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ABSTRACT

In southern Australia, where subsoils are predominantly alkaline and pH increases
with depth, the available zinc status of soils is low and cereals may suffer from zinc
deficiency. This deficiency has traditionally been treated by application of zinc
fertilizer to the cultivated layer from which the downward movement of zinc is
unlikely. Evidence has accumulated over the past decade that a lack of zinc in the
medium external to the root impairs the function of roots and that zinc may be

required in subsoil as well as topsoil to correct the problem.

Field experiments were established at two sites at Minnipa in South Australia to
measure the effects of deep placement to 0.4 m of zinc, nitrogen and phosphorus on
wheat (Tritium aestivum L. cv. Machete) and barley (Hordeum vulgare L. cv.

Stirling).

In view of the wide (0.45 m) spacing between the tynes of the deep ripper used for
fertilizer placement, some clear effects were observed.  Zinc concentrations in
youngest emerged blades (YEBs) were generally highest where zinc was applied with
pitrogen-phosphorus (NP) fertilizer. Grain yields were not highly correlated with zinc
concentration in YEBs. Zinc concentration in grain was highest where a mixture in
water of zinc sulphate, monoammonium phosphate and ammonium nitrate was applied
to the subsoil. Subsoil placement of zinc and NP fertilizer significantly increased
wheat grain yields and zinc concentrations in grain above placement in topsoil at one
site in the second year. The apparent benefits of subsoil placement of zinc with NP

fertilizers are worthy of further investigation in areas where alkaline subsoils occur.

In southern Australia, there exists a body of anecdotal evidence that wheat grown
after field peas (Pisum sativam L.) is more productive than when grown after pasture
legumes (principally Medicago spp.) The possibility that the different abilities of
various species to mobilise zinc may be of benefit to following crops has only recently
been considered. A deep pot experiment was conducted to compare the abilities of

several antecedent species to cope with zinc deficient soil and to modify the available
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zinc status of the soil to benefit wheat grown in the following year. Six species,
Lupinus pilosus (cv. 20957), Pisum sativum L. (cv. Early Dun.), Medicago truncatula
Gaertn. (cv. Parabinga), Triticum durum L. (cv. Durati), Hordeum leporinum Link
and Brassica juncea Czern and Coss (cv. Pusa Bold) were grown in pots containing
zinc-deficient Laffer sand fertilized with basal nutrients other than zinc. The same
species, apart from B. juncea, were also grown in pots to which 0.25 mg Zn kg soil

was also added.

Of the five species, L. pilosus was the most zinc efficient and H. leporinum the least.
B. juncea produced more dry matter in soil of low zinc status than other species and
displayed no symptoms of zinc deficiency. The large seeded grain legumes produced
significantly more dry matter to anthesis in zinc-deficient soil than M. truncatula or
members of the Poaceae. T. durum (cv. Durati) was grown in the same pots and
harvested three weeks after sowing when plants were almost completely necrotic.
Durati shoots produced significantly more dry weight at harvest in soil of low zinc
status following P. sativum than other species apart from L. pilosus. The data suggest
that the reported better performance of cereals after P. sativum compared with
Medicago based pastures is a real effect and may be due in part to an enhanced
availability of zinc. In T. aestivum L. (cv. Excalibur) grown in the same soil for 20
weeks, zinc uptake following grain legumes in zinc deficient soil was significantly
higher than after the Poaceae or B. juncea. Uptakes of several nutrients were
significantly depressed in Excalibur grown after H. leporinum compared with other
species.  Durati appears to have a higher critical concentration for zinc than

Excalibur.

The zinc efficiencies, root growth and production characterisitics of the wheat
cultivars Gatcher (zinc-inefficient) and Excalibur (zinc-efficient) in infertile, alkaline
subsoil typical of that which occurs on Eyre Peninsula were compared in a pot
experiment. The principal hypothesis tested was that the zinc-efficiency of Excalibur,
when compared with that of Gatcher, is due primarily to the ability of Excalibur to
produce a greater surface area of roots. Zinc-efficient Excalibur wheat demonstrated a

clear advantage in terms of grain yield compared with the inefficient cultivar Gatcher
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when grown in a calcareous alkaline subsoil of low zinc status when other basal
nutrients were added. Zinc uptake in Excalibur tops was the equivalent to that in
Gatcher although Excalibur produced a total root length about half that of Gatcher.
Excalibur also displayed a greater degree of internal efficiency for diverting zinc to

grain formation.

Zinc efficiency offers a cost-effective approach to growing cereals on soils of low zinc
status. However, more efficient grain production with respect to zinc supply does not
necessarily imply higher zinc concentration in grain. The relationship between zinc
placement in soil and grain concentration of zinc and other parameters in Excalibur
were examined. Plants were grown in pots with three layers of sand each 20 cm deep.
Basal nutrients were added to the whole soil but zinc was added at 0.5 mg Zn kg™ soil
in various combinations of layers. There were no differences in grain yield but the
highest concentrations of zinc in grain occurred in pots containing added zinc in all
three layers. Where only one layer was treated with zinc, concentrations of zinc in
grain were highest where zinc was added to the bottom layer. In the zinc-efficient
wheat cultivar Excalibur, high zinc concentrations in grain were dependent on a supply
of adequate zinc throughout the root zone. Increasing the depth of placement to any
degree above the standard 0.05 m used in the field in southern Australia is likely to

have a beneficial effect on zinc concentration in grain.

The literature reveals a paucity of field studies of subsoil infertility, particularly with
specific reference to zinc. The thesis describes investigations into field and pot studies
of various aspects of subsoil infertility, including the possible roles of zinc efficiency
in cereals and crop rotations in addressing this problem. The data indicate several

promising avenues for further investigation.





