
in the one domain system is predominantly determined by the rate at which 21\0,2

decays. In the two domain system the time behaviour of the internal seiche motion
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Figure 5.4 Time variation of (at corner point B in Figure 5.1) of three-layered sys-

tems, obtained using the profile in Figure 3.1(d), computed with an in-
creasing number of m;. A coarse grid with Ar = 1425 m was used with:

Ap=25, Ap=15, Ap=60m; pp=1025.8, pp=1026.5, 1027.2 gem=2; Np=300
em?s~'; and (a) Np=10 ecm?s~!, k,=0.0 cm s~ ', the thick solid line denoting
calculation with Np=1000 cm?s~", k,=1.0 cms~! and mo=4; (b) as in (a)

but with Np=150 ecm?s~1; (c) as in (a) but with k,=0.0 cms~!, my=1, the
thick solid line denoting calculation with Ng=1000 cm?s~1, ky=1.0 cm s~ !
and m;=my=4; (d) as in (c¢) but with Np=150 cm2s 1,
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is represented by the first vertical modes ;1\1,1 and ;1\2,1. This explains why even
though each vertical mode experiences significantly greater internal damping in
the two domain system (due to the reduced depth), the internal seiche motion
decays more rapidly in the one domain system. In the absence of bottom friction
the difference in the rates of damping of the internal seiche motions between the
one and two domain systems is determined by the factor cvgAo 2/ H g (because the
eigenvalue of the two first vertical modes of the two domain system are both zero).
It is evident from Table 5.1 that for given values of the depth and layer thicknesses,
decreasing the value of N, significantly reduces the damping of the second mode.
Consequently, the internal seiche motion of the three-layered one domain system
decays significantly more slowly than in the two-layered one domain system. Note
that the internal seiche motion of the three-layered one domain system computed
with N, = 10 cm2s™! (shown in Figure 5.3(a)) is comparable with that of the
three-layered two domain system computed with Np = 50 ¢m?s~! (shown in

Figure 5.3(b)).

Table 5.1 Values of a;A;2/H 12 computed for various combinations

Nr= 300 em?2s™? 300 em?2s™? 300 cm?s—t 300 cm?s~ 1
Np= 10 cm?2s~ 1 50 cm?s™1 150 em?2s—? 300 cm?2s™ !

Np= 100 cm?2s~!
Ho=250m  0.126x10™°  0.155x10~% 0.159x10~°%  0.160x10~°
Ho=100m  0.294x1075  0.846x10™% 1.120x10™% 1.203x10~°

Np=1000 e
Ho=250m  0.241x107° 0.888x10™° 1.349x107% 1.475x107°
Ho=100m 0.333x107°% 1.500x107° 8.543x10™° 5.274x10~°

Np= 30 cm?s™?
Ho=250m  0.045x107°  0.048x107° 0.048x10™°  0.048x10~3
Ho=100m 0.212x107°  0.347x107° 0.377x10™% 0.384x107°

Spigel and Imberger (1980) have shown how to estimate an e-folding decay

147



time for the internal seiche motion in a two-layered system on the assumption
that the energy of the internal seiche motion is dissipated by the bottom friction.
We note that such an assumption is invalid for the one domain system whenever
the internal seiche motion is damped predominantly by the internal friction. It
appears that their semi-theoretical argument is suitable for explaining the decay
of the internal seiche motion in the two-layered two domain system in the presence

of bottom friction.

From Figure 5.5, it is apparent that the time variation of the layer-mean
velocities also exhibits oscillations of the internal seiche period particularly at the
surface and bottom layers, and that the influence of the change in N upon the
decay of the oscillations is similar to that of the interfacial displacements. In the
one domain system the damping of the oscillations in the surface and bottom layers
is significantly increased as the value of Np is increased, while in the two domain
system the damping of the oscillations is increased marginally. We note that the
oscillations at the surface layer and at the pycnocline each show a phase difference
of 180° with the oscillation at the bottom layer and with N, = 10 cm?s™!, the
time variation similar to that for a square-wave appears within the pycnocline.
The square wave-like variation of Up is due to the presence of a modulation,
with a period about three times larger than that of the internal seiche motion,
superimposed on the periodic internal seiche motion. Comparing Figure 5.5 with
Figures 5.3 and 5.4, we note that the period of the modulation is roughly the
same time that the interface takes to reach the equilibrium level. The decay of
the modulation is significantly slower in the two domain system compared with
that in the one domain system. The layer-mean velocities tend to converge to
zero as time goes by, which indicates the formation of a steady cell-like circulation
within each layer. In a steady state the flow field is composed of the wind driven
clockwise circulation in the surface layer, the anticlockwise circulation within the

pycnocline and the clockwise circulation in the bottom layer (Davies, 1983a).
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Figure 5.5 Time variation of Uy, Up and Up (at center point A in Figure 5.1) of
three-layered one and two domain systems, obtained using the profile
in Figure 3.1(d), computed using a basis set of B-splines. A coarse grid
with Ar = 1425 m was used with: Ap=25, Ap=15, Ag=60 m; p;=1025.8,
p p=1026.5, p p=1027.2 gecm™2; Np=300, Np=100 cm?s~! and k;=0.2 ¢m s~ 1.
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Without presenting detailed results, we briefly comment on the sensitivity of
the interfacial displacements and of the layer-mean velocity within the pycnocline
to changes in the value of Ny in the three-layered systems. Calculations (com-
puted using Np = 10 cm?s~! with the layer thickness and depth variation of the
density used in Figure 5.5) showed that increasing N, from 150 to 1000 cm?s™!
reduced the mean values of the downward displacement of (p1 and the upward
displacement of (o2 by approximately 50 cm in both one and two domain sys-
tems. The effect of changing N, upon the decay of the internal seiche motion is
relatively small unless the ratio of the surface layer thickness to total depth is sub-
stantially increased or the value of N is extremely large. Decreasing N initially
enhances the layer-mean velocity within the pycnocline. However, calculations
with Ny = 150 em?s~! showed that after the interface reaches its equilibrium
level the effect of changing N, upon the layer-mean velocities becomes insignifi-

cant.

Figure 5.6 shows the current profiles computed using a basis set of B-spline
functions at ¢t = 2.82, 8.28 and 19.56 hrs. At ¢ = 2.82 hrs the mean current velocity
at the surface layer is at its maximum in the direction of the wind stress. At
t = 8.28 hrs the mean current velocities at the pycnocline intensify to a maximum
in the direction opposite to the wind stress and this maximum occurs at t = 19.56
hrs for the mean current velocity at the surface layer (see Figure 5.5). It is
noticeable that at the pycnocline of the one domain system, a conspicuous return
flow of jet-like nature appears at ¢t = 8.28 hrs. In the two domain system the return
flow does not show a jet-like behaviour because it is not frictionally retarded at
the base of the pycnocline. It has been revealed in a series of computations that
the layer-mean velocities within the pycnocline are comparatively insensitive to
the value of N, although current profiles show much more sensitivity to changes

in the value of N, (compare Figure 5.6(c) and (d)).

150



(a)

-4.0

(c)

One domain system (i=0) (b) Two domain system (i=12)
U, (cm s-1) U;, (cm s
-2.0 0.0 2.0 4.0 6.0 -4.0 -2.0 0.0 2.0 4.0 6.0

One domain system (i=0) (d)  One domain system (i=0)
U‘.’ (ems) Ui,r (ems)
-2.0 0.0 2.0 4.0 6.0 8.0 10.0
i

ettt ==

o -
. -
-
-
-

o=
4
L 1 L
L) I
~
\
\

12.0 -4.0 -2.0 0.0 2.0 4.0
i ¥ i

3 I
L e | 1

-

cmm= 1=2.82 hrs
-+ —— 1 =828 hrs
— t=1956 hrs

-

Figure 5.6 Vertical profiles at t=2.82, 8.28 and 19.56 krs (at centre point A in Figure

5.1) of three-layered one and two domain systems, obtained using the
profile in Figure 3.1(d), computed using a basis set of B-splines. A
coarse grid with Arx = 1425m, is used with A;=25, Ap=15, Ag=60m;
pp=1025.8, p p=1026.5, p 5=1027.2 gem™~3; and (a) Np=300, N p=50, N =100
cm?s™! with me=18; (b), Np=300, Np=50, Np=100 cm?s~' with m;=15
and m,=6; (¢) Np=150, Np=10, Np=100 cm?s~! with mo=18; (d) Nr=1000,
Np=10, Ng=100 cm2s~!, with mo=18.

The current profiles shown in Figure 5.7 are computed using a basis set of

eigenfunctions with m; = 5 and 20. It is evident that nonphysical oscillations

appear in the two domain system when a small number of eigenfunctions is used.

