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Abstr act

This thesis concerns with problems associated with design and structural modification of

vibratory systems. The aim is to meet prescribed rnodal and spectral requirement. Several

common problems encountered in practical engineering applications are described, and

novel strategies for solving these problerns are then proposed. The mathematical

formulations of these problems have been generated, and solution methods are developed.

The first problem concerns with developing a systematic approach for design of

conservative vibratory systems with prescribed natural frequencies. Since, in general, this

problem has more design parameters (namely the independent elements of the mass and

stiffness matrices) than number of design constraints (i.e. the number of natural frequencies

to be assigned), it has a family of solutions. 'We are only interested in these solutions which

are physically realisable, i.e. solutions which can be physically constructed. We thus assume

that a physically realisable stiffness matrix of a system is known, and then calculate a

realisable mass matrix, so that the desired natural frequencies are-obtained.

A second problern concerns with a case where in addition to the prescribed natural

frequencies, corresponding mass-normalised mode shapes are also specihed. This problem

is analysed for situations where all of the system's natural frequencies and rnode shapes are

specified, and also for the case when these frequencies and their associated mode shapes

are only partially prescribed. Mren all of the natural frequencies and mass-norrnalised mode

shapes are prescribed, the problern is overdetermined, i.e there are nrore constraints than

Vi



there are independent design parameters. In general, there are no physically realisable

solutions for this case. Therefore, we formulate and solve an optimisation problern leading

to an approximate solution which is optimal in a specified sense. A partial specif,rcation of

natural frequencies and mode shapes may result in a problem which has no realisable

solutions, a unique solution, or a family of solution. This depends on the ratio between the

number of prescribed and a total number of natural rnodes for the system. We present a

solution method which can cope with any of these cases.

The two remaining problems concern with determining the necessary structural

modihcations to an existing system, based on measured modal analysis data. Problem 3

deals with assignment of natural frequencies only, while in Problem 4 we assume that both

the natural frequencies and the corresponding mass-nonnalised mode shapes are specified.

In both of these problems, our aim is to determine the necessary modifications based on the

measured test data only. Because modal analysis data only partially describe the system, we

are unable to obtain exact solutions to either problem. 'We overcome the diff,rculties of the

inherent truncation of the modal data by formulating and solving optimisation problems

giving approximate solutions which are optimal in a specified sense.

Tlre developed algorithms were numerically tested on arbitrarily chosen examples, and a

simple experiment was designed and carried out to test the suitability of the generated

theory in a practical application.
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Gloss ary of Principal Symbols

number of degrees-of-freedom

index

index

ith natural frequency

mass matrix of a system

stiffness matrix of a system

eigenvalues matrix of a system

corresponding mass-normalised eigenvectors matrix

iith diagonal element of Â, À,:c1,2

corresponding i'h column vector of iÞ

desired eigenvalues matrix

desired mass-normalised eigenvectors matrix

iith diagonal element of Â.

corresponding i'h column vector of iÞ.

mass of ith element

ij'h element of K

the stiffness constant of a spring connecting mass i to mass j
number of truncated modes Qn<n always)

eigenvalue matrix containing frst m eigenvalues of À

matrix containing ftrst m corresponding column vectors of Õ

eigenvalue rnatrix containing ftrst m eigenvalues of Â.

matrix containing ftrst m corresponding column vectors of iÞ.

Identity matrix of size n (suffix n can be any value)

eigenvalue matrix containing last n- m eigenvalues of Â

matrix containing corresponding n-nt column vectors of iÞ

mass modification matrix

stiffiress modification matrix

AM

AK

X
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a connectivity matrix describing the connections of spring s,.,

an augmented vector for stiffiress sensitivity

a stiffness sensitivity matrix

a vector consisting of all independent spring constants s,,

a mapping rnatrix for m, onto M

an augmented matrix for mass sensitivity

a vector consisting of all independent mass elements

a mass sensitivity matrix

ith column vector of K
an arbitrary symmetric matrix

an arbitrary symmetric matrix

a diagonal matrix

in sections 2,8 and 9, a residual matrix defined by (2.15)

in section 4, a matrix defined by @.27)

in section 5, a matrix defined by (5.6)

in section 7, amatrix defined by (7.19)

in sections 2,8 and 9 is defined in (2.18) and (2.19).

in section 3, a modal matrix of a modified system

in section 5, defined by (5.39)

eigenvalues matrix which is an approximation to Â.

in section 8, a corresponding mass-normalised eigenvectors matrix

in section 9, an approximation to iÞ.

in section 3 and 5, any real symmetric matrix

in section 5, a matrix defined by (5.23)

in section 6, a matrix defined by (6.23)

ith column vector of A

in section 3, an eigenvalue matrix of a modif,red systern
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an iteration index

an orthonormal matrix

a residual error function

a residual error function defined by (a.35)

an orthonorrnal matrix

two arbitrary vectors in example of Figure 5.1

two orthogonal vectors in example of Figure 5.1

the square of the lengths of the projection vectors in Figure 5.1

a matrix defined by (5.30) and (5.43)

a vector def,rned by (5.31) and (5.44)

a matrix defined by (5.32) and (5.45)

a modal matrix defined by (5.39)

a known component of the IP Decomposition of X

a diagonal component of the IP Decomposition of X

known coefficients in D* defined in (7.1)

in section 7, a matrix defined by (7 .23)

in section 8, a matrix defined by (8.a)

a matrix defined by (7.22)

in section 7,a matrix defined bV Q.33)

in section 8, a matrix defined bV (8.5)

a rnapping matrix defined bV Q.36)

an ith column vector of G

in section 7, a sensitivity matrix defined by Q.a2)

in section 9, a matrix dehned by (9.3)

a matrix defined by (9.a)

a matrix defined by (9.5)

ith singular value of any matrix

a diagonal matrix of singular values

In addition to above principal symbols, some symbols for local applications are introduced

and defined in the appropriate sections of the text.
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Section 1 INTRODUCTIOIY

Design of mechanical systems for a specified range of static and dynamic requirements is

a basic problem in Mechanical Engineering. However, while design of static systems is well

established, design to meet the dynamic requirements is not yet fully developed. This thesis

deals with several problems encountered in the design and analysis of dynamic vibratory

systems. The common aim among these problems is to develop algorithms which would

allow a systematic approach for the design of vibratory systerns with prescribed natural

frequencies and mode shapes.

A classical problem in vibration analysis is to determine spectral properties (namely the

natural frequencies and mode shapes) of a system with known physical parameters (i.e.

ûtass, stiffness and damping space functions), under specified excitation forces and for a

given set of the initial and boundary conditions. Solution teclmique requires precise

knowledge of all the above data as well as a set of the partial differential equations which

1



Section I: fúroduction

describe the motion of the system. In practice, however, these precise data and the

description of motion is only available for a limited range of relatively simple systems.

For cornplex systems, where this information is not easily available, it is customary to

develop a discrete analytical rnodel which approximates the behaviour of a real system. In

problems analysed in this thesis we only consider conservative analytical models (i.e Mass-

Spring and Finite Element with no damping). This was done in order to simplify the

analysis. We realise that some amount of damping is always present in physical systems,

however for many rnechanical systems its magnitude is relatively small and may be ignored.

Once a suitable model is selected, its physical parameters can be determined, and then the

spectral properties can be evaluated. The requirements that the system has prescribed natural

frequencies and rrode shapes is ensured by the adjustment of the physical parameters in the

rnodel until the desired spectral properties a¡e obtained. This is a "trial-and-error" process

and it requires repeated computations of the spectral properties for each modihcation of the

rnodel. Furthermore, if the spectral requirements consist of multiple constraints, then

currently there is no systernatic method for determining the necessary modihcations to

physical parameters which improve one or more dynamic property without detrimental

effects on any of the others. In this thesis we have developed systematic methods for

obtaining the physical parameters of the system from the prescribed spectral data. Thus we

have solved the classical vibration problem in "reverse", and consequently the class of

problenrs that we have analysed is known as inverse vibration problents.

2



Section I: fnfioduction

'When the necessary physical parameters for the selected model are determined, the design

stage is completed. The next stage is the development process where a prototype of the

system is built and is then tested experimentally. The measured spectral properties are then

checked for compliance with the design specifications. A common method for measuring

tlre dynamic behaviour of the mechanical systems is the ntodal analysis testtng. If the

results of modal analysis tests show that the system does not meet the design requirements,

then some structural modifications are needed. At present the most coÍlmon method for

determining these modifications is a "trial-and-error" experimental process. The limitation

of this approach is that it is costly, time consuming and does not cope well if multiple

constraints are placed on the spectral properties. In this thesis we have developed a

systematic methods for determining the necessary structural modifications based on the

results of rnodal analysis tests. In these problems we determine the necessary structural

modifìcations using only the physically measured spectral properties, and assume that the

analytical model is not available. Therefore the error due to discrepancy between the

dynamic behaviour of the selected analytical model and the actual physical system is

removed frorn the calculations.

Using the measured modal analysis data presents several problems. Firstly, since some

amourrt of damping is always present in the physical system, the measured modes will be

cornplex. Horvever, the survey of the relevant literature have shown that there have been

several published papers dealing with the methods of extracting the real modes from the

measured complex ones. Therefore, we assume that any one of the accepted methods (which

are described in the section 3 of this thesis) may be applied prior to the application of our

3



Sectìon 7: fnfioduction

algorithms. Secondly, since modal analysis data do not contain a complete description of

the system, there is insufhcient information to find the exact modified parameters which

yield the desired spectrum. The difficulties arising from the inherently truncated data

provided by rnodal analysis were overcome by formulating suitable optimisation problems,

which could then be solved.

A common requirement imposed on the solution to all problems studied in this thesis was

that all determined parameters of the system should be physically realisqble. This

requirement resulted in the following two physical realisability constraints:

1) all determined masses and stiffnesses must be real and non-negative,

2) the shape of the obtained mass and stiffness matrices must comply with the

requirements of the selected analytical model.

Failure to comply with the physical realisability constraint (1) would result in a system

which can not be physically reconstructed. And failure to meet the constraint (2) would

prevent the translation of the obtained mathematical solution into the real physical system.

These constraints were dealt with separately for each problem studied, depending on the

chosen analytical models and assumed known data.

Tr¡'o different kinds of spectral requirements were examined. Initially we have examined

cases where only natural frequencies assignments were sought. Then assignment of both

the natural frequencies and the corresponding mode shapes was investigated. Application

4



Sectìon I: fntroductìon

of the two types of spectral constraints to both the design and development stages as

described above resulted in the formulation of four distinct problerns. Description and

definition of these four problems is presented in section 2. Section 3 contains a review of

background knowledge and literature survey. Analysis of these four problems is described

in sections 4, 5, 8 and 9. In sections 6 and 7 we present solutions to some different

variations of the problem described in section 5. Developed algorithms for the solution to

the above problems were extensively tested on numerical examples, and the results from

some selected few of these examples are presented in appropriate subsections for each

problem. The practical application of the developed theory to a real physical structure was

confirmed by designing and carrying out a simple experimental program, results of which

are presented in section 10. Conclusions and summary of this work is given section 11. The

relevant references are listed in section 12, and the raw measured data from the experiments

are shown in the Appendices.

5



Section 2 PROBLEM

DESCRIPTIOruS AND

DEFINIT'O'VS

In this section we describe some coÍrmon engineering design problems where spectral

requirements are included in the design specifications. The current standard design

procedures are discussed and some changes to these procedures are suggested. These

changes result in the formulation of four distinct inverse vibration problems.

2.1 Problem 1: Design to Achieve Desired Natural Frequencies

Consider the shaft-pulley systern shown in Figure 1. Design of such systems for a specified

range of loads and power transmission requirements is one of the basic tasks in mechauical

engineering.

6



Sectìon 2:Problem Descríptíons ønd DeJinìtions

motor pulleys
J

1

J

shaft J 3

beari

Figure 2.lz A Shaft-Pulley Assembly

Suppose that design specifications state the range of expected rotary speeds of the shaft, and

hence restrict the allowed natural frequencies of the system. The current standard design

approach for such a system is as follows:

Current n Process

Input: Total number of pulleys and their position on the shaft; Loads on the system

and power transmission requirements; Bands of restricted frequencies.

7



Section 2:Problem Descriptions ønd Delínìtions

Design Procedure'.

1. Select materials and sizes for all pulleys (Note: this may be predetermined),

and hence obtain an estimate of each pulley's mass.

2. Select material for the shaft, and determine the required size(s) of the shaft

to operate under the required loading conditions.

3. Select a suitable analytical model for the vibrational analysis of the system,

and using information from steps 1 and 2 construct the mass and stiffness

matrices of the system.

4. Using the mass and stiffness matrices obtained in step 3 calculate the

natural frequencies for the torsional and transverse modes of vibration, and

check that these frequencies do not fallwithin the restricted frequency ranges.

5. lf natural frequencies do not fall into the restricted ranges, then design

process is finished. lf they do, then modify the mass and stiffness matrices

and repeat from step 4.

Output (ln theory): A shaft-pulley system which meets all design specifications.

It is clear that step 5 constitutes an open-ended iterative loop in the above procedure. If the

natural frequency restrictions are relatively simple (e.g. that all natural frequencies must be

above some specified value), then the above procedure would perform satisfactorily.

However, if the design constraints are more complex (e.g. if it is necessary to interlace

some or all of the natural frequencies in-between the restricted frequency bands), then the

above procedure would not be adequate. This is because there exists no well established

method for modifying the tnass and stiffiress matrices to produce the exactly desired

I



Section 2:P¡oblem Descrìptions and DeJinitions

adjustments in the natural frequencies. Therefore, obtaining the desired natural frequencies

by mass and stiffness modifrcation would resort to a "trial-and-error" process with no

guarantee of ultimate success. 'We note that the determination of the required mass and

stiffness modifications to produce prescribed changes in the natural frequencies constitutes

an inverse vibration problem. Thus we propose to forrnulate a suitable inverse vibration

problem, which could be solved, and include the solution for this problem in the current

design procedure. This modification to the current design procedure would remove the

open-ended loop described in step 5, and ensure availability of solution which meets all

design specifications.

We begin the formulation of our problem by selecting a discrete mass-spring system as a

rnodel for the shaft-pulley assembly. This choice is made because the mass-spring system

is a simplest system to analyse, but which also provides a good model for the dynamic

behaviour of such assemblies (especially in the torsional modes of vibration). In this model

pulleys witl be represented as discrete masses and shaft segments between the pulleys as

springs. Therefore, modifications to the mass matrix will only affect the pulleys, while

changes to the stiffness matrix will only affect the shaft.

The chosen mass-spring analytical model for a shaft-pulley assembly dictates that the mass

and stiffiress matrices must comply with the following physical realisability requirements:

I



Sectìon 2:Problem Descriptions and DeJinitions

1) The mass matrix must be real, positive and diagonal.

2) The stiffiress matrix must be real and symmetric, with positive dominant main diagonal

and negative elsewhere. (Note:" dominant main diagonal" implies that the sum of all

elements in each row (or column) is greater than or equal to zero.)

Also, the choice of the mass-spring analytical model restricts the maximum number of

natural frequencies that can be assigned to r, where n is the number of pulleys on the shaft.

The natural frequencies of a mass-spring system are then the solutions to the following

equation:

det (K - o,2 M¡ : 0, i: I,2,...,n. (2.1)

where K is a real, symmetric stiffness matrix (nxn),

M is a real, positive and diagonal mass matrix (nxn),

o, is an i-th natural frequency of the system.

To obtain the desired adjustments in the natural frequencies, a designer has a choice of

modifying either the shaft, or the pulleys, or both. Since there are more design parameters

(i.e non-zero elements in K and M) than constraints (at most ¡¿ desired natural frequencies),

the equation (2.1) has a farnily of solutions. We restrict our interest to only those solutions

which are physically realisable, i.e solutions which correspond to realistic physical systems.

We are also arvare that as well as meeting the spectral specifications, an adequate solution

must also satisfy other constraints. Those constraints are that the shaft should be able to

operate under the specified loads and that it retains a practical geornetry and composition.

The practical geometry and composition considerations include the following requirements:

10



Section 2:Problem Descriptions ønd Defínifions

a) The manufacture of the shaft must be from a single bar stock, i.e uniform material

and "in one piece".

b) The shaft should preferably be of a circular cross-section and its diameter should be kept

as uniform as possible, i.e avoid unnecessary "stepping" to minimise manufacture costs

and reduce stress concentrations.

c) There should be no obstructions for the assembly of pulleys onto the shaft, i.e no

"troughs" in the middle, etc.

d) The shaft-pulley assembly must resemble a simply connected mass-spring system,

i.e no cross-connection between non-adjacent pulleys. This imposes the restriction

that the stiffness matrix must be tri-diagonal'

e) The shaft-pulley assembly must operate satisfactorily under the specified loads, i.e

minimum strength requirements must be met which dictate minimum size limit.

Ð To maintain a good correlation with the chosen analytical mass-spring model, the mass

of the shaft should be considerably less than the mass of the pulleys, i.e maximum size

limit.

Clearly, the majority of the above requirements concern only design of a shaft. The only

constraint on the design of the pulleys is that they must meet minimum strength

requirements. Since current design procedures ensure that the shaft satisfy all of the above

requirements, we propose to restrict the modihcations for natural frequency adjustment to

pulleys only.

11



Section 2:Problem Descriptìons and Definitìons

V/e also note that currently the spectral requirements of the design specifications are only

used in checking the obtained solution. They are not used directly in any of the design

calculations. Thus we believe that a vital piece of design information is not being fully

utilised. An alternative approach that we propose is as follows:

1) Select a desired set of natural frequencies which are well separated from the restricted

frequency bands.

2) Determine the required masses of the pulleys which in combination with the stiffness

properties of the shaft produce the desired natural frequency spectrum.

The proposed design procedure is then as follows

Proposed Desiqn Procedure

lnput: Total number of pulleys and their position on the shaft; Loads on the system

and power transmission requirements; Bands of restricted frequencies.

New Design Procedure:

1. Estimate mass limits for each pulley based on strength requirements.

2. Select material for the shaft, and determine the requ¡red size(s) of the shaft

to operate under the required loading conditions'

3. Using the information from step 2 construct the stiffness matr¡x under

the assumption of a mass-spring model.

12



Section 2:P¡oblem DescriptÌans and Definitions

4. Select a set of desired natural frequencies which are well separated from

the restricted frequency bands.

5. Using the information from steps 3 and 4 calculate the necessary

mass matrix for the system to have the desired natural frequencies.

6. Check that the obtained masses are within the acceptable limits.

Output: A shaft-pulley system which meets all design specifications

We note that step 5 in the new procedure involves solving an inverse vibration problem.

The mathematical formulation of the inverse problem to be solved is then as follows:

Problem l,'Mass matrix evaluation to achieve desired natural frequencies.

Given the real, symmetric stiffness matrix K and a set of desired natural

frequencieS {or', a,2', ...,c.n'}, find a real, positive and diagonal mass matríx M,

such that the roots of the characteristic polynomial equation

det (K - À M)= I

are À - 6,.' ( i=1,2,..,n).

The analysis of this problem is presented in section 4. Although the above problem was

formulated specifìcally in relation to the design of shaft-pulley assemblies, the solution may

be applied to the assignment of natural frequencies of any vibratory system which can be

represented by a rnass-spring model. This fact is demonstrated by the results of the

experimental tests on the model of a building rvhich are presented in section 10.

13



Section 2:Problem DescrÍptìons and DeJinitions

!

2.2 Problem 2: Design to Achieve Dcsired Natural Frequencies and Mode Shapcs.

Inverse vibration problems associated with the construction of vibratory systems from the

known set of desired natural frequencies and mode shapes have many applications in

engineering. These include system reconstruction, modification and design. In this thesis

we are concerned with the design problem of constructing a physically realisable mass-

spring system with prescribed natural frequencies and mode shapes. This problem arises

when controlling the maximal deflection of a harmonically excited system.

The natural frequencies and mode shapes of an undamped vibratory system are

characterised by the solutions to the following equation:

KiÞ:MÕ^, (2.2)

where K is a positive semi-definite symmetric stffiess ntatrix,

M is a positive definite symmetric mass ntatrix,

iÞ is a ntodal ntatrix (which describes the mode shapes of the system),

r\ : diag(}, r, ..., I n), is a spectral ntatrix (which describes the natural

frequencies o, of the system by relation ¡,i : 'õi2 ),

n is the number of degrees of freedom.

If rve stipulate that the rnodal matrix iÞ must be mass-normalised, then it is well known that

the following bi-orthogonality relations hold:

Õ rMo : In Q.3)

Õ rKÕ : Â. (2.4)

14



Section 2:Problem Descriptions ønd Definítìons

'a

For a rnultiple connected mass-spring system, the mass matrix M is real, positive and

diagonal. Denote

M: diag(rn¡¡ n12: ..., ffin), ffi¡ ) 0, m, e JR; i:1,2,...,n. (2.5)

The stiffness matrix K: I k¡ ] is symmetric, and has the following properties

(a) kii) 0, i=I ,2,...n

kij 3 O, i+j; i=I ,2,... t17ì j=2,3, . ,17ì

(c)

(b) (2.6)

Ej=L
kij 2 0, i=I ,2,...,fr

In words, K has positive diagonal elements, non-positive off-diagonal elements, and it is

weakly diagonally dominant.

Suppose we want to determine a physically realisable mass-spring system which has a

prescribed eigenvalue matrix Â with corresponding mode shape matrix iÞ. If we use the

ortlrogonality equations (2.3) and (2.4), we have

M : iÞ-riÞ-' (z.l)

l(: 6-r¡ç-t . (2.8)

Hou,ever, this solution in general rvould not be physically realisable. This is demonstrated

by the following example:
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Example 2.2.L'

Suppose the desired dynarnic properties, Â. and iÞ*, for a five degrees-of-freedom

mass-spring system are :

Â. : diag { 50, 100, 200, 400,800 }

and

o 0.3
-0.1
-0.1

We wish to determine physically realisable M and K which have dynamic

characteristics as close as possible to the above desired properties.

There is no exact solution for these data since if we use equations (2.7) and (2.8),

we obtain

0.2 -0.4 0.r_
0.2 0.1 0.30.1 0.1

0.2 -0.40.1 -0.r_

0.r_ -0.1

0.1 -0.1_
0.1 0.1-

0.1_ -0 .3
0.3 0.2

M - (þ*-r(Þ*-r -

K = Õ*-rÀ*Õ*-t -

6.6406
-4 . 55r_5

1.0830
-4.7 646
2 .7 31,0

2216.L
-2100.0

230.0
-1,446 . B

476.9

-4 .551_5

13.5005
-0.3r_95
8.6019

-4 .97 31

-2100.0
63sB. s

-1618 . 1_

2763.r
-r'7 62 .l

1.0830
-0.3r_95
3 .5646

-1- .1-2]-5
1,.021,3

230.0
-1 .6181
l.559 .2
-91_5 .4
352.6

-4 .7 646
8.6019

-t.r2a5
1_4.5886
-1, .587 7

-1446 . B

27 63 .1,

-91,5 .4
2324 .0
-699.3

2 .7 3L0
-4.913'7
r .02]-3

-r .587 7
B .96'7 2

476.9
-L'7 62 .'7

352 .6
-699.3
945.'7

Clearly, both M and K do not have the form required for a lnass-spring system, and

therefore are not physically realisable.
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Since equations (2.7) and (2.8) represent the unique solution to equations (2.3) and (2.4)

we conclude that generally there is no exact physically realisable solution to this problem.

However, we may obtain a physically realisable system with spectral properties that are

close to the required data, by solving the following optimisation problem

Problem 2 ; Determination of a Physicallv Realisable Svstem

Given sets of desired eigenvaluêS {I1", }"2', ..., À". } with corresponding

mass-normalised eigenvectors {Ór., Ör*, ..., Ó,. }. Denote by

iÞ.= [ óil ôr.1...1 ó". ] (2.9)

the column partitioning of iÞ., and let

^.= 
diag( )rr*, ?r2*,..., xn* ). (2.10)

Determine physically realisable K and M corresponding to a discrete

mass-spr¡ng system, with spectral properties iÞ and Ä satisfying eq. (2.2),

such that the norms llo. - oll and lln. - rrll are minimised.

The analysis of this problern is given in section 5. .A. related problem associated with the

reconstruction of physically realisable systems from the incomplete prescribed modal and

spectral data is considered in section 6. In section 7 we define a special form for the mass

and stiffness matrices, and then show how the rnethod developed in section 5 can be

extended to reconstructing matrices of this form.
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2.3 Modilications of the Existing Structurcs to Obtain Desired Spectral Properties.

Analytical rnodels simulate the behaviour of real physical structures. Application of such

models is necessary because we are unable to define the differential equations goveming

the motion for most practical mechanical systems. In order to define these equations some

assumptions about the properties of the real structure, which simplify the analysis, are

usually made. The most common technique used in simplifying the analysis of a complex

structure is to model this structure as a lumped parameter or discrete system. In a lumped

parameter system the structure is divided into a finite number of discrete elements of known

mass, and which are connected to each other by springs and dampers with known stiffness

and damping constants. A designer is then able to estimate the forces acting on each

element and, thus, obtain the differential equations of motion, which then may be solved.

However, the equations derived in this way may still be too complicated to solve in many

cases, and therefore to obtain a solution some other simplifications may have to be made.

A cornmonly used assumption is absence of damping in the structure. Systems without

damping are called conservative systems, because the energy of the system is not dissipated

tluough damping and thus conserved. Assumption of conservative system greatly simplifies

the dynamic response analysis of the system, and in many cases allows a solution to be

obtained which would not be possible otherrvise. This is especially true in applications with

inverse problems.
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The number and severity of these assumptions vary greatly depending on the choice of a

particular model, and also on the level of sophistication to which this model is developed.

However, all assumptions which simplify the analysis of the system also introduce solne

uncertainty in how accurately does chosen model would simulate the behaviour of a real

physical structure. It is well known that the behaviour of all analytical models will differ

to sorne degree from the behaviour of the actual structure. Because of this difference, once

the analytical stage is completed, the design process usually requires to build a prototype

of the structure and then test this prototype experimentally.

