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Abstract

This thesis concerns with problems associated with design and structural modification of
vibratory systems. The aim is to meet prescribed modal and spectral requirement. Several
common problems encountered in practical engineering applications are described, and
novel strategies for solving these problems are then proposed. The mathematical

formulations of these problems have been generated, and solution methods are developed.

The first problem concerns with developing a systematic approach for design of
conservative vibratory systems with prescribed natural frequencies. Since, in general, this
problem has more design parameters (namely the independent elements of the mass and
stiffness matrices) than number of design constraints (i.e. the number of natural frequencies
to be assigned), it has a family of solutions. We are only interested in these solutions which
are physically realisable, i.e. solutions which can be physically constructed. We thus assume
that a physically realisable stiffness matrix of a system is known, and then calculate a

realisable mass matrix, so that the desired natural frequencies are-obtained.

A second problem concerns with a case where in addition to the prescribed natural
frequencies, corresponding mass-normalised mode shapes are also specified. This problem
is analysed for situations where all of the system’s natural frequencies and mode shapes are
specified, and also for the case when these frequencies and their associated mode shapes
are only partially prescribed. When all of the natural frequencies and mass-normalised mode

shapes are prescribed, the problem is overdetermined, i.e there are more constraints than

Vi



there are independent design parameters. In general, there are no physically realisable
solutions for this case. Therefore, we formulate and solve an optimisation problem leading
to an approximate solution which is optimal in a specified sense. A partial specification of
natural frequencies and mode shapes may result in a problem which has no realisable
solutions, a unique solution, or a family of solution. This depends on the ratio between the
number of prescribed and a total number of natural modes for the system. We present a

solution method which can cope with any of these cases.

The two remaining problems concern with determining the necessary structural
modifications to an existing system, based on measured modal analysis data. Problem 3
deals with assignment of natural frequencies only, while in Problem 4 we assume that both
the natural frequencies and the corresponding mass-normalised mode shapes are specified.
In both of these problems, our aim is to determine the necessary modifications based on the
measured test data only. Because modal analysis data only partially describe the system, we
are unable to obtain exact solutions to either problem. We overcome the difficulties of the
inherent truncation of the modal data by formulating and solving optimisation problems

giving approximate solutions which are optimal in a specified sense.

The developed algorithms were numerically tested on arbitrarily chosen examples, and a

simple experiment was designed and carried out to test the suitability of the generated

theory in a practical application.
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Glossary of Principal Symbols

number of degrees-of-freedom

index

index

i™ natural frequency

mass matrix of a system

stiffness matrix of a system

eigenvalues matrix of a system

corresponding mass-normalised eigenvectors matrix

ii" diagonal element of A, A=w>

corresponding i™ column vector of &

desired eigenvalues matrix

desired mass-normalised eigenvectors matrix

ii™ diagonal element of A"

corresponding i" column vector of &

mass of i™ element

ij™ element of K

the stiffness constant of a spring connecting mass i to mass j
number of truncated modes (m<n always)

eigenvalue matrix containing first m eigenvalues of A
matrix containing first m corresponding column vectors of &
eigenvalue matrix containing first m eigenvalues of A"
matrix containing first m corresponding column vectors of ¢
Identity matrix of size n (suffix n can be any value)
eigenvalue matrix containing last n- m eigenvalues of A
matrix containing corresponding »-m column vectors of &
mass modification matrix

stiffness modification matrix
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modification to an i mass element

modification to an i" stiffness element

a mass matrix of a modified system

a stiffness matrix of a modified system

a connectivity matrix describing the connections of spring Si
an augmented vector for stiffness sensitivity

a stiffness sensitivity matrix

a vector consisting of all independent spring constants S;

a mapping matrix for m; onto M

an augmented matrix for mass sensitivity

a vector consisting of all independent mass elements

a mass sensitivity matrix

i™ column vector of K

an arbitrary symmetric matrix

an arbitrary symmetric matrix

a diagonal matrix

in sections 2, 8 and 9, a residual matrix defined by (2.15)
in section 4, a matrix defined by (4.27)

in section 5, a matrix defined by (5.6)

in section 7, a matrix defined by (7.19)

in sections 2, 8 and 9 is defined in (2.18) and (2.19).

in section 3, a modal matrix of a modified system

in section 5, defined by (5.39)

eigenvalues matrix which is an approximation to A"

in section 8, a corresponding mass-normalised eigenvectors matrix
in section 9, an approximation to ®"

in section 3 and 5, any real symmetric matrix

in section 5, a matrix defined by (5.23)

in section 6, a matrix defined by (6.23)

i" column vector of A

in section 3, an eigenvalue matrix of a modified system
in section 8, an eigenvalue matrix of (8.3)

in section 4, a scalar constant defined by (4.3)
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scalar constants defined by (4.23)

gt - scalar constants defined by (4.24)
t - an iteration index
U - an orthonormal matrix
€ - a residual error function
s - a residual error function defined by (4.35)
Q - an orthonormal matrix
Uy U, - two arbitrary vectors in example of Figure 5.1
i U, - two orthogonal vectors in example of Figure 5.1
A, Ay the square of the lengths of the projection vectors in Figure 5.1
G, - a matrix defined by (5.30) and (5.43)
z, - a vector defined by (5.31) and (5.44)
E; - a matrix defined by (5.32) and (5.45)
®;, - a modal matrix defined by (5.39)
E, - a known component of the IP Decomposition of X
Dy - a diagonal component of the IP Decomposition of X
B; - known coefficients in Dy defined in (7.1)
F . in section 7, a matrix defined by (7.23)
- in section 8, a matrix defined by (8.4)
E - a matrix defined by (7.22)
G - in section 7,a matrix defined by (7.33)
- in section 8§, a matrix defined by (8.5)
H, - a mapping matrix defined by (7.36)
g - an i" column vector of G
P - in section 7, a sensitivity matrix defined by (7.42)
- in section 9, a matrix defined by (9.3)
T - a matrix defined by (9.4)
H - a matrix defined by (9.5)
c; - i" singular value of any matrix
S - a diagonal matrix of singular values

In addition to above principal symbols, some symbols for local applications are introduced

and defined in the appropriate sections of the text.
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Section 1 INTRODUCTION

Design of mechanical systems for a specified range of static and dynamic requirements is
a basic problem in Mechanical Engineering. However, while design of static systems is well
established, design to meet the dynamic requirements is not yet fully developed. This thesis
deals with several problems encountered in the design and analysis of dynamic vibratory
systems. The common aim among these problems is to develop algorithms which would
allow a systematic approach for the design of vibratory systems with prescribed natural

frequencies and mode shapes.

A classical problem in vibration analysis is to determine spectral properties (namely the
natural frequencies and mode shapes) of a system with known physical parameters (i.e.
mass, stiffness and damping space functions), under specified excitation forces and for a
given set of the initial and boundary conditions. Solution technique requires precise

knowledge of all the above data as well as a set of the partial differential equations which
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describe the motion of the system. In practice, however, these precise data and the

description of motion is only available for a limited range of relatively simple systems.

For complex systems, where this information is not easily available, it is customary to
develop a discrete analytical model which approximates the behaviour of a real system. In
problems analysed in this thesis we only consider conservative analytical models (i.e Mass-
Spring and Finite Element with no damping). This was done in order to simplify the
analysis. We realise that some amount of damping is always present in physical systems,

however for many mechanical systems its magnitude is relatively small and may be ignored.

Once a suitable model is selected, its physical parameters can be determined, and then the
spectral properties can be evaluated. The requirements that the system has prescribed natural
frequencies and mode shapes is ensured by the adjustment of the physical parameters in the
model until the desired spectral properties are obtained. This is a "trial-and-error" process
and it requires repeated computations of the spectral properties for each modification of the
model. Furthermore, if the spectral requirements consist of multiple constraints, then
currently there is no systematic method for determining the necessary modifications to
physical parameters which improve one or more dynamic property without detrimental
effects on any of the others. In this thesis we have developed systematic methods for
obtaining the physical parameters of the system from the prescribed spectral data. Thus we
have solved the classical vibration problem in "reverse", and consequently the class of

problems that we have analysed is known as inverse vibration problems.
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When the necessary physical parameters for the selected model are determined, the design
stage is completed. The next stage is the development process where a prototype of the
system is built and is then tested experimentally. The measured spectral properties are then
checked for compliance with the design specifications. A common method for measuring
the dynamic behaviour of the mechanical systems is the modal analysis testing. If the
results of modal analysis tests show that the system does not meet the design requirements,
then some structural modifications are needed. At present the most common method for
determining these modifications is a "trial-and-error" experimental process. The limitation
of this approach is that it is costly, time consuming and does not cope well if multiple
constraints are placed on the spectral properties. In this thesis we have developed a
systematic methods for determining the necessary structural modifications based on the
results of modal analysis tests. In these problems we determine the necessary structural
modifications using only the physically measured spectral properties, and assume that the
analytical model is not available. Therefore the error due to discrepancy between the
dynamic behaviour of the selected analytical model and the actual physical system is

removed from the calculations.

Using the measured modal analysis data presents several problems. Firstly, since some
amount of damping is always present in the physical system, the measured modes will be
complex. However, the survey of the relevant literature have shown that there have been
several published papers dealing with the methods of extracting the real modes from the
measured complex ones. Therefore, we assume that any one of the accepted methods (which

are described in the section 3 of this thesis) may be applied prior to the application of our

3



Section 1: Introduction

algorithms. Secondly, since modal analysis data do not contain a complete description of
the system, there is insufficient information to find the exact modified parameters which
yield the desired spectrum. The difficulties arising from the inherently truncated data
provided by modal analysis were overcome by formulating suitable optimisation problems,

which could then be solved.

A common requirement imposed on the solution to all problems studied in this thesis was
that all determined parameters of the system should be physically realisable. This

requirement resulted in the following two physical realisability constraints:

1) all determined masses and stiffnesses must be real and non-negative,
2) the shape of the obtained mass and stiffness matrices must comply with the

requirements of the selected analytical model.

Failure to comply with the physical realisability constraint (1) would result in a system
which can not be physically reconstructed. And failure to meet the constraint (2) would
prevent the translation of the obtained mathematical solution into the real physical system.
These constraints were dealt with separately for each problem studied, depending on the

chosen analytical models and assumed known data.

Two different kinds of spectral requirements were examined. Initially we have examined
cases where only natural frequencies assignments were sought. Then assignment of both

the natural frequencies and the corresponding mode shapes was investigated. Application

4



Section 1: Introduction

of the two types of spectral constraints to both the design and development stages as
described above resulted in the formulation of four distinct problems. Description and
definition of these four problems is presented in section 2. Section 3 contains a review of
background knowledge and literature survey. Analysis of these four problems is described
in sections 4, 5, 8 and 9. In sections 6 and 7 we present solutions to some different
variations of the problem described in section 5. Developed algorithms for the solution to
the above problems were extensively tested on numerical examples, and the results from
some selected few of these examples are presented in appropriate subsections for each
problem. The practical application of the developed theory to a real physical structure was
confirmed by designing and carrying out a simple experimental program, results of which
are presented in section 10. Conclusions and summary of this work is given section 11. The
relevant references are listed in section 12, and the raw measured data from the experiments

are shown in the Appendices.



Section 2 PROBLEM

DESCRIPTIONS AND

DEFINITIONS

In this section we describe some common engineering design problems where spectral
requirements are included in the design specifications. The current standard design
procedures are discussed and some changes to these procedures are suggested. These

changes result in the formulation of four distinct inverse vibration problems.

2.1 Problem 1: Design to Achieve Desired Natural Frequencies

Consider the shaft-pulley system shown in Figure 1. Design of such systems for a specified
range of loads and power transmission requirements is one of the basic tasks in mechanical

engineering.
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bearing

Figure 2.1: A Shaft-Pulley Assembly

Suppose that design specifications state the range of expected rotary speeds of the shaft, and
hence restrict the allowed natural frequencies of the system. The current standard design

approach for such a system is as follows:

Current Design Process

Input: Total number of pulleys and their position on the shaft; Loads on the system

and power transmission requirements; Bands of restricted frequencies.
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Design Procedure:

1. Select materials and sizes for all pulleys (Note: this may be predetermined),
and hence obtain an estimate of each pulley’'s mass.

2. Select material for the shaft, and determine the required size(s) of the shaft
to operate under the required loading conditions.

3. Select a suitable analytical model for the vibrational analysis of the system,
and using information from steps 1 and 2 construct the mass and stiffness
matrices of the system.

4. Using the mass and stiffness matrices obtained in step 3 calculate the
natural frequencies for the torsional and transverse modes of vibration, and
check that these frequencies do not fall within the restricted frequency ranges.

5. If natural frequencies do not fall into the restricted ranges, then design
process is finished. If they do, then modify the mass and stiffness matrices
and repeat from step 4.

Output (In theory): A shaft-pulley system which meets all design specifications.

It is clear that step 5 constitutes an open-ended iterative loop in the above procedure. If the
natural frequency restrictions are relatively simple (e.g. that all natural frequencies must be
above some specified value), then the above procedure would perform satisfactorily.
However, if the design constraints are more complex (e.g. if it is necessary to interlace
some or all of the natural frequencies in-between the restricted frequency bands), then the
above procedure would not be adequate. This is because there exists no well established

method for modifying the mass and stiffness matrices to produce the exactly desired

8



Section 2:Problem Descriptions and Definitions

adjustments in the natural frequencies. Therefore, obtaining the desired natural frequencies
by mass and stiffness modification would resort to a "trial-and-error" process with no
guarantee of ultimate success. We note that the determination of the required mass and
stiffness modifications to produce prescribed changes in the natural frequencies constitutes
an inverse vibration problem. Thus we propose to formulate a suitable inverse vibration
problem, which could be solved, and include the solution for this problem in the current
design procedure. This modification to the current design procedure would remove the
open-ended loop described in step 5, and ensure availability of solution which meets all

design specifications.

We begin the formulation of our problem by selecting a discrete mass-spring system as a
model for the shaft-pulley assembly. This choice is made because the mass-spring system
is a simplest system to analyse, but which also provides a good model for the dynamic
behaviour of such assemblies (especially in the torsional modes of vibration). In this model
pulleys will be represented as discrete masses and shaft segments between the pulleys as
springs. Therefore, modifications to the mass matrix will only affect the pulleys, while

changes to the stiffness matrix will only affect the shaft.

The chosen mass-spring analytical model for a shaft-pulley assembly dictates that the mass

and stiffness matrices must comply with the following physical realisability requirements:
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1) The mass matrix must be real, positive and diagonal.
2) The stiffness matrix must be real and symmetric, with positive dominant main diagonal
and negative elsewhere. (Note:" dominant main diagonal" implies that the sum of all

elements in each row (or column) is greater than or equal to zero.)

Also, the choice of the mass-spring analytical model restricts the maximum number of
natural frequencies that can be assigned to n, where » is the number of pulleys on the shaft.
The natural frequencies of a mass-spring system are then the solutions to the following
equation:
det (K - w?M) =0, i=12,..n 2.1
where K is a real, symmetric stiffness matrix (nxn),
M is a real, positive and diagonal mass matrix (nxn),

@, is an i-th natural frequency of the system.

To obtain the desired adjustments in the natural frequencies, a designer has a choice of
modifying either the shaft, or the pulleys, or both. Since there are more design parameters
(i.e non-zero elements in K and M) than constraints (at most » desired natural frequencies),
the equation (2.1) has a family of solutions. We restrict our interest to only those solutions
which are physically realisable, i.e solutions which correspond to realistic physical systems.
We are also aware that as well as meeting the spectral specifications, an adequate solution
must also satisfy other constraints. Those constraints are that the shaft should be able to
operate under the specified loads and that it retains a practical geometry and composition.

The practical geometry and composition considerations include the following requirements:

10
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a)

b)

d)

The manufacture of the shaft must be from a single bar stock, i.e uniform material
and "in one piece".

The shaft should preferably be of a circular cross-section and its diameter should be kept
as uniform as possible, i.e avoid unnecessary "stepping” to minimise manufacture costs
and reduce stress concentrations.

There should be no obstructions for the assembly of pulleys onto the shaft, i.e no
"troughs" in the middle, etc.

The shaft-pulley assembly must resemble a simply connected mass-spring system,

i.e no cross-connection between non-adjacent pulleys. This imposes the restriction
that the stiffness matrix must be tri-diagonal.

The shaft-pulley assembly must operate satisfactorily under the specified loads, ie
minimum strength requirements must be met which dictate minimum size limit.

To maintain a good correlation with the chosen analytical mass-spring model, the mass
of the shaft should be considerably less than the mass of the pulleys, i.e maximum size

limit.

Clearly, the majority of the above requirements concern only design of a shaft. The only

constraint on the design of the pulleys is that they must meet minimum strength

requirements. Since current design procedures ensure that the shaft satisfy all of the above

requirements, we propose to restrict the modifications for natural frequency adjustment to

pulleys only.

11
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We also note that currently the spectral requirements of the design specifications are only
used in checking the obtained solution. They are not used directly in any of the design
calculations. Thus we believe that a vital piece of design information is not being fully

utilised. An alternative approach that we propose is as follows:

1) Select a desired set of natural frequencies which are well separated from the restricted
frequency bands.

2) Determine the required masses of the pulleys which in combination with the stiffness
properties of the shaft produce the desired natural frequency spectrum.

The proposed design procedure is then as follows:

Proposed Desiqgn Procedure

Input. Total number of pulleys and their position on the shaft; Loads on the system

and power transmission requirements; Bands of restricted frequencies.

New Design Procedure:
1. Estimate mass limits for each pulley based on strength requirements.
2. Select material for the shaft, and determine the required size(s) of the shaft
to operate under the required loading conditions.
3. Using the information from step 2 construct the stiffness matrix under

the assumption of a mass-spring model.

12
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4. Select a set of desired natural frequencies which are well separated from
the restricted frequency bands.

5. Using the information from steps 3 and 4 calculate the necessary
mass matrix for the system to have the desired natural frequencies.

6. Check that the obtained masses are within the acceptable limits.

Output. A shaft-pulley system which meets all design specifications.

We note that step 5 in the new procedure involves solving an inverse vibration problem.

The mathematical formulation of the inverse problem to be solved is then as follows:

Problem 1: Mass matrix evaluation to achieve desired natural frequencies.

Given the real, symmetric stiffness matrix K and a set of desired natural
frequencies {w, , @, , ...,@, }, find a real, positive and diagonal mass matrix M,

such that the roots of the characteristic polynomial equation

det (K - A M)= 0

are A = @, 2 (i=1,2,..,n).

The analysis of this problem is presented in section 4. Although the above problem was
formulated specifically in relation to the design of shaft-pulley assemblies, the solution may
be applied to the assignment of natural frequencies of any vibratory system which can be
represented by a mass-spring model. This fact is demonstrated by the results of the

experimental tests on the model of a building which are presented in section 10.

13



Section 2:Problem Descriptions and Definitions

2.2 Problem 2: Design to Achieve Desired Natural Frequencies and Mode Shapes.

Inverse vibration problems associated with the construction of vibratory systems from the
known set of desired natural frequencies and mode shapes have many applications in
engineering. These include system reconstruction, modification and design. In this thesis
we are concerned with the design problem of constructing a physically realisable mass-
spring system with prescribed natural frequencies and mode shapes. This problem arises

when controlling the maximal deflection of a harmonically excited system.

The natural frequencies and mode shapes of an undamped vibratory system are
characterised by the solutions to the following equation:
K® = M®A , (2.2)
where K is a positive semi-definite symmetric stiffness matrix,
M is a positive definite symmetric mass matrix,
® is a modal matrix (which describes the mode shapes of the system),

A = diag(\ |, ..., A ), is a spectral matrix (which describes the natural
frequencies , of the system by relation A, = w ),

n is the number of degrees of freedom.

If we stipulate that the modal matrix ® must be mass-normalised, then it is well known that
the following bi-orthogonality relations hold:
®"™™M® =1, (2.3)

$TK® = A. (2.4)

14



Section 2:Problem Descriptions and Definitions

For a multiple connected mass-spring system, the mass matrix M is real, positive and
diagonal. Denote

M = diag(m;, m,, ..., m)), m; > 0, m; € R; i=1,2,...,n. 2.5)

The stiffness matrix K = [ k; ] is symmetric, and has the following properties:

a .

® k;,; >0, i=1,2,...n

(b) kyj; <0, i#3; 1=1,2,...,n; j=2,3,...,n0; (2.6)
n

(C) Elkljzo' _]_:1,2,._.’12
<

In words, K has positive diagonal elements, non-positive off-diagonal elements, and it is

weakly diagonally dominant.

Suppose we want to determine a physically realisable mass-spring system which has a
prescribed eigenvalue matrix A with corresponding mode shape matrix ®. If we use the
orthogonality equations (2.3) and (2.4), we have

M = ¢7¢! (2.7)

K = &TA®! . (2.8)

However, this solution in general would not be physically realisable. This is demonstrated

by the following example:

15
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Example 2.2.1:

Suppose the desired dynamic properties, A" and ®°, for a five degrees-of-freedom

mass-spring system are :

A’ = diag { 50, 100, 200, 400, 800 }

and (0.1 0.1 0.2 -0.4 0.1]
0.1 0.1 0.2 0.1 0.3

®* =(0.1-0.1 0.3 0.2 -0.4

0.1 -0.3 -0.1 -0.1 -0.1

| 0.3 0.2 -0.1 0.1 0.1]

We wish to determine physically realisable M and K which have dynamic

characteristics as close as possible to the above desired properties.

There is no exact solution for these data since if we use equations (2.7) and (2.8),

we obtain

[ 6.6406 -4.5515 1.0830 -4.7646 2.7310]
-4.5515 13.5005 -0.3195 8.6019 -4.9737
M=©®*T®** =| 1.0830 -0.3195 3.5646 -1.1215 1.0213
-4.7646 8.6019 -1.1215 14.5886 -1.5877
| 2.7310 -4.9737 1.0213 -1.5877 8.9672]

[ 2216.1 -2100.0 230.0 -1446.8 476.9]
-2100.0 6358.5 -1.6181 2763.1 -1762.7

K= 0®"TA*®*? = 230.0 -1618.1 1559.2 -915.4 352.6
1

7

-1446.8 2763. -915.4 2324.0 -699.3
476.9 -1762. 352.6 -699.3 945.7 |

Clearly, both M and K do not have the form required for a mass-spring system, and

therefore are not physically realisable.

16



Section 2:Problem Descriptions and Definitions

Since equations (2.7) and (2.8) represent the unique solution to equations (2.3) and (2.4)
we conclude that generally there is no exact physically realisable solution to this problem.
However, we may obtain a physically realisable system with spectral properties that are

close to the required data, by solving the following optimisation problem:

Problem 2 : Determination of a Physically Realisable System

Given sets of desired eigenvalues {),", 4,", ..., ,” } with corresponding
mass-normalised eigenvectors {¢,", ¢,, ..., ¢, }. Denote by

®'=[ ¢, ¢, .| & | (2.9)
the column partitioning of &, and let

A'=diag( A", A, o A ). (2.10)
Determine physically realisable K and M corresponding to a discrete
mass-spring system, with spectral properties ® and A satisfying eq. (2.2),

such that the norms |[&" - ®| and |A" - A| are minimised.

The analysis of this problem is given in section 5. A related problem associated with the
reconstruction of physically realisable systems from the incomplete prescribed modal and
spectral data is considered in section 6. In section 7 we define a special form for the mass
and stiffness matrices, and then show how the method developed in section 5 can be

extended to reconstructing matrices of this form.
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2.3 Modifications of the Existing Structures to Obtain Desired Spectral Properties.

Analytical models simulate the behaviour of real physical structures. Application of such
models is necessary because we are unable to define the differential equations governing
the motion for most practical mechanical systems. In order to define these equations some
assumptions about the properties of the real structure, which simplify the analysis, are
usually made. The most common technique used in simplifying the analysis of a complex
structure is to model this structure as a lumped parameter or discrete system. In a lumped
parameter system the structure is divided into a finite number of discrete elements of known
mass, and which are connected to each other by springs and dampers with known stiffness
and damping constants. A designer is then able to estimate the forces acting on each

element and, thus, obtain the differential equations of motion, which then may be solved.

However, the equations derived in this way may still be too complicated to solve in many
cases, and therefore to obtain a solution some other simplifications may have to be made.
A commonly used assumption is absence of damping in the structure. Systems without
damping are called conservative systems, because the energy of the system is not dissipated
through damping and thus conserved. Assumption of conservative system greatly simplifies
the dynamic response analysis of the system, and in many cases allows a solution to be
obtained which would not be possible otherwise. This is especially true in applications with

inverse problems.
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The number and severity of these assumptions vary greatly depending on the choice of a
particular model, and also on the level of sophistication to which this model is developed.
However, all assumptions which simplify the analysis of the system also introduce some
uncertainty in how accurately does chosen model would simulate the behaviour of a real
physical structure. It is well known that the behaviour of all analytical models will differ
to some degree from the behaviour of the actual structure. Because of this difference, once
the analytical stage is completed, the design process usually requires to build a prototype

of the structure and then test this prototype experimentally.

A common method for measuring the dynamic behaviour of vibratory systems is modal
analysis testing. The natural frequencies and mode shapes which are measured by modal
analysis represent the actual physical dynamic behaviour of the system. Therefore the modal
analysis data is free from the inaccuracies due to analytical assumptions. If modal analysis
tests show that the dynamic behaviour does not meet design specifications, then some
modifications to the system would be necessary. The usual approach at present is to adjust
the dynamic behaviour by an experimental trial-and-error process. This process has several
disadvantages. The main drawback is that currently there is no systematic method of
obtaining modifications which produce exactly the desired changes in the spectral
properties. Consequently, if the sought adjustments are relatively complicated, the above
process is ill-suited for the task. We want to develop a systematic approach which would
allow a designer to calculate the necessary modifications to the structure so that the desired

adjustments in the spectral properties are achieved.
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In developing such systematic approach, there are two choices. The first approach is to use
what is known as a model updating technique. In this approach the original analytical model
is modified in such a way that its spectral properties closely correlate with the measured
modal behaviour. This process is carried out by mathematical manipulations using all of the
known data, including the physical and spectral properties of the original analytical model,
measured modal analysis data and the desired spectral characteristics. Then based on the
assumption that the new updated model is now representing the "true" model of the
structure, a designer determines the "corrections" which must be applied to the physical
parameters of the original model. The original system is then redesigned for the desired
dynamic spectrum incorporating these "corrections". The necessary structural modifications
to the prototype are then determined by comparing the redesigned system with the original
one. The main weakness of this approach is that it assumes that the calculated "corrections"
to the physical properties of the analytical model are constant parameters that can be
superimposed from one system to another. This may or may not be true, and can vary from
one design problem to another. If the modifications to the prototype determined this way
still do not produce the desired spectral characteristics when implemented, then it is difficult
to see what should be the next step. Repeating the above model updating process would not
guarantee any better results, and due to cost and time limitations the procedure can not be

carried out indefinitely.