In contrast to the two domain system, solutions of the one domain system do not

exhibit oscillations even with mo = 5. With a small number of eigenfunctions, the

compatibility between the form of the first few eigenfunctions and the current pro-

files within the pycnocline, rather than the discontinuity of the eigenfunctions, is

critical in determining whether Gibbs phenomena arise. With a value of 3;; = 0,
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Figure 5.7 Vertical profiles at t=2.82, 8.28 and 19.56 hrs (at centre point A in Figure
5.1) of three-layered one and two domain systems, obtained using the
profile in Figure 3.1(d), computed using a basis set of eigenfunctions.
A coarse grid with Az = 1425 m, is used with: A;=25, Ap=15, Ag=60m;
pr=1025.8, p p=1026.5; p5=1027.2 gcm™3; Np=100 cm?s~'; ky=0.0 cms™";

y
and (a) Np=300, Np=10 em?s~! with m¢=5; (b)) Np=300, Np=50 cm2s~!
with mi=5 and my=1; (¢) as in (a) but with m¢=20; (d) as in (») but with

m1=20.

as noted in Chapter 4, the surface current is significantly underestimated. How-
ever, a set of preliminary calculations have revealed that the layer-mean velocities
were reproduced accurately. Furthermore, the presence of Gibbs overshoots was
not a serious problem as far as the accuracy of the layer-mean velocities is con-
cerned. In the current profile computed using a basis set of B-spline functions
(Figure 5.6), there was no evidence of spurious oscillations unless the number of

B-splines is dramatically reduced and the knots of B-spline functions are poorly-
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distributed.

We now consider the time variations of the first few vertical modes at the
centre point B shown in Figure 5.1. A series of calculations were performed on a
coarse grid system with ky = 0.0 and 1.0 em s™1. The eddy viscosity at the surface
layer N, was fixed at 300 cm?s™!, and N at 100 cm?s™!, while N, took two

values, namely 150 and 10 cm2s™1.

It is evident that reducing N, complicates
the time variations of the first few vertical modes particularly in the two domain
system. Preliminary computations showed that the time variation of the modal
coeflicients in the two-layered one domain system (N, = 300, N = 100 cm?s~!
with Ar = 40, Ay = 60 m) was not much different from Figure 5.8(a). The time
behaviour of the modal coefficients in the two-layered two domain system was very

similar to that in open sea regions described in Chapter 4.

From Figure 5.8 we note that decreasing the value of N greatly increases the
contribution of the vertical modes 20,3, 21\0,4 in the one domain system, and 21\1,2,
21,3 in the two domain system, which are associated with the growth of the return
flow (compare these figures with Figure 5.5). This point has also been noted by
Davies (1983a). It is again evident that the internal seiche motion with a period of
approximately 12 hrs is primarily associated with .21\0,2 in the one domain system
and with ;1\1,1 and ,21\2,1 in the two domain system. One would imagine that the
time behaviour of the first two vertical modes in the two domain system (;1\1,1 and
22,1) is similar, as a whole, to that of the second mode in the one domain system.
Furthermore, the time variations of 21,2 and 21,3 resemble those of ;1\0,3 and 20,4,
respectively. We note that 20,5 and ;1\0,6 are significantly affected by the bottom
friction. For the two domain system the effect of the bottom friction is gradually
reduced as the mode number is increased. Although results are not plotted here,
the first vertical modes 22,1 and 21,1 were 180° out of phase with each other and

the magnitude of ;1\2,1 was approximately equal to —(H; /Hg);l\l,l. In the bottom

153



(cms™)
~
A
One domain
system
”»
A
(a)
~
Aoggq
~
A
r T T T T T 1
0. 10. 20. 30. 40 . 50. 60,
Time (hrs)
(ems?) 1.0
~ -
Apz 0.0 £ 5 S P o N .
~ -~ >
One domain -1.0
system
(b)
T T T T T T 1
0. 10. 20. 30. 40 . 50. 60,
Time (hrs)

Figure 5.8 Time variations of the various vertical modes (at centre point A in
Figure 5.1) induced by a step-function wind stress. A coarse grid
with Az=1425m was used with: Ar=25, Ap=15, A=60m; p,=1025.8,
pp=1026.5, p y=1027.2 gem™%; Bg 1 = Bg,2 =0; Nr =300, Np =100 cm?s™?;
and (a),(¢) Np =150 cm?s™1; (b),(d) Np =10 em?s~1.
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layer of the two domain system the imposition of zero bottom friction excites the
first vertical mode only, producing the uniform profile throughout the domain (see
Figure 5.7). In the upper domain all vertical modes are excited, thereby producing

the depth variation of the current.

In the following, the excitation of the free modes is analysed for a two-layer
two domain system. Assuming that the water, initially at rest, is subjected to a

wind stress of the form
nwT

Tor = H(t)T,sin (T) (5.3.5)

then the corresponding expressions for the free surface, the interface and the U
component of the current satisfying the lateral boundary condition (5.2.3), may

be written as

nre nTT
C1,0 = Z1,0 cos (T)’ 2,0 = Za,0 COS (T)’ (5.3.6)
Ui = fjl,l Sin(nLﬂ), Usp = [72,1 sin (nLﬂ) (5.3.7)

A linear slip condition of the following form is enforced at oy = 1:

_Qally, 0U3,1
H, 30'2

= kU 5, (5.3.8)
where the coefficient k; is in general different from k.

Substituting (5.3.5) to (5.3.7) into (5.1.1) to (5.1.4) yields

oU; 1 nmg Q1phy 1 820 4

—= = —2Z10+ . -, 9.3.9
ot L H?  90? (5:3.9)
H [ dZ dZ

= / O11doy + =22 — =22 —, (5.3.10)

0
80 1 nrg P11 nmg P11 Qaflyy 820, 4
1 _ Lz o+ 259 1——’)Z + : 1 (5.3.11
ot L py, YL ( P2, 0 H} 003 ( )
n7rH2 1 - ng 0
d — = (. .3.

T /0 U2’1 09 + p7 0 (5 3 12)
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Expanding fj\',-,l in terms of the coefficients Zi,l(t) and the eigenfunctions

fir(04) gives

Ui(oit) =Y Ai ()i f; (00), (5.3.13)
r=1

where the coeflicients A\i,r, t = 1,2, are to be determined. With the use of homo-

geneous limit conditions the spectral formulation of (5.3.9) to (5.3.12) becomes

o~

dA,r nmg Th oy ~
= —Z100 — A r—=54 3.14
7 7 410010 + porth 1,kH12 1,k (5.3.14)
nrHy, ~ dZyo dZyo
T A1,1 + 7t - o 0, (5315)
where k =1,---,m;, and
dz:l\z k Ao ~ ol W
0 = M p—=Aor — kA
7t 2,k B2 2,k bAz2,1
nrg P11 nmg P11
+ ——(=)Z10 G20k + — (1 — ==)Z200Q20%, (5.3.16)
L "p,, L 2,1
n7rH2 ~ de,o _
T A2,1 + @ 0, (5317)
where k = 1, .-+, ma. The presence of internal friction ensures the damping of the

higher vertical modes in both the upper and lower domains, hence we consider
the first vertical mode only. The linear system described by equations (5.3.14) to

(5.3.17) admits the matrix representation

W* =T'W 4 F, (5.3.18)
where
0 0 _Hl’l’i_ﬂ' _HZTE_ﬂ'
0 0 0  —m,BE
r=| oz 5 i 0 , (5.3.19)
Pii1nm ( _ b 1)M 7
Ipo. L 9 1 P21/ L g —ky



(d_fi%\ (Z1,o\ ( 0 \

d
- Zf 0 . 22’0 0
we=| 2| W= , F= . (5.3.20)
Atl’l A1 Tn(P11H1,1) ™
daz, \22 » \ 0 )
KT/ ’

As seen in Chapter 4, the excitation of the undamped free modes will depend
upon the nature of the eigenvalues of I'. If the real parts of eigenvalues are all

positive, then all of the excited modes will converge to steady state values.

The eigenvalues € are found from the characteristic equation, det(T' — eI) = 0.

Considering the case l~cb = 0; the characteristic equation is

det(T — €I)
2.2 i
4, g 2 2 Pri\n'm
= H H = Tl
€ + 12 (Hi+ Hy)e + ¢ 1H2(1 Pz,l) T3
= (e + x1)(e* +,3) =0 (5.3.21)
where
kp 1 fay S P11
= -\ H, + H,) + [(Hy + H,)? —4H,H,(1 — “LLy1/28 (53,
k2 } 2(L)g{( 1+ Hs) £ [(H1 + Ha) 1Hy( pm)] } (5.3.22)

The presence of the undamped motion is then obvious. Note that these solutions
are equivalent to simple poles when the Laplace transform is applied (Heaps, 1966,
p.51). Since (1—p, ,/p,,) is very small, it follows that, to a first approximation,

2L

n

2L [gp2,1 — P11 HiH,

—-1/2 53
, (5.3.23
n p2,1 .Hl +H2] ( )

Ty [Q(H1 + Hz)]_lﬂ, T, =

which are the periods of the surface and internal seiches, respectively, driven by
Tn (Heaps, 1966). The eigenvalues of the characteristic modes for a non-zero value

of ky can be found from Heaps (1966).