A common method for measuring the dynamic behaviour of vibratory systems is modal

analysis testing. The natural frequencies and mode shapes which are measured by modal

analysis represent the actual physical dynamic behaviour of the system. Therefore the modal

analysis data is free from the inaccuracies due to analytical assumptions. If modal anall'sis

tests show that the dynamic behaviour does not meet design specifications, then some

rnodifications to the system would be necessary. The usual approach at present is to adjust

the dynamic behaviour by an experimental trial-and-error process. This process has several

disadvantages. The main drawback is that currently there is no systematic method of

obtaining modifications which produce exactly the desired changes in the spectral

properties. Consequently, if the sought adjustments are relatively cornplicated, the above

process is ill-suited for the task. We want to develop a systematic approach which rvould

allow a designer to calculate the necessary modifications to the structure so that the desired

adjustments in the spectral properties are achieved.
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In developing such systematic approach, there are two choices. The first approach is to use

what is known as a model updating teclnique. In this approach the original analytical rnodel

is modified in such a way that its spectral properties closely correlate with the measured

modal behaviour. This process is carried out by rnathematical rnanipulations using all of the

known data, including the physical and spectral properties of the original analytical model,

measured modal analysis data and the desired spectral characteristics. Then based on the

assumption that the new updated model is now representing the "true" model of the

structure, a designer determines the "corrections" which must be applied to the physical

parameters of the original model. The original system is then redesigned for the desired

dynamic spectrum incorporating these "corrections". The necessary structural modifications

to the prototype are then determined by comparing the redesigned system with the original

one. The mainweakness of this approach isthat it assumes thatthe calculated "corrections"

to the physical properties of the analytical model are constant parameters that can be

superimposed from one system to another. This may or may not be true, and can vary from

one design problem to another. If the modifications to the prototype determined this way

still do not produce the desired spectral characteristics when implemented, then it is difficult

to see what should be the next step. Repeating the above model updating process would not

guarantee any better results, and due to cost and time limitations the procedure can not be

carried out indefinitely.

An alternative approach is to determine the necessary modifications to the structure directly

from the modal analysis data only, without using any of the data from the analytical model.

In this way any inaccuracies due to the analytical model assunrptions are eliminated, since
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only the measured data is used. The modification matrices rnust still have the form

demanded by the analytical model so that they can be translated into actual physical

changes in the structure, but the overall effect of analytical assurnptions is minimised.

However, using only modal analysis data creates an additional problem. This problem arises

from the difficulty in measuring a "complete" set of modal data for many practical

structures. Real physical structures have infinite number of natural frequencies, but due to

time and equipment limitations only a finite number of these frequencies can be measured.

For example, the maximum sampling rate of the available equipment determines the

maximum natural frequency that can be measured. Also, in general, the mode shapes can

only be measured at a hnite number of points and not continuously along the structure.

Fortunately, in most practical engineering problems the design requirements for spectral

properties are restricted to a specified frequency range. This frequency range is usually from

zero to some nlaximum stated value. The spectral properties outside this frequency range

are of no interest to the designer, and therefore no restrictions on them are imposed. For

the problems considered in this thesis we assume that the number of spectral pairs (i.e

natural frequencies and corresponding mode shapes) that are measured is equal to the

number of spectral pairs in the design constraints. The difficulties arising from the

inherently truncated data provided by modal analysis are overcome by formulating optimal

rnodification problems, which are then solved.
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This thesis deals with conservative systems which rnay be modelled analytically by the

generalised eigenvalue problem

KiÞ : MÕ^ , iÞ 
rMÕ : In e.ll)

where K, M, Õ, r\ and n are as defined in equation (2.2). We also stipulate an additional

requirement for the diagonal elements of Â, which is that l,< Iz(...( In.

Partitioning iÞ and r\ in the form :

Õ : [ Õr I Õr ], èÞ, nxmreal matrix, m 1 n (2.r2)

and

^-
fn,-L o 

-l

I o l^,-l
, Â r: diag(¡, 1, ...,I.), (2.t3)

we assume that iÞr, measured at n points, and À, are known from modal analysis tests,

while the submatrices (Þ, and Ä, cannot be obtained by measurements and remain unknown.

Any actual structure will be damped and the measured modes will therefore be complex.

'We assume that the real modes ,Þ, have been extracted from these complex modes by one

of the accepted procedures (see section 3). We also assume that for the low frequency

range, the behaviour of the system is adequately modelled by equation (2.11).

Suppose that a design specification states that the srnallest m eigenvalues should be 1,,', Àr",

..., I.'. Then we rnay ask the following question: If ,Þ, and r\, are known, is it possible

to determine physically realisable rnatrices AM and AK, such that Â.:diag (À,',Àr*,...,À,* )

together with the corresponding rnodal matrix iÞ. satisfy the following equations

(K+AK)Õ. : (M+AM)Q.^. and iÞ.r(M+ÂM)iÞ. : I. ? (2.14)
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Since the truncated modal data rÞ, and Â, do not deterrnine K and M uniquely, it is clear

that (2.14) cannot be satisfied generally.We overcome this difficulty by formulating a

following related optimisation problern, which gives an optimal approxirnation, in some

particular sense, to the solution of (2)$.

Similar to Ram and Braun 146],let us denote the residual matrix Rby:

-R = [(K* tX )A - (M+ AM )úL] (2.rs)

where Â and (Þ are some approximations to the desired -¿l,. and the corresponding iÞ.

respectively. Then we formulate the following problem:

Problem 3; Optimal Modification for Natural Frequencies

Given aÞr, 

^1 
and Â.. Find physically realisable incremental matrices ÂK and

AM such that:

ll lrvl+aru¡-rR ll . is minimised

Subject to õ e span (Õ, ).

(2.16)

The requirement that iÞ belongs to the column range of iÞ,, is needed to make the problem

solvable.

If ll R ll : O, then so is ll lnn+aM)-*R ll. In ttris 
"ur" 

Õ : Õ* and ¡:¡., i.e the solution

of Problern 3 is also the solution of (2.14). When ll n ll is small, the solution of Problem

3 approximates the solution of (2.14). Hence by rninirnising the norm (2.16) we obtain an

optintal approxintation. In fact, the residual matrix R is weighted by (M+AM)'%, this is for
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convenience purposes only. The analysis of this problem is presented in section 8. The

solution rnethods are discussed for several commonly used analytical models (including

mass-spring and finite elements). The irnportant case where the mass and the stiffness

matrices are interrelated is also studied. This analysis may be applicable to the problems

of modifying the axially vibrating rod and the transversely vibrating beam.

When modal matrix iÞ. is also included in the design specifications, the corresponding

optimisation problem becomes:

Problem 4.' Ootimal Modification for Natural Freouencies and Mode Shaoes

Given (Þ,, Â,, iÞ. and r\.. Find physically realisable incremental matrices AK

and ÂM such that:

Problem 4 was studied by Ram and Braun in [a6]. The authors have shown that there is a

farnily of solution to this problem, and that it is characterised by the following equations:

AM =tít(*-r{'-r -J-)*l . v -þitoiro,ol (2.18)

ÃK =*T(*-r^* v-r -¡,)Õl .x -Õitoixo,of

ll 1rU+arU¡'%R ll , is minimised

Subject to O e span (Õ, ).

(2.17)

(2.re)
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where iÞ,t denotes the Moore-Penrose pseudoinverse of Õr, V: iÞ,riÞ*, and X and Y are

arbitrary ntxnt real symmetric matrices.

Tlre family of solutions described by equations (2.18) and (2.19) contains all possible

solutions to Problern 4. However, we are only interested in these solutions which are

physically realisable. In [46] Ram and Braun have discussed the requirements for physical

realisability, but no method was developed for extracting realisable solutions from the

general family described by (2.18) and (2.I9).In this thesis our aim was to develop such

method for extracting realisable solutions, and the its derivation is given in section 9. It was

found that the physically realisable solutions for ÂM and AK are, in fact, independent of

the arbitrary matrices X and Y.
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Section 3 LITERATURE

,SURVEY

The scope of this thesis falls within the field of inverse vibration problents, and a closely

related field in linear algebra known as inverse eigenvalue problems. The inverse vibration

problems have applications, among others, in the areas of design, ntodel reconstruction (also

referred to as systent identffication problems), structural modifications and model updating

of vibratory systems. The design and structural ntodifications problems aim to control the

vibrations of the systems in a desired fashion. The ntodel reconstruction and model

updating problems aim at obtaining an optimal analytical model, which approximates as

close as possible the vibrations of the actual system. The book of Gladwell [1] and two

review papers by the same author 12,31give an excellerf introduction and overview of the

current state of knowledge in the general field of inverse vibration problems, and in the area

of ntodel reconstruction in particular. We draw extensively on the comprehensive material

from these sources.
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3.1 Inverse Problems

The term inverse is used to distinguish these problems from the classical problems in

vibration and in linear algebra, which are commonly known as direct problems. In the

classical direct problems the aim is to determine the behaviour of a system (such as natural

frequencies and/or mode shapes) from known physical properties of the system (e.g. mass,

density, elastic constants, size etc). Inverse problems are concerned with the determination

or estimation of such physical properties from the desired and/or experimentally measured

behaviour. The design problems aim to develop methodical algorithms for determining the

physical properties of a system from the prescribed desired behaviour. In the structural

ntodifications problems the aim is to develop algorithms which use measured modal data

(usually from experimental modal analysis testing of a prototype) to determine the

necessary modifications to the physical properties which produce the prescribed or desired

behaviour. The ntodel reconstruction problems concern with the methods of obtaining the

physical properties of the system from the measured experimental data, while inthe model

updating problems the aim is to minimise the difference between the measured behaviour

and the theoretical behaviour of the existing anal¡ical model.

In the above definition of the inverse problems, the term deterntination refers to problems

where the sought properties can be computed exactly frorn the given behaviour. In these

idealised, essentially mathematical problems the fundamental assumption is that all of the

required data is exact and complete, meaning that it is suffîcient to determine the system

uniquely. The vibration analysis of most engineering problems usually contains a significant
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amount of uncertainty. This uncertainty arises from a lack of detailed knowledge about the

vibratory system itself (narnely the shape of its mass, stiffness and damping matrices), the

desired behaviour (which is usually specified only approximately in terms of permitted or

restricted ranges), and the experimentally measured data (which always contains sorne errors

due to noise, equipment limits etc). Therefore, in most engineering problems the necessary

data is inaccurate and incomplete, thus, at best, permitting only an estimation of the sought

properties.

Most published work in the held of inverse vibration problems (including the material

presented in this thesis) may be classified as a combination of mainly the determínation

approach, with some elements of the estimation approach. Thus, in order to make the

problems solvable and depending on a type of a particular problem, most of the necessary

data (e.g. the shapes of the mass and stiffness matrices, the prescribed natural frequencies

and/or mode shapes, etc) are assumed to be known, exact and complete. At the same time,

the essential physical limitations (such as a requirement that the values of the mass and

stiffness elements must be real and positive, and the inherent perturbations and truncations

in the measured modal analysis data) are taken into consideration.

In [1-3] the inverse vibration problems are categorised according to the type of the

mechanical systems (namely continuous or discrete, damped or undamped), and the type

of tlre prescribed behaviour (namely spectral or ntodal (or both), complete or truncated,

nodal or isospectral). Nodal inverse problerns concern with the reconstruction of physical

properties of the system from data relating to the position of the nodes. The term
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isospectral refers to the studies of distinct vibratory systems that have the same eigenvalues.

Some discussion was also given of applications of the developed system identifîcation

teclrniques to fault detection problems.

The paper by Chu [4] gives a very good, up-to-date review of the closely related field of

inverse eigenvalue problems. Although this paper is not specifically directed towards the

subject of vibration analysis, it contains a substantial amount of information on the latest

developments in this field, especially in the area of desígn and control.

3.2 Inverse Multiplicative Eigenvalue Problem

Of particular importance to the scope of this thesis, is the so called inverse multiplicative

eigenvalue problem QMEP). This problem was first formulated by Downing and

Householder [5] in 1956. Their definition of the IMEP was as follows:

Given a real and symmetric matrix A, determine a real, pos¡tive and diagonal

matrix D, such that the equation

def(A-lD)=6 (3.1)

has prescribed roots

Comparison of the above definition of IMEP with the definition of Problem 1 given in

section 2, shows that the two problelns are identical. In [5], an iterative algorithm for a

solution to IMEP was presetrted, and this algorithm was shown to have a local quadratic
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convergence. When tested on the numerical examples, this local convergence characteristics

of the algorithm was found to be inadequate for a robust solution to Problem 1. A further

discussion of this algoritlln and its performance is given in section 4, where we develop

a solution to Problem l.

Over the following years since its first formulation, the IMEP has attracted interest frorn

several researchers, and a number of papers were published dealing with various aspects

of the problem. The formulation of IMEP was expanded and generalised to include complex

and non-symmetric matrices A and complex diagonal matrices D. Several papers were also

published dealing with the necessary and sufficient conditions criteria for the existence of

a solution to a given IMEP.

Hadeler [6] has defined and proved some sufficient conditions for existence of a solution

to an IMEP. An alternative algorithm for the solution was also presented, along with the

statement of convergence criterion. From the numerical exarnple given in [6], it appears that

the developed algorithm works, but it seems to be more complicated than the method of [5].

Kublanovskaja l7l suggested a general approach to the solution of the so called generalised

inverse eigenvalue problent, of which IMEP was a specific case. However, due to the more

general nature of the problem, the presented algorithm appears to be quite complex. This

algorithm is broadly based on the method of Hadeler [6].
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De Oliveira [8] expanded the results of Hadeler [6] for the sufficient conditions for a

solution to IMEP. The results in [8] allow for the application of the conditions of [8] and

the algorithm of [6] to cases where matrix A is non-symmetric. It was shown that the

results are also valid for the solution to a so called inverse multiplicative perntanent root

problem (i.e the case when D : In). Although the results of [8] are not directly applicable

to Problem l, this paper provides a good explanation to the results of [6].

A major contribution to the analysis of IMEP was made by Friedland [9,10]. In [9], the

author presented a proof of the existence of a solution to an IMEP when both A (which is

not necessarily symmetric) and D are complex-valued matrices, and when all principal

minors of A are distinct from zero. The paper also contains the mathematical proof that the

number of different matrices D (i.e. the maximum number of distinct solutions to an IMEP)

is at most n/. This last result is very important for our analysis of Problem 1, and its

significance is further discussed in section  . In [10] the same author suggested a solution

for an IMEP when A and D are both complex-valued. Since in our Problem 1 the

requiremerf is for both A and D to be real, this solution is not applicable to our analysis.

Dias da Silva [11] extended the results of Friedland [9,10] for the suffïcient conditions to

IMEP for complex-valued matrices, and He Xuchu and Dai Hua [12] continued the work

of Hadeler [6] and De Oliveira [8] to hnd better sufficient conditions for the solution to

IMEP. The rnethod of proof in [12] is similar to Hadeler's. The presented numerical

example illustrates that there exists a solution to IMEP according to the conditions

established in [2], even though conditions given in [6] and [8] are not satisfied. Based on
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this example, the authors conclude that their conditions are better than those of [6] and [8]

However, in general, the sufficient conditions established in [6] are sirnpler to calculate.

Biegler-König [3] defined the sufficient conditions for the solution of a generalised inverse

eigenvalue problem, of which IMEP is a special case. Formulation and a numerical solution

method for this problem was proposed by Kublanovskaja in [7]. While Friedland in [9,10]

has proved some conditions for a complex-valued IMEP, in [3] the author is investigating

conditions for obtaining a real-valued solution. The method of proof is similar to Hadeler's

in [6], and some results of [6] are special cases of the theorems in [13]. The generalised

inverse eigenvalue problem in this paper is defined as follows:

Let A, be real matrices (i=0,1 ,2,...,fr), and a set of prescr¡bed real eigenvalues

{Àj',r12',...,Àr.}. Find a set of real parameters {c.,, cr,..., cn},such that a matrix

A(c) =Ao *ErA,
,t

,=1
(3.2)

has eigenvalues {À1., À2., ,.)

The results in [13] were given for general real matrices A, and a special case when matrices

A, are both real and symmetric. The IMEP may be expressed in the form required by

equation (3.2), by setting Ao:0 and A,: a,e,r çi:1,2,...,k), where ø, is the i'h row vector of

A, and ø, is iü element unit vector (i.e the ift element in e, is equal to l, and all other

elements are zeros). Ho\Ä'ever, the resultant matrices A, will not, in general, be symmetric.

Therefore, itrvas specifically stated in [13] that a general IN4EP described by (3.1) may not

be expressed inthe forln of equation (3.2) if matrices A, are to be symmetric. Inthe review

À
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paper by Chu [4] (see above) eigenvalue problems of the form (3.2) were classified as

parametrized inverse eigenvalue problents (in reference to parameters {c1, c2, ..., c,,}), thus

dropping the use of the term generalised.

Nocedal and Overton [14] gave a summary of the numerical rnethods for solving eigenvalue

problems of the forrn (3.2), and in a subsequent paper, Friedland, Nocedal and Overton [15]

presented a general overview and comparison between the various solution approaches to

this problem. Atotal of four different methods of solution were presented in [15], three of

which were published previously aud one new. The analysis was given for the problems

where the desired eigenvalues were all distinct, and also for the case when there are

multiple identical eigenvalues. A general convergence analysis was carried out for both the

distinct and multiple eigenvalues. The comparison between the four methods was presented,

and a numerical example was given which illustrated the results.

Although the results of [15] were not directly applicable to Problern 1, Joseph [16] has used

one of the methods presented in [15] as a basis for an algorithm to solve what he called

inverse eigenvalue problent in structural design. The author have assumed that the mass and

the stiffiress matrices of a structure, M and K, are functions of n independent structural

parameters {cr, c2,..., c,}, and cornply with the following forrns

a

,t

M(c)=Mo*ErM, (3.3)
,=l

n

K(c) = E, F,
i=l
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Some known results frorn the eigenvalue sensitivity theory were then applied to determine

{cr, c2, ...,c,\ such that the resulting eigenvalues of the system described by M and K were

equal to the prescribed set of desired eigenvalues {I¡', }"2', ...,}",i) @ < n). The method

of [16] is directly applicable to solve Problem 1. Nurnerical testing have shown that the

performance of this rnethod has the same problematic local convergence characteristics as

the algorithm of Downing and Householder in [5]. However, one major advantage of this

nrethod is that it permits assignment of a partial set of desired eigenvalues (i.e when m 1

n), thus allowing application of the method to problems with truncated modal data. Because

of this property, the algorithrn was used as a foundation for our solution to Problem 3.

Further discussions of the Joseph's algorithm and its application to Problems 1 and 3 are

given in the appropriate parts of sections 4 and 8.

3.3 Sensitivity Methods

The eigenvalue sensitivity theory, referred to above, and the associated subject of eigenvalue

derittatives was used extensively in this thesis. In its simplest form, the principle of matrix

derivatives is demonstrated by a following example. Suppose that we have matrix A which

is a function of n independent parameters {c1, c2,..., c,} and can be expressed in the form

of equation (3.2).Then it is clear that

ôA(c)

ô(c)
= A, , i=1r2,...,n (3 .s)
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Matrices Ai are commonly called conneclivity or mapping matrices, describing the

connections of each individual parameter c, or simply defining the grid position of this

parameter within the global matrix A(c). Determining matrix derivatives of A(c) with

respect to parameters ci is a simple process because (3.2) is a linear and uncoupled equation

in c,. In the eigenvalue sensitivity analysis, the aim is to obtain the relations describing the

effect of each of the elements of a matrix on the eigenvalues of that matrix. However,

determining the eigenvalues of a matrix is not a linear process. Therefore, there is no exact

way of describing the effect of a particular element on the eigenvalues. Consequently, most

of the published work on this subject concerned with determining an approximation to these

relations, which are optimal in some way. It is clear that obtaining an accurate relations

describing the effect of an individual structural parameter (i.e mass, stiffness or damping

element) on the natural frequencies and mode shapes (i.e eigenvalues and eigenvectors) is

tlre key to a solution of most problems in inverse vibrations applications to design and

structural ntodffications.

In a review paper on structural modifications problems, Baldwin and Hutton [17] give a

good summary of the literature on eigenvalue sensitivity methods. This paper is primarily

concerned with what may be described as direct structural ntodification problents. These

are problems in which the aim is to determine the dynamic behaviour of a system based on

known changes in the structural parameters and the rneasured behaviour of the original

unmodified structure. The inverse structural ntodifications, where the aim is to obtain the

structural rnodifications necessary to meet specified constraints on natural frequencies and

mode shapes, are only briefly discussed. Ho\Ã'ever, nlost of the theory on sensitivity analysis
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is equally applicable to inverse problems. The material presented mainly deals with

conservative (i.e undamped) systems, and is classified into three main categories. Namely,

tlre teclrniques based on the assumption of small modiJications, these for localised

ntodifications, and finally, techniques using the modal approximation approach.

The techniques for localised ntodifications deal with determining the dynarnic behaviour

of the modified system based on the precise knowledge of the location of the structural

changes in addition to their magnitude. An interesting characteristic of these problems is

that, apparently, the modified behaviour can be determined exactly, although only by an

iterative procedure. In all other categories only approximate solutions may be obtained. In

applications involving inverse problems a major problematic area is how to satisfy the

physical realisability constraints on the necessary modifications based only on the

knowledge of the desired and measured behaviour of the system. Thus, specifying

additional constraints on the exact location of modifications would add an extra layer of

difficulty to what is already a complicated problem. Therefore, in this thesis we have not

attempted to specifically formulate or to solve any of the inverse localised problems.

However, some limited control over the location of structural modifications is possible

under some circumstances in the analysis of sections 6 and 9. The reader is referred to these

sections for further details.

The category based on the assumption of sntall modffications dealt exclusively with the

sensitivity methods. This category was further subdivided into three separate approaches,

namely methods based on Rayleigh's principle, rnethods based on eigenvalue derivatives,
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and finally, methods based on modal perturbalion theory. All three approaches lead to very

similar forrnulations and are discussed below.

3.3.1 Rayleigh's method

Tlie Rayleigh's approach is based on the equation

,ti6 + 
^Igú.þ¡ ,tiM + Alt4){t,

where M and K are the mass and stiffness matrices of the original system, AM and ÂK are

the matrices denoting respectively modifications to the mass and stiffness,

and p, and ttt, are the i'h eigenvalue and the corresponding eigenvector of the modified

system.

It is assumed that, for small modifications, the mode shapes do not change appreciably and

therefore we may substitute úi: ô; into (3.6). Also, applying the orthogonality properties

ó,tKó, : 1., and ó,tMó, : 1 (where I, and þ, are the ith eigenvalue and eigenvector of the

original system), equation (3.6) becomes

t t * ólLKó¡
(3.7)p,

| + þl^Mót

Thus, if AM and AK, and 1,, and @,, are known, then pi can be calculated. Clearly, if the

modifications are not small then the assumption that ry',: @, is not valid, and consequently,

(3.6)

the method should not be applied.
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3.3.2 Eigenvalue derivative method

Thrc eigenvalue derivative approach considers the structural modification problem in terms

of a rate of change of an eigenvalue with respect to a structural parameter change. It rvas

shown in [17] that
a?,".

,

=-oc.
,rI (3.s)

where c, is some jth structural parameter

This relation may then be used in a Taylor series expansion to give a hrst or second order

approximation to the natural frequencies of the modihed structure. Early work in this area

was conducted by McCalley [18] and V/ittrick [19], and, in general, the mathematical

foundations have been discussed by Lancaster [20]. A major treatment of the entire

problem, including the calculation of the mode shapes of a modified structure, was

presented by Fox and Kapoor [21]. In [21] a first-order solution was considered. Tu-o

methods were derived to calculate the mode shape derivatives. The f,rrst method expressed

the eigenvector derivatives in terms of a series expansion in the unmodified eigenvectors

and, hence, required the knowledge of the full modal characteristics of the original structure

(although truncation is possible). A second method expressed the eigenvector derivative

only in terms of the corresponding frequency and eigenvector of thè original structure.

However, although the second method was potentially more attractive, some numerical

difficulties were encountered which prevented its successful implernentation. These

difficulties were eventually solved by Nelson [22].
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Van Belle [23] presented a theory of adjoint structures to calculate the differential

sensitivities of mechanical structures. This work has been expanded by Van Honacker [24]

to derive expressions for the differential, finite difference and frequency response

sensitivities for natural frequencies and mode shapes of a viscously damped vibratory

system. Second-order terms of Taylor expansion are included in the analysis to obtain

expressions for "large-change" sensitivities.

Second- and higher-order solutions have also been investigated by Rudisil 125,26], Muira

and Schmit 1271, Van Belle [28] and Rizai and Bernard [29]. Wang, Heylen and Sas [30]

summarised the developed procedures, but found that the methods based on truncated

Taylor expansions are lirnited in their applications to small modihcations, and that inclusion

of higher-order terms does not always ensure a more accurate solution.

To and Ewins [31] used the closed-form properties of the Rayleigh's method and the

theoretical basis of the eigenvalue and eigenvector derivatives analysis, to develop a

powerful iterative algorithm, which is not restricted to just small modifications. Instead of

assuning that the eigenvectors of a modified system remain unchanged, as in the Rayleigh's

method above, the authors express modified modes as linear combinations of the original

modes. The coefficients in these linear combinations of original modes were termed mode

participation factors. The rnethod involves (starting initially from equation of the form

(3.7)) obtaining an estimate for the modif,red eigenvalues of a system, and then using these

estimates to calculate the mode participation factors. The rnode participation factors are then

in turn used to calculate the better approximations to the modified eigenvalues. The
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procedure is then repeated until convergence is achieved. The authors claim that this

procedure has 'superconvergence characteristics', and that the exact modal properties of the

modified structure may be determined. The effects of modal truncation and sensitivity to

input data perturbations are also presented.

Zinoch [32] used the first-order Taylor expansion to detennine the sensitivity matrices for

the eigenvalues and mode shapes. The effects of the structural modifications on the dynamic

behaviour of the system could then be estimated in a computationally efficient way. The

method could be applied to damped as well as conservative systems. A more accurate

solution may be achieved by inclusion of a second-order term of the Taylor's expansion.

This inclusion does not require any alterations to the procedure, but the penalty is the

necessity to carry out much more involved calculations. In l33l Zimoch applied the method

of [32] to solve an inverse problem. The formulation of his problem is very similar to our

Problern 2, except that no physical realisability constraints were imposed on either mass or

stiffness matrices. Without these constraints a solution can be obtained by a trivial process

described in section 2.2 (see equations (2.7) and (2 8)). However, the motivation of Zimoch

was to develop a more computationally efficient method for determining the changes in the

physical parameters of a system to achieve the desired eigenvalues and eigenvectors.

Joseph [16] (see above) used equation (3.8) to develop an iterative algorithm which solves

an inverse problem, and, in theory, is not restricted to small modifications. The rnethod

required an estimate of the initial values for the structural pararneters {cr, cr.,..., c,,}. Then

the mass and stiffness matrices, M and K, may be constructed via equations (3.3) and (3.a).
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Using equation (3.8) and an example of (3.5), the eigenvalue derivatives were calculated

for the system described by M and K. Application of a Newton-Raphson method using

tlrese eigenvalue derivatives, allowed calculations of better estimates for {c,, e2t...,c,}. This

procedure could then be repeated indefinitely, until convergence was achieved.