An alternative approach is to determine the necessary modifications to the structure directly
from the modal analysis data only, without using any of the data from the analytical model.

In this way any inaccuracies due to the analytical model assumptions are eliminated, since
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only the measured data is used. The modification matrices must still have the form
demanded by the analytical model so that they can be translated into actual physical

changes in the structure, but the overall effect of analytical assumptions is minimised.

However, using only modal analysis data creates an additional problem. This problem arises
from the difficulty in measuring a "complete" set of modal data for many practical
structures. Real physical structures have infinite number of natural frequencies, but due to
time and equipment limitations only a finite number of these frequencies can be measured.
For example, the maximum sampling rate of the available equipment determines the
maximum natural frequency that can be measured. Also, in general, the mode shapes can

only be measured at a finite number of points and not continuously along the structure.

Fortunately, in most practical engineering problems the design requirements for spectral
properties are restricted to a specified frequency range. This frequency range is usually from
zero to some maximum stated value. The spectral properties outside this frequency range
are of no interest to the designer, and therefore no restrictions on them are imposed. For
the problems considered in this thesis we assume that the number of spectral pairs (i.e
natural frequencies and corresponding mode shapes) that are measured is equal to the
number of spectral pairs in the design constraints. The difficulties arising from the
inherently truncated data provided by modal analysis are overcome by formulating optimal

modification problems, which are then solved.
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This thesis deals with conservative systems which may be modelled analytically by the
generalised eigenvalue problem

K®=M®A, d™M® =1, (2.11)
where K, M, ®, A and » are as defined in equation (2.2). We also stipulate an additional
requirement for the diagonal elements of A, which is that A ;< A ,< ... <A

n*

Partitioning ® and A in the form :

®=[®,|P,], ®, nxm real matrix, m <n (2.12)
and
a- |20 A e, A, 2.13)
0 |A,

we assume that ®;, measured at » points, and A, are known from modal analysis tests,
while the submatrices ®, and A, cannot be obtained by measurements and remain unknown.
Any actual structure will be damped and the measured modes will therefore be complex.
We assume that the real modes ®, have been extracted from these complex modes by one
of the accepted procedures (see section 3). We also assume that for the low frequency

range, the behaviour of the system is adequately modelled by equation (2.11).

Suppose that a design specification states that the smallest m eigenvalues should be A;", A,
<y A . Then we may ask the following question: If ®; and A, are known, is it possible
to determine physically realisable matrices AM and AK, such that A"=diag (A,",A,",...,A..")
together with the corresponding modal matrix &" satisfy the following equations
(K+AK)®" = M+AM)®"A" and ®T(M+AM)®" =1, ? (2.14)
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Since the truncated modal data ®, and A, do not determine K and M uniquely, it is clear
that (2.14) cannot be satisfied generally. We overcome this difficulty by formulating a
following related optimisation problem, which gives an optimal approximation, in some

particular sense, to the solution of (2.14).

Similar to Ram and Braun [46], let us denote the residual matrix R by:

R = [(K+ AK)® - (M+ AM Y®A | (2.15)

where A and & are some approximations to the desired A" and the corresponding &

respectively. Then we formulate the following problem:

Problem 3: Optimal Modification for Natural Freguencies

Given &, A; and A". Find physically realisable incremental matrices AK and
AM such that:
| (M+AM)*R || . is minimised (2.16)

Subject to = span (®,).

The requirement that & belongs to the column range of ®,, is needed to make the problem

solvable.

If | R || =0, then so is | (M+AM) ™R ||. In this case ® = &" and A=A", i.c the solution
of Problem 3 is also the solution of (2.14). When || R || is small, the solution of Problem
3 approximates the solution of (2.14). Hence by minimising the norm (2.16) we obtain an

optimal approximation. In fact, the residual matrix R is weighted by (M+AM)™*, this is for
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convenience purposes only. The analysis of this problem is presented in section 8. The
solution methods are discussed for several commonly used analytical models (including
mass-spring and finite elements). The important case where the mass and the stiffness
matrices are interrelated is also studied. This analysis may be applicable to the problems

of modifying the axially vibrating rod and the transversely vibrating beam.

When modal matrix ®" is also included in the design specifications, the corresponding

optimisation problem becomes:

Problem 4: Optimal Modification for Natural Frequencies and Mode Shapes

Given &,, A,, " and A". Find physically realisable incremental matrices AK
and AM such that:
| (M+AM)*R | - is minimised (2.17)

Subject to d € span (®,).

Problem 4 was studied by Ram and Braun in [46]. The authors have shown that there is a

family of solution to this problem, and that it is characterised by the following equations:
AM =@ (¥ " -1 Jol v Y -2Te YR 8] (2.18)

AK =@ (¥ TA" ¥ ' -A )R] v X -2 TR (XD 8] (2.19)
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where &,' denotes the Moore-Penrose pseudoinverse of ®,, ¥= &,'®", and X and Y are

arbitrary mxm real symmetric matrices.

The family of solutions described by equations (2.18) and (2.19) contains all possible
solutions to Problem 4. However, we are only interested in these solutions which are
physically realisable. In [46] Ram and Braun have discussed the requirements for physical
realisability, but no method was developed for extracting realisable solutions from the
general family described by (2.18) and (2.19). In this thesis our aim was to develop such
method for extracting realisable solutions, and the its derivation is given in section 9. It was
found that the physically realisable solutions for AM and AK are, in fact, independent of

the arbitrary matrices X and Y.
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SURVEY

The scope of this thesis falls within the field of inverse vibration problems, and a closely
related field in linear algebra known as inverse eigenvalue problems. The inverse vibration
problems have applications, among others, in the areas of design, model reconstruction (also
referred to as system identification problems), structural modifications and model updating
of vibratory systems. The design and structural modifications problems aim to control the
vibrations of the systems in a desired fashion. The model reconstruction and model
updating problems aim at obtaining an optimal analytical model, which approximates as
close as possible the vibrations of the actual system. The book of Gladwell [1] and two
review papers by the same author [2,3] give an excellent introduction and overview of the
current state of knowledge in the general field of inverse vibration problems, and in the area
of model reconstruction in particular. We draw extensively on the comprehensive material

from these sources.
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3.1 Inverse Problems

The term inverse is used to distinguish these problems from the classical problems in
vibration and in linear algebra, which are commonly known as direct problems. In the
classical direct problems the aim is to determine the behaviour of a system (such as natural
frequencies and/or mode shapes) from known physical properties of the system (e.g. mass,
density, elastic constants, size etc). Inverse problems are concerned with the determination
or estimation of such physical properties from the desired and/or experimentally measured
behaviour. The design problems aim to develop methodical algorithms for determining the
physical properties of a system from the prescribed desired behaviour. In the structural
modifications problems the aim is to develop algorithms which use measured modal data
(usually from experimental modal analysis testing of a prototype) to determine the
necessary modifications to the physical properties which produce the prescribed or desired
behaviour. The model reconstruction problems concern with the methods of obtaining the
physical properties of the system from the measured experimental data, while in the model
updating problems the aim is to minimise the difference between the measured behaviour

and the theoretical behaviour of the existing analytical model.

In the above definition of the inverse problems, the term determination refers to problems
where the sought properties can be computed exactly from the given behaviour. In these
idealised, essentially mathematical problems the fundamental assumption is that all of the
required data is exact and complefe, meaning that it is sufficient to determine the system

uniquely. The vibration analysis of most engineering problems usually contains a significant
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amount of uncertainty. This uncertainty arises from a lack of detailed knowledge about the
vibratory system itself (namely the shape of its mass, stiffness and damping matrices), the
desired behaviour (which is usually specified only approximately in terms of permitted or
restricted ranges), and the experimentally measured data (which always contains some errors
due to noise, equipment limits etc). Therefore, in most engineering problems the necessary
data is inaccurate and incomplete, thus, at best, permitting only an estimation of the sought

properties.

Most published work in the field of inverse vibration problems (including the material
presented in this thesis) may be classified as a combination of mainly the determination
approach, with some elements of the estimation approach. Thus, in order to make the
problems solvable and depending on a type of a particular problem, most of the necessary
data (e.g. the shapes of the mass and stiffness matrices, the prescribed natural frequencies
and/or mode shapes, etc) are assumed to be known, exact and complete. At the same time,
the essential physical limitations (such as a requirement that the values of the mass and
stiffness elements must be real and positive, and the inherent perturbations and truncations

in the measured modal analysis data) are taken into consideration.

In [1-3] the inverse vibration problems are categorised according to the type of the
mechanical systems (namely continuous or discrete, damped or undamped), and the type
of the prescribed behaviour (namely spectral or modal (or both), complete or truncated,
nodal or isospectral). Nodal inverse problems concern with the reconstruction of physical

properties of the system from data relating to the position of the nodes. The term
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isospectral refers to the studies of distinct vibratory systems that have the same eigenvalues.
Some discussion was also given of applications of the developed system identification

techniques to fault detection problems.

The paper by Chu [4] gives a very good, up-to-date review of the closely related field of
inverse eigenvalue problems. Although this paper is not specifically directed towards the
subject of vibration analysis, it contains a substantial amount of information on the latest

developments in this field, especially in the area of design and control.

3.2 Inverse Multiplicative Eigenvalue Problem

Of particular importance to the scope of this thesis, is the so called inverse multiplicative
eigenvalue problem (IMEP). This problem was first formulated by Downing and

Householder [5] in 1956. Their definition of the IMEP was as follows:

Given a real and symmetric matrix A, determine a real, positive and diagonal
matrix D, such that the equation
det (A - AD) =0 3.1

has prescribed roots.

Comparison of the above definition of IMEP with the definition of Problem 1 given in
section 2, shows that the two problems are identical. In [5], an iterative algorithm for a

solution to IMEP was presented, and this algorithm was shown to have a local quadratic
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convergence. When tested on the numerical examples, this local convergence characteristics
of the algorithm was found to be inadequate for a robust solution to Problem 1. A further
discussion of this algorithm and its performance is given in section 4, where we develop

a solution to Problem 1.

Over the following years since its first formulation, the IMEP has attracted interest from
several researchers, and a number of papers were published dealing with various aspects
of the problem. The formulation of IMEP was expanded and generalised to include complex
and non-symmetric matrices A and complex diagonal matrices D. Several papers were also
published dealing with the necessary and sufficient conditions criteria for the existence of

a solution to a given IMEP.

Hadeler [6] has defined and proved some sufficient conditions for existence of a solution
to an IMEP. An alternative algorithm for the solution was also presented, along with the
statement of convergence criterion. From the numerical example given in [6], it appears that

the developed algorithm works, but it seems to be more complicated than the method of [5].

Kublanovskaja [7] suggested a general approach to the solution of the so called generalised
inverse eigenvalue problem, of which IMEP was a specific case. However, due to the more
general nature of the problem, the presented algorithm appears to be quite complex. This

algorithm is broadly based on the method of Hadeler [6].
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De Oliveira [8] expanded the results of Hadeler [6] for the sufficient conditions for a
solution to IMEP. The results in [8] allow for the application of the conditions of [8] and
the algorithm of [6] to cases where matrix A is non-symmetric. It was shown that the
results are also valid for the solution to a so called inverse multiplicative permanent root
problem (i.e the case when D = 1,). Although the results of [8] are not directly applicable

to Problem 1, this paper provides a good explanation to the results of [6].

A major contribution to the analysis of IMEP was made by Friedland [9,10]. In [9], the
author presented a proof of the existence of a solution to an IMEP when both A (which is
not necessarily symmetric) and D are complex-valued matrices, and when all principal
minors of A are distinct from zero. The paper also contains the mathematical proof that the
number of different matrices D (i.e. the maximum number of distinct solutions to an IMEP)
is at most »/. This last result is very important for our analysis of Problem 1, and its
significance is further discussed in section 4. In [10] the same author suggested a solution
for an IMEP when A and D are both complex-valued. Since in our Problem 1 the

requirement is for both A and D to be real, this solution is not applicable to our analysis.

Dias da Silva [11] extended the results of Friedland [9,10] for the sufficient conditions to
IMEP for complex-valued matrices, and He Xuchu and Dai Hua [12] continued the work
of Hadeler [6] and De Oliveira [8] to find better sufficient conditions for the solution to
IMEP. The method of proof in [12] is similar to Hadeler’s. The presented numerical
example illustrates that there exists a solution to IMEP according to the conditions

established in [12], even though conditions given in [6] and [8] are not satisfied. Based on
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this example, the authors conclude that their conditions are better than those of [6] and [8].

However, in general, the sufficient conditions established in [6] are simpler to calculate.

Biegler-Ké nig [13] defined the sufficient conditions for the solution of a generalised inverse
cigenvalue problem, of which IMEP is a special case. Formulation and a numerical solution
method for this problem was proposed by Kublanovskaja in [7]. While Friedland in [9,10]
has proved some conditions for a complex-valued IMEP, in [13] the author is investigating
conditions for obtaining a real-valued solution. The method of proof is similar to Hadeler’s
in [6], and some results of [6] are special cases of the theorems in [13]. The generalised

inverse eigenvalue problem in this paper is defined as follows:

Let A, be real matrices (i=0,1,2,...,n), and a set of prescribed real eigenvalues
{A, A, ..., A,}. Find a set of real parameters {c,, ,, ..., ¢,}, such that a matrix
A(c) =4, + Y cA, (3.2)

i=1

has eigenvalues {4,’, 4,, ..., 4,}.

The results in [13] were given for general real matrices A; and a special case when matrices
A, are both real and symmetric. The IMEP may be expressed in the form required by
equation (3.2), by setting A,= 0 and A= ae,” (i=1,2,...,n), where q, is the i™ row vector of
A, and e, is i" element unit vector (i.e the i" element in ¢, is equal to 1, and all other
elements are zeros). However, the resultant matrices A, will not, in general, be symmetric.
Therefore, it was specifically stated in [13] that a general IMEP described by (3.1) may not

be expressed in the form of equation (3.2) if matrices A, are to be symmetric. In the review

32



Section 3: Literature survey

paper by Chu [4] (see above) eigenvalue problems of the form (3.2) were classified as
paramelrized inverse eigenvalue problems (in reference to parameters {c,, ¢c,, ..., c,}), thus

dropping the use of the term generalised.

Nocedal and Overton [14] gave a summary of the numerical methods for solving eigenvalue
problems of the form (3.2), and in a subsequent paper, Friedland, Nocedal and Overton [15]
presented a general overview and comparison between the various solution approaches to
this problem. A total of four different methods of solution were presented in [15], three of
which were published previously and one new. The analysis was given for the problems
where the desired eigenvalues were all distinct, and also for the case when there are
multiple identical eigenvalues. A general convergence analysis was carried out for both the
distinct and multiple eigenvalues. The comparison between the four methods was presented,

and a numerical example was given which illustrated the results.

Although the results of [15] were not directly applicable to Problem 1, Joseph [16] has used
one of the methods presented in [15] as a basis for an algorithm to solve what he called
inverse eigenvalue problem in structural design. The author have assumed that the mass and

the stiffness matrices of a structure, M and K, are functions of » independent structural

parameters {c,, C,, ..., C,}, and comply with the following forms
M(C) = MO + EC’M,. (33)
i=1
K(c) = ) cK, (3.4)
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Some known results from the eigenvalue sensitivity theory were then applied to determine
{c}, ¢,, ..., ¢,} such that the resulting eigenvalues of the system described by M and K were
equal to the prescribed set of desired eigenvalues {A,", ,", ..., A,,'} (m < n). The method
of [16] is directly applicable to solve Problem 1. Numerical testing have shown that the
performance of this method has the same problematic local convergence characteristics as
the algorithm of Downing and Householder in [5]. However, one major advantage of this
method is that it permits assignment of a partial set of desired eigenvalues (i.e when m <
n), thus allowing application of the method to problems with truncated modal data. Because
of this property, the algorithm was used as a foundation for our solution to Problem 3.
Further discussions of the Joseph’s algorithm and its application to Problems 1 and 3 are

given in the appropriate parts of sections 4 and 8.
3.3 Sensitivity Methods

The eigenvalue sensitivity theory, referred to above, and the associated subject of eigenvalue
derivatives was used extensively in this thesis. In its simplest form, the principle of matrix
derivatives is demonstrated by a following example. Suppose that we have matrix A which
is a function of » independent parameters {c,, c,, ..., ¢,} and can be expressed in the form
of equation (3.2). Then it is clear that

0A(c) _ .
3c) =4, , i=1.2,.n. (3.5)
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Matrices A; are commonly called connectivity or mapping matrices, describing the
connections of each individual parameter c; or simply defining the grid position of this
parameter within the global matrix A(c). Determining matrix derivatives of A(c) with
respect to parameters ¢; is a simple process because (3.2) is a linear and uncoupled equation
in ¢, In the eigenvalue sensitivity analysis, the aim is to obtain the relations describing the
effect of each of the elements of a matrix on the eigenvalues of that matrix. However,
determining the eigenvalues of a matrix is not a linear process. Therefore, there is no exact
way of describing the effect of a particular element on the eigenvalues. Consequently, most
of the published work on this subject concerned with determining an approximation to these
relations, which are optimal in some way. It is clear that obtaining an accurate relations
describing the effect of an individual structural parameter (i.e mass, stiffness or damping
element) on the natural frequencies and mode shapes (i.e eigenvalues and eigenvectors) is
the key to a solution of most problems in inverse vibrations applications to design and

structural modifications.

In a review paper on structural modifications problems, Baldwin and Hutton [17] give a
good summary of the literature on eigenvalue sensitivity methods. This paper is primarily
concerned with what may be described as direct structural modification problems. These
are problems in which the aim is to determine the dynamic behaviour of a system based on
known changes in the structural parameters and the measured behaviour of the original
unmodified structure. The inverse structural modifications, where the aim is to obtain the
structural modifications necessary to meet specified constraints on natural frequencies and

mode shapes, are only briefly discussed. However, most of the theory on sensitivity analysis
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is equally applicable to inverse problems. The material presented mainly deals with
conservative (i.e undamped) systems, and is classified into three main categories. Namely,
the techniques based on the assumption of small modifications, these for localised

modifications, and finally, techniques using the modal approximation approach.

The techniques for localised modifications deal with determining the dynamic behaviour
of the modified system based on the precise knowledge of the location of the structural
changes in addition to their magnitude. An interesting characteristic of these problems is
that, apparently, the modified behaviour can be determined exactly, although only by an
iterative procedure. In all other categories only approximate solutions may be obtained. In
applications involving inverse problems a major problematic area is how to satisfy the
physical realisability constraints on the necessary modifications based only on the
knowledge of the desired and measured behaviour of the system. Thus, specifying
additional constraints on the exact location of modifications would add an extra layer of
difficulty to what is already a complicated problem. Therefore, in this thesis we have not
attempted to specifically formulate or to solve any of the inverse localised problems.
However, some limited control over the location of structural modifications is possible
under some circumstances in the analysis of sections 6 and 9. The reader is referred to these

sections for further details.

The category based on the assumption of small modifications dealt exclusively with the
sensitivity methods. This category was further subdivided into three separate approaches,

namely methods based on Rayleigh’s principle, methods based on eigenvalue derivatives,
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and finally, methods based on modal perturbation theory. All three approaches lead to very

similar formulations and are discussed below.
3.3.1 Rayleigh’s method

The Rayleigh’s approach is based on the equation

Lo V& + AR,
R HCEFN

(3.6)

where M and K are the mass and stiffness matrices of the original system, AM and AK are
the matrices denoting respectively modifications to the mass and stiffness,
and p; and ¢, are the i® eigenvalue and the corresponding eigenvector of the modified

System.

It is assumed that, for small modifications, the mode shapes do not change appreciably and
therefore we may substitute ¥; = ¢, into (3.6). Also, applying the orthogonality properties
6."Koé, = A, and ¢,'M¢, = 1 (where A, and ¢, are the i® eigenvalue and eigenvector of the

original system), equation (3.6) becomes
_ M+ 0,AKg,

= - (3.7)
1+ ¢;AMgp,

K,

Thus, if AM and AK, and A; and ¢,, are known, then p, can be calculated. Clearly, if the
modifications are not small then the assumption that ;= ¢; is not valid, and consequently,

the method should not be applied.
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3.3.2 Eigenvalue derivative method

The eigenvalue derivative approach considers the structural modification problem in terms
of a rate of change of an eigenvalue with respect to a structural parameter change. It was
shown in [17] that

o, 0K _, oM
2

i = T
7, ¢ | == e, b, (3.8)

where ¢; is some j™ structural parameter.

This relation may then be used in a Taylor series expansion to give a first or second order
approximation to the natural frequencies of the modified structure. Early work in this area
was conducted by McCalley [18] and Wittrick [19], and, in general, the mathematical
foundations have been discussed by Lancaster [20]. A major treatment of the entire
problem, including the calculation of the mode shapes of a modified stfucture, was
presented by Fox and Kapoor [21]. In [21] a first-order solution was considered. Two
methods were derived to calculate the mode shape derivatives. The first method expressed
the eigenvector derivatives in terms of a series expansion in the unmodified eigenvectors
and, hence, required the knowledge of the full modal characteristics of the original structure
(although truncation is possible). A second method expressed the eigenvector derivative
only in terms of the corresponding frequency and eigenvector of the original structure.
However, although the second method was potentially more attractive, some numerical
difficulties were encountered which prevented its successful implementation. These

difficulties were eventually solved by Nelson [22].
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Van Belle [23] presented a theory of adjoint structures to calculate the differential
sensitivities of mechanical structures. This work has been expanded by Van Honacker [24]
to derive expressions for the differential, finite difference and frequency response
sensitivities for natural frequencies and mode shapes of a viscously damped vibratory
system. Second-order terms of Taylor expansion are included in the analysis to obtain

expressions for "large-change" sensitivities.

Second- and higher-order solutions have also been investigated by Rudisil [25, 26], Muira
and Schmit [27], Van Belle [28] and Rizai and Bernard [29]. Wang, Heylen and Sas [30]
summarised the developed procedures, but found that the methods based on truncated
Taylor expansions are limited in their applications to small modifications, and that inclusion

of higher-order terms does not always ensure a more accurate solution.

To and Ewins [31] used the closed-form properties of the Rayleigh’s method and the
theoretical basis of the eigenvalue and eigenvector derivatives analysis, to develop a
powerful iterative algorithm, which is not restricted to just small modifications. Instead of
assuming that the eigenvectors of a modified system remain unchanged, as in the Rayleigh’s
method above, the authors express modified modes as linear combinations of the original
modes. The coefficients in these linear combinations of original modes were termed mode
participation factors. The method involves (starting initially from equation of the form
(3.7)) obtaining an estimate for the modified eigenvalues of a system, and then using these
estimates to calculate the mode participation factors. The mode participation factors are then

in turn used to calculate the better approximations to the modified eigenvalues. The
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procedure is then repeated until convergence is achieved. The authors claim that this
procedure has ’superconvergence characteristics’, and that the exact modal properties of the
modified structure may be determined. The effects of modal truncation and sensitivity to

input data perturbations are also presented.

Zimoch [32] used the first-order Taylor expansion to determine the sensitivity matrices for
the eigenvalues and mode shapes. The effects of the structural modifications on the dynamic
behaviour of the system could then be estimated in a computationally efficient way. The
method could be applied to damped as well as conservative systems. A more accurate
solution may be achieved by inclusion of a second-order term of the Taylor’s expansion.
This inclusion does not require any alterations to the procedure, but the penalty is the
necessity to carry out much more involved calculations. In [33] Zimoch applied the method
of [32] to solve an inverse problem. The formulation of his problem is very similar to our
Problem 2, except that no physical realisability constraints were imposed on either mass or
stiffness matrices. Without these constraints a solution can be obtained by a trivial process
described in section 2.2 (see equations (2.7) and (2.8)). However, the motivation of Zimoch
was to develop a more computationally efficient method for determining the changes in the

physical parameters of a system to achieve the desired eigenvalues and eigenvectors.

Joseph [16] (see above) used equation (3.8) to develop an iterative algorithm which solves
an inverse problem, and, in theory, is not restricted to small modifications. The method
required an estimate of the initial values for the structural parameters {c,, ¢,, ..., ¢,}. Then

the mass and stiffness matrices, M and K, may be constructed via equations (3.3) and (3.4).
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Using equation (3.8) and an example of (3.5), the eigenvalue derivatives were calculated
for the system described by M and K. Application of a Newton-Raphson method using
these eigenvalue derivatives, allowed calculations of better estimates for {c,, c,, ..., ¢,}. This

procedure could then be repeated indefinitely, until convergence was achieved.

3.3.3 Perturbations methods

In the perturbation approach it is assumed that the mass and stiffness matrices of the
modified system , M, and K_,, and the corresponding eigenvalue and eigenvector

matrices, ! and ¥, are related to the properties of the original system by

M,,=M+AM K_,=K+AK

Q = A+ AA ¥ =%+ Ad (3.9)

It is also assumed that for small modifications, all A terms are sufficiently small. Thus,
substituting properties (3.9) into an equation of the form (2.2) governing the motion of the
modified system, and neglecting all terms of A® and higher, it is possible to obtain an
approximate relation between the structural modification AM and AK and @ and W¥. The
precise form of such relationship is dependent on the assumptions and conditions of a

particular problem, and thus, are too numerous to be given here.
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The first treatment of the structural modification problem was by Rayleigh [34], who used
this type of approach and derived an approximate solution in terms of modal coordinates
from energy expressions. Jones [35] extended this work to include general perturbations and
derived expressions for natural frequency and mode shape changes. Romstad, Hutchinson
and Runge [36] investigated a variety of more general perturbation formulations using a

power series approach.