158



The one domain system can be analysed in a similar way. For simplicity,
consider the homogeneous system with ky = 0. Again spectral solutions of the

system admits the matrix representation

W*=TW +F, (5.3.24)
where
0 —HLBT
T = ( o N ) , (5.3.25)
91 0
and
dZQ‘] Zoa 0
W* = d;{‘ , W= , F= . (5.3.26)
7?*1 A0, Tn(Po,1Ho,1) ™

Since the characteristic values are purely imaginary, namely
€0 = tu(gHy)'/? (T;—W), (5.3.27)
the first vertical mode is undamped.

The analysis of the three-layer system is much more complicated and is not
described here. However, we note that the presence of the undamped mode de-
pends upon whether or not the first vertical mode is coupled with the higher modes
through the equation of continuity. If they are coupled, then the internal friction
for the higher modes damps the first vertical mode. In general, the contribution
of the higher vertical modes in the equation of continuity is comparatively small,
that is, Ia170”'| <<|a1,0,1| for all »r > 1. Therefore the first two vertical modes
(A\l,l and 22,1) exhibit weakly-decaying oscillations. For similar reasons the first
vertical mode of the three-layered one domain system is damped in the absence of

bottom friction.

To conclude this chapter and, at the same time, to present the results of a final

set of numerical experiments in this thesis, the influence of the changes in density
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upon the interfacial displacements in the three-layered system is considered. In
layered models the continuous depth variation of the density field is represented
by a stack of discrete homogeneous layers. It is well-known that such an approx-
imation can produce considerable errors in determining interfacial displacements
(up to 10 % according to Davies (1982b)) unless a large number of layers is used.
Due to this shortcoming, layered models have to be calibrated in real applications,

by modifying the density and/or the thickness of the layers.

Figure 5.9 shows how sensitive the damping of the interfacial displacements
is to the variation in density. In the calculations of the two-layered systems, Pi1
is taken as 1025.8, 1026.1 and 1026.3 g em ™2, and p, , is fixed at 1027.0 g cm ™3,
whereas in the calculations for the three-layered systems, p ;2 1s taken as 1026.3,
1026.5 and 1026.7 gcm™2, while p,; and p,; are fixed at 1025.8 and 1027.2
gem ™3, respectively. It is evident that the phase and amplitude of the internal
seiche motion are significantly affected by the changes in density. Given the two-
layered system (Figures 5.9(a) and (b)), we note that increasing p, , from 1025.8
to 1026.3 gcm ™2 (and so reducing the difference in density between the upper
and lower layers) gives rise to an increase in the wavelength and the amplitude of
the internal seiche motion. The mean values of the interfacial displacements are
also affected in both systems but in different ways: for the one domain system
the peaks of the maxima and minima are displaced downwards, whereas for the
two domain system the peaks of the minima are displaced downwards while the
peaks of the maxima remain almost at the same level. Calculations using the
three-layered system also exhibit changes in the wavelength and amplitude of
the internal seiche motion. With the change of P2 in the three-layered system,
changes in the mean value of (; 1 were particularly significant. The principle effect
of decreasing p, , from 1.0267 to 1.0263 g em™? (and hence reducing the difference
in the density between the surface layer and the pycnocline) is the increase of the

downward displacement of the mean value of (; ;. With N, = 10 em?s™1 the
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Figure 5.9 Time variation of interfacial displacements (at corner point B in Figure

5.1) of three-layered one and two domain systems computed using a
basis set of B-splines. Computed om a finer grid with Az=475m, with:
ky=0.2 cms~!, and (a) (b)) Ar=40, Ag=60m; Ny =300, Ny =100 cm?s~1;
pr=1025.8, p;=1026.1, p=1026.3 and p 5=1027.0 gem ™3 with the profile in
Figure 3.1(c). Computed on a coarse grid with Az=1425m, with k,=0.2
ems™t; () Ap=25, Ap=15, Ag=60m; Ny =300, Np =10, Ng =100 cm?Zs™!;
pr=1025.8, p 5=1027.2 and p p=1026.3, 1026.5, 1026.7 g cm~2 with the profile
Figure 3.1(d); (d) as in (c) but with Np =150; (e) as in (c).
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lower surface of the pycnocline was significantly less affected in both one and
two domain systems. However, as the value of N, is increased to 150 cm?2s™!
the effect of the density variations upon the mean displacement of (3 o becomes
apparent (Figure 5.9(d)). The effects of density variations upon the interfacial
displacements of the three-layered two domain system are quite similar to those
of the one domain system but as the value of p, , is reduced, a modulation seems

to appear in the time variation of (1 ; (Figure 5.9(d)).

In calculations using a Galerkin model accounting for a continuously stratified
sea, Davies (1982b) showed that the jet-like return flow within the pycnocline
is developed primarily due to the reduction of the eddy viscosity there. The
sensitivity of the layered model to the depth variation of the density leads to a
slightly different interpretation. Figure 5.10 indicates that in layered models the
intensity of the return flow can be significantly enhanced by the density variation
particularly when the value of N is low (Figure 5.10(a)). As the value of Nj is
increased from 10 to 150 cm?s™!, the intensity of the return flow is substantially
reduced (Figure 5.10(d)). Although results are not plotted here, the use of a stress-
free condition at the base of the pycnocline further enhances the transport through
the return flow. However, as seen in Figure 5.6 the return flow in the two domain
system does not take a jet-like form. Calculations also show that as the return
flow within the pycnocline intensifies the oscillations of the current at the surface
layer are enhanced, whilst the magnitude of the layer-mean velocity in the bottom

layer is not affected much by the change in p .
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Figure 5.10 Time variation of Up (at centre point A in

Figure 5.1) and verti-
cal variations of current at ¢=8.28 hrs (at corner point B in Figure
5.1) in a three-layered one domain system (with the profile in Fig-
ure 3.1(d)) computed using a basis set of B-splines. A coarse grid
with Ax = 1425 m was used with: A7;=25, Ap=15, Ag=60m; Np=300,
Np=100 cm?s™'; k;=0.2 cms™'; p;=1025.8, p 5=1027.2 gem™3; and (a)
Np=10 cm?s™! and pp=1026.3, 1026.5, 1026.7 gcm™3; (b) as in (a) but
with Np=150 em?s~1; (c) as (a) but with Np=10 em2s~! and p p=1026.3,

1026.7 g cm ™3,
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CHAPTER 6

CONCLUSION

A series of calculations for idealised situations involving wind induced flows
in stably stratified waters has been performed to obtain an understanding of the
vertical structures of these flows. The models used were layered and included a
Galerkin-finite element model with a basis set of B-spline functions and a Galerkin-
spectral model with a basis set of numerically determined eigenfunctions. It was
found that the Galerkin-finite element model accurately portrays the vertical struc-
ture of wind-induced motion in stably stratified flows, while the Galerkin-spectral
model efficiently portrays the physics of the motion. Interactive use of these two
methods will be of great use in improving insight into stratified flows when a well-
formed layered system can be assumed and the vertical structure of eddy viscosity

1s time-invariant.

The models can cope with arbitrary variation of the vertical eddy viscosity
within each layer and, in theory, the vertical eddy viscosity profile with any form
of discontinuities can be prescribed at any level of the water column. Obviously,
increased flexibilty of the model in incorporating local variation of eddy viscos-
ity has advantages over analytical approaches such as in Heaps and Jones (1983,
1985). The model can allow for the effects of a wall boundary layer near the sea
surface, smooth variation of eddy viscosity across the interfaces and the bound-
ary layer near the sea bed. Furthermore, a calibration of the numerical model,
which involves changing the eddy viscosity and thickness of the surface layer and

the pycnocline, can be done in a flexible manner. Such calibration is inevitable
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in practice, due to the uncertainty in choosing input parameters and dividing a

hydrodynamic system into a finite number of homogeneous layers.