3.3.3 Perturbations methods

In the perturbation approach it is assumed that the mass and stiffness matrices of the

rnodified system , M,od and K,ooo , ffid the corresponding eigenvalue and eigenvector

rnatrices, 0 and V, are related to the properties of the original system by

M,noo:M+AM K.od:K+AK

0:Â+AÂ V: iÞ + AlÞ (3.e)

It is also assumed that for small modifications, all A terms are sufficiently small. Thus,

substituting properties (3.9) into an equation of the form(2.2) governing the motion of the

modified system, and neglecting all terms of A2 and higher, it is possible to obtain an

approximate relation between the structural modification AM and AK and 0 and V. The

precise form of such relationship is dependent on the assumptions and conditions of a

particular problem, and thus, are too numerous to be given here.
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The first treatment of the structural modification problem was by Rayleigh [34], who used

this type of approach and derived an approximate solution in terms of modal coordinates

from energy expressions. Jones [35] extended this work to include general perturbations and

derived expressions for natural frequency and mode shape changes. Romstad, Hutchinson

and Runge [36] investigated a variety of more general perturbation formulations using a

power series approach.

Stetson and Harrison [37] have extended the modal perturbation approach to treat the

inverse problem of determining the structural modifications necessary to meet the specif,red

constraints on natural frequencies and mode shapes. The method of [37], uses the results

from NASTRAN hnite element analysis software to determine the analytical model of the

original structure. It then processes these data, taking account of the physical realisability

constraints, to obtain the necessary changes in the thicknesses of the structural elernents.

The aim of the method is to minimise the necessary structural changes, while obtaining the

desired dynamic properties. Sandstrom and Anderson [38] extended this work by directly

relating the physical changes in the natural frequencies and rnode shapes to changes in

structural pararneters.

Sandstrom, Anderson and others [39,40] reported that perturbation approach based on the

linear energy formulation gives good accuracy for natural frequency goals, but is often not

accurate for significant mode shape changes. In [39] the authors have extended the linear

perturbation approach of [37], including all of the non-linear terms in the perturbation

equation. This was done because, as was demonstrated by a numerical example of a typical
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problem, the second-order terms can be as large as the first-order terms. Thus neglecting

second-order terms may lead to large errors, particularly in redesign of mode shapes. In

[40] the authors have developed a non-linear, iterative algorithm, which was partitioned into

two stages, namely the 'predictor' and the 'corrector' stages. The 'predictor' phase is

essentially an improved version of the algorithm in 1371, which gives a first-order

approximation for the required structural changes. In the 'corrector' phase, these

approximations are used to calculate a first-order estimate for the desired eigenvectors.

These eigenvectors are then used in general perturbation equations to find the corrections

for the structural changes. The process is then repeated as many times as necessary to

achieve the acceptable dynamic behaviour. The algorithm of [40] requires precise

knowledge of the physical properties of the original structure (i.e its finite element model)

as an input to the problem.

Zhang, Wang, Allemang and Brown [41] used the perturbation approach to f,rnd an

approximate solution to a problem which is identical to our Problem 3. The method uses

power expansion of a perturbation equation to find the necessary mass modifications so that

the desired natural frequencies are achieved. Results are presented for both the first and the

second order approaches. The input to the problem was assumed to consist of only the

specified desired natural frequencies, and a truncated set of measured modal analysis data.

The method of [41] is applicable to any damped or conservative system, whose mass matrix

is diagonal, and where the mass and stiffness matrices are independent of each other (e.g.

mass-spring system). The algoritlun also allows to control the location of mass

modifications, and an optimisation procedure for the best locations and rnagnitude of mass
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rnodifications is given. However, the method is based on the perturbation approach and its

performance is acceptable only if the sought changes in the natural frequencies are

relatively srnall. Numerical simulations have shown that this method performs inadequately

in a general case, when desired changes are not sufficiently small. Therefore, our aim was

to develop an alternative method which would not have this limitation.

3.4 Modal Approximation Methods

The modal approxìntation methods are based on the assumption that the eigenvectors of the

original unmodified structure form a complete vector basis to describe the motion of any

modified structure. Mathematically, this assumption implies that the eigenvectors of the

modified system belong to the space spanned by the eigenvectors of the original structure.

'We have also used this assumption in our formulation of Problems 3 and 4. This approach

allows us to obtain an approximate solution to these problems, which is àptimal in a

Rayleigh-Ritz sense. Our solutions are based on the theory developed by Parlett 142), and

which is described in detail at the beginning of section 8.

The results presented in sections 8 and 9 of this thesis, are the extension of the work done

by Ram and Braun 143 - 461in this field. In 143 - 461the authors dealt with problems

arising specifically when the necessary structural modifications are determined based on the

modal analysis data, and assuming no knowledge of any other information about the

structure. It was shown by Berman [47], that even under the most favourable laboratory

conditions, there are severe limitations on obtaining modal analysis data which is complete,
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i.e. which completely describes all modes of the system. Therefore, the use of modal

analysis results alone (i.e without any additional information from other sources) inevitably

introduce the problems of ntodal truncation errors. The presence of modal truncation etors

imply that there is insufficient information to find the exact values for the physical

parameters of a system from the measured modal analysis data. Thus, the difficulties arising

from the inherently truncated data provided by modal analysis rnay only be overcorne by

formulating problems for approximate solutions which are optirnal in some specified sense.

Another problem with using modal analysis data, arise when an assumption is made that

a system under consideration is conservative. This assumption of a conservative system was

made in [43 - 46] and also in our formulation of Problems 3 and 4. The eigenvalues and

eigenvectors of a conservative system are real-valued, whereas eigenvalues and eigenvectors

of a damped system are complex-valued. Since any actual structure will always have some

degree of damping, the measured modal data is always complex-valued. In the analysis of

143 - 46] and in our analysis of sections 8 and 9, we assurne that the real-valued modes

may be extracted from these measured complex modes. There are a number of available

methods for such extraction, ranging from complicated mathernatical procedures to a very

simple process of truncating the imaginary part. Zhang and Lallement [48] present a

sunmary of three extraction methods, and describe the comparison of their relative

performance. The application of thethese methods to atest structure showed thatthe results

are sufficiently accurate. However, due to the requirements placed on the input data in two

of the methods, they were judged to be of mathematical interest only. The third method was

considered suitable for engineering applications. In a recent paper by Ahmadian, Gladwell
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and Ismail l49l 1t was shown analytically that a real mode most correlated with a complex

measured mode is the real part of the same complex mode when it is rotated so that the

norm of its real part is rnaximised. Clearly, an assumption of a conservative system is

suitable only for the lightly damped structures. If damping in the structure is not negligible,

then the real modes extracted by any of the above methods are completely different from

the mode shapes of a conservative analytical rnodel. Consequently, large errors will result

from any attempt to correlate this fundamentally different data.

In [43] Ram and Braun used the result of Parlett 142] to formulate and to solve a direct

structural modification problem. The developed algorithm yields an approximate solution

which is optimal in a Rayleigh-Ritz sense. In [4a] same authors derived the upper and

lower bounds on eigenvalues (i.e natural frequencies) of a modified structure based on

truncated modal testing results. In [43] it was shown that a solution which is optimal in a

Rayleigh-Ritz sense provides an upper bound for the predicted natural frequencies of a

modified structure. In [44] a method for obtaining the lower bounds for the natural

frequencies rwas developed, and a procedure for predicting a modal truncation error was

presented. In [a5] the authors obtained bounds on the eigenvectors due to structural

nrodification. In $61 a method developed in [43] was applied to an inverse modification

problem. This inverse problem is identical to our Problem 4. The authors were able to

characterise all possible family of solutions to this problem (see section 9 for the equations

characterising those solutions for AM and AK ). However, although constraints for

physically realisable solutions were stated and an optimisation problem for determining such

solutions formulated, this optimisation problern was not solved and consequently physical
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realisability constraints were not enforced. In section 9 we give an alternative formulation

for the problem of extracting realisable solutions from the family characterised in [a6]. This

alternative problem is then solved, thus complementing the results of [46].

Tsuei and Yee [50] presented a solution for a single parameter modification (either a lnass

or stiffness element) of a conservative system. The rnethod is based on the force response

of the original system, and allows to shift one natural frequency to a prescribed value. Since

the method does not require iterations, it is computationally efficient. However, due to the

coupling between the modes, a prescribed shift in one natural frequency causes other natural

frequencies to shift as well, and these "secondary" shifts are not controllable. Thus, this

method can not be used for assigning multiple (i.e. more than one) natural frequencies. In

[51] same authors extended the results of [50] to applications with damped systems. The

new algorithrn does require iterations, but it is claimed that it converges very fast. Ram [52]

considered the problem of how to enlarge a spectral gap of some vibrating continuous and

discrete systems (including taut spring, non-uniform beam and a mass-spring system) by

introducing two appropriate oscillators at the proper locations..

A different approach to a structural modification problem was presented by Coppolino [53]

The author uses the rneasured truncated modal data and the stiffness matrix from the finite

elenrent model of the original structure to determine the so called residual modal matrix.

The residual modal matrix is obtained by substituting unit load vectors at the location and

instead of the required structural modifications. The measured modal natrix, augmented by

the residual matrix, then describe an exact static response characterisation of the original
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structure due to application of unit loads. This is, in effect, equivalent to obtaining a static

response of the modifìed structure. The numerical example given in [53] for a 1416

degrees-of-freedorn system demonstrated the application of the developed method.

An equivalent vector form of equation (2.2) for a conservative system is

Kó¡ : øi'D,f.þ¡ (3.10)

or, alternatively

¡r1-tKói : a¡2þ¡ (3.11)

where o' and þ,arc the ith natural frequency and the corresponding mode shape of a system.

There are well established methods for calculating õr and ö¡ from the measured

experimental data. Because both sides of equation (3.11) are multiplied from the right side

by ó¡ rþ, is sometimes referred to as the right modal vector.

Zltang, Allemang and Brown [54] have shown that the same information which is used to

extract @' from the frequency response function of a system, ffiây also be used to extract

the so called left modal vector, f,, which is dehned by

f,tM-tK : ø,' t,' (3.12)

The left modal vector is related to the right rnodal vector via

fi: Mói (3.13)

and, assuming mass-normalisation, it can be immediately shown that

EIþ¡=\'o',llj. (3.r4)
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Tlrus, it appears that more than the usual information can be extracted from the

experimental modal analysis results. This additional information can then be used to negate

the inherent incompleteness of the measured data, and thus allow to circumvent entirely the

effects of the modal truncation errors. However, the extraction of the left modal vectors

appears to be very sensitive to noise, and hence it is not clear whether it can be done with

sufficient accuracy in practical applications. Also, unlike the well established procedures

for extracting right modal vectors, extraction of the left modal vectors requires to solve a

set of ill-posed equations of deficient rank, which may lead to additional large errors. If,

on the other hand, the left modal vectors are available and accurate, then they can be

immediately applied to solve problems in structural modifications.

Based on this assumption of the availability of left modal vectors, Bucher and Braun [55]

developed an exact solution to an inverse structural modification problem. Their method

allows an exact assignment of the natural frequencies and mode shapes based on incomplete

modal analysis data, provided that the prescribed mode shapes belong to the space spanned

by the original measured modal vectors. If the prescribed mode shapes do not belong to the

space spanned by the measured vectors, a method for approximate assignment is also

developed, which gives an optimal solution in a least squares sense.

In two recent papers Bucher and Braun 156,571have developed a computationally efficient

optimisation procedure for minimising the vibratory response of a system by structural

rnodifications. This procedure may be applied in cases where only a truncated set of

measured modal data is available, or when a complete set of analytical data is assumed to
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be known. In [56] the authors develop the theoretical basis for their method, and in a

"cornpanion" paper [57] they provide detailed examples of application of the derived theory.

3.5 Model Reconstruction and Model Updating Problems

The work of Gladwell t1-3] (see above) gives a comprehensive introduction to the problems

of model reconstruction, which are also often referred to as problems of system

identification. The book [58] and the recent paper [59] by Friswell and Mottershead give

a review of the current state of knowledge in the subject of model updating.In this section

we only present few results which are of most relevance to the scope of this thesis.

Boley and Golub [60] have reviewed various algorithms for reconstruction of Jacobi

matrices from the knowledge of their eigenvalues, eigenvalues of their principal sub-

matrices, and./or knowledge of some specified elements of the normalised eigenvectors. Ram

and Coldwell [61] found a solution for reconstructing a free-free, multi-connected mass-

spring system (i.e system where none of its springs or masses are attached to the ground,

but where each mass may be connected via a spring element to any other masses) from

known sets of the natural frequencies of the system. The required sets of natural frequencies

ilcluded the original system, and the frequencies of the systems when each of the masses,

in turn, was pinned to the ground, thus restricting its movement. Gladwell and Movahhedy

[62] have obtained the set of the necessary and suff,rcient conditions to ensure positive mass

and stiffness parameters for the three-degree-of-freedom case. Movahhedy, Ismail and

Gladwell [63] have examined the problems associated with reconstruction of such systems
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frorn the experimentally measured data. Ram and Gladwell [64] solved the problem of

reconstructing the finite element model of an axially vibrating rod from the knowledge of

some of its eigenvalues and eigenvectors. The minimum requirement for a closed-form

solution is one eigenvalue and two eigenvectors. However, with this minirnal data the

algorit¡m is very sensitive to perturbations. This sensitivity of the method is decreased if

overdetermined data (i.e more data than is minimally necessary) is used, in which case a

solution is obtained by a least squares approach. Ram [65,66] then extended the method of

[64] to find the equivalent solutions for reconstruction of a longitudinally vibrating

continuous rod and a discrete model of a transversely vibrating beam'

Starek and Inman 167 - 7ll have studied the problems associated with the reconstruction

of non-conservative systems. In [67] the authors have developed a method of solution which

ensured that the mass, stiffness and damping matrices are real-valued, provided that all of

the eigenvalues of a system are complex. In [68,69] the method was improved to ensure

that the matrices are also symmetric, thus enhancing the physical realisability properties of

the solution. In [70] an alternative approach to the method of [69] was presented, which

further irnproved the realisability properties of a solution by ensuring that the obtained

matrices, i' additiol to being real and symmetric, are also positive definite. In [71] the

rnethod has been further developed to include systems with real-valued eigenvalues

associated with overdarnped rnodes.
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3.6 General References

Tlre book of Golub and Van Loan l72l was an invaluable reference for understanding

concepts of linear algebra and matrix analysis. In particular, the algorithm for solving an

orthogonal procrustes problem 172, p.5821formed a foundation for the solution to Problem

2 described in section 5, and a more general Problem 2(b) presented in section 7. A detailed

description of the orthogonal Procrustes problem and the procedure for its solution are

given in section 5.

The physical realisability constraints for the mass and stiffness elements \ryere a major focus

in this thesis. The principal demand for the realisable mass and stiffness elements is that

they must be real and non-negative. Thus, the method for solving a non-negative least

squares problem given in the book of Lawson and Hanson 173, p. 161] was used as a

primary tool in our analysis throughout this thesis. The algorithm for solving a non-negative

least squares problem is also available as a standard function nnls in MATLAB'

Chu [7a] has discussed the effect of the rate of convergency of the two methods for an

inverse singular value problem, which is closely related to the inverse eigenvalue problems.

He found that a quadratically converging algorithm converges fast but locally, while a

linearly converging algorithm converges globally but at a slower rate. Thus it is possible

that the convergence characteristics of an algorithm may be improved by reducing its rate

of convergence. We have successfuly applied this principle in our solution to Problem 1.
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Section 4 PROBLEM 1:

DESIG]Y FOR

I
]YATTIRAL FRE QUE]YCIES

In this section we analyse a solution to Problem 1, which is forrnulated in section 2.I.In

this problem we assume that the vibratory behaviour of a system can be adequately

approximated by the behaviour of a conservative mass-spring anal¡ical model. It is also

assumed that a physically realisable stiffness matrix K and a set of desired natural

frequencies {6,*, 62*, ...,Gin*} are known.

Denoting:

Ä.: diag (1,'¡, À*2, ..., 
^.*n) 

; I*i: crt,*2 ;0;' ì,*, > À"r t...t X*n (4.1)

we wish to find a real, positive and diagonal mass matrix M such that the roots of the

characteristic polynomial

det(K-ÀM):o (4.2)

are the prescribed diagonal elements of Â..

I Material presented in this section has been published in t75l
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This problem is similar to the inverse multiplicative eigenvalue problent which was first

formulated by Downing and Householder [5]. Many authors (eg.[6 - 15] ) have presented

alternative methods of solution for this, and similar, problems as well as some partial

conditions for the existence of real solutions. Most notable work was done by Friedland [9,

101 and Friedland, Nocedal and Overton in [5]. Recently, Joseph [16] has developed a

related method which solves a similar problem to the one studied here. Two of the

algorithms ([5] and [16]) can be applied directly to solve the problem under consideration.

It should be noted that the existing rnethods of solution are based on iterative procedures.

Tlre problem, howeveÍ, caîbe expressed as a system of n equations with n unknowns' The

possibility of finding a closed-form solution is investigated in section 4.1, and a closed-form

solutions are obtained there for two and three degrees-of-freedom systems. It appears

however that this method cannot be effective for high order systems due to the complexity

of the non-linear equations involved. In section 4.2 we describe the requirements for a

practical method of solution and discuss the need of a new algorithm' The new algorithm

is presented in section 4.3. Some numerical simulations are given in section 4'4, artdthe

conclusions are su[lmarised in section 4.5.

4.1 L Closed-Form Solution

Equation (4.2) can be written in the following form:

det (K-l'M) : cr(À-l"rXÀ-¡"-2XÀ-À'3)"'(¡"-À.")

wlrere ì,-¡ (i:1 ,2,...,rt) are the given eigenvalues, and c¿ is some constant.
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We wish to find positive diagonal M such that (4.3) is satisfied. Both sides of (4.3) can be

expressed as polynomials in l" of order r. Equating the coefficients of the two polynomials

will produce n equations with ¡z unknowns. This is demonstrated by the following examples:

4.1.1 A two degree-of-freedom system.

A general two degrees-of-freedom system has the following stiffness and mass matrices

K -v,""r;,,,f ,M = 
[î' :,)

(4.4)

(4.5)

(4.6)

(4.7)

(4.8)

Suppose K and )"1*, )"2 are given. The problem under consideration is to find m, and m,

such that (4.3) holds, i.e

det = cr(I-Ii)(1.-1.;)

Expanding both sides we have

krr-)''m,

k,,

k,,

krr-\'m,

which yields

mrntr?"z - (krrmr+ kr¡nr)?u * (krrkrr- kt")

= o.,ì,? - ü(l.i + À2. )X + a),i l,j

mlnlz = a

krrm, + krrtn, = cr(Ii* Xz.)

krrkrr- k.t2, = uLi ?t|
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From (a.9) cr can be expressed in terms of the given data as:

knk22 - klz
cf,= (4.10)

(4.11)

(4.12)

(4.13)

(4.1s)

^ +^ *
Lt Lz

and (4.7) and (4.8) can then be used to produce a quadratic equation in m, :

k,,^] - c,. (f i + Li) ntz + kzzu = 0

The solutions then are

a()"i+ fJ) t cr21Ài* X;)' -  k,rkrra
m

2k,,

nx

2

ct

t1'l
2

We note that provided the necessary condition k,,k, s ktzz is satisfied, there are two

physically realisable solutions if

o(?,i+ LÐ' , 4krk22 (.Iaa)

one physically realisable solution if

o(Ii+ Li)' = 4kltkzz (4.14b)

and no real solution otherwise'

4.1.2 A three degree-of-freedom system

Suppose
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then sirnilar analysis gives:

A, : m,mrm,

A, : B,mrm, * Brmrm, f Brm,m,

Ar:C,m, +Crmr*Crm,

where

_ krrkrrkrr+ 2krrkrrkrr- krrk]r- krrk?r- krrkr', 
I

l\ lvz lv3

A, = A,()'i * r'* * À;) ; A, =-A{Li}'} + Àixj + }'}}") ;

B, = kr, ) Bz = kr, ; B, = kts, C, = k], - krrkr, )

C, = k?, - krrkr, ) Ct = kr2, - krrkr, .

Solving for m, and m, as functions of mj, we obtain:

c1 A - Brmr(A, - Crmr)

frxz
(crB, - crBr)m,

/ttl
lla

' nlrm,

BrBrclntf - 2B.B43Crnti * (BlLzczq* B2B4:+ A2BtCtcr)ntto ,
çal,l,c] - 2BzAp P,cr+ A,Blcl - nra4rcrcr- B4/rc r-
B3APtCrcr- A2BtA3ct)ntl * (B3B143C.+ By''PtA3C,+ AIC,C)*l -
2B3A1A2C.Crnt, + nll.lCrC, =O

Al

(4.16)

(4.r7)

(4.18)

(4.1e)

(4.20)

(4.2r)

(4.22)

2

and

Substitution of (4.20) and (4.21) into (4.18) results in the following 6'h order polynomial

trl t1x3
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There are generally six roots to the polynomial (4.22). We may substitute each root into

(4.20) and fînd corresponding ntr. Then (4.21) gives us mr. There are therefore at most six

possible solutions in this case. However, in general, the existence of a physically realisable

solution is not guaranteed.

4.1.3 The general case

li),, Q= t,
pr.(n_p)l

nl
Let

denote the combinations of elements {m,,mr,...,hxn} taken p elements at a time without

repetitions, and let

n!

pt(n-p)t

denote the products of the elements in these combinations

Then for a general nxn system (4.2) can be written as follows

il\i); n= t,

det (/r - \JVr) = ¡" il ."" 
[å 1o.,,l:)

nII n-l )tl
(4.23)

+)'

where G o (i:1,...,n-1) are constants and are explicitly determined from the elements of K.

Ðlo,"r(î )J
+Go =0
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Similarly we may write

o(À - IiXÀ. - U)..'.(1. - f,l) = crÀ" * s.Fr)""-t * g,Fr2""+ * "'
"'+aF,,-r?"+aFn=0

(4.24)

where the coefficients F, (i:l,...,n) are constants and can be determined from I¡", Àn

(4.2s)

Therefore equating the coefficients of (4.23) and (4.24), we have following system of n

equations in r¿ unknowns (rz, , '..,ilx,,)'-

, =+ =rt(;)

dFt =h1o,,"il(,:,))
n

PGil
Gn-p qaF

n
E il n-p
q=1 )J

dF.-, =hlo,"tt(î )l

It is difficult to determine a solution to these equations when ru is large (we were unable

to lrnd a solution for the 4x4 case using a syrnbolic manipulator!). Friedland in [9] found

tlrat there are atmost yt / different solutions for the general problem. However, the existence

of a physically realisable solution is not guaranteed. Also, in practical engineering designs,

it is likely that the desired natural frequencies would be permitted to have some finite

tolerance ranges. Thus any solution that would fall within these tolerallces, would be

suitable. The method presented in section 4.2 requires that the values for the desired natural
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frequencies be specified precisely, and then allows a finite number of possible solutions to

be obtained. Approximate solutions cannot be obtained by this method.

4.2 Existing Methods

Two of the ¡rethods of solution for the inverse multiplicative eigenvalue problem, namely

Downing and Householder (from now on D&H) [5] and Joseph [16], can be applied

directly to the problem investigated here. Both methods are iterative, and have a local

quadratic convergency. Thus, they do converge when the starting point is sufficiently close

to a local solution. If they converge, the solution is obtained with a small number of

iterations. However, if the starting point is not sufficiently close to a local solution the

iterative algorithrns may diverge or oscillate about the true solution.

Chu in [74] has discussed the effect of the rate of convergency of the two rnethods for a

closely related inverse singular value problem. He found that a quadratically converging

algorithm converges fast but locally, the linearly converging algorithrn converges globally

but at a slower rate. Thus it is possible that the convergence characteristics of an algorithm

rnay be irnproved by reducing its rate of convergence.

A further consideration about the suitability of the two currently available methods was

made based on the physical realisability criteria for the solution. In order to satisfy the

pþsical realisability criteria, any obtained solution (i.e mass matrix) tnust be real, positive

a¡d diago¡al. Although both methods ahvays satisfy the diagonality requirement, the
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algorithm of Joseph may converge into a complex solution. The D&H algorithm, on the

other hand, if converge, would always converge into a real and positive solution. Thus, the

D&H algorithm was chosen as a basis for a new algorithm, and it is summarised below:

Algorithm 4.1; Downing and Householder Method

tnput: Stiffness matrix K and eigenvalues matrix 
^. 

.

Algorithm:

1) Choose an initial guess for a diagonal, positive-definite mass matrix Mo.

2) Set iteration index t=0.

3) Calculate the spectral decomposition:

M;nK M;n = Ut^,Utr

where Â, = diag()"r,\.,..., Àn), À,>L>...>Àn is an eigenvalue matrix, U, is an

nxn orthonormal matrix (i.e U,U,r=|") and ln is the nxn ident¡ty matrix.

4) Calculate the real diagonal matrix 2,, satisfying: Â,:Â.(ln+1,¡

lf the elements of Z, are sufficiently small, then stop.

5) Solve a system of linear equations:

Ë lr,,l' d.o= ,, (l= l, ..., n)
j= t

where u¡¡ ârìd zä are elements of U, and Z, respectively.

6) Set D,=diag(drr, ..., dnn).

7) Calculate the next iteration for the mass matrix :

M,*r=(ln- 0.5Dt)-2M

8) Set iteration index t= t+1, and repeat from step 3.

Output (if converges): Real, positive and diagonal mass matrix M.
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4.3 The New Algorithm

Suppose that steps 1 to 3 of the D&H algorithm were carried out. Then, the spectral

decomposition

M,-ÉKM ,''^ : U, Â rUrt

is known.

Define R as follows

then

R: U. A-'AA;y-TJ: ,

R U, L,(J:R = (J, L* U,'

(4.26)

(4.27)

(4.28)

which means that the eigenvalues of RM,-%KM;ÉR are the diagonal elements of Ä.. Thus,

if R is real and diagonal, then an exact solution for the mass matrix M:M,*, is given by:

M,*, : Rr M, R*l . (4.29)

But in general R is not diagonal, and consequently M,*, would not be diagonal either'

Horvever, if u,e could find a real diagonal matrix, which is close to R in some sense, it may

obtain an approximation for M,*r. Therefore, we define the following optimisation problem.