Stetson and Harrison [37] have extended the modal perturbation approach to treat the
inverse problem of determining the structural modifications necessary to meet the specified
constraints on natural frequencies and mode shapes. The method of [37], uses the results
from NASTRAN finite element analysis software to determine the analytical model of the
original structure. It then processes these data, taking account of the physical realisability
constraints, to obtain the necessary changes in the thicknesses of the structural elements.
The aim of the method is to minimise the necessary structural changes, while obtaining the
desired dynamic properties. Sandstrom and Anderson [38] extended this work by directly
relating the physical changes in the natural frequencies and mode shapes to changes in

structural parameters.

Sandstrom, Anderson and others [39,40] reported that perturbation approach based on the
linear energy formulation gives good accuracy for natural frequency goals, but is often not
accurate for significant mode shape changes. In [39] the authors have extended the linear
perturbation approach of [37], including all of the non-linear terms in the perturbation

equation. This was done because, as was demonstrated by a numerical example of a typical
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problem, the second-order terms can be as large as the first-order terms. Thus neglecting
second-order terms may lead to large errors, particularly in redesign of mode shapes. In
[40] the authors have developed a non-linear, iterative algorithm, which was partitioned into
two stages, namely the ’predictor’ and the ’corrector’ stages. The ’predictor’ phase is
essentially an improved version of the algorithm in [37], which gives a first-order
approximation for the required structural changes. In the ’corrector’ phase, these
approximations are used to calculate a first-order estimate for the desired eigenvectors.
These eigenvectors are then used in general perturbation equations to find the corrections
for the structural changes. The process is then repeated as many times as necessary to
achieve the acceptable dynamic behaviour. The algorithm of [40] requires precise
knowledge of the physical properties of the original structure (i.e its finite element model)

as an input to the problem.

Zhang, Wang, Allemang and Brown [41] used the perturbation approach to find an
approximate solution to a problem which is identical to our Problem 3. The method uses
power expansion of a perturbation equation to find the necessary mass modifications so that
the desired natural frequencies are achieved. Results are presented for both the first and the
second order approaches. The input to the problem was assumed to consist of only the
specified desired natural frequencies, and a truncated set of measured modal analysis data.
The method of [41] is applicable to any damped or conservative system, whose mass matrix
is diagonal, and where the mass and stiffness matrices are independent of each other (e.g.
mass-spring system). The algorithm also allows to control the location of mass

modifications, and an optimisation procedure for the best locations and magnitude of mass
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modifications is given. However, the method is based on the perturbation approach and its
performance is acceptable only if the sought changes in the natural frequencies are
relatively small. Numerical simulations have shown that this method performs inadequately
in a general case, when desired changes are not sufficiently small. Therefore, our aim was

to develop an alternative method which would not have this limitation.

3.4 Modal Approximation Methods

The modal approximation methods are based on the assumption that the eigenvectors of the
original unmodified structure form a complete vector basis to describe the motion of any
modified structure. Mathematically, this assumption implies that the eigenvectors of the
modified system belong to the space spanned by the eigenvectors of the original structure.
We have also used this assumption in our formulation of Problems 3 and 4. This approach
allows us to obtain an approximate solution to these problems, which is \(Sptimal in a

Rayleigh-Ritz sense. Our solutions are based on the theory developed by Parlett [42], and

which is described in detail at the beginning of section 8.

The results presented in sections 8 and 9 of this thesis, are the extension of the work done
by Ram and Braun [43 - 46] in this field. In [43 - 46] the authors dealt with problems
arising specifically when the necessary structural modifications are determined based on the
modal analysis data, and assuming no knowledge of any other information about the
structure. It was shown by Berman [47], that even under the most favourable laboratory

conditions, there are severe limitations on obtaining modal analysis data which is complete,
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i.e. which completely describes all modes of the system. Therefore, the use of modal
analysis results alone (i.e without any additional information from other sources) inevitably
introduce the problems of modal truncation errors. The presence of modal truncation errors
imply that there is insufficient information to find the exact values for the physical
parameters of a system from the measured modal analysis data. Thus, the difficulties arising
from the inherently truncated data provided by modal analysis may only be overcome by

formulating problems for approximate solutions which are optimal in some specified sense.

Another problem with using modal analysis data, arise when an assumption is made that
a system under consideration is conservative. This assumption of a conservative system was
made in [43 - 46] and also in our formulation of Problems 3 and 4. The eigenvalues and
eigenvectors of a conservative system are real-valued, whereas eigenvalues and eigenvectors
of a damped system are complex-valued. Since any actual structure will always have some
degree of damping, the measured modal data is always complex-valued. In the analysis of
[43 - 46] and in our analysis of sections 8 and 9, we assume that the real-valued modes
may be extracted from these measured complex modes. There are a number of available
methods for such extraction, ranging from complicated mathematical procedures to a very
simple process of truncating the imaginary part. Zhang and Lallement [48] present a
summary of three extraction methods, and describe the comparison of their relative
performance. The application of the these methods to a test structure showed that the results
are sufficiently accurate. However, due to the requirements placed on the input data in two
of the methods, they were judged to be of mathematical interest only. The third method was

considered suitable for engineering applications. In a recent paper by Ahmadian, Gladwell
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and Ismail [49] it was shown analytically that a real mode most correlated with a complex
measured mode is the real part of the same complex mode when it is rotated so that the
norm of its real part is maximised. Clearly, an assumption of a conservative system is
suitable only for the lightly damped structures. If damping in the structure is not negligible,
then the real modes extracted by any of the above methods are completely different from
the mode shapes of a conservative analytical model. Consequently, large errors will result

from any attempt to correlate this fundamentally different data.

In [43] Ram and Braun used the result of Parlett [42] to formulate and to solve a direct
structural modification problem. The developed algorithm yields an approximate solution
which is optimal in a Rayleigh-Ritz sense. In [44] same authors derived the upper and
lower bounds on eigenvalues (i.e natural frequencies) of a modified structure based on
truncated modal testing results. In [43] it was shown that a solution which is optimal in a
Rayleigh-Ritz sense provides an upper bound for the predicted natural frequencies of a
modified structure. In [44] a method for obtaining the lower bounds for the natural
frequencies was developed, and a procedure for predicting a modal truncation error was
presented. In [45] the authors obtained bounds on the eigenvectors due to structural
modification. In [46] a method developed in [43] was applied to an inverse modification
problem. This inverse problem is identical to our Problem 4. The authors were able to
characterise all possible family of solutions to this problem (see section 9 for the equations
characterising those solutions for AM and AK ). However, although constraints for
physically realisable solutions were stated and an optimisation problem for determining such

solutions formulated, this optimisation problem was not solved and consequently physical
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realisability constraints were not enforced. In section 9 we give an alternative formulation
for the problem of extracting realisable solutions from the family characterised in [46]. This

alternative problem is then solved, thus complementing the results of [46].

Tsuei and Yee [50] presented a solution for a single parameter modification (either a mass
or stiffness element) of a conservative system. The method is based on the force response
of the original system, and allows to shift one natural frequency to a prescribed value. Since
the method does not require iterations, it is computationally efficient. However, due to the
coupling between the modes, a prescribed shift in one natural frequency causes other natural
frequencies to shift as well, and these "secondary" shifts are not controllable. Thus, this
method can not be used for assigning multiple (i.e. more than one) natural frequencies. In
[51] same authors extended the results of [S0] to applications with damped systems. The
new algorithm does require iterations, but it is claimed that it converges very fast. Ram [52]
considered the problem of how to enlarge a spectral gap of some vibrating continuous and
discrete systems (including taut spring, non-uniform beam and a mass-spring system) by

introducing two appropriate oscillators at the proper locations..

A different approach to a structural modification problem was presented by Coppolino [53].
The author uses the measured truncated modal data and the stiffness matrix from the finite
element model of the original structure to determine the so called residual modal matrix.
The residual modal matrix is obtained by substituting unit load vectors at the location and
instead of the required structural modifications. The measured modal matrix, augmented by

the residual matrix, then describe an exact static response characterisation of the original

47



Section 3: Literature survey

structure due to application of unit loads. This is, in effect, equivalent to obtaining a static
response of the modified structure. The numerical example given in [53] for a 1416

degrees-of-freedom system demonstrated the application of the developed method.

An equivalent vector form of equation (2.2) for a conservative system is

K¢, = ©’Mg; (3.10)
or, alternatively

M'K¢; = ©’¢, (3.11)
where @, and ¢; are the i" natural frequency and the corresponding mode shape of a system.
There are well established methods for calculating @, and ¢; from the measured
experimental data. Because both sides of equation (3.11) are multiplied from the right side

by ¢, ¢; is sometimes referred to as the right modal vector.

Zhang, Allemang and Brown [54] have shown that the same information which is used to
extract ¢; from the frequency response function of a system, may also be used to extract
the so called left modal vector, §;, which is defined by

MK = o ] (3.12)
The left modal vector is related to the right modal vector via

£ = Mo, (3.13)
and, assuming mass-normalisation, it can be immediately shown that

T 1, i=j
Eid; = { 0, ié‘ ' G.14)
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Thus, it appears that more than the usual information can be extracted from the
experimental modal analysis results. This additional information can then be used to negate
the inherent incompleteness of the measured data, and thus allow to circumvent entirely the
effects of the modal truncation errors. However, the extraction of the left modal vectors
appears to be very sensitive to noise, and hence it is not clear whether it can be done with
sufficient accuracy in practical applications. Also, unlike the well established procedures
for extracting right modal vectors, extraction of the left modal vectors requires to solve a
set of ill-posed equations of deficient rank, which may lead to additional large errors. If,
on the other hand, the left modal vectors are available and accurate, then they can be

immediately applied to solve problems in structural modifications.

Based on this assumption of the availability of left modal vectors, Bucher and Braun [55]
developed an exact solution to an inverse structural modification problem. Their method
allows an exact assignment of the natural frequencies and mode shapes based on incomplete
modal analysis data, provided that the prescribed mode shapes belong to the space spanned
by the original measured modal vectors. If the prescribed mode shapes do not belong to the
space spanned by the measured vectors, a method for approximate assignment is also

developed, which gives an optimal solution in a least squares sense.

In two recent papers Bucher and Braun [56,57] have developed a computationally efficient
optimisation procedure for minimising the vibratory response of a system by structural
modifications. This procedure may be applied in cases where only a truncated set of

measured modal data is available, or when a complete set of analytical data is assumed to
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be known. In [56] the authors develop the theoretical basis for their method, and in a

"companion" paper [57] they provide detailed examples of application of the derived theory.

3.5 Model Reconstruction and Model Updating Problems

The work of Gladwell [1-3] (see above) gives a comprehensive introduction to the problems
of model reconstruction, which are also often referred to as problems of system
identification. The book [58] and the recent paper [59] by Friswell and Mottershead give
a review of the current state of knowledge in the subject of model updating. In this section

we only present few results which are of most relevance to the scope of this thesis.

Boley and Golub [60] have reviewed various algorithms for reconstruction of Jacobi
matrices from the knowledge of their eigenvalues, eigenvalues of their principal sub-
matrices, and/or knowledge of some specified elements of the normalised eigenvectors. Ram
and Coldwell [61] found a solution for reconstructing a free-free, multi-connected mass-
spring system (i.e system where none of its springs or masses are attached to the ground,
but where each mass may be connected via a spring element to any other masses) from
known sets of the natural frequencies of the system. The required sets of natural frequencies
included the original system, and the frequencies of the systems when each of the masses,
in turn, was pinned to the ground, thus restricting its movement. Gladwell and Movahhedy
[62] have obtained the set of the necessary and sufficient conditions to ensure positive mass
and stiffness parameters for the three-degree-of-freedom case. Movahhedy, Ismail and

Gladwell [63] have examined the problems associated with reconstruction of such systems
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from the experimentally measured data. Ram and Gladwell [64] solved the problem of
reconstructing the finite element model of an axially vibrating rod from the knowledge of
some of its eigenvalues and eigenvectors. The minimum requirement for a closed-form
solution is one eigenvalue and two eigenvectors. However, with this minimal data the
algorithm is very sensitive to perturbations. This sensitivity of the method is decreased if
overdetermined data (i.e more data than is minimally necessary) is used, in which case a
solution is obtained by a least squares approach. Ram [65,66] then extended the method of
[64] to find the equivalent solutions for reconstruction of a longitudinally vibrating

continuous rod and a discrete model of a transversely vibrating beam.

Starek and Inman [67 - 71] have studied the problems associated with the reconstruction
of non-conservative systems. In [67] the authors have developed a method of solution which
epsured that the mass, stiffness and damping matrices are real-valued, provided that all of
the eigenvalues of a system are complex. In [68,69] the method was improved to ensure
that the matrices are also symmetric, thus enhancing the physical realisability properties of
the solution. In [70] an alternative approach to the method of [69] was presented, which
further improved the realisability properties of a solution by ensuring that the obtained
matrices, in addition to being real and symmetric, are also positive definite. In [71] the
method has been further developed to include systems with real-valued eigenvalues

associated with overdamped modes.
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3.6 General References

The book of Golub and Van Loan [72] was an invaluable reference for understanding
concepts of linear algebra and matrix analysis. In particular, the algorithm for solving an
orthogonal Procrustes problem [72, p.582] formed a foundation for the solution to Problem
2 described in section 5, and a more general Problem 2(b) presented in section 7. A detailed
description of the orthogonal Procrustes problem and the procedure for its solution are

given in section 3.

The physical realisability constraints for the mass and stiffness elements were a major focus
in this thesis. The principal demand for the realisable mass and stiffness elements is that
they must be real and non-negative. Thus, the method for solving a non-negative least
squares problem given in the book of Lawson and Hanson [73, p. 161] was used as a
primary tool in our analysis throughout this thesis. The algorithm for solving a non-negative

least squares problem is also available as a standard function nnls in MATLAB.

Chu [74] has discussed the effect of the rate of convergency of the two methods for an
inverse singular value problem, which is closely related to the inverse eigenvalue problems.
He found that a quadratically converging algorithm converges fast but locally, while a
linearly converging algorithm converges globally but at a slower rate. Thus it is possible
that the convergence characteristics of an algorithm may be improved by reducing its rate

of convergence. We have successfuly applied this principle in our solution to Problem 1.
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Section 4 PROBLEM 1:

DESIGN FOR

NATURAL FREQUENCIES'

In this section we analyse a solution to Problem 1, which is formulated in section 2.1. In
this problem we assume that the vibratory behaviour of a system can be adequately
approximated by the behaviour of a conservative mass-spring analytical model. It is also
assumed that a physically realisable stiffness matrix K and a set of desired natural
frequencies {w,", @,, ...,®, } are known.

Denoting:

A =diag (W, A L AD) A= 00> 0 > A, >l > A 4.1)
we wish to find a real, positive and diagonal mass matrix M such that the roots of the
characteristic polynomial

det ( K-AM) =0 (4.2)

are the prescribed diagonal elements of A",

! Material presented in this section has been published in [75].
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This problem is similar to the inverse multiplicative eigenvalue problem which was first
formulated by Downing and Householder [5]. Many authors (eg. [6 - 15] ) have presented
alternative methods of solution for this, and similar, problems as well as some partial
conditions for the existence of real solutions. Most notable work was done by Friedland [9,
10] and Friedland, Nocedal and Overton in [15]. Recently, Joseph [16] has developed a
related method which solves a similar problem to the one studied here. Two of the

algorithms ([5] and [16]) can be applied directly to solve the problem under consideration.

It should be noted that the existing methods of solution are based on iterative procedures.
The problem, however, can be expressed as a system of n equations with » unknowns. The
possibility of finding a closed-form solution is investigated in section 4.1, and a closed-form
solutions are obtained there for two and three degrees-of-freedom systems. It appears
however that this method cannot be effective for high order systems due to the complexity
of the non-linear equations involved. In section 4.2 we describe the requirements for a
practical method of solution and discuss the need of a new algorithm. The new algorithm
is presented in section 4.3. Some numerical simulations are given in section 4.4, and the

conclusions are summarised in section 4.5.

4.1 A Closed-Form Solution

Equation (4.2) can be written in the following form:
det (K-AM) = a(A-L DAL)AL () 4.3)
where A", (i=1,2,...,n) are the given eigenvalues, and o is some constant.
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We wish to find positive diagonal M such that (4.3) is satisfied. Both sides of (4.3) can be
expressed as polynomials in A of order n. Equating the coefficients of the two polynomials

will produce # equations with # unknowns. This is demonstrated by the following examples:
4.1.1 A two degree-of-freedom system.

A general two degrees-of-freedom system has the following stiffness and mass matrices:

ky ki m
K = , M = (4.4)
k, k, 0 m

Suppose K and A", A,” are given. The problem under consideration is to find m; and m,

such that (4.3) holds, i.e

ky —Am, ki . .
det = ot(A-A; )(A-A,) 4.5)
12 ky,=hm,

Expanding both sides we have

mm A = (kmy+ kym L + (K, ky, = ki)

11772

R I (4.6)
= ar? - ol + AR + oA A,
which yields:
mm, = o (4.7)
kymy + kymy = o+ A7) (4.8)
ke, kiy = adf A, (4.9)
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From (4.9) o can be expressed in terms of the given data as:

k k

_ k2
o =2 7 (4.10)
)\’I*)\’zt

and (4.7) and (4.8) can then be used to produce a quadratic equation in m, :
k, ms —a(hy +R )ym, + k00 = 0 (4.11)

The solutions then are

a(h+ Ay ) = Jo2(h+ A)) - 4k k
m, = M+ Ay) \[‘1 (2k1 2) 118 % (4.12)

11

m, o= (4.13)

We note that provided the necessary condition kik,, > k,? is satisfied, there are two
physically realisable solutions if

a(A+ ) > 4k k (4.14a)

117722

one physically realisable solution if
a(h+ A =4k k (4.14Db)

117722

and no real solution otherwise.

4.1.2 A three degree-of-freedom system

Suppose
ki %y ki m 0 0
K= |k, kyy ky| , M =0 m, 0 (4.15)
k., ks ki, 0 0 m,
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then similar analysis gives:

A, = mm,m, (4.16)
A, = Bm,m, + Bpmym, + Bymym, (4.17)
A;=Cm, + Cm, + C;m, (4.18)
where
2 2 2
i k11k22k33+ 2k12k13k23— k11k23_ k22k13— k33k12 .
' Ay g Ay
A, = A0 + 0+ A3) 5 Ay =AM A+ MRS+ M) (4.19)
g — . _ 12 .
B, =k, B, =ky; By =ky; € =hy = kykss
2 . .2
Cy = ki = kyhy 5 Cy = kiy — ek,
Solving for m, and m, as functions of m;, we obtain:
BA,
C |4, - = - Bm(4, - C;m,)
m, = 2 (4.20)
(C,B, - C,Bym,
and
A
m, = ! (4.21)
m,m,

Substitution of (4.20) and (4.21) into (4.18) results in the following 6™ order polynomial
in my :
BB C2m{ - 2B,BA,Cyn; + (B,A,C,C;+ BB A+ A,B,C,Chm; + (4.22)
(B24,C;- 2B,A,B,C,C,+ A B{C;~ BB, ,C,C;- BA,A,C,~
B,A.B,C,C,~ A,B,A,C)m; + (B,B,AAC,+ BABAC+ A4,C,Cpm; -
2B.A A.C.C,m, + B;4'C,C, =0

223
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There are generally six roots to the polynomial (4.22). We may substitute each root into

(4.20) and find corresponding m,. Then (4.21) gives us m,. There are therefore at most six

possible solutions in this case. However, in general, the existence of a physically realisable

solution is not guaranteed.
4.1.3 The general case

Let (

denote the combinations of elements {m,,m,,.

repetitions, and let

n
p

I1

3
q9

, g=1

n!
" pl(np)!

..m, } taken p elements at a time without

n!

T pl(n-p)!

denote the products of the elementis in these combinations.

Then for a general nxn system (4.2) can be written as follows

\
+ ;\’n—l

det (K - AM) = A" [H(”)

n

.+ A

n 7
q; |:Gn -lg (n —-1

(4.23)

where G, (i=1,...,n-1) are constants and are explicitly determined from the elements of K.
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Similarly we may write

a(h = AR = A =AY = oA+ aF AT ¢ oA

. +aF A +oaF, =0 (4.24)

where the coefficients F, (i=1,...,n) are constants and can be determined from Ay s Ay

Therefore equating the coefficients of (4.23) and (4.24), we have following system of »

equations in » unknowns (m; , ...,m, ):

_ Gy n
OL—F"—H(”

g (4.25)
ol
P

I
1
Q

3
N
I3
i

It is difficult to determine a solution to these equations when » is large (we were unable
to find a solution for the 4x4 case using a symbolic manipulator!). Friedland in [9] found
that there are at most n/ different solutions for the general problem. However, the existence
of a physically realisable solution is not guaranteed. Also, in practical engineering designs,
it is likely that the desired natural frequencies would be permitted to have some finite
tolerance ranges. Thus any solution that would fall within these tolerances, would be

suitable. The method presented in section 4.2 requires that the values for the desired natural
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frequencies be specified precisely, and then allows a finite number of possible solutions to

be obtained. Approximate solutions cannot be obtained by this method.

4.2 Existing Methods

Two of the methods of solution for the inverse multiplicative eigenvalue problem, namely
Downing and Householder (from now on D&H) [5] and Joseph [16], can be applied
directly to the problem investigated here. Both methods are iterative, and have a local
quadratic convergency. Thus, they do converge when the starting point is sufficiently close
to a local solution. If they converge, the solution is obtained with a small number of
iterations. However, if the starting point is not sufficiently close to a local solution the

iterative algorithms may diverge or oscillate about the true solution.

Chu in [74] has discussed the effect of the rate of convergency of the two methods for a
closely related inverse singular value problem. He found that a quadratically converging
algorithm converges fast but locally, the linearly converging algorithm converges globally
but at a slower rate. Thus it is possible that the convergence characteristics of an algorithm

may be improved by reducing its rate of convergence.

A further consideration about the suitability of the two currently available methods was
made based on the physical realisability criteria for the solution. In order to satisfy the
physical realisability criteria, any obtained solution (i.e mass matrix) must be real, positive

and diagonal. Although both methods always satisfy the diagonality requirement, the
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algorithm of Joseph may converge into a complex solution. The D&H algorithm, on the
other hand, if converge, would always converge into a real and positive solution. Thus, the

D&H algorithm was chosen as a basis for a new algorithm, and it is summarised below:

Algorithm 4.1: Downing and Householder Method

Input:  Stiffness matrix K and eigenvalues matrix A" .
Algorithm:
1) Choose an initial guess for a diagonal, positive-definite mass matrix M,.
2) Set iteration index t=0.
3) Calculate the spectral decomposition:
M/ K M*=UA U,/
where A, = diag(),, A,, ..., &), A>A>..>A, is an eigenvalue matrix, U, is an
nxn orthonormal matrix (i.e U,U,"=l,) and 1, is the nxn identity matrix.
4) Calculate the real diagonal matrix Z,, satisfying: A =A"(I,+Z )
If the elements of Z, are sufficiently small, then stop.

5) Solve a system of linear equations:

n

Y |ul?d=z, (i= 1, ..., n)
where u; and Jz=i: are elements of U, and Z, respectively.
6) Set D,=diag(d,,, ..., d,,).
7) Calculate the next iteration for the mass matrix :
M,,,=(l,- 0.5D)*M,

8) Set iteration index t = t+1, and repeat from step 3.

Output (if converges): Real, positive and diagonal mass matrix M.
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4.3 The New Algorithm

Suppose that steps 1 to 3 of the D&H algorithm were carried out. Then, the spectral

decomposition
M KM *=U, AU/ (4.26)
is known.
Define R as follows:
R = U, A™A%UT, (4.27)
then RUAU™R =U A U’ (4.28)

which means that the eigenvalues of RM, KM, R are the diagonal elements of A". Thus,
if R is real and diagonal, then an exact solution for the mass matrix M=M,,, is given by:

M, = R' M, R’ . (4.29)
But in general R is not diagonal, and consequently M, would not be diagonal either.
However, if we could find a real diagonal matrix, which is close to R in some sense, it may

obtain an approximation for M,,;. Therefore, we define the following optimisation problem.
Given R as in (4.27). Find a real diagonal matrix D, such that the residual error:

e=|R -D|: (4.30)

is minimised.
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Applying the equality:

|R -D|% = trace(R™R) +trace(D "D) -2 trace(D "R) (4.31)

then for any matrix R of (4.27) and using the fact that D is diagonal, € is given by:

n

e = trace(R "R) + Y|d; - 247, (4.32)
i=1
= trace(R "R) + i [d,.,. ~ rﬁ]2 - zn:r,-,? (4.33)

i=1 i=1

where d; and r; are the diagonal elements of D and R respectively. Then from (4.33) it is

clear that £ is minimised when

dy =r; . (4.34)

Thus, the residual error € is minimised when the diagonal elements of D are equal to the

diagonal elements of R. Applying this result, the approximation for the mass matrix M,,;

is equal to DM,. The following iterative algorithm is then proposed:

Algorithm 4.2: The New Method

Input:  Stiffness matrix K and eigenvalues matrix A".
Algorithm:
1) Choose an initial guess for a diagonal, positive-definite mass matrix M,.

2) Set iteration index t = 0.
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3) Calculate the spectral decomposition:
M KM * = U, AU
4) If the norm || A" - A || is sufficiently small, then stop.
5) Calculate R = U, A™*A [*U,]
6) Form a real diagonal matrix D from the diagonal elements of R.
7) Calculate the next iteration of mass M ,,=D*M,
8) Set iteration index t = t+1 and repeat from step 3.

Output: Real, positive and diagonal mass matrix M.