Attention was directed at comparing two interfacial conditions, the first be-
ing the continuity of horizontal current and shear stresses, and the second being
the stress-free condition imposed tentatively at the base of the pycnocline which
retards the downward penetration of wind energy. The assumption of a stress-
free condition at the base of the pycnocline diversifies the dynamic response of
wind-induced flows and through a series of experiments their use was found to be
very encouraging in strongly stratified cases. The upper domain is driven by wind
shear and body forces and the lower domain is essentially driven by body forces,
although in a bounded region the two domains are coupled through the kinematic
constraint of the velocity field. For realisation of the full potential of the stress-free
interface condition, a set of numerical experiments is needed in two-dimensional
basins in which the water body experiences rotational effects and lateral bound-
ary constraints. In an open sea region a nondissipative free mode is excited in the
absence of the bottom friction. In a stratified lake of finite length the excitation
of a nondissipative free mode depends upon whether the nondissipative mode is
coupled with the higher modes or not. The imposition of a stress-free bottom
boundary condition in a two-layered two domain system excites the free mode.
With the basis set of eigenfunctions, we have identified that contribution to the
internal seiche motion in a stratified channel predominantly comes from the sec-
ond vertical mode. In the two domain system the two first vertical modes act as

a whole like the second mode of the one domain system.

The rate of convergence of the spectral method depends upon whether non-
physical oscillations arise as a consequence of the Gibbs phenomenon. It is known
that classical continuous functions such as trigonometric functions, Chebyshev and

Legendre polynomials, are all susceptible to internal discontinuity (Gottlieb and
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Orszag, 1977). However, the cause of nonphysical oscillations is slightly differ-
ent here because the eigenfunctions are discontinuously defined through a modal
matching technique. We note that the presence of high-level background turbu-
lence activity of tidal origin at the bottom layer is helpful in suppressing the Gibbs
phenomenon. The compatibility of external boundary conditions and limit condi-
tions for basis functions is also of importance in determining whether oscillations
will be produced. The basis set of B-spline functions was accurate in reproducing
surface currents and the high shear of the current within the pycnocline. By con-
centrating knots across the interfaces and high shear regions the rapid variation
of the current profiles was accurately reproduced without any spurious numerical

oscillations.

A two-layered model has been proposed for the study of the local generation
of inertial motion driven by a local wind stress. As a major feature, the model
incorporates the downward flux of wind energy through the base of the pycnocline
and horizontal dissipation. The inertial motion in the surface layer can be modelled
and calibrated in a realistic manner, taking into account local information available
on stratification. The pycnocline acts as an energy absorber in controlling the
damping of inertial motion along with the coefficients of horizontal dissipation
and bottom friction. Results obtained in the study, such as the sensitivity of wind
induced motion to changing the values of eddy viscosity, particularly within the
pycnocline, the pycnocline thickness and the coefficients of interfacial friction, will

serve as a valuable basis for realistic applications in the future.

Follow-up research will include modeling wind induced flows in two-dimensional
horizontal or vertical planes in the presence of lateral boundaries and/or with
non-uniform bottom topography. To solve fully three-dimensional equations a
time-splitting and/or space-splitting technique (Heaps and Jones, 1983) may be

required to reduce computational effort. Application to Bass Strait, as an ex-
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tension of the previous studies based on depth-integrated homogeneous models
(Fandry, 1982) and a three-dimensional finite difference model (Arnold and Noye,
1986), is particularly envisaged for the study of wind circulation during the pe-
riod of summer stratification. Finally, the methodology used in this thesis can be

applied to a wide range of problems including thermal exchanges between the soil

and atmosphere and groundwater flows.
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APPENDIX 1

Some basic properties of the multilayered self-adjoint eigenvalue problem given
in Chapter 3 are presented. Let A;, and A;; be two distinct eigenvalues deter-
mined from (3.2.1) to (3.2.4) and let f; ; . and f, ; ; be the corresponding solutions

in Q; ;. Without loss of generality, ¢ = 0 is assumed. Thus, for Qg ;

d dfo,,r

dTo( % 4o, )+ Ao, fo,5r =0, (A.1.1)
d dfo,;.k
c_ia_o('u"’f doy )+ Ao,k fo,5k =0, (A.1.2)

where j = 1,---,mp. Taking the scalar products defined by (2.5.4) of (A.1.1) and

(A.1.2) with fq ; &, fo,j,r respectively, and subtracting the two resultant equations

gives
Po,; €o,j
()\0 i AO k)z p;)i L . fO,j,r fo,j,k dUO
Poj [ [& d dfo,jr d dfo i
— Z pO 1 { /Eo,j_l .fO,j,k do-o (MO,j do-o ) fO,j,'rdo.O (,uo,] do_o ) dO‘O A

(A.1.3)

Substituting conditions (3.2. 2) and (3.2.3) into the right-hand side of (A.1.3) yields
p
()\01‘ )\0 k)Z O,J A f()’], fO,JkdOO
0,j—-1

= ﬂO,l(fo,l,r(O).fo,l,k(O) - fO,l,k(O)fO,l,r(O))
+ Bo,2(fo,5,+(1)f0,5,6(1) = fo,5,6(1) fo,5,-(1)) = 0. (A.1.4)

Since Ag,r # Aok, it follows that the eigenfunctions are orthogonal with respect

to

pO,]

foirf doy = 0. A.15
p01 Lo; 1 Opor 100k ’ ( )
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It can be readily shown that all eigenvalues are real. Suppose the eigenvalue is

complex, say A = A® + .\ where )\SI) # 0. Then, for Qy ;,

(r)
d f 0,j,r (R) #(R) (1) ¢(1)
E(“W do )+ XU - A 55D, =, (A.1.6)
d d.fOI,j,T (R) p(1) (1) p(r)
E(uo’j doy ) +)\0 fo;j"‘+)\ fOJ’I‘ =0, (A17)

where j = 1,---,mg. Taking the scalar product (2.5.4), with fgl’}’r in (A.1.6) and

with fglfj),r in (A.1.7), and then subtracting the two resultant equations yields

Jo o,j
p ,. )
A0y Lo [ [0+ (14, ao

=1 Po1

zzz /::,1 _ Si?,rfla—o(ﬂo,j%i) Sﬁ,rdi ("\‘0,1‘ dd:()})’r)]da& 9

Integrating by parts, and using:
(uo,j ) di)”) =BoafS¥,, at 0o=0, (A.1.9)
(uo,,- dﬁ’;i ) Bonf) ., at g0 =0, (A.1.10)
0,j d((ji r) Bo 2f¢()R;,m at 0¢=1, (A.1.11)
g ﬁ’;% ) BosfSh ., at oo=1, (A.1.12)

we have

Al Z [( FSONE+ (£ )2 |do = 0. (A.1.13)

However, this is impossible and so it follows that )\gl) = 0 and the eigenvalues are

real.
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For Bp1 > 0 and By < 0 the system has only non-negative eigenvalues

Taking the scalar product (2.5.4) of (3.2.1) with f, ; , yields

Jo
poJ €o,; d dfojr pOj/ g
4 ) 3 d — y
p01 /o_, lfO,J,rdo. (MO,J do, ) To )\oz - 1f0’]’ ,d0g,

=1 Poa

(A.1.14)

where r =1,---,mg.

By integrating the left hand side of (A.1.14) by parts and by using the limit
conditions in (3.2.2) and (3.2.3), we have

pO,J fo. d dfojr
pOl LOJ 1f0,1’rd0- (No’j dUO )dao

Jo . o, d ) 9
= (B0a a0 = Boa o ) = Y 20 [ s (Sdr o,

=1 Pos ol (A.1.15)
Then, it follows with £y,1 > 0, Bo,2 < 0 that
J EO ) d df X
: 40, <
; ~/0,j—1 foy]:rdo'o (“0;] do-o )do-o - 0': (A-1.16)
and hence from (A.1.14)
. 80,5
—Xo Z Pos / fg,j,r doo <0, (A.1.17)
j= pO 1 50,1’—1

which implies that Ao > 0.

181



APPENDIX II

An eigenequation in a three-layered one domain system is presented for the

piecewise constant eddy viscosity profile given as

Hoq = Hor, 0< 00 <éo,1,
Hoz = Hp 0,1 <00 < o2,

Moz =Hp Eo2<00<1.