Given R as irz (4.27). Find areal diagonal matrixD,such that the residuql ewor:

r=ll R-Dll'o (4.30)

is minintised.
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Applying the equality:

llR -Dll'o = trace(l?k) +trace(D'D) -2trace(DrR)

tlren for any matrix R of (4.27) and using the fact that D is diagonal, e is given by:

(4.31)

(4.32)e = trace(R 3) * flr,l - 2d,Í,,f
i=l

n n

(4.33)

where d,, and rii are the diagonal elements of D and R respectively. Then from (4.33) it is

clear that e is minimised when

d;¡: f¡¡ (4.34)

Thus, the residual error e is minimised when the diagonal elements of D are equal to the

diagonal elemerrts of R. Applying this result, the approximation for the mass matrix M,*,

is equal to D-2M,. The following iterative algorithm is then proposed:

Aloorithm 4.2: The New Method

lnput: Stiffness matrix K and eigenvalues matrix 
^..

Algorithm:

1) Choose an initial guess for a diagonal, positive-definite mass matrix Mo.

2) Set iteration index t = 0.

= trace(R ?) * Eld,, - r¡¡l Er,?
,=l i=l
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3) Calculate the spectral decomposition:

M ;%KM i% = U, Â,U,t

4) lf the norm ll ,f. - 
^.11, 

is sufficiently small, then stop.

5) Calculate R = Ut 
^-''á^ 

t-l'Ut

6) Form a real diagonal matrix D from the diagonal elements of R.

7) Calculate the next iteration of mass M r*,=D-2M ,

8) Set iteration index t = t+1 and repeat from step 3.

Output: Real, positive and diagonal mass matrix M.

This algorithm and the two existing methods were tested on some numerical examples, and

their performances were compared. It appears that the new algorithm is linearly convergent,

and thus, in general, a significantly larger number of iterations is necessary than with the

two existing methods. However, this disadvantage is balanced by a better global behaviour,

in the sense that it usually converges to a solution even if the initial guess is not close to

an actual solution. This relation between the rate of convergence of an algorithm and its

convergence characteristics is similar to the one described by Chu in [74].

In all numerical examples tested, the new algorithm has converged into an optimal local

solution. Furthermore, the diagonal elements of D are always real, and as a result M is

always real and positive.
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4.4 Numerical ExamPles

The algoritþms were tested with various combinations of K and r\.. As expected, the

parameters that have the most significant influence on the performance of the algorithms

are the initial guess for the mass matrix. We present here the results of the numerical tests

for one combination of K and r\., for several different initial guesses.

consider the 10 degree-of-freedom system, with stiffness matrix

K=

200

-10
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-5

-5

-10

0

0

-50

-50

-10

100

0

0

0

0

20
-10

-20

-10

20
0

300

40
-30

-60

-10

0

20
-10

-5

0

40
400

-30

40
-50
:20

-10
:70

-5

0

-30

-30

150

-10

-5

-5

20
0

-10

0

-60

40
-10

250

0

0

-0
-80

0

20
-10

-50

-5

0

t20

-5

0

-10

0

-10

0

-20

-5

0

-5

250

0

-100

-50

20
20
-10

20
0

0

0

350

40

-50

-10

-10

-10

0

-80

-10

-100

-40

400

V/e wish to find a positive-definite and diagonal matrix M, such that the eigenvalues of the

system are the diagonal elements of :

Ä. : diag (500, 450, 400, 350, 300, 250, 200' 150, 100, 50)
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Define

E, : ll Â-- Â,11, (4.3s)

where t is an iteration index. E, is then equal to the maximum difference between any two

corresponding elements of Â. and Ä, , and thus measures the accuracy of the solution. The

results of six tests are presented here. The initial conditions are shown in Table 4.1.

Tesl
No.

Diagonal Elements of
the Initial Guess, M o

Diagonal Elements of the À o Residual

Eo

l, l, 1, I, I, I, I, I, l, I 507 2, 415 4, 364.6, 335.4, 231 2,

2063, 160 6, 129.1, 108.4, 6l 8

688

2 1,2,1,3,1,4,1,5, l,6 369.5,313.0, 191.1, 165 I, t39 5,

97 5, 83 5, 52 6, 48 0,22 6

208 9

J t, 1, 1,2, 1, l, 1, 1, 4, 4 345 3, 271 8, 245 6, 211.5, 201.4,

145 2, 116 6, 93 0, 87 8, 39.3
178.2

4 4, I, 10, 3,2, 2,2, 2, 4, l0 l51 8, 130.5, 124.1, 107 3,889,
73 6, 52 8, 49.7 , 31 4, 15.6

348.2

5 'I ,1,1, 1,1,1, 1,1,4,4 428 1, 344 2, 267.2, 226.7, 202.7,

145 5, 120 6, 93 2, 88.6, 40.7
t32 I

6 I 5, 05, 35, 1 0, 0.5, I 0, 0,5, 05, I 5, 35 522 9, 443.0, 312 5, 266 4, 245.2,

234 6, 171.9, 138 6, 94 1, 46 5
875

Table 4.1: The Initial Conditions

Figure 4.1 displays the results from the first twelve iterations of each algorithm. The

logaritlrmic scale in this figure shows that the new algorithm converges linearly. Table 4.2

shows the obtained solutions for the various algorithrns. The criteria used to terminate

iterations was either when Et > 104 (i.e algorithm diverged), or when E,*, - E. < 0.01 (i.e

algorithrn converged).
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Figure 4.1 : Residual (Er) \'s fteration Number (t) plot for the first 12 iterations
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l'est

No.
Method to

Convergence Matrix, M,
( given to 2 decimal places only)(r)

Dragonal Elements of 
^r

(given to I decimal place only)

Kesrdual

Er

D&H Diverge

Joseplì lJrverge

New Method 4¿> u.ou, I öu, u.yb, u.y), u /),
I 10, 0 83, 0 68, r.03, I t6

)fJ4 ð, 4)l 4,4U1.U, 3>!.1, ¿9+.t,
2s4.9, 201 4, tst 2, 94 8, sO 7

5.J

2

No
Convergence

Drverge

ì 13 0 56, 0 99, U 74, t.27, O 46,
1.t8, 0.375, 1.80, 0 77, 3 27

500.4, 450 6,399.9,35t.6,297 E,

251.3, 197.5, 149 9, 99.9, 50.5
2.5

3

D6¿.H No
Convergence

Joseph NO

Convergence

New Method
0.65, 0.62,0.58s, 3 64, 3 58

50u u, 45u u, 4uu.u, J)u.u, JUU u,

250.0,200.0, 150.0, 100 0, 50.0

U.UUI2

4

D¿øH 9 t.Jb, u.2ô, J.24, U 90, O.49,
0 75, 0.51, 0.58, I 43,2.97

5UU U, 45U U, 4UU U, J)U U, JUU.U,

2500,200 0, 150.0, t00.0, 500
J.y x
l0{

JOSepn 4 f hys¡cally unreal¡sable llll zeros 50u

New Memoo 396 I 36, U.33, 3.13, 0.93, 0 ó0,
0.63, 0.49, 0.57, 1.13, 3.16 249.9,200.1, I50 0, 100.0, 50.0

5

D ö¿. 17 Diverge

Joseph 6 0 83, 0.34, t.73, t.29, 0.31,
0.6t , 0 50, 0.65, 3.71, 3.36

500.0, 450 u, 400 0, 35u.0, 300.0,

250.0, 200.0, 150.0, 1000, 50.0 0 0017

New Methoo ¿t>ô 0.58, rJ.óz, U.74,0.89, O.52,

0.93, 0.50, 0.65,3 62,3 57

500 0, 450 l, 4uu o, 35u 0, 3ou.l,
250 r, 199.8, l 50 0, I 00 0, 50 0

02

6

Dõ¿.H Ll>, u.2t, J Jb, u.y+, u.4J,
0.86, 0.38, 0 59,2.16,279

500 0, 450.0, 400.0, 350 u, 3uu.0,

2500, 200.0, 1500, 1000, 500
37 x
l0r

Joseph ) | .JO, U.J), J ZJ, l.Uö, U.Jð,

0 71, 0.48, 0.53, 1.44,2.99
500.0, 450.0, 400 u, 350.0, 300 0,

250.0, 2000, r500, 100.0, 500
U.UUUó

New Mgthod 2t3 I I 4s, O 43, 3 62, t.43, O 35,
0 67,0.42,0 54, 12,235

500 0, 450.0, 400 0, 350 0, 300 u,

2500, 200.0, 1500, 1000, 500
0 0t03

Table 4.22 Obtained Solutions

In test no.l the D&H and Joseph's algorithms both diverged from first iteration onwards.

The new algorithm achieved first iteration with E,:35.7 and converged to an approximate

solution with Eorr:5.3 after 425 iterations. In test no.2 the Joseph's algorithm diverged from

first iteration onwards. The D&H algorithm has neither converged nor diverged. It

exhibited oscillatory behaviour about the solution. The closest point reached by the
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algorithrn was at E,,:17.0 after 72 iterations. The new algorithm achieved E':49.8 ,

Er:23.5 and converged at E,rr:2.5. In test no.3 both D&H and Joseph's algorithms l'lave

shown an oscillatory behaviour for the first few iterations and then began to diverge frorn

t=2 and t:10 respectively. The new algorithm achieved E,:19.1, Er:13.3 and converged

at E,oro:0.0012. In test no.4 the D&H algorithm converged quadratically at t=9' The

Joseph's algorithm has also converged, but not in the desired direction (refer Table 4.2 and

Figure 4.2).The ¡ew algorithm achieved E':14.4, Er:8.5 and converged at Ernu=l'8' In test

no.5 the D&H algorithm diverged from the second iteration onwards, the Joseph's algorithm

converged quadratically after 6 iterations, and the new algorithm achievedEt:29.1,8r:22.7

and converged at ¡,rrru:Q.Z. In test no.6 both the D&H and Joseph's algorithms have

converged quadratically after 7 and 5 iterations respectively, and the new algorithm

achieved Er:20.1, Er:l8.3 and converged at Er,rr:O'O1

Thus we note that in some of the above examples the new method performs better, in terms

of global convergency, than the existing algorithms.

4.5 Conclusions

I1 this section we considered the problern of selecting the masses of a mass-spring system

to achieve the desired natural frequencies. A closed-form solution for a two and three

degree-of-freedom systems was given, but it appears impractical to obtain sirnilar solutions

for high order systems. Two existing iterative rnethods were then examined uumerically,

a¡d found to have a local quadratic convergency. A new iterative method was then
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suggested, and numerical simulations show that it has better global convergency, but at a

slower rate. Similar behaviour has been observed by Chu in 174] for a closely related

inverse singular value problem. Perhaps the best strategy is to begin iterations with our

method, and then switch to a quadratic method once within a proximity of a solution.

Although D&H method was selected as a basis for our algorithm, the method of Joseph is

better suitable for problems where the desired natural frequency spectrum is incornplete (i.e

less than n desired natural frequencies are specified) or for systems where mass and

stiffness matrices are not independent of each other. Therefore, in section 6, where we

analyse a problem of structural modifications to achieve prescribed natural frequencies, it

was more convenient to base our solution algorithm on the method of Joseph.
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Section 5 PROBLEM 2:

DESIG]Y FOR ]YATURAL

FREQUE]YCIES A]YD

MODE SHAPES
2

In tlris section we present a solution to Problem 2, which was formulated in section 2.2.In

Problem 2 we wish to determine mass and stiffness matrices M and K corresponding to a

physically realisable mass-spring system, such that its modal and spectral properties,

described by the modal matrix iÞ and the spectral matrix L, are as close as possible to the

prescribed modal and spectral matrices iÞ* and Â..

V/e realise that the two problems of determining iÞ and Â corresponding to a realisable

system can be solved separately. Also note that satisfying equations (2.3) and (2.4) is a

sufficient condition for equation (2.2) to hold.

2 MaLerial presented in this section has been accepted for publication in
the ,Journal of Sound and Vibration, reference 176).
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Consider now the problem of determining the optimal mode shape matrix iÞ,

Problem 2,1.' Determination of Mode Shapes

Given iÞ., determine iÞ such that M = iÞ-riÞ-r is a diagonal positive

definite matrix, and which minimises the norm llo. - o ll .

We analyse this problem in section 5.1. Once the solution iÞ is found, we solve the

following problem

Problem 2.2.' Determination of Eigenvalue Matrix

Given .¿t.. and iÞ, determine Â which minimises the norm llrf. - ,t ll ,

such that l(: ç-r¡Õ-t satisfies the properties given by (2.6).

We present the global optimal solution to this problern in section 5.2. Determining the

global optimal solution is computationally expensive. We therefore present another, local

optimal approximation in section 5.3. A numerical example demonstrating the algorithms

is presented in section 5.4, and conclusions are drawn in section 5.5.

5.1 Mode Shape Optimisation.

Let D : diag (d,, dr, ..., dJ, d,+0, and let Q be an orthonormal matrix, that is, QQt: I..

If Õ: DQ, then the mass matrix M obtained by equation (6) is physically realisable, since

M : iÞ-riÞ-t : (D-texetD-t) : D-2 (5.1)

is a positive definite diagonal rnatrix.
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Thus asolution to Problern 2.1 can be obtained by determining adiagonal matrix D and an

orthonormal matrix Q, such that

ilö llo. - DQ ll (5.2)

In solving this problem we will make use of the following result. Given two nxn rnatrices

A and B, the well known orthogonal Procrustes problem, is to determine an orthonormal

rnatrix Q, such that

ru ll a-nQ ll, (5.3)

An algorithrn for solving this problem is given below (see e.g. Golub and van Loan f72,

p.5821)

Algorithm 5,1.' Orthoqonal Procrustes Problem

lnput: Two nxn matrices A and B.

Algorithm: 1) Set C : BrA

2)

3)

Compute the singular value decomposition C:UÐVr.

Evaluate Q:UVr.

Output: Ofthonormal Q, which solves (5 3).

Thus we may choose a diagonal matrix Do as an initial guess and obtain an orthonormal Qo

which minimises llO. - DoQollr, by using Algorithm 5.1. We now show how to obtain a

matrix D, such that

llo. - u,eo ll. < llo. - noeo llo. (s.4)
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The Frobenius norrn is invariant under orthonormal multiplication. Hence

llÕ. - D,eo ll, : llÕ.eo' - D, llr,

Define

and denote

Using the equality

we find that

R: iÞ*eor,

e = ll R - D1 ll2n

llR - Dr ll2r = tace(Rk) * trace(D{D) - 2 trace(D{R) (s .8)

(s .s)

(s.6)

(s.7)

(5.e)e = trece (R 1R) . E I fi- za,,r,,)
n

j= I
n n

(s.10)

where D, : diag (d,,) and R:[ ri¡ ]. Then from (5.10) it is clear that e is minimised when

d¡¡ : r ¡¡ (5.1 1)

Thus, the residual error e is minimised when the diagonal elements of Dt are equal to the

diagonal elements of R. Having determined a diagonal matrix Dt satisfying (5.4), we can

reapply the Algorithm 5.1 with iÞ* and D, as an input and find an orthonormal matrix Q,

such that

llo. - D,e, ll. < llÕ. - D,eo ll, . (5.12)

Continuing in this manner iteratively, we obtain an approxirnation to the Problem 2.l. The

following algorithm summarises this result.

= trace(Rk) * El d,,- ,,,]' - D, rij=1' ' j=l
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Atgorithm 5.2: Approximate Solution to Problem 2.1

Input: An nxn modal matrix iÞ..

Atgorithm: 1) Set initial guess Do and a tdlerance for convergence €.

2) For i=0, 1,2, ...

a) Evaluate C:D¡r(Þ..

b) Compute the singular value decomposition C:UÐVr.

c) Evaluate Q ¡: UVr.

d) Obtain R:iÞ.Q.r.

e) Di*r = diag (r.,., , r22, ..., rrrn).

Ð Test convergence

(i) Set N, = llÕ. - D,e, ll ,, N, = ll Õ. - D*,Q, ll ,.

(i¡) lf (N1 - Nr) < e , go to 3.

3) D:D,*r,Q:Q'.

Output: A diagonal matrix D and an orthonormal matrix Q which approximate the

solution of (5.2).

It follows from (5.4) and (5.12) that llO. - U,Q, ll o ir a monotonic non-increasing

function of an iteration index i. The Algorithm 5.2 thus necessarily converge.

The geornetrical interpretation of the Algorithm 5.2 is also clear. The stage of calculating

Q, is equivalent to finding an optirnal rotation of the tnatrix D, into .Þ.. The subsequent

stage of deterrnining D¡*r is equivalentto projecting the column vectors of iÞ. onto the axis

defined by the column vectors of Q,. This roÍation-projection procedure is then carried out
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until an optimal combination of D and Q, which solves (5.2), is achieved. Note that

problem (5.2) itself can be described geometrically for a two- and three-dimensional space.

Figure 5.1 shows an equivalent geometrical problem to (5.2) in a two-dimensional space.

Given two vectors i, and ùr.

1jr Find two orthogonaì vectors t,'

and îr', such that the sum

1Ã,+Ãr¡ is minimised.

U"

Figure 5.1: Geometric problem equivalent to (5.2) in a two-dimensional space.

5.2 Global Optimisation for Eigenvalues

Using the method described in section 5.1, we obtain a matrix iÞ : DQ, which satisfies the

physical realisability criteria for M while minimising llO. - UQ ll r, I" this section we will

use this result to obtain a physically realisable K which satisfies equation (2.4) while

minimising llrt. - ,t ll .

û

Ã)
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Tlre physical realisability criteria for the connectivity of K, as described in(2.6), arise from

the requirement that the stiffness of all the springs in mass-spring systems must be non-

negative. Thus, if we ensure that all the springs have non-negative stiffness, then we

necessarily satisfy the conditions of (2.6).

The stiffness matrix K, may be written in the following forrn

n- n

K= E E 'onB)?
(s. 1 3)

p= 0 q= p+l

wlrere srn is the stiffness of the spring connecting rnass p to mass n, sop represents the

stiffness of the spring which connects mass p to the ground, and Bno(K) is the matrix

describing the spring connection between mass p and mass q,

B;? = [rJP] =

ulf = uff= t
u|f;= øff= -t
u{," = o elsewhere

Substituting equation (5.13) into equation (2.4), we obtam

, (p+q). (s.14)

n-I n

^- p= Q q= p+l

Each of the ij-th element of Â is thus given by

E E s,o{arn}f,a¡ (5. 1 s)

n-l n

E E son{offiÖr)
p= Q q= p+l

L.. =tl
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Let N: Vz(n2+ n) and construct the vectors

yK: (yr(K), Yr(*), ..., y^(*))t: (xrr, Lrr, )"tr, '.., x,n, )trr, )rrr, ..',Lrn, Irr, ..', Ànn)t (5.17)

and

x :(x1, x2, x3r..., XN )t :( sot, s¡2, S¡3, ..', Sln, sg2 , s23, ..,, S2n, sg3, ..', snn)T. (5.18)

Denote

FK Ff)
Ay

(rq

(ij = t,2,..., N) (s.1e)
ôrr"j

then all the elemerfs of F* can be evaluated using equation (5.16). Equation (5.15) can be

written in a vector form

Fxx:Yx (5.20)

In order to satisfy the physical realisability criteria we require all the elements of x to be

non-negative. Setting .À:-À" we may determine the vector y* and solve the following non-

negative least squares problem

T¡n ll 
r" * - y" ll2 , subject to x Þ 0. (5.21)

An algorithm for the solution of this problem is given in 173, p.161]. (The standard

MATLAB function nnls solves this problem). Thus the stiffnesses .ç/e can be obtained from

the solution x of (5.2I), via equation (5.18), which in turn determines the matrix K by

(s, 1 3).

The above process gives an optimal solution to the eigenvalue matrix optimisation problem,

because it is the best positive solution in a least square sense. We note that in order to

obtain a solution for the n degrees-of-freedom system, we need to solve an augmented
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system (5.21) of dimension N. This is a computational barrier, and an alternative approach

is presented in the next section.

5.3 Local Optimisation for Eigcnvalues.

Alternatively, the stiffness matrix K rnay be obtained by a local optimisation procedure.

Setting .À : Â* and multiplying both sides of equation Q.$ by iÞ-1, we have

iÞrK:^.Õ-l . 6.22)

Denote

A: Â.iÞ-1 (5.23)

and partition A and K as follows

A: I atlazlorl.... la,], (5.24)

K: [k, I k, I k, I .....1 k" ]. (5.25)

Then from equation (5.22), each column of A is given by

,Þt\:o, 0:1,...,n). (5.26)

We now show how to solve equation (5.26) column by column sequentially. The stiffness

rnatrix K for a general mass-spring system of order n has the following form

K_

kn

-k^

-ktr.

-ko,

-k.TN

-k ẑn

-k 5̂n

-kon

-kr, -kr, -kro

kr, -kr, -kro

-kn kr, -kro

-ko, -ko, koo
(s.27)

-krt -knz -krs -kn¿ krn
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and physical realisability requires that

(a) k,: : \, ) 0 , for all 1< ijln, and

(s.28)

(b)

The physical parameters appearing in the first column of K can be approximated by solving

io,, , o (i=r,2,...,n)
i=1
í+j

k..
u

ii lliÞ'k, - ø,ll , subject to G(l)k, > o (5.2e)

where Gtrl

1111
0-t 0 0

00-1 0

00 0 -L
Gtrt t Rnttl

1

0

0

0
(s.30)

00 0 0 -1

Then setting

z, : G11¡k1 (5.3 1)

and

E -- <þrG -1
(1) (s.32)

(1)

we find that (5.29) can be transformed to the standard non-negative least squares form.

min ll F,q1¡\ - ø, ll , subject to z, à 0. (5.33)
zr

Tlre solution z, of (5.33) then determines the physical stiffnesses in kr, as shown

k, : G,,irzr. (5.34)
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In a similar manner the physical parameters appearing in \, the jth column of K, can be

approximated. By the symmetry of K the first fi-l) elements in the j'h step have been

already determined in the previous steps. Hence denoting

^ I j-t _lt
Ê, = l-ku, ..., -k¡-, t Ek,¡,0, o, ...., ol

t '=r I (s'3s)

k.
J lo, , o, E¡¡, -k¡*r j, ...., -krÀ' (s.36)

(5.37)

(s .3 8)

(5.3e)

we may write

where \ is known and \ ls to be determined,

Substituting (5.37) into equation (5.26) gives

¿Þrfr, + Þ

Let iÞ be partitioned in the form

k.=k.+k,]TJ

'k.l =g.
J

o= o 6 p(n-j+l) .x r
a

Define

ai =a¡-ú'fr¡ ,

and by truncating the zero elements of the vector \ in iS.:A), set

k; = lE,, 
_k,., j, ..., _k,À

(s.40)

(s.41)

Then a non-negative \. which approximates the solution of equation (5.38) in least square

sense, can be obtained bY solving

ry¡n llÕ',i,\. - "i ll , subject to Gu,\. > 0 (5.42)

\
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11

0

0

11
10 0

0where GU, 0 G ç p(n-j+l) x (n-j+r)
(Ð

''¡ : Gc¡l\-

øioe;|

1 (s.43)

(s.44)

(5.4s)

(5.46)

(s.47)

Denote

00 0 -1

and

E
ç)

tlren the standard non-negative least square form of (5.42) is given by

min llEc¡rz¡ - o; ll, subject to z, > 0.
zj

Solving (5.46) for z, then \" can be obtained by

\.: G,:it'¡ '

This determines the unknown stiffnesses in the jth column of K. Applying this process for

j:2, ...,n evaluates the complete matrix K in a physically realisable form. The following

algorithn summarises the above process.

Algorithm 5.3.'Approximate Solution to Problem 2.2

lnput: A modal matrix,Þ (obtained in section 5.1), and a desired spectral matrix Ä..

Algorithm; 1) Calculate A using equation (5.23) and partition A as in (5.24). This

determines the vectors or, i=l,2,...,î.
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2) Construct the matrix G,r, as in (5.30).

3) Determine the matrix E1¡, using (5.32).

4) Determine the vector zt by solving the non-negative least square

problem (5.33).

5) Obtain k, from (5.34). This determines the first row and column of

K=[k,i].

6) for i = 2,3, ..., ñ

(a) Set the vector \ using (5.35).

(b) Obtain Þ' by parlitioning <Þ as in (5.39).

(c) Determine ø,. from equation (5.40).

(d) Construct Gu, as in (5.43) and calculate Eu, by (5.a5).

(e) Determine z, by solving the non-negative least

square problem (5.46).

(Ð Calculate \. from equation (5.47).

(g) Construct vector [, nV augmenting \. with zero elements as

shown in (5.36) and (5.41).

(h) Obtain \ from equation (5.37). This determines the j-th row and

column of K, without destroying the symmetry of its first (j-1)

rows and columns.

Output: A physically realisable stiffness matrix K which approximates the solution

of Problem 2.2 in the local optimisation sense.

The computational expense of this process is approximately equal to solving ¡z times a non-

negative least square problem of dirnensions r, (n-l),...,1. This is more efficient then solving

an augnellted system of dimension N.

83



Sectìon 5: P¡oblem 2 - Desìgn for Nøtural Frequencies and Mode Shøpes

5.4 Numerical Example

Tlie local optimisation solution obtained by Algorithm 5.3 is not the optimal solution in the

global sense, such as described in section 5.1. It is shown in this section by means of a

numerical example that the quality of solution is not greatly affected.

Consider a solution to the problem described in Example 2.2.1. The desired dynamic

properties, .¿\. and iÞ*, for a five degrees-of-freedom mass-spring system are:

Â.: diag ( 50, 100, 200,400,800 )

and

o

0.1 -0.1

0.1 0.1

0.1 -0.1

0.1 -0.3

0.3 0.2

0.2 -0.4

0.2 0.1

0.3 0.2

-0.1 -0.1

-0.1 0.1

0.1

0.3

-0.4

-0.1

0.1

and we wish to determine physically realisable M and K which have dynamic

characteristics as close as possible to the above data.

It was shown that there is no exact solution for these data since M and K obtained by

equations (2.7) and (2.8) are not physically realisable solutions for a mass-spring system.

We now show how to determine an optimal solution'

Applying Algorithn 5.2, we obtain a diagonal matrix D and an orthonormal matrix Q,

such that Õ : DQ is given bY
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o=

and lliÞ.- iÞ ll, is rninimised.