This algorithm and the two existing methods were tested on some numerical examples, and
their performances were compared. It appears that the new algorithm is linearly convergent,
and thus, in general, a significantly larger number of iterations is necessary than with the
two existing methods. However, this disadvantage is balanced by a better global behaviour,
in the sense that it usually converges to a solution even if the initial guess is not close to
an actual solution. This relation between the rate of convergence of an algorithm and its

convergence characteristics is similar to the one described by Chu in [74].
In all numerical examples tested, the new algorithm has converged into an optimal local

solution. Furthermore, the diagonal elements of D are always real, and as a result M is

always real and positive.
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4.4 Numerical Examples

The algorithms were tested with various combinations of K and A’. As expected, the
parameters that have the most significant influence on the performance of the algorithms
are the initial guess for the mass matrix. We present here the results of the numerical tests

for one combination of K and A", for several different initial guesses.

Consider the 10 degree-of-freedom system, with stiffness matrix

200 -10 20 5 -5 -10 O 0 -50 50
-10 100 0 0 0 0 20 -10 -20 -10

20 300 40 30 60 -10 0 20 -10
s 40 400 30 40 -50 20 -10 70
5 30 30 150 -10 -5 -5 20 0
=10 60 40 -10 250 0 O 0 -80

| -50 -10 -10 -70 0 -80 -10 -100 —40 400

We wish to find a positive-definite and diagonal matrix M, such that the eigenvalues of the

system are the diagonal elements of :

A" = diag (500, 450, 400, 350, 300, 250, 200, 150, 100, 50).
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Define

E,=| A-A,], (4.35)
where t is an iteration index. E, is then equal to the maximum difference between any two
corresponding elements of A" and A, and thus measures the accuracy of the solution. The

results of six tests are presented here. The initial conditions are shown in Table 4.1.

Test Diagonal Elements of Diagonal Elements of the A, Residual
No. the Initial Guess, M, E,
1 1,1,1,1,1, 1,1, 1,1, 1 507.2, 415.4, 364.6, 3354, 231.2, 68.8

206.3, 160.6, 129.1, 108.4, 61.8

2 1,2,1,3,1,4,1,5 1,6 369.5, 313.0, 191.1, 165.1, 139.5, 208.9
97.5, 83.5, 52.6, 48.0, 22.6

3 1,1,1,2,1,1,1,1,4, 4 345.3, 271.8, 245.6, 211.5, 201.4, 1782
1452, 116.6, 93.0, 87.8, 39.3

4 4,1,10,3,2,2,2,2,4,10 151.8, 130.5, 124.1, 107.3, 88.9, 348.2
73.6, 52.8, 49.7, 314, 15.6

5 1,1,L,1,1,1,1,1,4,4 4281, 344.2, 267.2, 226.7, 202.7, 132.8
145.5, 120.6, 93.2, 88.6, 40.7

6 1.5,05,35,10,05,1.0,0.5, 0.5, 1.5, 3.5 5229, 443.0, 3125, 266.4, 2452, 875
234.6, 171.9, 138.6, 94.1, 46.5

Table 4.1: The Initial Conditions

Figure 4.1 displays the results from the first twelve iterations of each algorithm. The
logarithmic scale in this figure shows that the new algorithm converges linearly. Table 4.2
shows the obtained solutions for the various algorithms. The criteria used to terminate
iterations was either when E, > 10* (i.e algorithm diverged), or when E,,; - E, < 0.01 (i.e

algorithm converged).
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1.10, 0.83, 0.68, 1.03, 1.16

Test Method Tterations to | Diagonal Elements ol the Obtained Mass Diagonal Elements of A, Residual
No. Convergence Matrix, M E,
t) ( given to 2 decimal places only) (given to 1 decimal place only)
e — - — = —————
D&H Diverge - - =
1 Joseph Diverge - - -
New Method 425 0.60, 1.60, 0.96, 0.95, 0.75,

504.8, 451.4, 401.0, 353.1, 2947,

254.9, 201.4, 151.2, 94.8, 50.7

5.3

D & F o - - -
Convergence
2 Joseph Diverge - N ~
New Method 113 0.56, 0.99, 0.74, 1.27, 0.46, 500.4, 450.6, 399.9, 351.6, 297.8, 2.5
1.18, 0.375, 1.80, 0,77, 3.27 251.3, 197.5, 149.9, 99.9, 50.5
e e o o o —
D&H No - - -
Convergence
3 Joseph No - - -
Convergence
New Method 1050 0.70, 0.54, 0.71, 1.15, 0.50, 500.0, 450.0, 400.0, 350.0, 300.0, 0.0012
0.65, 0.62, 0.585, 3.64, 3.58 250.0, 200.0, 150.0, 100.0, 50.0
D&H 9 1.36, 0.26, 3.24, 0,90, 0.49, 500.0, 450.0, 400.0, 350.0, 300.0, 30 x
0.75, 0.51, 0.58, 1.43, 2,97 250.0, 200.0, 150.0, 100.0, 50.0 10%
4 Joseph 4 Physically Unrealisable All zeros 500
New Method 396 1.36, 0.33, 3.13, 0.93, 0.60, 500.1, 4499, 400.0, 351.8, 298.3, 1.8
0.63, 0.49, 0.57, 1.13, 3.16 249.9, 200.1, 150.0, 100.0, 50.0
e————— e ————
D&H Diverge - = <
5 Joseph [3 0.83, 0.34, 1.73, 1.29, 0.31, 500.0, 450.0, 400.0, 350.0, 300.0,
0.61, 0.50, 0.65, 3.71, 3.36 250.0, 200.0, 150.0, 100.0, 50.0 0.0017
New Method 2356 0.58, 0.62, 0.74, 0.89, 0.52, 500.0, 450.1, 400.0, 350.0, 300.1, 02

0.93, 0.50, 0.65, 3.62, 3.57

250.1, 199.8, 150.0, 100.0, 50.0

0.67, 0.42, 0.54, 1.2, 235

D & H 1.15, 0.27, 3.36, .94, U.43, 500.0, 450.0, 400.0, 350.0, 300.0, .
0.86, 0.38, 0.59, 2.16, 2.79 250.0, 200.0, 150.0, 100.0, 50.0 10®
Toseph 3 1,36, 0.35, 3.23, 1.06, 0.35, 500.0, 450.0, 400.0, 350.0, 300.0, 0.0008
0.71, 0.48, 0.53, 1.44, 2.99 250.0, 200.0, 150.0, 100.0, 50.0
New Method 2137 145, 0.43, 3.62, 1.43, 0.35, 500.0, 450.0, 400.0, 3500, 3000, 00103

250.0, 200.0, 150.0, 100.0, 50.0

Table 4.2: Obtained Solutions

In test no.1 the D&H and Joseph’s algorithms both diverged from first iteration onwards.

The new algorithm achieved first iteration with E,;=35.7 and converged to an approximate

solution with E,,=5.3 after 425 iterations. In test no.2 the Joseph’s algorithm diverged from

first iteration onwards. The D&H algorithm has neither converged nor diverged. It

exhibited oscillatory behaviour about the solution. The closest point reached by the
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algorithm was at E,, =17.0 after 12 iterations. The new algorithm achieved E;=49.8 ,
E,=23.5 and converged at E,;;=2.5. In test no.3 both D&H and Joseph’s algorithms have
shown an oscillatory behaviour for the first few iterations and then began to diverge from
t=2 and t=10 respectively. The new algorithm achieved E=19.1, E,=13.3 and converged
at E,5,=0.0012. In test no.4 the D&H algorithm converged quadratically at t=9. The
Joseph’s algorithm has also converged, but not in the desired direction (refer Table 4.2 and
Figure 4.2). The new algorithm achieved E,=14.4, E,=8.5 and converged at E,;,=1.8. In test
no.5 the D&H algorithm diverged from the second iteration onwards, the Joseph’s algorithm
converged quadratically after 6 iterations, and the new algorithm achieved E,=29.1, E,=22.7
and converged at E,y5=0.2. In test no.6 both the D&H and Joseph’s algorithms have
converged quadratically after 7 and 5 iterations respectively, and the new algorithm

achieved E,=20.1, E,=18.3 and converged at E,;;,=0.01 .

Thus we note that in some of the above examples the new method performs better, in terms

of global convergency, than the existing algorithms.

4.5 Conclusions

In this section we considered the problem of selecting the masses of a mass-spring system
to achieve the desired natural frequencies. A closed-form solution for a two and three
degree-of-freedom systems was given, but it appears impractical to obtain similar solutions
for high order systems. Two existing iterative methods were then examined numerically,

and found to have a local quadratic convergency. A new iterative method was then
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suggested, and numerical simulations show that it has better global convergency, but at a
slower rate. Similar behaviour has been observed by Chu in [74] for a closely related
inverse singular value problem. Perhaps the best strategy is to begin iterations with our

method, and then switch to a quadratic method once within a proximity of a solution.

Although D&H method was selected as a basis for our algorithm, the method of Joseph is
better suitable for problems where the desired natural frequency spectrum is incomplete (i.e
less than n desired natural frequencies are specified) or for systems where mass and
stiffness matrices are not independent of each other. Therefore, in section 6, where we
analyse a problem of structural modifications to achieve prescribed natural frequencies, it

was more convenient to base our solution algorithm on the method of Joseph.
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Section 5 PROBLEM 2:

DESIGN FOR NATURAL

FREQUENCIES AND

MODE SHAPES”

In this section we present a solution to Problem 2, which was formulated in section 2.2. In
Problem 2 we wish to determine mass and stiffness matrices M and K corresponding to a
physically realisable mass-spring system, such that its modal and spectral properties,
described by the modal matrix ® and the spectral matrix A, are as close as possible to the

prescribed modal and spectral matrices " and A".

We realise that the two problems of determining & and A corresponding to a realisable
system can be solved separately. Also note that satisfying equations (2.3) and (2.4) is a

sufficient condition for equation (2.2) to hold.

2 Material presented in this section has been accepted for publication in
the Journal of Sound and Vibration, reference [7€].
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Consider now the problem of determining the optimal mode shape matrix ¥,

Problem 2.1: Determination _of Mode Shapes

Given &, determine ® such that M = &'®" is a diagonal positive

definite matrix, and which minimises the norm | &"- &|.

We analyse this problem in section 5.1. Once the solution & is found, we solve the

following problem

Problem 2.2: Determination of Eigenvalue Matrix

Given A" and &, determine A which minimises the norm A"~ A|,

such that K = #TA®" satisfies the properties given by (2.6).

We present the global optimal solution to this problem in section 5.2. Determining the
global optimal solution is computationally expensive. We therefore present another, local
optimal approximation in section 5.3. A numerical example demonstrating the algorithms

is presented in section 5.4, and conclusions are drawn in section 5.5.

5.1 Mode Shape Optimisation.

Let D = diag (d;, d, -.., d,), d#0, and let Q be an orthonormal matrix, that is, QQ™=1.
If &= DQ, then the mass matrix M obtained by equation (6) is physically realisable, since
M = &' = (D'Q)Q™D") = D? (5.1

is a positive definite diagonal matrix.
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Thus a solution to Problem 2.1 can be obtained by determining a diagonal matrix D and an

orthonormal matrix Q, such that

min |#" - DQJ . (5.2)

>

In solving this problem we will make use of the following result. Given two nxn matrices
A and B, the well known orthogonal Procrustes problem, is to determine an orthonormal
matrix Q, such that

min || A-B . 5.3
s I Q - (5.3)

An algorithm for solving this problem is given below (see e.g. Golub and van Loan [72,

p.582]).

Algorithm 5.1: Orthogonal Procrustes Problem

Input: Two nxn matrices A and B.

Algorithm: 1) Set C =BTA.
2) Compute the singular value decomposition C=ULV’.
3) Evaluate Q=UV".

Output: Orthonormal Q, which solves (5.3).

Thus we may choose a diagonal matrix D, as an initial guess and obtain an orthonormal Q,
which minimises ||®" - D¢Q, || by using Algorithm 5.1. We now show how to obtain a
matrix D, such that

| & - D,Qy ¢ < [[@ - DQy |- (5.4)
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The Frobenius norm is invariant under orthonormal multiplication. Hence

" $" - D,Q, "F = " ®Q," - D, “ P (5.5)
Define R =®'Q,", (5.6)
and denote e=|R-D |z . (5.7)
Using the equality
IR - D, |2 = trace(R™R) + trace(D'D,) - 2 trace(Dy R) (5.8)
we find that
e = race R'R) + Y[ di- 2d;r,] (5.9)
i= 1
: "
= trace(RR) + _21[ - r)* - El ra (5.10)
i= i=

where D, = diag (d;) and R =[ r; ]. Then from (5.10) it is clear that e is minimised when

d; =ry. \ (5.11)

Thus, the residual error e is minimised when the diagonal elements of D, are equal to the
diagonal elements of R. Having determined a diagonal matrix D, satisfying (5.4), we can
reapply the Algorithm 5.1 with ®" and D, as an input and find an orthonormal matrix Q,

such that

“ ‘I)* - DlQl "F < " cb" - D1Q0 "F c (5-12)

Continuing in this manner iteratively, we obtain an approximation to the Problem 2.1. The

following algorithm summarises this result.
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Algorithm 5.2: Approximate Solution to Problem 2.1

Input. An nxn modal matrix &".
Algorithm: 1) Set initial guess D, and a tolerance for convergence e.
2) Fori=0, 1, 2, ...
a) Evaluate C = D,"®".
b) Compute the singular value decomposition C=UZV".
c) Evaluate Q= UV".
d) Obtain R=3"Q,".
e) D, =diag (ryy, M ooy Fon)-
f) Test convergence
() SetN,=[&"-DQ [« N, = |2 -DuQ |+
(iiy If (N,-N,)=< e, goto3.
3) D=D,, Q=0Q.
Output: A diagonal matrix D and an orthonormal matrix Q which approximate the

solution of (5.2).

It follows from (5.4) and (5.12) that || ®" - DQ, || ¢ 1S a monotonic non-increasing

function of an iteration index i. The Algorithm 5.2 thus necessarily converge.

The geometrical interpretation of the Algorithm 5.2 is also clear. The stage of calculating
Q, is equivalent to finding an optimal rotation of the matrix D; into ®". The subsequent
stage of determining D;,, is equivalent to projecting the column vectors of ®" onto the axis

defined by the column vectors of Q,. This rotation-projection procedure is then carried out
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until an optimal combination of D and Q, which solves (5.2), is achieved. Note that
problem (5.2) itself can be described geometrically for a two- and three-dimensional space.

Figure 5.1 shows an equivalent geometrical problem to (5.2) in a two-dimensional space.

Given two vectors U, and ..
0, Find two orthogonal vectors ¥,
and U, , such that the sum

(A,+A,) is minimised.

Figure 5.1: Geometric problem equivalent to (5.2) in a two-dimensional space.

5.2 Global Optimisation for Eigenvalues

Using the method described in section 5.1, we obtain a matrix ® = DQ, which satisfies the
physical realisability criteria for M while minimising | - DQ | ;. In this section we will
use this result to obtain a physically realisable K which satisfies equation (2.4) while

minimising [|A"- A[.
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The physical realisability criteria for the connectivity of K, as described in (2.6), arise from
the requirement that the stiffness of all the springs in mass-spring systems must be non-
negative. Thus, if we ensure that all the springs have non-negative stiffness, then we

necessarily satisfy the conditions of (2.6).
The stiffness matrix K, may be written in the following form
n
K = Y s, BY (5.13)

where s, is the stiffness of the spring connecting mass p to mass g, s,, represents the
stiffness of the spring which connects mass p to the ground, and qu(K) is the matrix

describing the spring connection between mass p and mass q,
K _ & _
(K) & bPP j bqq -
. - B_ & _
B,)= by = { by = b= -1, (p*q). (5.14)

i
bij(-K)= 0 elsewhere

Substituting equation (5.13) into equation (2.4), we obtain

n

n-1
A=Y Y 5 (9'B)®) . (5.15)
p=0g=p+l

Each of the ij-th element of A is thus given by

n-1 n
= X X s, 0B0) (5.16)

p=04g=p+l
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Let N= '4(n’+ n) and construct the vectors

Y& (Y1(K), Y2(K), ey YN(K) )T = Miis Mas Mizs voes My Ay Ay ey gy Agss oo }\‘nn)T (5.17)

and
X =(X;, Xp5 X35 -3 Xy )7 =( So1> S125 S135 +++» Stm> S0z » 523> +++» Son> So3s +++5 Spn) - (5.18)
Denote
K) o
4 ..
Fg =Yy ] B iy =1, 2,., N) (5.19)

then all the elements of Fy can be evaluated using equation (5.16). Equation (5.15) can be

written in a vector form

Fg x =yg (5.20)

In order to satisfy the physical realisability criteria we require all the elements of x to be
non-negative. Setting A=A" we may determine the vector yg and solve the following non-
negative least squares problem

min | Fx x - y¢ ||, subject to x > 0. (5.21)
X

An algorithm for the solution of this problem is given in [73, p.161]. (The standard
MATLAB function nnls solves this problem). Thus the stiffnesses s,, can be obtained from
the solution x of (5.21), via equation (5.18), which in turn determines the matrix K by

(5.13).

The above process gives an optimal solution to the eigenvalue matrix optimisation problem,
because it is the best positive solution in a least square sense. We note that in order to

obtain a solution for the n degrees-of-freedom system, we need to solve an augmented
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system (5.21) of dimension N. This is a computational barrier, and an alternative approach

is presented in the next section.

5.3 Local Optimisation for Eigenvalues.

Alternatively, the stiffness matrix K may be obtained by a local optimisation procedure.
Setting A = A" and multiplying both sides of equation (2.4) by &, we have

'K = A9 . (5.22)
Denote

A=Ad" (5.23)
and partition A and K as follows

A=la |a|a]|..|a,l], (5.24)

K=k |k | k;|.....| k, ] (5.25)
Then from equation (5.22), each column of A is given by

'k =a, (=1, ..0). (5.26)

We now show how to solve equation (5.26) column by column sequentially. The stiffness

matrix K for a general mass-spring system of order » has the following form

k11 _k12 _k13 "k14 " _kln
k21 k22 _k23 _k24 _k2n
k.. -k k -k, - -k
K - 31 32 33 34 In (5.27)
_k41 ’k42 _k43 k44 TRy,
_an _kn2 —kn3 _kn4 knn
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and physical realisability requires that
(a) ky = k; > 0, for all 1< i,j<n, and

1

(5.28)

(b) k; - lekﬁ >0 (j=1.2,..,n)

i#f

The physical parameters appearing in the first column of K can be approximated by solving

nlﬁ(in |k, - a,| . subject to Gk, = 0 (5.29)
1
11 1 1 1]
0 -1 0 0 0
00 -1 0 o|
where G(1) = 00 0 -1 0 3 G(1) € R . (5.30)
00 0 0 -1
Then setting
z, = Gk, (5.31)
and
-1
E, = ®7G (5.32)

we find that (5.29) can be transformed to the standard non-negative least squares form.

min |Eyz, - a; |, subject to z; = 0. (5.33)
Z

The solution z, of (5.33) then determines the physical stiffnesses in k;, as shown

k, = Gy'z,. (5.34)
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In a similar manner the physical parameters appearing in k;, the j™ column of K, can be
approximated. By the symmetry of K the first (j-1) elements in the j" step have been

already determined in the previous steps. Hence denoting

j-1 T
kj = _klj’ ceey _kj—l 7 ;klj’ 0, 0, cerey 0 (535)
- T _ T
=] 0y s O Ky Ky k| (5.36)
we may write
= 5.37
Tl ’ &3

/\ o .
where k; is known and k; is to be determined.

Substituting (5.37) into equation (5.26) gives

o'k, + &'k, = a, (5.38)
Let & be partitioned in the form
& =|-L|, @, ¢ REIDE 5.39
=l—, ®; € . (5.39)
)
Define
o =a - ¥k , (5.40)

and by truncating the zero elements of the vector i‘] in (5.36), set

K= [k Ky k) (5.41)
Then a non-negative kj* which approximates the solution of equation (5.38) in least square
sense, can be obtained by solving
i |®" k" - a” ||, subject to Gyk;" = 0 (5.42)

i
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1 1 1 1]
0 -1 0 - 0
= = 2 . (n-j+1 n-j+1
where G, = |0 0 -1 - 0| ; Gy eR"™ ) x (nj+1)
0 0 O -1
Denote
'Zj_G(j)kj*
and
T -1
E;, = 3G,

then the standard non-negative least square form of (5.42) is given by

min |Eqz - 4, ||, subject to z; = 0.
Z.

]

Solving (5.46) for z;, then k;” can be obtained by

k-* = G(J)-l Z.

J 1

(5.43)

(5.44)

(5.45)

(5.46)

(5.47)

This determines the unknown stiffnesses in the j™ column of K. Applying this process for

j=2, ...n evaluates the complete matrix K in a physically realisable form. The following

algorithm summarises the above process.

Algorithm 5.3: Approximate Solution to Problem 2.2

Input: A modal matrix ® (obtained in section 5.1), and a desired spectral matrix A".

Algorithm: 1) Calculate A using equation (5.23) and partition A as in (5.24). This

determines the vectors q;, j=1,2,...,n.
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2) Construct the matrix G, as in (5.30).

3) Determine the matrix E, using (5.32).

4) Determine the vector z, by solving the non-negative least square

problem (5.33).

5) Obtain k, from (5.34). This determines the first row and column of

K=[k,]

B) forj=2,3, ... n

(a)
(b)
()
(d)
(e)

]
(9)

(h)

Set the vector ﬁj using (5.35).

Obtain & by partitioning & as in (5.39).

Determine a;" from equation (5.40).

Construct G, as in (5.43) and calculate Eg; by (5.45).
Determine z; by solving the non-negative least

square problem (5.46).

Calculate k" from equation (5.47).

Construct vector k; by augmenting k;" with zero elements as
shown in (5.36) and (5.41).

Obtain k, from equation (5.37). This determines the j-th row and
column of K, without destroying the symmetry of its first (j-1)

rows and columns.

Output: A physically realisable stiffness matrix K which approximates the solution

of Problem 2.2 in the local optimisation sense.

The computational expense of this process is approximately equal to solving » times a non-
negative least square problem of dimensions »,(n-1),..., 1. This is more efficient then solving

an augmented system of dimension N.
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5.4 Numerical Example

The local optimisation solution obtained by Algorithm 5.3 is not the optimal solution in the
global sense, such as described in section 5.1. It is shown in this section by means of a

numerical example that the quality of solution is not greatly affected.

Consider a solution to the problem described in Example 2.2.1. The desired dynamic
properties, A" and ®", for a five degrees-of-freedom mass-spring system are:
A" = diag ( 50, 100, 200, 400, 800 )

and _ _
01 -01 02 -04 0.1

01 01 02 01 03
& -|01 -01 03 02 -04
01 -03 -0.1 -0.1 -0.1
03 02 -01 01 0.1

and we wish to determine physically realisable M and K which have dynamic

characteristics as close as possible to the above data.

It was shown that there is no exact solution for these data since M and K obtained by

equations (2.7) and (2.8) are not physically realisable solutions for a mass-spring system.

We now show how to determine an optimal solution.

Applying Algorithm 5.2, we obtain a diagonal matrix D and an orthonormal matrix Q,

such that & = DQ is given by
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[ 0.1232 -0.0333 02107 -0.3988 0.0414
0.0578 -0.0363 0.1922 0.1503 0.2680
® =| 0.1337 -0.0707 0.3292 0.1820 -0.3767
0.1186 -0.2856 -0.1045 0.0061 0.0073
| 0.3233  0.1725 -0.1021 0.0324 0.0088

and | ®"- ®| is minimised.

Substituting ® in equations (2.7) and (2.8), we obtain

M = diag( 4.5152, 7.3516, 3.2650, 9.3757, 6.8583)

and (15239 -2162 -392.0 -1460 -240.6]
2162 4009.4 -13564 -48.7 105
K =| -3920 -13564 1597.1 -178.5 -135.7
~146.0 -487 -1785 9760 -47.9
| 2406 105 -1357 479  506.5]

The mass matrix M is now physically realisable, whereas the stiffness matrix K is not
realisable. Therefore, setting A = A" and applying the global optimisation procedure

described in section 5.2, we obtain the following realisable stiffness matrix

[ 15120 -2272  -337.7  -1443 -2454]
22272 40124 -12717.9 -41.7 0
K =| -3377 -12779 16901  -37.6  -36.9
-1443 -417  -37.6 9398  -69.1
| -245.4 0 -369 -69.1 4542]
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A mass-spring system corresponding to the mass matrix M and the stiffness matrix K/ is

shown in Figure 5.2.

144.3
41.7 647.1

557.4 227.2 12779 37.6 69.1 — 102.8

2465.6

a'”” 337 36.9

MWWy MWWV

A N
P A e

Figure 5.2: A mass-spring system corresponding to M and K’

This realisable mass-spring system has the following modal data

AI

diag( 52.8, 101.2, 214.3, 401.3, 795.2)

[ 0.0982 -0.0265 0.2488 -0.3848 0.0335]
0.0267 -0.0165 0.1995 0.1600 0.2639
@' =| 0.0553 -0.0273 0.3379 0.2010 -0.3846
0.0939 -0.3087 -0.0488 0.0137 -0.0002
| 03538 0.1203 -0.0691 0.0375 0.0012]

This compares reasonably well with the desired properties A and &".

However, the above solution is computationally expensive. Applying Algorithm 5.3 to the

above example, we obtain a physically realisable stiffness matrix
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15239 2162  -392.0 -146.0 -240.6]
-2162  4009.3 -1356.4 -48.7 0

K" =| -3920 -13564  1748.4 0 0
-146.0 ~48.7 0 9760 -479

| -240.6 0 0 -479 5065

Figure 5.3 shows a mass-spring system corresponding to the mass matrix M and the

stiffness matrix K”.

y 48.7 733.4 N
. AW —AAMM—
Z Y N
e .\
7 \
é 529.1 216.2 13564 | 479 218.0 %
4 | | g
? 7 2388.0 :‘S
4
g 7 3920 §
A
. J WA §
7 N
7 245.4 N
7 A N
;/; VWA \

Figure 5.3: A mass-spring system corresponding to M and K"

This mass-spring system has the following modal properties

A" = diag( 62.6, 104.0, 200.5, 407.6, 821.7)
[ 0.0985 -0.0314 02479 -0.3838 0.0454]
0.0251 -0.0174 0.2013 0.1683 0.2574
®” =| 0.0471 -0.0255 0.3384 0.1863 -0.3927

0.0841 -0.3116 -0.0474 0.0161 -0.0028
| 0.3578 0.1087 -0.0661 0.0400 -0.0021]
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We note that the global optimal solution is slightly better than the local one. They both,
however, lead to essentially similar systems. Table 5.1 shows the cosines of the angles
between the desired mode shapes and the modes of the physical systems which have been
obtained. Let © be the angle between two eigenvectors. Then cos(0)=1 indicates

identical eigenvectors.