With §y1 =0, Bo,2 = 0o, the eigenequation takes the form

cos{wgo,1} cos{O@1w(o,1 — £o,2)} cos{@2w(1 — £o,2)}

+ R sin{wéo,1} sin{@1w(€o,1 — &o,2)} sin{@2w(1 — & 2)}

+R3 ! cos{wéo,1}sin{@1w(€o,1 — £0,2)} sin{@2w(1 — £o,2)}
—(R1R2) "' sin{wéo,1} cos{@1w(€o,1 — &o,2)} sin{@2w (1l — & 2)} =0,

where

01 = (/)"

O3 = (/1)1

Ry =(po/p)(hr/h2)01=(Ps/Pr)OT",
Ro=(pp/pp)Bu/ltp)(02/01) = (py/p,)02/01)7",
Pr="Po1s Pr=~Poz Ps="Pos

The eigenvalues are given by

)\0 = wzlLLT.
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APPENDIX III

Figures A.3(a) — (g9) Vertical variations the first five vertical modes
computed numerically using various eddy vis-

cosity profiles

Tables A.3(a) — (¢) Values of a; jr, f; (1), @i, Ai,r and @; ;. com-

puted using various eddy viscosity profiles
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Figure A.3(a) Vertical variations of the first five vertical modes of the one domain
system, obtained using the profile in Figure 3.1(d), with: Az=25, Ap=10,
Ap=215m; p,=1025.8, pp=1026.5, p p=1027.2 gcm™3; Bo,1= Bo,2=0; and
(e) Np =1000, Np=10, Np=100 cm?s™'; () Ny =1000, Np=50, Np=100;
(¢) Ny =1000, Np=150, Ng=100 cm?s~'; (d) Ny =1000, Np=10, Ng=1000
em?s~1'; (e) Ny =150, Np=10, Np=1000 cm?s™!.
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Figure A.3(b) Vertical variations of the first five vertical modes of the one domain

system, obtained using the profile in Figure 3.1(d), with: Apr=25, Ap=40,
Ap=185m; p,=1025.8, p p=1026.5, p p=1027.2 gem™3; Bo,1= Po,2=0; and
(a) Ny =1000, Np=10, Np=100 cm?s~'; (b) Ny =1000, Np=50, Ng=100;
(¢) Ny =1000, Np=150, Ng=100 cm?s~'; (d) Ny =1000, Np=10, N5=1000
cm?s71; (¢) Ny =150, Np=10, Ng=1000 cm3s~1,
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Figure A.3(c) Vertical variations of the first five vertical modes of the one domain
system, obtained using the profile in Figure 3.1(d), with: A;=60m;
pp=1025.8, pp=1026.5, p p=1027.2 gecm™>; fg 1= fp,2=0; Np=10, Np=100
cm®s~'; and (e) Ap=10, Ap=180m; Ny =1000 cm?s~'; (b) Ap=10, Ap=180 m;
Ny =150 em?s™1; (¢) Ap=40, Ag=150m; Ny =1000 cm2s™1,
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Figure A.3(d) Vertical variations of the first five vertical modes of the two domain
system, obtained using the profile in Figure 3.1(d), with: p,=1025.8,
p p=1026.5, pp=1027.2 gem™3; By 1= P 2=0; Np=10, Np=100 cm?s~!;
and (a) Ap=25, Ap=10, Ap=215m; Nr =1000 ecm?s~*; By 1= B2 3=00; (b)
Ap=25, Ap=10, Ap=215m; Np =150 cm?s™%; f1 1= f3 2=0; (c) Ar=60,
Ap=10, Ap=180m; Ng =1000 cm?®s™%; 1 1= B3 g=c0; (d) Ap=60, Ap=40,
Ap=150m; Ny =1000 cm®s™1; By 1= B 2=0.
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Vertical variations of the first five vertical modes of the two domain
system, obtained using the profile in Figure 3.1(d), with: A;=25, Ap=40
Ap=185m; p=1025.8, p p=1026.5, p ,=1027.2 gecm™3; Np=100 cm2s~'; and
(a) Np=1000, Np =10 cm?s~'; By 1= f2 2=0; (b) as in (a) but with Np

=150 ecm2s™!; (c) as in (a) but with Np =50 em?s~'; (d) Np=150, Np =10

2

em?s™1; B1,1=0, B3 9=00.
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Figure A.3(f) Vertical variations of the first five vertical modes in the two-layered

one and two domain systems, obtained using the profiles in Figure

3.1(c), with: Ay=40, Ap=60m; p,,=1025.8, p g=1027.0 gem™%; Np=300,
Ng=100 cm?s™1;

and (a) agBo,1=—0.125 cm?s™ !, Bg 2=c0; (b) x(Bo,1=0.125
em?®s™1, Bo,2=00; (¢) Bo,1= Bo,2=0; (d) f1,1 =P2,2=0; (&) 1B1,1=—0.125

2 13 ﬂ2,2 =00,

cms”
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Figure A.3(g) Vertical variations of the first five vertical modes in the one domain

system, obtained using the profile in Figure 3.1(d), with: A;=25, Ap=15,
Ap=60m; pp=1025.8, pp=1026.5, p;=1027.2 gem™2; Np=300, Nyz=100
em?s™1; and (a) Np=50 cm?s™'; agfo,1=—0.125 cm?s~1, Bo,2=00; (b) as in

(a) but with agfB¢,1=0.125 ecm?s~1; (c) as in (a) but with Np=10 ecm?2s~1,
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Table A.3(a) Values of a; ;,r, fiv(D), @i, Air and ®@; ;- of the first six vertical modes
computed using various eddy viscosity profiles

Ap =25,8p = 10,485 = 2156m, oo = 192.0, aopt . = 1000, ao it , = 150, ot , = 100 em?s~1

r Qo,0,r Qo1,r Ao,2,r fO,r(l) aO/\O,r /\O,r (I>0,r
1 1.00000 0.90000 0.86000 1.000 0.000 0.000 0.998
2 0.00016 —0.09967 —0.13887 —1.058 0.099 5.189 1.806
3 0.00016 —0.09916 —0.13592 1.215 0.407 21.213 1.406
4 0.00015 —0.09828 —0.13090 —1.432 0.939 48.935 1.037
5 0.00015 —0.09702 —0.12385 1.668 1.708 88.979 0.776
6 0.00014 —0.09538 —0.11492 —1.897 2.719 141.643 0.606

ar = 25,85 = 10,45 = 215m, g = 188.0, atoft, = 1000, ceoft ,, = 50, o pt , = 100 cm2s~?

r Qo,0,r Qo,1,r Qo,2,r for(1) QpAo,r Ao,r @ »
1 1.00000 0.90000 0.86000 1.000 0.000 0.000 0.998
2 0.00016 —0.09967 —0.13771 —0.999 0.098 5.224 1.984
3 0.00015 —0.09919 —-0.13153 1.027 0.388 20.655 1.855
4 0.00015 —0.09841 —0.12164 —1.146 0.867 46.126 1.497
5 0.00014 —0.09729 —0.10820 1.405 1.549 82.410 1.023
6 0.00012 —0.09582 —0.09139 —1.800 2.459 130.818 0.644

Ar =25,ap = 10,45 = 215m, arp = 186.4, aropt,, = 1000, cto i, = 10, atoft , = 100 em?s~1

r @0,0,r o1, Qo,2,r Jo,r(1) QoAo,r Ao,r @
1 1.00000 0.90000 0.86000 1.000 0.000 0.000 0.998
2 0.00015 —0.09969 —0.13168 —0.703 0.088 4.725 3.329
3 0.00014 —0.09941 —0.11609 0.623 0.263 14.119 3.461
4 0.00012 —0.09886 —0.08752 —1.643 0.609 32.675 0.740
5 0.00009 —0.09785 —0.04267 3.275 1.238 66.436 0.203
6 0.00006 —0.09643 0.00681 —4.533 2.127 114.145 0.107

Ar =25,4p = 10,45 = 215m, g = 101.4, oot = 150, oot , = 10, ot , = 100 em?s~1

r Qo,0,r Qao,1,r ao,2,r Jor(1) Qo Ao,r Ao,r D,
1 1.00000 0.90000 0.86000 1.000 0.000 0.000 0.998
2 0.00015 —0.09887 —0.12998 —0.684 0.087 8.636 3.474
3 0.00014 -0.09700 —0.11181 0.602 0.258 25.497 3.677
4 0.00011 —0.09330 —0.07914 —1.581 0.603 59.545 0.803
5 0.00008 —0.08677 —0.03192 2.920 1.232 121.519 0.255
6 0.00004 —0.07803 0.01271 —-3.569 2.117 208.830 0.172

Ar =25,Ap = 10,85 = 216m, g = 875.4, oot = 150, aopt , = 10, o pt , = 1000 em?s~1

r Qp,0,r o1, aoz2r  fo,(1) QoAo,r Ao,r Dy,
1 1.00000 0.90000 0.86000 1.000 0.000 0.000 0.998
2 0.00014 —0.09738 —0.11540 —-0.179 0.223 2.555 8.103
3 0.00007 —0.08549 —0.02409 3.077 1.359 15.525 0.230
4 0.00000 —0.05424 0.05176 —-1.221 4.841 55.305 1.023
b 0.00000 —0.04310 0.04278 0.642 6.328 72.298 2.148
6 0.00001 —0.01119 —0.00431 —1.475 11.928 136.266 0.965
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Table A.3(b) Values of Aijr, fi,,,(l), a;, Ay and ®; . of the first six vertical modes
computed using various eddy viscosity profiles