Substituting Õ in equations (2.7) and (2.8), we obtain

M = diag( 4.5152, 7.3516, 3.2650, 9.3757, 6.8583)

0.t232

0.0578

0.1337

0.1 186

0.3233

-0,0333

-0.0363

-0.0707

-0.2856

0.1725

0.2107

0.1922

0.3292

-0.1045

-0.1021

-0.3988

0.1503

0.1820

0.0061

o.0324

o.0414

0.2680

-0.3767

0.0073

0.0088

and

K=

-146.0

-48.7

-178.5

976.0

-47.9

-240.6

10.5

-135.7

-47.9

506.5

1523.9 -216.2 -392.0

-216.2 4009.4 -1356.4

-392.0 -1356.4 t597.1

-146.0 -48.7 -178.5

-240.6 10.5 -135.7

The rnass matrix M is now physically realisable, whereas the stiffness matrix K is not

realisable. Therefore, setting Å : Â* and applying the global optimisation procedure

described in section 5.2, we obtain the following realisable stiffness matrix

K

15t2.0
_n1'7 .'

-337.7

-t44.3

-245.4

-227.2

40t2.4

-1277.9

-4r.7

0

-337.7

-1277.9

1690.1

-37.6

-36.9

-144.3

-41.7

-37.6

939.8

-69.r

-245.4

0

-36.9

-69.t
454.2
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A mass-spring system corresponding to the mass matrix M and the stiffness matrix K/ is

shown in Figure 5.2.

tu.t

647.1

557.4

Figure 5.22 A mass-spring system corresponding to M and K/.

This realisable mass-spring system has the following modal data

N = diag( 52.8, IOl.2, 214.3, 401.3, 795.2)

6r

This compares reasonably well with the desired properties À. and Õ.

However, the above solution is computationally expensive. Applying Algorithm 5.3 to the

above example, we obtain a physically realisable stiffness matrix

0.0982

0.0267

0.0553

0.0939

0.3538

-0.0265

-0.0165

-0.0273

-0.3087

0.1203

0.2488 -0.3848

0.1995 0.1600

0.3379 0.2010

-0.0488 0.0137

-0.0691 0.0375

0.0335

0.2639

-0.3846

-0.0002

0.0012

41.1

37.61277.9

v vvvv-
69.r 

-r 
102.8a^^ar l,....l,rrrrr

337,7

^^^^^

VVYYTVVVY
2465.6

36.9

245.4
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K

Figure 5.3 shows a mass-spring system corresponding to the mass matrix M and the

stiffness matrix Ktt.

146.0

?33.,1

s29.L

Figure 5.3: A mass-spring system corresponding to M and Ktl

This mass-spring system has the following modal properties

Nt = diag( 62.6, 104.0, 200.5,407.6,821.7)

II

1523.9

-2t6.2

-392.0

-146.0

-240.6

-2t6.2

4009.3

-t356.4

-48.7

0

-392.0

-1356.4

1748.4

0

0

t46.0

-48.7

0

976.0

-47.9

-240.6

0

0

-47.9

506.5

o II

0.0985

0.0251

0.0471

0.0841

0.3578

-0.0314

-0.or74

-0.0255

-0.3116

0.1087

0.2479

0.20t3

0.3384

-0.0474

-0.0661

-0.3838

0.1683

0.1863

0.0161

0.0400

0.0454

0.2574

-0.3927

-0.0028

-0.0021

218.047.9

4t.7

2162

2388.0

392.0

l3s6.,l

215.1
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Vy'e uote that the global optimal solution is slightly better than the local one. They both,

however, lead to essentially similar systems. Table 5.1 shows the cosines of the angles

between the desired mode shapes and the modes of the physical systems which have been

obtained. Let 0 be the angle between two eigenvectors. Then cos(0):1 indicates

identical eigenvectors.

Mode No., j I 2 J 4 5

CosÁ(þ.1,Q,) 0.9885 0.9210 0.9988 0.9586 0.9580

CosL(Q.',þ!) 0.9648 0.901s 0.9852 0.954r 0.9ss8

Cosl(0 ¡,01) 0.9587 0.8948 0.984s 0.9506 0.9s71

Table 5.1: Cosines of angles between the desired mode shapes
and their approximations

'We asked for rnass-normalised eigenvectors. Hence the amplitude ratio between the desired

mode shapes and their approximation is of interest as well. These amplitude ratios are given

in Table 5.2.

Mode No., j 1 2 a
J 4 5

oi ll / ll o.,ll 1.0918 0.861 7 1 054I 0.9688 0.8773

ll oill ¡ ll o. r.0649 0.8346 1.0835 0.9683 0.883 8

ll oill / ll o,ll t.06s7 0.8323 1.0835 0.9605 0.8915

Table 5.2: Amplitude ratios between the desired mode shapes
and their approximations

The results in Tables 5.1 and 5.2 present a good agreement between the desired mode

shapes and the modes obtained.
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5.5 Conclusions

The problem of constructing a mass-spring system with prescribed eigenvalues and mode

shapes has been addressed. This is a non-linear approximation problem since the number

of constraints, the eigendata, is larger than the number of free parameters, the number of

masses and springs in the system.

It is shown that the problems of determining the mass and stiffness matrices can be solved

separately. First, an optimal set of mode shapes associated with a physically realisable mass

matrix is obtained. This is done by a convergent iterative algorithm. Then a physically

realisable stiffness matrix is determined using the optimal mode shapes obtained in the

previous stage.

Two methods of obtaining a physically realisable stiffness matrix have been suggested. One

method determines a global optimal solution in a least square sense. This rnethod involves

non-linear optimisation of large matrices of order N for a problem with n degrees of

freedom. The other method breaks the problem into ¡e sub-problems of small dimensions

and determines a local optimal solution for each sub-problem. The result is a

computationally economical method of solution. It is shown through a numerical example

that both methods lead to similar solutions.
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We note that in the given numerical example, the modal shapes of (Þ, iÞ' and iÞ" do not

have the salne number of changes of sign among the elements of their columns as in the

corresponding columns of iÞ.. Based on this criteria, we may say that the mode shapes of

Õ, Õ' and iÞ" are qualitatively different from the corresponding mode shapes of iÞ.. In the

analysis we used to solve Problern 2, we have optimised the modal vectors to be as close

as possible to the prescribed modal vectors in the Frobenius norm sense, without imposing

the additional constraints of sign changes. Thus, extending the above method to allow for

such sign change control would constitute a signif,rcant improvement to the method.

The results presented in this paper may be applied in designing physically realisable

systems with prescribed spectral constrains, and in identifying realisable systems from

modal test data.
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Section 6 PROBLEM 2(ø):

RECOIYSTRT]CTIO]Y FROM

TRU]YCATED MODAL AÌ{D

SPECTRAL DATA

In section 5 we have considered a problem associated with reconstruction of a physically

realisable mass-spring system from the prescribed set of modal and spectral data. The main

assumption on which we based our analysis is that the prescribed modal and spectral data

are such that the resultant matrices (Þ* and .¿\* are full matrices of size nxn. Thus in section

5 rve have developed a solution to the problem of reconstruction from a complete set of

data. In rnany (perhaps most) practical applications the desired modal and spectral

properties are usually specified for only the first few lower modes, thus leading to a

truncated set of prescribed modal and spectral data. In this section we show how to

reconstruct various models of vibratory systems from such truncated sets of data. Since in

all other respects, apart from the truncation of iÞ. and Â., this problem is identical to

Problem 2, we designate it as Problem 2(a).
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Partitioning iÞ. and Â. in the form :

Õ* : I iÞ,. I iÞr- ], iÞ,. is an nxlreal matrix, I 1 n (6.1)

and

^
^i 0

, Âr: diag(I,., ...,)"i ), (6.2)

we assume that iÞr. and Â,' are specified, while the submatrices iÞr. and .Àr* remain

unknown. Then the formulation of a problern we want to solve is as follows.

Problem 2(a) : Reconstruction from truncated modal and spectral data

Given iÞr'and .i\,., determine physically realisable mass and stiffness matrices

M and K, such that the vibratory system contains modes which are as close

as poss¡ble to the prescribed data.

=[
0 L;

V/e note that the orthogonality relations

iÞr.rM{,r* :1,

and

(6.3)

(6.4)iÞr*rK{,r*: Âr*

are still valid. However, due to the effects of truncation, obtaining M and K which satisfy

(6.3) and (6.4) respectively is not necessarily a solution to Problem 2(a). In fact, there may

exist many different combinations of M and K that satisfy (6.3) and (6.4), but which are

not solutions to Problem 2(a). Thus, in order for us to have a solution, M and K should

satisfy

KÕl* : MOI* 
^r* 

, (6.5)

and, to maintain the mass-normalisation properties, M should also satisfy (6.3).
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As in the method presented in section 5, we realise that the solutions for M and K may be

obtained separately. First, we find M satisfying (6.3), and then determine K such that (6.5)

holds.

6.1 Reconstruction of a Mass Matrix

The mass matrix M, may be written in the following form

n

M = E*,8,''
j=t

b;y 0 elsewhere, p+q

Substituting equation (6.7) into equation (6.3), we obtain

where n1 is the mass of the jth element, and B,(Ð is the mapping matrix. For a mass-spring

model B.(M) is as follows

n|, = løff
øj'= t

(6.6)

(6.7)

(6.8)

(6.e)

(6.10)

n

I, = E^¡QT'n,''ø;

Each element of I, is given bY

I,=lõoof=
õro = | ' P = I
õno = 0 , p + q

Partitioning Õ,. into column vectors as shown

Õi =ltiló,'l óil
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then from (6.8) each elernent ôoo must be equal to
,,

õ nn = E *, O)'n|ÐO|
j= |

Let N: t/z(12+ I) and construct the vectors

y¡{ :(yr@), !z(*), ..., y*("))t : (ôn, ô¡2, ô¡3, ..., õ,r, ôrr, ðrr, '.., õr,, õrr, .'., õ,,)t

and

h : (f[], ffr2t .,.) mn )t

(6.1 1)

(6.r2)

(6.13)

(6.14)

Denote

FM wi')
Ay

(lrÐ

(i = L,2,..., Ni j = 1,2,..., n)
ô*¡

then all the elements of F, can be evaluated using equation (6.11). Equation (6.8) can be

written in a vector form

(6.1s)Flrl m : Yu.

Since Fnn and yr\{ are known, (6.15) can be solved for m, and the mass matrix M can then

be determined from the elements of vector m by equation (6.6).

We note that in order to obtain a solution for the system of size nxl (l<n), we need to solve

an augmented system (6.15) of size Nxn (N: Vz(P+ /)). However, in this case augmentation

is based on the smaller dimension /, whereas number of independent parameters available

for optimisation is fixed at n. Therefore depending on the value of / there are three

possibilities for the solution to (6.15).
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Set r : n-N, then if r>0 there will be a family of solutions for m. This family of solutions

is characterised by the following equation

m : Fnrly* + V.b (6.16)

where Fnrl is the Moore-Penrose pseudoinverse of Fr{, b is an arbitrary vector of dimension

rxl, and V. is a matrix of dimension nxr which is obtained by a following procedure

Calculate singular value decomposition Fnr: USVr, and partition

the nxn matrixY : [V* I V, ], where Vn ls nxN, andY, is nw. (6.r7)

If r :0, then F, is a full square matrix, and there will be one unique solution for m. This

unique solution is

ñ : Fu-tyu (6.18)

And frnally, if r<0, then there are no solutions for m, and only an approximate solution

(which is optimal in a least squares sense) can be obtained by

m:FnrÌyu. (6.19)

However, we also note that in order to satisff the physical realisability criteria we require

all the elements of m to be positive. Therefore, if solutions of (6.16), (6.18) and (6.19) do

not yield positive m, it may have to be determined by solving the following non-negative

least squares problem

mtn
m

ll Fn, - - y, Il2 , subject to m > 0 (6.20)

This will produce an optimal non-negative solution to the vector m in a least square sense.
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The above procedure is summarised by the following algorithm.

Algorithm 6.1: Determination of a Mass Matrix

tnput: Desired modal data iÞ,.(nxl).

Algorithm:

1) Column padition iÞ,* as in (6.10).

2) Set N= %(f+ / ).

3) Construct vectors yM as in (6.12), via (6.9)

4) Form vector m of dimension nx1 as in (6.13).

5) Construct matrix F" using (6.14) and (6.11).

6) (a) lf n > N, then determine m by equation (6.16),

(b) if n = N, then determine m by (6.18),

(c) if n < N, then determine m by (6.19).

7) lf m obtained in step 6 is not non-negative, then

determine m by solving (6.20).

8) Construct M from the elements of m using (6.6).

Output: Physically realisable mass matrix M.

'We note that Algorithm 6.1 can be used to determine M corresponding to any chosen

analytical model, not just for a mass-spring system. All that is required is to use an

appropriate mapping matrix B.(r{) in equation (6.6).
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equation (6.5) becomes

Since (Þ,'and A are known, the stiffness matrix K can be determined. As in section 5, we

may determine both the global and local optimal solutions to equation (6.22).

6.2.1 Local optimal solution

Taking the transpose of (6.22) and using the fact that K is symmetric, we obtain

iÞr*rK: A. (6.23)

Partition A and K as follows

6.2 Reconstruction of a Stiffness Matrix

Setting Ar : MiÞr* r\,*,

KÕr. : 4r.

A: I at I azl øt 1 .... I o,],

K : [k, I k' I lq I .....1 k" ].

Then from equation (6.23), each column of A is given by

iÞ,"tk, : ø, (i : 1, ...,n)

(6.2r)

(6.22)

(6.24)

(6.2s)

(6.26)

Equation (6.26) is identical to equation (5.26), except that matrix iÞr. has the dimensions

of nxl. The same procedure as in section 5.3 can then be used to find a solution for K,

97



Section 6: Problem 2(a) - Reconstruction from T¡uncated Modal and Spectral Data

sequentially column by column. The resulting solution would be a local approximation for

K. However, a general multi-connected mass-spring system of order z¡ has r/z(n2+n)

independent spring elements, while the total number of constraints that need to be satisfied

in equation (6.23) is n times / (and where I < n ).Thus, if / is less than Vz(n+l), then there

will exist a family of exact solutions for K. By selecting a local optimisation method for

calculating elements of K, \rye can only obtain approximate solutions to equation (6.23).

Therefore, in this particular problem, a global approach for the solutions of K appears to

be more suitable.

6.2.2 Global solution for stiffness matrix

The stiffness matrix K for a system with -r independent spring elements, may be written in

the following form
J

K =Et,Bl" (6.27)
q=l

where so is the stiffness of the qth spring, and Bo(K) is the mapping matrix corresponding to

the chosen analytical model for the system. For example, equations (5.13) and (5.14)

describe the K and Bo(K) for a multi-connected mass-spring system of order n, and for such

system ¡:Yrçvf + n).

Substitutine 6.27) into (6.23), we obtain

E "o 
øi'n-$ = .l

q= |
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then each y'' element of A, au, is given by

and

Setting

s : (s1, 52, SJ,

Denote

s(ù -lul'r] = o,.'rÍ" ,

Ist-r q

(q)
b

(6.2e)

(6.30)

(6.31)

(6.32)

(6.33)

(6.34)

a
q=l

Since there are n x/ independent elements in A, in order to obtain a global solution for K

we need to solve simultaneously a system of nXl linear equations of the form (6.30). We

proceed in a similar fashion to the analysis described by equations (6.12) - (6.20).

Let N : nxl and construct the vectors

yK :(yr6), 
Y2(K), , y*6))t : (ew o12t ...t err, e21, ..., e2n, o31, ..., an)T

t¡ U

T
)

Ay
(19

FK wi) (¿ = 1, 2r..., N; j = 1r 2r..., Ð

Fxs:Yr.

ôsj

then all the elements of F* can be evaluated using equation (6.30). Equation (6.22) can be

written in a vector form

Since F* and yK are known, (6.34) can be solved for s, and the stiffness matrix K can then

be determined from the elements of vector s via equation (6.27).
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As in a case of solution to (6.15), there are three possibilities for the solution to (6.34).

Setting r: J -N, then if r> 0 there will be a family of solutions for s. This family of

solutions is characterised by the following equation

s : FxÏyr + V.b (6.35)

where F*T is the Moore-Penrose pseudoinverse of FK, b is an arbitrary vector of dimension

rxl, and V. is a matrix of dimension Jxr which is obtaine by the following procedure

Calculate singular value decomposition F*- USVr, and partition

the JxJ matrixY : [Vx I V, ], where V¡ is JxN, andY,is Jxr. (6.36)

lf r :0, then F* is a full square matrix, and there will be one unique solution for s. This

unique solution is

s:Frlyx. rc37)

And finally, if r<0, then there are no solutions for s, and only an approximate solution

(which is optimal in a least squares sense) can be obtained by

s:FrÌyx. (6.38)

However, we also note that in order to satisfy the physical realisability criteria we require

all the elements of s to be positive. Therefore, if solutions of (6.35), (6.37) and (6.38) do

not yield positive s, it may have to be determined by solving the followíng non-negative

least squares problem

Tin ll r" . - y* ll2, subject to s > 0. (6.39)

This will produce an optimal non-negative solution to the vector s in a least square sense.
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The above process is summarised by the following algorithm.

Algorithm 6.2: Determ ination of a Matrix

lnput: Desired modal and spectral data Q,.and Â1., and mass matrix M obtained

by Algorithm 6.1.

Algorithm:

1) Calculate the matrix A by equation (6.21).

2) Set Ñ= nxl

3) Construct vectors yK as in (6.31).

4) Form a vector s of dimension Jxl as in (6'32).

5) Construct a matrix F^ using (6.33) and (6.30).

6) (a) lf J > Ñ, then determine s by equation (6.35),

(b) if J = Ñ, then determine s by (6.37),

(c) if J < Ñ, then determine s by (6.38).

7) lf s obtained in step 6 is not non-negative, then

determine s by solving (6.39).

8) Construct K from the elements of s using (6.27).

Output: Physically realisable mass matrix K.

Algorithm 6.2 can be used to determine K corresponding to any chosen analytical model

by substituting an appropriate mapping matrix Bq(K) in equation (6.27).

Datø
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6.3 Numerical Example

Suppose that the desired dynamic properties, Ä,. and iÞ,*, for a five degrees-of-freedom

mass-spring system are

Â,* : diag ( 50, 100, 200 )

and

oi

0.1 -0.1

0.1 0.1

0.1 -0.1

0.1 -0.3

0.3 0.2

o.2

0.2

0.3

-0.1

-0.1

and we wish to determine physically realisable M and K which have dynamic

characteristics as close as possible to the above data.

In the above data l:3 and n:5. First calculating the mass matrix M, we note that parameter

N:V2(P+[): 6, and since n<N, there is no exact solution for M. The approximate solution

for M is obtained by Algorithm 6.1 (using step 6(c)), and this solution is

M : diag ( 7.3458, 5.2048, 3.6097, 7.2876, 7.0552) .

Calculating K, we note that J: r/z(nz+n): 15 and Ñ : nxl:15, and since,/: N, there is one

exact solution for K. Applying Algorithm 6.2 (with step 6(b)), this solution is

1062.6

45.5

85.3

-222.9

-t84.4

45.5

540.9

2r9.4

-128.9

-105.0

85.3

2r9.4

436.5

45.7

-t42.3

222.9

-r28.9

45.7

753.2

35.6

-184.4

-105.0

-r42.3

35.6

513 .l

K=
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Horvever, since some of the off-diagonal elements of the above K are positive, this stiffness

matrix is not physically realisable. To obtain the physically realisable K lve perform step

7 of the Algorithm 6.2 and obtain

K_

0

0

634.9

-110.7

-82.9

2.54.4

0

-1t0.7

805.5

-69.1

-180.9

203.1

- 829

-69.7

537.9

r2t7.7 0

0 925.6

00
254.4 0

-180.9 t03.r

This K is physically realisable, and the mass-spring system corresponding to the obtained

.mass and stiffness matrices, M and K, is shown in Figure 6.1.

251.4

370,7

782.1

Figure 6.1: Mass-spring system corresponding to M'and K.

The eigenvalues and the corresponding mass-normalised eigenvectors of this system are

Â: diag ( 50.8213, 100.6356, 172.2435, 184.2171, 198.3586)

69.7 13

42.9

722.5

1I0.7

¿l{13

t80.9
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and

Õ-

0.1 087

0.0966

0.0914

0.1 371

0.3144

4.0997

0.0835

4.0139

-0.3051

0.1 653

4.2450

0.0309

0.3870

0.0426

0.0044

0.1048

-0.3626

0.1972

-0.0980

0.0593

0.2083

0.2084

0.2730

-0.1 181

-0.1096

'We note that the first, second and fifth modes in the r\ and iÞ above compare very well with

the desired properties Â,. and (Þ,.. For a good correlation it is required that the eigenvalue

ratio, the amplitude ratio of the eigenvectors and the values of cosines between the two

eigenvectors are ali as close as possible to 1. The values of these ratios and cosines are

presented in Table 6.1.

Desired
Mode,

i

Corresponding
Obtained
Mode,

j

Eigenvalue
Ratio,
ì'"jlx:

Amplitude
Ratio

of
Eigenvectors,

llø, ll¡ ll ø,.ll

Cosine of an
angle between

the two
eigenvectors,
Cos(lþr5,.)

I I r.0164 0.9399 0.9956

2 2 1.0064 1.0587 0.9944

a
J 5 0.9918 1.0072 0.9966

Table 6.1 : Comparison between the desired and the obtained modes.

The results summarised in Table 6.1 demonstrate that a very good correlation is achieved

between the desired and the obtained modes.
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6.4 Conclusions

In this section we have developed a method for reconstructing an analytical model of the

vibratory system from a truncated set of desired modal properties. This method is general

and is not restricted to any particular form of the mass and the stiffness matrices. Mass and

stiffness matrices corresponding to any chosen analytical model can be reconstructed by this

method.

It was shown that depending on the dimensions of the known desired data, we may obtain

a family of solutions, a unique solution or an approximate solution which is optimal in a

specified sense.

The presented numerical example demonstrated the application of the algorithm to a five

degrees-of-freedom mass-spring system, and the obtained results showed a very good

correlation between the desired and the obtained modal data.
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Section 7 PROBLEM 2(b):

I]YDEPEI{DET{T

PARAMETER

DECOMPOSITIO]Y

In this section we define a special form for the mass and stiffness matrices, M and K,

which aÍe more general than these corresponding to a mass-spring system. It is

demonstrated by examples that matrices of this form may correspond to various analytical

models of vibratory systems, including a Finite Element model. We then show how to

reconstruct these matrices from the prescribed modal and spectral data, iÞ. and Â.. The

problem we solve is identical to Problem 2, with the exception that the shapes of M and

K are not necessarily correspond to a discrete mass-spring model. Thus, we designate this

problem as Problem 2(b). The definition of the new matrix type for M and K is given

below.

Definition 7.1: lndeoendent Parameter Deeomnosition

Suppose that a symmetric mass matrix X=[x,i] of size nxn is such that all of

its elements x,,can be expressed as prescribed linear functions of n unknown
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independent parameters {x.,, x2, ..., xn}. Then we define this matrix to be an

independent parameter decomposable if it can be described by a following

product

X = Ex D¡ E¡r, (7.1)

where the numerical values of all elements of E* (nxn) are known, and

D,. = diag{d1, d2, ..., dn},d, * 0 , with each diagonal element d, equal to some

known linear function of {x.,, }12, ...,xn}, i.e

o, =fþrx,, (l = 1,2,...,n) (7.2)
j=l

and B,, are known.

The above definition is demonstrated by the following examples.

Exantple 7.1: A simply-connected mass-sprins s:lstem

Consider a simply-connected mass-spring system shown in Figure 7.1

k1 k2 k3 kn
aaa

Figure 7.lz A simply-connected mass-spring system

The mass and stiffness matrices corresponding to system have the following form

M : diag (m,, lTt2, ..., ffin ),
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and

where

and

kr'k, -k2

-k2 kr*k,

o -k3

00
-\0

kr*ko -k4

0

0

0

-kn-t

0

0

0

K=
0

0

0

0

0

0

0

-k^k^+kn-¿ il-¿ n-L

0 -k k.+k -kn'l n-l n n

0

0-kk nn

Both matrices are IP decomposable because they can be expressed as products

M: E*rD"rErrr

K: E*D*E*r

Dpr : M : diag (m,, m2, ..., mn )

E,rr : In: diag (1,1,...,1),

D*: diag (k¡, k2, ..., kJ ,

(7.3)

(7.4)

(7.s)

(7.6)

(7.7)

(7.8)

0 00
0...00
0 00
-l 00

!:

l-1
0l
00
00

0

-1

1

0

0

0

-1

1

EK

00 0 0 1-l
0 0 0 0 ..01
00 0 0 00

0

-1

I
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Examole 7.2: A 2 d.o.f, fìn ite element model of an axiallv vibratins rod

The mass and stiffness matrices of a 2 d.o.f. finite element model for a

longitudinally vibrating rod are

ffit* ffiz

J
M=

m2

and 6

where tn', rn2, k, and k, are the masses and the stiffnesses of the two elements.

Both of these matrices are IP decomposable since they can be described by products

of the form (7.3) and (7.4), respectively, with

ml m2
0+

DM

and

t! I 1

4

I
I

'1,
,1,0

4J
E*=

m2

6
0

D*= EK =[
I

0l
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7.1 Reconstruction of IP Decomposable Mass Matrices

In Problem 2 we want to determine the mass and stiffness matrices M and K corresponding

to a physically realisable mass-spring system, such that its modal and spectral properties,

clescribed by modal matrix iÞ and spectral matrix Â, are as close as possible to the

prescribed modal and spectral matrices iÞ. and Â.. In this section we generalise the solution

of Problem 2 for the IP decomposable matrices M and K.

As in section 5, the two problems of determining iÞ and Â corresponding to a realisable

system can be solved separately. Consider now the problem of determining the optimal

mode shape matrix Õ.

If M is an IP decomposable mass matrix, then by definition 7 .l it may be expressed by a

product of the form of equation (7.3), where Enn is a known matrix of size nxn, and

diag d:'0, ..., dl4), d,M+ o, (1.e)

is a diagonal matrix such that each element dN) (i:l,...,n) is equal to a known linear

function of mass elements {m,, mr, ..., mn }, i.e

d,(' = E,p'f *, , (i = l, 2, ..., n) (7.10)
j=l

where Þ¡(") *. known.

The mass matrix M must also satisfy the orthogonality equation

i\{ : 6-r6-t.

( o{'n,D* =

110
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Let Q be an orthonormal matrix, that is, QQt: In, and set matrix

D = Di'/' diag 1 (1.t2)

then equations (7.11) and (7.3) will both be satisfied if the modal matrix iÞ is equal to

ü=EIDQ (7.13)

Thus a solution to our problem can be obtained by determining a diagonal matrix D and

an orthonormal matrix Q, such that

llo. - B*i'De ll

w

(7.14)

In solving this problem we will make use of the algorithm 5.1 for solving an orthogonal

Procrustes problem, which is described in section 5.