Mode No., j 1 2 3 4 5

Cos A(¢".0;) 0.9885 0.9210 0.9988 0.9586 | 0.9580
Cos A(¢";,0%) 0.9648 0.9015 0.9852 0.9541 0.9558
Cos A(¢",0") 0.9587 0.8948 0.9845 0.9506 | 0.9571

Table 5.1: Cosines of angles between the desired mode shapes
and their approximations

We asked for mass-normalised eigenvectors. Hence the amplitude ratio between the desired

mode shapes and their approximation is of interest as well. These amplitude ratios are given

in Table 5.2.
Mode No., j 1 2 3 4 5
o 71 ¢ 1.0918 | 0.8617 1.0541 0.9688 | 0.8773
EARAKY 1.0649 | 0.8346 1.0835 | 0.9683 | 0.8838
EARAKY 1.0657 | 0.8323 1.0835 0.9605 | 0.8915

Table 5.2: Amplitude ratios between the desired mode shapes
and their approximations

The results in Tables 5.1 and 5.2 present a good agreement between the desired mode

shapes and the modes obtained.
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5.5 Conclusions

The problem of constructing a mass-spring system with prescribed eigenvalues and mode
shapes has been addressed. This is a non-linear approximation problem since the number
of constraints, the eigendata, is larger than the number of free parameters, the number of

masses and springs in the system.

It is shown that the problems of determining the mass and stiffness matrices can be solved
separately. First, an optimal set of mode shapes associated with a physically realisable mass
matrix is obtained. This is done by a convergent iterative algorithm. Then a physically
realisable stiffness matrix is determined using the optimal mode shapes obtained in the

previous stage.

Two methods of obtaining a physically realisable stiffness matrix have been suggested. One
method determines a global optimal solution in a least square sense. This method involves
non-linear optimisation of large matrices of order N for a problem with n degrees of
freedom. The other method breaks the problem into n sub-problems of small dimensions
and determines a local optimal solution for each sub-problem. The result is a
computationally economical method of solution. It is shown through a numerical example

that both methods lead to similar solutions.
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We note that in the given numerical example, the modal shapes of ®, &' and &'’ do not
have the same number of changes of sign among the elements of their columns as in the
corresponding columns of ®". Based on this criteria, we may say that the mode shapes of
®, ®' and &'’ are qualitatively different from the corresponding mode shapes of ®". In the
analysis we used to solve Problem 2, we have optimised the modal vectors to be as close
as possible to the prescribed modal vectors in the Frobenius norm sense, without imposing
the additional constraints of sign changes. Thus, extending the above method to allow for

such sign change control would constitute a significant improvement to the method.
The results presented in this paper may be applied in designing physically realisable

systems with prescribed spectral constrains, and in identifying realisable systems from

modal test data.
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Section 6 PROBLEM 2(a):

RECONSTRUCTION FROM
TRUNCATED MODAL AND

SPECTRAL DATA

In section 5 we have considered a problem associated with reconstruction of a physically
realisable mass-spring system from the prescribed set of modal and spectral data. The main
assumption on which we based our analysis is that the prescribed modal and spectral data
are such that the resultant matrices " and A" are full matrices of size nxn. Thus in section
5 we have developed a solution to the problem of reconstruction from a complete set of
data. In many (perhaps most) practical applications the desired modal and spectral
properties are usually specified for only the first few lower modes, thus leading to a
truncated set of prescribed modal and spectral data. In this section we show how to
reconstruct various models of vibratory systems from such truncated sets of data. Since in
all other respects, apart from the truncation of &' and A", this problem is identical to

Problem 2, we designate it as Problem 2(a).

91



Section 6: Problem 2(a) - Reconstruction from Truncated Modal and Spectral Data

Partitioning ®" and A" in the form :

' =[®"|®, ], & isan nxl real matrix, / < n (6.1)
and
- A; | 0 o R .
A¥= |am. , A=diag(}, , ...A, ), (6.2)
0 | A;

we assume that ®," and A," are specified, while the submatrices ®," and A,” remain

unknown. Then the formulation of a problem we want to solve is as follows.

Problem 2(a): Reconstruction from fruncated modal and spectral data.

Given ®," and A,", determine physically realisable mass and stiffness matrices

M and K, such that the vibratory system contains modes which are as close

as possible to the prescribed data.

We note that the orthogonality relations
®,""M®," =1, (6.3)
and

&' TK®,' = A (6.4)

are still valid. However, due to the effects of truncation, obtaining M and K which satisfy
(6.3) and (6.4) respectively is not necessarily a solution to Problem 2(a). In fact, there may
exist many different combinations of M and K that satisfy (6.3) and (6.4), but which are
not solutions to Problem 2(a). Thus, in order for us to have a solution, M and K should
satisfy

K®," = M®," A", (6.5)

and, to maintain the mass-normalisation properties, M should also satisfy (6.3).
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As in the method presented in section 5, we realise that the solutions for M and K may be

obtained separately. First, we find M satisfying (6.3), and then determine K such that (6.5)

holds.
6.1 Reconstruction of a Mass Matrix
The mass matrix M, may be written in the following form
M = ;mj B™ (6.6)

where m, is the mass of the j™ element, and B, is the mapping matrix. For a mass-spring
model B is as follows
pM_
M _ |y M| _ g 6.7
Bj B [bpq ] - ©.7)

M) _
b, =0 elsewhere, p # q

Substituting equation (6.7) into equation (6.3), we obtain

I =Y m& B/ (6.8)
j=1
Each element of 1, is given by
6,=1,p=q
- - 1274
I, [SM] 5. =0,p%q (6.9)

Partitioning &®,” into column vectors as shown

& = ol 651 ... | ) (6.10)
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then from (6.8) each element §,, must be equal to

n

5, =Y mae, B¢ (6.11)

Jj=1

Let N= 14(*+ ) and construct the vectors

Y™ =(Y|(M)a Y2(M), ooy YN(M))T = (8115 0135 Oy35 vovy Oy Doy B33, vy Oy 5 B33, vy Oy )T (6.12)

and
m = (m,, m,, ..., m, )’ (6.13)
Denote
oy _ i
Fy = 1" = ——s (L2 N =1 2, (6.14)

J

then all the elements of F,, can be evaluated using equation (6.11). Equation (6.8) can be
written in a vector form

Fyy m =y, (6.15)

Since F,, and y,; are known, (6.15) can be solved for m, and the mass matrix M can then

be determined from the elements of vector m by equation (6.6).

We note that in order to obtain a solution for the system of size nx/ (/<n), we need to solve
an augmented system (6.15) of size Nxn (N= % (I*+ [)). However, in this case augmentation
is based on the smaller dimension /, whereas number of independent parameters available
for optimisation is fixed at n. Therefore depending on the value of / there are three

possibilities for the solution to (6.15).
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Set » = n-N, then if r>0 there will be a family of solutions for m. This family of solutions
is characterised by the following equation

m = F'y, + V,b (6.16)
where F,;' is the Moore-Penrose pseudoinverse of Fy,, b is an arbitrary vector of dimension

rx1, and V, is a matrix of dimension nxr which is obtained by a following procedure

Calculate singular value decomposition Fy= USV?", and partition

the nxn matrix V. = [Vy | V. ], where Vy is nxN, and V_ is nxr. (6.17)

If r = 0, then F,, is a full square matrix, and there will be one unique solution for m. This
unique solution is

m = Fylyy . (6.18)
And finally, if r<0, then there are no solutions for m, and only an approximate solution

(which is optimal in a least squares sense) can be obtained by

m = FM'ryM } (6.19)

However, we also note that in order to satisfy the physical realisability criteria we require
all the elements of m to be positive. Therefore, if solutions of (6.16), (6.18) and (6.19) do
not yield positive m, it may have to be determined by solving the following non-negative
least squares problem

min | Fyy m - yy ||,, subject to m > 0. (6.20)
m

This will produce an optimal non-negative solution to the vector m in a least square sense.
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The above procedure is summarised by the following algorithm.

Algorithm 6.1: Determination of a Mass Matrix

Input. Desired modal data ®,"(nx/).
Algorithm:
1) Column partition &," as in (6.10).
2) Set N= %(FP+1).
3) Construct vectors y,, as in (6.12), via (6.9).
4) Form vector m of dimension nx7 as in (6.13).
5) Construct matrix F,, using (6.14) and (6.11).
6) (a) If n > N, then determine m by equation (6.16),
(b) if n = N, then determine m by (6.18),
(c) if n < N, then determine m by (6.19).
7) If m obtained in step 6 is not non-negative, then
determine m by solving (6.20).
8) Construct M from the elements of m using (6.6).

Output: Physically realisable mass matrix M.
We note that Algorithm 6.1 can be used to determine M corresponding to any chosen

analytical model, not just for a mass-spring system. All that is required is to use an

appropriate mapping matrix B in equation (6.6).
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6.2 Reconstruction of a Stiffness Matrix

Setting AT = M&," A", (6.21)

*

equation (6.5) becomes K®, = AT (6.22)

Since ®," and A are known, the stiffness matrix K can be determined. As in section 5, we

may determine both the global and local optimal solutions to equation (6.22).

6.2.1 Local optimal solution

Taking the transpose of (6.22) and using the fact that K is symmetric, we obtain

3K = A. (6.23)

Partition A and K as follows

A=lala)a]..|a,], (6.24)

K=k |k | K| ... K, ]. (6.25)

Then from equation (6.23), each column of A is given by

& k,=a;, (G=1,..0). (6.26)

Equation (6.26) is identical to equation (5.26), except that matrix ®," has the dimensions

of nxl. The same procedure as in section 5.3 can then be used to find a solution for K,
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sequentially column by column. The resulting solution would be a local approximation for
K. However, a general multi-connected mass-spring system of order n has Ya(n+n)
independent spring elements, while the total number of constraints that need to be satisfied
in equation (6.23) is » times / (and where / < # ). Thus, if / is less than %2(n+1), then there
will exist a family of exact solutions for K. By selecting a local optimisation method for
calculating elements of K, we can only obtain approximate solutions to equation (6.23).
Therefore, in this particular problem, a global approach for the solutions of K appears to

be more suitable.
6.2.2 Global solution for stiffness matrix

The stiffness matrix K for a system with J independent spring elements, may be written in

the following form

J
K=Ys B (6.27)

where s, is the stiffness of the q" spring, and Bq(K) is the mapping matrix corresponding to
the chosen analytical model for the system. For example, equations (5.13) and (5.14)
describe the K and Bq(K) for a multi-connected mass-spring system of order n, and for such

system J =Y4(n* + n).

Substituting (6.27) into (6.23), we obtain

J
Y5, &'B" =4 . (6.28)

g=1
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Setting
B((I) = [b;q)] = q)l* TBq(K) i (629)

then each i/ element of A, gy, is given by

J
a, =Y s, b" . (6.30)

Since there are n X/ independent elements in A, in order to obtain a global solution for K
we need to solve simultaneously a system of »X! linear equations of the form (6.30). We

proceed in a similar fashion to the analysis described by equations (6.12) - (6.20).

Let N = nx/ and construct the vectors

_ — T
Yk _(YI(K)’ YZ(K)s wedy YN(K))T - (aII’ Ay eees iy s Aopy vy Aoy s A3gs oens aln) (631)
and
$ = (S, Sy +ves Sy ) (6.32)
Denote

®
7 _K)]: oY

K Vi
asj

, (=1,2 N j=1,2...,J) (6.33)

then all the elements of Fy can be evaluated using equation (6.30). Equation (6.22) can be

written in a vector form

Fys=yx (6.34)

Since Fy and yg are known, (6.34) can be solved for s, and the stiffness matrix K can then

be determined from the elements of vector s via equation (6.27).
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As in a case of solution to (6.15), there are three possibilities for the solution to (6.34).
Setting » = J - N, then if » > 0 there will be a family of solutions for s. This family of
solutions is characterised by the following equation

s=Fly, + Vb (6.35)
where F' is the Moore-Penrose pseudoinverse of Fy, b is an arbitrary vector of dimension

rx1, and V, is a matrix of dimension Jxr which is obtained by the following procedure

Calculate singular value decomposition Fy= USV", and partition

the JxJ matrix V. = [Vg | V, 1, where Vg is JXN, and V., is Jxr. (6.36)

If » = 0, then Fy is a full square matrix, and there will be one unique solution for s. This
unique solution is

s =Fly . (6.37)
And finally, if r<0, then there are no solutions for s, and only an approximate solution
(which is optimal in a least squares sense) can be obtained by

s=Fy. . (6.38)

However, we also note that in order to satisfy the physical realisability criteria we require
all the elements of s to be positive. Therefore, if solutions of (6.35), (6.37) and (6.38) do
not yield positive s, it may have to be determined by solving the following non-negative
least squares problem

min | Fes-yg ||,. subject tos = 0. (6.39)
S

This will produce an optimal non-negative solution to the vector s in a least square sense.
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The above process is summarised by the following algorithm.

Algorithm 6.2: Determination of a Stiffness Matrix

Input: Desired modal and spectral data ®,"and A,", and mass matrix M obtained
by Algorithm 6.1.
Algorithm:
1) Calculate the matrix A by equation (6.21).
2) Set N= nx/ .
3) Construct vectors yy as in (6.31).
4) Form a vector s of dimension Jx7 as in (6.32).
5) Construct a matrix Fy using (6.33) and (6.30).
6) (a) If J > N, then determine s by equation (6.35),
(b) if J = N, then determine s by (6.37),
(c) if J < N, then determine s by (6.38).
7) If s obtained in step 6 is not non-negative, then
determine s by solving (6.39).
8) Construct K from the elements of s using (6.27).

Output: Physically realisable mass matrix K.

Algorithm 6.2 can be used to determine K corresponding to any chosen analytical model

by substituting an appropriate mapping matrix B,™ in equation (6.27).
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6.3 Numerical Example

Suppose that the desired dynamic properties, A," and ®,", for a five degrees-of-freedom
mass-spring system are:

A, = diag ( 50, 100, 200 )

and
(01 -0.1 02]
01 01 02
@ =01 -01 03
0.1 -03 -0.1
|03 02 -0.1]

and we wish to determine physically realisable M and K which have dynamic

characteristics as close as possible to the above data.

In the above data /=3 and n=5. First calculating the mass matrix M, we note that parameter
N=14(P+])= 6, and since n<N, there is no exact solution for M. The approximate solution
for M is obtained by Algorithm 6.1 (using step 6(c)), and this solution is

M = diag ( 7.3458, 5.2048, 3.6097, 7.2876, 7.0552) .

Calculating K, we note that J = Y(n*+n)= 15 and N = nxI=15, and since J= N, there is one

exact solution for K. Applying Algorithm 6.2 (with step 6(b)), this solution is

1062.6  45.5 85.3 2229 -1844

455 5409 219.4 -1289 -105.0
K = 85.3 2194 4365 457 -1423
2229 -1289 457 7532 -35.6
| -184.4 -105.0 -1423 -35.6 513.1]
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However, since some of the off-diagonal elements of the above K are positive, this stiffness
'matrix is not physically realisable. To obtain the physically realisable K we perform step

7 of the Algorithm 6.2 and obtain

1217.7 0 0 -2544 -180.9

0 925.6 0 0 -203.1

K = 0 0 6349 -110.7 -82.9
-254 .4 0 -110.7 8055 -69.7
_—180.9' -203.1 -82.9 -69.7 537.9]

This K is physically realisable, and the mass-spring system corresponding to the obtained

- mass and stiffness matrices, M and K, is shown in Figure 6.1.

2544

\%

2 4413

/] A
g ? 722.5 YWWV/ o %‘
? Z MY vYyvy %
Z 7 N
7 782.4 _sl 1107 9.7 13 N
ér —AAAAA~73458 5.204 3609 =AAAAAA7 2876 EAAAAA 70552 AAAAA~ §
% N
Z R
V7 X
Z 82.9 N
Z N
Z 203,1 N
Z N
7 N
é 180.9 %
4 AW A

Figure 6.1: Mass-spring system corresponding to M-and K.

The eigenvalues and the corresponding mass-normalised eigenvectors of this system are

A = diag ( 50.8213, 100.6356, 172.2435, 184.2177, 198.3586)
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and . -
0.1087 -0.0997 -0.2450 0.1048 0.2083

0.0966 0.0835 0.0309 -0.3626 0.2084

$ = [0.0914 -0.0739 0.3870 0.1972 0.2730

0.1371 -0.3051 0.0426 -0.0980 -0.1181

0.3144  0.1653  0.0044  0.0593 -0.1096 |

We note that the first, second and fifth modes in the A and ® above compare very well with
the desired properties A," and ®,". For a good correlation it is required that the eigenvalue
ratio, the amplitude ratio of the eigenvectors and the values of cosines between the two
eigenvectors are all as close as possible to 1. The values of these ratios and cosines are

presented in Table 6.1.

Desired |Corresponding | Eigenvalue Amplitude Cosine of an
Mode, Obtained Ratio, Ratio angle between
i Mode, M of the two
] Eigenvectors, eigenvectors,
lol/1 o Cos(£99;)
1 1 1.0164 0.9399 0.9956
2 2 1.0064 1.0587 0.9944
3 5 0.9918 1.0072 0.9966

The results summarised in Table 6.1 demonstrate that a very good correlation is achieved

between the desired and the obtained modes.
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6.4 Conclusions

In this section we have developed a method for reconstructing an analytical model of the
vibratory system from a truncated set of desired modal properties. This method is general
and is not restricted to any particular form of the mass and the stiffness matrices. Mass and
stiffness matrices corresponding to any chosen analytical model can be reconstructed by this

method.

It was shown that depending on the dimensions of the known desired data, we may obtain
a family of solutions, a unique solution or an approximate solution which is optimal in a

specified sense.

The presented numerical example demonstrated the application of the algorithm to a five

degrees-of-freedom mass-spring system, and the obtained results showed a very good

correlation between the desired and the obtained modal data.
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Section 7 PROBLEM 2(b):

INDEPENDENT
PARAMETER

DECOMPOSITION

In this section we define a special form for the mass and stiffness matrices, M and K,
which are more general than these corresponding to a mass-spring system. It is
demonstrated by examples that matrices of this form may correspond to various analytical
models of vibratory systems, including a Finite Element model. We then show how to
reconstruct these matrices from the prescribed modal and spectral data, ®" and A". The
problem we solve is identical to Problem 2, with the exception that the shapes of M and
K are not necessarily correspond to a discrete mass-spring model. Thus, we designate this
problem as Problem 2(b). The definition of the new matrix type for M and K is given

below.

Definition 7.1: Independent Parameter Decomposition

Suppose that a symmetric mass matrix X=[x;] of size nxn is such that all of

its elements x; can be expressed as prescribed linear functions of n unknown
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independent parameters {x,, x,,

..., x,}. Then we define this matrix to be an

independent parameter decomposable if it can be described by a following

product

=

Ex Dy Ex,

(7.1)

where the numerical values of all elements of E, (nxn) are known, and

D, =diag{d,, d,, ..., d.}, d, # 0, with each diagonal element d, equal to some

known linear function of {x,, x,, ..., %}, i.e

d =3 B,
7l

and B; are known.

The above definition is demonstrated by the following examples.

, (=1,2,..,n

Example 7.1: A simply-connected mass-spring system

Consider a simply-connected mass-spring system shown in Figure 7.1

Kk,

AN
é i
[a—y
B

Figure 7.1: A simply-connected mass-spring system.

Kkj

AMAAA T, FAAWA—  « o s

(7.2)

The mass and stiffness matrices corresponding to system have the following form

M = diag (m,, m,,

v 1M, ),
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and

k +k, -k, 0
*, k,+k, -k 0
0 -k, k,+k, -k,

K =

0 *,
0 0 0

L 0 0

Both matrices are IP decomposable because they can be expressed as products

where

M= EMDMEMT

K = E.D.E,"

Dy =M = diag (m,, m,,

E,, = L= diag (1,1,...,1),

D= diag (k, k,, ...

and

oS O o =

=l

0
-1

s ko)

[l e
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Example 7.2: A 2 d.o.f finite element model of an axially vibrating rod

The mass and stiffness matrices of a 2 d.o.f. finite element model for a

longitudinally vibrating rod are

ml + m2 m2
3 6
M =
m2 m2
and 6 3
k+k -k
K = : ,
-k, k,

where m,, m,, k, and k, are the masses and the stiffnesses of the two elements.

Both of these matrices are IP decomposable since they can be described by products

of the form (7.3) and (7.4), respectively, with

3 4 g
D, - - E, - V2 |,
0 02
and
k, 0 1 -1
* o K| * o 1
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7.1 Reconstruction of IP Decomposable Mass Matrices

In Problem 2 we want to determine the mass and stiffness matrices M and K corresponding
to a physically realisable mass-spring system, such that its modal and spectral properties,
described by modal matrix & and spectral matrix A, are as close as possible to the
prescribed modal and spectral matrices " and A". In this section we generalise the solution

of Problem 2 for the IP decomposable matrices M and K.

As in section 5, the two problems of determining ® and A corresponding to a realisable
system can be solved separately. Consider now the problem of determining the optimal

mode shape matrix ®.

If M is an IP decomposable mass matrix, then by definition 7.1 it may be expressed by a
product of the form of equation (7.3), where E,; is a known matrix of size nxn, and

D,, = diag (™, d, .., d™), d= 0, (7.9)

is a diagonal matrix such that each element d®™ (i=1,...,n) is equal to a known linear

function of mass elements {m,, m,, ..., m_ }, i.e

n

d™ = Eﬁfymmj , (i=1,2,..,n (7.10)
IE
where p;*™ are known.

The mass matrix M must also satisfy the orthogonality equation

M = &7g!, (7.11)
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Let Q be an orthonormal matrix, that is, QQ"= I , and set matrix

1 1 1 1

then equations (7.11) and (7.3) will both be satisfied if the modal matrix & is equal to

D =D, = diag , (7.12)

*3

®=E,DQ . (7.13)

Thus a solution to our problem can be obtained by determining a diagonal matrix D and

an orthonormal matrix Q, such that

?)1]6 " P - EM-TDQ ” : (7.14)

In solving this problem we will make use of the algorithm 5.1 for solving an orthogonal

Procrustes problem, which is described in section 5.

Thus setting
A=¢" (7.15)

B, = E,;™D,, (where t designates an iteration index), (7.16)

we may choose a diagonal matrix D, as an initial guess and obtain an orthonormal Q,
which minimises ||A - B,Q, || g Dy using Algorithm 5.1. We now show how to obtain a

matrix D, such that

|2 - Ey™DQy s < [#" - Ey™DyQ |- (7.17)
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The Frobenius norm is invariant under orthonormal multiplication. Hence

" ® - Ey" D,Q, "F = " 'Q," - Ey'D, " Fs (7.18)

Define R =&"Q,", (7.19)

and denote €e=|R- EA}TD1 ||12F ; (7.20)
Using the equality

IR ~ Ey/'Dy I = trace(R'R) + trace(D,'E;; E;; D)) - 2 trace(D{E;R) (7.21)

and setting
~1y4-T
E - E,'E, (7.22)
F=E,'R , (7.23)

equation (7.21) may be written as

IR - Ey D, |7 = trace(R™R) + trace(D,'ED,) - 2 trace(D,'F) . (7.24)

Therefore, applying the knowledge that D, is a diagonal matrix and its diagonal elements

are defined in equation (7.12), we find that

- &, 2f;
€ =trace R'™R) + Y| —— - fu

S| g™ \/df_"”

where e, and f; are the diagonal elements of matrices E and F respectively . Differentiating

(7.25)

¢ with respect to d™ and equating to zero to obtain the minimisation criteria, we obtain

Oe €, f:

= - +

R i =0 (7.26)
od, IR
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Then from (7.26) it is clear that e is minimised when

ne p ‘ (7.27)

1 i
e

Thus, the residual error e is minimised when the diagonal elements of D, are equal to the
ratios of the diagonal elements of F and the corresponding diagonal elements of E. Having
determined a diagonal matrix D, satisfying (7.17), we can reapply the Algorithm 5.1 with
®" and D, as an input and find an orthonormal matrix Q, such that

|#" - Ey" D,Q, s < [® - Ey"™D,Q,]; - (7.28)

Continuing in this manner iteratively, we obtain an approximate solution for the optimal
modal matrix ®. The mass elements {m,, m,, ..., m,} can then be determined by solving the
system of linear equations (7.10) after substitution of the obtained values for {d,™, d,®,

..., d. ™ The following algorithm summarises this result.

Algorithm 7.1: Approximate solution for the modal matrix $ and the mass elements

Input. An nxn modal matrix &°, an nxn matrix E,, and coefficients g™ (ij=1,...,n).
Algorithm: 1) Set initial guess D, and a tolerance for convergence e.
2) Fort=0, 1, 2, ...
a) Evaluate C = D,'E,'®".
b) Compute the singular value decomposition C=UZV".

c) Evaluate Q = UV".
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d) Obtain F= E,'®#"Q,".
e) SetE =E,"'E,"
fo fa

f) Form D, =diag | —,
ell

e22 enn

g) Test convergence
(i) SetN, = [|& - E,™DQ, | N, = [ - EyD,,Q, | -
(iiy f (N, -N,)< e, go to 3.
3) &=E,D,,Q,

4) Calculate

5) Solve the following system of linear equations for m; (j=1, ...,n).

n

M) _ gy s
Y B m,=d;" ; i=l, ., n
=

Output: An optimal modal matrix  and a set of mass elements {m,, m,, ..., m}.
It follows from (7.17) and (7.28) that the norm || ®" - E,'D,Q,]l; is a monotonic

non-increasing function of an iteration index t. The Algorithm 7.1 thus necessarily

converge.
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7.2 Reconstruction of IP Decomposable Stiffness Matrices

In this section we will use the results obtained from Algorithm 7.1 to reconstruct an IP
decomposable stiffness matrix K, such that the norm [|A™~ A (which represents the

difference between the desired and the obtained eigenvalues) is minimised.