Ar =25,Ap = 40,85 = 185m, ap = 198.0, vt . = 1000, ot . = 150, atopt , = 100 em?s~!

r Qo0,r Qo,1,r Qo 2,r Jor(1) Qoo r Ao,r &,
1 1.00000 0.90000 0.74000 1.000 0.000 0.000 0.998
2 0.00023 —0.09959 —0.24559 —-1.123 0.102 5.169 1.659
3 0.00020 —0.09907 —0.20228 1.354 0.435 21.996 1.205
4 0.00015 —0.09814 —0.13588 —-1.477 1.020 51.517 1.016
5 0.00010 —0.09686 —0.06158 1.485 1.833 92.611 0.974
6 0.00006 —0.09525 0.00628 —-1.572 2.852 144.080 0.859

Ar = 25,ap = 40,45 = 185m, ap = 182.0, oot . = 1000, ot . = 50, Aot , = 100 em?s~?

r Qo.0,r Qo,1,r Qo,2,r fO,r(l) Qoo Ao, @,
1 1.00000 0.90000 0.74000 1.000 0.000 0.000 0.998
2 0.00022 —0.09962 —0.22490 —0.845 0.089 4.937 2.448
3  0.00016 —0.09929 —0.14626 0.956 0.320 17.589 1.933
4  0.00008 —0.09864 —0.03241 —1.528 0.764 41.998 0.901
5 0.00002 —0.09756 0.06761 1.723 1.456 80.040 0.693
6 —0.00000 —0.09624 0.10385 -1.596 2.283 125.448 0.716

Ar = 25,ap = 40,45 = 185m, g = 175.6, aopt . = 1000, ot . = 10, aopt , = 100 em2s~1

r Qo,0,r Qo,1,r Qo 2,r For(1) QAo Ao, @
1 1.00000 0.90000 0.74000 1.000 0.000 0.000 0.998
2 0.00019 —0.09973 —0.18500 —0.375 0.040 2.334 4.656
3 0.00007 —0.09962 —0.00603 1.669 0.182 10.364 0.765
4 —0.00000 —0.09922 0.10832 —0.787 0.467 26.617 1.380
5 0.00002 —0.09869 0.05983 2.439 0.771 43.941 0.341
6 0.00012 —-0.09749 —0.08974 —2.041 1.436 81.817 0.362

Ar = 25,85 = 40,85 = 185m, g = 90.6, Aoy, = 150, aropt,, = 10, ot , = 100 cm?s1

r o,0,r ao1,r Qo 2,r Jo,(1) QoAo,r Ao,r @y,
1 1.00000 0.90000 0.74000 1.000 0.000 0.000 0.998
2 0.00019 —0.09935 —0.18348 -0.371 0.040 4.508 4.728
3 0.00006 —0.09792 —0.00420 1.619 0.181 20.033 0.811
4 0.00000 —0.09495 0.10227 —0.730 0.461 50.930 1.566
5 0.00002 —0.09165 0.05160 2.273 0.767 84.725 0.395
6 0.00011 —0.08482 —0.07838 —1.647 1.421 156.855 0.526

Ar =25,ap = 40,45 = 18bm, g = 756.6, Qoph, = 150, ot = 10, ot , = 1000 em?s1

r Qo,0,r Go,1,r Qo,2,r for(1) Qolo,r Ao ®o,r
1 1.00000 0.90000 0.74000 1.000 0.000 0.000 0.998
2 0.00018 —0.09926 —0.16882 —-0.238 0.049 0.654 5.328
3 —0.00000 —0.09470 0.10205 0.225 0.485 6.412 2.112
4 0.00011 —0.08428 —0.08149 —1.061 1.475 19.497 0.751
5 0.00009 —0.07958 —0.06309 2.186 1.952 25.800 0.353
6 0.00000 0.06529 0.06515 —0.407 3.512 46.419 0.764
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Table A.3(c) Valuesof a; ;r, f,-,,.(l), &;, Ajr and ®;, of the first six vertical modes
computed using various eddy viscosity profiles

Az =25,ap = 15,85 = 60m, ag = 157.5, aropt, = 300, cvoft , = 150, arope,, = 100 cm?s™?

r Qo,0,r
1 1.00000
2 0.00040
3 0.00027
4 0.00013
5 0.00002
6 —0.00001

Qo,1,r
0.75000
—0.23996
—0.20731
—0.15830
—0.10283
—0.04532

Qo,2,r
0.60000
—0.34914
—0.19910
0.03564
0.06289
0.07408

fO,r(]‘)
1.000
—1.292
1.555
—1.430
1.421
—1.356

QoAo,r
0.000
0.112
0.515
1.195
2.115
3.351

AO,r
0.000
7.126

32.731
75.873
134.288
212.777

<:bo,v'
0.999
1.392
1.018
1.123
1.158
1.299

Ap = 25,80 = 15,85 = 60m, g = 142.5, acopt ., = 300, ot . = 50, cxppt , = 100 cm2s~?

r Qo,0,r
1 1.00000
2 0.00038
3 0.00024
4 0.00006
5 —0.00000
6 0.00001

ao,1,r
0.75000
—0.24229
—0.21934
—0.17305
—0.12084
—0.06971

Ao,2,r
0.60000
—0.32480
—0.13246
0.08249
0.12243
0.05109

fO,r(l)
1.000
-0.956
1.789
—2.271
1.653
—-1.635

Qoo r
0.000
0.084
0.360
0.972
1.781
2.761

A0,1‘
0.000
5.910

25.290
68.246
125.003
193.793

<I>O,r
0.999
1.863
0.724
0.471
0.735
0.841

Ar = 25,85 = 15, A5 = 60m, g = 136.5, atoft, = 300, Aot ,. = 10, atopt, = 100 cm2s™?

Qo,0,r
1.00000
0.00037
0.00007
0.00000
0.00013
0.00017

SOV W N =3

ar =25,ap = 15m, a5 = 60m, 0o = 697.5, oot . = 300, ot , = 150, o ft , = 1000 cm?s~?

Qo,0,r
1.00000
0.00032
0.00001

—0.00002
0.00000
—0.00002

Sy Ol W N = S

Qo,1,r
0.75000
—0.24705
—0.22929
—0.20766
—0.16587
—0.12471

aO,l,r
0.75000
—0.22003
—0.09690
—0.02344
0.04808
0.04996

a0,2,r
0.60000
—0.29924
0.12340
0.20625
—0.03345
—0.12509

ao,2,r
0.60000
—0.25359
0.06819
0.05628
—0.05376
-0.02013

fO,r(l)
1.000
—0.598
3.150
—1.619
5.338
—1.637

fo,r(l)
1.000
—0.527
1.052
—0.600
0.567
—1.300

aO/\D,r
0.000
0.354
2.226
3.952
7.786
11.557

A0,7'
0.000
2.153

17.684
37.343
78.685
125.488

A0,1'
0.000
5.080

31.916
56.661
111.633
165.700

Qo,r
0.999
2.283
0.243
0.387
0.091
0.338

Q0,1‘
0.999
3.061
1.709
3.187
2.924
1.281

Ar = 25,8p = 15,85 = 60m, g = 676.5, aopt, = 300, Aot = 10, aropt , = 1000 cm?s~1

ao,o0,r
1.00000
0.00036
—0.00000
0.00017
0.00004
—0.00000

OO W N =3

Qo,1,r
0.75000
—0.24674
—0.21027
—0.12838
—0.07257
—0.03123

ao,2,r
0.60000
—0.28725
0.21141
—0.12770
0.01064
0.03407

fO,r(l)
1.000
—0.488
0.479
—0.815
3.808
—0.417

Qg Ao,r
0.000
0.033
0.481
1.664
2.716
3.725

/\O,r
0.000
0.493
7.113

24.611
40.150
55.075

Q0,7'
0.999
2.385
0.552
0.418
0.178
1.950
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Table A.3(d) Values of @; ., f; (1), @i, Ai;r and ®;, of the first six vertical modes
computed using various eddy viscosity profiles

Ar = 25,8, = 10m, a1 ~ 757.1 a1 b, = 1000, vy pt, = 150, 1 ft , = 100 em?s~!

r aior air a2,0,r J1,.(1) a1, Aty Dy
1 1.00000 0.28571 1.00000 1.000 0.000 0.000 0.999
2 0.00031 —0.46478 0.00000 —2.578 0.461 6.097 0.764
3 0.00000 —0.00654 0.00000 1.002 1.899 25.087 1.997
4 —0.00010 0.15412 0.00000 —2.567 4.155 54.881 0.769
5 —0.00000 0.00656 0.00000 1.009 7.597 100.342 1.989
6 0.00006 —0.09151 0.00000 —2.545 11.543 152.459 0.779