Thus setting

A:iÞ* (7.rs)

min
D,Q

B, : E*r{D,, (where t designates an iteration index), (7.16)

we may choose a diagonal matrix Do as an initial guess and obtain an orthonormal Qo

which minimises lln - goQollr, by using Algorithm 5.1. We now show how to obtain a

matrix D, such that

llo. - E*i'D,eo llo < llo. - Er-'Doeo llo. el7)
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The Frobenius norm is invariant under orthonormal multiplication. Hence

llo. - n*i' D,eo ll, : lliÞ.eo' - Eri'D, llr,

Define

and denote

R: (Þ.eor,

€ = ll R - E;;\I2F

(7. i 8)

(7.1e)

(t.20)

(7.22)

(7.23)

(7.24)

(7.2s)

Using the equality

llR - E,fDt ll'r = tace(Rlt) * traceço{n*rnf,or,) - 2 traceçn{n*rn) (7.21)

and setting

E = EilìE;l

r =Ea1 R )

equation (7.2I) may be written as

llR - E;D, ll', = trace(Rk) * trace(D{no) - 2 trace(D{F¡

Therefore, applying the knowledge that D, is a diagonal matrix and its diagonal elements

are defined in equation (7.I2), we find that

e = trace (RlR) + E
n

t=l

where e,, and f,, are the diagonal elements of matrices E and F respectively . Differentiating

e with respect to dltv0 and equating to zero to obtain the minimisation criteria, we obtain

ô, =_ €,, * f,, =0ôd, d!,r' d!,r"
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Then from (7.26) it is clear that e is minimised when

I f,,
e (7.27)

Thus, the residual error e is minimised when the diagonal elements of D, are equal to the

ratios of the diagonal elements of F and the corresponding diagonal elements of E. Having

determined a diagonal matrix D, satisfying (7.17), we can reapply the Algorithm 5.1 with

iÞ. and D, as an input and find an orthonormal matrix Q, such that

llo. - n*i' D,e, ll, < llÕ. - E*i'D,eo llo . e.2s)

Continuing in this manner iteratively, we obtain an approximate solution for the optimal

modal matrix Õ. The mass elements {m¡, trr2, ..., mn} can then be determined by solving the

system of linear equations (7.10) after substitution of the obtained values for 1d,(M), dr@),

..., dn(Ð). The following algorithm summarises this result.

Algorith m 7,1: Approximate solution forthe mod I matrix Õ and the mass elements

lnput: An nxn modal matr¡x iÞ*, an nxn matrix E" and coeffic¡entr É,,,",(i,j=1,...,n)

Algorithm: 1) Set ínitial guess Do and a tolerance for convergence €.

2) For t=0, 1, 2, ...

a) Evaluate C : D,rE"itiÞ..

b) Compute the singular value decomposition C:UEV1'.

c) Evaluate Q t: UVr.

w

113
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d) Obtain F: EùiriÞ.Qrr.

e) SetE=E*-1Er-r

0 Form D,*, = diag
fnn

e
nn

f' f,
-) -,€ tt €zz

g) Test convergence

(i) Set N, = lliÞ. - EñirD,Q, ll ,, N, = ll.Þ. - E*-rD*,Q, ll ,.

(ii) lf (N, - Nr) 3 ê , go to 3.

3) O = Eu-rDt*rQ,

4) Calculate

d:'

5) Solve the following system of linear equations for m, Ü=1, ...,n)

(tvry
m. d,"n i=7, '..' n

=li'l 

"'='' 
' n

pt
j=l

U

Output: An optimal modal matrix Õ and a set of mass elements {m.,, m2, ..., ffin}

It follows from (7.17) and (7.25) that the norm llO. - E*itD,Q,ll, is a monotonic

non-increasing function of an iteration index t. The Algorithm 7.1 thus necessarily

converge.
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7.2 Reconstruction of IP Decomposable Stiffness Matrices

In this section we will use the results obtained from Algorithm 7.1 to reconstruct an IP

decomposable stiffness matrix K, such that the norm llrf.- ,f ll lwtrictr represents the

difference between the desired and the obtained eigenvalues) is minimised.

If K is an IP decomposable stiffness matrix, then by def,rnition 7 .l it may be expressed by

a product of the form of equation (7.4), where E* is a known matrix of size nxn, and

d;n, ..., d|Ð), d,@+ 0, (7.2e)

is a diagonal matrix such that each element d(K) (i:l,...,n) is equal to a known linear

function of stiffness elements {k,, kr, ..., kn }, i.e

d,'Ð = iBlf lr, , (i = l, 2, ..., n) (7.30)
j=l

where Þ¡6) ut. known.

D* = diag (a{Ð,

The orthogonality equation for the stiffness matrix is

ÕTKÕ : Â.

Thus substituting (7.4) into (7.31), we obtain

aÞr EKDKE*rÕ : Â.

G : E*riÞ ,Let

(7.3\)

(7.34)

(7.32)

(7.33)

then equation (7.32) becomes

GrD*G : r\
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A diagonal matrix D^ may be expressed in terms of its elements as

D* = Edfn,
n

,=l

(7.3s)

(7.36)

(7.37)

(7.38)

(7.3e)

where H, is a nxn mapping matrix and it is equal to

h 1

H. =lh I =t L p(t) h = 0 elsewhere
Pq

Substituting (7.35) into (7.34) we obtain

^ 
= E d,@(GrH,G)

n

,=l

Partitioning G into column vectors

G=[srls,|.... 1s,f,

then each pq'h element of Å is given by

À'-- = io:"(r,''s,)Pq 
i='l

Let N: r/z(nz+ n) and construct the vectors

Y :(Yr, 
Yz, Yv ..., YN )t : (À,,, ìt¡,, ..., Lrn, À"r, \r, ..., )t2n, )43,..., Inn)t

and

d : (d¡6), dr6), ..., d, (rl;r .

Denote

Ay.
P = lp,,f = -' , (i = L, 2r..., N; j= tr..., n)( uJ 

ad(K) 
-

then all the elements of P can be evaluated using equation (1.39).

(7.40)

(t.4r)

(7.42)

116



Section 7:Problem 2(b) - fndependent Parameter Decomposition

Equation (7.37) can be written in a vector form

Pd:y. (7.43)

Setting Â:Â*, we may determine the vector y and solve equation (7.43) for d. However,

since N>n for any È1, there is, in general, no solution to (7.43). The approximate solution

for d, r,vhich is optimal in a least squares sense, can be obtained by

d : Ply (7.44)

where PÏ is the Moore-Penrose pseudo-inverse of P.

The stiffness elements {kr, k2, ..., k" } can then be obtained by solving the system of linear

equations defined bV (7.30). This process is summarised by the following algorithm.

Algorithm 7.2: Approximate solution for the stiffness elements

lnput: Modal matr¡x Õ (nxn), desired eigenvalues matr¡x r\.(nxn), matr¡x En (nxn) and

coefficient, Fut*' (i,j=1,...,n).

Algorithm: 1) Calculate G = E^rO and partition it as in equation (7.38).

2) Set Â = Â. and form vector y as in (7.40)

3) Construct matrix P using equations (7.42),(7.49) and (7.36).

4) Calculate vector d, as defined by Q.a1), using (7.44).

5) Solve the following system of linear equations for \ ü=1, ...,n).

iø\f*, = d:" ; i=r, -", n.
¡=l

Output: A set of stiffness elements {kr, k2, ...,kn}, corresponding to an optimal K,

which minimises the norm lll.- n ll .
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ancl

[:
fiEI 1

I

S¡ppose that we wish to determine M and K, corresponding to the above form, such that

the modal and spectral properties of the system be as close as possible to the desired

properties described bY

10
o

0

Applying Algorithm 7.1, we obtain an optimal modal matrix

[0. r roo o. r e2o-lo-l I

l0.2tr4 -0.2831-|

^*=[

ancl the mass elements In,: 35.6119 andmr:26.9242, which correspond to a mass matrix

lro.roro 4.48741M= I I

| 4.4874 8.e747 )

which satisfies the requirements of the prescribed form and the orthogonality properties of

equation (7.11).

Applying Algorithm 7.2 with the obtainecl modal matrix iÞ, we determine the stiffness

elements k- 526.7766 and kz:356.3036, which correspond to a stiffness matrix
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K_
883.0803

- 356.3036

- 3s6.3036

356.3036

which is of the required form.

The modal and spectral properties of the system corresponding to the above M and K are

{t=
0.1314 0.1911

0.2094 - 0.2841
, Ä=

1r.26

0

0

9:9.86

which correlate very well with the desired properties iÞ. and Â..

7.4 Conclusions

In this section we have defined a special form for mass and stiffness matrices, which are

more general than those corresponding to a mass-spring system. Methods for constructing

such matrices to suit the prescribed modal and spectral properties were then developed.

The Algorithm 7.1 for reconstruction of the mass matrices is an extension of the theory

developed in section 5, and is in fact a generalisation of that theory. The Algorithm 7.2 for

reconstruction of the stiffness matrices is based on a matrix sensitivity analysis, and requires

augmentation of the system in order to obtain a global optimal solution. This augmentation

carries a significant computational penalty. However, due to an inherent defrciency in the

number of variable parameters available for optimisation, the quality of a solution is

problematic, and thus requires a global approach rather than a more computationally

120



Section 7:Problem 2(b) - Independent Parameter Decompositian

efficient local optimisation approach.

The numerical example based on a 2 degrees-of-freedom finite element model of a

longitudinally vibrating rod was presented. This example has demonstrated the application

of the developed methods, and the results obtained correlated well with the prescribed

modal and spectral properties.
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MODIFICATIO]YS FOR

DESIRED ]YATURAL

FREQTIE]YCIES
aJ

In this section we present the analysis for the solution of Problem 3 formulated in section

2.3.In this problem the exact mass and stiffness matrices of the system, M and K, are

assumed to be unknown. The only information which is assumed to be known about the

system are the measured modal analysis data contained in the matrices Â, and iÞ,. We then

want to determine physically realisable modifications to the mass and stiffness (i.e ÂM and

AK), based only on Ä, and (Þ,, so that the modified system would have spectral properties

as close as possible to the desired spectrum described by Â..

It was shown in section 2.3 that an approximate solution to this problem may be obtained

by solving the following norm minimisation problem

3 Material presented ín t,his section has been published ín Llll
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ll itnt * AM)-áR llr, subject to iÞ e span (iÞ, )

where the residual matrix R is given by

¡ = [(ff+ AI( )Õ - (M* tlw >ø¡t I

(8.1)

(8.2)

and Ã and õ are some approximations to the desired Â. and the corresponding Õ*

respectively.

It is shown in Parlett 142,pp.321-323) that if we determine the eigensolution, V and 0, of

FV-G.I'Q:0

F : iÞ,T1K+AK¡Õ ,

G:Õrr(M+aM)iÞr,

(8.3)

where

(8.5)

then Ã: 0 and õ : iÞ,V minimise (8.1) under the required constraint that Õ e span(Q r)

The matrices K and M are not given, and cannot be determined. However, using the

orthogonality properties

iÞrrKaÞr:Âr (8.6)

and

iÞ rrMiÞ I : I- , (8.7)

we have

F:.¿Ir*Õ,rÂKÕ, (8.8)

G : I,+ aÞ rrAMaÞ r

and

(8.4)
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Hence, if AK and AM are known, then F and G can be obtained and eigenproblem (8.3)

can be solved for V and 0. Our goal is to solve the inverse eigenvalue problem of

determining AK and AM where 0: 
^* 

is prescribed.

As shown inl42l, the obtained solution is the Rayleigh-Ritz approximation of (2.14) from

the subspace which is spanned by iÞ,. Thus, it follows that the desired eigenvalues are upper

bounds on the eigenvalues of the actual modified system (2.14).

First we consider a simpler case of modifications to a discrete mass-spring system, and then

extend these results for more complex models. An important case where mass and stiffness

matrices are interrelated is also considered.

8.1 Modifying a Mass-Spring System

A mass-spring system is the simplest model to analyse. In this model the mass and stiffness

matrices are independent. Therefore, it is possible to change one without introducing

changes to the other.

The global mass modifications matrix, AM, can be written in terms of its elements as

follows

AM = Ea*pf (8.1 0)
i=1

where 6m, rcpresents the change in the i'h mass element, and B.(ùD is the mapping matrix
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'a

B (,14 (M
b,(,rD = |

u):l -- o elsewhere

The incremental stiffness matrix may be written in the following form

pqþ

AK = E E õrrf,i"

(8. 1 1)

i+j (8.13)

n-l n

(8.12)
i= 0 j= i+l

where ôs, is the change in the stiffness of the spring connecting mass i to mass i, and ôs,,

represents the change in the stiffness of the spring which connects mass i to the ground, and

BrfK) is the matrix describing the spring connection between mass i and mass j

(Ð b;?)

b,lÐ= ble= I
bln= b,lÐ= -l
b;?= o elsewhere

B
U

It follows, therefore, that

where

and

G =f^+lõm,M, (8.14)

(8. 1 5)

(8.1 6)

(8.17)

and

F=.tt,*EEôtrKo
n-l n

i= 0 j= i+1

t( ij Õ,18,,(rlÕ,

M ¡ : ÕrrB,(M)o,

AG =M, ôG =0

Hence

ô(Em,)
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ôF
K,.

U
(8. 1 e)

ô(ôsu)

and, as in [16], we have

(8.20)

where

øt= (a, a2,..., at)= (ôsor, ôs02,..., õ,sor, ô,s12,..., õs1n'..., ò,sn-1,n, õmr'..-, õmn) , (8.2I)

N : 7z(n2+3n), / is an iteration index, )" ,(o') is the i'h eigenvalue and r/,(øt) is the

corresponding eigenvector, both obtained in the tth iteration by using an iterate vector ¿lt.

The modification matrices AM and AK may then be found by an algorithm similar to

Joseph [16]. This algorithm uses the Newton-Raphson method to find a new approximation

for the structural modihcation parameters from some arbitrarily selected initial guess. The

new approximation is calculated by determining the matrix derivatives and eigenvalue

sensitivities as shown in (8.18), (8.19) and (8.20) above. These values determine a Jacobian

matrix J, from which the eigenvalue sensitivity elements, calculated in (8.20), are found.

Then a set of linear equations is solved to find the changes for improving the initially

chosen structural modification parameters. The algorithm is summarised below, and its full

derivation can be found in [16].

y = ,þ,'(o) lg ),,(, )y] ú,(a )ooj loo, oo, )
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Algorithm 8.1: Approximate solution to Problem 3

lnput: Measured modal analysis data i\r and iÞr

Algorithm:

1) Set iteration index t = 0 and choose an initial guess for structural modification

parameters ¿ t .

2) Form matrices AK and AM, by using structural modifìcation parameters

contained in the elements of a'using (8.21)'

3) Calculate F and G, by using (8.8) and (8 9)

4) By solving equation FÚ(c/) = Gv(¿)i\(a) compute the smallest m

eigenvaluesNr(a')(i=1,...,m),X,<I21...1À..,andtheCOrreSpOnding

eigenvectors r/ ,(a ) normalised with respect to G.

5) Perform a convergence test, if ll t,1a') - I '' ll 
is sufficiently small,

stoP.

6) Compute the Jacobian matrix, J=[J,¡],i= 1,'.', m; j=1,..',N {N = %(n2+3n)};

where the (r,7)th element of J is given by

J
U

{- ^,(o)gl ú,(a)ao¡ oo, )

7) Calculate the singular value decomposition J=USVr, where UUr=l', VVr=l¡¡

and S is the matrix containing r (r < m) singular values of J
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B) Form vector A from the diagonal elements of the matrix (À(ø ) - Â.),

i.e A= diag (A(a ) - A').

9) Solve a set of linear equations Jd = Â and obtain a family of possible

solutions for d

d=JTA+V.b,

where Jt is a Moore-Penrose pseudoinverse of J, V. is a matrix consisting of

the last (N-r) columns of V, and b is an arbitrary (N-r)x1 vector.

10) Calculate the next approximation for the structural modification parameters

flr*l=ar_d

'11) Set t = t+1 and repeat from step 2.

Output: Vector r¡t*r containing the required structural modifications parameters

In order to ensure the physical realisablility of the solution, the elements of øt*r must be

such that the mass and stiffness elements of a modified structure are real and positive. Since

the original matrices M and K are assumed to be unknown, precise limits for permissible

reduction of the mass and stiffness elements are also unknown. However, if all elements

of dt*r are made non-negative, then the obtained modifications will not require reduction

in any structural parameter, thus avoiding the problem described above. To make the

elements of øt*r non-negative it is required to select a vector á, such that the elements of

d obtained in step 9 are less than or equal to the corresponding elements of øt. This may

be achieved by inserting the following procedure between steps 9 and 10 of Algorithm 8.1:
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Procedure 8. I.

i)Calcttlate d:.y'A

ii)Calculate Ê:a'-d

iii) Set

Y(t) =
p(Ð
0

,p(r)>0
,B(r)<0 ; i= 1,2,...,N

vi)Set a:P-^Y

vii) Caluilate b : Il* u , where lf* is a Moore-Penrose

pseudoinverse of Il

viii) If ll ¿ ll is sfficiently small, stop.

ix) Set d : cl + [/b, and repeat from step (ii) .

Algorithm 8.1 allows to determine the vector ¿'*r which contains structural modification

parameters. The mass and stiffness modification matrices AM and AK can then be

determined from the elements of a'*' by (8.21). The obtained solution is optimal in a

Rayleigh-Ritz sense, and the residual (S.2) is minimised for all possible systems with

truncated modal matrix iÞ taken from the subspace spanned by iÞ, and where .A^vÀ..

8.2 Special Case I: ModifTcations to mass only

Consider now the case where only the mass matrix is subject to modif,rcation (i.e AK:0)

This problem consists of rn equations with r unknowns, ôm¡, ômz, ..,, ôffin.
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Here we have

F: Â, (8.22)

(8.23)

and

G = 1,,+ ES^lt,
n

,= I

and the problem can be solved by Algorithm 8.1. Example 8.1 demonstrates this procedure.

8.3 Special Case II: Interrelated System

Frequently, the mass and the stiffness matrices are interrelated. For example, the

longitudinally vibrating rod may be modelled by finite difference model, with

m, : pA,/, (8'24)

EA.
c=l, l,,

(8.2s)

where: m, and s, are the mass and stiffness of the ith element, respectively,

E and p are the Young's Modulus and density of the rod, and

A, and l, are, respectively, the cross-sectional area and length of the ith element

Here, the mass elements are interrelated to the stiffnesses via A, and /, . Hence, a change

in M (or ôm) causes a respective change in K (or õs).

If we wish to modify the natural frequencies of a rod by changing only the cross-sectional

area (i.e A,), then the corresponding changes in the mass and stiffness elements are
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where Cio't and C,(9 ut" constants.

Thus, the global modification matrices are

AK

and we may write

and

õ*,: pl,õA,

EõA
õs

, I
t

õm,: C{M õAt

ôs, : C{r) õA,

E B (K)
.tõ

(8.26)

(8.21)

(8.28)

(8.2e)

(8.30)

(8.31)

(8.3 3)

AM \õm,8,('D

r=1

n

i=l

b b

where B,(wD tr the same as in (8.11), and

I(Ã')
ii

b,?,= bl\,= -rB,'" = lu|?l=
(8.32)

u)f = o elsewhere

Substituting (S.28),(S.31) and (8.29),(8.30) into (8.10) and (8.9) respectively, we obtain

F = It,* Õ I E ô1, c!" n!'
n

Õ

ÕEõA,

i=l

n

c!' n!'G = Irr+ dÞl
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or equivalently

F = 4.,* E õAi Ki
n

n

,=l

(8.3 5)

(8.36)

(8.37)

(8.38)

and

G = I^+ la,l,, tut,

where

Ki : (ÞrrC,(r)gix)6,

M, : iÞrrC.(vt)3.(n)6t

Thus, the problem may be solved by Algorithm 8.1.

A similar analysis may be applied when using finite element modelling. For the finite

element model of the rod, B,(ÙD is given by:

n!'= lulio) b
(M (8 3q)b

(M
iib

(lr0

t-l
(M
r-lb

1

;
J

i-l i -l
1

6

u|3= o elsewhere

and B,(xl is the same as in (8.32)

We note that the method presented is flexible, ffid can be applied to other models of

vibratory systems. The only change which is needed, is to use the appropriate mapping

matrices associated with the chosen system.
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8.4 Numerical Examples

Example 8.1: Mass only modifications

Consider a l0 degrees of freedom mass-spring system with

K_

200

-10
-20
-5
-5

-10
0

0

-50
-50

-10
100

0

0

0

0

-20
-10
-20
-10

-20
0

300

-40
-30
-60
-10

0

-20
-10

-5
0

-40
400

-30
-40
-50
-20
-10
-70

-5
0

-30
-30
150

-10
-5
-5

-20
0

-10
0

-60
-40
-10
250

0

0

0

-80

0

-20
-10
-50
-5

0

t20

-5
0

-10

0

-10
0

-20
-5

0

-5
250

0

-100

-50
-20
-20
-10
-20

0

0

0

350

-40

-50
-10
-10
-70

0

-80
-10
-100

-40
400

and

M: diag ( 1, 1, 1, 1, l, 1, 1, 1, 1, 1)

The smallest three eigenvalues and the corresponding mass-normalised eigenvectors of the

system are

.t\, : diag (61.8300, 108.3525, 129.1425)

and

Õr=

0.2605

0.5453

0.2050

0.2301

0.2694

0.2s58

0.508 1

0.2159

0.1610

0.2668

4.t625
0.7597

4.2277

4.r151
4.4256

-0.2886

4.0279

-0.1 136

4.06t7
4.1792

0.3016

0.2873

0.0955

4.0392

0.t967

0.1673

-0.8355

0.1 054

0.t44r

0.1 3 85
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Assume that only iÞ, and Â, are given, and that no other information is known. We wish

to find modifications to the mass matrix only, such that the first three eigenvalues of the

modified system are

L. = diag( 1,2,3)

Applying Algorithm 1 with rr0 : 0 we obtain

L,M = diag(41.t39, 82.580, 16.728,7.!27, 47.813,32.122, 54.47t, L4.350, 11'193, 24'2t3)

Setting new mass matrix M,"ou: M + ^AM, we find that the eigenvalues of the modified

system are

Â .o,r = diag( 0.99, 1 .96, 2.72, 3.92, 6.10, 11.58, 17 .33, 2I '14, 29-48, 50.50)

The small discrepancy between the desired eigenvalues of rl.. and the smallest three

eigenvalues of À.oo is due to the truncation error, which is unavoidable.

Example 8.2 : Longitudinallv Vibrating Rod

Consider a uniform axially vibrating rod, fixed at x:0 and free to oscillate at x:L, with

uniform properties p:E:L:A-I. The first three eigenpairs of the rod, obtained for a 10

degrees of freedom f,rnite element model, are shown in Table 8.1.
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Position from
the Fixed End

of the Rod

Mode Shapes

1
st

mode
2nd mode 3'd mode

0.1 0.22t7 -0.6s40 r.0527

0.2 0.4379 -1.1655 1.4888

0.3 0.6434 -1.4229 t.0s27

0.4 0.8330 -1.3701 0.0000

0.5 1 0021 -1.0187 -t.0s27

0.6 t.t465 -0.44s2 -1.4888

0.7 r.2627 0.2254 -r.0527

0.8

0.9

|.3478 0.8468 0.0000

t.3997 1.2836 r.0s27

1.0 I 4 I 7 1 r.4406 1.4888

Eigenvalues 2.4725 22.6205 64.9165

Table 8.1 : First Three Modes of a Uniform Cantilever Rod of Example 2

We wish to change the cross-sectional area of the rod, so that the eigenvalues of the

modified rod will be

^" 
= diag( 1, 15, 100 )

Applying Algorithm 8.1, we obtain the following area modifications for the finite elements

model

õA= diag(-0.6698,-0.8 567,-0.3661, 0.4642, 0.3919,-0.3530,-0.3213, 0.5501, 0'9244, 0'5870)
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When these changes are implemented, the lowest three eigenvalues of the finite element

model of the modified rod are:

Å.o,r = diag ( 0.7, I2.7,96.6)

Note that as predicted before, the desired eigenvalues X ,* are higher than their

corresponding true eigenvalues I.oa 
' 
of the modified system.

Examnle 8.3: ensitivitv Test

The sensitivity of Algorithm 8.1 to perturbations is now demonstrated

Let Â, : diag ( 60, 105, 130 ),

and 0.3

0.3

0. 1

0.0

0.2

0.2

-0. 8

0. 1

0. 1

0. 1

0. 3 4.2
0.5 0. 8

0.2 4.2

Õ

0.2

0.3

0.3

0.5

0.2

0.2

0.3

4.2
4.4
-0. 3

0.0

-0. 1

-0. I

4.2

which may be obtained by "rounding off'the elements of the eigenpairs in Example 8.1
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Repeating Example 8.1 with these values, we obtain

L,M = diag( 36.478, 50.249, 15.308, l4.2ll, 15.418, 32.902,92.94, 24.081, 24.081,50.464)

which is quite different from the modifications obtained in Example 8.1. However, we find

that the eigenvalues of the modified system are

Â.o,r= diag( 0.97, 1.96, 3.09, 5.79, 7.64, 8.83, 12.06, 14.57, 19.03, 27.53)

and the three smallest eigenvalues of Å n,oo represent a good estimate to the desired

eigenvalues. Thus the introduction of perturbations to the given data, caused convergence

to a different possible solution.

8.5 Conclusions

In this section we have defined an optimisation problem, which allows us to overcome the

effect of truncation. It was shown that this optimisation problem may be solved by applying

the algorithm of Joseph [16] (with some minor alterations) to obtain aphysically realisable

solution. The obtained solutions are optimal in a Rayleigh-Ritz sense. The desirecl

eigenvalues are thus higher than the eigenvalues of the actual modified system.