If K is an IP decomposable stiffness matrix, then by definition 7.1 it may be expressed by
a product of the form of equation (7.4), where Ey is a known matrix of size nxn, and

D, = diag (d®, a®, .., d®), d®= o, (7.29)

is a diagonal matrix such that each element d® (i=1,...,n) is equal to a known linear
function of stiffness elements {k,;, k,, ..., k, }, i.e

n

d® =Y BPk, (=12 ..,0 (7.30)
=
where ;™ are known.

The orthogonality equation for the stiffness matrix is

$TKP = A. (7.31)

Thus substituting (7.4) into (7.31), we obtain

$" E.DLE,"® = A. (7.32)

Let G=E/"®, (7.33)
then equation (7.32) becomes

G™D,G = A . (7.34)
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A diagonal matrix D, may be expressed in terms of its elements as

n

D, =Y d"H, (7.35)

i=l

where H, is a nxn mapping matrix and it is equal to

h =1
= - i (7.36)
H, [hpq] hpq= 0 elsewhere
Substituting (7.35) into (7.34) we obtain
A=Y d®GHG) . (7.37)
i=1
Partitioning G into column vectors
G=[glegl-lg]l (7.38)
then each pq™ element of A is given by
o T
A, = ;d,. e,/Hg,) - (7.39)
Let N= %(n’+ n) and construct the vectors
y =(Y1: Y2 Y3 -5 YN )T = (}"119 }‘12’ R klm }“22’ )"237 te0s }\‘Zn’ )"33’ e A’nn)T (740)
and
d=d,®,d®, ., d 87" . (7.41)
Denote
= D - s
P = [pu] =—, (@(=1,2,.,N;j=1,.,n) (7.42)
adj(K)

then all the elements of P can be evaluated using equation (7.39).
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Equation (7.37) can be written in a vector form

Pd=y. (7.43)

Setting A=A", we may determine the vector y and solve equation (7.43) for d. However,
since N>n for any n>1, there is, in general, no solution to (7.43). The approximate solution
for d, which is optimal in a least squares sense, can be obtained by

d =Py (7.44)

where P! is the Moore-Penrose pseudo-inverse of P.

The stiffness elements {k;, k,, ..., k, } can then be obtained by solving the system of linear

equations defined by (7.30). This process is summarised by the following algorithm.

Algorithm 7.2: Approximate solution for the stiffness elements

Input: Modal matrix ® (nxn), desired eigenvalues matrix A"(nxn), matrix E, (nxn) and
coefficients B, (i,j=1,.'..‘,n).
Algorithm: 1) Calculate G = E,'® and partition it as in equation (7.38).
2) Set A = A" and form vector y as in (7.40)
3) Construct matrix P using equations (7.42),(7.49) and (7.36).
4) Calculate vector d, as defined by (7.41), using (7.44).

5) Solve the following system of linear equations for k (=1, ....n).

n

(K) _ g& .
Y B m,=d" 5 i=l, ., n
J=1

Output: A set of stiffness elements {k,, k,, ..., k.}, corresponding to an optimal K,
which minimises the norm ||A™ A|.
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We note that Algorithm 7.2 requires augmentation of the system from size n to size N. This
is a computational barrier. In section 5 we presented a computationally less expensive
method for obtaining a local optimal solution for K, but there we had to satisfy a system
of N equations with N variable parameters. In this section we are required to satisfy a
system of N equations with only » variables, therefore we are forced to seek a global

optimal solution in order to achieve the best possible quality.

7.3 Numerical Example

Consider a 2 d.o.f. finite element model for a longitudinally vibrating rod of Example 7.2.

The mass and stiffness matrices for this model are of the following form

m1+ m2 mj

3 6

M =

m2 m2
and | 6 3 1

k+k -k

K = ,
-k k

where m,, m,, k, and k, are the masses and the stiffnesses of the two elements in the model.

The components of the independent parameter decomposition for these matrices were shown

to be
B T
inf*% 0 L
D, - ., E,- V2 |,
0 %2_ o i
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and

Suppose that we wish to determine M and K, corresponding to the above form, such that

the modal and spectral properties of the system be as close as possible to the desired

0.1 02 10 0
& = LAY =
02 - 0.3 0 100

Applying Algorithm 7.1, we obtain an optimal modal matrix
<I> 0.1300 0.1920
{02114 -0.2831

and the mass elements m,= 35.6119 and m,=26.9242, which correspond to a mass matrix

properties described by

20.8454 4.4874
4.4874 8.9747

which satisfies the requirements of the prescribed form and the orthogonality properties of

equation (7.11).

Applying Algorithm 7.2 with the obtained modal matrix &, we determine the stiffness

elements k= 526.7766 and k,= 356.3036, which correspond to a stiffness matrix
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883.0803 - 356.3036
- 356.3036  356.3036

which is of the required form.

The modal and spectral properties of the system corresponding to the above M and K are

0.1314  0.1911 11.26 0

© 102094 -0.2847] ° - 0 99.86

which correlate very well with the desired properties " and A"

7.4 Conclusions

In this section we have defined a special form for mass and stiffness matrices, which are
more general than those corresponding to a mass-spring system. Methods for constructing

such matrices to suit the prescribed modal and spectral properties were then developed.

The Algorithm 7.1 for reconstruction of the mass matrices is an extension of the theory
developed in section 5, and is in fact a generalisation of that theory. The Algorithm 7.2 for
reconstruction of the stiffness matrices is based on a matrix sensitivity analysis, and requires
augmentation of the system in order to obtain a global optimal solution. This augmentation
carries a significant computational penalty. However, due to an inherent deficiency in the
number of variable parameters available for optimisation, the quality of a solution is

problematic, and thus requires a global approach rather than a more computationally
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efficient local optimisation approach.

The numerical example based on a 2 degrees-of-freedom finite element model of a
longitudinally vibrating rod was presented. This example has demonstrated the application
of the developed methods, and the results obtained correlated well with the prescribed

modal and spectral properties.
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Section 8 PROBLEM 3:

MODIFICATIONS FOR

DESIRED NATURAL

FREQUENCIES’

In this section we present the analysis for the solution of Problem 3 formulated in section
2.3. In this problem the exact mass and stiffness matrices of the system, M and K, are
assumed to be unknown. The only information which is assumed to be known about the
system are the measured modal analysis data contained in the matrices A, and ®,. We then
want to determine physically realisable modifications to the mass and stiffness (i.e AM and
AK), based only on A, and ®,, so that the modified system would have spectral properties
as close as possible to the desired spectrum described by A’.

It was shown in section 2.3 that an approximate solution to this problem may be obtained

by solving the following norm minimisation problem

? Material presented in this section has been published in [77].
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| (M + AM)™“R |, subject to & e span (¥, ) (8.1)
where the residual matrix R is given by

R = [(K+ AK )® - (M+ AM )®A ] (8.2)

and A and ® are some approximations to the desired A" and the corresponding @

respectively.

It is shown in Parlett [42,pp.321-323] that if we determine the eigensolution, ¥ and , of

F¥ - GY¥Q =0 (8.3)
where F =& T(K+AK)® , (8.4)
G = & (M+AM)® |, (8.5)

then A = @ and & = &, ¥ minimise (8.1) under the required constraint that & e span(® ,).

The matrices K and M are not given, and cannot be determined. However, using the

orthogonality properties

®,"Ke, = A, (8.6)
and
¢, ™Mo,=1_, (8.7)
we have
F=A,+®,"AK®, (8.8)
and
G=1,+®,"AM®, . (8.9)
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Hence, if AK and AM are known, then F and G can be obtained and eigenproblem (8.3)
can be solved for ¥ and . Our goal is to solve the inverse eigenvalue problem of

determining AK and AM where @ = A" is prescribed.

As shown in [42], the obtained solution is the Rayleigh-Ritz approximation of (2.14) from
the subspace which is spanned by ®,. Thus, it follows that the desired eigenvalues are upper

bounds on the eigenvalues of the actual modified system (2.14).

First we consider a simpler case of modifications to a discrete mass-spring system, and then
extend these results for more complex models. An important case where mass and stiffness

matrices are interrelated is also considered.
8.1 Modifying a Mass-Spring System.

A mass-spring system is the simplest model to analyse. In this model the mass and stiffness
matrices are independent. Therefore, it is possible to change one without introducing

changes to the other.

The global mass modifications matrix, AM, can be written in terms of its elements as
follows

AM =Y 6mB™ (8.10)

i=1

where 6m, represents the change in the i" mass element, and B™ is the mapping matrix
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bi§M)= 1
B [p%0] = (8.11)
bp(:;’)= 0 elsewhere

The incremental stiffness matrix may be written in the following form

n-1 n
= (LY
AK = E Z 3s5,B; (8.12)
i=0 j= i+l
where 8s;, is the change in the stiffness of the spring connecting mass i to mass j, and 0s,,
represents the change in the stiffness of the spring which connects mass i to the ground, and
B,-j(K) is the matrix describing the spring connection between mass i and mass ]
K _ 1 K _
b '=b;"=1

BP=[p%] =1 5°-5= 1, (8.13)

K) _
bpq = 0 elsewhere

It follows, therefore, that

G=1 + iémi M, (8.14)
i=1
and
F=A + 'I—El En_: 8s,K,; (8.15)
1= 0 jaisl
where j
K, = &'B0%, (8.16)
and
M, = &"BMe, . (8.17)
Hence
a(z—fn,):M" , a_g%= (8.18)
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oF oF
=K , —_= 8.19
0%s) 7 o(dm) (.19
and, as in [16], we have
oA/ oF oG
ey | L@ v (8.20)
oa. oa, oa,
J J J
where
a'= (a;, Gy ooy @)= (855, 8Sgys s 085, 8155 viey 8y s 08,4, Oy, ooy ) (8.21)

N = (n>H3n), ¢ is an iteration index, A (a') is the i" eigenvalue and y,(a®) is the

corresponding eigenvector, both obtained in the t* iteration by using an iterate vector a'.

The modification matrices AM and AK may then be found by an algorithm similar to
Joseph [16]. This algorithm uses the Newton-Raphson method to find a new approximation
for the structural modification parameters from some arbitrarily selected initial guess. The
new approximation is calculated by determining the matrix derivatives and eigenvalue
sensitivities as shown in (8.18), (8.19) and (8.20) above. These values determine a Jacobian
matrix J, from which the eigenvalue sensitivity elements, calculated in (8.20), are found.
Then a set of linear equations is solved to find the changes for improving the initially
chosen structural modification parameters. The algorithm is summarised below, and its full

derivation can be found in [16].
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Algorithm 8.1:_Approximate solution to Problem 3

Input: Measured modal analysis data A; and &,

Algorithm:

1) Set iteration index t = 0 and choose an initial guess for structural modification

2)

3)

4)

6)

7)

parameters a'.

Form matrices AK and AM, by using structural modification parameters
contained in the elements of a‘ using (8.21).

Calculate F and G, by using (8.8) and (8.9).

By solving equation F¥(a) = G¥(a)A(a’) compute the smallest m
eigenvalues A (a”) (i=1,...m), A < A <i.< XA, and the corresponding
eigenvectors ¢ (a‘) normalised with respect to G.

Perform a convergence test, if | 2(a') - %, |

is sufficiently small,
stop.
Compute the Jacobian matrix, J=[J;}, i=1,.., m; i=1,...N {N = %(n*+3n)};

where the (ij)" element of J is given by

an;
J= 2 =y [f— Aa s?ﬁ} V(a9
aaj aa,

oa
S

Calculate the singular value decomposition J=USV’", where UU"=1_, VV'=l,

and S is the matrix containing r (r < m) singular values of J.
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8) Form vector A from the diagonal elements of the matrix (A(a”) - A),
i.e A= diag (A(a") - A").
9) Solve a set of linear equations Jd = A and obtain a family of possible
solutions for d
d=JA+Vb,
where J! is a Moore-Penrose pseudoinverse of J, V' is a matrix consisting of
the last (N-r) columns of V, and b is an arbitrary (N-r)x1 vector.
10) Calculate the next approximation for the structural modification parameters
a*'=a'-d

11) Set t = t+1 and repeat from step 2.

Output: Vector a"' containing the required structural modifications parameters.

1 must be

In order to ensure the physical realisablility of the solution, the elements of a
such that the mass and stiffness elements of a modified structure are real and positive. Since
the original matrices M and K are assumed to be unknown, precise limits for permissible
reduction of the mass and stiffness elements are also unknown. However, if all elements
of a'"' are made non-negative, then the obtained modifications will not require reduction
in any structural parameter, thus avoiding the problem described above. To make the
elements of a'"' non-negative it is required to select a vector b, such that the elements of

d obtained in step 9 are less than or equal to the corresponding elements of a‘. This may

be achieved by inserting the following procedure between steps 9 and 10 of Algorithm 8.1:

128



Section 8: Problem 3 - Modifications for Desired Natural Frequencies

Procedure 8.1:

i) Calculate d = J'A
ii) Calculate B =a'-d

iii) Set

vi) Set a=8-%

vii) Calculate b = V'* «, where V" is a Moore-Penrose
pseudoinverse of V'

viii) If | b || is sufficiently small, stop.

ix) Set d =d + V'b, and repeat from step (ii) .

Algorithm 8.1 allows to determine the vector @' which contains structural modification
parameters. The mass and stiffness modification matrices AM and AK can then be

+1

determined from the elements of & by (8.21). The obtained solution is optimal in a

Rayleigh-Ritz sense, and the residual (8.2) is minimised for all possible systems with

truncated modal matrix & taken from the subspace spanned by &, and where A~A".

8.2 Special Case I: Modifications to mass only

Consider now the case where only the mass matrix is subject to modification (i.e AK=0).

This problem consists of m equations with » unknowns, &m,, dm,, ..., dm,.
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Here we have
F=A, (8.22)
and

G =1+ ESmIM‘. (8.23)
i=1
and the problem can be solved by Algorithm 8.1. Example 8.1 demonstrates this procedure.
8.3 Special Case II: Interrelated System

Frequently, the mass and the stiffness matrices are interrelated. For example, the

longitudinally vibrating rod may be modelled by finite difference model, with

m, = pA/ (8.24)
EA.
5, = — (8.25)

where: m, and s; are the mass and stiffness of the i" element, respectively,
E and p are the Young’s Modulus and density of the rod, and

A, and /; are, respectively, the cross-sectional area and length of the i™ element.

Here, the mass elements are interrelated to the stiffnesses via 4, and /; . Hence, a change

in M (or dm) causes a respective change in K (or 8s).

If we wish to modify the natural frequencies of a rod by changing only the cross-sectional

area (i.e A), then the corresponding changes in the mass and stiffness elements are
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and we may write

where C™ and C® are constants.

om; = pldA,
E 34
O, e B,
ll
om;, = C/™ 84,
os, = C® ¢4,

Thus, the global modification matrices are

AK = ;éss, B®

AM =Y 8m, B
j=1

where B® is the same as in (8.11), and

K _ g B_
bi—l i-17 bii =]

B®- [bao]: p® _ p® _ 4

Pq

i-1i~ Y-l

b =0 elsewhere

P

(8.26)

(8.27)

(8.28)

(8.29)

(8.30)

(8.31)

(8.32)

Substituting (8.28),(8.31) and (8.29),(8.30) into (8.10) and (8.9) respectively, we obtain

F=A+%&] lz 84, ¢ B®

and

i=1

G=I+d] [E 84, ¢ B
i=l
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or equivalently

F=A+ iSAI. K, (8.35)
P
and
G=1+ E 54, M, (8.36)
i=1
where
K, = &,"CYB®d, (8.37)
M, = &"CMB™M®, . (8.38)

Thus, the problem may be solved by Algorithm 8.1.

A similar analysis may be applied when using finite element modelling. For the finite

element model of the rod, B is given by:

: 1
br(—‘l/l)i—l . biiM) = 3
BO=[5] = ] 50 5= ] (839

-1 Pi-1T =

bp(,llm =0 elsewhere

and B,™ is the same as in (8.32).

We note that the method presented is flexible, and can be applied to other models of
vibratory systems. The only change which is needed, is to use the appropriate mapping

matrices associated with the chosen system.
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8.4 Numerical Examples

Example 8.1: Mass only modifications

Consider a 10 degrees of freedom mass-spring system with

and

200
- 10
-20
-5
-5
- 10

0

0
- 50
- 50

-10 -20 -5
100 0 0
0 300 -40
0 -40 400
0 -30 -30
0 -60 -40
-20 -10 -50
- 10 0 -20
-20 -20 -10
-10 -10 -70

-5 -10 0

0 0 -20
-30 -60 -10
-30 -40 -50
150 - 10 -5
- 10 250 0
-5 120
-5 0 -5
- 20 0 0

0 -8 -10

0
- 10
0
- 20
-5
0
=8
250
0
-100

M =diag (1,1,1,1,1,1,1,1, 1, 1) .

=50 = 50-‘
-20 -10
-20 -10
-10 -70
- 20 0
0 -80
0 -10
0 -100
350 -40
- 40 400 |

The smallest three eigenvalues and the corresponding mass-normalised eigenvectors of the

system are

and

A, = diag (61.8300, 108.3525, 129.1425)

0.2605
0.5453
0.2050
0.2301
0.2694
: 0.2558
0.5081
0.2159
0.1610
0.2668

-0.1625

0.7597
-0.2277
-0.1751
-0.4256
—0.2886
-0.0279
-0.1136
-0.0617
-0.1792
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-0.0392
0.1967
0.1673
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0.1054
0.1441
0.1385
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Assume that only ®, and A, are given, and that no other information is known. We wish

to find modifications to the mass matrix only, such that the first three eigenvalues of the

modified system are

A* = diag( 1, 2, 3)

Applying Algorithm 1 with a” = 0 we obtain

AM = diag(41.139, 82.580, 16.728, 7.127, 47.813, 32.122, 54.471, 14.350, 11.193, 24.213)

Setting new mass matrix M,,,= M + AM, we find that the eigenvalues of the modified

system are

A, = diag( 0.99, 1.96, 2.72, 3.92, 6.10, 11.58, 17.33, 21.14, 29.48, 50.50) .

The small discrepancy between the desired eigenvalues of A" and the smallest three

eigenvalues of A, is due to the truncation error, which is unavoidable.

Example 8.2 : Longitudinally Vibrating Rod

Consider a uniform axially vibrating rod, fixed at x=0 and free to oscillate at x=L, with
uniform properties p=E=L=A=1. The first three eigenpairs of the rod, obtained for a 10

degrees of freedom finite element model, are shown in Table 8.1.
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Position from Mode Shapes
the Fixed End
of the Rod 1% 2" mode | 3" mode
mode
0.1 0.2217 -0.6540 1.0527
0.2 0.4379 -1.1655 1.4888
0.3 0.6434 -1.4229 1.0527
0.4 0.8330 -1.3701 0.0000
0.5 1.0021 -1.0187 | -1.0527
0.6 1.1465 -0.4452 | -1.4888
0.7 1.2627 0.2254 -1.0527
0.8 1.3478 0.8468 0.0000
0.9 1.3997 1.2836 1.0527
1.0 1.4171 1.4406 1.4888
Eigenvalues ‘ 2.4725 22.6205 | 64.9165

Table 8.1 : First Three Modes of a Uniform Cantilever Rod of Example 2

We wish to change the cross-sectional area of the rod, so that the eigenvalues of the

modified rod will be

A* =diag( 1, 15, 100 )

Applying Algorithm 8.1, we obtain the following area modifications for the finite elements

model

3A= diag(-0.6698,-0.8567,-0.3661, 0.4642, 0.3919,-0.3530,-0.3213, 0.5501, 0.9244, 0.5870)
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When these changes are implemented, the lowest three eigenvalues of the finite element
model of the modified rod are:

A, = diag (0.7, 12.7, 96.6)

Note that as predicted before, the desired eigenvalues A " are higher than their

corresponding true eigenvalues A 4, of the modified system.

Example 8.3: Sensitivity Test

The sensitivity of Algorithm 8.1 to perturbations is now demonstrated.

Let A, = diag ( 60, 105, 130 ),

and 0.3 0.2 0.3
0.5 0.8 0.3

0.2 0.2 0.1

0.2 0.2 0.0

o - 0.3 0.4 0.2

0.3 0.3 0.2

0.5 0.0 -0.8

0.2 0.1 0.1

0.2 0.1 0.1

0.3 0.2 0.1

which may be obtained by "rounding off" the elements of the eigenpairs in Example 8.1.

136



Section 8: Problem 3 - Modifications for Desired Natural Frequencies

Repeating Example 8.1 with these values, we obtain

AM = diag( 36.478, 50.249, 15.308, 14.211, 15.418, 32.902, 92.94, 24.081, 24.081, 50.464)

which is quite different from the modifications obtained in Example 8.1. However, we find

that the eigenvalues of the modified system are

A _ = diag( 0.97, 1.96, 3.09, 5.79, 7.64, 8.83, 12.06, 14.57, 19.03, 27.53)

and the three smallest eigenvalues of A 4 represent a good estimate to the desired
eigenvalues. Thus the introduction of perturbations to the given data, caused convergence

to a different possible solution.

8.5 Conclusions

In this section we have defined an optimisation problem, which allows us to overcome the
effect of truncation. It was shown that this optimisation problem may be solved by applying
the algorithm of Joseph [16] (with some minor alterations) to obtain a physically realisable
solution. The obtained solutions are optimal in a Rayleigh-Ritz sense. The desired

eigenvalues are thus higher than the eigenvalues of the actual modified system.

Using this approach we may also modify vibratory systems with interrelated mass and
stiffness matrices. Some examples were given and the sensitivity of the problem to

perturbation has been numerically demonstrated.
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Section 9 PROBLEM 4:

MODIFICATIONS FOR
DESIRED NATURAL
FREQUENCIES AND

MODE SHAPES

In this section we present the analysis of Problem 4, which was formulated in section 2.3.
Our Problem 4 is identical to the problem investigated by Ram and Braun in [46]. They
have shown that a family of optimal solutions (in a Rayleigh-Ritz sense) to this problem

is characterised by the following equations
AM=<I>{*(~11-T\11-1—Im)<1>I+Y—<1>{*<1>{Y<1>1<1>I 9.1)
1

AK =27 (¥ "A* W' -A 8]+ X - 272 (X2 &) 9.2)

where ®,' denotes the Moore-Penrose pseudoinverse of &,, ¥= &,'®", and X and Y are

arbitrary mxm real symmetric matrices.
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We note that all elements in the equations (9.1) and (9.2) are known, with the exception of
matrices X and Y. Since X and Y can be arbitrarily assigned, a solution for AM and AK
can be evaluated. However, in general, such arbitrarily selected X and Y do not result in
a physically realisable solution. In other words, the obtained mathematical solutions do not
give us a hint on how to change the geometry or the material properties of the structure in
order to get the required modifications. Therefore, here our main aim is to develop a
method for extracting a physically realisable solutions for AM and AK from the general

family of solutions defined by equations (9.1) and (9.2).

Setting P=a" (¥ "™ '-118] (9.3)
T=27 (¥ -"A" ¥ -A 0! (9.4)
H=% ! (9.5)

equations (9.1) and (9.2) become
AM=P+Y-HYH (9.6)

AK=T+X-HXH. 9.7)

We note that equations (9.6) and (9.7) have identical form, and also that this form is very
similar to the well known Discrete Lyapunov Equation (DLP). The solution for DLP is
available in the Control Toolbox of MATLAB under the function name dlyap. The dlyap
algorithm of MATLAB allows to determine Y, such that equation (9.6) holds for any given

matrices AM, P and H (or determine X for any given AK, T and H in a case of equation
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(9.7)). Our problem is different, since neither AM nor AK are known. However, it appears
that we should be able to arbitrarily choose any AM and AK, and then calculate Y and X
which satisfy (9.6) and (9.7). The implication of this is that we may choose AM and AK
to be zero matrices, and then obtain Y and X which still, supposedly, give a Rayleigh-Ritz
approximation to the desired natural frequencies and mode shapes. Clearly, this is not
physically possible. A detailed investigation of this apparent contradiction has shown that
both (9.6) and (9.7) are ill-conditioned to be solved by dlyap algorithm, and therefore the
contradiction does not really exist. And interestingly, the reasons behind this ill-conditioning
have also provided a key element in deriving a solution to our problem. The following

analysis describes this solution.

The matrix H, defined by (9.5), is a product of a matrix by its pseudoinverse. Calculating
the singular values decomposition of H, we obtain
H=UZU" (9.8)

where UU™= UTU =1, and the partitioned singular values matrix Z is as follows

I
z-|ml0 9.9)
oO|0
and where O represents submatrices with all elements equal to zero.
Substituting (9.8) into (9.6) and (9.7), we obtain
AM =P +Y - UZU"Y UZU" (9.10)
AK =T + X - UZU"X UZU" . (9.11)
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Multiplying both sides of (9.10) and (9.11) by U" and U, we get
U'aAMU=UTPU+ U'Y U - ZU'Y UZ

UAKU=U"TU+U™X U-ZUX UZ.

Setting P=U"PU
T=U"TU
Y=U'YU
X'=UXT,
then equations (9.12) and (9.13) become
U'AM U= P+Y-ZYZ

UTAKU=T"+X"-ZX'Z .