Ar =25,ap = 10m, g ~ 728.5, a1 fh., = 1000, vy 4, = 50, vy i, = 100 em?s~1

r aio,r aii,r azor  f1,.(1) 2PV Aty @,
1 1.00000 0.28571 1.00000 1.000 0.000 0.000 0.999
2 0.00041 —0.60814 0.00000 -3.717 0.182 2.502 0.428
3 0.00012 —0.17707 0.00000 2.857 1.204 16.534 0.656
4 —-0.00001 0.02443 0.00000 —-1.112 2.074 28.470 1.872
5 —0.00010 0.156473 0.00000 4.300 3.844 52.769 0.333
6 —0.00003 0.04771 0.00000 —-1.978 6.774 92.988 1.090

Ar =25,Ap = 10m, 0y ~ 7171, a1 o, = 1000, g o, = 10, a1 o, = 100 em?s~1

r ay0,r a1, a20,r fi,(1) Q1A Alr Dy,
1 1.00000 0.28571 1.00000 1.000 0.000 0.000 0.999
2 0.00047 —0.69049 0.00000 —4.394 0.038 0.540 0.320
3 0.00038 —0.55710 0.00000 9.282 0.277 3.863 0.078
4 0.00023 —0.33855 0.00000 —-9.270 0.748 10.443 0.079
5 0.00007 —0.11332 0.00000 4.369 1.427 19.906 0.324
6 —0.00000 —0.00000 0.00000 —1.000 1.934 26.974 1.999

Ar = 25,ap = 10m, oy = 110.0, oty pt, = 150, ey pt , = 10, ey pr , = 100 em?s™1

r aior ail,r az0,r fl,r(l) Q1A Al,r D,
1 1.00000 0.28571 1.00000 1.000 0.000 0.000 0.999
2 0.00039 —0.57854 0.00000 —-3.477 0.035 3.228 0.479
3 0.00007 —0.10975 0.00000 1.850 0.216 19.650 1.181
4 —-0.00004 0.06560 0.00000 —1.556 0.353 32.104 1.421
5 —0.00009 0.13558 0.00000 3.701 0.740 67.327 0.432
6 —0.00000 0.00660 0.00000 —1.022 1.139 103.588 1.974

Ar =25,4p = 10m, 0y = 121.4, ae i, = 150, ey 4, = 50, aeq pt ; = 100 em?s—1

T aio,r a1, azo,r f1..(1) 121, Air @,
1 1.00000 0.28571 1.00000 1.000 0.000 0.000 0.999
2 0.00023 —0.34153 0.00000 —1.651 0.111 9.161 1.338
3 —0.00005 0.08301 0.00000 1.159 0.374 30.852 1.820
4 —-0.00004 0.06606 0.00000 —1.248 0.963 79.349 1.723
5 0.00005 —0.08311 0.00000 1.562 1.566 128.984 1.415
6 0.00000 —0.00780 0.00000 —-1.010 2.555 210.425 1.987
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Table A.3(e) Values of a;;r, f; (1), &, Ai, and &; , of the first six vertical modes
computed using various eddy viscosity profiles

Ar = 25,Ap = 40m, i1 ~ 476.9, oy fi, = 1000, ey o , = 150, oy i, = 100 cm?s~!

r aior aii,r azor  f1,.(1)  a1di, A1y ®; ,
1 1.00000 0.61538 1.00000 1.000 0.000 0.000 0.999
2 0.00025 —0.36704 0.00000 —1.553 0.185 3.883 1.068
3 0.00020 —0.30126 0.00000 2.415 0.939 19.709 0.502
4 0.00013 —0.19602 0.00000 —2.481 2.369 49.686 0.478
5 0.00005 —0.08598 0.00000 1.679 4.353 91.291 0.942
6 0.00000 —0.00767 0.00000 —1.010 6.419 134.464 1.973

Ap = 25,8, = 40m, oy ~ 415.3, g ph . = 1000, ag pt ,, = 50, vy o, = 100 em?s~1

r aio,r Q1,1 azo,r  f1,(1) Q1) Air Dy,
1 1.00000 0.61538 1.00000 1.000 0.000 0.000 0.999
2 0.00025 —0.37839 0.00000 —1.649 0.063 1.521 0.971
3 0.00024 —-0.35412 0.00000 2.964 0.326 7.867 0.345
4 0.00021 —0.30975 0.00000 —4.033 0.837 20.164 0.192
5 0.00017 —0.24977 0.00000 4.466 1.598 38.492 0.157
6 0.00012 —0.18091 0.00000 —4.146 2.600 62.718 0.182

ar =258, =40m, oy ~390.7, vyt = 1000, oy pt . = 10, 0y o, = 100 em?s~1

T a1,0,r a11,r ad2,0,r 1.1 Q1A Ay ®y
1 1.00000 0.61544 1.00000 1.000 0.000 0.000 0.999
2 0.00025 —0.38315 0.00000 —1.689 0.012 0.326 0.933
3 0.00025 —0.37809 0.00000 3.224 0.066 1.698 0.294
4 0.00025 —0.36839 0.00000 —4.891 0.170 4.363 0.132
5 0.00024 —0.35416 0.00000 6.445 0.326 8.351 0.077
6 0.00022 —0.33570 0.00000 —7.785 0.534 13.666 0.053

ap = 25,8, = 40m, oy =~ 88.4, oy i, = 150,014, = 50, 1, = 100 cm?2s~1

r aio,r ayir Qag0,r J1,,(1) a1y, Alr &, ,
1 1.00000 0.61538 1.00000 1.000 0.000 0.000 0.999
2 0.00023 —0.34813 0.00000 -1.397 0.059 6.672 1.259
3 0.00015 —0.22772 0.00000 1.724 0.285 32.278 0.902
4 0.00005 —0.08089 0.00000 —1.258 0.669 75.711 1.470
5 —0.00001 0.01861 0.00000 1.025 1.105 124.995 1.938
6 —0.00005 0.07690 0.00000 —1.632 1.709 193.202 1.092

Ar = 25,8, = 40m, 01 >~ 63.8, a1 b, = 150, s i, = 10, a1t , = 100 em?s~?

r a0, a1, a2,0,r J1,,(1) Q1Ar Atr by,
1 1.00000 0.61538 1.00000 1.000 0.000 0.000 0.999
2 0.00025 —0.37644 0.00000 —1.632 0.012 1.971 0.987
3 0.00023 —0.34462 0.00000 2.863 0.064 10.170 0.368
4 0.00019 —0.28766 —0.00000 —3.719 0.166 26.023 0.224
5 0.00014 —0.21344 0.00000 3.801 0.316 49.554 0.215
6 0.00009 —0.13314 0.00000 —-3.078 0.512 80.301 0.321
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Table A.3(f) Values of a; ; r, Jir(1), @i, Air and ®; ;. of the first six vertical modes
computed using various eddy viscosity profiles

ar =25,8p = 16m, oy >~ 243.7, aey pt,, = 300, vy pt . = 150, ey ph , = 150 em?s~1

T a0, a1, azor  f1,(1) Q1)1 ALy ®,,
1 1.00000 0.37500 1.00000 1.000 0.000 0.000 0.999
2 0.00024 —0.35818 0.00000 —1.405 0.228 9.358 1.464
3 —0.00002 0.03924 0.00000 1.021 0.863 35.442 1.966
4 —0.00007 0.10881 0.00000 —1.344 2.048 84.022 1.534
5 0.00002 —0.03923 0.00000 1.085 3.467 142.239 1.874
6 0.00003 —0.05403 0.00000 —1.245 5.663 232.342 1.657

Ar =25,ap = 16m, g ~ 206.2, ay o, = 300, 001 4, = 50, vy f4,, = 100 em?s~ 1

r ai,0,r a1, aso,r  f1,.(1)  aidi, AL by,
1 1.00000 0.37500 1.00000 1.000 0.000 0.000 0.999
2 0.00033 —0.48901 0.00000 —2.296 0.107 5.200 0.768
3 0.00006 —0.09604 0.00000 1.366 0.564 27.376 1.508
4 -0.00005 —0.08236 0.00000 —1.467 1.019 49.408 1.395
5 —0.00007 —0.10615 0.00000 2.212 2.076 100.665 0.812
6 0.00000 —0.00480 0.00000 —1.006 3.079 149.292 1.990