Using this approach we may also modify vibratory systems with interrelated mass ancl

stiffness matrices. Some examples were given and the sensitivity of the problem to

perturbation has been numerically demonstrated.
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MODE SHAPES

In this section we present the analysis of Problem 4, which was formulated in section 2.3

Our Problem 4 is identical to the problem investigated by Ram and Braun in [46]. They

have shown that a family of optimal solutions (in a Rayleigh-Ritz sense) to this problem

is characterised by the following equations

AM =aít(*-rr1r-t -l--)o1* Y -Þitoiro,ol (e.1)

aK = *l'(*-r^* v-r - 
^,)o1 

.x - Õiroí,xo,ol (e.2)

where iÞ,t denotes the Moore-Penrose pseudoinverse of iÞ1, V: Õ,tiÞ., and X and Y are

arbitrary mxm real symmetric matrices.
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We note that all elements in the equations (9.1) and (9.2) arc known, with the exception of

matrices X and Y. Since X and Y can be arbitrarily assigned, a solution for AM and AK

can be evaluated. However, in general, such arbitrarily selected X and Y do not result in

a physically realisable solution. In other words, the obtained mathematical solutions do not

give us a hint on how to change the geometry or the material properties of the structure in

order to get the required modihcations. Therefore, here our main aim is to develop a

method for extracting a physically realisable solutions for AM and AK from the general

family of solutions defined by equations (9.1) and (9.2).

P=iÞit(* rv-t -t,,)*1Setting (e.3)

(e.4)

equations (9.1) and (9.2) become

T =ðþlt(* r^.v-'-n,)*l

11 = Õ1Õl

AM:P+Y-HTYH

AK:T+X-HTXH.

(e.5)

(e.6)

(e.7)

'We note that equations (9.6) and (9.7) have identical form, and also that this form is very

similar to the well known Discrete Lyapunov Equation (DLP). The solution for DLP is

available in the Control Toolbox of MATLAB under the function name dlyap. The dlyap

algorithm of MATLAB allows to determine Y, such that equation (9.6) holds for any given

matrices .AM, P and H (or determine X for any given AK, T and H in a case of equation
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(9.7)). Our problem is different, since neither AM nor AK are known. However, it appears

that lve should be able to arbitrarily choose any AM and AK, and then calculate Y and X

which satisfy (9.6) and (9.7).The implication of this is that we may choose AM and AK

to be zero matrices, and then obtain Y and X which still, supposedly, give a Rayleigh-Ritz

approximation to the desired natural frequencies and mode shapes. Clearly, this is not

physically possible. A detailed investigation of this apparent contradiction has shown that

both (9.6) and (9.7) are ill-conditioned to be solved by dlyap algorithm, and therefore the

contradiction does not really exist. And interestingly, the reasons behind this ill-conditioning

have also provided a key element in deriving a solution to our problem. The following

analysis describes this solution.

The matrix H, defined by (9.5), is a product of a matrix by its pseudoinverse. Calculating

the singular values decomposition of H, we obtain

H: U ZTJ"T

where UUr: UrU : In, and the partitioned singular values matrix Z is as follows

(e.8)

(e.e)

(e.10)

Z_ hsl
lo lo)

and where O represents submatrices with all elements equal to zero

Substituting (9.8) into (9.6) and (9.7), we obtain

AM:P+Y -IJZTJTYUZIJT

AK: T + X -IJZIJTXIJZIJT
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Multiplying both sides of (9.10) and (9.11) by Ur and U, we get

UTAM U : UT P U + UTY U - ZIJTY TJZ

UTAK U : UT T U + UTX U - ZIJTX IJZ

Setting P.: Ur P U

T-:UTTU

Y-: UTY U

x.: UrX U,

then equations (9.12) and (9.13) become

UTAM U: P"+ Y*- ZY-Z

UTAK I.J : T* + X-- ZX-Z

Partitioning U, P*, T*, Y* and X. as follows

U : I U, I U, ] , U, is nxm real matrix m<n

(e.12)

(e.13)

(e.14)

(e.1s)

(e.1 6)

(e.r7)

(e.1 8)

(e.1e)

(e.20)

Pr lP,
P2

*T
I Pr*

, Pr* is mxm

, Ir ß mxmr*= 
[

Tr* T2

*T

(e.21)

(e.22)
T2 T,,

, Yr' is mxm
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X

then, also using (9.9), equations (9.18) and (9.19) may be written as follows:

*=t Xr' I Xr.

xr*' I Xr*
, Xr* is mxm (e.24)

It Pr

u2 aMU2 Pr*' I Pr* I rr.

Y2Yr*P2

Yr*

+
T T

and

l+t+l [++#] l+++l

o
o

Yr

(e.2s)

(e.26)

(e.27)

ur'd,KU, l tlrraKtl, Tr xr,*
+

*T
x2 xr.

o x2 onl

o lo x2
*T

Xr* o o

xr

It
I

T2

ur'dKU, I

*T
Tr*U,T AKU, T2

x1 I

It
Therefore we obtain

and

[ "'. -L "'.-l
lr;' I r,. I o

urraMII, U,, AMU, Pr*tI Pl
+

U,, AMU, U,,AMU, Pr,*' Pr*I

lur'txu, lur'xar] _lr: lrr-l _ [-

lTN,u,lWu,) L'¡l4l L

xr* | xr. x1 o
(e.28)

I

142

x2
+T xr* o o



Section 9: Problem 1 - Modfrcations for Natural Frequencies and Mode Shapes

Simplifying (9.27) and (9.28) further we obtain

ul aMU2 Pt* | Pr- * yr*T Itu2
^MU2

Pr*'*Yr*'lPr* +¡,r.T
(e.2e)

(e.30)

and

ur'AKU, I utrLKU.

U.'AKU, I

Tr

U,TAKU, Tr"'*xr*'lTr* *xr*It T2 + x2

Thus, the reasons behind the ill-conditioning of the equations (9.6) and (9.7) for the

function dlyap of MATLAB now become clear. Separating the first elements from the

partitioned matrices in (9.29) and (9.30), we note that the following relations must be

satisfied

Ulr^M Ur : Pr* (9.31)

and UrrAK fJ, : T,*. (9.32)

Eqtrations (9.31) and (9.32) are independent of Y and X. Since P, T and H are known, P,*,

T,. and U, are also predetermined. Thus, selecting arbitrary AM and AK, would not, in

general, satisfy (9.31) and (9.32), and therefore, the fundamental condition for a successful

application of the dlyap algorithm is violated

We note that in equations (9.31) and (9.32) the only unknowns are AM and AK, and

therefore these matrices can be calculated. It also follows from the dlyap algorithm, that

for any so obtained AM and AK, all other elements of the equations (9.29) and (9.30)
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(except for these described in (9.31) and (9.32)) may, in general, be satisfied by some

particular matrices Y and X. Thus, it is a sufficient condition for determining a solution

to our problem, if we obtain physically realisable AM and AK which satisfy (9.31) and

(9.32). The following analysis shows the necessary procedures for achieving this aim.

9.1 Mass Modifications

In general, for a n degrees-of-f¡eedom system, the mass matrix M would contain n

independent parameters corresponding to the masses of each of the elements which are part

of the system, However, when evaluating the necessary modifications to the system's mass

(i.e AM), a designer may wish to restrict any such modification to only I (l < n) elements.

The global mass modification matrix AM can then be expressed as

AM \am, n[Ø (e.33)
q=l

where ômo is a modification to the mass of the dh element, and BooIl ¡. the nxn mapping

matrix corresponding to a chosen analytical model.

Substituting equation (9.33) into equation (9.31), we obtain

Pr* = Eõ^otlr'BfÐtl, (e.34)
q= |
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Also from (9.14), (9.20) and (9.21), P,. is equal to

Pr* =þr1 = ur' P (J,

Partitioning U, into column vectors as shown

U, = | url url ...1 u,,f ,

then each element p¡. must be equal to
I

P'i* =Eõ*o'''B[ûu,
q=l

Let N: r/z(mz+ m) and construct the vectors

..yM :(yr(M), yr(*),..., y*(*) )t : (prr-,P ,2*,Pr3*,..., Pr,,^,Prr*,..., Pr,,,* )'

and

ôm : (õm,, ôm2, ..., ô*, )t.

F* ôm : y*,

(e.3s)

(e.36)

(e.31)

(e.38)

Denote

FM wi')
Ay Qrr)

(i = 1, 2,..., N, j = l, 2,..., l)
ô(õm)'

then all the elements of F*, can be evaluated using equation (9.37). Equation (9.31) can be

written in a vector form

(e.3e)

(e.40)

(e.41)

Since F, and yM are known, (9.41) can be solved for ôm, and the mass modihcation matrix

ÂM can then be determined from the elements of vector ôm by equation (9.33).
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'We note that in order to obtain a solution for the system of size nxm (m<n), we need to

solve an augmented system (9.41) of size Nx/ çN: t/z(m2+ m)). However, in this case

augmentation is based on the smaller dimension m, whereas number of independent

parameters available for optimisation is fixed at /. Therefore depending on the values of /

and m there are three possibilities for the solution to (9.41).

Set r : /-N, then if r>0 there will be a family of solutions for ôm. This family of solutions

is characterised by the following equation

ôm : F*rIy*, + V,b (9.42)

where F*rt is the Moore-Penrose pseudoinverse of FM, b is an arbitrary vector of dimension

rxl, and V, is a matrix of dimension lxr which is obtained by a following procedure

Calculate singular value decomposition ß*r:WSYr, and partition

the lxl matrix Y : [Vx I V. ], where Vn fo IxN, andY, is lxr. (e.43)

If r :0, then F*, is a full square matrix, and there will be one unique solution for ôm. This

unique solution is

ôm:F*-ty*. (9.44)

And finally, if r<0, then there are no solutions for ôm, and only an approximate solution

(which is optimal in a least squares sense) can be obtained by

ôm:F*,Îyr,. (9.45)

If it is desired that all the elements of ôm to be positive, and if solutions of (9.42), (9.44)

and (9.44) do not yield positive ôm, than it may be obtained by solving the following non-
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negative least squares problem

qin ll nn,am - y*, ll, , subject to ôm à O
Òm

(e.46)

This will produce an optimal non-negative solution to the vector ôm in a least square sense.

It should be noted, however, that AM which is a solution of (9.1) is itself only a Rayleigh-

Ritz approximation to the solution of the modification problem. Therefore, an approximate

solution to (9.1), obtained by (9.a5) and (9.46), is in reality "an approximation to an

approximation", which may not be acceptable in applications based on possible poor quality

of the solutions. Thus, from practical considerations, it appears that it may be best to restrict

the application of this method to systems where ôm can be determined by either (9.42) or

(9.44), which requires that /)N.

The above procedure ensures that the form of the obtained mass modification matrix AM

corresponds to a physically realisable system via equation (9.33). The procedure is also

independent of an arbitrary choice for the matrix Y, and it is summarised by the following

algorithm.

Algorithm 9.1: Determination of a Mass Modification Matrix

lnput: Modal test data Qr(nxm) and Â,(mxm), and desired modal data

iÞ"(nxm) and L"(mxm).

Algorithm:

1) Calculate P and H using (9.3) and (9.5)

2) Obtain the singular value decomposition H = l)Zl)r.
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3) Column partition U = [ u,¡, u2, ..., um, ..., un].

4) Set Ur = [ u,¡, u2, ..., u,.,.,] .

5) Calculate P,. = UrrP Ur.

6) Set N= l,(m2+ m).

7) Construct vectors yM as in (9.38).

8) Form vector óm of dimension lx1 as in (9.39).

9) Construct matrix F" using (9.40) and (9.37).

10) (a) lf / > N, then determine óm by equation (9.42),

(b) if / = N, then determine óm by (9.44),

(c) if / < N, then determine óm by (9.45).

11) lf desire non-negative óm and the one obtained in step 10 is not,

then determine óm by solving (9.46)

12) Construct AM from the elements of óm using (9.33).

Output: Physically realisable mass modification matrix 
^M.

9.2 Stiffness Modifications

The number of independent spring elements in a n degrees-of-freedom mass-spring model

may vary from (n-1) in a case of afree-free simply-connected system to Vz(nz+n) for amulti-

connected system. Thus assuming that -I (where J < 1/z(n2+,n)) of the spring elements are

available for lnodifications, the global stiffness rnodif,rcation matrix AK can then be

expressed as
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A.K = | ôsu.Bo(4 (e.47)
t1=l

wlrere ôso is a modification to the stiffness of the dh spring elemetrt, and Botxl is the nxn

rnapping matrix corresponding to a chosen analytical model.

We note tlrat the form of equations (9.31) and (9.32), and also of (9.33) and (9.47), are

identical. Therefore, by substituting matrix T, defined by (9.4), for matrix P, and also

substituting vector

ôs : (ôs,, õsr, ..., ôs"r ) (9.48)

for vector ôm, we may use the same procedure for evaluating AK as was used for

calculating AM. The required procedure is described by the following algorithm.

Algorithm 9.2: Determination of a Stiffness Modification Matrix

Input Modal test data iÞr(nxm) and Â,(mxm), and desired modal data

iÞ.(nxm) and r\.(mxm).

Algorithm:

1) Calculate T and H using (9.4) and (9.5)

2) Obtain the singular value decomposition H = lJZl)r.

3) Column partition U = [ u1, u2, ..., ur, ..., un].

4) Set U, = [ u1, u2, ..., un'] .

5) Calculate

Tr*=[rul =urrTU,
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6) Set N= lr(m2+ m).

7) Construct vector

vx =(yr(K), yr(K), ..., yrt*) ¡r = (t,,,.,t1r*,t,.*,..., t1r',t22.

8) Form vector ós of dimension Jxl as in (9.a8).

9) Construct matrix

(¡0

FK (Ð

ô(ôsr) '
(i = 1, 2,..., N; j = 1r 2,..., Ð

using equatíon

t,¡. = Eõso ur'B|Ðu,

)t,..,, t,^.

Ay

Vu

q=1

10) (a) lf J > N, then ós = FxtY^ * V,b,

(V, is obtained by a procedure similar to (9.43), b is an arbitrary vector).

(b) if -I = N, then ós = Fr'1Vx

(c) if J < N, then ós = F^tY^

I 1) lf desire non-negative ós and the one obtained in step 10 is not, then

determine ós by solving

min ll r*as - y" ll, subject to ôs > 0
ôs 

rr

12) Construct AK from the elements of ós using (9.47)

Output: Physically realisable stiffness modification matrix 
^K.
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9.3 Numerical Examples

Example 9.I

Consider a mass spring system shown in Figure 9.1.

sr.=500

sol:1000

Figure 9.1: A three-degree-of-freedom mass-spring system

The mass and stiffness matrices of this system are as follows

M : diag (1,1,1)

and

-500

-500

1000

The spectral and modal properties associated with this system are as follows

Â: diag (500, 2000, 2500)

q=1
srr=500

so2=1000

srt:500
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and

{,=
0.4082

0.4082

0.8 I 65

4.5774

4.5774

0.5174

4.707r
0.7011

0.0000

Now, assume that the physical properties of this system, namely its mass and stiffness

matrices, are not known, and also assume that the only available information about the

system are the first two of its modes, i.e

Â, : diag (500, 2000),

and
-0.5774

4.5774

0.5774

Õ

Suppose that we want to modify the system so that all elements of iÞ, are not larger than

0.5, but we also want to achieve this without increasing the magnitude of the existing

elements. Under these constraints the desired modal matrix, O*, is

Õ

0.4 -0.5

0.4 -0.5

0.5 0.5

We also want to modify the spectral properties of the system so that the desired eigenvalues

Â. : diag ( 500, 1500)

of the system are
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Based on the dimensions of iÞ, and Ä1, we realise that in the above system there are a

maximum of three independent mass elements and a maximum of six independent spring

elements available for modification. The number of constraints to be satisfied by the

solutions to (9.31) and (9.32) is equal to three for both mass and stiffness modifications.

Therefore, we expect that there exists one unique solution for ôm, and a family of solutions

for ôs.

Applying Algorithm 9.1, using step 10(b), we obtain the following unique solution for the

mass modification matrix, AM, corresponding to a mass-spring analytical model

AM : diag (0.2346, 0.2346, 1.0247).

Since there exists a family of solutions for ôs, we choose a minimal nofin solution

(determined by using step 10(a) inthe Algorithm 9.2with á being zero vector), and obtain

the following stiffness modification matrix ÅK

AK=
-197.5

0.0

47.9

0.0

-r97.5

47.9

The modified mass and stiffness matrices for the system are then as follows

M,ou : M + AM : diag (1.2346, L2346, 2.0247)

and

1802.5

-500. 0

-567 .9

-500. 0

1802.5

-567 .9

-561.9

-567 .9

1938. 3

K.o¿=K+ÃK=
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The mass-spring system corresponding to M,'ou and K.ou is shown in Figure 9.2.

s,r= 567.9

so¡734.6 802.5

Figure 9.22 A modified mass-spring system

The eigenvalues and mass-normalised eigenvectors corresponding to this modified system

Â.od : diag (495.8, 1516.5, 1865.0 )

are

and 4.47r0
4.47t0

0.4726

4.6364

0.6364

0.0000

The visual comparison between the two desired modes and the first two modes of the

modified system show good correlation. However, a good correlation requires that the

eigenvalue ratio, the amplitude ratio of the eigenvectors and the values of cosines between

the two eigenvectors are all as close as possible to 1. The values of these ratios and cosines

are presented in Table 9.1.

m;2.024i

s :500.0
t2

s = 567.9
23

s:734.6
02
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Desired
Mode,

i

Corresponding
Obtained
Mode,

j

Eigenvalue
Ratio,

ì",1?":

Amplitude
Ratio

of
Eigenvectors,

llo,ll¡ ll o,'ll

Cosine of an
angle between

the two
eigenvectors,
Cos(Z$,þ,.)

I 1 0.9916 1.0570 0.9999

2 2 1.0110 0.9431 1.0000

Table 9.1 : Comparison between the desired and the obtained modes.

Results in Table 9.1 demonstrate that a very good correlation is achieved between the

desired and the obtained modes.

Examole 9.2: Sensitivity test

In this example we examine the sensitivity of the developed method to small perturbations

in the measured data. Suppose that the matrices Ä, and Õ, of Example 9.1 were measured

with some perturbations, and are as follows

Â, : diag (450, 2050)

and

Õ
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Repeating Example 9.1 with the new Â, and iÞ1, wo obtain the following mass and stiffness

rnodification matrices

ÂM : diag (0.2701, 0.2701, 1.0216)

and

AK=

K.o¿=K+AK=

-t42.7

0.0

44.4

0.0

-r42.7

44.4

The modified mass and stiffness matrices for the system then are

M.oo : M + AM : diag (1.2701, 1.2701, 2.0216)

and

1857.3

-500.0

-544.4

-500.0

1857.3

-544.4

The mass-spring system corresponding to the above M.oo and K.oo is shown in Figure 9.3

544.4

s = 812.9
0t

sor= 857.2

Figure 9.3: A modified mass-spring system from sensitivity test

I/,/ nf.02l(

s = 544.4
2is,r= 500.0

= 812.9lz
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The eigenvalues and mass-normalised eigenvectors corresponding to this modified system

Â.od : diag (532.3, 1499.0, 1856.0 ),

are

and
4.4674

4.4674

0.4692

-0.6274

0.6274

0.0000

'We note that the resulting solution differs marginally from the solution of Example 9.1.

However, the differences are small, and the correlation between the desired and the obtained

modes is very good. Table 9.2 shows the eigenvalue ratio, the amplitude ratio of the

eigenvectors and the values of cosines between the two eigenvectors.

Desired
Mode,

i

Corresponding
Obtained
Mode,

j

Eigenvalue
Ratio,
Lil),:

Amplitude Ratio
of Eigenvectors,

llo, ll¡ ll øi ll

Cosine of an
angle between

the two
eigenvectors,
Cos(Zþ,þ,.)

1 I r.0646 r.047t 1.0000

2 2 0.9993 0.9360 1.0000

Table 9.2 : Comparison between the desired and the obtained modes

Results in Table 9.2 show that despite the introduction of perturbations into the measured

data, the quality of the obtained solution is not greatly affected. Therefore we conclude that

the developed method is sufhciently robust to perform adequately when perturbations are

relatively small.
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9.4 Conclusions

A method for determining physically realisable mass and stiffness modifications has been

developed. The method is broadly based on the results of Ram and Braun in [30], and it

allows determination of the mass and stiffness modification matrices corresponding to any

chosen analytical model (i.e the method is general, and is not restricted to any specific

analytical model).

Depending on the dimensions of the measured modal data contained in Â, and iÞ,, the

method allows to obtain a family of solutions, an unique solution, or an optimal

approximate solution for the mass modification matrix AM, and the stiffness modification

matrix AK. However, since AM and AK themselves constitute only an approximation to

the desired solution, it is recommended that the method is applied only in situations where

exact solutions for AM and AK are available.

The method was tested on a numerical example, and a solution obtained showed a good

correlation between the desired and the obtained modal properties. The sensitivity of the

method to small perturbations was also performed, and the method was found to be

sufficiently robust to cope adequately with introduced perturbations without noticeable

deterioration in its performance.
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The main aim of the experimental work described in this section was to check if the

developed theoretical results can be used in practical design applications. It is well known

that the dynamic behaviour of a discrete system is fundamentally different from the

behaviour of a continuous system. In practice, all measured modal analysis data is obtained

from a real structure, which behaves like a continuous system. Thus, there is an obvious

possibility that the measured modal data may be incompatible with the chosen analytical

model of a test structure. In general, a finite element model gives a good correlation with

the behaviour of a continuous system for approximately a third of its modes. A discrete

mass-spring system would probably give a reasonable correlation for even less number of

modes. These "well-correlated" modes correspond to the lower natural frequency end of the

spectrum, and the lower the natural frequency of a mode, the better is the correlation.
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Provided the measured modal data and the desired modes are within this range of good

correlation, the performance of the algorithms should, in principle, be acceptable. However,

this condition may prove to be too restrictive for many practical cases.

Most of the theoretical results described in the previous sections were based on the

assumption that a vibratory system may be modelled as a conservative discrete mass-spring

system. It was the prime objective of this experiment to test whether such assumption may

be successfully applied to a practical engineering structure. A simple "desk-top" test rig,

which could be used for testing and demonstrating the developed theory, was deemed

sufficient to achieve our objectives.

Because our aim was to test a practical engineering structure, we specifically did not want

to use an experimental model which consisted of lumped masses connected by light springs.

To use such model is equivalent to testing a physical mass-spring system, which is not

representative of any obvious engineering application. At the same time, we wanted to use

an experimental model which would give a good correlation with the behaviour of a mass-

spring system. To do otherwise would have created a large uncertainty in testing the

performance of the algorithms.

The two systems considered appropriate for our test model were the torsional shaft-pulley

system (see figure 2.1) and a "building" model which is shown in figure 10.1. Both of these

test models may represent a large number of real engineering structures. The torsional

system is clearly representative of any rotational machinery power transmission trains or
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gear box assemblies. The "building" model nìay represent any cantilever structure, such as

buildings, aeroplane wing, and many other.

Figure 10.1: Example of a "building" model

The "building" model was chosen as best suitable because of cost, simplicity and safety

considerations. To measure the torsional modes would have required the use of a more

sophisticated equipment and a more complicated test set-up. Also, to demonstrate the

resonance of this torsional system, it had to be driven at high rotational speeds (while

resonating) which was considered too unsafe'

The Algoritbnt 4.2 for solving Problem 1 (see section 5) was then chosen as most suitable

for the experimental assessment. This algorithm was selected because, unlike algorithms for

Problems 2 and 4 (see sections 6 and 9), it only involved changing the masses of the
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structure, thus greatly simplifying the design of the test model. Also, unlike algorithm for

Problem 3 (see section 8), it is not sensitive to perturbations in the measured modal analysis

data, thus giving a more stable platforrn for the experimental assessment of its performance.

10.1 Test Model DescriPtion

The test model consisted of nine extruded aluminium box sections, which represented the

"walls" of a building, and a large number of steel plates of various thickness (and hence

mass), which were sandwiched between the adjacent box sections to obtain the necessary

"floor" mass at each location. The aluminium box sections had a uniform thickness of 3mm

throughout, ffid its dimensions were l60mm(long) x l00mm(wide) x l0Omm(high)' The

steel plates had dimensions of 2l5mm(long) x l0Omm(wide) and were made in various

thicknesses to allow for different mass configurations. The adjacent box sections with plates

in between were joined together by mild steel, M6x1.0, hexagonal head bolts of appropriate

lengths.

The overall, general layout of the assembled model is shown in Figure 10.2. Figure 10.3

shows details of a joint connection between the two adjacent box sections with steel plates

in-between.

162



Section 10: Experìment

Y

ZI X

X X

Figure 10.2 : The overall general layout of the test structure.
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Figure 10.3 : Details of a joint corurection between adjacent box sections
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10.2 Mass Elements of the Test Model

Figure 10.4 shows a schematic layout between two adjacent "floors" of the test structure.

mm

tfÌ¡ Ill¡
mm

Figure 10.4 : A schematic layout between two adjacent "floors".

In the theoretical mass-spring system, the springs, which connect each mass element to

others, are themself have no mass. In a real physical structure this is clearly not the case.

Each aluminium box section had a finite mass, although, in general, this mass was very

small relative to the mass of the steel plates at each "floor". A choice had to be made

whether to ignore the mass of the aluminium box sections, or to include it in the

calculations of the "floor" mass. To maintain the accuracy of the test model, it was decided

to include the mass of the box sections in our calculations. The effective mass of each

"floor" was calculated based on the well known Rayleigh's method (see e.g. Thonson [78],

pp. 24-25). The resulting mass matrix for our test structure was then assumed to have the

following forrn
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where M¡ (i:1,2,...,9) was the mass of the steel plates and connecting bolts atthe iú "floor",

m' is the mass of a horizontal segment of a box, and rtru is the mass of a vertical segment

of a box.

From measurement it was found that the mass of each box section was approximately equal

to 540 grams, and also, from the dimensions of the box section, we know that

mr: 1.6mu (10.2)

The mass of each box section is equal to

2(m.+ mu) : 540.
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Thus from (10.2) and (10.3) we find that

m''- 166 grams

and mnrv 104 grams.

(10.4)

(10.s)

And, consequently, the sum

* *3 =20I sramms,r30 (10.6)

(10.7)

This value was then used to determine the additional mass from steel plates which would

give us the desired total mass at each "floor". In general, by carefully manipulating with

the plates of different masses, we were able to achieve the mass at each "floor" which was

nominally within *2 grams of the desired value.

10.3 Determination of the Stiffness

The stiffness matrix corresponding to our test model, \ryas assumed to have the following

form

2k-k 0 0 0 0 0 0 0

-k2k -k 0 0 0 0 0 0

K_

0 -k2k -k 0 0

0 0 -k2k -k 0

0 0 0 -k2k -k

2k-k 0 0

-k2k -k 0

0 -k2k -k

0 0 0 0 0 0 0 -kk

where k was the stiffiress constant of each box section.