Partitioning U, P*, T, Y" and X" as follows

U=[U,|U,], U, is nxm real matrix m<n

X P’ | Py’ e
P = 2 , Py is mxm
PZ*T I P3*

®  _ Tl* I TZ. * .
T = — | , T, is mxm
,"" | T,

(9.12)

(9.13)

9.14)

(9.15)

(9.16)

(9.17)

(9.18)

(9.19)

(9.20)

(9.21)

(9.22)

(9.23)
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* Xl* I XZ* * .
X" = |, X, is mxm (9.24)
X7l x,

then, also using (9.9), equations (9.18) and (9.19) may be written as follows:

U,"AMU, | U,"aAMU, | PPy D A
S = e + = =
U,"AMU, | U,"AMU, pr P v, |y

(9.25)
I, |0 w % ||1,|0
oo ||yTly ||0O |0
and
U,"AKU, | U,"AKU, REARES X X' x|
U,AKU, | U,"AKU, T, | 1 X7 x;
(9.26)

Therefore we obtain

UAMU, | U;"AMU, P’ | P " | % Y |0
T I T - *T_ * * *T— * - " | N (927)
U, amu, | U,"amu, P " | P, , " v, o |o

and

UITAKUI | UITAKUZ _ Tl* | Tz* . X]* |X2* ) X]* | 0 (9 28)
UZTAKUI I UZTAKUZ Tz*r | T, Xz*r |X3* o |o
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Simplifying (9.27) and (9.28) further we obtain

U/'AMU, | U'AMU, | P’ | P+ X 559

U, AMU, | U,"AMU, J A AL S '
and

U,'AKU, | UAKU, | T | T+ X, 9.30)

U,”AKU, | UAKU, T+ X710+ X, '

Thus, the reasons behind the ill-conditioning of the equations (9.6) and (9.7) for the
function dlyap of MATLAB now become clear. Separating the first elements from the
partitioned matrices in (9.29) and (9.30), we note that the following relations must be
satisfied

U,'AM U, =P, (9.31)

and U"AK U, = T,". (9.32)

Equations (9.31) and (9.32) are independent of Y and X. Since P, T and H are known, P,",
T," and U, are also predetermined. Thus, selecting arbitrary AM and AK, would not, in
general, satisfy (9.31) and (9.32), and therefore, the fundamental condition for a successful

application of the dlyap algorithm is violated.

We note that in equations (9.31) and (9.32) the only unknowns are AM and AK, and
therefore these matrices can be calculated. It also follows from the dlyap algorithm, that

for any so obtained AM and AK, all other elements of the equations (9.29) and (9.30)
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(except for these described in (9.31) and (9.32)) may, in general, be satisfied by some
particular matrices Y and X. Thus, it is a sufficient condition for determining a solution
to our problem, if we obtain physically realisable AM and AK which satisfy (9.31) and

(9.32). The following analysis shows the necessary procedures for achieving this aim.
9.1 Mass Modifications

In general, for a n degrees-of-freedom system, the mass matrix M would contain »
independent parameters corresponding to the masses of each of the elements which are part
of the system. However, when evaluating the necessary modifications to the system’s mass

(i.e AM), a designer may wish to restrict any such modification to only / (/ < n) elements.
The global mass modification matrix AM can then be expressed as
!
AM =Y"5m B (9.33)
g-=1

where 8m, is a modification to the mass of the q" element, and B, is the nx»n mapping

matrix corresponding to a chosen analytical model.
Substituting equation (9.33) into equation (9.31), we obtain

(9.34)
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Also from (9.14), (9.20) and (9.21), P," is equal to
* ] T
P = [p,] =U  PU, : (9.35)

Partitioning U, into column vectors as shown
U ={uwluwl.|u,), (9.36)
then each element pij' must be equal to

I
Py = E Sm u; B, u, : (9.37)

g=1

Let N= Y(m*+ m) and construct the vectors

Ym =(Y1(M): YZ(M)z e YN(M) ) = (pn*,plz*:pu*,---: plm*ﬁp22*""’ pmm* )T (9.38)
and
ém = (dm,, dm,, ..., dm, )". (9.39)
Denote
7
F, = J”’)] =L (i=1,2, N;j=1,2,..,0D (9.40)

o(dm)

then all the elements of F,; can be evaluated using equation (9.37). Equation (9.31) can be

written in a vector form

Fy 6m =y, (9.41)

Since Fy; and y,, are known, (9.41) can be solved for ém, and the mass modification matrix

AM can then be determined from the elements of vector ém by equation (9.33).
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We note that in order to obtain a solution for the system of size nxm (m<n), we need to
solve an augmented system (9.41) of size Nx/ (N= Y4(m*+ m)). However, in this case
augmentation is based on the smaller dimension m, whereas number of independent
parame;ters available for optimisation is fixed at /. Therefore depending on the values of /

and m there are three possibilities for the solution to (9.41).

Set r = [-N, then if >0 there will be a family of solutions for ém. This family of solutions
is characterised by the following equation

éom = F,'y,  + V.b (9.42)
where F,,;' is the Moore-Penrose pseudoinverse of Fy,, b is an arbitrary vector of dimension

rx1, and V_ is a matrix of dimension Ixr which is obtained by a following procedure

Calculate singular value decomposition ¥y, =WSV?', and partition

the Ixl matrix V. = [Vy | V. 1, where Vy is IxN, and V, is Ixr. (9.43)

If » = 0, then F,, is a full square matrix, and there will be one unique solution for ém. This
unique solution is

om = Fy 'y, . (9.44)
And finally, if »<0, then there are no solutions for ém, and only an approximate solution
(which is optimal in a least squares sense) can be obtained by

ém = Fylyy . (9.45)

If it is desired that all the elements of ém to be positive, and if solutions of (9.42), (9.44)

and (9.44) do not yield positive 6m, than it may be obtained by solving the following rnon-
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negative least squares problem

ngin | Fydm -y, [, subject to ém > 0. (9.46)
m

This will produce an optimal non-negative solution to the vector ém in a least square sense.
It should be noted, however, that AM which is a solution of (9.1) is itself only a Rayleigh-
Ritz approximation to the solution of the modification problem. Therefore, an approximate
solution to (9.1), obtained by (9.45) and (9.46), is in reality "an approximation to an
approximation", which may not be acceptable in applications based on possible poor quality
of the solutions. Thus, from practical considerations, it appears that it may be best to restrict
the application of this method to systems where ém can be determined by either (9.42) or

(9.44), which requires that />N.

The above procedure ensures that the form of the obtained mass modification matrix AM
corresponds to a physically realisable system via equation (9.33). The procedure is also
independent of an arbitrary choice for the matrix Y, and it is summarised by the following

algorithm.

Algorithm 9.1: Determination of a Mass Modification Matrix

Input. Modal test data ®,(nxm) and A,(mxm), and desired modal data
&"(nxm) and A"(mxm).
Algorithm:
1) Calculate P and H using (9.3) and (9.5).

2) Obtain the singular value decomposition H = UZU".
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3) Column partition U =[u,, u,, ..., u,, ..., u.].

4)SetU,=[u,, u, ..., u.,].

5) Calculate P," = U,'P U,.

6) Set N= %(m?*+ m).

7) Construct vectors y,, as in (9.38).

8) Form vector dm of dimension /x7 as in (9.39).

9) Construct matrix F,; using (9.40) and (9.37).

10) (a) If I > N, then determine dm by equation (9.42),
(b) if = N, then determine ém by (9.44),
(c) if I < N, then determine dm by (9.45).

11) If desire non-negative dm and the one obtained in step 10 is not,
then determine dm by solving (9.46).

12) Construct AM from the elements of dm using (9.33).

Output: Physically realisable mass modification matrix AM.

9.2 Stiffness Modifications

The number of independent spring elements in a n degrees-of-freedom mass-spring model
may vary from (n-1) in a case of a free-free simply-connected system to Ya(n*+n) for a multi-
connected system. Thus assuming that J (where J < V4(n*+n)) of the spring elements are
available for modifications, the global stiffness modification matrix AK can then be

expressed as
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J
AK =Y 55 B" (9.47)
g=1
where 8s, is a modification to the stiffness of the q" spring element, and B,* is the nxn

mapping matrix corresponding to a chosen analytical model.

We note that the form of equations (9.31) and (9.32), and also of (9.33) and (9.47), are
identical. Therefore, by substituting matrix T, defined by (9.4), for matrix P, and also
substituting vector

6s = (8s,, 0s,, ..., 0S; ) (9.48)
for vector ém, we may use the same procedure for evaluating AK as was used for

calculating AM. The required procedure is described by the following algorithm.

Algorithm 9.2: Determination of a Stiffness Modification Matrix

Input. Modal test data &,(nxm) and A,(mxm), and desired modal data
&"(nxm) and A’(mxm).
Algorithm:
1) Calculate T and H using (9.4) and (9.5).
2) Obtain the singular value decomposition H = uzu'.
3) Column partition U = [ u,, u,, ..., Uy, ..., Ug].
4)SetU,=[u, u, ..,u].
5) Calculate

T =] -ul T,
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6) Set N= %(m?*+ m).
7) Construct vector
Vi =75, ¥ VT = (G g b s bt ey tom )
8) Form vector &s of dimension Jx7 as in (9.48).
9) Construct matrix

ay®
F,=[f®=—"—, @(=12.,N,j=1,2,.., ,
K [ﬁl ] a(asj) @ J 9

using equation
1, = i 8s, u,.TBq(K)uj .
g=1

10) (a) If J > N, then &s = F 'y, + Vb,

(V, is obtained by a procedure similar to (9.43), b is an arbitrary vector).

(b) if J = N, then d&s = Fy,

(c) if J < N, then ds = Fly,
11) If desire non-negative s and the one obtained in step 10 is not, then

determine &s by solving

ngin | Fyds - yx ||,, subject to 6s = 0
S

12) Construct AK from the elements of s using (9.47).

Output: Physically realisable stiffness modification matrix AK.
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9.3 Numerical Examples

Example 9.1

Consider a mass spring system shown in Figure 9.1.

s,7500

AN

Figure 9.1: A three-degree-of-freedom mass-spring system

The mass and stiffness matrices of this system are as follows
M = diag (1,1,1)

and

2000 -500 -500
K = [ -500 2000 -500
=500 -500 1000

The spectral and modal properties associated with this system are as follows:

A = diag (500, 2000, 2500)
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and

0.4082 -0.5774 -0.7071
$ = [0.4082 -0.5774 0.7071
0.8165 0.5774 0.0000

Now, assume that the physical properties of this system, namely its mass and stiffness
matrices, are not known, and also assume that the only available information about the
system are the first two of its modes, i.e
A, = diag (500, 2000),
g 0.4082 -0.5774

& = [0.4082 -0.5774
0.8165 0.5774

Suppose that we want to modify the system so that all elements of ®; are not larger than
0.5, but we also want to achieve this without increasing the magnitude of the existing

elements. Under these constraints the desired modal matrix, &, is

04 -0.5
$* =104 05
0.5 0.5

We also want to modify the spectral properties of the system so that the desired eigenvalues

of the system are

A* = diag ( 500, 1500) .
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Based on the dimensions of &, and A,, we realise that in the above system there are a
maximum of three independent mass elements and a maximum of six independent spring
elements available for modification. The number of constraints to be satisfied by the
solutions to (9.31) and (9.32) is equal to three for both mass and stiffness modifications.
Therefore, we expect that there exists one unique solution for ém, and a family of solutions

for &s.

Applying Algorithm 9.1, using step 10(b), we obtain the following unique solution for the
mass modification matrix, AM, corresponding to a mass-spring analytical model

AM = diag (0.2346, 0.2346, 1.0247).

Since there exists a family of solutions for &s, we choose a minimal norm solution
(determined by using step 10(a) in the Algorithm 9.2 with b being zero vector), and obtain

the following stiffness modification matrix AK

-197.5 0.0 -679
AK = 0.0 -197.5 -67.9
-679 679 9383

The modified mass and stiffness matrices for the system are then as follows
M, .. =M + AM = diag (1.2346, 1.2346, 2.0247)

and
1802.5 -500.0 -567.9

K , =K +AK = [-500.0 1802.5 -567.9
-567.9 -567.9 1938.3
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The mass-spring system corresponding to M,,,, and K, is shown in Figure 9.2.

= 567.9
S\ 734.6 5, 500.0 5,= 567.9 Sor 802.5
VMWW EAAMA 2 5 AAAAA =20 AAAA—

Sy 734.6

NWW——

/e

ARy

Figure 9.2: A modified mass-spring system

The eigenvalues and mass-normalised eigenvectors corresponding to this modified system

arc

A, .4 = diag (495.8, 1516.5, 1865.0 )

mod

d
an 0.4279 -0.4710 -0.6364

& = 04279 -0.4710 0.6364
0.5202 0.4726  0.0000

The visual comparison between the two desired modes and the first two modes of the
modified system show good correlation. However, a good correlation requires that the
eigenvalue ratio, the amplitude ratio of the eigenvectors and the values of cosines between
the two eigenvectors are all as close as possible to 1. The values of these ratios and cosines

are presented in Table 9.1.
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Desired |Corresponding | Eigenvalue Amplitude Cosine of an
Mode, Obtained Ratio, Ratio angle between
i Mode, A of the two
] Eigenvectors, eigenvectors,
Lo/l o Cos(£¢6;)
1 1 0.9916 1.0570 0.9999
2 2 1.0110 0.9431 1.0000

Table 9.1 : Comparison between the desired and the obtained modes.

Results in Table 9.1 demonstrate that a very good correlation is achieved between the

desired and the obtained modes.

Example 9.2: Sensitivity test

In this example we examine the sensitivity of the developed method to small perturbations

in the measured data. Suppose that the matrices A, and ®, of Example 9.1 were measured

with some perturbations, and are as follows

A, = diag (450, 2050)

and
0.4 -0.6
® = (04 -0.6
0.8 0.6
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Repeating Example 9.1 with the new A, and ®,, we obtain the following mass and stiffness

modification matrices

AM = diag (0.2701, 0.2701, 1.0216)

and
-142.7 0.0 -44.4

0.0 -142.7 -44.4
44.4 444  946.0

AK

The modified mass and stiffness matrices for the system then are

M, , = M + AM = diag (1.2701, 1.2701, 2.0216)

and
1857.3 -500.0 -544.4

K _, =K +AK = | -500.0 18573 -544.4
-544.4 -544.4 1946.0

The mass-spring system corresponding to the above M, 4 and K4 is shown in Figure 9.3.

5,7 544.4
S0 812.9 5,5 500.0 Sy 544.4 L 857.2
m=1.2701 _/V\MA,— m1.2701 _/VV\N\,_ m£2.0216 —/V\AN\,—

o= 812.9

ANMA———

Y/

AW

Figure 9.3: A modified mass-spring system from sensitivity test

156



Section 9: Problem 4 - Modifications for Natural Frequencies and Mode Shapes

The eigenvalues and mass-normalised eigenvectors corresponding to this modified system
are

A,,q = diag (532.3, 1499.0, 1856.0 ),
and 0.4186 -0.4674 -0.6274

® . = |0.4186 -0.4674 0.6274
0.5239  0.4692  0.0000

We note that the resulting solution differs marginally from the solution of Example 9.1.
However, the differences are small, and the correlation between the desired and the obtained
modes is very good. Table 9.2 shows the eigenvalue ratio, the amplitude ratio of the

eigenvectors and the values of cosines between the two eigenvectors.

Desired |Corresponding [ Eigenvalue Amplitude Ratio| Cosine of an
Mode, Obtained Ratio, of Eigenvectors, | angle between
i Mode, A lol/] & the two

j eigenvectors,

Cos(£¢ j¢i*)
1 1 1.0646 1.0471 1.0000
2 2 0.9993 0.9360 1.0000

Table 9.2 : Comparison between the desired and the obtained modes.

Results in Table 9.2 show that despite the introduction of perturbations into the measured
data, the quality of the obtained solution is not greatly affected. Therefore we conclude that
the developed method is sufficiently robust to perform adequately when perturbations are

relatively small.
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9.4 Conclusions

A method for determining physically realisable mass and stiffness modifications has been
developed. The method is broadly based on the results of Ram and Braun in [30], and it
allows determination of the mass and stiffness modification matrices corresponding to any
chosen analytical model (i.e the method is general, and is not restricted to any specific

analytical model).

Depending on the dimensions of the measured modal data contained in A; and &,, the
method allows to obtain a family of solutions, an unique solution, or an optimal
approximate solution for the mass modification matrix AM, and the stiffness modification
matrix AK. However, since AM and AK themselves constitute only an approximation to
the desired solution, it is recommended that the method is applied only in situations where

exact solutions for AM and AK are available.

The method was tested on a numerical example, and a solution obtained showed a good
correlation between the desired and the obtained modal properties. The sensitivity of the
method to small perturbations was also performed, and the method was found to be
sufficiently robust to cope adequately with introduced perturbations without noticeable

deterioration in its performance.
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Section 10 EXPERIMENT

The main aim of the experimental work described in this section was to check if the
developed theoretical results can be used in practical design applications. It is well known
that the dynamic behaviour of a discrete system is fundamentally different from the
behaviour of a continuous system. In practice, all measured modal analysis data is obtained
from a real structure, which behaves like a continuous system. Thus, there is an obvious
possibility that the measured modal data may be incompatible with the chosen analytical
model of a test structure. In general, a finite element model gives a good correlation with
the behaviour of a continuous system for approximately a third of its modes. A discrete
mass-spring system would probably give a reasonable correlation for even less number of
modes. These "well-correlated" modes correspond to the lower natural frequency end of the

spectrum, and the lower the natural frequency of a mode, the better is the correlation.
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Provided the measured modal data and the desired modes are within this range of good
correlation, the performance of the algorithms should, in principle, be acceptable. However,

this condition may prove to be too restrictive for many practical cases.

Most of the theoretical results described in the previous sections were based on the
assumption that a vibratory system may be modelled as a conservative discrete mass-spring
system. It was the prime objective of this experiment to test whether such assumption may
be successfully applied to a practical engineering structure. A simple "desk-top" test rig,
which could be used for testing and demonstrating the developed theory, was deemed

sufficient to achieve our objectives.

Because our aim was to test a practical engineering structure, we specifically did not want
to use an experimental model which consisted of lumped masses connected by light springs.
To use such model is equivalent to testing a physical mass-spring system, which is not
representative of any obvious engineering application. At the same time, we wanted to use
an experimental model which would give a good correlation with the behaviour of a mass-
spring system. To do otherwise would have created a large uncertainty in testing the

performance of the algorithms.

The two systems considered appropriate for our test model were the torsional shaft-pulley
system (see figure 2.1) and a "building" model which is shown in figure 10.1. Both of these
test models may represent a large number of real engineering structures. The torsional

system 1is clearly representative of any rotational machinery power transmission trains or
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gear box assemblies. The "building" model may represent any cantilever structure, such as

buildings, aeroplane wing, and many other.

Figure 10.1: Example of a "building" model

The "building" model was chosen as best suitable because of cost, simplicity and safety
considerations. To measure the torsional modes would have required the use of a more
sophisticated equipment and a more complicated test set-up. Also, to demonstrate the
resonance of this torsional system, it had to be driven at high rotational speeds (while

resonating) which was considered too unsafe.

The Algorithm 4.2 for solving Problem 1 (see section 5) was then chosen as most suitable
for the experimental assessment. This algorithm was selected because, unlike algorithms for

Problems 2 and 4 (see sections 6 and 9), it only involved changing the masses of the
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structure, thus greatly simplifying the design of the test model. Also, unlike algorithm for
Problem 3 (see section 8), it is not sensitive to perturbations in the measured modal analysis

data, thus giving a more stable platform for the experimental assessment of its performance.

10.1 Test Model Description

The test model consisted of nine extruded aluminium box sections, which represented the
"walls" of a building, and a large number of steel plates of various thickness (and hence
mass), which were sandwiched between the adjacent box sections to obtain the necessary
"floor" mass at each location. The aluminium box sections had a uniform thickness of 3mm
throughout, and its dimensions were 160mm(long) x 100mm(wide) x 100mm(high). The
steel plates had dimensions of 215mm(long) x 100mm(wide) and were made in various
thicknesses to allow for different mass configurations. The adjacent box sections with plates
in between were joined together by mild steel, M6x1.0, hexagonal head bolts of appropriate

lengths.

The overall, general layout of the assembled model is shown in Figure 10.2. Figure 10.3

shows details of a joint connection between the two adjacent box sections with steel plates

in-between.
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Figure 10.2 : The overall general layout of the test structure.
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Figure 10.3 : Details of a joint connection between adjacent box sections.
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10.2 Mass Elements of the Test Model

Figure 10.4 shows a schematic layout between two adjacent "floors" of the test structure.

I ]
M, l
— m_
my /J' ) my.
| __—— My
M;,

B 1

Figure 10.4 : A schematic layout between two adjacent "floors".

In the theoretical mass-spring system, the springs, which connect each mass element to
others, are themself have no mass. In a real physical structure this is clearly not the case.
Each aluminium box section had a finite mass, although, in general, this mass was very
small relative to the mass of the steel plates at each "floor". A choice had to be made
whether to ignore the mass of the aluminium box sectioms, or to include it in the
calculations of the "floor" mass. To maintain the accuracy of the test model, it was decided
to include the mass of the box sections in our caleulations. The effective mass of each
"floor" was calculated based on the well known Rayleigh’s method (see e.g. Thomson [78],
pp. 24-25). The resulting mass matrix for our test structure was then assumed to have the

following form
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M+
2m_+ m_,,) 0 0 0 0 0 0 0 0
3
M2+
0 2m + ﬂ) 0 0 0 0 0 0 0
3
M3+
0 0 2m+ ﬂ) 0 0 0 0 0 0
3
M+
0 0 0 2m_+ 2) 0 0 0 0 0
3
M5+
M = 0 0 0 0 2m s ™) 0 0 0 0 (10.1)
3
Mg+
0 0 0 0 0 2m_+ ™ 0 0 0
3
M,+
0 ] 0 0 0 0 2m + ﬂ) 0 0
3
M8+
0 0 0 0 0 0 0 2m_+ ﬂ) Q
3
M+
0 0 0 0 0 0 0 0
(m,,+ Tka

where M, (i=1,2,...,9) was the mass of the steel plates and connecting bolts at the i" "floor",
m_, is the mass of a horizontal segment of a box, and m, is the mass of a vertical segment

of a box.

From measurement it was found that the mass of each box section was approximately equal
to 540 grams, and also, from the dimensions of the box section, we know that

m_= 1.6m, . (10.2)
The mass of each box section is equal to

2(m, + m,) = 540. (10.3)
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Thus from (10.2) and (10.3) we find that

m,~ 166 grams (10.4)
and m~ 104 grams. (10.5)
And, consequently, the sum
m,
m + 5 = 201 gramms . (10.6)

This value was then used to determine the additional mass from steel plates which would
give us the desired total mass at each "floor". In general, by carefully manipulating with
the plates of different masses, we were able to achieve the mass at each "floor" which was

nominally within +2 grams of the desired value.

10.3 Determination of the Stiffness

The stiffness matrix corresponding to our test model, was assumed to have the following

form
2k -k 0 O 0 0 0 O
-k 2k -k O 0 0 0 O
0 -k 2k -k 0 0 0 O
0 0 k2 -k 0 0 0 O
K=|10 0 0 k2 -k 0 0 O (10.7)
0 0 0 0 k2t -k 0 O
0 0 0 O -* 2k -k 0
0 0 0 O 0 -k 2k %
|0 0 0 O 0 0 -k k|

where k was the stiffness constant of each box section.

167



Section 10: Experiment

The value of k was estimated theoretically using the listed properties of aluminium and the

information about the dimensions and the shape of the box section. Using Thomson [78,

p.178] the stiffness constant k is given by

k =242 (10.8)
l3
where E = Young’s Modulus of Elasticity of aluminium

I = moment of inertia of a box section

[ = height of the box section.

It was not clear which value had to be used for height / of the box section, i.e 94mm or
100mm. Therefore, both values were used to determine the upper and lower bounds for k.
Substituting the listed values for E = 70 - 75 GPa, and using other dimensions of a box

section to calculate I, the theoretical value of k was found to be

k = 378 kKN/m - 488 kN/m. (10.9)

Such a large uncertainty (over 20%) was considered too great for our experiment, and

therefore a simple procedure was carried out to measure the value of k experimentally.

10.3.1 Stiffness determination experiment

Figure 10.5 shows the schematic layout of the experimental set-up for stiffness

measurement.
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2
N \ APPARATUS
~
N 1. Aluminium Box Section
2 — 3 2. Dial Indicator
N 3. Mounting Plate
:1 4, Hook
N 5. Load Masses

(;\H 4

M -3

Figure 10.5: Schematic layout of the stiffness measurement experiment

The method was:

1. Mount the box section onto a solid, straight vertical surface as shown in Figure 10.5.

2. Attach the mounting plate to the other side of the box section as shown, and place
the hook through the hole in the mounting plate.

5 Position the dial indicator so that its tip is touching the front edge of the box section,
and set the dial reading to zero.

4, Add 0.5kg masses, one at a time, and measure the deflections from the dial

indicator.

This process was repeated for three randomly selected box sections, and the results from
this experiment are shown in Figure 10.6. The raw data from this experiment is given in
the Appendix A. We note the value of the stiffness is significantly higher under small loads
(and hence small deflections). However, experimental uncertainty in measured values of
small deflections was very large, mainly due to dial resolution limitations. At higher loads

the value of the stiffness seemed to "settle" around the approximately 350 kN/m mark.
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10.3.2 Optimal value for the stiffness, k

It was anticipated that during the modal analysis testing of the "building" model the
deflections of the "walls" would be relatively small. Therefore, a large uncertainty in what
value should be used for stiffness Kk still existed, despite the availability of the measured
data. In the end, the optimal value for the stiffness k was determined by performing a Chi-

squared test, which is defined as

° (a- b)
X =Y, ——F (10.10)
i=1 a,’
where %,> = Chi-squared value
a, = i" measured experimental natural frequency
b, =i" analytically determined natural frequency.