Ar = 25,85 = 15m, a1 ~ 1912, oy pt, = 300,y pt,, = 10, 1 gt , = 100 em?s™1

r ago,r aiiy as0,r fi,,(1) Q1A Alr D,
1 1.00000 0.37500 1.00000 1.000 0.000 0.000 0.999
2 0.00039 —0.59202 0.00000 -3.044 0.024 1.275 0.487
3 0.00029 —0.42968 0.00000 5.429 0.159 8.343 0.171
4 0.00013 —0.19248 0.00000 —4.002 0.419 21.937 0.301
5 0.00001 —0.02243 0.00000 1.158 0.706 36.926 1.772
6 —0.00004 0.06089 0.00000 —-2.087 0.934 48.874 0.884

ar = 60,ap = 10m, a1 > 858.5, arypt . = 1000, ¢y b, = 10, g o, = 100 em?s~1

r aio,r a1, asz0,r 1.1 @M1, Alr @,
1 1.00000 0.14286 1.00000 1.000 0.000 0.000 0.999
2 0.00049 —0.72509 0.00000 —8.3356 0.131 1.532 0.185
3 —0.00009 —0.13453 0.00000 4.335 0.994 11.583 0.564
4 —0.00002 0.03021 0.00000 —1.521 1.443 16.814 1.683
5 —0.00012 0.18164 0.00000 9.992 3.026 35.252 0.132
6 —0.00001 0.01580 0.00000 —1.504 5.180 60.333 1.693

Ar = 60,4, = 40m, ay = 60.4, a3, = 1000, vy pt . = 10, 1t , = 100 em?s~1

T aio,r ayiyr az,0,r J1.(1) Q1A Al,r @,
1 1.00000 0.40000 1.00000 1.000 0.000 0.000 0.999
2 0.00037 —0.59153 0.00000 —-2.969 0.022 0.373 0.484
3 0.00037 —0.54857 0.00000 6.661 0.145 2.410 0.108
4 0.00031 —0.46891 0.00000 -9.264 0.389 6.451 0.057
5 0.00024 ~0.36262 0.00000 9.963 0.754 12.497 0.049
6 0.00016 —0.24333 0.00000 —-8.579 1.239 20.513 0.066
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APPENDIX IV

A transient solution for the wind drift current in a two-layered open sea region
induced by a step-function wind stress (4.3.4) is derived using the Laplace trans-

form. A linear slip condition (4.3.31) is enforced at the lower domain boundary.

Transforming equation (4.3.28) with respect to the Laplace transform, gives
Qilli; 0w,
HZ do?’

SW; j + eyW; 5 = (A.4.1)

where
w; ;(s) = / e ! w;j(t)dt, t>0 and 7=0,1,57=1,2. (A.4.2)
0

Hereafter, = 1 is used, for convenience.

The boundary and interfacial conditions at the transformed domain take the

form:
A1fby ; OWy g Tsz
) S e 2 at o1 = 0’ A4.3
H, 00, P1,18 ' : )
Wi,1= W2
awl X a'UJ1 5 at 01 = El,la (A44)
P11l 501’ = Pir2Mq, 50’1,
« ow
1Iu’1;2 1,2 — —kbw1’2 at 0'1 = 1. (A4:5)

H 1 oo 1
For convenience, we rewrite equation (A.4.1) as follows:

82'11)1’1

20, = K*Wi 1, (A.4.6)
62%‘1’2 = v?k?Wwy 4, (A4.7)
where
&% = (o + ) H2 (0 iy ), (4.48)
v? = P/ By o (A.4.9)
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Solutions of (A.4.6) and (A.4.7) may be readily written in the form

KO —KO
Wi, = ae”"t + be ]

Wi = c(cosh ve(ar — 1) + kp(vk) ! sinh vk(oy — 1)),

where a, b and ¢ are to be determined and

ky = —keHy/(Qt1fhy 5)-

Using conditions (A.4.3) to (A.4.5), we obtain

- T1H, (K] COShK(O’] —fT)—RlKg Sinhfc(al —ﬁT))
1,1 = )

Uy iy, skK3
. T1Hy [ coshvk(oq — 1)+ Eb(vn)_l sinhvk(o; — 1)
T skK; ’
where
=
7_1 — 31:’
Pr

Ki = coshvké, — ky(vk) ! sinhvké,,

K, = sinhvké, — ky(vk)™! coshvké,,

J3 = sinhnET(coshvfc{P —Eb(v&)_l sinhvngp)
+Ry cosh ké . (sinhvké, — ky(vk)™ cosh vKEy),

Ry =v(ppptp)(Pritr)™

Er =&11, Ep = 1644,

By =Hi1, Hp = My

Pr =P11s Pp = P12

(A.4.10)

(A.4.11)

(A4.12)

(A.4.13)

(A.4.14)

(A.4.15)
(A.4.16)
(A.4.17)
(A.4.18)
(A.4.19)
(A.4.20)
(A.4.21)
(A.4.22)

(A.4.23)

The solutions in the physical domain can be obtained using the Residue the-

orem. Simple poles are found at the origin and at the zeros of the term Kj.
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With non-zero friction (ks # 0):

The solutions in the physical domain are composed of two parts, steady state

and transient solutions, namely

wia(t) = @i + @i (¢), (A.4.24)
@12(t) = @) + wH(2), (A.4.25)
where
w) = ;115; Mjl—go w{(t) = ; e’ t%g‘%’— (A.4.26)
SR CRpa s
and
Ji,o = cosh ko(o1 — £T)( coshvkpé , — 7{:—[,(’0/{10)_1 sinhvfcofp)
—R; sinh ko(o1 — ET)(sinh vKoé p — Eb(vno)_l cosh ’UK?()EP), (A.4.28)
J2 o= coshvko(or — 1)+ ky(vko) ! sinhvkg(oy — 1), (A.4.29)
J3,0 = sinh fcofT(cosh VKo p — Eb(vrco)_l sinh ’UKI()EP)
+R; cosh fcogT(sinh VKo » — k(v )Tt cosh 'UK,()EP), (A.4.30)
Jir= coshrp(oy — €,)(coshvrrép, — ky(vk,) " sinhvk, € )
—R; sinh k(01 — {T)( sinhvk,.&, — Fb(vnr)—l cosh ’UKZTEP), (A.4.31)
Ja,» = coshvk.(o; — 1) + kp(vk,) ! sinh vk, (og — 1), (A.4.32)

Js,r = &pcoshkré, coshvrrép + v€, sinh k&, sinhvk, €,
Ky
VK,

+ R1 (.ET sinh k.& ; sinh vk €, + V€, cosh k€, COShUIQTEP)

cosh k£, sinhvk, ¢, + v€, sinhk,.£, cosh vrc,{P)

(ET sinh k£, coshvk, £, + v€, cosh k£, sinh 'UKZTEP)

kb

2
Ky

+

(sinh k,€ . sinhvk,£ , + Ry cosh k€ cosh vkrép) T >1,(A4.33)
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and

Ko = Hi(vy/onp )2, (A.4.34)

Kr = tYr, Sp=—ty—yiap/HZ, r>1. (A.4.35)
The values of y, follow from the equation

ta,n(yrf'p) [COS(UyrEp) - Eb(vy’r‘)_l Sin(vy;‘EP)]

+ Ry [sin(vyr p) + ky(vyr) ™" cos(vyr£ )] = 0. (A.4.36)

With a zero-stress condition (k, = 0):

Substituting %y = 0 into (A.4.13) and (A.4.14) gives

h h —¢,) — Ry sinh inh -
A T1H; coshvké, coshk(or —€,) 1 sinhvké , sinh k(o4 ET), (A.4.37)
OZLLLT kSK4
h -1
Wy, = [t coshvn(os = 1) (A.4.38)
Qo skl(y
where
K4 = sinh k¢, coshvké, + Ry cosh k¢, sinhvke . (A.4.39)

By expanding the solution (A.4.37) into partial fractions, and writing the

hyperbolic functions as the power series

sinh{rq'/?} = rq1/2(1 +1/3172g +-.), (A.4.40)
cosh{rq'/?} = (1 +1/2!r2q 4+ rt/4lg® + .- ), (A.4.41)
we can see that s = —¢v is a simple pole. The other poles are all simple and are

found at the origin and at the points where K4 vanishes.

The solutions in the physical domain can be written as

wi(t) =w)+ o) + o) =12, (A.4.42)
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where

wi) = 2 ;—ﬁ% fij}:(), (A.4.43)
wi)(t) = Z o ‘21;: sff; (A.4.44)
wi(t) = "”’ [(£T +(Pp/Pr)er ] - (A.4.45)
wi) = i ;iﬁi % (A.4.46)
w{)(t) = 2_) et LA (A447)
wiB() = wil@). (A.4.48)

Here, k, and s, are given by equations (A.4.34) and (A.4.35), respectively, and
Je,ry v 2 0,£=1,2,3, can be found from equations (A.4.28) to (A.4.34) by setting
ky = 0.

201