000
000
000

0000-k
00000
00000
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The value of k was estimated theoretically using the listed properties of aluminium and the

information about the dimensions and the shape of the box section. Using Thomson [78,

p.178] the stiffness constant k is given by

k=2444
¡s

(10.8)

where E : Young's Modulus of Elasticity of aluminium

1: moment of inertia of a box section

/ : height of the box section.

It was not clear which value had to be used for height / of the box section, i.e 94mm or

100mm. Therefore, both values were used to determine the upper and lower bounds for k.

Substituting the listed values for E : 70 - 75 GPa, and using other dimensions of a box

section to calculate .I, the theoretical value of k was found to be

k: 378 kN/m - 488 kN/m. (10.9)

Suclr a large uncertairfy (over 20o/o) was considered too great for our experiment, and

thelefore a simple procedure was carried out to measure the value of k experimentally.

f0.3.1 Stiffness determination experiment

Figure 10.5 shows the schematic layout of the experimental set-up for stiffness

measurernent.
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3

APPARATUS

1. Aluminium Box Section
2. Dial Indicator
3. Mounting Plate
4. Hook
5. Load Masses

4

J

Figure 10.5: Schematic layout of the stiffness measuTement experiment

The method was:

l. Mount the box section onto a solid, straight vertical surface as shown in Figure 10.5.

2. Attach the mounting plate to the other side of the box section as shown, and place

the hook through the hole in the mounting plate.

3. Position the dial indicator so that itstip istouching the front edge of the box section,

and set the dial reading to zeto.

4. Add 0.5kg masses, one at a time, and measure the deflections from the dial

indicator.

This process was repeated for three randomly selected box sections, and the results from

this experiment are shown in Figure 10.6. The raw data from this experiment is given in

the Appendix A. We note the value of the stiffness is significantly higher under small loads

(and hence srnall deflections). However, experimental uncertainty in measured values of

small deflections \\ras \¡ery large, mainly due to dial resolution limitations. At higher loads

the value of the stiffness seemed to "settle" around the approximately 350 kN/m mark'
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10.3.2 Optimal value for the stiffness, k

It was anticipated that during the modal analysis testing of the "building" model the

deflections of the "walls" would be relatively small. Therefore, a large uncertainty in what

value should be used for stiffness k still existed, despite the availability of the measured

data. In the end, the optimal value for the stiffness k was determined by performing a Chi-

squared test, which is defined as

2
Xo $ (a,- ó)'

?a. (10.10)

where 2ro2 : Chi-squared value

ai : ith measured experimental natural frequency

bi : ith analytically determined natural frequency

Clearly, inthe equation (10.10) if a,:b, lfor i:I,...,9),then xoz:0. Thus, the objective was

to find the stiffness value, k, which produced anal¡ical natural frequencies b, 1i:1,...,9;,

such that the magnitude of the xr2 were minimised. The procedure was then as follows. The

modal analysis tests were performed on several configurations of a test structure (i.e

different mass configurations at each floor), and the measured natural frequencies of each

configuration recorded. The analytical values for the natural frequencies of the model r,vith

the same mass configurations were calculated using a number of different values for the

stiffness k. Then, setting a, to be the measured natural frequencies and b, to be the

corresponding analytically determined natural frequencies, the values of the xo' were
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calculated using equation (10.10). The value of the stiffness k, which consistently gave the

lowest zo2 value was

k: 378 kN/m (10.11)

and this value was then used in all subsequent experiments. The raw data from these Chi-

squared tests is given in the Appendix B.

10.4 Experimental Testing of the Algorithm 4.2

The schematic layout of the experimental set-up is shown in Figure 10.7. The equipment

used for these experiments are listed belolv

EOUIPMENT USED

1. The "Building" Model.

2. Brüel and Kjær Accelerometer - model 9040.

3. Brüel and Kjær Signal Analyser - model 2032.

4. Brüel and Kjær Charge Amplifier - model 5666.

5. Brüel and Kjær Impulse Hammer - model 1234.

6. IBM Compatible Personal Computer.
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ACCELEROMETER

IMPULSE
HAMMER

VIBRATING STRUCTURE

Figure 10.7 : Schematic layout of the Algorithm Testing Experiment.

The experimental procedure was then as follows:

Nine different natural frequencies were arbitrarily chosen.

Using the stiffness k :378 kN/m, the stiffness matrix of the "building" model was

constructed via equation (10.7).

Algoritlun 4.2 Tor solving Problem I (see section 4) was then applied to determine

the necessary mass matrix. Qrlote: Sometimes several repetitions of the algorithm

(with different starting values for the initial guess of the mass matrix) were required,

in order to obtain the natural frequencies which were adequately close to the desired

frequencies.)

CHARGE
AMPLIFIER

SIGNAL
ANALYSER

1

2.

a
J

173



Section 10: Experiment

4

5

Using the obtained mass matrix from step (3) and equations (10.1) and (10.6), the

masses of the steel plates to be added at each "floor" were determined.

The physical test structure was then assembled with the determined amount of plates

at each "floor".

The structure was lightly struck by the impulse hammer, consecutively at each

"floor", each time recording the natural frequencies of the structure.

The measured natural frequencies at each "floor" \ryere averaged, and compared with

the desired natural frequencies and the natural frequencies of the anal¡ical system

determined by the Algorithm 4.2.

The raw data from these experiments is given in the Appendix C. In Figure 10.8 we present

the graphical comparison between the measured, the desired and the anal¡ically determined

(by Algorirhm 4.2) natural frequencies.

In all results shown in Figure 10.8, the "Frequency" axis is set between the same limits

(from 0-220H2), thus allowing easy visual comparison of the data from all tests. We also

want to emphasise the following point. Although in theory Algorithm 4.2 should permit

unrestricted assignment of arbitrarily chosen natural frequencies, in our experiment the

achievable natural frequency range was approximately 5Hz to 220H2. This limitation r,vas

a direct consequence of the physical constraints on the smallest and the largest mass that

we could have at the "floors". Clearly, the smallest mass was simply the mass of the

aluminium box sections with no steel plates added. The maximum obtainable mass was

governed by the available supply of the steel plates (which was approximately 70kg).

6
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Figure 10.8 : Comparison between the desired, measured and analytical

(using Algorithm 4.2) natural frequencres
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Figure 10.8 (cont'd): Comparison between the desired, measured and analytical

(using Algorithm 4.2) natural frequencies
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Figure 10.8 (cont'd): Comparison between the desired, measured and analytical

(using Algorithm 4.2) natural frequencies.
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Figure 10.8 (cont'd): Comparison between the desired, measured and analytical

(using Algorithm 4.2) natural frequencies.
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10.5 Conclusions

The results presented in Figure 10.8 show a good correlation between the desired natural

frequencies and the natural frequencies both of the test structure and of the analytical model

determined by Algorithrfi 4.2. Therefore, the main aim of this experimental program, which

was to test whether the assumption of conservative mass-spring system is acceptable in the

practical engineering applications, was achieved and the answer is positive. However, we

are fully a\¡/are that the chosen test structure was highly "tailored" and optimised for

conformance with such anal¡ical model, and that most "real-life" structures would not be

so successfut. The experimental test model was, however, well suited to the stated scope

of our experiment, and it is representative of some useful engineering structures. The

Algorithm 4.2 was found to work well in applications to a real physical structure, and it has

a potential of being a very useful tool for the design of vibratory systems to suit natural

frequency requirements.
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The conclusions pertaining specifically to the particular problems investigated, were given

at the end of the appropriate sections dealing with those problems. Here we present the

general conclusion, which are applicable to all results given in this thesis.

The material presented in this thesis contains a logically complete set of solutions to

practical problems dealing with the design and structural modihcations of structures, which

may be adequately modelled by a mass-spring analytical system. In section 4 we developed

a method which allows determination of a mass matrix when the stiffness matrix and a

complete set of the desired natural frequencies of a system are known. A derivative of a

method by Joseph [16] allows a similar procedure to be followed when the desired natttral

frequency set is truncated, i.e when not every natural frequency is precisely specified. In

section 5 we presented a method for optimal reconstruction of a mass-spring system from
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a complete set of prescribed spectral and modal data. The analysis given in section 6 then

allows us to do the same when the prescribed spectral and modal data are incomplete. In

section 7 we have extended the solution method of section 5 to a more general class of the

mass and stiffness matrices (i.e. which not necessarily correspond only to a mass-spring

system). In section 8 we used the method of Joseph [16] as a basis for developing a new

algorithm for obtaining the necessary mass and stiffness modifications to an existing

structure, so that the natural frequencies of a modified system are as close as possible to

the prescribed values. And finally, in section 9 we developed a method for extracting the

physically realisable set of solutions for a problem of structural modifications where both

spectral and modal constraints are present. A family of solutions to this problem was

originally characterised by Ram and Braun [46], but no method of obtaining a physically

realisable solution was developed. Our result thus complements and completes the solution

given in [46].

The physical realisability of a solution was the main criteria that had to be satisfied in all

of the methods developed in this thesis. All of the presented methods aim at being useful

in practical engineering applications, rather than just being of purely mathematical interest.

The author hopes that the main contribution of this work would be to make available a

useful practical set of design tools which may be applied to "real-life" problems. To some

extent this contribution was recognised by publication and the feedback from the three

refereed papers 175,76,77), which deal respectively with the material of section 4, section

5 and section 8. Two pending papers [79,80], containing the material developed in sections

6 and 9, will also soon be submitted for a journal publication. The practical application of
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the method developed in section 4 has also been demonstrated by the experimental results,

which are given in section l0

The author also believes that the work developed in this thesis has filled a small void in the

knowledge of inverse vibration problems, particularly in applications with conservative

mass-spring systems. However, several of the developed methods (e.g. algorithms of

sections 6, 7, I and 9) do have an "in-build" ability to cope with the mass and stiffness

matrices corresponding to vibratory systems other than the mass-spring model. For example,

they may be applied to the mass and stiffness matrices corresponding to a finite element

model. Some open problems concerned with improving the developed methods were

identified (for example: Horv to control the sign changes in the obtained modal vectors in

Problem 2?),bvt we leave those problems for later investigations.

Last, but not least, it should be emphasised that engineering solutions must not only be

physically realisable but practicøl as well. This means that additional constrains may need

to be taken into account (e.g. the maximal allowed mass, geometrical and spatial

restrictions, etc.). Hence, as expected, the design process involves a combination of

experience, intuition and science. In this thesis we have focused on the latter only. A great

inrprovenrent to the developed methods would be to enable direct prescriptions of practical

solutions. However, we also leave this important task for later study.
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APPENDIX A:

Raw Data from Stiffness Measurement Tests

Erof
Mass (Koì Forc€ D¡st (mm) D¡st (m) Sl¡ffness Loiler Bound UDÞer Bounc

0.497
0 999

1.5
1.996
2.499
2.987
3.489
399

4 492
4.994
5 487
5.986
6.482
6 984
7.482
7.979
I 471
8972
9 472
9.973
10.472
10 973
11 476
11.976
'12474
12.972
13 4?2
13.973
14 471
14 965

4 876
9 800
14.715
1 9.581

24 515
29.302
u.227
39.142
44c67
48.æ1
53.ø27
58.723
63.588
68 513
73 398
78271
83.1 01

88.015
92.920
97.835
102.730
107.645
112.580
117.485
1?2370
127.255
'132 160
r37.075
't41.9ô1

146 807

0 011
0.026
0.04
0.054
0.07

0.082
0.o97
0.1 t

o 124
0.14

0 154
0.168
0.18
0.195
o.21
o224
0.239
o.252
0.263
o.278
0.293
0.31

0.323
0.339
0.35

0.363
0.38
0.391
0.407
0.42

1,10E{5
2.60E{5
4.00E{5
5.40E45
7.008¡5
8.20E45
9.70E¡5
1.10E44
1.2ÂÊ.44
1.40E44
1.54E44
1 68E44
1.80E44
I 95E{4
2.10E44
2.24E44
2.39E44
252844
2.63Ê44
2.7884¡.
2.93E44
3.10E44
3.23E{X
3 39E44
3.50E44
3.63E{4
3.80E44
3.918{4
4 07E4{
4.20e44

376930
367875
362607
350217
3573¡7
352857
355835
355375
349937
349529
349540
353269
351349
349516
349437
unol
u9267
353309
351925
35061 5
347242
348544
345562
349628
350566
347790
35057ô
348797
349540

466676
4ZU2g
399607
377157
380552
37203Á
372780
370307
362897
361258
360262
363362
360595
358041
357415
355130
356337
360156
358370
356703
352935
3æO24
351750
354695
355462
352428
3551 17
353136

3161 35
327mO
331877
326869
336S10
335560
340364
34 1601

337870
338538
339437
3,4'3721

342565
341 388
341 808
340576
342472
34671 I
u5707
344733
341731
343230
3/1525
344704
345803
3,!,3274
346149
344564

u7247
38€'721
374Æ,57

364581
3,46.235

348555
s35720
33081 I
327c,55
331 193
3365r I
332314
3315æ
332608

335685
336C19
33ê507
337014
337630
yù2æ

341761
341979
340569
312663
311tÂ9
34621-a

578790
4,(5315
41A525

367875
36729s
350708
343733
33834,{
3/.1671
34ô408
341 199

33975ô
340307
340e34
340067

3421 96
342390
342631
3430'36
345¡56
346591
346601
346638
345015
347001
348701

æ4423
34 1753
34180'l
339263
327000
331635
32196t
31 8825
3165'15
321336
3271il
323879
323730
?25249
326ô32
32673',1

330380
330061
330822
331 578
332120

336660
3370s3
3374¡3
JJô2JÞ

338433
340339
u21U

1,003
1.498
1.986
249

3
3 482
¿ 004
4 485
5,001

5 503
6.003
6.5M
6.996
7.493
7.991
I 493
I 992
I 488
9.982
10 478
10.979
11.19

1',t.977

12.472
12.968
't3 47

ia o7,

14.467
14.Æ4

9 839
14.695

19.483
24.427
29.430
34.158
39.279
43.998
49.060
53 984
58.889
63.804
68.631
73.506
78392
83 316
88.212
93.0n
97.923
102.789
107.704
112.619
117 4
122.350
127.216
132141
137.065
141.921
146.797

o0z2
0,038
0.052
0.067
0.085
0.098
0,117
0.133
0.15

0.163
0.175
0 192

o.207
0.221
0.235
o.25
0.262
o.2n
0.291
0.305
0.319
0.331
0.344
0 358
0.372
0.388

0.4
o.412
o 424

3 31E44
3.44844
3.58E44
3.72844
3.888O4
4.00844
4.12Ê.44
4.24Ê.44

1.63E44
1.75e.44
1.92É.4a
207844
221É.44
235q.44
2.50E44
262Ê.44
277E44
2.91844
3 05EÐ4
3.19E44

2,20É.45
3.00E{s
5.20845
6.70EÐ5
8.50845
9.80E45
1.17Ê44
1.33E44
1.50E44

Stiffness Lower Bound Uppef Boun(MãsitRsfForce Dist (mm) D¡st (m)

463873
417115
rotrô<
380291
390176
384133
5/Þ t/Þ
3731 96
370848
368278
366ô49
3672û
365750
364532
362016
361392
360799
363162
35847E
354145
?R<"tô

3551 {1
3527n
353614
350512
349630
346901
3¿9487
35205¡

31 4236
324602
329882
328900
34273
315332
343178
31.1040

3¿4732
341671
3¿5081
3r'7210
u71U
3l7255
345998
346334
3¿6594
349509
34581 I
342631
v39n
344280
u2a9z
313681
3¡1114
340619
338336
3¡1 086
3¡3809

37Æ7
3Ê51n
ßu27
3527æ
3â5790
363701
359320

35æ13
35â194

35653
éÐ4
3556'34
353826

353554
3562C4
352C31

34843E
349561
349â26
347558
348576
345719
345)56
342565
3¿5235

0.993
1 489
1 984
2481
2 983
3 485
3 988
4 489
¿.99
5 481

598
64n
6972
7 469
7 971
I 473
I 97¿l

94n
9.976
10.478
10.975
11.476
1 1.975
12472
1297
13 472
13 958
14 464
14 s65

9.741
14.607
19.463
24.339

34.188
39.122
u.o37
48.952
53.769
58.64r
63.539
58.395
73.271
78.196
83.120
88.035
92.969
97.865
102.789
107 665
1 12 580
117.475
122.350
127.2æ
132 160
I 37.026
14'.t 892

0.026
0.04
0.054
0 069
0.08
0.094
0.109
0.123
0.137
0.15'l
0.165
0.178
0.1 92
0.206
o.221
0.235
0.249
0.261
o.278
0.295
0.308
0322
0.338
0.351
0.358
0.383
04

0 41'l
o 422

2358¡1.
2.49E44
2 61E44
2.78844
2.95E4¿
3 08E44
322e44
3.38E44
3.51E44
3 68E4¿
3.83E44
4.00E44
4.11E44
4.22841

1.51E44
1 65E44
1.78E44
1.92ery
2.06E44
2.2184a

2 60E¡5
4.O0845
5,40E45
6.90E45
I O0E¡5
I 40E45
1 09E44
1.23É.4¿
I 378¡4

193



APPENDIX B:

Raw Data from Chi-s uared Tests
1

k= 378000 K=350000 K=340000Node Mass
(ks) (Hz)

Expt Freq

req (Hz) AF Ch¡ squ'd
1

2

.t

4
t

6

7

I
I

6.195
4.867
3.772
4.641
6.503
5.361
3.628
3.291
2.078

6.800
21.800
35.300
50.600
62.000
73.700
80.500
91.200

103.500

8.090
24.450
36.570
51.080
62.170
72.790
80.390
89.910

100.630

1.290
2.650
1.270
0.480
0.170

0.910
0.1 10

1.290
2.870

0.245
0.322
0.046
0.00s
0.000

0.011
0.000
0.018
0.080

7.7E8
23.531
35.185
49.152
59.825
70.044
77.359
86.517
96.834

0.988
1.731
0.1 15

1.449

2.175
J.ÞCb

3.141
4.683
6.666

0.143
0.1 37
0.000
0.041
0.076
0.181
0.123
0.240
0.429

7.788
23.192
34.679
43.441
58.964
69.036
76.246
85.272
95.441

0.988
1.392
0.621
7.156

3.036
4.6ô4

4.2U
5.928
8.060

0.143
0.089
0.01 'r

1.012
0.149

0.295
0.225
0.385
0.628

Sum = 1.3

k= 37E000 K=350000 K=340000Noõe Mass
(ks)

txpt Freq
(Hz) u'd

1

2
.1

4
tJ

6

7

I
o

5.928
4.600
3.505
4.374
6.236
5.094
3.361
3.024
1.944

7.000
21.458
35.757
50.350
62.167
73.450
81.000
92.563
99.500

7.958
24.085
36.083
50.380
61.352
71.814
79.211
87.882
98.792

0.958
2.626
0.326
0.030
0.815
1.636
1.78S

4.681
0.708

0.131
0.321
0.003
0.000
0.011

0.036
0.M0
0.237
0.005

7.672
zó. I oo

u.726
48.478
59.03s
69.107
76.214
85.184
95.066

0.672
1.708
1.031
1.872
3.132
4.343
4.786
7.378
4.435

0.065
0.136
0.030
0.070
0.158
0.257
0.283
0.s88
0.198

7.562
22.833
34.227
47.781
58.1 85
68.1 13

75.117
83.958
93.698

0.562
t.5/c
1.530

2.569
3.982
5.337
5.883
I 604
5.802

0.045
0.088
0.06ô

0.131
0.255
0.388
0.42i
0.800
0.338

Sum = 0.784 Sum = 1.783 Sum = 2.538

1

2
3

4

5
6
7
I
o

4.735
1.196
0.220
0.805
0.464
0.874
2.265
0.759
3.852

8.'194
30.708
46.286
65.750
92.583

119.922
146.861
180.438
210.792

11.2s4
35.553
50.354
71 .158

100.671
123.281
142.353
174.331
201.U8

3.060

4.844
4.069
5.408
8.088
2 2(O

4.509
6.107
9.443

1.142
0.764
0.358
0.445
0.707
0.094
0.138
0.207
o.423

10.828
u.225
48.462
68.473
96.866

1 18.269
1 36.960
167.750
193.728

2.633
3.517
2.177
2.723
4.282
1.653

9.901
12.687
f 7.063

0.846
0.403
0.102
0.1 13
0.198
0.023
0.668
0.892
1.381

10.672
33.733
47.765
67.487
95.472

116.922
134.989
165.336
190.941

2.477

3.024
1.479
1.737
2.888

3.000
11.872
1 5.10r
19.851

0.74-o

0.298

0.047
0.04ô
0.090
0.075
0.960
1.261
1.869

Sum = 4.279 Sum = 4.626 Sum = 5.398

4
Freq

AF u'd
1

2

J

4
5

6
7
I
I

3.776
2.659
3.490
3.856
4.332
0.802
1.430
0.351
0.703

9.569
28.944
45.972
63.056
80.597
87.056

101 .406
145.078
186.292

1't.141
32.187
47.560
63.920
81 .185
92.049
98.868

1 41 .809
184.983

1.571

3.243
1.588
0.865
0.587
4.993
2.538
3.269
1.309

0.258
0.363
0.055
o.012
0.004
0.286
0.064
0.074
0.009

10.738

30,964
45.745
61.475
77.972
88.561
95.101

136.445
'178.026

1 .168
2.020
o.227
1.581
2.626
1.505
6.305
8.634
8.265

0.143
0.141
0.001
0.040
0.086
0.026
0.392
0.514
0.367

10.583
30.524
45.087
60.591
76.850
87.286
93.733

134.481
175.465

1.014
1.579
0.886
2.465
3.748
0.231
7.673

10.597
10.827

0.1 07

0.086
0.017
0.096
0.171
0.001

0 581

0.774
0.629

Sum = 1.125 Sum = 1,708 Sum = 2.466
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AppendLv B: Row Dala front Chi-squared Tests

k= 378000 K=350000 K=340000Mass
(ks)

Expt Freq
(Hz)

Node

sq AF
6.797
3.557
3.684
3.235
2.347
2.584
1.757
1.086
1.204

9.000
26.000
42.083
56.167
72.771
88.667
98.188

1 13.479
142.3r 3

1

2

3

4
t

6

7

I
o

10.473
27.731
43.1 63
57.025
72.018
86.793
96.339

109.465
139.292

1.473
1.731
1.080
0.859
0.753
1.874
1.848
4.0't 5

3.021

0.241
0.1 15

0.028
0.013

0.008

0.040
0.035
o.142
0.064

10.079
26.683

41.534
9.872
69.299

83.517
92.701

105.331
1 34.033

1.079
0.683
0.549
1.295

3.472
5.150
5.487
8.149
8.280

0.129
0.018
0.007
0.030
0.166
0.299
0.307
0.585
o.482

9.934
26.299
40.937
54.082
68.301
82.315
91.367

103.81 5

1 32.1 04

0.934
0.299
1.147
2.085
4.469
6.352
6.821
9.664

10.208

0.097
0.003
0.031
0.077
0.275
0.455
0.474
0.823
0.732

Sum = 0.685 Sum = 2.022 Sum = 2.968

k= 37E000 K=350000 K=340000Node Mass
(kq)

Expt Freq
(Hz) ôF Chi

1

2
ã

4

6

7

I
I

3.498
2.017
1.558
2.019
3.064
3.070
2.285
0.960
0.877

9.500
31 .281
48.031
65.766
82.031
98.000

106.422
129.906
146.156

10.747
34.541
49.625
67.08s
81.788
96.400

103.717
124.885
145.142

1.247
3.259
1.593
1.320
o.244
1.600
2.705
5.021
1.014

0.164
0.340
0.053
0.026
0.001

0.026
0.069
0.194
0.007

1 0.336
32.382
47.753
&.553
78.700
92.761

99.804
120.171
1 39.672

0.836
1 .101

0.278
1.213
3.332
5.239
6.618
9.735
6.485

0.074
0.039
0.002
0.022
0.135
0.280
0.412
0.730
0.288

10.188

31 .916
47.0ô6
63.624
77.567
91.426
98.368

118.442
137.662

0.688
0.63s
0.966
2.142
4.464
6.574
8.054

11.465
8.494

0.050
0.013
0.019

0.070
0.243

0.441
0.610
1 .012
0.494

Sum = 0.879 Sum = 1.981 2-951Sum

K=350000 t\=ir4u000N0de Mass
(kq)

Expt Freq
(Hz) :eq (Hz AF Chi squ'd ,IF

1

2

4

5

6

7

I
o

4.011
1.332
1.829
1.205
3.019
1.769
2.929
0.974
1.175

9.500
31.472
48.444
6s.969
78.016

109.81 I
120.431
139.450
144.611

10.981
.33.807

50.168
67.788
77.945

106.789
1 16.734
134.260
139.376

1.481
2.335
1.723
1 .819
0.070
3.030
3.696
5.190
5.236

0.231
0.173

0.061
0.050
0.000
0.084
0.113
0.193
0.190

1 0.565
32.528
18.272

65.228
75.001

102.752
1 12.319
129.185
1U.111

1.065
1.056

0.172
0.741
3.015
7.068
8.112

10.265
10.500

0.1 19

0.03s
0.001

0.008
0.1 17

0.455
0.546
0.756
0.762

10.413

32.050
47.578
64.289
73.921

101.273
110.702
127.327
132.1 81

0.913
0.588
0.867
1.679
4.094
8.546
9.729

12.124
12.430

0.088
0.01 I
0.016
0.043
0.215
0.665
0.786
1.054
1.068

3.94

I
Node Freq

ud
1

,)

6

7

8

I

'l

1.371
1.673
3.094
3.827
2.426
2.005
0.886

8.781
29.250
42.000
61.714
80.688
96.906

108.188
124.781
136.475

10.078
31.691
43.818
61.441
79.361
94.290

',l06.756

123.373
133.562

1.297
2.441
1 .818
0.273
1.327
2.616
1.431
1.408
2.913

0.192

0.204
0.079
0.001
0.022
0.071
0.019
0.01€
0.062

o ao,

30.492
42.163
59.1 1 I
76.350
90.726

102.724
118.627
128.508

0.911

1.242
0.163
2.597
4.327
6.180
5.463
6.155
7.967

0.094
0.053
0.001
0.109
0.232
0.394
o.276
0.304
0.46s

o Ã(2

30.053
41.555
s8.267
7s-262
89.420

101.243
1 16.920
126.660

0.772
0.803
0.445
3.447
5.426
7.486
6.944
7.862
9.815

0.068
0.022
0.005
0.193
0.365
0.578
0.446
0.495
0.706

Sum = 0.665 Sum = 1.928 2.877
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