Clearly, in the equation (10.10) if a=b; (for i=1,...,9), then %,” = 0. Thus, the objective was
to find the stiffness value, k, which produced analytical natural frequencies b, (i=1,...,9),

such that the magnitude of the »,” were minimised. The procedure was then as follows. The
modal analysis tests were performed on several configurations of a test structure (i.e
different mass configurations at each floor), and the measured natural frequencies of each
configuration recorded. The analytical values for the natural frequencies of the model with
the same mass configurations were calculated using a number of different values for the

stiffness k. Then, setting @, to be the measured natural frequencies and b; to be the

corresponding analytically determined natural frequencies, the values of the x> were
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calculated using equation (10.10). The value of the stiffness kK, which consistently gave the
lowest x,> value was
k = 378 kN/m (10.11)

and this value was then used in all subsequent experiments. The raw data from these Chi-

squared tests is given in the Appendix B.

10.4 Experimental Testing of the Algorithm 4.2

The schematic layout of the experimental set-up is shown in Figure 10.7. The equipment

used for these experiments are listed below.

EQUIPMENT USED

1. The "Building" Model.

2. Briiel and Kjer Accelerometer - model 9040.

3. Briiel and Kjer Signal Analyser - model 2032.
4. Briiel and Kjer Charge Amplifier - model 5666.
5. Briiel and Kjer Impulse Hammer - model 1234.

6. IBM Compatible Personal Computer.
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ACCELEROMETER

—_—— o
I

IMPULSE
HAMMER

b B T |

CHARGE SIGNAL

HIERATHCIRY BUSTURES AMPLIFIER ANALYSER PC

Figure 10.7 : Schematic layout of the Algorithm Testing Experiment.
The experimental procedure was then as follows:

) Nine different natural frequencies were arbitrarily chosen.

2. Using the stiffness k =378 kN/m, the stiffness matrix of the "building" model was
constructed via equation (10.7).

3. Algorithm 4.2 for solving Problem 1 (see section 4) was then applied to determine
the necessary mass matrix. (Note: Sometimes several repetitions of the algorithm
(with different starting values for the initial guess of the mass matrix) were required,

in order to obtain the natural frequencies which were adequately close to the desired

frequencies.)
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4, Using the obtained mass matrix from step (3) and equations (10.1) and (10.6), the
masses of the steel plates to be added at each "floor" were determined.

5. The physical test structure was then assembled with the determined amount of plates
at each "floor".

6. The structure was lightly struck by the impulse hammer, consecutively at each
"floor", each time recording the natural frequencies of the structure.

7 The measured natural frequencies at each "floor" were averaged, and compared with
the desired natural frequencies and the natural frequencies of the analytical system

determined by the Algorithm 4.2.

The raw data from these experiments is given in the Appendix C. In Figure 10.8 we present
the graphical comparison between the measured, the desired and the analytically determined

(by Algorithm 4.2) natural frequencies.

In all results shown in Figure 10.8, the "Frequency" axis is set between the same limits
(from 0-220Hz), thus allowing easy visual comparison of the data from all tests. We also
want to emphasise the following point. Although in theory Algorithm 4.2 should permit
unrestricted assignment of arbitrarily chosen natural frequencies, in our experiment the
achievable natural frequency range was approximately SHz to 220Hz. This limitation was
a direct consequence of the physical constraints on the smallest and the largest mass that
we could have at the "floors". Clearly, the smallest mass was simply the mass of the
aluminium box sections with no steel plates added. The maximum obtainable mass was

governed by the available supply of the steel plates (which was approximately 70kg).
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Figure 10.8 : Comparison between the desired, measured and analytical

(using Algorithm 4.2) natural frequencies
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Figure 10.8 (cont'd): Comparison between the desired, measured and analytical

(using Algorithm 4.2) natural frequencies.
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Figure 10.8 (cont'd): Comparison between the desired, measured and analytical

(using Algorithm 4.2) natural frequencies.
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Figure 10.8 (cont'd): Comparison between the desired, measured and analytical

(using Algorithm 4.2) natural frequencies.
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10.5 Conclusions

The results presented in Figure 10.8 show a good correlation between the desired natural
frequencies and the natural frequencies both of the test structure and of the analytical model
determined by Algorithm 4.2. Therefore, the main aim of this experimental program, which
was to test whether the assumption of conservative mass-spring system is acceptable in the
practical engineering applications, was achieved and the answer is positive. However, we
are fully aware that the chosen test structure was highly "tailored" and optimised for
conformance with such analytical model, and that most "real-life" structures would not be
so successful. The experimental test model was, however, well suited to the stated scope
. of our experiment, and it is representative of some useful engineering structures. The
Algorithm 4.2 was found to work well in applications to a real physical structure, and it has
a potential of being a very useful tool for the design of vibratory systems to suit natural

frequency requirements.
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Section 11 CONCLUSIONS

The conclusions pertaining specifically to the particular problems investigated, were given
at the end of the appropriate sections dealing with those problems. Here we present the

general conclusion, which are applicable to all results given in this thesis.

The material presented in this thesis contains a logically complete set of solutions to
practical problems dealing with the design and structural modifications of structures, which
may be adequately modelled by a mass-spring analytical system. In section 4 we developed
a method which allows determination of a mass matrix when the stiffness matrix and a
complete set of the desired natural frequencies of a system are known. A derivative of a
method by Joseph [16] allows a similar procedure to be followed when the desired natural
frequency set is truncated, i.e when not every natural frequency is precisely specified. In

section 5 we presented a method for optimal reconstruction of a mass-spring system from

181



Section 11: Conclusions

a complete set of prescribed spectral and modal data. The analysis given in section 6 then
allows us to do the same when the prescribed spectral and modal data are incomplete. In
section 7 we have extended the solution method of section S to a more general class of the
mass and stiffness matrices (i.e. which not necessarily correspond only to a mass-spring
system). In section 8 we used the method of Joseph [16] as a basis for developing a new
algorithm for obtaining the necessary mass and stiffness modifications to an existing
structure, so that the natural frequencies of a modified system are as close as possible to
the prescribed values. And finally, in section 9 we developed a method for extracting the
physically realisable set of solutions for a problem of structural modifications where both
spectral and modal constraints are present. A family of solutions to this problem was
originally characterised by Ram and Braun [46], but no method of obtaining a physically
realisable solution was developed. Our result thus complements and completes the solution

given in [46].

The physical realisability of a solution was the main criteria that had to be satisfied in all
of the methods developed in this thesis. All of the presented methods aim at being useful
in practical engineering applications, rather than just being of purely mathematical interest.
The author hopes that the main contribution of this work would be to make available a
useful practical set of design tools which may be applied to "real-life" problems. To some
extent this contribution was recognised by publication and the feedback from the three
refereed papers [75,76,77], which deal respectively with the material of section 4, section
5 and section 8. Two pending papers [79,80], containing the material developed in sections

6 and 9, will also soon be submitted for a journal publication. The practical application of
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the method developed in section 4 has also been demonstrated by the experimental results,

which are given in section 10.

The author also believes that the work developed in this thesis has filled a small void in the
knowledge of inverse vibration problems, particularly in applications with conservative
mass-spring  systems. However, several of the developed methods (e.g. algorithms of
sections 6, 7, 8 and 9) do have an "in-build" ability to cope with the mass and stiffness
matrices corresponding to vibratory systems other than the mass-spring model. For example,
they may be applied to the mass and stiffness matrices corresponding to a finite element
model. Some open problems concerned with improving the developed methods were
identified (for example: How to control the sign changes in the obtained modal vectors in

Problem 27), but we leave those problems for later investigations.

Last, but not least, it should be emphasised that engineering solutions must not only be
physically realisable but practical as well. This means that additional constrains may need
to be taken into account (e.g. the maximal allowed mass, geometrical and spatial
restrictions, etc.). Hence, as expected, the design process involves a combination of
experience, intuition and science. In this thesis we have focused on the latter only. A great
improvement to the developed methods would be to enable direct prescriptions of practical

solutions. However, we also leave this important task for later study.
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PPENDIX A:

Raw Data from Stiffness Measurement Tests

pring 1 Error [Spring 2 Ermor
Mass (Kg) Forca (N) Dist {mm) Dist (m) | Stiiness jLower Bound Upper Bound Mass (Kg) Forca  DisL (mm) Dist (m) | Suffness |Lower Bound Upper Bound
I~ D493 4638 001 1.00E05| 463633 | ©67265 372422 0437 4876 0011 1.10ED5| 443234 | 612595 304723
1,003 9.839 0.022 220E-05| 447247 578790 364423 0.999 8.800 0.026 2.60E-05| 376930 466676 316135
1.498 14,695 0038 3.B0E-05| 386721 445315 341753 1.5 14.715 0.04 4.00E-05| 367875 420429 327000
1.986 19.483 0.052 5.20E-05| 374657 414525 341804 1.996 19.581 0.054 540E-05| 362607 399607 331877
2,49 24.427 0.067 6.70E-05| 364581 393982 339263 2.499 24,515 0.07 7.00E-05| 350217 377157 326869
3 28.430 0.085 B.50E-05| 346235 367875 327000 2.987 29.302 0.082 B.20E-D5| 357347 380552 336810
3.482 34,158 0.098 9.BDE-D5| 34B55S 367285 331635 3.489 34,227 0,097 9.70E-05| 352857 372034 335560
4,004 39.279 0417 1.17E-04| 335720 350708 321961 3.99 39.142 0.1 1.10E-04| 355835 372780 340364
4485 43998 0133  1.33E-04| 330811 343733 318825 4492 44067 0124 1.24E-04| 355375 | 370307 341601
5.001 49,060 0.15 1.50E-04| 327055 338344 316515 4,994 48.991 0.14 1.40E-04| 348937 362897 337870
5.503 53,984 0.163 1.63E-04| 331193 341674 321336 5487 53.827 0154  1.54E-04| 349529 361258 338538
6.003 58.889 0.175 1.75E-04| 3368511 346408 327164 5986 58.723 0.168 1.68E-04| 348540 360262 339437
6.504 63.804 0492 1.92E-04| 332314 341199 323879 6.482 63.588 0.18 1.80E-04| 353269 363362 343721
£.995 68.631 0.207 2.07E-04| 331550 339756 323730 6,984 68,513 0.195 1.95E-D4| 351349 360595 342565
7.493 73.506 0.221 221E-04| 332608 340307 325249 7.482 73.398 0.21 2.90E-04| 349516 358041 341388
7.991 78.392 0235 2.35E-04| 332582 340834 326632 7.979 78274 0224 2.24E-04| 348437 357418 341808
8.493 83.316 025 2.50E-04| 332265 340067 326731 8.471 83.101 0239 2.39E-04| 347701 355130 340576
8.992 88212 0.262 262E-04| 335685 343235 330380 8972 88.015 0252 2,52E-D4| 349267 356337 342472
0488 93.077 0277 277E-04| 338018 342195 330061 9472 92,920 0.263 2.63E-04| 353309 360156 346718
9982 97.923 0.291 291E-04| 338507 3423%0 330822 9973 97.835 0278 2.78E-04| 351925 358370 345707
10478 102.789 0305 3.05E-04| 337014 342631 331578 10,472 102730 0.293 2.83E-04| 350615 356703 344733
10,879  107.704 0.319  3.19E-04| 337830 343005 332420 10973 107.645 0.31 3.10E-04 | 347242 352935 341731
11.48 112.619 0.331  3.31E-04| 340238 345455 335175 11.476 112580 0.323  3.23E-04| 348544 354024 343230
11.977 117.4%4 0.344 3.44E-04| 341553 346591 336660 11.976 117.485 0339  3.39E-04| 348562 351750 341525
12472 122350 0,358 3.58E-04| 341761 346601 337083 12474 122370 0.35 3.50E-04 | 349628 354895 344704
12.968 127.216 0372 3.72E-04| 341979 346638 337443 12972 127.255 0.363 3.63E-04| 350566 3554682 345803
1347 1321441 0.388 3.8BE-04| 340559 | 345015 335236 13472 132160 0.38  3.BOE-D4| 347750 | 352428 343274
13872 137.085 04 4,00E-04| 342653 347001 338433 13.973 137.075 0.391 3.91E-04| 350576 355117 346149
14,467 141.921 0412 4.12E-04| 344459 348701 340338 14471 141961 0.407 4.07E-04| 348797 353136 344564
14,954 146.797 0424 4.24E-04| 348218 350350 342184 14965 146.807 0.42 4.20E-04 | 349540 353751 345427
[Spring 3 Emor

Mass (Kg) Force Dist (mm) [Ls_t_(m) Stiffness |Lower Bound Upper Bound|
D488 4845 001  100E-D5| 464614 | ooozz8 323016
0.993 9.741 0.026 260E-D5| 374557 483873 314236
14839 14,607 0.04 4.00E-05| 385177 417345 324602
1.984 19.463 0.054 540E-05| 380427 387205 329882
2481 24.338 0,068 B.90E-05| 352733 380291 328300
2,983 28.263 0.08 8.00E-D5| 355790 380176 . 344273
3485 34.188 0.084 9.40E-D5| 363701 384133 345332
3.988 39.122 0.109  1.09E-04| 358320 376176 343178
4489 44,037 0.123  1.23E-04| 358025 373196 344040

4.99 48,952 0.137  1.37E-04| 357313 370848 344732
5.481 53.769 0.151 1.51E-04| 355084 368278 344671

588 58.664 0.165 1.65E-04| 358538 366649 345081
6.477 63,539 0.178 1.7BE-04| 355933 367280 347210
6.972 68.395 0.192  1.92E-D4| 355226 365750 347184
7.469 73.271 0206 2.08E-04| 355684 364532 347255
7.971 78.198 0.221 2.21E04| 353826 362016 345988
8473 83.120 0235 2.35E-04| 353703 361382 346334
8.974 88.035 0.249 248E-04| 353554 360798 346594
9.477 92.969 0261 261E-D4| 356204 363162 349509
9.976 97.865 0278 2.78E-04| 352031 358478 345811
10.478 102.789 0285 2.95E-D4| 348438 354445 342631
10975 107.6685 0.308 3.08E-04| 349581 355328 343977
11.476  112.580 0.322 3.22E-04| 349526 355141 344280
11.975 117.475 0.338  3.38BE-04| 347558 352777 342492
12472 122350 0.351 3.51E-D4| 348576 353614 343681
12.97 127.236 0.368  3.68BE-04| 345749 350512 341114
13.472 132160 0.383  3.83E-D4| 345336 349630 340619
13.958 137.026 04 4.00E-D4| 342585 346901 338336
14,454 141.892 0.411 4,11E-D4|| 345236 349487 341086
14,955 146807 0422 4.22E-04| 347883 352054 343809
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APPENDIX B:

Raw Data from Chi-squared Tests

Configuration 1

Node Mass | Expt Freq|k= 378000 K=350000 K=340000
(kg) (Hz) |Freq (Hz) AF  Chisqu'd |Freq (Hz) AF Chi squ'd |Freq (Hz) AF  Chisqu'd
1 6.195 6.800 8.090 1.290 0.245 7.788 0.888 0.143 7.788 0.988 0.143
2 4.867 21.800 24.450 2.650 0.322 23.531 1.731 0.137 23.192 1.392 0.089
3 3.772 35.300 36.570 1.270 0.046 35.185 0.115 0.000 34.679 0.621 0.011
4 4.641] 50.600] 51.080 0.480 0.005] 49.152 1.449 0.041] 43.444 7.156 1.012
5 6.503 62.000 62.170 0.170 0.000 59.825 2175 0.076 58.964 3.036 0.149
6 5361 73.700] 72.790 0.910 0.011] 70.044 3.656 0.181] 69.036 4.664 0.295
7 3.628 80.500 80.390 0.110 0.000 77.359 3.141 0.123 76.246 4254 0.225
8 3.291 91.200 89.910 1.290 0.018 86.517 4.683 0.240 85.272 5.928 0.385
9 2.078] 103.500] 100.8630 2.870 0.080 96.834 6.666 0.429 95.441 8.060 0.628
Sum s 0.727 Sum= . 137:}-' Sum = 2.937
e e e g e A e VT e
Configuration 2
Node Mass | Expt Freq|k= 378000 K=350000 K=340000
(kg) (Hz) |Freq (Hz) AF  Chisqu'd |Freq (Hz) AF  Chisqu'd |Freq (Hz) AF  Chisqu'd
1 5.928 7.000 7.958 0.958 0.131 7.672 0.672 0.065 7.562 0.562 0.045
2 4.600 21.458 24.085 2.626 0.321 23.166 1.708 0.136 22.833 1.375 0.088
3 3.505] 35.757| 36.083 0.326 0.003| 34.726 1.031 0.030] 34.227 1.530 0.068
4 4.374 50.350 50.380 0.030 0.000] 48.478 1.872 0.070] 47.781 2.569 0.131} .
5 6.236 62.167 61.352 0.815 0.011 5§9.035 3.132 0.158 58.185 3.982 0.2585
6 5.094 73.450 71.814 1.636 0.036 69.107 4.343 0.257 68.113 5.337 0.388
7 3.361 81.000 79.211 1.789 0.040 76.214 4.786 0.283] 75.117 5.883 0.427
8 3.024 92.563 87.882 4.681 0.237 85.184 7.378 0.588 83.958 8.604 0.800
9 1.944 99.500 98.792 0.708 0.005 95.066 4.435 0.198 93.698 5.802 0.338
Sum = 0.784 Sum = 1& Sum = 2.538
?Wﬁ%@%%%ﬁ?:ﬁﬁ@{ﬂ?xﬁiﬁm_tﬁ‘:?&ﬁ&nh%‘_“fm“ﬁp_*EF‘“vﬁ-ﬁ_&:ﬁ%’%‘?_\_ B,
Configuration 3 —
Node Mass | Expt Freq|k= 378000 K=350000 K=340000
(kg) (Hz) |Freq (Hz) AF Chi squ'd |Freq (Hz) AF  Chisqu'd |Freq (Hz) AF  Chisqu'd
1 4.735 8.194 11.254 3.060 1.142 10.828 2.633 0.846 10.672 2.477 0.742
2 1.196 30.708 35.553 4.844 0.764 34.225 3.517 0.403 33.733 3.024 0.298
3 0.220 46.286 50.354 4.069 0.358 48.462 2.177 0.102) 47.765 1.479 0.047
4 0.805 65.750 71.158 5.408 0.445] 68.473 2.723 0.113 67.487 1.737 0.045
5 0.464 92.583| 100.671 8.088 0.707 96.866 4.282 0.198 95.472 2.888 0.080
6 0.874] .119.922] 123.281 3.359 0.094] 118.269 1.653 0.023] 116.922 3.000 0.075
7 2.265| 146.861| 142.353 4.509 0.138| 136.860 9.901 0.668] 134.989 11.872 0.960
8 0.759] 180.438] 174.331 6.107 0.207| 167.750 12.687 0.892| 165.336 15.101 1.264
9 3.852| 210.792| 201.348 9.443 0.423] 193.728 17.063 1.381| 190.941 19.851 1.869
Sum = 4.278 Sum = 4.626 Sum = 5.398

D R e B A T A o A A T 20 SOV TN D B S e

[Configuration 4

Node Mass | Expt Freqlk= 378000 K=350000 K=340000

(ka) (Hz) |Freq (Hz) AF Chi squ'd |Freq (Hz) AF Chi squ'd |Freq (Hz) AF  Chisqud

1 3.776 9.569 11.141 1.571 0.258 10.738 1.168 0.143 10.583 1.014 0.107
2 2.659 28.944 32.187 3.243 0.363 30.964 2.020 0.141 30.524 1.579 0.086
3 3.490 45.972 47.560 1.588 0.055 45.745 0.227 0.001 45.087 0.886 0.017
4 3.856 63.056 63.920 0.865 0.012 61.475 1.581 0.040 60.591 2.465 0.096
5 4.332 80.597 81.185 0.587 0.004 77.972 2.626 0.086 76.850 3.748 0.174
6 0.802 87.056 82.049 4,993 0.286 88.561 1.505 0.026 87.286 0.231 0.001
7 1.430] 101.406 98.868 2.538 0.064 95.101 6.305 0.392 93.733 7.673 0.581
8 0.351] 145.078] 141.809 3.269 0.074] 136.445 8.634 0.514] 134.481 10.597 0.774
g 0.703] 186.292| 184.983 1.309 0.009] 178.026 8.265 0.367| 175.465 10.827 0.629
Sum = 1.125 Sum = 1.708 Sum = 2.466
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Appendix B: Row Data from Chi-squared Tests

. |Configuration 5

SO RS
Configuration 7

S e B L e E S e )

T T T T )
FRCL T SaT e L o o e L L e sy
B s 2 S S L e :bﬁﬁx.@m‘:w’&.«:-.ér‘m—fmﬁ."‘ FEEHE

Node Mass | Expt Freq|k= 378000 K=350000 K=340000
(kg) (Hz) |Freq (Hz) AF Chi squ'd |Freq (Hz) AF Chi squ'd |Freq (Hz) AF Chi squ'd
1 6.797 9.000] 10.473 1.473 0.241 10.079 1.079 0.129 9.934 0.934 0.097
2 3.557| 26.000] 27.731 1.731 0.115] 26.683 0.683 0.018] 26.299 0.299 0.003
3 3.684] 42.083] 43.163 1.080 0.028] 41.534 0.549 0.007| 40.937 1.147 0.031
4 3.235| 56.167| 57.025 0.859 0.013] 54.872 1.295 0.030| 54.082 2.085 0.077
5 2347 727171 72.018 0.753 0.008] 69.299 3.472 0.166] 68.301 4.469 0.275
6 2.584| 88.667| 86.793 1.874 0.040] 83.517 5.150 0.299] 82.315 6.352 0.455
7 1.757| 98.188] 96.339 1.848 0.035| 92.701 5.487 0.307] 91.367 6.821 0.474
8 1.086| 113.478] 109.465 4.015 0.142] 105.331 8.149 0.585] 103.815 9.664 0.823
9 1.204] 142.313] 139.292 3.021 0.064] 134.033 8.280 0.482] 132.104| 10.208 0.732|
Sum = 0.685 Sum = 2.022 | Sum = 2.968
oD e r T T S AR N et W&&ﬁ%ﬁfm%ﬁw&&%ﬁ
Configuration 6
Node Mass | Expt Freq|k= 378000 K=350000 K=340000
(kg) (Hz) |Freq (Hz) AF Chi squ'd |Freq (Hz) AF Chi squ'd |Freq (Hz) AF Chi squ'd
1 3.498 9.500| 10.747 1.247 0.164] 10.336 0.836 0.074] 10.188 0.688 0.050
2 2.017| 31.281 34.541 3.259 0.340] 32.382 1.101 0.039] 31916 0.635 0.013
3 1.558] 48.031 49.625 1.593 0.053| 47.753 0.278 0.002| 47.066 0.966 0.019
4 2.019] 65.766] 67.085 1.320 0.026] 64.553 1.213 0.022] 63.624 2.142 0.070
5 3.064| 82.031 81.788 0.244 0.001 78.700 3.332 0.135] 77.567 4.464 0.243
6 3.070| 98.000f 96.400 1.600 0.026] 92.761 5.239 0.280] 91.425 6.574 0.441
7 2.285| 106.422| 103.717 2.705 0.069] 99.804 6.618 0.412] 98.368 8.054 0.610
8 0.960] 129.906| 124.885 5.021 0.194] 120.171 9.735 0.730] 118.442| 11.465 1.012
8 0.877| 146.156] 145.142 1.014 0.007| 139.672 6.485 0.288| 137.662 8.494 0.494
Sum = 0.879 Sum = 1.981 Sum =

Node Mass | Expt Freq|k= 378000 K=350000 K=340000
{kq) (Hz) [Freq (Hz) AF Chi squ'd |Freq (Hz) AF Chi squ'd |Freq (Hz) AF Chi squ'd
1 4.011 9.500 10.981 1.481 0.231 10.565 1.065 0.119 10.413 0.913 0.088
2 1.332] 31.472| -33.807 2.335 0.173] 32.528 1.056 0.035] 32.050 0.588 0.011
3 1.828] 48.444 50.168 1.723 0.061 48.272 0.172 0.001 47.578 0.867 0.016] -
4 1.205] 65.969 67.788 1.819 0.050| 65.228 0.741 0.008] 64.289 1.679 0.043
5 3.019] 78.016 77.945 0.070 0.000] 75.001 3.015 0.117] 73.921 4.094 0.215
6 1.768] 109.818] 106.789 3.030 0.084| 102.752 7.068 0.455] 101.273 8.546 0.665
7 29291 120.431| 116.734 3.696 Q.113] 112.319 8.112 0.546] 110.702 9.729 0.788
8 0.974] 139.450] 134.260 5.190 0.193] 129.185| 10.265 0.756] 127.327| 12.124 1.054
9 1.175] 144.611] 139.376 5.236 0.190] 134.111 10.500 0.762] 132.181 12.430 1.068
Sum = _ ‘l.@_SJ__ Sum = _2_.7_99 Sum = 3.945
Configuration 8 T —
Node Mass | Expl Freq|k= 378000 K=350000 K=340000
(kg) (Hz) |Freq (Hz) AF  Chisqud |Freq (Hz) AF  Chisqu'd |Freq (Hz) AF  Chisqu'd
1 6.529 8.781 10.078 1.297 0.192 9.692 0.911 0.094 9.553 0.772 0.068
2 1.496) 29.250 31.691 2.441 0.204] 30.492 1.242 0.053] 30.053 0.803 0.022
3 1.371 42.000] 43818 1.818 0.079] 42.163 0.163 0.001 41.555 0.445 0.005
4 1.673] 61.714 61.441 0.273 0.001 59.118 2.597 0.109] 58.267 3.447 0.193
5 3.094 80.688 79.361 1.327 0.022 76.350 4.327 0.232 75.262 5.426 0.365
6 3.827 96.906 94.290 2.616 0.071 90.726 6.180 0.394 89.420 7.486 0.578
% 2.426| 108.188| 106.756 1.431 0.019] 102.724 5.463 0.276] 101.243 6.944 0.446
8 2.005| 124.781| 123.373 1.408 0.016] 118.627 6.155 0.304] 116.920 7.862 0.495
9 0.886| 136.475| 133.562 2.913 0.062] 128.508 7.967 0.465| 126.660 9.815 0.706
Sum = 0.665 Sum = 1.928 Sum = 2.877
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APPENDIX C:

Raw Data from Experimental Tests of Algorithm 4.2
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RESULTS FROM TESTING OF ALGORITHM
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